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Abstract—Coordinating the interactions between increasingly
interconnected energy sectors and carriers can lead to an efficient
integration of variable renewable energy (VRE) resources, and
a more cost-efficient energy transition. This paper proposes a
model coupling approach that uses a market-based mechanism
to efficiently coordinate the interactions among electricity, heat,
and (hydrogen) gas systems, and (near) optimally schedule
flexibility to maximize social welfare. The proposed approach is
benchmarked against traditional co-optimization, and is shown
to achieve comparable results with a moderate “optimality gap”
in terms of reduction in system costs, peak load, and VRE
curtailment. Its added value is the ability to enable each system to
interact in an integrated energy system and locally optimize their
decisions without sharing confidential information. The practical
implication of this new approach is to provide a modeling
environment where system operators and flexibility aggregators
can obtain insights into the impacts of decarbonization of other
parties on their systems—thereby avoiding myopic operational
or investment decisions.

Index Terms—Integrated multi-carrier energy systems, Coor-
dinated flexibility scheduling, Model coupling

I. INTRODUCTION

Increasing the penetration of variable renewable energy
(VRE) generation in the power system and electrifying end-
use sectors such as heating are key actions to decarbonize our
energy system. However, high penetrations of VRE and the
electrification of “everything” increase the need for flexibility
in the power system. This is mainly because: (i) high pene-
trations of VRE increase system requirements for balancing
demand and supply due to their intermittent nature; (ii) large-
scale electrification of demand results in high peak flows in
electricity networks, potentially causing congestion as these
networks were not initially designed to accommodate such
peak flows, and upgrading them is extremely slow and costly.

Interestingly, the current trend of end-use electrification
enabled by Power-to-X (P2X) technologies (e.g., electrolyz-
ers), couples different energy sectors and carriers, resulting
in a multi-carrier integrated energy system (MIES). These
P2X technologies are extremely flexible in operation, making
these new loads inherently flexible. Coincidentally, while VRE
integration and electrification increase the need for flexibility
in the power system, an MIES offers a potential source of

Copyright notice: 979-8-3503-9042-1/24/$31.00 ©2024 IEEE

flexibility, due to its ability to shift demand or supply across
different energy carriers and networks, thereby exploiting
energy storage in the form of electricity, heat, or gas.

As these subsystems (electricity, heat, and gas) become
increasingly interconnected, and their operations more dynam-
ically intertwined, it becomes essential to evaluate them on a
holistic level rather than as individual subsystems. Coordinat-
ing their operation can lead to an efficient integration of VRE
resources, and a more cost-efficient energy transition (e.g., by
reducing investment requirements in network upgrades). There
is extensive literature [1], [2], showing the potential benefits
of moving beyond the traditional paradigm of independently
operating these subsystems, to coordinating and operating
them as one whole MIES, that is, a system of systems.

However, energy system integration and the inclusion of
many different types of flexibility resources increase the com-
plexity of the energy system—it brings significant challenges
to coordinating their operations [3]. Uncoordinated operations
could accentuate VRE integration challenges. For example,
local flexibility resources can aggravate congestion in the
electricity distribution network if they simultaneously ramp
up power consumption in response to low electricity prices.
Therefore, energy system integration brings along a method-
ological challenge—the challenge of coordinating the interac-
tions among subsystems with multiple flexibility resources and
optimally schedule flexibility to maximize social welfare.

The remainder of this paper is structured as follows. Litera-
ture on the state-of-the-art approaches to flexibility scheduling
in MIESs is reviewed in section II. The case study and the
proposed approach to flexibility scheduling based on model
coupling are introduced in section III. Next, results and
discussion are presented in section IV. Finally, the conclusion
and future research directions are summarized in section V.

II. LITERATURE REVIEW

The traditional approach to model coordinated flexibil-
ity scheduling in MIESs is based on co-optimization. Co-
optimization is a monolithic approach in which the operation
(control) of all subsystems and flexible consumer assets is opti-
mized using a standalone computational tool. Although widely
adopted in the literature [4], [5], this overarching approach
has several limitations: (i) it assumes that a central entity has
perfect information and full control over all subsystems, and
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dispatches them to minimize system costs. This assumption
implies that subsystem operators (e.g., a heat grid operator)
give up control over their assets, raising an autonomy issue
due to its top-down control mechanism; (ii) it is limited in the
way it represents consumer behavior due to the simplifying
assumption on coordination strategies (top-down control); (iii)
it requires complete information regarding the flexibility of
consumers and the internal states of their assets. This raises
a privacy issue as in reality, flexible consumers might not be
willing to share such information due to confidentiality rea-
sons; (iv) it does not scale well as it becomes computationally
challenging to solve if all subsystems are modeled in high
spatiotemporal and techno-economic detail [6].

