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Full Length Article
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A B S T R A C T

With the rapid development of artificial intelligence (AI) technologies, deep learning-based 
structural health monitoring (DeepSHM) methods have gained significant attention. However, 
their black box nature often limits interpretability and trust. The field of Explainable AI (XAI) aims 
to address this by enhancing model transparency and reliability through human-comprehensible 
explanations. This study investigates the use of XAI algorithms in interpreting a 1D convolutional 
neural network (1D CNN) developed for Lamb wave monitoring of bolt-loosening detection in 
multi-bolted double-layer aluminum plates under varying temperatures. Four existing XAI algo-
rithms were employed, including Sensitivity Analysis, Deep Taylor, Gradient-weighted Class 
Activation Mapping (Grad CAM) and Guided Grad CAM. In addition, this paper introduces two 
new XAI methods, Smooth Simple Taylor and Deep Grad CAM as an enhancement of the Simple 
Taylor and Grad CAM methods, respectively. These six XAI algorithms were used to establish the 
relation between the 1D CNN model parameters and the input vector. The results were evaluated 
for their effectiveness in comparison to the physical insights of the input vector using two pro-
posed methods, namely the Correlation Coefficient with Residual Signal and the Residual Signal 
Weighted Importance Score Ratio. The results of the evaluation methods, in conjunction with 
Infidelity, Sense sum, and Sanity check, were utilized to rank the performance of the six XAI 
algorithms. The rankings were consistent in both simulation and experiment data sets, and the 
newly proposed XAI algorithm, Smooth Simple Taylor, appeared to be the best in both data sets. 
Overall, this research establishes a novel approach to using XAI algorithms to enhance the 
explainability of AI in practical engineering applications.

1. Introduction

As a common mechanical connection method, bolted joints are widely used in fields such as aerospace, civil engineering, ship-
building, and construction due to their advantages of easy installation and disassembly, low cost, and reusability [1]. As ubiquitous 
components that bear heavy loads in structures, bolted joint connection status has a significant impact on the safety and reliability of 
the structures. However, threaded fasteners are prone to loosening when exposed to harsh working environments such as cyclic 
loading, mechanical attack, chemical corrosion, and improper operation [2,3]. This can lead to a reduction in preload and cause 
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fatigue fracture of the bolts, which may result in serious consequences such as unstable connections, component detachment, and 
structural collapse [4–7]. Therefore, continuous monitoring of bolt loosening plays a crucial role in ensuring the safety and appli-
cability of bolted structures and preventing catastrophic failures.

Up to now, various promising structural health monitoring (SHM) methods for detecting bolt loosening have been proposed, 
including vibration-based methods [8,9], percussion-based methods [10,11], electro-mechanical impedance (EMI) methods [12,13], 
optical inspection methods [14,15], and non-contact laser excitation methods [16,17]. Although these techniques have their ad-
vantages, they also have certain limitations. Percussion-based methods may cause certain impact forces on the structure itself and have 
lower accuracy [18]. Vibration-based methods are only suitable for detecting the overall vibration characteristics of the structure and 
cannot locate the position of loosened bolts. EMI-based methods are severely affected by environmental conditions and are only 
suitable for rigid structures such as bridges and buildings [19]. Optical inspection methods and laser excitation equipment are 
expensive, have poor adaptability, and are easily affected by environmental factors such as temperature and humidity [20].

Among various attempts, Guided wave-based SHM techniques have gained significant attention due to their excellent sensitivity to 
different damages, wide detection range, and enormous potential for continuous or periodic monitoring of in-service structures [21]. 
Yang et al. [22] studied the contact nonlinearity-induced second harmonic generated by bolt looseness by experiment and three- 
dimensional explicit finite element simulation, proposing an indicator for bolt connection integrity assessment based on guided 
wave nonlinear features. Tola et al. [23] proposed a bolt looseness detection method based on the ultrasonic field energy in the re-
flected Lamb wave from the target bolt. Du et al. [24] developed a semi-analytical method combining finite element models and wave 
superposition to predict the propagation of guided waves in the bolt interface, and discussed how to use the semi-analytical method 
combining power transmission coefficient for bolt torque monitoring. However, current research has mostly focused on the issue of 
loosening in single bolt connections of simple structures, which is not commonly found in practical industry application. In actual 
engineering, bolted structures are typically complex [25] and the transmitted guided waves experience complicated propagation 
processes and mode conversions, making it challenging to extract stable acoustic features from collected signals, thus hindering precise 
damage detection.

The combination of SHM and deep learning technology may help overcome these challenges. In recent years, with the rapid 
development of AI technology, its application in bolt loosening detection has also made significant progress [26–30]. Nguyen et al. 
[31] developed a novel method for bolt-looseness assessment based on the integration of the impedance-based technique and 1D CNN, 
and experimentally validated the proposed method by detecting bolt loosening in a girder connection. Wang et al. [32] proposed a 
multi-bolt loosening detection method based on a newly developed one-dimensional memory augmented convolutional long short- 
term memory (1D-MACLSTM) networks. Huynh [33] presented an innovative autonomous visual bolt-loosening detection method 
that employs Faster regional CNN (Faster RCNN) and applied it in the detection of a realistic joint of the Dragon Bridge in Danang, 
Vietnam. The results demonstrated the great potential of AI-based method for in-situ autonomous monitoring.

AI models typically involve complex algorithms. A common concept in such models is their powerful non-linear analysis ability, 
which enable them to easily and highly accurately classify damage. However, AI models on their own are unable to provide any 
fundamental insights on how the specific decision is made [34]. If the underlying principles behind the prediction can be compre-
hended, the transparency and trustworthiness of the model can be significantly enhanced, also making it possible to extract new 
knowledge from it. To understand the analyzing logic of the AI model, an additional technique is needed to delve into the black box and 
reveal how the model operates effectively.

