
Efficient Utilization of Local Optimization Methods and Strategies
in Local Search Genetic Algorithms for Lennard Jones Clusters

Kaloyan Yanchev1

Supervisors: Peter A.N. Bosman1,2, Anton Bouter2, Vanessa Volz2

1EEMCS, Delft University of Technology, The Netherlands
2Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Kaloyan Yanchev
Final project course: CSE3000 Research Project
Thesis committee: Peter A.N. Bosman, Anton Bouter, Vanessa Volz, Thomas Abeel

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper investigates how the local optimization
method and strategy affect the efficiency of genetic
algorithms (GAs) for Lennard-Jones (LJ) clusters.
Several ASE-implemented optimizers were consid-
ered; however, only BFGS, FIRE, and Conjugate
Gradient (CG) proved viable for integration. The
optimizers were first benchmarked independently,
and then the GA execution was benchmarked us-
ing the different optimizers, with the main solu-
tion quality metric being the number of times the
global minimum (GM) is found. While BFGS pro-
duced better results, its timing was the highest and
steepest scaling; furthermore, the trade-off could
not be mitigated by reducing the maximal num-
ber of optimization steps. In contrast, FIRE and
CG, when run with a doubled population size, pro-
duced superior results both in terms of execution
time and final cluster energy. Furthermore, a clus-
ter isomerism-based heuristic for applying selec-
tive local optimization halved the GA’s execution
time at the expense of a reduction in solution qual-
ity. Nonetheless, when computational time was
equalized through doubling the population size, the
heuristic-based GA produced equal or better re-
sults. These findings suggest that faster methods
and suboptimal optimization choices, when com-
bined with increased population diversity, can out-
perform more powerful but slower GA configura-
tions.

1 Introduction
Global Geometry Optimization (GGO) is a central problem
in the field of material science. The objective of the problem
is to discover the most stable atomic configuration in 3-
dimensional space. For this purpose, two inputs are required:
the atomic type of the cluster (number of atoms of each type)
and the potential function that models pairwise atomic inter-
actions. Thus the objective is to find the cluster configuration
that represents the minimal value for the sum of the potential
energies over each atomic pair (total potential energy of the
cluster). The GGO problem is proven to be NP-Hard [25],
since the number of local minima on the potential energy
surface (PES) is exponentially increasing with the number of
atoms. This is true even for simple type-agnostic functions
such as Lennard-Jones (LJ) [5], presented in Figure 1, which
has one critical point – its global minimum.

The study of GGO applies to a wide range of scientific and
technological fields. It enables discovery of novel low-energy
atomic configurations, resulting in advanced materials. Ap-
plications of GGO include designing of high-performance
electronic devices, efficient catalysts, and structurally re-
silient materials for aerospace or energy systems [10; 15]. In
biology, LJ optimization techniques have proven informative
in protein folding simulation, thus identifying stable folded
states that resemble actual biological structures [16]. In phar-
macy, GGO of ligand-receptor binding pathways allows for

discovering new drugs [19]. In space exploration, GGO of
boron nitride and polymer-metal hybrids has a promising out-
look on the development of lightweight, efficient radiation
shielding materials [17; 21]. Lastly, in the field of photon-
ics, inverse design and GGO techniques enable the creation
of coatings capable of near-perfect absorption across the in-
frared spectrum, useful for energy harvesting, thermal regu-
lation, and imaging [9; 14].

Figure 1: Graph of the Lennard-Jones potential function [22].

Genetic Algorithms (GAs) [7] have proven to be an
effective strategy for solving the GGO problem due
to their meta-heuristic and population-based approach.
The very first works on GAs for this problem have
identified the need for local optimization, which nar-
rows down the search space to local minima only [3;
26]. Figure 2 represents the general execution flow of
the local search GA. To this end, the L-BFGS [12] has
become the standard choice of local optimizer, which
is evident in numerous more recent works [8; 13; 18;
20]. Nonetheless, any choices concerning local optimization
are hardly ever discussed. It must be noted that Pereira et al.
[18] are the only ones that mention a configuration parameter,
namely Local Search Length (LSL), which corresponds to
the maximum number of steps; however, no value is reported.

