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ABSTRACT

The impedance-based approach is promising to analyse the harmonic emission and sta-
bility of a converter-based system, e.g., an EV fast charging station. When extracting the
accurate impedance model of an EV charger, the knowledge of the charger’s circuit and
controller parameters is indispensable. However, EV chargers’ manufacturers do not dis-
close the design parameters of chargers since they are confidential designs. Therefore,
developing an approach to estimate the charger’s design parameters is practically ben-
eficial for establishing the charger’s impedance model and thereby analysing the har-
monic and stability of the charger-grid system.

Recent works on physics-informed machine learning provide a promising data-efficient
approach to estimating unknown parameters of a system with a known physical model.
However, to the author’s knowledge, such a technique has not been explored extensively
in the power electronics domain. Thus, exploring whether PINN is also suitable for the
parameter estimation of power electronic converters and how to implement this tech-
nique is worthwhile. In this thesis, to begin with, a Physics Informed Neural Net model
is developed as a proof of concept to estimate the parameters of the boost converter.
And subsequently applied to the AFE converter of the Fast-Charging Station to explore
the scalability and generalisation of the model developed.

Implementing the physics model within the neural net is still an open problem; hence
the physics parameters are estimated similarly to the weights and biases during the
training process using the existing optimiser. This approach requires diving deeper into
the development of the neural net, and hence instead of eager execution, TensorFlow’s
computational graph method is used to build the neural net and the physics model. This
allows complete flexibility to build the network from scratch with added complexity.

In the PINN model developed for the boost converter, the mean estimation error was
0.89%, and the parameters were estimated in 25.76 seconds. Because of the complexity
of the physics model, optimizing the PINN model was challenging for the AFE converter.
With a mean estimation error of 30.25%, the PINN model for the AFE converter took
361 seconds to execute. For both models, less than 150 data points collected over 25
switching cycles peak-to-peak values are used. The proposed PINN model developed
in this thesis thus proves to be highly data-efficient with quick convergence. Despite
the success of the developed PINN model, several drawbacks of PINN-based parameter
estimation are also noticed and summarised.

xi
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1
THEORETICAL FRAMEWORK

In the distribution grid, Power Quality (PQ) issues have been rising due to the increasing
number of power electronics-based systems connected to the grid. These issues can
be and are not limited to voltage fluctuation and harmonic emissions. With the rise in
Electric Vehicle (EV) and Fast Charging Station (FCS), it is critical to address these issues
to have a reliable distribution grid. The literature review during this thesis is divided into
four parts as follows.

FCS Overview: Study on FCS architecture and its scale of impact on the grid.

FCS Modelling: Explore existing methodologies which are applied in analysis of PQ
issues caused by FCS.

Parameter estimation methodologies: Study of available methodologies and identifica-
tion of the short comes.

Research Gap: Identification of the research gap and formulate research objective.

1.1. OVERVIEW OF FCS
1.1.1. IMPACT OF FCS ON GRID
Internal Combustion Engine (ICE) still remains a major contributor to greenhouse gas
emissions, which makes the transportation sector a major threat to climate change[1].
The Announced Pledges Scenario report from a survey done by International Energy As-
sociation shows that the commitments made by various governments across the world
to reach net-zero emissions will be possible by 2050[2].

To achieve this, stringent policies are implemented worldwide to reduce emissions and
incentives for the development and purchase of EV[3]. Efforts from governments, cou-
pled with the evolution of consumer attitude towards EV, have made it possible to see the
trend to shift from ICE to EV. Forecast from Deloitte analysis in Figure 1.1, it is observed
that by 2030 EV share concerning total vehicles on the road will be close to 25%[4].

1
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Figure 1.1: Outlook for annual global passenger-car and light-duty vehicle sales [4]

1.1.2. POWER QUALITY ISSUES FROM FCS
Efforts are made to make EV adoption more practical and comparable to that of ICE.
One is to increase the number of FCS installations across the road network to ease long-
distance travel. And the other is to increase the power rating of FCS to reduce charging
time. The charging at FCS generally happens in the daytime and for a shorter duration.
Since the load is centralized and requires higher power to deliver in a short period of
time, FCS acts as a highly pulsating load to the distribution system[5].

Due to their higher power demands, FCS generally connects to the Medium Voltage (MV)
grid. Lu et al. [5] describes the PQ issue of FCS in terms of voltage fluctuations, harmonic
stability, and harmonic emission. This analysis of the PQ impact is limited to inside FCS
and at the Point of Common Coupling (PCC) of the grid & FCS.

1.1.3. ARCHITECTURE OF FCS
FCS can be constructed in various ways depending on the manufacturer. A single unit or
multiple parallel modules can be connected to the distribution grid. An AC distribution
grid or a DC distribution grid can be used as a distribution grid. Currently, most FCS are
modular parallel units connected to the MV grid via MV/Low Voltage (LV) low-frequency
transformers, as shown in Figure 1.2. As described below, each FCS unit is composed of
two power conversion stages:

First Stage: An AC-DC converter is used to step up the voltage and for active power
factor correction. It is generally called as Active Front End (AFE) converter.

Second Stage: A DC-DC converter connected to the EV.

DC link capacitor is used to maintain stable DC voltage for the DC-DC conversion stage.
Additionally, the DC-link capacitor decouples the DC-DC stage from the AC-DC stage,
resulting in a scenario where harmonic current emission is largely determined by the
AC-DC stage(AFE).
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Figure 1.2: Structure of FCS connected to AC grid [6]

It is therefore sufficient to model the FCS’s AFE to analyze harmonic emission. To gen-
eralize the AFE model, it is necessary to understand the various topologies of convert-
ers used. For AFE, the author in [5] explores three topologies: Vienna rectifier, 2-Level
Voltage Source Rectifier, and Multi-Pulse Rectifier. Table 1.1 compares the topologies.
Multi-pulse rectifiers are not preferred due to their high harmonic emission, which ne-
cessitates a larger filter inductor. The Vienna rectifier and 2-Level Voltage Source Rec-
tifier (VSR) are currently used as mainstream AFE. Unlike a 2-Level VSR, the Vienna
rectifier requires mid-point voltage balance control. This difference may be ignored if
zero-sequence impedance analysis is not of interest, and a general Voltage Source Con-
verter (VSC) modelling approach can be employed for AFE as well.
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Table 1.1: Comparison of AFE topologies

AFE
Topology

Advantage Disadvantage

Vienna
Rectifier

• 3 Voltage levels
• Lesser input filter induc-

tance
• Reduced voltage stress on

switches
• Higher efficiency and

power density

• Uni-directional power flow

2-level
Voltage
Source

Rectifier

• Bi-directional power flow
• Promising application for

V2G functionality

• Lower power density due
to 2-level switching

Multi-Pulse
Rectifier

• Simple to design and im-
plement

• Higher harmonic emission

1.2. MODELLING OF FCS
1.2.1. CURRENT HARMONIC ANALYSIS
Small signal impedance model is generally employed for harmonic analysis and stability
studies [7]- [8]. In this approach, AFE is modelled as a harmonic current source(Ie ) in
parallel with converter impedanceZc . And, the grid is modelled as a background voltage
source (Vg ) in series with grid impedance (Zg ). Figure 1.3 shows the impedance model.

Figure 1.3: Impedance model of FCS connected to the grid

The current harmonic emission from FCS can be calculated via equation 1.1 [5]. The
first term in the right-hand side of the equation 1.1 provides the harmonic current emis-
sion contribution from AFE. And, the second term provides the contribution from the
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distorted background grid voltage.

Ie (s) = Zc (s)Ic (s)

Zc (s)+Zg (s)
− Vg (s)

Zc (s)+Zg (s)
(1.1)

1.2.2. IMPEDANCE MODELLING OF AFE
To estimate current harmonic emission from equation 1.1, it is required to model the
input impedance of the AFE converter. It can be achieved via a numerical or analytical
approach. In the numerical method approach, the switching model of the AFE converter
is developed using a simulation platform. Then voltage perturbation at varied frequen-
cies ( fh) is applied at the input terminal of FCS and its impact on the respective currents
are observed. Since AFE is connected to a 3-phase grid, this can be done either in the
dq-domain or in the sequence domain as depicted in figure 1.4.

