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Abstract

Runtime testing is emerging as the solution for the inte-
gration and assessment of highly dynamic, high availabil-
ity software systems where traditional development-time
integration testing is too costly, or cannot be performed.
However, in many situations, an extra cost will have to
be invested in implementing appropriate measures to en-
able runtime tests to be performed without affecting the
running system or its environment.

This paper introduces a method for the improvement of
the runtime testability of a system, which provides an op-
timal action plan considering the trade-off between testa-
bility and implementation cost. The computation of the
action plan is driven by an estimation of runtime testabil-
ity, and based on a model of the system. Runtime testabil-
ity is estimated independently of the test cases and focused
exclusively on the test-relevant features of the system.

This method is used to direct integration- and test-
engineers in the implementation of improvement measures
for the runtime testability during the integration of a sys-
tem. Furthermore, it can also be applied earlier, on the
design stage, providing a Design for Testability method
for dynamic systems. By means of an example, we demon-
strate how our method enables an optimal expenditure of
resources towards runtime testability during the integra-
tion phase of a system.

1. Introduction

Integration and system-level testing of complex, dy-
namic and highly available systems, such as Systems of
Systems and Service Oriented Architectures, is becom-
ing increasingly difficult and costly to perform in a ded-
icated development-time testing environment. Such sys-
∗This work has been carried out as part of the Poseidon project under

the responsibility of the Embedded Systems Institute (ESI), Eindhoven,
The Netherlands. This project is partially supported by the Dutch Min-
istry of Economic Affairs under the BSIK03021 program.

tems cannot be duplicated easily, nor can their usage con-
text. Moreover, in some cases, the components that will
form the system are not available, or even known before-
hand. Proper testing and validation of such systems can
only be performed during runtime. Runtime Testing poses
considerable runtime integration and testing challengesto
engineers and researchers alike [4, 8].

A prerequisite for runtime testing is the knowledge
about which items can be tested safely while the system
is operational without disrupting the system’s operation
or its environment. This knowledge can be expressed
through the concept of Runtime Testability of a system [9].

Testability is commonly referred to as the relative ease
and expense of revealing software faults. Testability en-
hancement techniques have been proposed which try to
make systems less prone to hiding faults [2, 6, 12, 14, 19],
or which select test cases that are more likely to un-
cover faults [5, 15, 17]. However, these approaches are
not suited for the specific challenges posed by runtime
testing, especially, the interference which the tests will
cause on the running system (which determines the vi-
ability of runtime testing), is not taken into account by
these techniques. Features of the system which require
tests whose interference is too high will have to be left
untested, increasing the probability of leaving undetected
faults. Knowledge of the impact that runtime tests will
have on the system will allow engineers to select and im-
plement appropriate measures to avoid interference with
the system, or with its environment. Therefore increas-
ing the probability of uncovering faults in the system, by
making more features runtime testable.

The main contribution of this paper is RiTMO, a
method to enhance the runtime testability of a system at
design or deployment-time. RiTMO computes an action
plan for the implementation of improvement measures of
the system’s runtime testability. For this purpose, it uses
an estimated value of runtime testability based on the im-
pact of runtime tests on the system [9], along with the
cost of the remedial measures needed to reduce their im-
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pact. Our approach reflects the trade-off that engineers
have to consider, between the improvement of the run-
time testability of the system after some interferences are
addressed, and the cost of the remedial measures that have
to be applied. We present a detailed application exam-
ple of RiTMO to a system taken from our industrial case
study in maritime safety and security systems.

The paper is structured as follows. In Section 2 the
concept of Runtime Testability is introduced. In Sec-
tion 3, a method to improve runtime testability of a system
is described. Section 4 evaluates the proposed method. In
Section 5 related work is presented and compared to our
research. Section 6 wraps up the paper and introduces
some ideas for further research.

