
Secure computation of fan-in and fan-out degree
of nodes using additive homomorphic encryption

Darius-Eduard Floroiu1

Supervisor(s): Dr. Zeki Erkin1, Dr. Kubilay Atasu1, Lourens Touwen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2025

Name of the student: Darius-Eduard Floroiu
Final project course: CSE3000 Research Project
Thesis committee: Dr. Zeki Erkin, Dr. Kubilay Atasu, Dr. Megha Khosla

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
There is an increasing need for financial institutions to be able to detect illicit activ-

ities such as money laundering. While these institutions currently rely on graph-based
analytics or machine learning algorithms for such detection, inter-bank collaboration
is hindered by privacy concerns and regulations. In this paper, we introduce a new
protocol for computing simple fundamental graph features (specifically fan-in and fan-
out degrees) directly on encrypted transaction data using the advantages of additive
homomorphic encryption schemes, especially the Paillier cryptosystem. Our algorithm
allows a semi-trusted third party to perform computations without accessing plaintext
data, enabling privacy-preserving collaboration between banks. Through the paper, we
detail the protocol design, analyze its complexity, security and correctness, and demon-
strate how it reduces the gap between utility and privacy. While the protocol currently
supports only basic graph metrics and assumes a common normalized currency, it of-
fers a scalable and practical foundation for future privacy-preserving financial crime
analytics.

1 Introduction
Money laundering represents a critical threat to businesses worldwide, with far-reaching

consequences that extend beyond immediate financial risks[1]. With an average cost of
scams of $102m to financial institutions in 2022, there is an increasing need to develop a
mechanism to combat financial crimes[2]. Although banks are able to analyze transactions
within their own network, the current system lacks an efficient and privacy-preserving way
to perform inter-bank transaction pattern analysis due to privacy concerns[3].

Trustworthy Financial Crime Analytics focuses on developing advanced algorithms for
detecting such financial crimes using graph-based methods[4]. In a centralized setting, where
all transaction data is aggregated and processed by a single trusted entity (e.g., a bank
or regulator), these algorithms have shown considerable success in uncovering fraudulent
patterns[5]. However, centralization raises concerns about data silos, single point of failure,
and privacy, especially in scenarios of cross-institutional collaboration.

In recent years, graph-based machine learning has become a popular method for detecting
financial crime. These techniques represent transactions as graphs, where accounts are nodes
and transfers are edges. Features like fan-in, fan-out, and scatter-gather patterns help detect
suspicious behavior such as money laundering[6, 5]. However, there is a major challenge:
financial institutions often cannot share transaction data with each other due to privacy and
legal restrictions.

To address these concerns and enable collaborative crime detection without exposing
sensitive financial data, decentralized privacy-preserving versions leverage techniques such as
Secure Multi-Party Computation (MPC) and Homomorphic Encryption (HE). MPC enables
multiple parties to jointly compute a function over their private inputs without revealing
them to one another[7], whereas HE allows one to evaluate circuits over encrypted data
without the need to decrypt it first[8]. By integrating security and privacy, the goal is to
enhance trust and compliance in financial crime analytics[4].

HE offers a promising way to address these concerns, by allowing computations to be per-
formed directly on encrypted data without needing decryption, enabling privacy-preserving
analysis. Recent work has explored privacy-preserving machine learning models using HE,
such as encrypted inference with XGBoost[6] models enriched with graph features extracted
via Graph Feature Preprocessors[5]. However, these approaches still require access to plain-
text graph structures for feature extraction, and the HE component typically applies only

1

during the inference phase, not during graph analysis. By using HE, models can be trained
on real data as well, instead of being trained on synthetic graphs (such as AMLworld[9]).

In this work we investigate how fan-in and fan-out degrees of nodes in financial transac-
tion graphs can be computed using additive homomorphic encryption. Fan-in and fan-out
degrees of nodes are the number of incoming/outgoing edges of a node, which represents an
account. These degree measures are fundamental graph features used to detect anomalous
patterns such as unusually high incoming or outgoing transaction volumes, which are often
indicative of money laundering or fraud. Computing them directly over encrypted data
would enable financial institutions to collaborate on identifying suspicious behavior without
revealing the underlying transaction data. Compared to Somewhat and Fully Homomorphic
Encryption (SWHE/FHE), which support arbitrary computations but remain impractically
slow[10], AHE schemes offer a practical trade-off by supporting fast encrypted additions,
which suffice for many graph metrics like degree computation.