Generally, distributed optimization techniques can be ap-
plied to address the issue of privacy and autonomy, as they
enable flexible consumers to optimize their decisions locally
without sharing confidential information or giving up control.
Such techniques usually rely on iteratively adjusting electricity
prices in a way that reflects system-wide demand and supply
imbalance [7]. However, it often requires many iterations
before converging [8], which can significantly slow down the
simulation time for large complex systems such as MIESs. In
some cases, depending on the initialization or price update
algorithm, it might even fail to converge for non-convex
optimization problems [3]. Thus, the need arises to develop
a scalable approach that can include confidential information
about flexibility in system-wide energy models.

To address these limitations, this paper proposes a new
approach to model coordinated flexibility scheduling in
MIESs—a model coupling approach based on willingness-
to-pay (WTP) information exchange. In this non-iterative
approach, a model coupling framework is developed to co-
ordinate the interactions among subsystems through a market-
based mechanism. Each flexible consumer (satellite) model
interacts with an electricity market (central) model by only
sharing their WTP, expressed as a sequence of price-quantity
bid pairs. In return, the central model determines the electricity
prices and the demand satisfied for each satellite model.

This approach overcomes the limitations of distributed and
co-optimization. First, flexible consumers do not have to give
up control over their assets. Second, they do not have to share
any confidential information. How they determine their WTP is
their confidential trade strategy encapsulated in their respective
models. Third, it allows for a better representation of consumer
behavior and their bidding strategies, avoiding simplifying
assumptions on coordination strategies. Finally, this approach
scales well with the level of detail in the models, making it
possible to model complex systems with the desired level of
accuracy. This is because each subsystem can be simulated
in parallel in its native tool with a separate dedicated solver,
significantly increasing computational power. We compare
the performance of this new approach with traditional co-
optimization using metrics such as system costs, peak load,
and VRE curtailment, and show that it achieves comparable
results with a moderate “optimality gap”. In sum, the main
contribution of this paper is to propose a new approach to

efficiently coordinate the interactions among electricity, heat,
and gas systems with distributed flexibility resources in an
MIES, and “near” optimally schedule flexibility to maximize
system-wide social welfare.

III. METHODOLOGY

This section first introduces the methodological case study
of the MIES considered, and then describes the models and
mathematical formulations under uncoordinated and coordi-
nated (co-optimization and model coupling) scheduling. The
implementations have been archived on Zenodo [9], [10].

A schematic illustration of the MIES is shown in Fig. 1.
It consists of a heat, transport, and (hydrogen) gas system
coupled to the electricity system through P2X technologies.
The heat, transport, and gas systems have storage to buffer
consumption, making their demand flexible in time.
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Fig. 1. Schematic representation of the MIES.

The electricity system consists of VRE and some con-
ventional generators (not shown) that provide backup during
periods of low VRE generation and peak demand. Data is
taken from the German Sci-Grid model0. The data used in-
clude generator types, their marginal costs, installed capacities,
hourly capacity factor timeseries for VRE generators, and three
demand types with hourly load profiles. We assumed that each
demand has some flexibility such that it can shift electricity
consumption to earlier or later timesteps by a few hours.

A. Uncoordinated flexibility scheduling

In the uncoordinated approach, each system (heat, transport,
and gas), given (pre-response) electricity price signals λt,
schedules its flexibility (electricity consumption) indepen-
dently by solving the full cost minimization problem described
by Problem 1 over the scheduling horizon H .

Problem 1: min
pG
t ,ht,et

H∑
t

λt · pGt (1)

s.t. pGt = Lt + ht, ∀ t (2)

Pmin
p2x ≤ pGt ≤ Pmax

p2x , ∀ t (3)

et = et−1 + ht, ∀ t (4)

Emin
t ≤ et ≤ Emax

t , ∀ t (5)

eT = ECAP (6)

0https://pypsa.readthedocs.io/en/latest/examples/scigrid-lopf-then-pf.html
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where pGt is the electricity from the day-ahead market and
Pp2x is the capacity of the P2X technology. Lt and ht are the
inflexible and flexible demands, respectively. ht is modeled as
a store with constraints on the energy level et and a deadline
at which the store must be charged to full capacity ECAP

(demand must be fully satisfied at the final timestep T in H).
After solving Problem 1, the resulting electricity consump-

tion of each system is aggregated into a load profile seen by
the electricity system. The electricity system then performs
an economic dispatch optimization described by Problem 2 to
satisfy the total load Dt of the MIES.