Figure 1.4: Calculation of input impedance of AFE in dq or sequence domain. [5]

Estimation of input impedance of AFE based on dq domain is shown in the table 1.2.
Where Vpd ( fh) and Vpq ( fh) are direct and quadrature axis injected voltage perturbation.
Ipd ( fh) and Ipq ( fh) are measured direct axis and quadrature axis current at respective
perturbation frequency fh .

zc
(

fh
)= [

zdd
(

fh
)

zd q
(

fh
)

zqd
(

fh
)

zqq
(

fh
) ]

=
[

Vpd
(

fh
)

0
0 Vpq

(
fh

) ][
Ipd

(
fh

)
Ipd

(
fh

)∗
Ipq

(
fh

)
Ipq

(
fh

)∗ ]−1
(1.2)

Similarly, estimation of input impedance of FCS based on sequence domain is shown in
the table 1.2. Where Vpp ( fh) and Vpn( fh) are positive sequence and negative injected
voltage perturbation. Ipp ( fh) and Ipn( fh) are measured positive and negative sequence
current at respective perturbation frequency fh . Ipc (2 f1 − fh) and Inc (2 f1 + fh) are fre-
quency coupling component of positive and negative sequence currents respectively at
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fundamental frequency f1 and perturbation frequency fh .

zc
(

fh
)= [

zpp
(

fh
)

zpc
(
2 f1 − fh

)
znc

(
2 f1 + fh

)
znn

(
fh

) ]

=
[

Vpp
(

fh
)

0
0 Vnp

(
fh

) ][
Ipp

(
fh

)
Inc

(
2 f1 + fh

)
Ipc

(
2 f1 − fh

)
Ipn

(
fh

) ]−1
(1.3)

Table 1.2: Procedure to estimate input impedance of FCS in dq and sequence domain

Input
Injected

Output
Measured

Step: 1
Inject d-axis perturbation voltage

Vpd ( fh) with Vpq ( fh) = 0
Ipd ( fh) and Ipq ( fh)

Step: 2
Inject q-axis perturbation voltage

Vpq ( fh) with Vpd ( fh) = 0
Ipd ( fh)∗ and Ipq ( fh)∗

Step: 3 Estimate Zc at fh based on equation 1.3

(a) dq domain

Input
Injected

Output
Measured

Step: 1
Inject positive sequence voltage

Vpp ( fh)
Ipp ( fh) and Ipc (2 f1 − fn)

Step: 2
Inject positive sequence voltage

Vnp ( fh)
Inp ( fh) and Inc (2 f1 + fn)

Step: 3 Estimate Zc at fh based on equation 1.4

(b) Sequence domain

Even to begin with this approach, simulation of the switching model of AFE the con-
verter is required. Which assumes that the converter parameters are available. Similarly,
converter parameters are needed for any given analytical approach to solving the equa-
tion, irrespective of the method. Due to the design’s confidentiality, manufacturers of
FCS generally do not disclose the design parameters. Referring to datasheets of FCS so-
lutions from various manufacturers such as Tesla, Phihong, ABB, Siemens, ChargePoint,
and Hyundai, it is observed that FCS parameters of filter inductor and DC link capacitor
are not available. Motivations for parameter estimation are as follows:

• Scheduled parameter estimation can provide an indication of the health condition
of the FCS and can be used for preventive maintenance [9].

• Parameters of chargers are needed to develop simulation or impedance models
of chargers for the stability or power quality study. However, they are generally
confidential information hidden by the manufacturers.
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1.3. EXISTING METHODOLOGIES FOR PARAMETER ESTIMATION

1.3.1. INVASIVE METHODOLOGY
Parameter estimation can be broadly classified as invasive and non-invasive methods.
Invasive methods require intervention to the existing model and might require addi-
tional external hardware. For instance, in [10], a small signal model is used to estimate
the impedance of the circuit. This approach requires external line-to-line current injec-
tion at a particular frequency, and the impedance is estimated at that frequency. Simi-
larly, the approach proposed in [11], [12], [13] and [14] requires external signal addition.

1.3.2. NON-INVASIVE METHODOLOGY
Non-invasive methods are more practical, and the data can be acquired with an avail-
able measurement interface. Data-driven solution such as machine learning and deep
learning methods are generally employed for this approach [15], [16], [17] and [17].

Shuai et al. [18] provides an overview of data-driven models based on Artificial Intelli-
gence (AI), and these methodologies have a common approach. Firstly, data is generated
via simulation software which renders multiple example data set. The model is trained
to approximate the relationship between the example dataset and the desired output by
utilizing available Machine Learning (ML) or Deep Learning (DL) learning tools. Once
the model is trained, experimental data is used to verify the model.

Here is the problem with the pure data-driven approach for the power electronics do-
main. Generally, power electronics converters are mission-specific designs, which means
there would be an extremely high number of possible combinations of parameters de-
pending on application profiles and the topology of the converter. A given converter can
operate at different operating conditions, and measurements must contain most of this
combination in the training data set. In a data-driven solution, data sets are distributed
as training, validation and test data sets with identical data distribution. Considering this
for the power electronics domain, with limited data set for training, results for general-
ization of the solution for a complete unseen data will be poor[19]. The data required to
achieve a generalized solution for a given topology would be high in a purely data-driven
approach.

Unlike image classification or natural language processing with existing database repos-
itories like MNIST, EMNIST, and ImageNet containing billions of example datasets [20],
the power electronics domain doesn’t have such an existing data set. Say, for instance, if
one has to develop a model for image classification using the available vast data repos-
itory, the development can be done. All the efforts are translated into the development
of the model.

Whereas in the power electronics domain, one must generate the data first. Apart from
time, it costs money and infrastructure to run practical tests to collect data if the sim-
ulation is impossible. It makes more sense to develop a model which is light on data
requirements.
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1.4. INTRODUCTION TO PHYSICS INFORMED NEURAL NET
In 2017, Raissi et al. [21] - [22] introduced the concept of Physics Informed Neural Net
(PINN). The basic concept of PINN is to combine any know domain knowledge or phys-
ical laws in conjunction with a feedforward neural net. The known physical laws are
generally expressed as Ordinary Differential Equation (ODE) or Partial Differential Equa-
tion (PDE). These equations are used as a hard constraint to reduce the space of possible
solutions during the training process, drastically reducing the required number of data
points. The hard constraint can be applied in two ways:

• Directly in NN architecture - which still remains an open problem [23].

• Indirectly during optimization of the neural net.

For parameter estimation, the data-driven discovery approach proposed by Raissi et al.
[21] uses an indirect method wherein the parameters are estimated by the optimizer.
The PINN approach is data-efficient and is specifically designed to integrate equations
in differential form. This makes it a promising approach for parameter estimation in the
power electronics domain.

Extensive literature survey during the thesis showed that not much research was carried
out in the application of PINN in the power electronics domain. The first work to be
published was by Shuai et al.[24] on 20 May 2022, which gave a major breakthrough for
this thesis. They propose a non-invasive PINN approach to estimate the parameters of
a buck converter, based on the work of Raissi et al. [21]. They focus on implementing
PINN to a buck converter and assess the robustness of the model by comparing it with
data from experiments. Being a pilot work in the domain, it is an impressive work yet
has a few areas which can be addressed further.

As said before, the implementation of PINN is majorly an optimization task, as the op-
timizer of the model estimates the parameters. Observing and tuning the optimiser pa-
rameters is critical for quicker solution convergence. Below are the few observations
which were observed during the replication of the work of [24] :

• The hyperparameters of the optimizers used in [24] are set to default values, and
no study was performed to observe their behaviour.

• Two different optimizers (Adams and L-BFGS) are used, and the reason for such a
framework is not established in the work.

• Since the circuit parameters are unknown, it is required to initialize it randomly in
the algorithm. However, constant value initialization is used in work.

• Authors claim that there is no limit on the number of parameters to be estimated,
and hence the method is completely scalable. However, Observing the optimiser’s
behaviour is required before establishing the scalability. In addition, scalability
can be questioned in a scenario where multiple equations with cross-coupling pa-
rameters are used.
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1.5. RESEARCH OBJECTIVE

This thesis aims to develop an approach to estimating the EV charger’s design parameters
for power quality study with highly data-efficient machine learning techniques.

Based on a preliminary literature study, physics-informed machine learning is a promis-
ing candidate to be applied to the parameter estimation task. Compared with the other
ML-based approaches, it requires less data for the training.

On top of the preliminary study, the thesis aims to answer the following questions:

1. How to apply the PINN-based approach to the parameter estimation of a power
electronic converter?

2. How to implement the PINN-based estimation approach?

3. What are the challenges when applying PINN and how to address them?
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1.6. THESIS STRUCTURE

Figure 1.5: Overall outline of the thesis

The chapters of this thesis are summarised here:

• Chapter 1: provides the introduction for the thesis topic, motivation for the re-
search questions formed, and lays a theoretical foundation for the thesis.

• Chapter 2: gives the detailed general mathematical derivation of PINN and out-
lines the guidelines to develop and implement PINN for power electronics appli-
cations.

• Chapter 3: PINN model is developed and implemented for a boost converter and
the results are presented.

• Chapter 4: PINN model is developed and implemented for an AFE converter. The
challenges faced during the implementation and possible solutions of PINN for a
more complex converter are presented.