Our main contributions are as follows:

1. We formalize the problem of encrypted fan-in and fan-out computation under AHE
and propose a protocol that enables secure computation of these degree metrics in a
decentralized setting

2. We analyze the correctness, efficiency, and privacy guarantees of the protocol, demon-
strating its theoretical applicability to collaborative financial crime detection

The remainder of this paper is structured as follows. Section 2 provides background
on homomorphic encryption and graph-based financial analytics. Section 3 describes the
involved actors, the threat model and presents our proposed protocol in detail. Section 4
evaluates its performance and security. Section 5 reflects on the ethical aspects of our re-
search and discuss the reproducibility of our methods. Finally, Section 6 discusses limitations
and future directions, and Section 7 concludes the paper.

2 Background

2.1 Homomorphic Encryption
Homomorphic Encryption (HE)[11] allows for computations to be performed directly on

encrypted data without the need of decryption. This powerful technique enables privacy-
preserving data processing, where a third party can compute functions over ciphertexts and
return the encrypted results to the data owner, who can decrypt it and analyze the result.

At the core of homomorphic encryption lies the principle of computing an arbitrary func-
tion f(m1, ...,mn) on encrypted data, without learning anything about the plaintext inputs
m1, ...,mn. Let pk denote the public key and sk the secret key. The data owner encrypts
each input mi to obtain ciphertexts ci = Encrypt(pk,mi). A third party, without access to
sk, can then evaluate a function over the ciphertexts, denoted as Eval(pk, f, c1, ..., cn), which
results in a new ciphertext. When decrypted using the secret key sk, the result reveals the
correct value of f(m1, ...,mn), i.e.,

Decrypt(sk,Eval(pk, f, c1, ..., cn)) = f(m1, ...,mn), (1)

which guarantees both the correctness of the computation and the privacy of the input
data.

2

HE schemes are categorized into 3 types, based on the number of operations that can
be applied to encrypted values [12]: Partial, Somewhat or Fully HE (PHE/SWHE/FHE).
PHE allows only one type of operations, but it can be applied infinitely many times, SWHE
allows some types of operations, but only a finite number of times and FHE allows infinitely
many operations, infinitely many times. Since any Boolean circuit can be represented using
only XOR (addition) and AND (multiplication) gates [12], SWHE and FHE provide a lot
of versatility. On the other hand, PHE provides speed advantages since it does not require
bootstrapping.

2.2 Paillier Cryptosystem
Paillier cryptosystem (introduced by Pascal Paillier in 1999 [13]) represents an additive

homomorphic public-key encryption scheme that relies, for its security, on the Composite
Residuosity Class Problem, a number-theoretic assumption. It involves determining whether
a given element z ∈ Z∗

n2 is an n-th residue modulo n2, where n = p · q is a product of two
large primes. Since determining whether z is an n-th residue requires knowledge of the
factorization of n, the problem is considered computationally hard for an adversary who
only knows the public key.

Let n = p · q be the product of two large primes. The public key is (n, g), where g,
usually g = n + 1, is a value such that gcd(L(gλ mod n2), n) = 1, with gcd being the
greatest common divisor and L is a function such that:

∀u ∈ Sn, L(u) =
u− 1

n
. (2)

The private key is λ = lcm(p − 1, q − 1), with lcm being the least common multiple. For
a plaintext message m ∈ Zn, the encryption is defined as Epk(m) = gm · rn mod n2, with
randomly chosen r ∈ Z∗

n. The Paillier cryptosystem supports additive homomorphism:

Dsk(Epk(m1) · Epk(m2)) = Dsk(Epk(m1 +m2)). (3)

Other important properties of the Paillier cryptosystem are:

∀m1,m2 ∈ Zn and k ∈ N,
Dsk(Epk(m)k mod n2) = k ·m mod n, (4)

Dsk(Epk(m1) · gm2 mod n2) = m1 +m2 mod n, (5)

Dsk(Epk(m1)
m2 mod n2) = m1m2 mod n, (6)

Dsk(Epk(m2)
m1 mod n2) = m1m2 mod n. (7)

2.3 Related Work on Encrypted Graph Analytics
Several projects have already applied HE to anti-money laundering (AML). For example,

Project Aurora shows how HE and Local Differential Privacy (LDP) can be used together
to build secure, cross-border AML systems[6]. In the same direction, CryptoGCN [14] shows
how Graph Neural Networks (GNNs) can be run on encrypted data using FHE.

Still, many of these systems only use HE for the final step —model inference— while
the graph features themselves are computed in plaintext. The Graph Feature Preprocessor
(GFP)[5], for instance, extracts features like node degrees and graph patterns before the

3

data is encrypted. Even systems that combine HE with machine learning models (e.g.,
TFHE + XGBoost) rely on unencrypted graphs during feature extraction[6].

Some researchers have looked at how graph algorithms could run on encrypted data
from the start. For example, Dockendorf et al.[15] adapted algorithms like Bellman-Ford
and Kruskal’s to work with encrypted graphs using HE. But these methods are often very
complex or require special encryption schemes. Many also focus on full graph analytics
rather than on simple but useful features like node degrees.

In contrast to these more complex systems, this work focuses on computing simple yet
powerful graph features—fan-in and fan-out degrees—using additive homomorphic encryp-
tion (Paillier)[13]. This bridges the gap between privacy and utility without revealing sen-
sitive transaction details.

3 Our Protocol
To address the issues described in the introduction, our proposed protocol allows each

bank to encrypt its transaction data and send it to a semi-trusted third party that computes
simple graph metrics, specifically fan-in and fan-out degrees, to help detect anomalies in
account behavior. The third party performs the computation on encrypted data using
an additive homomorphic encryption scheme (specifically the Paillier cryptosystem) and
only returns the encrypted results to the requesting bank. This preserves the privacy of
transaction data while enabling the extraction of useful analytics.

We consider a scenario that contains two categories of parties: Party A (the third party
analytics provider) and banks (with a varying number of banks that want to collaborate,
and party B - the bank that investigates for illicit activities). We consider the threat model
where an adversary can see all the data of the third party, but cannot insert its own data.
The protocol also allows the presence of a regulator/auditor, for compliance oversight. Banks
are the owners of the data and the protocol initiators. They encrypt transaction data using
deterministic homomorphic encryption and send it to the third-party, with their goal being to
gain insight into transaction patterns (e.g., fan-in/fan-out) for anti-money laundering. Party
A performs encrypted computations over the incoming data and can access and manipulate
encrypted data, maintaining a persistent structure (in local memory). There are multiple
types of adversaries: curious third parties (may attempt to deduce patterns from ciphertext
such as frequency, size, or structure), observers (network attackers monitoring data flows
between banks and Party A) and colluding parties (two or more parties sharing encrypted
inputs or outputs to reverse-engineer sensitive information). These adversaries want to
learn relationships between accounts, detect transaction volume or frequency patterns, or
identify account identities. The protocol can also include optional regulators/auditors who
may be granted restricted access to metrics or summaries (not raw data) for compliance
oversight and could be included in future iterations of the protocol with differential privacy
or zero-knowledge proofs.

Now, we describe our algorithm. We start by outlining the assumptions, followed by the
four phases of the protocol, and conclude with some remarks on the cryptographic design
and data structures.

3.1 Assumptions
For this protocol to properly work, we assume that before sending the money to the

third party, each bank converts the sum to the same currency, ideally using the same global

4

scale to minimize the possible differences. Account IDs are only known by the banks, and
an observer cannot link account IDs to real users. All banks trust the cryptographic scheme
and the integrity (but not confidentiality) of the third party. It is assumed that Party A does
not have access to decryption keys and is honest-but-curious (i.e., follows protocol but may
attempt to infer data from ciphertext access patterns or frequency). Adversaries have no
access to decryption keys or plaintext data, but may observe ciphertexts, protocol outputs,
and possibly the adjacency structure if not hidden. Finally, Party A verifies the identity and
trust level of all implied banks (can be done using a digital certificate). Party A maintains
a whitelist of trusted senders (banks) that may submit encrypted data.