Problem 2: min
pg,t

H∑
g,t

Cg · pg,t (7)

s.t.
∑
g

pg,t = Dt, ∀ t (8)

Ãg,t · Pnom
g ≤ pg,t ≤ Âg,t · Pnom

g , ∀ g, t, (9)

where Cg is the marginal cost of generators, pg,t is the dispatch
constrained by their nominal capacities Pnom

g and per unit
time-dependent availabilities Ãg,t and Âg,t.

B. Coordinated scheduling using centralized co-optimization

This approach assumes that a central entity has perfect
information and full control over all assets in the MIES, and
schedules flexibility through a top-down control mechanism by
solving the cost minimization problem described in Problem
3, which is implemented in the open source tool PyPSA [11].

Problem 3: min
pg,t,hp2x,t,ep2x,t

H∑
g,t

Cg · pg,t (10)

s.t. (9) and
∑
g

pg,t =
∑
p2x

Lp2x,t +
∑
p2x

ht,∀p2x, t (11)

ep2x,t = ep2x,t−1 + hp2x,t, ∀ p2x, t (12)

Emin
p2x,t ≤ ep2x,t ≤ Emax

p2x,t, ∀ p2x, t (13)

ep2x,T = ECAP
p2x ∀ p2x (14)

C. Coordinated scheduling using model coupling

Here, we propose a non-iterative model coupling approach
using WTP information exchange (a market-based control
mechanism) to coordinate flexibility scheduling. A schematic
illustration of the model interactions is shown in Fig. 2.

Satellite models interact with the central model by only
sharing their WTP, which conveys information about how
much electricity they are willing to consume at a given price.
This lets satellite models keep their operational details and
bidding strategy confidential, as they are encapsulated in their
respective models (a “black box” to other interacting models).

For this work, satellite models are implemented as a cost
minimization heuristic strategy with the same parameters as in
Problem 1. Demand is kept in a queue: inflexible demand at
the front of the queue is bid for at the market ceiling price, and
flexible demand further in the queue that could still be satisfied
in future timesteps, is bid for at a price linearly decreasing
from the ceiling to floor price.

The central model represents a day-ahead electricity market
model that maximizes social welfare based on the WTP from
satellite models and generator marginal cost and capacities.
The formulation is shown in Problem 4, where µp2x,t and
dp2x,t are the price-quantity bid pairs (WTP) of satellite
models.

Problem 4: max
pg,t,dp2x,t

∑
p2x

µp2x,t · dp2x,t −
∑
g

Cg · pg,t (15)

s.t. (9) and
∑
g

pg,t =
∑
p2x

dp2x,t, ∀ t (16)
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Fig. 2. Model interactions using WTP information exchange.

These models are coupled together using the third incar-
nation of the MUltiScale Coupling Library and Environment
(MUSCLE3) [12]. As shown in Fig. 3, MUSCLE3 provides
a manager component that starts all submodels whose imple-
mentations are wrapped in a so-called libmuscle instance. The
manager sets up direct peer-to-peer network connections, and
manages message (data) exchange between submodels. The
configuration is specified in a yMMSL (YAML Multiscale
Modeling and Simulation Language) file. Once instantiated,
each independently running submodel can interact with the
other models by sending and receiving messages over the
connecting ports set up by the manager component. At every
time t, satellites initialize the simulation by updating their
internal states. Next, they construct and send their WTP to
the central model. Central then clears the market and reports
the price and demand satisfied. The simulation proceeds to
the next timestep t + 1 until the final step T . A schematic
illustration of this procedure is shown in Fig. 4.

MUSCLE3
Manager

libmuscle

Satellite:
Hydrogen model

libmuscle

Satellite:
Transport model

libmuscle

Central:
Electricity model

libmuscle

Satellite:
Heat model

yMMSL

 

Fig. 3. MUSCLE3 architecture (high-level) components.
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Fig. 4. Simulation execution flowchart

IV. RESULTS AND DISCUSSION

An hourly operation (the time resolution for both the central
and satellite models in this study is 1 hour) of the MIES
was investigated over a daily scheduling horizon. The differ-
ence between the uncoordinated and coordinated scheduling
approaches is quantified using system realized load, VRE
curtailment, electricity prices, and operational costs—defined
as the sum of all dispatched power times the marginal cost of
dispatched generators.