• Chapter 5: Results of PINN for boost and AFE converters are discussed. Research
questions are revisited, and the thesis is summarised. Limitations and possible
future work are also discussed.
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METHODOLOGY

In a supervised deep learning task, a set of example data sets (X) are used to train a Neural
Net (NN) by comparing the predictions (Y’) to a targeted set of required true values(Y).
During the training iterations, the prediction and required outputs are compared by a
loss function, which generates a loss value. This loss value is used by the optimizer to
change the weights and biases of the neural network to reduce the loss value to the min-
imum.

One of the approaches for PINN is to utilize the NN to predict a latent stage of values,
which is used as an input to the physics model to correlate to the required true values.
Now, the loss value is generated by the physics model, and the mathematical equations
within the physics model act as hard constraint or regularization agent which binds the
prediction values to a smaller space of the required solution. The major advantage is
that PINN solutions have lower prediction errors even for limited data set points [25].

It is required to understand the basic structure of the PINN applied before the general
equations are formulated. Figure 2.1 shows the basic structure of the both conventional
NN and PINN. The major difference between conventional NN and PINN is that opti-
mizer has to estimate the hyperparameter (weights and biases) and the physics model’s
parameters. Adding to it, the loss value is fed to the optimiser from the physics. In the
next section, the approach to seamlessly integrating this is discussed.

11
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Figure 2.1: Comparison of conventional Neural Network architecture and Physics Informed Neural Net
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2.1. MODELLING OF PHYSICS INFORMED NEURAL NET

2.1.1. GENERAL EQUATIONS OF PINN MODEL
At first, based on [21], the general form of equations will be derived and later will be ex-
trapolated to the boost and AFE converters. Differential equations of any given dynamic
system can be expressed in the general form of non-linear PDE equations as below:

ut +N [u;λ] = 0, x ∈Ω, t ∈ [0,T ] (2.1)

where:

ut = u(x, t ) is the solution of the differential equation.

λ is the system parameter set.

N [·] is the nonlinear differential operator.

x defines the space coordinates bounded byΩ.

Ω is the subset of the euclidean space RD .

t is the time co-ordinate bounded between 0 to T.

The equations which describe the dynamics of boost and AFE are generally ODE, hence-
forth, to simplify the mathematics, space coordinates x can be dropped in the following
derivations. Once the space coordinates are dropped, u(x, t ) is defined as either current
or voltage function with respect to time. λ is defined as the parameters of interest to be
estimated, such as inductance, resistance or capacitance. N [u;λ] has been framed as
the ordinary differential equation of current and voltages with respect to time contain-
ing the parameters of interest.

Here is the advantage while formulating the ODE, the equations need not encapsulate
all the physics of the system. The equations are not used to provide accurate solutions;
rather, it is used as hard constraint while function approximation of neural net. This has
to offer, for example, in a boost converter, if the forward voltage drop of the diode or
equivalent resistance of the capacitor is not considered, the performance of PINN is not
compromised.

To elaborate, the dynamics of the solution are preserved in the data collected via simu-
lation or experiments. A neural net as a universal functional approximator will correlate
the data’s inputs and outputs, while the physics model helps constrain the approxima-
tion.

2.1.2. FORMULATION OF LATENT STATE
Next steps is to formulate a latent state which can combine the NN with the physics
model. To form a PINN, a function f = f (t ) called as latent state predicted by the NN is
approximated to u(x, t ). And, f (t ) is defined as below:

f := ut +N [u;λ] (2.2)

To understand the concept of latent state, let us consider an example of current mea-
surement in a converter. During the sampling of a current waveform, data is collected
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based on sampling frequency. Lets us assume two points of currents measured are i(t1)
and i(t2). Only these data are measurable and observed. And points between i(t1) and
i(t2) are unobservable, hence termed latent points or latent states.

For parameter estimation, it is expected that the solution u(t ) is known, equations defin-
ing the system i.e N [u;λ] is also defined and λ is learnt during the process of approxi-
mating the latent state f = f (t ) by NN to the known solution u(t ).

2.2. DISCRETIZATION OF THE MODEL
u(t) is a continuous time function of either current or voltage. It is required to define a
set discretisation interval for data collection and later to couple the NN to the physics
model. Let us assume the available solution to u(t ) are either available, measurable or
observable at the time tn and tn+1, where tn+1 = tn +∆t . Then the unobservable latent
state f(t), can be discretised as q number of points between tn and tn+1 with an evenly
distributed time spread of tn+ci = tn +ci∆t , where ci ∈ [0,1] and i = 1,2,3....q . Figure 2.2,
visualises the discretisation of the function u(t) and f(t).

Figure 2.2: Discretization of the PINN model

2.3. COUPLING OF NEURAL NET AND PHYSICS MODEL
Observable solution points u(tn) and u(tn+1) and the latent solution points of NN, f (tn+ci )
needs to be coupled. Raissi et al. [21], proposes general form of Runge-Kutta method.
Considering there are q intermittent latent points between u(tn) and u(tn+1), general
Runge-Kutta equation can be derived as below:

f (tn+ci ) = u(tn)−∆t
q∑

j=1
ai j N [ f (tn+c j );λ], i = 1,2...q (2.3)

u(tn+1) = u(tn)−∆t
q∑

j=1
b j N [ f (tn+c j );λ] (2.4)
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Incorporating equation 2.4 in 2.3:

f (tn+ci ) = u(tn+1)−∆t
q∑

j=1
(ai j −b j )N [ f (tn+c j );λ], i = 1,2...q (2.5)

Equation 2.3 which couples latent points with u(tn) is called as backward equation and
equation 2.5 coupling latent points with u(tn+1) is called as forward equation. Figure 2.3
visualizes the concept of coupling latent state points with the observable points. Equa-
tion 2.3 and 2.5 contains constant parameters (ai j ,b j ,c j ) of Runge-Kutta methods. John
C. Butcher, classified the Runge-Kutta methods and proposed a generalization form by
using a matrix (ai j ) and two vectors (b j ,c j ), where i,j = 1,2,...q. [26].

This generalization is called as Butcher tableau. Depending upon the choice of either
implicit or explicit method and the number of intermittent points q, the general form
can be depicted as in equation 2.6. For the implicit Runge-Kutta method, Raissi et al.
[21] have calculated the Butcher tableau for various values of q as open source, which
will be used further.

c1 a11 a12 . . . a1q

c2 a21 a22 . . . a2q
...

...
...

. . .
...

cq aq1 aq2 . . . aqq

b1 b2 . . . bq

(2.6)

Figure 2.3: Coupling of observable points and latent state points
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2.4. PROGRAMMING ALGORITHM OF PINN
To develop PINN, Python(v3.6) with TensorFlow(v1.15) backend is used. Tensorflow
has two approaches; one is eager execution, and the other is the computational graph
method. In this thesis, the computational graph method is applied as it provides com-
plete flexibility and control to define each computation to be performed, which allows
the integration of the physics model into the neural net. However, using the compu-
tational graph approach comes with the cost of its complexity, high learning curve and
literally every computational flow have to be defined manually. The flow of the program
is depicted in figure 2.4 and described below:

Figure 2.4: Flow chart of the program flow to implement PINN

2.4.1. DATA GENERATION
Considering various application profiles of the converter, it is important to formulate
a generalized approach to sample and collect data. Data can be collected in multiple
ways, such as simulations, analytical solutions or even directly from field application
measurements. Irrespective of the data collection method, a common sampling time
can be established to collect data at the time tn and tn+1. It was observed during discreti-
sation that ∆t is the major parameter defining the structure of the coupling mechanism
of PINN. For any given power electronics converter, the dynamics are mostly observed
between the change of state of the switches, which either causes a higher peak or a lower
peak of current or voltage waveform. Currents and voltages can be sampled and col-
lected exactly at the change of switch states. Hence, peak-to-peak data collection will be
used in this thesis. This peak to peak values will correspond to u(tn) and u(tn+1) in figure
2.2.
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The point of interest in this thesis is to estimate the parameters with minimal execution
and least data points. Adding to that, the motto is not to understand or predict the dy-
namic behaviour of the converter. This allows for collecting the data in a steady state
operation. Hence, for the boost converter application, 23 switching cycles of data are
captured via simulation in PLECS. And, for AFE, 10 switching cycles of data are used.
This is quite interesting as these correspond to a low amount of data that a conventional
NN can never converge for a generalised solution.

2.4.2. DATA PREPROCESSING
For NN data is segregated as set of Inputs(X) and outputs, also called as true values(Y) as
in Figure 2.1. It is required to process the data in a way accepted by the design philoso-
phy of PINN. In this thesis, forward equation 2.5 and backward equation2.3 are used to
couple the physics model to NN. Each sampled point will translate to two sets of data.
One set is for the forward equation and the other for the backward equation. The back-
ward equation data set will have data at only time tn . The forward equation will require
the next sampling point tn+1. A value of -2 is used to indicate the forward data set and +2
for the backward data set, which makes it easy for the PINN algorithm to sort the data.