3.2 Algorithm
Our algorithm starts with the Setup Phase, where Party B, the bank who checks for

illicit activities, generates and distributes it’s public key. After that, in the Data Submis-
sion Phase, each bank locally encrypts its transaction data using Party B’s public key. The
encryption method varies per field based on the use case, as shown in Table 1. Next, banks
send their encrypted transaction batches to Party A over a secure channel (e.g., TLS). The
Graph Construction phase starts with party A verifying the authenticity of each transac-
tion. If the bank associated with the transaction is authorized, then the graph constructed
by Party A is updated accordingly, as shown in Pseudocode 1. In the final phase, namely
the Query Phase, Party B requests fan-in and fan-out degree patterns from Party A, as
described in Pseudocode 2.

Table 1: Overview of encrypted transaction parameters
Parameter name Parameter description Encryption method
Timestamp Year/Month/Day Hour/Minute NA
From Bank Numeric code for bank where

transaction originates
deterministic version of
Paillier cryptosystem

Account Hexadecimal code for account
where transaction originates

deterministic version of
Paillier cryptosystem

To Bank Numeric code for bank where
transaction ends

deterministic version of
Paillier cryptosystem

Account Hexadecimal code for account
where transaction ends

deterministic version of
Paillier cryptosystem

Amount Received Monetary amount received in From
account (in currency units of the
next row)

non-deterministic version
of Paillier cryptosystem

Receiving Currency Currency such as dollars, euros, etc
of From account

NA

Amount Paid Monetary amount paid (in currency
units of next row)

non-deterministic version
of Paillier cryptosystem

Payment Currency Currency such as dollars, euros, etc
of From account

NA

Payment Format How transaction was conducted,
e.g. cheque, ACH, credit cards, etc.

NA

5

Pseudocode 1
Graph Construction
1: Input: Encrypted transactions from all banks
2: Output: Encrypted adjacency map (implicit)

3: for all transactions (t) do
4: if bank associated with t is not authenticated then
5: Reject transaction t
6: else
7: // s, r and amount from t are encrypted
8: Let s← sender account in t
9: Let r ← receiver account in t

10: Let A[s][r]← A[s][r] + t.amount
11: end if
12: end for

Pseudocode 2
Query phase
1: Input: Encrypted ID
2: Output: Encrypted fan-in and fan-out degrees for the requested ID

3: Let i← encrypted id
4: Let fanout_number ← len(A[i])
5: Let fanout_value ← 0
6: for all indexes j do
7: fanout_value = fanout_value +A[i][j]
8: end for
9: Let fanin_number ← 0

10: Let fanin_value ← 0
11: for all indexes j do
12: fanin_value = fanin_value +A[j][i]
13: fanin_number = fanin_number + 1
14: end for
15: return fanout_number, fanout_value, fanin_number, fanin_value

6

3.3 Cryptographic Design
For this protocol, we decided to use three different ways to encrypt the data, as we

explain next. For data that is not relevant for the algorithm, we decided to use a hashing
algorithm, since it has speed advantages. For account numbers and bank IDs, we opted for
a deterministic version of Paillier, because it allows for deterministic comparison, which is
needed for the graph construction phase. Amounts are encrypted using a non-deterministic
version of Paillier, as they need to be secret and should be easy to be summed in an encrypted
way. Another possible solution would be to use the Okamoto-Uchiyama cryptosystem[16],
but, because of the broader message space and being more widely used and studied, we
decided to go with the Paillier cryptosystem.

3.4 Data Structures
The initial idea was to store the data as an adjacency matrix, where at row i and column

j, it would keep the amount send from account i to account j. Due to the big size of the
matrix and the large number of empty entries (most accounts do not send/receive money
to/from many different accounts), we decided to change our approach and opt for a hash map
of hash maps, where the first map is used to keep track of accounts that have transactions
between them and the second one keeps track of the amount of money transferred between
these two accounts.