While local search significantly improves the results of the
GA, it also introduces high costs in terms of execution time.
Heiles and Johnston [6] make an important observation:
optimizations of solutions that yield the same minimum
are redundant, and preventing those significantly reduces
computational expenses. Even though predicting the local
minimum seems impossible, some clusters are optimized
each generation, even though they are later discarded by the
GA selection. Furthermore, a number of intricate cluster
cases, such as LJ38, prove the existence of multiple deep
funnel local minima [5]. In such cases, the utilization of
local searches might lead to premature convergence of the
GA. All of these problems signal the need for consistent
and systematic testing of local optimization methods and
strategies to better mitigate the inherited trade-off between
result quality and execution time.



Figure 2: Schematic representation of a local search GA [6].

This paper poses the following central research question:
How does the choice of local optimization method and strat-
egy affect the efficiency of a local search Genetic Algorithm
for Global Geometry Optimization of Lennard-Jones clus-
ters? The primary aim is to identify efficient local optimiza-
tion configurations and heuristics that reduce execution time
without significantly compromising solution quality. There
are two possible approaches – either reducing the time for ev-
ery local optimization or reducing the total number of local
optimizations. First, the optimization methods are indepen-
dently assessed in their convergence behavior, execution time
and ability to locate local minima. This benchmarking helps
narrow down the set of viable local optimizers for integration
and provides insight about their optimal configuration. Af-
terwards, the selected methods are embedded within the GA
framework, and full global optimization runs are performed,
providing the main results – the GA’s execution time and the
energy of its best-found cluster. Finally, a strategy for selec-
tive local optimization is implemented and tested.

2 Genetic Algorithm Framework
The GA framework is based on an open-source repository
[1] that contains previous research on the subject, developed
in Atomic Simulation Environment (ASE) [11], a Python
library. Note that the repository has a larger collection
of several algorithms that follow an interface and can be
run in parallel. Only the general execution flow of the
sequential GA is preserved in the modified framework. For
simplicity of testing, certain values have been abstracted
to parameters, and minor adjustments have been made
regarding the correct execution of operations. Because
the GA is highly modular and many of the operations and
their sequencing are controlled through its parameters, only
the default execution flow is discussed. The GA uses 3D
Cartesian floating-point representation of atomic coordi-
nates and the fitness value of clusters is their potential energy.

The initial population’s atomic configurations are randomly
sampled from a cube with a side proportional to the number
of atoms in the cluster. The only restriction all throughout

the GA, whenever a cluster is generated (initialization
and crossover) or disturbed (mutation), is that there is no
interatomic distance of less than 0.15 units. After the initial
8 clusters are generated, they are locally optimized using
BFGS with a maximum of 10000 optimization steps. Then,
the clusters’ potential energies are noted and the best half,
meaning 4, of the clusters are selected. Using the 4 selected
clusters, 4 pairs are randomly drawn such that each pair
consists of two different clusters. For each pair, a child
is generated using the standard cut and splice crossover
method as illustrated in Figure 3. Finally, the population,
now containing 8 clusters again (4 preserved parents and 4
generated children), undergoes probability-based mutation.

Figure 3: Cut and splice crossover [3].

There are three mutations that can be performed: twist,
random displacement and etching. Twist mutation is applied
to a whole cluster with a probability of 0.2. The cluster
is split in two by a random geometric plane; one side is
chosen at random and then it is rotated by a random degree
around the normal of the splitting plane. Concerning random
displacement, it is applied per atom in a cluster – with
a probability of 0.1, the atom is displaced 0.2 units in a
randomly drawn direction in 3D space. Finally, etching
has two variations, each applied with a probability of 0.025
for a cluster. The first variant initially removes the highest
energy atom, then performs local optimization and finally
introduces an atom at random, while the other variant
initially introduces an atom at random, then performs lo-
cal optimization and finally removes the highest energy atom.