Table 2.1: Generalized form of data collection and preprocessing

Input
Current

Xi

Input
Voltage

Xv

Switch
state

Output
Current

Yi

Output
Voltage

Yv

Forward
Backward
Indicator

∆t

i (tn) v(tn) 0 i (tn) v(tn) +2 (tn+1)− (tn)
i (tn) v(tn) 0 i (tn+1) v(tn+1) -2 (tn+1)− (tn)

i (tn+1) v(tn+1) 1 i (tn+1) v(tn+1) +2 (tn+2)− (tn+1)
i (tn+1) v(tn+1) 1 i (tn+2) v(tn+2) -2 (tn+2)− (tn+1)
i (tn+2) v(tn+2) 0 i (tn+2) v(tn+2) +2 (tn+3)− (tn+2)
i (tn+2) v(tn+2) 0 i (tn+3) v(tn+3) -2 (tn+3)− (tn+2)

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

2.4.3. INITIALIZING THE PINN
The initialisation of PINN can be broadly classified as follows:

STRUCTURE OF NEURAL NET

There are no available guidelines or deterministic ways to formulate the number of lay-
ers and neurons for PINN. These numbers are decided based on the trial and error
method. In this thesis, several iterations of a different combination of several layers and
neuron combinations are performed to arrive at an optimal value. Optimal value here
means size of the neural net which will have least estimation error and quick conver-
gence time.
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NUMBER OF LATENT POINTS

Since the Runge-Kutta method is a numerical method, it causes truncation error when
approximating a given function’s solution. Truncation error depends on the step size
(∆t ) and the number of intermittent points (q). ∆t in our application depends on the
sampling rate, which in turn depends on the converter’s PWM frequency. For the boost
converter switching frequency is 10kHz and for AFE is 40kHZ. Local truncation error for
each function approximation from the Runge-Kutta method can be calculated as:

Tr uncati on Er r or ≈∆t (2 ∗ q)

The truncation error should be less than the machine epsilon(ϵ). Machine epsilon de-
pends on the data type used by the program and the type of operating system. Machine
epsilon can be defined as the difference between 1, and the next larger floating point
number[27] is given by the below equation:

M achi ne E psi lon = b−(p−1)

where:
b is the base of the floating point system
p is the precision

All numeric values in the program are used as datatype float, corresponding to binary64.
Referring to the table IEEE Std 754™-2008 [28] as in table 2.2, machine epsilon for a
64-bit operating system can be calculated as:

M achi ne E psi lon = 2−(53−1) = 2.22∗10−16

Table 2.2: Parameters defining basic format floating-point numbers [28]

Binary format (b=2) Decimal format (b=10)

Parameter binary32 binary64 binary128 decimal64 decimal128
p, digits 24 53 113 16 34

emax +127 +1023 +16383 +384 +6144

Number of intermittent points q for the boost converter:

q > 1

2
· log (ϵ)

log (∆t )

q > 1

2
· log (2.22∗10−16)

l og (10−5)

q > 1.56

q = 2
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Number of intermittent points q for the AFE converter:

q > 1

2
· log (ϵ)

log (∆t )

q > 1

2
· log (2.22∗10−16)

log (25−6)

q > 0.93

q = 1

2.4.4. LOSS FUNCTION AND HYPER-PARAMETER OF THE OPTIMISER
As described in the figure 2.1, loss value is obtained via the physics model. Based on the
loss value, an optimiser will optimise the weights, biases and parameters of the physics
model through backpropagation. Weights and biases are initialised via Xavier initiali-
sation with a tanh activation function. Parameters of the physics model are initialised
randomly. Loss function (φ) of the PINN can be expressed as equation 2.7. Adam op-
timiser is chosen as the optimiser. Parameters of Adams, especially the learning rate,
must be set with a trial and error methodology. One such approach is to set a value for
the learning rate, reduce it by half for each iteration trial, and observe if there are any
issues with convergence.

φ=∑
n

[(
XTr ue1 (tn)−XPr edi ct1 (tn)

)2 + (
XTr ue1 (tn+1)−XPr edi ct1 (tn+1)

)2
]

+∑
n

[(
XTr ue2 (tn)−XPr edi ct2 (tn)

)2 + (
XTr ue2 (tn+1)−XPr edi ct2 (tn+1)

)2
] (2.7)

2.4.5. GUIDELINES TO TRAIN A PINN
Majorly there are two parts in the model, one is the Neural Net which requires training
of hyper-parameters (weights and biases) and the other is physics model with circuit
parameters (L,C,R). It is definitely not straight forward and requires several iterations of
trial and error to optimise the model. Based on the experience in this thesis, following
guidelines to train a PINN is proposed:

Step 1: Once the model parameters are decided as per the initialisation proposed,
initialise the parameters of the physics model to the true values(instead of random
initialisation) and set the variable in the TensorFlow computational graph as non-
trainable. It only trains the weights and biases of the Neural Net to match the input
and true values, allowing us to observe if the formulation of the physics equation
is right and observe the convergence of the NN.

Step 2: If the model is not converging, there can be an issue with formulated ODEs
in the physics model or the parameters of the neural net or optimiser. For trouble
shooting, try the below cases

(a) Re-verify the formulated ODEs in the physics model

(b) Increase or decrease the size of the NN (layers and neurons)
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(c) Change the learning rate of the Adam optimiser

Step 2: If the model converges, set back the parameters of the physics model to
trainable and initialise it randomly.

(a) If the model doesn’t converge now, observe the behaviour of:

i. The trend of error value of each parameter.

ii. The trend of evolution of loss value.

(b) Increase or decrease the size of the NN (layers and neurons)

(c) Change the learning rate of the Adam optimiser

Step 3: Once the model converges for both the cases, it is now required to optimise
the size of a neural net.

(a) Set the hidden layer to 1, and increase the number of neurons in a certain
step size. Tabulate the observations such as error, loss value, convergence
iteration and execution time.

(b) Increase the number of hidden layers and repeat the above step.

(c) Analyse the tabulated results and, based on the predetermined trade-off cri-
teria, select the size of the neural net.

Step 4: Since the size is decided, it is now required to check how the PINN perform
at different settings of the learning rate of Adams optimiser. Increase or decrease
the learning rate and observe at what point the model performs the best.



3
PARAMETER ESTIMATION OF

BOOST CONVERTER

To validate and verify the approach derived in section 2, the PINN model for a boost
converter is implemented as a proof of concept. This is done as the boost converter
has fewer parameters to estimate with simpler equations. Based on the results from the
boost converter, PINN will be modelled for an AFE converter helping us to assess the
optimisation and scalability problem in depth.

3.1. DYNAMIC MODEL OF BOOST CONVERTER
PINN approach uses the dynamic system equations in the form of ODE as a hard con-
straint and bounds the domain of acceptable solutions[29]. Hence, ODE equations of
boost converter based on the state of the switch based on figure 3.1 can be derived to ap-
proximate the space of solutions. The boost converter considered in this thesis is ideal in
nature, with no voltage drop across the switches and diodes. Ideal inductor and capac-
itor are considered with no parasitic resistances. Below is the specification of the boost
converter:

Table 3.1: Specification of the Boost Converter

Parameter Magnitude

Input Voltage (Vi n) 24V
Output Voltage (Vo) 40V
Inductor Value (L) 250µH
Capacitor Value (C) 200µF
Load Resistor (Rload) 2Ω
Switching Frequency (fsw) 10kHz

21
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−+Vin

L iL

S

D

C

+

−

Vo

iC

Rload

iload

Figure 3.1: Circuit topology of Boost Converter

The equations for ON state (S=1):

d vout

d t
= −vout

Rl oad ·C
diL

d t
= vi n

L

(3.1)

The equations for OFF state (S=0):

d vout

d t
= iL

C
− vout

Rload ·C
diL

d t
= vi n − vout

L

(3.2)

3.2. PINN MODELLING OF BOOST CONVERTER
The derivation of the PINN model follows exactly the procedure in chapter 2. For the
boost converter, it is assumed that the output voltage(Vout ) and inductor current(iL)
are measurable with peak-to-peak sampling. Parameters to be estimated are the Induc-
tance(L), Capacitance(C), Load Resistance (Rl oad ), and input voltage(Vi n). Based on the
derived equations 3.1 and 3.2, and using the general form defined in equation 2.1, PINN
model equations of the boost converter can be derives as below:

d vout

d t
+N [vout ;λ] = 0

diL

d t
+N [iL ;λ] = 0

(3.3)

Where:

λ= {L,C ,Rload ,Vi n}
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N [vout ;λ] =
[

S
vout

Rload ·C
]
−

[
(1−S)

(
iL

C
− vout

Rl oad ·C
)]

N [iL ;λ] =
[

S
−vi n

L

]
−

[
(1−S)

vi n − vout

L

] (3.4)

3.3. DISCRETIZATION OF BOOST CONVERTER AND LOSS FUNC-
TION

Using the general equation 2.3, and the equations 3.6 and 3.5 forward equation for back-
ward equation for boost converter can be formulated as below:

Backward equations for boost converter:

vout (tn+ci ) = vout (tn)−∆t
q∑

j=1
ai j N [vout (tn+c j );λ], i = 1,2...q

iL(tn+ci ) = iL(tn)−∆t
q∑

j=1
ai j N [iL(tn+c j );λ], i = 1,2...q

(3.5)

Forward equations for boost converter:

vout (tn+ci ) = vout (tn+1)−∆t
q∑

j=1
(ai j −b j )N [vout (tn+c j );λ], i = 1,2...q

iL(tn+ci ) = iL(tn+1)−∆t
q∑

j=1
(ai j −b j )N [iL(tn+c j );λ], i = 1,2...q

(3.6)

Loss function for boost converter depends on the prediction of inductor current and
output voltage, and it is defined based on general loss function expressed in equation
2.7:

φBoost =
∑
n

[(
vout (tn)− voutci

(tn)
)2 +

(
vout (tn+1)− voutci

(tn+1)
)2

]
+∑

n

[(
iL (tn)− iLci

(tn)
)2 +

(
iL (tn+1)− iLci

(tn+1)
)2

]
, i = 1,2...q

(3.7)

3.4. DATA ACQUISITION AND CONFIGURATION OF PINN FOR

THE BOOST CONVERTER

3.4.1. DATA ACQUISITION
To collect data for boost converter, simulation and numerical solution for carried out.
Simulation was performed in PLECS and for numerical solution MATLAB was used based
on ODE45 solver to solve equation 3.1 and 3.2. Both these methods gave similar results;
hence any of these can be used to generate raw data. Matlab was used to preprocess the
data based on section 2.4.2.
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3.4.2. DEFINING THE STRUCTURE OF PINN
Inputs for the NN are defined as inductor current and output voltage at time tn . The size
of the neural net is decided based on trial and error methodology as described in section
2.4.5. The number of outputs of the latent state is decided by the q value. The value of q
is selected as 2 based on derivation in section 2.4.3. True values of the boost PINN model
are inductor current and output voltage at time tn and tn+1

Physics model of the boost converter consists of ODE equation set 3.4. To couple the
latent state and the true value via the physics model, forward equations 3.6 and back
equations 3.5 are applied. Figure 3.2 shows the visualisation of the PINN model for the
boost converter.

Figure 3.2: Architecture of PINN applied for the Boost Converter
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3.4.3. VALIDATION AND OPTIMISATION OF THE PINN FOR BOOST CON-
VERTER

Stage 1: Verification of Physics Model

To begin with, based on the guidelines formulated in 2.4.5, parameters of the boost con-
verter L,C ,Rload ,Vi n were initialised to their true values and were set as non-trainable
in the computational graph of TensorFlow. Only the neural net parameters (weights and
biases) will be trained in this stage. For the initial trial, the neural net size was 5 hidden
layers with 50 neurons in each stage. This selection is just a starting point, and the actual
size will be optimised in the later stage.

It is observed in figure 3.3 that the model did converge, confirming the rightness of the
defined physics model. What this means is that the PINN model was able to correlate the
latent states predicted by the NN to the values of currents and voltages at tn and tn+1.

Figure 3.3: Validation of PINN model for the Boost Converter by setting the physics parameters L, C, Rl oad
and Vi n to their true value and it is set as non-trainable in the PINN model
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Stage 2: Verification of convergence of PINN

In the second stage, the parameters of the physics model (L,C ,Rl oad ,Vi n) were randomly
initialised and were set as trainable parameters. Now, the optimizer will try to estimate
these parameters during the training process. Evolution and convergence of the percent-
age error value of the parameters (L,C ,Rload ,Vi n) were observed for various learning
rate settings of the Adams optimiser. In figure 3.4, it can be observed that the parame-
ters do not converge to a least stable error value for learning rates of 8x10−6, 1.6x10−5

and 3.1x10−5 of the optimiser. In figure 3.5, it can be observed that even though the
percentage error is higher, the error value did reach a steady state value for the learning
rates set as 6.3x10−5, 1.25x10−4, 2.5x10−4 and 1x10−3.

Observation and Analysis of optimisation

1. During the first few iterations of backpropagation, the loss value will be extremely
high. The aim of the optimiser is to reduce this loss by training the weights, biases
and physics parameters. Weights and biases are unit-less normalised values with
a range bound based on the activation function. In our case, tanh activation func-
tion would give the range for weights between -1 to 1 centered around 0.

The issue with physics model is that, the parameters(L,C ,Rl oad ,Vi n) are in differ-
ent units. For instance, inductance in µH and in resistance in Ω. To normalise
them, the following strategy is used as per table 3.2:

Table 3.2: Pseudo Normalisation of Physics Parameters for Boost Converter

Parameter Actual Value
Scaling for

TensorFlow Variable
Re-scaling for

Physics Equation

L (H) 250µ 2.5 x 10−4 l n(2.5) 0.916290732 e0.92 x 10−4

C (F) 200µ 2 x 10−4 ln(2) 0.693147181 e0.69 x 10−4

Rl oad (Ω) 2 2 l n(2.4) 0.693147181 e0.69

Vi n (V) 24 2.4 x 10−1 ln(2) 0.875468737 e0.88 x 101
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(a)

(b)

(c)

Figure 3.4: Variation of error percentage of estimated parameters showing non-convergence of the
optimisation process for Boost Converter when learning rate is set as (a) 8 ·10−6, (b) 1.6 ·10−5 and (c)

3.1 ·10−5 for the Adams optimiser



3

28 3. PARAMETER ESTIMATION OF BOOST CONVERTER

(a)

(b)

(c)

(d)

Figure 3.5: Variation of error percentage of estimated parameters showing convergence of the optimisation
process for Boost Converter when learning rate is set as (a) 6.3 ·10−5, (b) 1.25 ·10−4, (c) 2.5 ·10−4 and (d)

1 ·10−3 for the Adams optimiser
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Stage 3: Optimisation of NN size

Based on guidelines in section 2.4.5, various combinations of hidden layers and the
number of neurons were tested. Starting with a lower number, the number of hidden lay-
ers and the number of neurons per hidden layer increased gradually. Table 3.3 presents
results of estimated parameters in terms of percentage error. And, table 3.4 presents the
number of iteration of convergence. The number of iterations for convergence is a better
evaluation parameter as it doesn’t depend on the type of computer used.

It is observed that the NN with a smaller size performs better in the estimation of the
parameters. For an optimiser, the physics parameter is just another variable to optimise.
Hence the probability of having a lower error for physics parameter estimation is higher
in a smaller neural net.

Table 3.3: Percentage error of estimated parameters of the boost converter

Neurons
Error Percentage

Hidden Layer = 1 Hidden Layer = 2 Hidden Layer = 4 Hidden Layer = 6 Hidden Layer = 8

L C Rload Vin mean L C Rload Vin mean L C Rload Vin mean L C Rload Vin mean L C Rload Vin mean

5 0.6 0.3 1.4 1.4 0.9 33.5 32.8 1.5 2.0 17.5 33.5 32.8 1.5 2.0 17.5 33.5 32.8 1.5 2.0 17.5 33.5 32.8 1.5 2.0 17.5
10 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 17.5 15.9 2.1 1.0 9.1
20 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9
40 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9
60 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9 0.6 0.3 1.3 1.4 0.9

In the previous case, the neural net size was compared based on the percentage error
of the estimated parameter. It is observed that similar results are obtained for various
neural net sizes. Smaller neural nets have lower execution times. Hence it makes sense
to optimise the network size based on the iteration the PINN model requires to converge.
From table 3.4, a Neural net with one and two hidden layers performed the best. It is also
observed that increasing the number of neurons has a higher impact on convergence
than increasing the number of layers.

Table 3.4: Number of iterations required for convergence

Neurons
Number of Iterations at Convergence

Hidden Layer = 1 Hidden Layer = 2 Hidden Layer = 4 Hidden Layer = 6 Hidden Layer = 8

5 1,00,000 60,000 60,000 60,000 60,000
10 50,000 52,000 50,000 58,000 1,00,000
20 30,000 30,000 32,000 26,000 40,000
40 18,000 17,000 19,000 20,000 25,000
60 16,000 13,000 15,000 19,000 20,000

To investigate further, only the number of neurons for the neural net with one and two
hidden layers will be increased to a point where no improvement in performance is ob-
served. Table 3.5 and 3.6 shows the results for hidden layer one and two respectively. It
is observed that, from table 3.3, 3.5 and 3.6, PINN model with larger size tend to have
higher error of estimation. It is found that PINN developed for the boost converter per-
formed the quickest with 1 hidden layer and 100 neurons with a mean error of 0.89%,
and the model converged at 4000th iteration. It is impressive to note that the developed
PINN model just took 25.76 seconds with only 25 switching frequency cycle data (100
data points) to predict the parameters of the boost converter.



