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ABSTRACT

We consider the problem of determining the relative position of

dual-microphone sub-arrays. The proposed solution is mainly

developed for binaural hearing aid systems (HASs), where each

hearing aid (HA) in the HAS has two microphones at a known

distance from each other. However, the proposed algorithm can

effortlessly be applied to acoustic sensor network applications.

In contrast to most state-of-the-art calibration algorithms, which

model the calibration problem as a non-linear problem resulting

in high computational complexity, we model the calibration

problem as a simple linear system of equations by utilizing a

far-field assumption. The proposed model is based on target

signals time-difference-of-arrivals (TDOAs) between the HAS

microphones. Working with TDOAs avoids clock synchronization

between sound sources and microphones, and target signals need

not be known beforehand. To solve the calibration problem, we

propose a least squares estimator which is simple and does not

need any probabilistic assumptions about the observed signals.

Index Terms— Microphone array calibration, hearing aid,

DOA, TDOA, far-field

1. INTRODUCTION

Performance of many signal processing algorithms using micro-

phone arrays depends on the knowledge of the microphone array

geometry. For example, in [1,2], the microphone array geometry

is needed to estimate the direction of arrival (DOA) of the target

sound for a binaural hearing aid system (HAS). A binaural HAS

consists of two hearing aids (HAs) mounted on the ears of a user.

Different heads radii and varying shapes of pinnae of users cause

uncertainties about the geometry of the microphone array, e.g.

the distance between the HAs, which degrade performance of the

DOA estimation algorithms.

The microphone array calibration problem is the problem of

determining the relative locations of the microphones in a micro-

phone array. This problem has been studied using different types

of measurements such as received signal strength (RSS) [3], time-

of-arrival (TOA) [4–6], and time-difference-of-arrival (TDOA) [7].

Among these, TDOA is a suitable choice for HAS applications

because it is less vulnerable to reverberation [4], does not require

clock-synchronization between sources and microphones, and

Fig. 1: A typical scenario of microphone array calibration problem

for a binaural HAS. We aim to find the relative locations of h1
and h2 using signals received from sound sources s1,s2,...,sN
which are distributed randomly around the user.

does not require the time of emission of the target signals.

Different techniques have been proposed to solve the calibra-

tion problem. Multi-dimensional scaling (MDS) [8] is one of the

earliest methods that implicitly needs each node (HA) to be a

compound of a microphone and a sound source, a requirement

which in general is not satisfied in HA applications. Another

approach has been proposed in [9] based on singular value de-

composition (SVD) that finds the coordinates of the microphones

up to an invertible matrix by assuming that sources are in the

far-field. Finding the appropriate invertible matrix is a non-linear

optimization problem [9], which might be trapped in local minima.

An SVD-based approach has also been proposed in [10], which

avoids the far-field assumption but requires co-location of one of

the sources and one of the microphones for a closed-form solution.

Recently, an alternative approach was proposed [11] that solves the

localization problem for a minimal case, where minimal number

of microphones and sound sources are required to solve the prob-

lem, without imposing any co-location constraint. However, for

overdetermined cases, where more sound sources or microphones

than the minimal case are available, an additional non-linear op-

timization is still required. In [12] a closed-form solution has

been proposed for an overdetermined case based on ToA mea-

surements, for which synchronization of sources and microphones

is needed. Lately, a new approach has been proposed [6] where

pairs of microphones are set on a rigid rack, similar to the problem
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Fig. 2: The special far-field assumption considered in this paper.

considered in this paper. However, the approach in [6] is based on

TOA measurements which are not suitable for HAS applications.

Fig. 1 shows an exemplary scenario of the problem considered

in this paper. There are two HAs hk, k = 1,2, each with two

microphones rk,1 and rk,2. The distance l between rk,1 and rk,2
is known, but the relative locations of h1 and h2 are unknown

(we define the location of hk as the center of its microphones

axis). We aim to find the relative locations of h1 and h2 using the

signals received by the HAs microphones fromN sound sources

s1,s2,...,sN . We assume thatN is known and, at each time frame,

exactly one sound source is active. This assumption is reasonable

in HA applications, because when the HAS user moves his/her

head, the relative location of a sound source with respect to the

microphone array will change, which can be interpreted as a

new sound source originating from a different relative location.

Therefore, the user’s head movements ensure sound signals from

several different relative locations as needed.