Such a technique is known as explainable AI (XAI). According to [35], “XAI is a field of artificial intelligence (AI) that promotes a set 
of tools, techniques, algorithms to generate high-quality interpretable, intuitive, human-understandable explanations of AI decision.” 
Using appropriate visualizations to explain the metadata of neural networks can help achieve transparency between engineers and AI 
models [36]. Currently, some studies have applied XAI techniques in inspection and monitoring applications [37–41]. Meister et al. 
[42] presented an approach for analyzing the classification procedure of fiber layup defects based on Smoothed Integrated Gradients, 
Guided Gradient Class Activation Mapping and Deep SHAP. Ewald et al. [43] adopted a neuroscientific perspective to mimic the 
perception of Deep learning based SHM (DeepSHM) method and proposed two interpretable analysis theories to mathematically 
explain why CNN are effective in detecting damage. Brito et al. [44] proposed an unsupervised fault detection method based on 
Shapley Additive Explanations (SHAP), and performed the fault diagnosis for rotating machinery through the feature importance 
ranking obtained by the model’s explanation.

Driven by the concept of XAI, this study endeavors to understand the decision-making logic of the 1D CNN models for bolt loosening 
detection from a physical perspective. The detection of bolt loosening was conducted on a double-layered aluminum plate with sixteen 
bolted connections. To simulate signal variation that could occur in real-world conditions, phase and amplitude variations induced by 
temperature changes were introduced into the signals. Under such circumstances, traditional methods that rely on residual signals for 
damage feature extraction become ineffective. In the light of these challenges, this research aims to address the following questions:

1. How to achieve the precise detection of bolt loosening in multi-bolted structures and unstable service environments using 1D 
CNN and Lamb wave monitoring techniques?

2. How can a better understanding of the fundamental principles behind the precise predictions of 1D CNN be obtained by utilizing 
XAI techniques?

3. From the standpoint of SHM, how can the performance of XAI algorithms be evaluated? Specifically, how to select the most 
suitable XAI algorithm to obtain the most easily understandable model explanation for the signal-feeding 1D CNN model.

To address these issues, the propagation characteristics of Lamb waves in the multi-bolted plate were investigated using numerical 
simulation and experiment. The 1D CNN models were trained using Lamb wave signals to detect bolt loosening damage. Subsequently, 
six XAI algorithms, including Saliency map, Smooth Simple Taylor, Deep Taylor, Grad CAM, Deep Grad CAM, and Guided Grad CAM, 
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were employed to explain the well-trained 1D CNN model, analyzing its classification rules for different damage scenarios. Further-
more, the performance of these XAI algorithms was evaluated using five different assessment methods: Correlation Coefficient with 
Residual Signal (CCRS), Residual Signal Weighted Importance Score Ratio (RWIR), Infidelity (INFD), Sense sum (SENS) and Sanity 
check (SACH). Finally, the ranking scores of XAI algorithms based on these evaluation methods were compared between numerical 
simulation and experiment.

The article is organized as follows: Section 2 introduces the theoretical background of 1D CNN, XAI and evaluation methods for 
XAI. Section 3 presents numerical simulation of Lamb waves in multi-bolt connection plates and explainable analysis of the 1D CNN 
model with six XAI algorithms. Section 4 details the experimental validation, while Section 5 compares the performance of the six XAI 
algorithms in simulation and experiment. Section 6 highlights the innovations and contributions of this study to the SHM field, and the 
conclusions are summarized in Section 7.

2. Theories

2.1. 1D CNN

One-dimensional CNN (1D CNN), which is suitable for the 1D input array analysis, was used to detect the bolt loosening in the 
aluminum plates in this paper, and the time-series signals collected from the sensors were converted to 1D array to suit the model input 
shape. As a typical classification network, it consists of two stages: feature extraction and classification [45]. In the feature extraction 
stage, the 1D convolutional kernel slides along the input vector to convolve and extract feature maps. Then, the size of the feature maps 
is reduced by max-pooling layers. Therefore, the output of the convolution operation of the u-th channel in the (m + 1)-th layer can be 
expressed as: 

ym+1
u = bm+1

u +Σk∈Nm xm
k *wm+1

u (1) 

where ym+1
u and xm

k are the feature maps of the u-th and k-th channel in the (m + 1)-th and m-th layers, respectively. Nm is the number of 
convolutional kernels in the m-th layer. wm+1

u and bm+1
u represent the weight and bias of the (m + 1)-th layers, respectively. * denotes a 

1D convolutional operation. Then, a max-pooling layer is placed after every convolutional layer.
After the feature extraction, the feature map xd ∈ R1×N×D obtained from the last convolutional layer is flattened into a feature 

vector xn ∈ R1×ND and fed into the first fully connected layer, where N is the number of output channels of the last convolution layer 
and D is the length of the feature map. Then, the classification task is performed: 

yn+1
q = ReLU

(
wn+1

q xn
p + bn+1

q

)
= max

[
0,
(

wn+1
q xn

p + bn+1
q

) ]
(2) 

where yn+1
q is the q-th value in the (n + 1)-th layer, ReLU is the linear rectification activation function, wn+1

q and bn+1
q represent the 

weights and bias of (n + 1)-th layer.
For the training of a 1D CNN, cross-entropy is used to calculate the error between the predicted and true label: 

L (Θ) = − [ŶClog(F(VC))+ (1 − ŶC)log(1 − F(VC))] (3) 

where L is the loss function, F represents 1D CNN model, Θ contains all the parameters (weights and bias) of F, VC is an input vector 
from class C, ŶC is the label of VC. The 1D CNN is updated using stochastic gradient descent (SGD) algorithm with Adam optimizer 
[46].