3

30 3. PARAMETER ESTIMATION OF BOOST CONVERTER

Table 3.5: Performance evaluation for Hidden Layer = 1

Neurons
Hidden layer = 1, q = 1, adam learning rate = 0.001

L
Error %

C
error %

Rload
error %

Vin
error %

mean
error %

Iterations
at

Convergence

Execution Time
(seconds)

100 0.2 0.3 1.3 1.8 0.89 4000 25.76
200 0.2 0.3 1.3 1.8 0.89 4000 25.77
300 0.2 0.3 1.3 1.8 0.89 4000 25.74
400 0.2 0.3 1.3 1.8 0.89 4000 25.52

1000 0.2 0.3 1.3 1.8 0.89 4000 31.64

Table 3.6: Performance evaluation for Hidden Layer = 2

Neurons
Hidden layer = 2, q = 1, adam learning rate = 0.001

L
Error %

C
error %

Rload
error %

Vin
error %

mean
error %

Iterations
at

Convergence

Execution Time
(seconds)

100 0.1 0.3 1.4 1.8 0.88 4000 25.30
200 0.1 0.3 1.3 1.7 0.84 3500 25.60
300 0.1 0.3 1.3 1.7 0.85 3700 26.07
400 0.2 0.3 1.3 1.8 0.89 4000 31.07

1000 0.2 0.3 1.3 1.8 0.89 5000 123.20

Observation and Analysis of NN size

• PINN performance has a higher impact with an increasing number of neurons
than the number of the hidden layer.

• NN with 2 hidden layers and 60 neurons performed the best.

• Larger NN size doesn’t guarantee better performance. The PINN model with a
smaller neural net size had a smaller estimation error.
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3.5. RESULTS OF PINN FOR BOOST CONVERTER
Developed PINN model for boost converter, in steady state, can estimate the parame-
ters with a mean error of 0.89% in 25.76s. After optimisation based on the guidelines
proposed, stable and quicker convergence is observed in the figure 3.6. NN of PINN pre-
dicts the latent state, which in turn is used by the physics model to relate to the true
output values. The results of these prediction is presented in the figure 3.7.

Even though the point of interest is the estimation of parameters which can be achieved
by training the PINN on steady-state data, verifying the performance of the developed
model for a transient state is also carried out. It is impressive to observe an acceptable
performance of the PINN model for the transient phase with a mean error of 7.75% and
execution time of 34.74s. Figure 3.8 and 3.9 presents the results for the transient state. In
table 3.7, results of PINN for steady state and transient state is compared.

Table 3.7: PINN results of boost converter for steady state and transient state

Test
Type

Hidden layer = 1, Neurons = 100, q = 1, adam learning rate = 0.001

L
Error %

C
error %

Rload
error %

Vin
error %

mean
error %

Iterations
at

Convergence

Execution Time
(seconds)

Steady
State

0.2 0.3 1.3 1.8 0.89 4000 25.76

Transient
State

9.2 10.5 6.2 5.1 7.75 6000 34.74
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Figure 3.6: PINN parameter estimation of the boost converter at steady state

Figure 3.7: Current and Voltage waveform prediction for backward and forward data-set at steady state
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Figure 3.8: PINN parameter estimation of the boost converter at transient state

Figure 3.9: Current and Voltage waveform prediction for backward and forward data-set at transient state





4
PARAMETER ESTIMATION OF

ACTIVE FRONT END CONVERTER

Guidelines developed in section 2.4.5 are applied to develop a PINN model to estimate
the parameters of the boost converter. A similar approach is used in developing the PINN
model of the AFE converter. As the first step, a simulation model is developed in PLECS
to generate the data required, and Matlab is used to preprocess the data. In the next
step, equations derived in general form in the section 2 will be used to formulate the
PINN model for the AFE. Finally, the results are analysed.

4.1. DYNAMIC MODELLING OF THE AFE CONVERTER
The point of interest in the thesis is parameter estimation of the circuit parameters such
as filter inductance, DC-link capacitor and load resistance. To validate the feasibility of
the PINN model, 2-level VSR as an AFE is simulated in open loop control configuration
with a Sinusoidal PWM. Table 4.1 shows the circuit specifications of the 2-level VSR as
AFE converter and figure 4.1 visualises the circuit topology of the AFE.

Each phase of the AFE converter has two switches operated in complementary. Which
means when the top switch of the leg (Sa1,Sb1,Sc1) are in ON state, then the bottom
switches(Sa2,Sb2,Sc2) are in OFF state and vice versa. The control pulses for these switches
are provided via bipolar sine PWM where Sa , Sb and Sc are for top switches and S′

a , S′
b

and S′
c for the complimentary bottom switches. Figure 4.4 shows the sub-interval con-

trol pulses, and figure 4.3 shows the control pulses for 1 cycle of fundamental frequency
generated by the Sine PWM.

35
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Table 4.1: Specification of the 2-level VSC Converter as the AFE converter

Parameter Magnitude
Grid Line-Neutral Voltage (uabc ) 230V
Grid fundamental frequency ( f1) 50 Hz
Input Filter Inductance (Labc ) 250 µH
Input Filter Resistance (Rabc ) 20mΩ
DC-Link Capacitor (C ) 3000 µF
DC-Link Voltage (Vdc ) 800V
Output Power (Pout ) 30kW
Switching Frequency (fsw) 40kHz

Sa1

Sa2

Sb1

Sb2

Sc1

Sc2

iaRaLa+−
ua

ibRbLb+−
ub

N

icRcLc+−
uc

iDC

CDC

+

−

VDC

iC

Rload

iload

Figure 4.1: Circuit topology of the 2-level VSR

Figure 4.2: PLECS Simulation of AFE
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Figure 4.3: 3-phase Sine PWM for 1 cycle of the sine wave

0

1
SC

<—————————– 1/fsw = Tsw —————————–>

0

1
SB

0

1
SA

1

0

−1

Carrier wave

Modulation

Ref b

Ref a

Ref c

Figure 4.4: Sub-interval diagram of 3-phase Sine PWM used for AFE
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The switching combination for 2-level VSR will render 8 different possibilities of switch-
ing states, which give 8 different sets of equations depending on the switch state. The
advantage of PINN is that the ODE equations are used as a constraint to reduce the so-
lution space. Adding to it, the dynamics of the converter are preserved in the measure-
ment. Hence it is sufficient to just derive the average switching equation for the PINN
model. The 3-phase grid voltage is defined by the equation 4.1. It is assumed during the
training that the AFE is in a steady state and the 3-phase grid voltage and currents are
balanced. The equations modelled for the AFE in figure 4.1 are given by 4.2 and 4.5.

ua =VmCos(ω0t )

ub =VmCos(ω0t −120◦)

uc =VmCos(ω0t +120◦)

(4.1)

dia

d t
= 1

La

(
ua −RLa ia −SaVdc

)
dib

d t
= 1

Lb

(
ub −RLb ib −SbVdc

)
dic

d t
= 1

Lc

(
uc −RLc ic −ScVdc

)
(4.2)

idc = Sa ia +Sb ib +Sc ic (4.3)

il oad = Vdc

Rl oad
(4.4)

dVdc

d t
= 1

C
(idc − il oad )

= 1

C

(
Sa ia +Sb ib +Sc ic − Vdc

Rl oad

) (4.5)

4.2. PINN MODELLING OF AFE CONVERTER
Parameters to be estimated for the AFE converter are the filter inductance (La , Lb and Lc )
& its parasitic resistance (Ra , Rb and Rc ), DC-link capacitance (C ) and the load resistance
(Rl oad ). It is assumed that the grid voltage(uabc ), input currents(iabc ) and the output DC
voltage(Vdc ) are measurable. Based on the derived equations 4.1, 4.2 and 4.5, and using
the general form defined in equation 2.1, PINN model equations of the AFE converter
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can be derives as below:

d vdc

d t
+N [vdc ;λ] = 0

dia

d t
+N [ia ;λ] = 0

dib

d t
+N [ib ;λ] = 0

dic

d t
+N [ic ;λ] = 0

(4.6)

Where:

λ= {La ,Lb ,Lc ,RLa ,RLb ,RLc ,C ,Rload }

N [vdc ;λ] = 1

C

(
Vdc

Rload
−Sa ia −Sb ib −Sc ic

)

N [ia ;λ] = 1

La

(
RLa ia +SaVdc −ua

)
N [ib ;λ] = 1

Lb

(
RLb ia +SbVdc −ub

)
N [ic ;λ] = 1

Lc

(
RLc ia +ScVdc −uc

)

(4.7)

4.3. DISCRETIZATION OF AFE CONVERTER AND LOSS FUNC-
TION

Using the general equation 2.3, and the equations 4.9 and 4.8 forward equation for back-
ward equation for AFE converter can be formulated as below:
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Backward equations for AFE converter:

vdc (tn+ci ) = vdc (tn)−∆t
q∑

j=1
ai j N [vdc (tn+c j );λ], i = 1,2...q

ia(tn+ci ) = ia(tn)−∆t
q∑

j=1
ai j N [ia(tn+c j );λ], i = 1,2...q

ib(tn+ci ) = ib(tn)−∆t
q∑

j=1
ai j N [ib(tn+c j );λ], i = 1,2...q

ic (tn+ci ) = ic (tn)−∆t
q∑

j=1
ai j N [ic (tn+c j );λ], i = 1,2...q

(4.8)

Forward equations for AFE converter:

vdc (tn+ci ) = vdc (tn+1)−∆t
q∑

j=1
(ai j −b j )N [vdc (tn+c j );λ], i = 1,2...q

ia(tn+ci ) = ia(tn+1)−∆t
q∑

j=1
(ai j −b j )N [ia(tn+c j );λ], i = 1,2...q

ib(tn+ci ) = ib(tn+1)−∆t
q∑

j=1
(ai j −b j )N [ib(tn+c j );λ], i = 1,2...q

ic (tn+ci ) = ic (tn+1)−∆t
q∑

j=1
(ai j −b j )N [ic (tn+c j );λ], i = 1,2...q

(4.9)

Loss function for AFE converter depends on the prediction of currents ia , ib , ic and out-
put voltage vout , and it is defined based on general loss function expressed in equation
4.10.