At this point, the GA’s execution has gone full circle and
the operations repeat each other – local optimization is
performed and its results are treated as the new generation.
The GA optimizes for 100 generations at most. However,
if no better cluster than the overall best has been found in
the last 20 generations, the GA converges and terminates the
execution early (before the 100th generation). The estab-
lished criterion for equating two solutions is a difference of
potential energies less than 10−6×n2, where n is the number
of atoms in the cluster.



Etching mutation is an operation that utilizes additional local
optimization. It emerged from the development of a single-
cluster global optimization algorithm called basin hopping
[24]. The main idea is that, as illustrated in Figure 4, clusters
of adjacent sizes have similar global minimum (GM) sym-
metries. However, some clusters have a very different GM
symmetry than their adjacent ones; in such cases, etching can
cause premature convergence on deep funnel local minima.
Nonetheless, local optimization in etching mutation is not to
be differentiated from the regular one. These additional opti-
mizations can introduce some variance in the execution time;
however, given its low probability rate, it should not have a
tremendous influence over the total timing. Therefore, local
optimization in etching mutation is not to be explicitly stud-
ied in this paper.

Figure 4: Selected LJ clusters visualizations [24].

3 Independent Benchmarking
The local optimizers implemented in or adapted to ASE are:

• BFGS (Broyden-Fletcher-Goldfarb-Shanno)

• BFGSLineSearch (Quasi-Newton)

• LBFGS (Limited-memory BFGS)

• LBFGSLineSearch (Limited-memory Quasi-Newton)

• GPMin (Gaussian Process Minimizer)

• MDMin (Moledular Dynamics Minimizer)

• FIRE (Fast Inertia Relaxation Engine) [2]

• SciPyFminCG (Conjugate Gradient, CG) – ASE wrap-
per for the SciPy implemented optimizer

The independent benchmarking is performed on clusters
generated using the initialization strategy of the GA. Fur-
thermore, all optimizers considered are benchmarked for
optimizing the same initial clusters. However, the cluster
sampling is random and the constraints allow for interatomic
distances as low as 0.15 units. Since the LJ potential
grows exponentially for distances below its optimal one
(≈ 1.12), a single low interatomic distance can introduce
value-dominating forces and potentials. This means that the
optimizers need to handle well the initial huge numerical
instability. Nonetheless, those cases are indeed the first

local optimizations to be performed inside the GA, so the
optimizers do need to be able to handle them. On the
other hand, those initial local optimizations are expected
to be worst-timed, upper-bound cases, since subsequent
clusters should be partially optimized. Finally, it should
be noted that due to the nature of the GA, the viability
and suitability of the local optimizers is determined from
their capability of handling tightly bound atomic interactions.

There is a database of current global minima for the LJ clus-
ters [4], consisting of both atomic configurations and energy
levels. However, there are value discrepancies between the
energy values in the database and the energy values obtained
when a cluster object with the same atomic coordinates is
generated in ASE. For this reason, a separate file with the
energy values obtained in ASE is generated; also, a tolerance
threshold of 10−6 × n2, where n is the number of atoms, is
considered for concluding the discovery of the global mini-
mum.

3.1 Preliminary Tests
Four of the initial local optimizers are excluded, since single
test cases are sufficient to showcase their shortcomings.
Those have all been detected using a small cluster size,
namely LJ13. The first one, the Gaussian Processes Min-
imizer (GPMin), throws a runtime error and terminates
execution. Molecular Dynamics Minimizer (MDMin), on
the other hand, does not converge at all and reaches the
maximum number of optimization steps. Lastly, the two
quasi-Newtonian line search optimizers present a peculiar
case for exclusion. Even though they do manage to optimize
some clusters, early on the random sequence generates a
very tricky cluster. The problem is that the optimizers cannot
perform a single optimization step; however, they also do not
terminate, so it is presumed they just enter an infinite loop.
Furthermore, this tricky cluster configuration is part of the
initial population of the default GA, so this means that they
also could not be used for the integrated experiments.