2.2. XAI algorithms

The 1D CNN model is interpreted in the form of a saliency map, where the color of each input data point represents its importance 
score, which could indicate the dependence degree of the 1D CNN on that input data point during the decision-making process. There 
are various XAI algorithms for extracting the importance score for a saliency map. In this study, six of them were employed, which 
belonged to three categories: Gradient-based methods, Layer-wise relevance propagation methods and Class activation maps. 
Gradient-based methods (Sensitivity analysis, Guided Grad CAM) use the gradients of the AI model with respect to the input data to 
understand their importance. Layer-wise relevance propagation methods (Smooth Simple Taylor, Deep Taylor, Deep Grad CAM) 
propagate the importance score from the output layer back to the input layer by using the structure of the AI model. Class activation 
maps (Grad CAM, Deep Grad CAM and Guided Grad CAM) utilize the activations of the convolutional layers to calculate the 
importance score.

2.2.1. Sensitivity analysis
Sensitivity Analysis uses the square of the gradients of each data point in the input vector to characterize its importance score. A 

high importance score means a change of that point has a greater impact on the 1D CNN model’s decision during classification, making 
it more crucial in the process [47]. The importance score for the s-th data point of the input vector v can be expressed as: 
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ISA(vs) =

(
∂F
∂vs

)2

(4) 

2.2.2. Smooth Simple Taylor
In this study, a smoothed version of Simple Taylor Decomposition is proposed. In the Simple Taylor Decomposition [48], the neural 

network function is Taylor-expanded at the root point, and the first-order term is taken as the importance score for each data point: 

IST(vs) =
∂F
∂vs

(ṽ) ⋅
(

vs − ṽs

)

(5) 

where ̃v refers to the root point vector that represents the neutral points on the decision boundary of the neural network and has no 
impact on the decision-making process. Adding noise to the input signal and taking its average to smooth the Simple Taylor result 
allows the Smooth Simple Taylor to be determined: 

ISST(vs) =
1

Nnoise

∑Nnoise

1
IST(v́s) (6) 

where Nnoise is the number of samples, and v́s represents s-th data point int the signal with the noise.

2.2.3. Deep Taylor
Deep Taylor Decomposition is an improved version of the Simple Taylor decomposition [49]. It takes into account the structure of 

the neural network and applies the Taylor expansion layer-by-layer from the output layer to the input layer. The transmission of the 
importance score between two layers can be expressed as: 

I(n)DT(xp) =
∑

q

∂I(n+1)
DT (xp)

∂xp

⃒
⃒
⃒
⃒
⃒{

x̃(q)p

} ⋅
(

xp − x̃(q)
p

)

(7) 

where x̃(q)
p represents the root point vector in the n-th layer.

2.2.4. Grad CAM
The Grad CAM method assigns importance values to each neuron using gradient information flowing into the last convolutional 

layer to obtain specific interest decisions [50]. The importance score can be represented as: 

IGC(vs) = ReLU

(
∑Nm

k=1
αm,C

k Am
k

)

(8) 

where Nm is the number of convolutional kernels, Am
k represents the activation in the k-th channel of the m-th layer, C represents the 

class, and αm,C
k is the weight of Am

k which can be calculated as: 

αm,C
k = E⊖

[
∂F(VC)

∂Am
k

]

(9) 

where F(VC) represents the score predicted by the neural network for class C, and E represents taking the average along the length 
direction of the activation Am

k .

2.2.5. Guided Grad CAM
Fusing Guided backpropagation (GBP) [51] and Grad CAM via element-wise multiplication yields Guided Grad CAM which can 

generate saliency maps with more fine-grained details at the pixel level: 

IGGC(vs) = IGC(vs) ⋅ GBP(vs) (10) 

2.2.6. Deep Grad CAM
Deep Grad CAM was proposed in our recent conference paper [52]. It incorporates the hierarchical structure of 1D CNN con-

volutional layers to propagate the importance vector using its backpropagation mechanism instead of linear mapping. Specifically, the 
α-β rule [48] is applied to propagate the importance score layer by layer: 

Im
DGC(x

m
k,i) = am

k,i

∑

j

w+
ij

∑
iam

k,iw
+
ij + b+

j
Im+1
DGC (x

m+1
u,j ) (11) 

where am
k,i represents the activation value at the i-th point in the k-th channel of the m-th layer. w+

ij and b+j are the positive parts of the 
network weights and biases, respectively.
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2.3. Evaluation of the XAI

Different XAI algorithms can have varying focuses when explaining AI models, leading to divergent explanations. Consequently, 
researchers have increasingly been paying attention to the evaluation of XAI algorithms, as summarized in [53]. In this study, by 
leveraging prior knowledge and analytical logic derived from SHM, two evaluation methods, Correlation coefficient with residual 
signal (CCRS) and Residual signal weighted importance score ratio (RWIR) are proposed with the objective of better comprehending 
the explanations of XAI from the physical point of view. It is worth noting that these two evaluation methods are not generically 
applicable to all AI application domains, but are specifically designed for the domain of damage detection based on Lamb waves and 
1D CNN. Additionally, evaluation methods including Infidelity, Sense sum, and Sanity check are also considered in this study.

2.3.1. Correlation coefficient with residual signal (CCRS)
Subtracting the baseline signal acquired from a structure in its healthy state from the received signal collected from the damaged 

structure yields the residual signal. Theoretically, the residual signal can filter out the effects of boundary reflections, non-target point 
reflections, and highlight the damage reflection waves. Therefore, if the importance vector of a signal generated by an XAI algorithm 
exhibits a high correlation with the residual signal, it indicates a strong agreement between the algorithm’s identified important 
regions and the locations of damage waves. The CCRS can be calculated as: 

CCRS =

∑
(Φ(F, vs) − Φ(F,V))(rs − R)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Φ(F, vs) − Φ(F,V))2∑
(rs − R)2

√ (12) 

where Φ is the XAI function, V denotes the input signal, R denotes the corresponding residual signal, and R = V – VBase, where VBase 

represents the baseline signal. vs and rs represent the s-th point of the vectors V and R, respectively. Φ(F, vs) denotes the importance 
score for the s-th point of the signal, Φ(F,V) represents the mean importance score of the signal, and R represents the mean value of the 
residual signal. The higher the CCRS, the higher the similarity between the importance vector and the residual signal, which indicates 
that the XAI algorithm believes the neural network relies more on information near the damage wave package when making decisions. 
This alignment is more in line with prior knowledge in SHM that the information carried by the damage package is considered highly 
useful and informative. Therefore, under the explanation of this XAI algorithm, the decisions of the neural network are more likely to 
be trusted by SHM professionals.