φAF E =∑
n

[(
vdc (tn)− vdcci

(tn)
)2 +

(
vdc (tn+1)− vdcci

(tn+1)
)2

]
+∑

n

[(
iLa (tn)− iLaci

(tn)
)2 +

(
iLa (tn+1)− iLaci

(tn+1)
)2

]
+∑

n

[(
iLb (tn)− iLbci

(tn)
)2 +

(
iLb (tn+1)− iLbci

(tn+1)
)2

]
+∑

n

[(
iLc (tn)− iLcci

(tn)
)2 +

(
iLc (tn+1)− iLcci

(tn+1)
)2

]
, i = 1,2...q

(4.10)
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4.4. DATA ACQUISITION AND CONFIGURATION OF PINN FOR

THE AFE CONVERTER

4.4.1. DATA ACQUISITION
To collect data for the AFE converter, simulation of 2-Level VSR was performed in PLECS
as represented in figure 4.2. Based on section 2.4.2, data is pre-processed in MATLAB
to have forward data-set and backward data-set. Motive of this thesis is to develope a
model which is data-efficient hence, data of 25 cycles of switching frequency is collected
at the steady state.

4.4.2. DEFINING THE STRUCTURE OF PINN
Inputs for the NN are defined as input current(iabc ) and output voltage(Vdc ) at time tn .
The size of the neural net is decided based on the methodology as described in section
2.4.5. The number of outputs of the latent state is decided by the q value. The value of
q is selected as q = 1 based on derivation in section 2.4.3. True values of the AFE PINN
model are input currents and output voltage at time tn and tn+1

Physics model of the AFE converter consists of ODE equation set 4.7. To couple the latent
state and the true value via the physics model, forward equations 4.9 and back equations
4.8 are applied. Figure 4.5 shows the visualisation of the PINN model for the AFE con-
verter.

Figure 4.5: Architecture of PINN applied for the AFE Converter
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4.5. VALIDATION AND OPTIMISATION OF THE PINN FOR THE

AFE CONVERTER
STAGE 1: VERIFICATION OF PHYSICS MODEL

Case 1a: Adams Learning Rate = 0.001

To verify the physics model, based on the guidelines formulated in section 2.4.5, param-
eters La , Ra , Lb , Rb , Lc , Rc , C , Rload were initialised with their true values and in the
TensorFlow computational graph, these parameters are set as non trainable. Only the
neural net parameters (weights and biases) will be trained in this stage. Based on the
boost PINN’s experience, the neural net’s initial size was set to 2 hidden layers with 200
neurons each. The learning rate of the Adams optimiser was set at 0.001 initially

Figure 4.6, shows the prediction of the PINN model for the backward and forward data
set. It can be observed that the set learning rate of 0.001, which performed well for the
boost converter, did not perform well in this case. There was a sufficient error being ob-
served for the output voltage Vdc .

In the next cases, the learning rate will be gradually increased, and the error will be ob-
served. This is done till the prediction curve matches the true curve with considerably
lesser error.

Figure 4.6: Case:1a Performance of AFE PINN model with parameters set as non-trainable and initialised with
true values | Adams Learning Rate = 0.001
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Case 1b: Adams Learning Rate = 0.002

As the prediction had a higher error, the learning rate of the Adams optimiser is increased
to 0.002 in this case. From figure 4.7, it can be observed that the prediction error has
reduced, yet there is a sufficient error.

Figure 4.7: Case:1b Performance of AFE PINN model with parameters set as non-trainable and initialised
with true values | Adams Learning Rate = 0.002
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Case 1c: Adams Learning Rate = 0.004 and 0.005

Progressively, the error did reduce with an increase in the learning rate, but after 0.003,
the model performance reduced. Figure 4.8 and 4.9 shows the output for learning rate of
0.004 and 0.005 respectively. It can be observed that the error is higher in prediction for
forward and backward data-sets.

Figure 4.8: Case:1C Performance of AFE PINN model with parameters set as non-trainable and initialised
with true values | Adams Learning Rate = 0.004

Figure 4.9: Case:1C Performance of AFE PINN model with parameters set as non-trainable and initialised
with true values | Adams Learning Rate = 0.005
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Case 1d: Adams Learning Rate = 0.003

Optimal performance is observed when the learning rate is set to 0.003. The prediction
error of the PINN is the least as shown in figure 4.11 and can predict the current and
voltage waveform perfectly, as shown in figure 4.12. From figure 4.10, it can be observed
that the model did converge to a satisfactory loss value. This validates the physics model
developed for the AFE. This means that the PINN model could correlate the latent states
predicted by the NN to the values of currents and voltages at tn and tn+1 via the forward
and backward equations modelled. In the next step, the convergence of the PINN model
will be verified.

Figure 4.10: Case:1d Convergence of the loss value with physics parameters set as non-trainable and
initialised with true values | Adams Learning Rate = 0.003
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Figure 4.11: Case:1d Convergence of the loss value with parameters set as non-trainable and initialised with
true values | Adams Learning Rate = 0.003

Figure 4.12: Case:1d Performance of AFE PINN model with parameters set as non-trainable and initialised
with true values | Adams Learning Rate = 0.003
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STAGE 2: VERIFICATION OF CONVERGENCE OF PINN
In the second stage, the parameters of the physics model for AFE were randomly ini-
tialised and set as trainable parameters. Now, the optimizer will try to estimate these
parameters during the training process. Evolution and convergence of the percentage
error value of the parameters (La , Ra , Lb , Rb , Lc , Rc , C , Rload ) is observed. The first step
is to perform the pseudo normalisation of the Physics parameters so that they lie within
a similar range of bounds as show in table 4.2

Table 4.2: Pseudo Normalisation of Physics Parameters for AFE Converter

Parameter Actual Value
Scaling for

TensorFlow Variable
Re-scaling for

Physics Equation

Labc (H) 250µ 2.5 x 10−4 ln(2.5) 0.916290732 e0.92 x 10−4

C (F) 3000µ 3 x 10−3 ln(3) 1.098612289 e1.09 x 10−3

Rl oad (Ω) 21.33 2.133 x 10 ln(2.133) 0.757529439 e0.76 x 10
Rabc (Ω) 20m 2 x 10−2 ln(2) 0.693147181 e0.69 x 10−2

In the intial trial run of parameter estimation, it was observed that the PINN model had
issue with convergence. From figure 4.13, it can be inferred that the PINN model is not
able to optimise the parameters of the physics model. The initial hypothesis is that the
complexity of the AFE converter equations might be creating the issue. Because, unlike
boost converter, a different situation has arisen here. Now there are four equations and
eight parameters. Interdependence of parameters might create an optimisation issue.
For example, a change in La , changes the current value ia , which in turn affects the value
of Vdc .

Figure 4.13: PINN parameter estimation error for the AFE converter
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To investigate the hypothesis two test cases are proposed.

Test Case 1: Analysis of the PINN model by estimating just one parameter, while the rest
of the parameters are being initialised with true value and set as non-trainable.

In this test case, only the phase-a inductance value is estimated (La) during the training
process, while the rest of the parameters are initialised to the true value and set as non-
trainable. Figure 4.14 shows the parameter estimation error for (La) and it is found to
converge to a stable value of close to 10 percent error.

Test Case 2: Analysis of the PINN model by estimating two parameters, while the rest of
the parameters are being initialised with true value and set as non-trainable.

In this test case, two of the parameters of the AFE converter are estimated. The phase-a
and phase-b inductance values (La and La) are estimated during the training process,
while the rest of the parameters are initialised to the true value and set as non-trainable.
Figure 4.15 shows the parameter estimation error for La and Lb , and it is observed to
show non-convergence behaviour and failed to converge to a stable error value.