The preliminary tests consist of a small number of trials (10-
50) for different cluster sizes and are executed for the re-
maining four local optimizers. BFGS and L-BFGS produce
some non-converging optimizations, meaning that they exe-
cute until the maximum number of steps is reached. These
are problematic for two reasons: first, those runs take longer
than the average ones, and second, since the method has not
converged, its result is suboptimal. In fact, the cluster energy
in those cases is sometimes on the scale of 106, while the
global minimum (GM) lies in the negative hundreds. Thus,
quartile statistics are preferred for the independent tests to
safely ignore such outlier results. Nevertheless, this means
that non-converging local optimizations can only have a neg-
ative impact on the efficiency of the algorithm. However, the
GA discards half of its clusters with the highest energies ev-
ery generation, so a practical approach should prioritize only
the better results from half of the runs. Nonetheless, L-BFGS
produces 10/10 non-converging optimizations on LJ55 and
9/10 on LJ75, which is why it is excluded from the indepen-
dent benchmarking.



3.2 Full-scale Experiments
The full-scale experiments are performed on cluster sizes that
showcase the scaling challenges of the problem but require
reasonable time. Furthermore, BFGS is executed with a
maximum number of optimization steps less than 10000 such
that the impact of non-converging optimizations is mitigated.
Due to this, an acceptance criterion is defined – more than
75% of all optimizations should be converging in order for
the quartile values to be representative. Thus, the experiment
consists of the following tests: 1000 trials on LJ38 and on
LJ47 and 500 trials on LJ55 and LJ65.

Results show that BFGS produces the highest and worst-
scaling execution time; however, it finds lower energy
minima. Figure 5 shows that for each of the cluster sizes, CG
is the fastest method, tightly followed by FIRE, while BFGS
is significantly slower than both. Furthermore, with the
increase of cluster size, FIRE and CG are linearly scaling by
a small gradient, while BFGS is scaling much more steeply
and maybe non-linearly. Table 1, however, illustrates an
opposite trend in terms of energy results. Particularly, BFGS
produces the lowest median energies, followed by FIRE and
finally CG. On top of that, BFGS shows another important
quality – it is able to discover superior minima that the other
optimizers cannot discover.

Figure 5: Average execution time per cluster size for a single local
optimization by each of the methods in the independent experiment.

Table 1: Median and minimum cluster energy after single local opti-
mization per method per cluster size in the independent experiment.

BFGS FIRE CG

LJ38 median -161.19 -160.05 -152.45
minimum -168.49 -167.50 -166.68

LJ47 median -208.65 -207.38 -200.34
minimum -217.12 -215.64 -214.88

LJ55 median -251.19 -250.24 -242.64
minimum -263.98 -260.36 -259.49

LJ65 median -305.62 -304.82 -300.19
minimum -320.72 -315.97 -316.56

A novel analysis approach is used to study the optimal max-
imum number of optimization steps. The approach is based
on examining the quartile values for each of the cluster sizes,
since all three optimizers tested require more optimization
steps with the increase in the number of atoms. Furthermore,
since the GA uses only half of the clusters with the lower en-
ergies, the analysis includes those separately. Figure 6, Fig-
ure 7 and Figure 8 visualize the studied data for BFGS, FIRE

Figure 6: Graph of BFGS optimization steps quartile values.

Figure 7: Graph of FIRE optimization steps quartile values.

Figure 8: Graph of CG optimization steps quartile values.



and CG, respectively. The idea is to examine the step dis-
tribution for the selected results (solid lines) in relation to the
step distribution for all results (dashed lines) in order to deter-
mine whether limiting the maximum number of optimization
steps is suitable. In the case of FIRE, the lower energy results
require more steps than the general case, and for CG, both
distributions are equal. This means that a reduction in the
maximum number of optimization steps is not suitable since
that would result in higher energy of otherwise favorable re-
sults. BFGS, on the other hand, proves that its maximum
number of optimization steps can be safely reduced because it
produces lower energy results when it converges early, while
longer optimizations yield unfavorable results. These find-
ings have been confirmed by a second experiment using a
different randomness seed, thus different initial cluster con-
figurations. Furthermore, for BFGS, the second experiment
uses much tighter limits on the number of steps such that the
steps distribution for all results is skewed, with more than
25% of all runs not converging. Nonetheless, the distribution
for the 50% better results is accepted since more than 75%
of its runs converge and is confirmed to be the same as in the
first experiment, meaning it can be assumed universal.