2.3.2. Residual signal weighted importance score ratio (RWIR)
The importance vector obtained by XAI is weighted using the residual signal, giving greater weight to the regions with waveform 

signals. The RWIR can be obtained by dividing the sum of the weighted importance vector by the sum of the original importance 
vector: 

RWIR =

∑
rs ⋅ Φ(F, vs)
∑

Φ(F, vs)
(13) 

The higher the RWIR, the greater the proportion of scores in the importance vector at the location of the damage wave package. 
Consequently, a higher RWIR implies a greater proportion of coloring at the location of the damage wave package in the saliency map. 
By calculating the proportion of coloring at the damage wave package location in the overall saliency map, the absolute value dif-
ferences in the overall importance vector calculations across different XAI algorithms can be mitigated. Therefore, a larger RWIR 
indicates a higher proportion of coloring at the damage wave package location in the saliency map, making the results more easily 
understandable to human observers compared to color in the regions without fluctuations in the signal that do not carry informative 
content.

2.3.3. Infidelity (INFD)
Infidelity is used to measures the consistency between model predictions and model explanations, and can be used to evaluate the 

reliability of XAI algorithms [54]. 

INFD = E
[(
(V − Vʹ)TΦ(F,V) − (F(V) − F(Vʹ))

)2
]

(14) 

where Vʹ represents the signal with the noise. The smaller the INFD, the closer the results of XAI align with the AI model’s predictions.

2.3.4. Sense sum (SENS)
Sense sum can be used to evaluate the noise robustness of the XAI algorithm, by measuring the impact of perturbations on the XAI

[54]: 

SENSsum =
∑⃒

⃒Φ(F, vs) − Φ(F, v́s)
⃒
⃒ (15) 

The smaller the Sense Sum value, the less the explanation result changes under the influence of noise, indicating that XAI algorithm 
has a stronger ability to resist noise.
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2.3.5. Sanity check (SACH)
Sanity check can be used to assess the sensitivity of XAI to the input–output relationship [55]. By randomly shuffling the labels of 

the input signals, if the explanation result with randomized labels remains the same as the original one, it indicates the algorithm is not 
sensitive to the relationship between input signals and labels. The SACH can be calculated as: 

SACH =

∑
(Φ(F, vs) − Φ(F,V))(Φ(Fʹ, vs) − Φ(Fʹ,V))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Φ(F, vs) − Φ(F,V))2∑
(Φ(Fʹ, vs) − Φ(Fʹ,V))2

√ (16) 

where Fʹ is the AI model function trained on dataset with randomized labels. A smaller value of SACH indicates that the algorithm is 
more sensitive to the input–output relationship.

3. Numerical simulation

3.1. Simulation model

The propagation of Lamb waves in a multi-bolted double-layer aluminum plate was simulated using ABAQUS software. The 
Young’s modulus of the aluminum plate (Al-7075) is 71 GPa, density is 2800 kg / m3, and Poisson’s ratio is 0.33 [56]. Both layers of the 
aluminum plate are 2 mm thick and were in contact by using a Tie. The dimensions of the plates are 400 × 400 mm. A schematic of the 
aluminum plate and transducer array is shown in Fig. 1. (a), with four 8 mm diameter piezoelectric sensors (PZT) placed on the 
aluminum plate, each of them was used in turn as the excitation source, while the other three sensors acted as receivers. Sixteen steel 
bolts with a diameter of 6 mm bolted the two plates together, and the bolt hole has a diameter of 6.6 mm [57]. The Young’s modulus of 
the bolts is 206 GPa, density is 7800 kg / m3, and Poisson’s ratio is 0.3 [58]. The propagation of Lamb waves in the plate was studied 
under both tightly connected and loosened conditions of the bolt. In the tightly connected case (Connected plate), the bolt and the 
aluminum plate were in contact by using Tie. In the loosened case (Damaged plate), the interactions between one of the bolts and the 
aluminum plate were removed.

The numerical simulation model of the bolted aluminum plates is shown in Fig. 1. (b). A concentrated force was applied on the 
peripheral nodes of the PZT to excite the Lamb wave, and the excitation signal was a tone burst of 3 cycles with a Hanning − window 
centered at 200 kHz, which was loaded along the thickness direction of the plate. As the shortest wavelength of the Lamb wave with 
200 kHz frequency is 15.55 mm, the mesh size was set to 1 mm. The element type is the eight-node brick element with reduced 
integration (C3D8R), with a total of 666,048 elements. The time increment step was set to 0.01 μs, the sampling frequency was 10 
MHz, and the recorded time length was 0.15 ms. The explicit dynamics solver was used.

3.2. Wave propagation

In our recent conference paper [52], a detailed analysis was conducted on the influence of bolt connection status on the propa-
gation of Lamb waves. It was found that the bolt reflection is more complex than the hole reflection. Based on the foundation of the 
conference paper, the propagation of Lamb waves in the single-bolt Connected and Damaged plate was recalculated for this study, the 
results of which are shown in the Fig. 2 and Fig. 3. It can be observed that obvious reflection waves are produced at both the bolt and 
hole locations. However, in the Connected plate, some of the Lamb waves become trapped in the bolt and continue to reflect inside it 
before spreading outwards, causing the bolt to become a weak secondary excitation source where a sustained excitation phenomenon 

Fig. 1. (a) Schematic of the aluminum plate and transducer array; (b) Simulation model of the bolted plate.
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can be observed. In the Damaged plate, this sustained secondary excitation phenomenon no longer occurs. Therefore, there are more 
wave packets and more complex modes in the reflection waves of the Connected plate.