The main contribution of this paper is in modeling the micro-

phone array calibration problem as a linear system by utilizing

a special far-field assumption. The proposed model is based on

target signals TDOAs, which do not need clock synchronization

between sound sources and microphones, and knowledge of target

signals is not necessary. The latter point means that special cal-

ibration signals are unnecessary, and we can use signals which are

naturally present, e.g. speech signals, for the calibration. To solve

the modeled calibration problem, we use a least squares (LS) esti-

mator, which additionally provides estimates of the sound sources

locations. The proposed method effectively exploits the extra

information about the microphones distance in a HA and needs

only two sources when considering the horizontal plane, i.e. two

dimensions. For simplicity, we will discuss our estimator in 2D.

However, the generalization to three dimensions is straightforward.

2. PROBLEM FORMULATION

Let tk,i,j denote the TOA of the target signal generated by source

sj received at receiver rk,i (microphone i∈{1,2} of hearing aid

hk∈{h1,h2}), which is given by

tk,i,j=
‖rk,i−sj‖2

c
+tj+δk,i, (1)

where ‖.‖2 denotes the Euclidean norm, c is the sound speed, tj
is the emission time at source j, and δi is the internal delay of

microphone rk,i. If we assume that the internal delays of the HAS

microphones are equal, i.e. δk,i=δ for all i and k, the TDOA of

the target signal generated by source j received at rk,i and ru,w
(microphone w∈{1,2} of hearing aid hu∈{h1,h2}) is

∆k,i,u,w,j=tk,i,j−tu,w,j=
‖rk,i−sj‖2

c
−
‖ru,w−sj‖2

c
.

Hence, the TDOA depends only on the locations of the sources

and the receivers, and it is independent of the δ and tjs. In the

following, we will estimate the relative locations of the HAs using

TDOAs and a special far-field assumption.

2.1. Far-Field Assumption

Let dk,j denote the distance between sj and hk. In HAS appli-

cations, the dk,js are usually much larger than the microphones

distance within a HA, i.e. dk,j ≫ l. Therefore, we can assume

that the DOAs of the target sounds for the microphones of a HA

are almost equal (see Fig. 2). However, we assume the target

distances are not much larger than the diameters of the user’s

head, which means θ1,j and θ2,j are not necessarily equal.

The far-field assumption and the given estimated TDOAs al-

low us to estimate θk,j, k=1,2 (see Fig. 2), up to a sign as follows:

∆̂k,2,k,1,j=
l

c
cos

(

θ̂k,j

)

⇒ θ̃k,j=±θ̂k,j=±arccos
(c

l
∆̂k,2,k,1,j

)

, (2)

where ∆̂k,2,k,1,j is the estimated TDOA between rk,2 and rk,1 for

the target signal from sj. Note that the DOAs are expressed clock-

wise with respect to the microphones axis. Moreover, we define

the TDOA of the target signal from sj between midpoint of h1 and

h2 as ∆j=
∆̂2,1,1,1,j+∆̂2,2,1,2,j

2
to estimate ∆dj=d2,j−d1,j as

∆dj≈∆jc. (3)

Therefore, there are three known parameters for each source sj:

θ̃1,j, θ̃2,j and ∆dj, which leads to 3N known parameters in total.

On the other hand, the locations of the sound sources, h1 and

h2 are unknown. Without loss of generality, we will assume

h1=[0,0]T, and we estimate locations of h2 and {s1,...,sN} with

respect to h1. As a consequence, we have 2N+2 unknown in a

two-dimensional scenario, and the calibration problem is solvable

when 3N≥2N+2, i.e. N≥2.

3. LOCALIZATION ALGORITHM

In this section, we propose an algorithm to estimate the relative

locations of h1 and h2 using the known parameters. The relation

between sj and hk,k=1,2, can be written as

sj=hk+dk,j
[

sin(θk,j) cos(θk,j)
]T
, (4)
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which allows us to formulate the relative location of h2 as

h2=

[

X

Y

]

=h1+d1,j

[

sin(θ1,j)
cos(θ1,j)

]

−d2,j

[

sin(θ2,j)
cos(θ2,j)

]

. (5)

From Eq. (3), we have d2,j=d1,j+∆dj. Therefore,

[

X

Y

]

=

[

d1,jsin(θ1,j)−(d1,j+∆dj)sin(θ2,j)
d1,jcos(θ1,j)−(d1,j+∆dj)cos(θ2,j)

]

. (6)