The use of a hash map of hash maps makes the computation of fan-out patterns really
easy: for each key in the first map, just count the number of entries in the second map. For
the fan-in patterns, there are two approaches that we can follow, depending on what we aim
to optimize: speed or memory. For speed efficiency, we can keep in memory 2 hash maps of
hash maps (with the second one being the reverse of the first one), so basically the approach
for fan-in patterns is the same as the one for fan-out patterns. For memory efficiency, the
algorithm would need to go over all entries in the first hash map and check whether the
desired account is in the second hash map.

4 Analyses

4.1 Complexity Analysis
In this section, we analyze our proposed protocol in terms of storage, computation and

communication complexity. Through the analysis, we denote: n - the number of unique
accounts, m - the number of transactions, k - the average number of transactions per account,
and l - the bit length of the encryption key.

4.1.1 Space complexity

Each unique sender-receiver pair is processed as a single entry in a nested hash map
A[s][r], which represents the total amount transferred from s to r. Multiple transactions
between the same pair update the existing hash map entry using homomorphic addition,
rather than creating a new one. Let e be the number of unique edges. This results in O(l)
bits needed for each entry. Thus, the total storage complexity is O(e · l). In the worst
case scenario (when each transaction is between a distinct pair of sender and receiver), the
complexity becomes O(m · l).

7

4.1.2 Time complexity

This section explains the considerations taken when calculating the time complexity.
For a quick overview, see Table 2. There are two parts that need to be considered for the
time complexity: graph construction phase and query phase. For the graph construction,
for each transaction, a single addition is performed to update A[s][r], which takes constant
time O(1) to access the index and O(l2) for Paillier addition, resulting in O(m · l2) time
complexity. However, this complexity can be improved, if the multiplication is optimized.
For example, Karatsuba’s Algorithm[17] can be used to bring down the complexity to O(m ·
llog2 3). Assuming very large keys (l ≫ 4096 bits), Harvey-Hoeven’s Algorithm[18] can be
used, which reduces the multiplication complexity to O(l · log l), resulting in O(m · l · log l).
Other multiplication algorithms can also be used, such as Toom-Cook[19, 20] or Schönhage-
Strassen[21], but they do not provide any advantage compared to Karatsuba or Harvey-
Hoeven. For the query phase, for the fan-out, we need either O(1) or O(k) for the degree
count (depending on the implementation, but most programming languages provide O(1)
access time for length of a hash map) and O(k · l2) for the value (since we need to sum k
encrypted values). These lead to a total of O(k · l2) for fan-out patterns. For fan-in degree,
it depends on the chosen implementation. If a reverse map is used, the complexity is the
same as the one for fan-out degree, so O(k · l2). Without a reverse map, we need to iterate
through all outer keys, and check all their neighbors, which gives O(n · k). The amount has
the same complexity, O(k · l2), which leads to a total time complexity of O(n · k + k · l2).

Table 2: Overview of time complexity
Phase Multiplication Algorithm (ma)

or Adjacency Structure (as)
Complexity

Graph construction Default Multiplication (ma) O(m · l2)
Graph construction Karatsuba (ma) O(m · llog2 3)

Graph construction Toom-Cook (ma) with y parts O(m · llogy(2·y−1)

Graph construction Schönhage-Strassen (ma) O(m·l ·log l ·log(log l))
Graph construction Harvey-Hoeven (ma) O(m · l · log l)
Query - fan-out NA O(k · l2)
Query - fan-in with reverse map (as) O(k · l2)
Query - fan-in no reverse map (as) O(n · k + k · l2)

4.2 Security and Privacy analysis
Confidentiality: transaction amounts are encrypted using a probabilistic version of Pail-
lier’s cryptosystem, which prevents the adversary from learning the values or performing
equality tests on ciphertexts. Account IDs and bank IDs are encrypted using a determinis-
tic version of Paillier to allow grouping and comparisons. Although this leaks frequency and
equality patterns, the actual identity of the account remains protected since the mapping
between encrypted IDs and real identities is known only by the originating bank.