The propagation of Lamb waves in a multi-bolted Connected and Damaged plate with loosened Bolt 1 is shown in Fig. 4 and Fig. 5, 
respectively. Consistent with the observations in Fig. 2 and Fig. 3, each bolt serves as a reflection point and a secondary excitation 
source during the propagation of Lamb waves. When Bolt 1 was loosened, Lamb waves cannot travel into the bolt, so the sustained 
secondary excitation no longer occurs at that location. However, unlike the single-bolted case, the propagation path and modes of 
Lamb waves in multi-bolted plates are highly complex due to the generation of reflection waves and mode conversion by each bolt. 
Furthermore, Lamb waves generated by secondary excitation from the bolts mix with the initial waves. Therefore, the reflected signals 
generated by bolt loosening can easily be overwhelmed by these complex reflected signals, making it difficult to extract the damage 
features.

Although using residual signals can eliminate the influence of reflection waves, this may not work if the extraction states of the 
baseline and damaged signals do not match perfectly. While ensuring complete consistency between the reference and damaged plates 

Fig. 2. Propagation of Lamb waves in the Connected plate with a single bolt: (a) 3.0 ×10-5 s; (b) 4.2 ×10-5 s; (c) 5.4 ×10-5 s; (d) 6.6 ×10-5 s.

Fig. 3. Propagation of Lamb waves in the Damaged plate with a single bolt: (a) 3.0 ×10-5 s; (b) 4.2 ×10-5 s; (c) 5.4 ×10-5 s; (d) 6.6 ×10-5 s.

Fig. 4. Propagation of Lamb waves in the Connected plate with sixteen bolts: (a) 3.0 ×10-5 s; (b) 4.5 ×10-5 s; (c) 6.0 ×10-5 s; (d) 7.5 ×10-5 s.
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is achievable in numerical simulations, guaranteeing such high consistency in practical engineering application is difficult. Various 
factors such as temperature, external loads, and material property changes can affect the plate during service, leading to a mismatch 
between the baseline and damaged signals, which makes the use of residual signals for analysis inaccurate. Although the effects of 
these factors can be filtered out using signal processing techniques, precise compensation or correction is challenging and time- 
consuming. Therefore, this paper utilized a 1D CNN for bolt loosening detection in the multi-bolted plates. This algorithm is 
renowned for its powerful non-linear analysis capabilities, making it possible to capture target features under multiple influencing 
factors without the need of baseline signals.

3.3. Simulation database and 1D CNN architecture

In this paper, a 17-class classification was performed using a 1D CNN model, with the first class was labeled as “Healthy”, rep-
resenting a safe bolt-plate connection. The second to seventeenth classes were labeled as “Damage” 1 to 16, representing the loosening 
of Bolts 1 to 16 respectively. In each simulation, excitation was applied to one of the PZTs, while signals were received from the other 
three PZTs, with 1500 sampling points.

Temperature and white noise effects were added to the received signals. According to [59,60], the signal phase and amplitude 
change when temperature varies. In this paper, the phase change range of the signal was set to 7 %, and the amplitude change range 
was set to 10 % to simulate signals collected over a temperature variation of 25 degrees. In addition, Gaussian white noise with a 
signal-to-noise ratio of 30 dB was added to the signals. Taking the example of PZT1 exciting and PZT2 receiving, five sets of received 
signals with temperature and white noise effects and their residual signals are shown in Fig. 6. It can be seen that it is very difficult to 
visually determine the location of the damage wave based on the residual signals in this situation.

To construct the training and testing databases for the 1D CNN model, received signals under different PZT excitations were 
concatenated end-to-end to form a new vector of length 18000, which served as the input to the 1D CNN model. Examples of signals for 
Healthy class and Damage 1 class are shown in Fig. 7. Each set of signals was expanded to 100 and 50 samples, respectively, by adding 
temperature and white noise effects. So, the size of the training dataset is 1700 × 18000, and the testing dataset is 850 × 18000. In 
addition, both the training and testing dataset were normalized before being fed into the 1D CNN model.

As shown in Fig. 8, the 1D CNN model used in this study consists of a total of seven layers, including one input layer, three 

Fig. 5. Propagation of Lamb waves in the Damaged plate with sixteen bolts: (a) 3.0 ×10-5 s; (b) 4.5 ×10-5 s; (c) 6.0 ×10-5 s; (d) 7.5 ×10-5 s.

Fig. 6. Signals received from PZT1 to PZT2 and their residual signals.

M. Hu et al.                                                                                                                                                                                                             Mechanical Systems and Signal Processing 225 (2025) 112285 

8 



convolutional layers, two fully connected layers, and one output layer. The input layer has a size of 18000. The output channels of the 
convolutional layers were set to 64, 128, and 256, with kernel sizes of 32, 16 and 8, respectively. The stride was set to 6, and the 
pooling layer has size of 2. The two fully connected layers have 512 and 128 neurons, respectively, and both used the ReLU activation 
function. The length of the output layer is 17.

3.4. XAI result

The 1D CNN model was trained on the training dataset with 1080 epochs and 0.0001 learning rate, and achieved 96.706 % ac-
curacy on the testing database. XAI algorithms were then used to interpret the well-trained model. Taking Damage 3 as an example, the 
importance-score saliency maps obtained by Sensitivity Analysis (SA), Smooth Simple Taylor (SST), Deep Taylor (DT), Grad CAM (GC), 
Deep Grad CAM (DGC), and Guided Grad CAM (GGC) are shown in Fig. 9. It is evident that the saliency maps obtained by different XAI 
algorithms have significant differences, indicating their explanations for the classification of the 1D CNN model are very different.