4 Integrated Experiments and Results

4.1 Local Optimizers and Configurations
Outcomes of the first integrated experiment conform to the
findings in the independent benchmarking. The experiment
consists of running 40 GA runs on LJ38 and on LJ47 and
20 GA runs on LJ55 and LJ65. For BFGS, the Q4 step val-
ues of the 50% best results from the independent experiments
are used as the maximum number of optimization steps. Fur-
thermore, LBFGS is included with step limits below 10000.
Figure 9 visualizes the average execution times for full GA
optimization, while Table 2 contains the number of times the
global minimum (GM) is found. LBFGS, due to its non-
convergence on large cluster sizes, scales exponentially with
the number of atoms in the cluster without producing any sig-
nificant results. BFGS now shows linearly scaling timing;
however, it is still much higher than that of FIRE and CG and
is more steeply scaling. Nonetheless, BFGS still manages to
produce significantly better results by finding more GM than
FIRE and CG.

Table 2: Number of times the global minimum (GM) is found by the
GA per method per cluster size in the integrated experiments.

LJ38 LJ47 LJ55 LJ65

LBFGS 0 6 0 0
BFGS 1 8 0 1
FIRE 1 6 0 0
CG 0 1 1 0

BFGS-Q4 1 6 0 0
BFGS-Q3 1 4 1 0
BFGS-Q2 0 1 0 0

FIRE2 0 13 3 0
CG2 0 11 2 2

Figure 9: Average execution time per cluster size for a full GA opti-
mization utilizing each of the methods in the integrated experiment.

The second integrated experiment tests reducing the execu-
tion time of single BFGS local optimization by reducing
the maximum number of optimization steps. The maximum
number of optimization steps is based on the quartile values
from the first integrated experiment. Figure 10 represents
the time reduction obtained by the different configurations.
Even though the timing is indeed lower, it is still significantly
higher than that of FIRE and CG and is still steeply scal-
ing. Furthermore, Table 2 reports a significant reduction in
the number of times the GM is found. Therefore, this time
reduction scheme is deemed unfavorable.

Figure 10: Average execution time per cluster size for a full GA
optimization utilizing the reduced steps limits BFGS configurations.

A third integrated experiment is introduced that aims to ef-
fectively compare FIRE, CG and BFGS. An objective com-
parison of the different variations of the GA can be done by
equating either the timing or the results. However, equal re-
sults cannot really be guaranteed, and the timing of BFGS
cannot be reduced without compromising its results; there-
fore, the timing of FIRE and CG should be extended. To do
so effectively, the population size is doubled, providing more
diversity and thus a higher probability of finding GM. Fig-
ure 11 visualizes the average GA execution timing, proving
that FIRE2 and CG2 are still faster than BFGS, even in its
best timing configuration, BFGS-Q2. Table 2, on the other
hand, reports that the double population versions manage to



outperform even BFGS in GM discovery. Therefore, FIRE2
and CG2 surpass BFGS in efficiency since they are superior
in terms of both execution timing and results energy.

Figure 11: Average execution time per cluster size for a full GA op-
timization utilizing the doubled population FIRE and CG methods.

4.2 Heuristic Selection
A heuristic-based selection is proposed to halve the number
of local optimizations, thus significantly reducing the total
execution time. The default GA performs local optimization
on all clusters and afterwards selects only the best half. If
the energy after optimization can be predicted by a heuristic,
then half of the local optimizations are completely useless.
Cluster metrics such as potential energy or forces are not
suitable heuristics since their values can be dominated by
a single atomic pair interaction. Therefore, a heuristic that
is independent of the interatomic distances is preferred.
Zhao et al. [27] study cluster isomerism by computing the
sum of the distances between each atom and the center of
mass. An inspection of the isomerism values and the energy
after optimization from the previous integrated experiments
proves that there is a correlation; however, a single isomerism
value maps to a wide range of energy results. Furthermore,
a numerical test is performed to establish how accurate the
heuristic is by measuring the percentage of clusters being
selected by both the heuristic and the default methodology
per each generation. Mean aggregates of this analysis result
in a 70% accuracy for the heuristic, which means it is a
decent candidate that is worth practically examining.