Access Pattern Leakage: our protocol currently does not hide the graph structure. This
means that Party A, or any adversary, can infer how many encrypted accounts interact with
each other, which allows statistical or frequency-based inferences, but only if the volume of
data is small or skewed. The fan-in and fan-out patterns returned to Party B are encrypted,
so even Party A cannot learn the results of a query without colluding with Party B.

8

Injection Attacks: since Party A validates each transaction’s sender before accepting it
and maintains a whitelist of trusted banks, unauthorized injection is mitigated. A drawback
is that Party A cannot determine if banks are honest with their transactions, but this is out
of the scope of the algorithm.

Colluding Parties: all transactions are encrypted using Party B’s public key. This raises
a new potential risk: Parties A and B can collude to decipher the transactions of all other
banks. Although this sounds dangerous, in reality, Parties A and B can only learn the
decrypted version of the node IDs and transaction amounts, but the correlation between
these and real customers is still only known by the bank that owns the transactions.

4.3 Correctness
Our protocol correctly computes fan-in and fan-out degrees as well as the total transferred

amounts between accounts, using encrypted transaction data. For each sender-receiver pair,
all amounts are homomorphically summed using the additive properties of the Paillier cryp-
tosystem. All arithmetic is performed on fixed-point integers, so there is no loss of precision
due to rounding. Since account identifiers are encrypted using a deterministic version of
Paillier, the graph structure is preserved, and repeated interactions between the same users
are grouped under the same encrypted keys. The correctness of the protocol also relies on
the honest data submission by the banks. When this condition is met, our protocol produces
reliable results.

5 Responsible Research
Data & Privacy: this research does not involve the gathering of data related to human
subjects. Although the account IDs associated with users are collected and stored, only the
banks know the link between an ID and a certain user. This research provides a theoretical
idea of a new protocol, rather than a concrete implementation, so no data is actually used
at all during this research.

Research Integrity: all the sources and data sets used in this investigation are credited
properly. Although AI was not used to generate ideas for the algorithm, it was used to
check the correctness of some parts, both in terms of content and syntax. The prompts used
had the format ’Consider the following paragraph: "[...]". Does it contain any grammatical
mistake? ’. AI was also used to help with the formatting of this paper, in order to prettify
the aspect of tables, without alternating the data inside.

Replicability/Reproducibility: we strongly think that our contribution can be recreated
by other researchers, especially since the paper contains the description and analysis of a
protocol, but no proper implementation or results. All the sources and software used are
properly referenced and can be accessed by other researchers.

Bias: since this protocol has some limitation, as detailed in Section 6, it can introduce
implicit technical bias, depending on the data used. The future implementations should be
able to mitigate this risk.

Beyond the project: while we think that there are no risks emerging from output of
the protocol, we strongly recommend that the output is not used as a sole decision-making

9

mechanism for freezing account, but rather as a decision-support tool reviewed by human
analysts.

6 Discussion and Future Work
Our proposed protocol provides a theoretically practical and privacy-preserving method

for computing fan-in and fan-out degree patterns on encrypted transactional data. By
leveraging the advantages of additive homomorphic encryption, Party A, a semi-trusted third
party, can perform graph-based computations without access to plaintext data. Compared
to centralized data collection methods, our approach offers better privacy guarantees without
sacrificing too much performance. While not as versatile as fully homomorphic encryption or
secure multi-party computation, the Paillier-based algorithm provides a reasonable tradeoff
between efficiency and security.

6.1 Limitations
Our protocol has several limitations. First, our current version of the protocol ignores

the timestamps of transactions, which prevents temporal filtering and the analysis of activity
over a specific period of time. This limits its ability to detect bursts of suspicious activities
and can incorrectly flag constantly active accounts.

Second, the protocol assumes that all amounts are converted to a common currency
before encryption. This simplification adds more complexity for the banks and may, in rare
cases, lead to erroneous results generated by the different conversion rates used by the banks.