The details of the Smooth Simple Taylor’s results on Damage 1 and Damage 3 class are shown in Fig. 10. For the Damage 1 class, 
Smooth Simple Taylor considers that the 1D CNN model mainly relies on information from three monitoring paths: PZT1 − PZT2 (PZT1 
to PZT2 and PZT2 to PZT1), PZT1 – PZT3 (PZT1 to PZT3 and PZT3 to PZT1), and PZT4 to PZT1 to determine the signal belongs do 
Damage 1 class; For the Damage 3 class, Smooth Simple Taylor considers that the 1D CNN model mainly relies on information from two 
monitoring paths: PZT1 − PZT2 (PZT1 to PZT2 and PZT2 to PZT1) and PZT2 − PZT3 (PZT2 to PZT3 and PZT3 to PZT2), to determine 
the signal belongs to Damage 3 class, and the importance scores of these two paths show a high symmetry. Both of the classification 
patterns are consistent with human expert knowledge in SHM. As in the case of Damage 1, the monitoring paths PZT1 – PZT2, PZT1 – 
PZT3 and PZT4 to PZT1 are very close to the location of the damage. And in the case of Damage 3, the monitoring paths PZT1 − PZT2 
and PZT2 − PZT3 are the closest to the location of the damage. Theoretically, the strongest damage reflection waves can be captured on 
these nearest paths. Therefore, it is logical that the 1D CNN model considers these monitoring paths as the most important for the 
Damage 1 and Damage 3 classification. This also demonstrates that the 1D CNN model effectively filtered the influence of temperature 

Fig. 7. Input vector for 1D CNN (a) from Health Class in which all the bolts and plate were tightly connected, and (b) from Class 1 in which Bolt 1 
was loosed.

Fig. 8. The architecture of the 1D CNN model in simulation and experiment.
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and white noise.

3.5. Classification patterns

To better observe the classification patterns of the 1D CNN model, the dependence scores of the monitoring paths were calculated 
for sixteen damage scenarios using the XAI algorithm, residual signal (Residual) algorithm, and the residual signal without temper-
ature influence (Raw Residual) algorithm. For the XAI algorithm, the dependency score of each monitoring path is the sum of the 
importance scores of the signals on that path calculated by the XAI algorithms: 

DP =
∑18000

s=1
Φ(F, vP

s ) (17) 

where DP represents the dependency score of the P-th monitoring path, and vP
s is the s-th data point in the received signals on P-th path.

For the Residual algorithm, the sum of the absolute values of the residual signals on the monitoring path is used as the dependency 
score: 

DP =
∑18000

s=1

⃒
⃒vP

s − vP,base
s

⃒
⃒ (18) 

where vP,base
s is the s-th data point in the baseline signals on P-th path. In the case of the Raw Residual algorithm, vP

s and vP,base
s are the 

signals without changing temperature.
The comparison between the dependency-score saliency maps of the Smooth Simple Taylor and Residual algorithm is shown in 

Fig. 11. The results of the Smooth Simple Taylor reflect very strong regularity and symmetry: the monitoring paths closest to the 
damage are considered to be more important in all the damage scenarios. This indicates that Smooth Simple Taylor believes the 1D 
CNN model considers monitoring paths closer to the damage can provide more critical damage features during the decision-making 
process, which is very similar to human expert cognition.

On the other hand, as shown in Fig. 11 (b), the result of the Residual algorithm reflects almost identical classification patterns in all 
the damage scenarios. Therefore, it is known that under the influence of temperature and white noise, it is difficult to effectively 
determine the location of the damage by referring to the residual signals. However, the 1D CNN model is capable of intelligently 
filtering out these influences.

Furthermore, observing the distribution of the sixteen damage scenarios, they can be divided into four damage patterns: DP 1 

Fig. 9. Saliency maps for the Damage 3 classification from Sensitivity analysis (SA), Smooth Simple Taylor (SST), Deep Taylor (DT), Grad CAM 
(GC), Deep Grad CAM (DGC) and Guided Grad CAM (GGC).
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consists of Damage 1, 4, 13, and 16, DP 2 consists of Damage 2, 8, 15, and 9, DP3 consists of 3, 12, 14, and 5, DP4 consists of 6, 7, 10, 
and 11. The damages from the same damage pattern can be obtained by rotating each other, for example, rotating Damage 4 by 90 
degrees results in Damage 1, and so on. And the damages from the same damage pattern are plotted with the same shape in the figure. 
By adding up the dependency-score saliency maps of the same damage pattern, the classification rules for these four damage patterns 
can be analyzed.

Fig. 12 shows the classification rules for the four damage patterns calculated with the Residual, Raw Residual and six XAI algo-
rithms. It can be seen that the classification rules of the Residual algorithm are almost identical on all damage scenarios, so it cannot 
provide effective information for damage classification. The results from the Raw Residual algorithm shows that in all four damage 
patterns, monitoring paths closer to the damage are given higher dependence scores. Furthermore, DP 1 and 4, and DP 2 and 3 showed 
close classification rules. Therefore, it can be inferred that the use of residual signals can effectively distinguish different damage 
patterns when the reference and damaged plates are in a good match.

For the results of XAI algorithms, the result from Smooth Simple Taylor is closest to the Raw Residual algorithm, and with a higher 

Fig. 10. Details of the importance-score Saliency map from Smooth Simple Taylor: (a) Damage 1 Class (b) Damage 3 Class.
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distinction for the four damage patterns. This means its classification rules are more targeted. The result obtained from Deep Taylor 
shows the lowest distinction, suggesting the 1D CNN model almost equally referenced information from all monitoring paths during 
the decision-making process. The classification rule of DP 1 from the Sensitivity analysis is very similar to that of the Raw Residual 
algorithm. DP 2 and 3 have the same classification rules, while in DP 4, monitoring paths passing through the damage are considered 
the most important. The results from Grad CAM, Deep Grad CAM, and Guided Grad CAM are very close compared to other algorithms, 
with some differences in the details.