Figure 4.14: Test Case 1: AFE PINN model to estimate only La
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Figure 4.15: Test Case 2: AFE PINN model to estimate only La and Lb

This opens up the question on how else can the optimiser be tuned to tackle this sce-
nario? After few trial and error approaches, following observations are made:

• Based on the work of Aditi et. al [30], full batch optimisation is used in this thesis
instead of mini-batch. Which means the weights, biases and physics parameters
are updated at every iteration pass. In full batch, the possibility to hit scaling ceil-
ing is higher as observed in figure 4.13. Using mini-batch can help overcome this
issue. Choosing batch size is experimental and after few trial and error a batch size
of 100 is chosen.

• From TensorFlow documentation[31], it is suggested that the default value of ep-
silon set as e−7 may not be the optimal value. Smaller epsilon corresponds to larger
weight updates and higher epsilon corresponds to smaller weight updates with
slower training. Again, there is no deterministic way to set the epsilon value and
hence with trial and error approach, epsilon value of e−4 is chosen.

• Presently, the physics parameters are defined as trainable tensorflow variable with
a range bound of -1 to +1. It is possible to use activation function such as tanh or
sigmoid to add non-linearity for the physics parameters during optimisation.

• From results of PINN for boost, it is observed that the neural net with smaller size
had better performance. It makes sense as the optimiser will see the physics pa-
rameter as just another parameter in addition to weights. Having fewer weights in
the neural net will provide higher possibility of convergence for physics parameter
estimation.
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4.6. RESULTS OF PINN MODEL FOR THE AFE CONVERTER
Implimenting the previously discussed changes, the PINN model for the AFE converter
is set at adams learning rate = 0.003, epsilon = e−4, batch size of 100, and tanh activation
function for the physics parameters. The neural net with 1 hidden layer and 50 neurons
is selected. Figure 4.17 shows the result for PINN model of the AFE converter with the
following results as tabulated in table 4.3. The execution time for the PINN model is 361
seconds for 2x105 iterations with batch size of 100 resulting in 2000 Epochs.

Table 4.3: Parameter Estimation of AFE Converter

La Ra Lb Rb Lc Rc C Rl oad mean

Error (%) 7.4 38.2 0.3 24 7.4 61.8 29.7 73.2 30.25

Figure 4.16 shows the predicted waveform for forward and backward data-set. With
higher error in estimation of C and Rload it is expected to have higher prediction er-
ror for the Vdc voltage waveform. Similar to boost converter, PINN model with larger
neural net size have higher error for AFE converter as well. Figure 4.18 shows the result
of estimation with 5 hidden layer and 200 neurons per hidden layer.

Figure 4.16: Current and Voltage waveform prediction for backward and forward data-set of AFE converter
with 1 Hidden Layer and 50 Neurons
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Figure 4.17: PINN parameter estimation of the AFE converter with 1 Hidden Layer and 50 Neurons
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Figure 4.18: PINN parameter estimation of the AFE converter with 5 Hidden Layer and 200 Neurons



5
CONCLUSION

Impedance-based current harmonic analysis requires knowing the circuit parameters of
the FCS. Being a confidential design, manufacturers of the FCS don’t reveal the convert’s
design parameters. Developing a non-invasive model that can estimate the converter’s
parameters with available measurement data is necessary.

Data-driven machine learning approaches require a tremendous amount of data to per-
form satisfactorily. The power electronics domain has no such existing database repos-
itories which can be used to develop machine learning models to estimate the parame-
ters of a given power converter. The scarcity of available databases and the non-availability
of the FCS circuit parameters dictate the development of a highly data-efficient machine
learning model to estimate the converter’s parameters.

This is the key point of focus in this thesis, and a physics-informed neural net model was
developed and implemented to estimate the parameters of the boost converter and the
AFE converter of the FCS. It was a challenging journey as the concept of PINN was in-
troduced in 2019, and the application of PINN in the power electronics domain had just
one research paper published during this thesis.

The PINN model developed for the boost converter had a mean estimation error of
0.89%, and the PINN model estimated the parameters in 25.76s. For the AFE converter,
optimising the PINN model was challenging due to the physics model’s complexity. The
PINN model for the AFE converter had a mean estimation error of 30.25%, with an exe-
cution time of 361s.

5.1. REVISITING THE RESEARCH QUESTION
This thesis aimed to answer the following research questions:

How to apply the PINN-based approach to the parameter estimation of a power elec-
tronic converter?

53
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First, the converter’s ODEs containing the estimated parameters are derived. In the ODE
equation, the current and voltage values must be measurable from peak to peak. In the
second step, a neural network predicts the latent intermittent state values between the
peak-to-peak measured values. After discretizing the measured data, the latent state of
the neural net could be coupled to the measured values via the physics model using the
Runge-Kutta method. The final step involves using the neural net’s optimiser to predict
the physics parameters.

How to implement the PINN-based estimation approach?
To collect the data, simulations are performed in PLECS and MATLAB is used to pre-
process the data. Python(v3.6) with TensorFlow(v1.15) backend is used to develop the
neural net and physics model. The TensorFlow computation graph method provides the
flexibility to define the neural net from scratch. Using this, the physics parameters are
defined as a trainable TensorFlow variable, which is called by the optimiser to estimate
the parameters during the training of the PINN model.

What are the challenges when applying PINN and how to address them?
Implementation of the physics model within the neural net is an open problem. Hence
the parameters are estimated indirectly via the optimisation process where the param-
eters are treated just like weights and biases. Weights are biases are normalised values
in the range of -1 to 1 for the tanh activation function, unlike the physics parameters.
Pseudo-normalisation is used to solve this problem. Additionally, hyperparameters of
the optimiser have no deterministic way to set the values. This requires a trial and error
method to achieve optimal performance.

5.2. DISCUSSION
1. It was recognized during the literature review that impedance modelling is essen-

tial for power quality analysis and that circuit parameters are not readily available.
It was also discovered that physics-informed neural networks can be used to esti-
mate parameters. One of the major gaps is the lack of research on PINN modeling
implementation in the power electronics domain. The PINN model was success-
fully applied to the boost converter and the AFE converter to estimate circuit pa-
rameters. The PINN model developed in this thesis is highly data-efficient, quick
and non-invasive.

2. The concept of PINN is quite recent. During the initial phase of this thesis, the
modelling direction was to integrate the physics model within the neural net. Nev-
ertheless, it remains an open question. Hence, the neural net is used to predict
the latent state for the current and voltage waveform. Using this latent state, the
physics model is coupled to the neural net using the forward and backward equa-
tions derived. During the coupling process, the optimiser of the neural net is em-
ployed to estimate the physics parameter.

3. The existing works on PINN, such as [24], use two optimisers with default hyperpa-
rameter settings. The Adams optimiser is used to update the weights, biases, and
physics parameters for the first few iterations. After fixing the weights and biases,
only the physics parameters are estimated via the L-BFGS optimiser in the next
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training iterations. This approach is resource-intensive and time-consuming.

In this thesis, only the Adams optimiser is used, and hyper-parameters of the op-
timiser are tuned to estimate the physics parameters. Consequently, the model
converged in 25.76 seconds for the boost converter, and in 6 minutes for the more
complex AFE converter.

4. It is crucial to initialize the physics parameters randomly. The PINN model in this
thesis assumes that the circuit parameters are unavailable, and the loss function is
defined using only the measured current and voltage data. Hence the error of the
parameters estimated is unsupervised.

Unlike conventional data-driven neural net models, the PINN model developed
should go through the training process every time to estimate the physics param-
eters of the circuit. And, during the training process the optimiser estimates the
physics parameters. It is not possible to re-use the trained model for a different
circuit.

5.3. FUTURE SCOPE OF WORK
This thesis introduces the concept of Physics-Informed Neural Networks, which can be
used to estimate parameters for two power converters. This concept of PINN is at the
beginning of its development, and the work in this thesis provides a solid foundation for
future work. Below are some recommendations for future research based on this thesis.

1. In this thesis, only the circuit parameters of the converter are estimated. Extending
this method to estimate the control parameters would be beneficial.

2. Parameter estimation in this was performed via the physics model using the op-
timiser outside of the neural network. Integrating the physics model within the
neural net would be an interesting concept to research. This approach would solve
an open problem in the domain.

3. Current work is developed completely based on simulation. Observing how the
model will perform in hardware implementation facing a more realistic environ-
ment will be interesting.

4. Parameter estimation can be used for health monitoring the converter; it would
be beneficial if the PINN model is implemented to work on an online platform
providing real-time estimation.

5. Currently, the optimiser used for the estimation of parameters is developed very
specific to solve neural network problems. For instance, the physics parameters
will be treated similarly to the weights and biases of the neural network. The value
of weights and biases are invaluable; hence adding a priority to the physics model
parameters will be an interesting approach.
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