2. Runtime Testability

The fact that there is interference through runtime test-
ing requires an indicator of how resilient the system is
with respect to runtime testing, or in other words, to which
extent can the running system be tested without affecting
its functionality or its environment. The standard defi-
nition of testability by the IEEE [1] can be rephrased to
reflect these requirements, as follows:

Definition 1 Runtime Testability is (1) the degree to
which a system or a component facilitates runtime test-
ing without being affected; (2) the specification of which
tests are allowed to be performed during runtime without
affecting the running system.

An appropriate measurement and improvement method
for (1) relies on general information about the system,
independent of the nature of the runtime tests that may
be performed, as it is proposed in [6, 19] for traditional
testing. On the other hand, a measurement and improve-
ment method for (2) will rely on information about the
concrete test cases that are going to be performed, as pro-
posed in [5, 15, 17] for regression testing. In this paper we
will specifically concentrate on the first (system-centric)
aspect of runtime testability.

Runtime testability is significantly influenced by two
main characteristics of the system: test sensitivity, and
test isolation [9]. Test sensitivity characterises which
fraction of the features of the system will cause interfer-
ence between the running system and the test operations,
e.g., a component having internal state, a component’s
internal/external interactions, resource limitations. Con-
versely, test isolation techniques are applied by engineers
to specific components to counter the test sensitivity, e.g.,
state duplication or component cloning, usage of simula-
tors, resource monitoring.

Ultimately, both the impact of the disturbances to the
running system, and the implementation of isolation mea-

sures can be represented as a cost. All the sensitivity fac-
tors which impede runtime testing will prevent test en-
gineers from assessing a certain feature or requirement,
if their sensitivity cost is too large, increasing the proba-
bility of leaving undetected faults. In order to test those
features, extra cost has to be spent in addressing some of
their sensitivity factors.

A numerical measurement for the runtime testability
of a system can be defined in terms of what fraction of
features of the system can be runtime tested without inter-
fering with the system; i.e., in terms of the maximum test
coverage attainable by the system testers under runtime
testing conditions. This estimation can be used to indicate
insufficient testing of some features of the system due to
prohibitive costs during runtime testing, independent of
the actual test cases, and before any test is actually run.
This supports engineers in taking decisions on whether
more resources have to be spent improving the runtime
testability of the system.

The Runtime Testability Measurement (RTM) was de-
fined in [9], as the quotient between the number of fea-
tures of the system which can be runtime tested without
interfering with the system, and the total number of fea-
tures, e.g., as determined by a test adequacy criterion:

RT M =
|Cr|
|C| (1)

where C is the complete set of features which have to be
tested, and Cr is the subset of those features which can be
tested at an acceptable cost.

We estimate the runtime testability of a system through
an instantiation of the above generic definition of RTM to
component-based systems, based on a static graph depen-
dency model annotated with runtime testability informa-
tion. This model is applied to estimate the (runtime im-
pact) cost of invoking a specific feature of the system (e.g.
a service or a specific interaction path), independently of
the test cases used for it.

A runtime dependency graph abstraction is detailed
enough to identify key runtime testability issues to the in-
dividual operations of components that cause them, and,
on the other hand, it is simple enough so that its derivation
from the component’s design and the system’s runtime ar-
chitecture is easy, and its computation is a tractable prob-
lem.

2.1. Model of the System

Component-based systems are formed by components
bound together by their service interfaces, which can be
either provided (the component offers the service), or re-
quired (the component needs other components to provide
the service). During a test, any service of a component can
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be invoked, and the impact that test invocation will have
on the running system or its environment is represented as
cost. This cost can come from multiple sources (compu-
tational cost, time or money, among others).

Operations whose impact (cost) is prohibitive (as de-
cided by the system and test engineers), are designated as
untestable. This means that a substantial additional invest-
ment has to be made to render that particular operation in
the component runtime testable.

For now, we will abstract from the process of identi-
fying the cost sources, and we will assume that all opera-
tions have already been classified as testable or untestable.

The system is modelled using a directed compo-
nent dependency graph known as Component Interaction
Graph (CIG) [20]. A CIG is defined as a directed graph
CIG = (V,E). The vertex set, V = VP ∪VR, is formed by
the union of the sets of provided and required vertices,
where each vertex represents a method of a provided or
required interface of a certain component. Edges in E ac-
count for two situations: (1) provided services of a com-
ponent that depend on required services of that same com-
ponent (intra-component); and (2) required services of a
component bound to the actual provider of that service
(inter-component).