The isomerism heuristic for the GA selection practically
halves the execution time at the expense of a reduction in GM
discovery. To properly examine efficiency, additional tests are
introduced that utilize FIRE and CG with quadrupled popula-
tion size (32 candidate solutions), such that execution time is
equated with the default GA FIRE2 and CG2 configurations.
Figure 12 illustrates the time scaling of the default GA config-
urations and the double population heuristic selection GA. As
observed, the timings of hFIRE4 and hCG4 are mainly lower
than those of FIRE2 and CG2, respectively; however, they
also scale at a lower gradient. Table 3 reports the number of
times the GM is discovered by the different configurations of
the heuristic selection GA. A comparison between identical

configurations of local optimizer and population size proves
a noticeable reduction in results. However, comparison be-
tween equal timing configurations proves that the heuristic
has its own merits and produces more GM in total.

Figure 12: Comparison of average execution time per cluster size
for a full global optimization by default and heuristic selection GA.

Table 3: Number of times the global minimum (GM) is found by the
heuristic selection GA per method per cluster size.

LJ38 LJ47 LJ55 LJ65

BFGS 1 5 0 0
FIRE 0 3 1 0
CG 0 0 1 0

FIRE2 1 7 2 1
CG2 0 7 2 0

FIRE4 3 12 2 0
CG4 3 12 5 0

An assessment of the merits of heuristic selection combined
with doubled population size is performed. LJ47 is a test
case that produces a significant number of discovered GM
runs in the default GA. In the heuristic GA, those results
are fairly matched in the double population size instances.
LJ55, on the other hand, is much harder for GM discovery;
however, population increase in the default GA manages
to produce more stable results. In the case of the heuristic
GA, those results are matched even with the same population
size, while CG4 produces a noticeable breakthrough. The
largest cluster considered, LJ65, proves to be the hardest test
case, with a single stable GM discovery produced by CG2
default GA. Finally, LJ38, the smallest cluster considered,
proves to be as challenging as LJ65, since the default GA
does not manage to produce a configuration that discovers
its GM more than once. The heuristic GA matches those
results; however, with FIRE4 and CG4, it performs another
breakthrough by discovering the GM 3 times each.

A final experiment is performed that tests all viable configu-
rations of the default and heuristic GA for 50 trials on LJ31.
The smaller cluster size is chosen such that more trials can be
run as well as the expectation of more GM discoveries that



provide a basis for clear comparisons. Table 4 reports the
number of GM discoveries for each configuration. For this
test case, it can be observed that FIRE, even with the same
population size, produces significantly better results by uti-
lizing the heuristic GA. The same, however, is not true for
CG. Nonetheless, a comparison between time-equated con-
figurations, meaning a default GA and the corresponding dou-
bled population heuristic GA, shows that the heuristic GA
produces significantly better results, thus proving higher effi-
ciency.

Table 4: Number of times the global minimum (GM) is found by the
default and heuristic selection GA per method for LJ31.