Furthermore, the protocol currently supports only basic pattern detection and does not
enable more advanced graph analytics such as scatter-gather, gather-scatter, simple paths
and so on. These simple patterns, although crucial for detecting money laundering, fail to
detect more complex forms of fraud, which usually happen in a real-world scenario.

Potential colluding parties (Party A and some banks) are also a limitation of our protocol.
Although this does not represent a big concern in terms of security and privacy, some
methods that mitigate this would be a good addition, in order to gain the complete trust of
other banks (and thus willingness to participate in collective fraud detection).

Finally, another limitation of our protocol is access pattern leakage. Despite the fact
that transactions and IDs are encrypted, our protocol does not hide the structure of the
graph. As a result, this can lead to the reveal of frequency-based information over time.

6.2 Future work
A key direction for future work is enabling support for time-window filtering. This would

allow the third party to compute patterns within specific time frames, which could be used to
detect bursts of suspicious activities. The protocol can also be improved to allow the request
of partial queries (for example, only the degree of an account and not the total sum), which
would decrease the complexity to constant time O(1) (if implemented correctly). Another
direction would be to handle different currencies within Party A. Since multiplication with a
scalar can be done with Paillier, the third party can also convert the amounts before adding
them to the graph, to remove any potential differences generated by different conversion
rates, but the banks need to make clear what currency is used for each transaction (which
is possible if the transactions follow the format described in the IBM AML dataset from
Kaggle[22]). Support for more graph analytics would also be a great addition, as they can be

10

used to detect more complex forms of money laundering. A final direction for future work
would be to conduct a comparison between this protocol and other existent approaches,
such as Centralized Data Collection, other PHE schemes, SWHE/FHE, MPC or Differential
Privacy.

7 Conclusions
This paper introduces a new privacy-preserving protocol that enables the secure compu-

tation of fan-in and fan-out degrees on encrypted financial transaction graphs using additive
homomorphic encryption. Our approach addresses a critical need for collaborative financial
crime detection between financial institutions without compromising the confidentiality of
transaction data. By combining deterministic and non-deterministic (probabilistic) encryp-
tion, we preserve structural graph properties while hiding sensitive information from the
computing party, supporting real-time analytics with minimal leakage. Although there are
some current limitations, such as the lack of temporal filtering and support for complex
graph patterns, our work creates a theoretically practical groundwork for future research
in encrypted graph analytics. Extending the protocol to support more complex patterns,
handle multiple currencies and to integrate time-window queries are promising directions to
enhance its utility and impact in real-world financial scenarios.

11

References
[1] Deicy Pareja. Consequences of money laundering for businesses. Pirani Risk Blog,

January 2025. Accessed: 2025-06-12. Archived at: https://archive.ph/jGbdr.

[2] Haobo Zhang, Junyuan Hong, Fan Dong, Steve Drew, Liangjie Xue, and Jiayu Zhou.
A privacy-preserving hybrid federated learning framework for financial crime detection.
arXiv preprint arXiv:2302.03654, 2023.

[3] Marie Beth van Egmond, Vincent Dunning, Stefan van den Berg, Thomas Rooijakkers,
Alex Sangers, Ton Poppe, and Jan Veldsink. Privacy-preserving anti-money launder-
ing using secure multi-party computation. In Jeremy Clark and Elaine Shi, editors,
Financial Cryptography and Data Security - 28th International Conference, FC 2024,
Willemstad, Curaçao, March 4-8, 2024, Revised Selected Papers, Part II, volume 14745
of Lecture Notes in Computer Science, pages 331–349. Springer, 2024.

[4] TU Delft. Fintech - expertise. https://www.tudelft.nl/fintech/expertise#
c1549679, 2024. Accessed: 2025-06-08. Archived at: https://archive.ph/GPmmT.

[5] Jovan Blanuša, Maximo Cravero Baraja, Andreea Anghel, Luc von Niederhäusern,
Erik R. Altman, Haris Pozidis, and Kubilay Atasu. Graph feature preprocessor: Real-
time subgraph-based feature extraction for financial crime detection. In Proceedings of
the 5th ACM International Conference on AI in Finance, ICAIF 2024, Brooklyn, NY,
USA, November 14-17, 2024, pages 222–230. ACM, 2024.