Fig. 11. The dependency-score saliency maps for sixteen damage scenarios calculated by (a) Smooth Simple Taylor and (b) Residual algorithm.

Fig. 12. The classification rules for four damage patterns calculated by (a) Residual algorithm (Re) (b) Raw Residual algorithm (Raw Re) (c) 
Sensitivity analysis (SA) (d) Smooth Simple Taylor (SST) (e) Deep Taylor (DT) (f) Grad CAM (GC) (g) Deep Grad CAM (DGC) (h) Guided Grad 
CAM (GGC).
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4. Experiment

4.1. Experimental setup

A bolt loosening detection experiment was conducted to construct the experimental database. The experimental setup, shown in 
Fig. 13, consists of an arbitrary waveform generator (Agilent 33502A), a digital oscilloscope (Pico Scope 6402A), an amplifier (Agilent 
33502A), and the aluminum plate specimen. A torque wrench was used to control the bolt torque. The dimensions, material type, PZTs 
arrangement, and bolt layout of the specimen are fully consistent with those in the numerical simulation.

In the experiment, a 1D CNN model was also utilized for the 17-class classification. The first class was labelled as “Healthy”, where 
the bolts were tightened to a torque of 4 N•m using a torque wrench, ensuring a secure connection between the bolts and the plates. For 
the sixteen damage classes labelled as “Damage” 1 to 16, the torque was removed from one of the bolts each time to simulate bolt 
loosening.

In each experiment, excitation was applied to one of the PZTs, while the signals were received by the remaining three PZTs. The 
received signal has 1500 data points, and a sampling frequency of 10 MHz, and a recording time of 0.15 ms. A total of 150 signal 
samples were recorded for each case, with 100 samples used for training and 50 samples for testing. Temperature effects were also 
introduced to the signals, with a phase variation range of 7 % and an amplitude variation range of 10 % to simulate signals collected 
over a temperature variation of 25 degrees [59,60]. Taking the example of PZT1 exciting and PZT2 receiving, five sets of received 
signals with temperature and white noise effects and their residual signals are shown in Fig. 14. Consequently, the training dataset 
consisted of 1700 samples with a size of 18000, while the testing dataset consisted of 850 samples with a size of 18000. Example signals 
for the Healthy class and the Damage 1 class are shown in Fig. 15. The same 1D CNN model architecture as the numerical simulation 
was employed in the experiment.

4.2. XAI result and classification rules

In the experiment, the 1D CNN model achieved an accuracy of 97.647 % on the testing dataset. Fig. 16 presents the details of the 
importance-score saliency map obtained by Smooth Simple Taylor for the classification of Damage 1 and Damage 3. Consistent with 
the results from the numerical simulation, Smooth Simple Taylor indicates that the 1D CNN model primarily relies on information from 
the monitoring paths closest to the damage for classification, which aligns with the logic of SHM methods. In the case of Damage 1 
class, PZT1-PZT2 and PZT1-PZT4 are considered important. In the case of Damage 3 class, PZT2-PZT3, PZT2-PZT4 and PZT2 to PZT1 
are considered important.

Fig. 17 displays the dependency-score saliency maps for the four damage patterns obtained through Residual, Raw Residual, and six 
different XAI algorithms in the experiment. It can be seen that the results from the Residual algorithm show nearly identical classi-
fication patterns across the four different damages patterns, which indicates that it is challenging to classify the damages using the 
residual signal under the influence of temperature variations. The results from the Raw Residual algorithm reveal that monitoring 
paths closer to the damage are assigned higher dependence scores in all four damage patterns. Hence, it can be concluded that if the 
temperature remains constant, the residual signal can still effectively differentiate between damage patterns. As for the results of the 
six XAI algorithms, Smooth Simple Taylor shows the closest similarity to the results from the Raw Residual algorithm. In all cases, the 
monitoring paths closest to the damage are considered more important. Conversely, Deep Taylor exhibits the lowest distinction among 
the four damage patterns, suggesting that the 1D CNN almost equally references information from all monitoring paths during the 
decision-making process.

5. Evaluation of the explanation result of XAI

Based on the research findings from the numerical simulations and experiments, it can be seen that XAI can provide information 

Fig. 13. Experimental setup for bolt loosening detection.
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about the specific segments of the signal that the 1D CNN model predominantly leverages during its decision-making process. This can 
enhance the transparency of the model and contribute to the human understanding of AI’s analyzing mechanisms from a physical 
perspective. However, it can also be observed that due to different perspectives, the explanations obtained from various XAI algorithms 
exhibit significant differences. This naturally raises the question: How can we select the most suitable XAI algorithm among the 
numerous options?

In this study, five different evaluation methods, including CCRS, RWIR, INFD, SENS, and SACH were used to assess the results of the 
XAI algorithms. The average values of the evaluation methods for these XAI algorithms were calculated across 17 classes in both 
numerical simulations and experiments, as shown in Fig. 18. To facilitate a convenient comparison of algorithm performance, the 
reciprocal values of Infidelity, Sense Sum, and Sanity Check results were adopted. Therefore, in all bar charts, the taller the bar, the 
better the performance of the algorithm under that evaluation method.

By comparing the evaluation results from numerical simulations and experiments, it can be observed that the algorithm rankings 
for CCRS, RWIR, and SACH are completely identical. In terms of Sense Sum, except for the reversed rankings of Sensitivity Analysis and 
Deep Grad CAM, the rankings of the other algorithms are entirely consistent. INFD exhibits the greatest variation among these five 
evaluation methods. Consequently, it can be inferred that, overall, the evaluation results of the algorithms in numerical simulations 
and experiments are in good agreement.