default heuristic

BFGS 7 6
FIRE 1 3
CG 1 1

FIRE2 3 6
CG2 5 2

FIRE4 - 13
CG4 - 9

5 Responsible Research
The highest measures of experiment replicability and result
reproducibility have been ensured. First, the full codebase of
the project can be found online. Furthermore, on top of the
modified GA implementation, it also contains the code for
the experiments as well as any auxiliary methods developed
for storing, aggregating and visualizing results. Therefore,
anyone has the means to replicate the experiments. On the
other hand, to ensure reproducibility, all of the experiments
utilize randomness generation seeding. Furthermore, to
ensure that the results of the different local optimization
methods are comparable, they are tested using the same
cluster atomic configurations in the independent experiments
and the same randomness sequence in the full GA executions.
For reproducibility of independent experiments, the random-
ness sequence is seeded once at the beginning; thus, all of
the generated cluster configurations can be derived again. It
should be noted that reusing the ASE Atoms objects should
be avoided at all costs, since they are dynamically updated.
Thus, once a valid atomic configuration has been sampled
from the randomness sequence, a different ASE Atoms
object is separately generated for each local optimization.
The GA implementation, on the other hand, runs every
full global optimization by first seeding the randomness
sequence using either the default or user-input value. Thus,
integrated experiments are performed by using the same set
of randomness seeds for the different cluster sizes and tested
configurations. Lastly, in order to mitigate execution time
variance due to machine state, experiments are executed such
that different local optimizers are used in consecutive runs,
aiming at equal spread of that variation.

GGO-based methods are undeniably instrumental in enabling
discoveries across a spectrum of scientific and engineering

fields. These include, but are not limited to, nanomaterials,
biological macromolecules, pharmacological agents, radia-
tion shielding systems, and photonic devices. The dual-use
nature of many of these applications, however, necessitates
careful ethical consideration. Tools that can optimize for cat-
alytic efficiency or structural stability can, with minor adjust-
ments, also be applied toward the design of stealth technolo-
gies or synthetic toxins [23]. It is therefore imperative that re-
search in this domain proceed with transparency, ethical fore-
sight, and collaboration across disciplines to ensure beneficial
and responsible technological development.

6 Discussion
The experimental results challenge some common assump-
tions about local optimizers in LJ cluster GAs. Notably,
L-BFGS (Limited-memory BFGS) has long been the de
facto industry standard, yet findings show it is suboptimal
in this context. Although L-BFGS is memory-efficient and
widely used, it achieves neither the lowest energies nor
the fastest convergence in these tests. In fact, L-BFGS is
the worst compared to the other viable optimizers (BFGS,
FIRE, CG) on both solution quality and speed as cluster
size increases. This suggests that the conventional choice of
L-BFGS may need reconsideration, especially when better
scaling alternatives are available.

BFGS (Broyden–Fletcher–Goldfarb–Shanno) emerges as
the most powerful optimizer for energy minimization. In
independent benchmarks, BFGS consistently finds the
lowest-energy cluster configurations. However, this accuracy
comes at a high computational cost. BFGS has the longest
per-run execution time, and its scaling with cluster size is
steep. It is attempted to mitigate these disadvantages by lim-
iting the number of optimization steps, but the time–energy
trade-off remains unfavorable. In practice, pure BFGS
optimizations make the GA evaluations very thorough but
also very slow. Thus, while BFGS is the default optimizer
in many GA implementations as well as this one, its scaling
issues are a major drawback: achieving more descent per
step incurs diminishing returns in an evolutionary run.

By contrast, the FIRE (Fast Inertia Relaxation Engine)
and Conjugate Gradient (CG) optimizers are much more
lightweight. Individually, FIRE and CG converge to decent
minima much faster than BFGS. When the GA population
is doubled to use the extra time, GAs utilizing FIRE or CG
actually outperform the standard BFGS-based GA in terms
of wall-clock time and final energy. In other words, trading
off a bit of per-optimization accuracy for speed allows
exploring many more configurations, which yields better
results overall. The GA with doubled population size and
FIRE/CG local optimizer often finds the GM equal or more
times than the default GA utilizing BFGS. This highlights
that saved time can be reinvested productively. However,
simply scaling the population is not necessarily the optimal
or only way to do this: doubling population size increases
selection overhead and may suffer from diminishing re-
turns. More systematic study is needed to identify optimal



population size; furthermore, adaptive population growth
schemes should also be explored. But fundamentally, data
emphasizes that faster optimizers like FIRE and CG have
clear advantages when given adequate population diversity.