[6] Fabrianne Effendi and Anupam Chattopadhyay. Privacy-preserving graph-based ma-
chine learning with fully homomorphic encryption for collaborative anti-money launder-
ing. In Johann Knechtel, Urbi Chatterjee, and Domenic Forte, editors, Security, Pri-
vacy, and Applied Cryptography Engineering - 14th International Conference, SPACE
2024, Kottayam, India, December 14-17, 2024, Proceedings, volume 15351 of Lecture
Notes in Computer Science, pages 80–105. Springer, 2024.

[7] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218–229. ACM, 1987.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178. ACM,
2009.

[9] Erik Altman, Jovan Blanuša, Luc von Niederhäusern, Beni Egressy, Andreea Anghel,
and Kubilay Atasu. Realistic synthetic financial transactions for anti-money laundering
models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
editors, Advances in Neural Information Processing Systems, volume 36, pages 29851–
29874. Curran Associates, Inc., 2023.

[10] Konstantin G Kogos, Kseniia S Filippova, and Anna V Epishkina. Fully homomor-
phic encryption schemes: The state of the art. In 2017 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 463–
466. IEEE, 2017.

12

https://archive.ph/jGbdr
https://www.tudelft.nl/fintech/expertise#c1549679
https://www.tudelft.nl/fintech/expertise#c1549679
https://archive.ph/GPmmT

[11] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[12] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey on ho-
momorphic encryption schemes: Theory and implementation. ACM Comput. Surv.,
51(4):79:1–79:35, 2018.

[13] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 223–238. Springer, 1999.

[14] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogcn:
Fast and scalable homomorphically encrypted graph convolutional network inference.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

[15] Mark Dockendorf, Ram Dantu, and John Long. Graph algorithms over homomorphic
encryption for data cooperatives. In Sabrina De Capitani di Vimercati and Pierangela
Samarati, editors, Proceedings of the 19th International Conference on Security and
Cryptography, SECRYPT 2022, Lisbon, Portugal, July 11-13, 2022, pages 205–214.
SCITEPRESS, 2022.

[16] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure
as factoring. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98,
International Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in
Computer Science, pages 308–318. Springer, 1998.

[17] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital num-
bers by automatic computers. In Doklady Akademii Nauk, volume 145(2), pages 293–
294. Russian Academy of Sciences, 1962.

[18] David Harvey and Joris Van Der Hoeven. Integer multiplication in time o(nlog\,n).
Annals of Mathematics, 193(2):563–617, 2021.

[19] Andrei L Toom. The complexity of a scheme of functional elements simulating the
multiplication of integers. In Doklady Akademii Nauk, volume 150(3), pages 496–498.
Russian Academy of Sciences, 1963.

[20] Stephen A Cook and Stål O Aanderaa. On the minimum computation time of functions.
Transactions of the American Mathematical Society, 142:291–314, 1969.

[21] Arnold Schönhage and Volker Strassen. Fast multiplication of large numbers. Comput-
ing, 7:281–292, 1971.

[22] Erik Altman. IBM Transactions for Anti-Money Launder-
ing (AML). https://www.kaggle.com/datasets/ealtman2019/
ibm-transactions-for-anti-money-laundering-aml?select=HI-Large_Trans.
csv, 2019. Accessed: 2025-06-13. Archived at: https://archive.ph/6BePe.

13

https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml?select=HI-Large_Trans.csv
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml?select=HI-Large_Trans.csv
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml?select=HI-Large_Trans.csv
https://archive.ph/6BePe

	Introduction
	Background
	Homomorphic Encryption
	Paillier Cryptosystem
	Related Work on Encrypted Graph Analytics

	Our Protocol
	Assumptions
	Algorithm
	Cryptographic Design
	Data Structures

	Analyses
	Complexity Analysis
	Space complexity
	Time complexity

	Security and Privacy analysis
	Correctness

	Responsible Research
	Discussion and Future Work
	Limitations
	Future work

	Conclusions