As shown in Fig. 5, uncoordinated flexibility scheduling
results in multiple peaks in the realized load profile since
each subsystem tries to schedule consumption during low (pre-
response) price time periods (due to high VRE availability).
The lack of coordination results in over-consumption during
high VRE generation periods, shifting consumption com-
pletely away from some periods of moderate VRE generation,
leading to VRE curtailment. Moreover, the final electricity
prices obtained no longer represent the (pre-response) prices
against which these subsystems optimized their operations.
This highlights the limitations of current practices that ne-
glect coordination and model flexibility scheduling (demand
response) with no feedback on the wholesale market.

Conversely, the realized load profile from model coupling
and centralized co-optimization approaches have substantially
lower peaks and no VRE curtailment, that is, both ap-
proaches result in an efficient integration of VRE generation.
This demonstrates the practical implications of the proposed
approach—it can achieve an efficient coordination between
price-responsive demand and VRE generation. The load pro-
files under both coordinated scheduling approaches also have
a similar trajectory, except that a higher peak occurs in the
final timestep of the model coupling approach.

The peak at the final timestep can be attributed to two main
reasons. The first is because of the simple bidding strategy
adopted for all satellite models, which keeps bidding low for
flexible demand that can still be satisfied in later timesteps.
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Fig. 5. Realized load, VRE curtailment, and electricity prices.

However, as the deadline approaches, all satellite models start
increasing their bid prices for any unsatisfied demand as
shown in the last illustration of Fig. 5. This behavior can
be avoided by adopting different bidding strategies for each
satellite model, using different price curves with different
slopes (rather than a simple linear interpolation from the
ceiling to floor prices), or using intelligent adaptive approaches
such as reinforcement learning. Applying these to approximate
an “ideal” optimum is a relevant extension for future work. The
second reason can be attributed to the impact of decision-
making in hindsight (imperfect information). Achieving the
“ideal” optimum of centralized co-optimization which assumes
perfect foresight is very difficult in practice, since one cannot
guarantee the same optimality if a subsystem operator or flexi-
ble consumer would have made different choices in hindsight.

The dispatch of generators is shown in Fig. 6. The uncoor-
dinated approach results in expensive units (e.g., Oil) being
dispatched more often, while VRE generation is curtailed,
resulting in an inefficient operation of the MIES. Under
both coordinated approaches, expensive generators are only
dispatched when the available VRE generation capacity is
fully utilized. While Oil and CCGT units are dispatched in
the final timestep under model coupling, the perfect foresight
of co-optimization avoids this by increasing the dispatch of
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Fig. 6. Generator dispatch.

moderately expensive units in earlier timesteps that would
otherwise result in expensive units being dispatched later.

Finally, Table I shows the reduction in system opera-
tional costs, peak load (an important metric used by network
operators to plan network reinforcement), and VRE curtail-
ment relative to the uncoordinated approach (reference case).
The difference in the reduction in system operational costs,
peak load, and VRE curtailment between the model coupling
approach and co-optimization is about 6%, 12%, and 0%,
respectively. This can be interpreted as the “optimality gap”
between these two approaches, with co-optimization being
the lower bound, which is not achievable in practice due to
imperfect foresight and limited information in real world.

V. CONCLUSION

This paper proposes a model coupling approach that uses a
market-based mechanism to coordinate the interactions among
electricity, heat, and gas systems to “near” optimally schedule
flexibility. The proposed approach is non-iterative and does
not require interacting systems to give up control over their
systems. It is benchmarked against traditional centralized co-
optimization, and shown to achieve comparable results with
a moderate “optimality gap”. Its added value is the ability
to allow each system to interact in an MIES and locally
optimize its decision without sharing confidential details,
thereby providing a modeling environment where system op-
erators or flexibility aggregators can obtain insights into the
impacts of decarbonization of other parties on their systems.
Another expected advantage is scalability, since the systems
can be independently simulated in parallel, each using a
dedicated solver. A relevant extension for future work will

TABLE I
REDUCTION IN SYSTEM COSTS, PEAK LOAD, AND VRE CURTAILMENT

Scheduling
approach

Uncoordinated
(reference)

Model
coupling

Co-
optimization

System costs - 83% 89%

Peak load - 54% 66%

Curtailment - 100% 100%

be a scalability test to investigate how this approach scales
with the number of coupled models, their level of detail (e.g.,
unit commitment), and the length of the scheduling horizon,
in comparison with centralized optimization and distributed
optimization (equilibrium modeling) of a large scale MIES.
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