Considering the second row of Eq. (6), we can express d1,j as a

function of Y and ∆dj:

d1,j=
Y +∆djcos(θ2,j)

cos(θ1,j)−cos(θ2,j)
. (7)

Substitution of Eq. (7) into the first row of Eq. (6) leads to:

[

cos(θ1,j)−cos(θ2,j)
−sin(θ1,j)+sin(θ2,j)

]T[

X

Y

]

=∆djsin(θ1,j−θ2,j), (8)

and consideringN sound sources together leads to a linear system

of equations

Ah2=bbb, (9)

whereA∈RN×2 and bbb∈RN . The first and second columns of

row j of A are Aj1=cos(θ1,j)−cos(θ2,j), Aj2=−sin(θ1,j)+
sin(θ2,j) respectively, and row j of bbb is bj=∆djsin(θ1,j−θ2,j).
Because in practice observations are always noisy, to obtain the

location of h2 based on Eq. (9), we will compute a LS estimate

of h2 which is given by

ĥ2=A
+bbb, (10)

where A
+ denotes the pseudo-inverse of A. and straightfor-

wardly, the LS estimators of sj∈{s1,s2,...,sN} can be obtained

by replacing ĥ2 in Eqs. (7) and (4), respectively.

One remaining issue is that, as showed in Sec. 2.1, we can

estimate θk,j only up to a sign
(

see Eq. (2)
)

. Therefore, for each

sj, three different cases are conceivable (see Fig. 3):

• Case 1: sj is on the right sides of h1 and h2 (Fig. 3a), i.e.

θ1,j=+θ̂1,j and θ2,j=+θ̂2,j.

• Case 2: sj is between h1 and h2 (Fig. 3b), i.e. θ1,j =+θ̂1,j
and θ2,j=−θ̂2,j.

• Case 3: sj is on the left sides of h1 and h2 (Fig. 3c), i.e.

θ1,j=−θ̂1,j and θ2,j=−θ̂2,j.

We can distinguish Case 1 and Case 3 by ∆j:

• If ∆j>0, the target signal reached h1 before h2, i.e. case 3

cannot be the case.

• If ∆j<0, the target signal reached h2 before h1, i.e. case 1

cannot be the case.

However, cases 1 and 2, and cases 2 and 3 are not distinguishable

from each other based on ∆dj. In other words:

[θ1,j,θ2,j]=

{

[±θ̂1,j,−θ̂2,j], if ∆dj>0

[+θ̂1,j,±θ̂2,j], otherwise
. (11)

(a) The source is on the right side of the both HAs.

(b) The source is between the HAs.

(c) The source is on the left side of the both HAs.

Fig. 3: Different relative locations of a sound source with respect

to a binaural HAS.

Therefore, for each source, we have two different cases which

cannot be distinguished based on ∆dj. To resolve this ambiguity,

we solve the calibration problem for all possible combinations

of different cases of the θk,js, and the combination of the cases

that can justify all the estimated parameters best is the solution

to the problem. Two different cases for each source result in 2N

different combinations of cases considering all sources. Therefore,

the problem must be solved for 2N different combinations of the

cases, and the best combination b∗ is given by:

b∗=argmin
b∈B

N
∑

j=1

‖∆dj−∆̂dj,b‖2, (12)

where B is the set of all possible combinations of the cases,

and ∆̂dj,b = d̂2,j,b − d̂1,j,b, where d̂1,j,b is obtained by Eq. 7

for combination b and d̂2,j,b = ‖ĥ2,b − ŝj,b‖2, (ĥ2,b and ŝj,b
denote the estimated locations of h2 and sj for combination b,

respectively). The outputs of the localization algorithm are ĥ2,b∗

and {ŝ1,b∗,...,ŝN,b∗}.
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3.1. TDOA estimation

The last issue is how to estimate the TDOAs upon which the above

algorithm relies. The most well-known approach for time delay

estimation (TDE) is based on the Generalized Cross Correlation

(GCC) method [13]: the GCC of two correlated signals has a

maximum at a lag τ corresponding to the delay.