Based on the results of CCRS and RWIR, it can be inferred that from the perspective of SHM that Smooth Simple Taylor is the 
optimal choice for comprehending the decisions made by the 1D CNN model. Because according to equations (12) and (13), higher 
values of CCRS indicates a better alignment between the XAI’s explanation and the Raw Residual, higher values of RWIR indicates a 
higher proportion of wave-package regions are considered important. Consequently, the explanations of Smooth Simple Taylor are 
more consistent with human analyzing patterns in SHM and are easier to comprehend.

Then the performance of each XAI algorithm was scored based on the results of the five evaluation methods. For instance, in the 
CCRS result, Smooth Simple Taylor received a score of 6 as the top-ranked algorithm, while GC received a score of 1 as the lowest- 
ranked algorithm, and so on. After summing up the scores from all the evaluation methods, the results are shown in Table 1. It can 
be observed that there is a high level of consistency in the score rankings between numerical simulations and experiments. Except for 

Fig. 14. Signals received from PZT1 to PZT2 and their residual signals in the experiment.

Fig. 15. Input vector for 1D CNN in the experiment (a) from Healthy class (b) from Damage 1 class.

M. Hu et al.                                                                                                                                                                                                             Mechanical Systems and Signal Processing 225 (2025) 112285 

14 



the swapped positions of Grad CAM and Guided Grad CAM, all other algorithms have identical rankings. Additionally, there is only a 
one-point difference between Grad CAM and Guided Grad CAM, and the score differences for other algorithms are within 2 points. 
Therefore, it can be concluded that the ranking results of the XAI algorithms are relatively consistent between numerical simulations 
and experiments.

6. Discussion

To address the black box effect of deep learning in DeepSHM method, the XAI algorithms were used to interpret the decision-making 
process of the 1D CNN model. The physical basis of the 1D CNN model for bolt loosening identification was analyzed, enhancing the 
transparency and reliability of the method. To achieve more accurate and SHM-principle-aligned explanations, two improved 

Fig. 16. Details of the importance-score saliency map from Smooth Simple Taylor: (a) Damage 1 Class (b) Damage 3 Class.
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Fig. 17. The classification rules for four damage patterns in the experiment calculated by (a) Residual algorithm (Re) (b) Raw Residual algorithm 
(Raw Re) (c) Sensitivity analysis (SA) (d) Smooth Simple Taylor (SST) (e) Deep Taylor (DT) (f) Grad CAM (GC) (g) Deep Grad CAM (DGC) (h) Guided 
Grad CAM (GGC).

Fig. 18. The average values of the evaluation methods for XAI algorithms across 17 classes from (a) numerical simulation (b) experiments.

Table 1 
The sum of ranking scores for XAI algorithms across all evaluation methods.

Sensitivity Analysis Smooth Simple Taylor Deep Taylor Grad CAM Deep Grad CAM Guided Grad CAM

Simulation 24 25 15 11 20 10
Experiment 23 24 15 10 22 11
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algorithms—Smooth Simple Taylor and Deep Grad CAM—were introduced, both of which demonstrate significant performance en-
hancements. The introduction of such physical interpretations offers stronger acceptability for the application of deep learning in 
complex engineering structures, particularly in SHM scenarios where high reliability and stringent scrutiny are required.

From the perspective of SHM applications, two novel evaluation methods (CCRS and RWIR) for XAI techniques were established. 
These metrics not only assist AI researchers in systematically evaluating algorithm performance but also provide a theoretical foun-
dation and practical evaluation tools for applying XAI in real-world SHM engineering. Moreover, under the consideration of five 
distinct evaluation criteria, the rankings of six different XAI algorithms exhibit remarkable consistency between numerical simulations 
and experimental results. This consistency suggests the potential for algorithms performing well in simulations to achieve similarly 
high performance in experimental settings. Thus, it is anticipated that numerical simulations could guide the selection of XAI algo-
rithms for experimental applications in the future, significantly reducing both the economic and time costs associated with experi-
mental studies.

7. Conclusion

The propagation of Lamb waves in a double-layered aluminum plate with 16 bolt connections were investigated in this study 
through numerical simulation and experiment. The influence of bolt loosening on the propagation of Lamb waves was analyzed. 
Subsequently, 1D CNN models were trained using Lamb wave signals and employed for the detection of bolt loosening. The well- 
trained 1D CNN models were analyzed using XAI algorithms, including Sensitivity Analysis, Smooth Simple Taylor, Deep Taylor, 
Grad CAM, Deep Grad CAM, and Guided Grad CAM. The performance of which was evaluated using CCRS, RWIR, INFD, SENS, and 
SACH evaluation methods, and the following conclusions are drawn: 

1. The 1D CNN has significant advantages in detecting bolt loosening in multi-bolted structures and challenging operating conditions. 
In the presence of temperature variations, where traditional methods relying on residual signals failed to provide accurate damage 
information, the 1D CNN maintained detection accuracies of 96.706 % and 97.647 % in numerical simulation and experiment 
respectively

2. XAI can provide a physical interpretation for the classification mechanism of the 1D CNN model. By identifying the specific seg-
ments of the input signal that are essential for the decision-making process of the 1D CNN, XAI can assist human observers in better 
comprehending AI’s operation from a physical perspective, which contributes to the improvement of the transparency and 
trustworthiness of the 1D CNN model

3. From the perspective of SHM, Smooth Simple Taylor is the optimal choice for explaining the 1D CNN model. It consistently ranks 
first in both numerical simulations and experiments in the results of CCRS and RWIR, which confirms its strong alignment with 
SHM’s analytical logic. Additionally, it secures the first position in the overall rankings among the five evaluation methods, further 
supporting its superiority

4. The ranking scores of XAI algorithms, calculated based on five different evaluation methods, exhibit a high level of consistency 
between numerical simulations and experiments. Smooth Simple Taylor, Sensitivity Analysis, Deep Grad CAM, and Deep Taylor 
consistently maintain an identical order, while Grad CAM and Guided Grad CAM exchange positions with only a difference of one 
point
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