Concerning GA design and efficient speedup, two major ap-
proaches are considered – time reduction per local optimiza-
tion or global reduction in the number of local optimizations.
BFGS tests prove that limiting the maximum number of steps
leads to minor execution time reduction per optimization;
however, the results quality is significantly decreased. Thus,
a heuristic-based selection strategy is implemented and evalu-
ated. It effectively reduces the number of local optimizations
in half each generation by optimizing only the cluster se-
lected based on their isomerism value. This heuristic is tested
mainly for FIRE/CG-based GAs. Its effect is consistent: it
roughly halves the total GA’s execution time; however, it
also introduces a drop in solution quality. Nonetheless, when
the total compute time is equalized by doubling the popu-
lation size, the heuristic-augmented GA outperforms the de-
fault GA. These results indicate that even though the heuristic
is prone to choosing suboptimal clusters for optimization, an
increased population size and thus diversity still preserve the
ability to discover good results. On the other hand, it should
be mentioned that isomerism value is a cheap heuristic; how-
ever, different versions of it can be derived if the distance val-
ues are scaled differently, for example, squared. This means
that, based on this principle, multiple different ways to cal-
culate the isomerism heuristic values can be derived, each
selecting a different set of clusters. Nonetheless, the value
of the heuristic selection is derived from the reduced exe-
cution time; however, its reinvestment strategy through dou-
bling population size might not be the most results-optimal
solution.

7 Conclusions and Future Work
This work shows that the most effective local optimization
strategy in GA-based GGO is one that balances execution
speed against the depth of energy descent. In practice,
the slower but powerful BFGS optimizer yields the best-
minimized structures but at a very high computational
cost. In contrast, the FIRE and CG optimizers are far more
efficient in CPU time, and when given a larger population (to
equalize effort) they achieved comparable or better outcomes
than BFGS. The commonly used L-BFGS method proves
relatively inefficient in these experiments, finding neither
the best energies nor offering speed advantages (despite its
prevalence). Finally, the cluster-isomerism heuristic (a selec-
tive local-search rule) substantially improves the trade-off: it
roughly halves runtime with not so significant quality loss
and outperforms the unmodified GA when time is equalized.
Taken together, these findings indicate that employing faster
local optimizers (and possibly even suboptimal ones) in
combination with increased population diversity can surpass
conventional BFGS-heavy strategies. They also confirm that
the heuristic GA concept is robust across different optimizer
configurations.

For future work, several directions are promising. Gained ex-
ecution time reinvestment strategies should be carefully stud-
ied. It is believed that increasing the population size is the
best option since the timing is predictable and the popula-
tion diversity is expanded, improving the chances for finding
the GM. Nonetheless, a diligent study should explore the ef-
fect of the convergence criterion and the consequences of re-
laxing it. Furthermore, population size can be examined in
depth, resulting in the identification of optimal values. On
top of that, it is believed that population diversity is more
important than pure population size; thus, isomerism can be
used to develop adaptive population growth schemes. Alter-
natively, dynamic heuristic strategies can be developed that
utilize machine learning or adaptive methods to decide in real
time which clusters to fully optimize. Concerning heuristic
isomerism values, the different ways of calculating it can be
further studied to explore how that changes the final results.
Overall, future work should focus on incorporating efficient
heuristics and self-adaptability strategies, potentially by uti-
lizing isomerism metrics.
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Jakob Schiøtz, Ole Schütt, Mikkel Strange, Kris-
tian Sommer Thygesen, Tejs Vegge, Lasse B. Vilhelm-
sen, Michael Walter, Zhenhua Zeng, and Karsten Wedel
Jacobsen. The atomic simulation environment - a
python library for working with atoms. Journal of
Physics: Condensed Matter, 29(27):273002, 2017.

[12] Dong C. Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. Math. Pro-
gram., 45(1–3):503–528, August 1989.

[13] Marco Locatelli and Fabio Schoen. Local search based
heuristics for global optimization: Atomic clusters and
beyond. European Journal of Operational Research,
222(1):1–9, 2012.

[14] Alexandre Mayer, Hai Bi, Sarah Griesse-Nascimento,
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