Let rk,i,j(n) and ru,w,j(n) denote the signals received from

source j by microphone i of hearing aid k, and microphone

w of hearing aid u, respectively. Furthermore, let Rk,i,j(f)
and Ru,w,j(f) denote their discrete Fourier transforms (DFTs),

respectively. The GCC is then given by [13]:

Rk,i,u,w,j(τ)=

M
∑

f=1

ψ(f)R∗
k,i,j(f)Ru,w,j(f)e

j2πfτ , (13)

whereM is the DFT order, ∗ represents complex conjugation and

ψ(.) is a weighting function. Then, the estimated ∆k,i,u,w,j is

given by:

∆̂k,i,u,w,j=argmax
τ

Rk,i,u,w,j(τ). (14)

Because microphone array calibrations are usually performed

in high SNR situations, we simply use the conventional cross-

correlation method for TDOA estimation, i.e. ψ(f)=1 for all f

in Eq. (13). However, to improve the TDE performance in noisy

situations, there are more complex weighting functions which

take into account the noise characteristics [13].

Because TDOAs are estimated based on sampled signals, the

estimation accuracy is limited by the sampling interval. Moreover,

the small distance between the microphones of a HA limits the

possible discrete TDOA values. Therefore, subsample TDE is

necessary, and we need interpolation methods to tackle this prob-

lem [14,15]. In this paper, we use the cubic spline method [16]

to interpolate the microphone signals before computing the GGC.

4. SIMULATION RESULTS

4.1. Setup

To evaluate the performance of the proposed algorithm, we

consider a free-field situation, i.e. head presence is ignored in

the simulations. Moreover, we set l=1cm and consider the head

diameter, or more precisely, the distance between h1 and h2 to

be 16cm. We distribute the sound sources randomly according

to a uniform distribution on a disc or a circle (depending on the

experiment) around the user. We use the TSP database [17] for

generating speech sound sources. The sampling frequency is

48 kHz, the estimation window length is 1024 samples, and we

run the simulations for 200 different realizations. The number

of query points for interpolation between each two consecutive

sample points of the signal is 100.

4.2. Performance Measures

To evaluate the estimated location of h2, we use

σh=‖h2−ĥ2‖2, (15)

2 3 4 5 6

0

1

2

3

4

5

(a) Performance of ĥ2.

2 3 4 5 6

0

1

2

3

4

5

(b) Performance of the estimated DOAs.

Fig. 4: The box plot of the performance of the proposed algorithm

as a function of number of sound sources. The bottom and top

of the boxes are the first and third quartiles, and the bands inside

the boxes are the median.

where ‖.‖ denotes the 2-norm. As another performance metric,

we use the mean absolute error of the obtained DOAs:

σθ=
1

N

N
∑

j=1

(

|θ1,j−θ̃1,j|+|θ2,j−θ̃2,j|

2

)

, (16)

where θ̃1,j and θ̃2,j obtained from h1 = [0,0]T, ĥ2,b∗ and ŝj,b∗ ,

and θ1,j and θ2,j are the true DOAs of the target signal from sj
to h1 and h2, respectively.

To demonstrate the results, we use box plots (Figs. 4 and

5), where the bottom and top of the box are the first and third

quartiles, and the band inside the box is the median.

4.3. Results and Discussion

The effect of the number of sound sources on the proposed

algorithm has been shown in a box plot in Fig. 4. As can be

seen, increasing the number of sound sources from two to three

would improve the estimation performance. However, increasing

the number of the sound sources to more than three does not

offer any advantages because the fundamental subsample error

of the TDOA estimation cannot be overcome by increasing the

number of the sound sources. Overall, the estimated medians of

σh and σθ are around 1 cm and 2 degree, respectively. It should

be mentioned that dj∈ [0.5,1.5] in these simulations.

Fig. 5 shows the box plot of the proposed algorithm as a

function of dj. We distribute three sound sources randomly on a

circle centered at the user’s head for different distances. Generally,
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(a) Performance of ĥ2.
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Fig. 5: The box plot of the performance of the proposed algorithm

as a function of the distance of the sound sources from the user.

increasing the distance degrades the performance because the

distance increment would put the sound sources in a far-field

situation regarding both HAs—we modeled the problem in a

way that the sound sources are in far-field with respect to each

HA individually, not both HAs. Overall, as before, the estimated

medians of σh and σθ are around 1 cm and 2 degree, respectively.

5. CONCLUSION AND FUTURE WORK

In this paper, we studied the microphone array calibration problem

for binaural hearing aid systems. The proposed algorithm is based

on the estimated TDOAs of the target signals received by hearing

aid microphones. We used a far-field assumption to model the

problem as a linear system, and we proposed a least squares esti-

mator to estimate the locations. As future work, we plan to study

the proposed algorithm under more realistic situations by consid-

ering presence of the head, microphone noise and reverberation.
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