Each vertex vi ∈V is annotated with a test impact flag
τi, representing whether the cost of traversing such ver-
tex (i.e., invoking that service) when performing runtime
testing is acceptable (τi = 1) or not (τi = 0). In Section 3,
more details are given on how to derive the sets of ver-
tices, edges and test impact costs.

2.2. Estimation of RTM

To estimate the runtime testability of a system, we will
estimate the impact cost of covering each of the features
of the graph, according to two different coverage crite-
ria: all-vertices, and all-context-dependence [20]. The
all-vertices criterion requires executing each method in all
the provided and required interfaces of the components, at
least once. On the other hand, the all-context-dependence
criterion requires testing every possible invocation path
(context) between two vertices.

The purpose is not to estimate the concrete impact of
specific test cases, but the possible impact cost of any test
case that tries to cover an element. Because of the lack
of control flow information of the CIG model (it is a static
dependency model of the system), we will assume that (1)
the interaction starts directly at the point which we want to
cover, and (2) that the interaction might propagate through
all edges, affecting all reachable vertices.

For each vertex vi or path (vi,v j,vk, . . .) that we would

like to cover, the test impact, T (vi), is calculated as

T (vi) =
∧

v j∈Pvi

τ j (2)

where Pvi is the set of all the vertices reachable from vi.
By considering as testable only those features where

T (vi) = 1, Equation 1 can be rewritten for all-vertices and
all-context-dependence coverage, respectively, as

RT Mv =
|{vi ∈V | T (vi) = 1}|

|V | (3)

RT Mc-dep =
|{(vi,v j,vk, . . .) ∈CIG | T (vi) = 1}|

|{(vi,v j,vk, . . .) ∈CIG}| (4)

The runtime testability measurement provides an es-
timate of the runtime testing possibilities of a system,
which is linked to the reliability of the system when it
is constructed or updated at runtime. In practice, its main
usage is to guide the system developers and integrators
towards obtaining a more reliable system, i.e. with a high
RTM.

3. RiTMO: a Method to Improve Runtime
Testability

In this Section we introduce RiTMO (RuntIme Testa-
bility Measurement and Optimisation), a method for im-
proving the runtime testability of a given system based on
RTM. This method helps developers in identifying parts
of a system where an effort has to be invested in the im-
plementation of test isolation measures, in order to max-
imise the RTM for a given budget. It can also be used
to compute the minimal budget required to reach a target
RTM.

In a typical application scenario, a system with high
availability and reliability requirements is being config-
ured during run-time. In order to allow good testing cov-
erage, integration engineers aim for a high RTM. By com-
bining component design information with the system’s
architecture, the system integrator uses RiTMO in order
to determine where the budget is best spent in order to
increase runtime testability.

Another application scenario is a runtime system up-
date. Then, the system integrator uses RiTMO to verify
that sufficient runtime regression testing will be possible.
If that is not the case, our method will point out which are
the most worthy components of the system where where
isolation measures will need to be applied before the test-
ing of the update can be done.

Figure 1 depicts the five main steps which compose
the RiTMO method, associated to the engineering roles
in charge of performing the task. It must be noted that a
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Figure 1. Complete workflow of RiTMO.

single person can have multiple roles. This figure is com-
plemented by Table 1, in which details on the inputs and
outputs of each activity are provided. The first step con-
sists in analysing the dependencies between each part of
the system. The second step aims at determining which
part cannot be tested at runtime. At this point, the RTM
of the system in its current implementation can be com-
puted. The third step determines the cost of “fixing” each
of the untestable parts of the system by applying an ad-
equate isolation technique. The fourth step uses our al-
gorithm to obtain the optimal action plan for increasing
the RTM. The fifth and final step consists in applying this
action plan to effectively obtain a more runtime testable
system. Each of these steps is described in the following
subsections in more detail.

3.1. Step 1: Architecture Analysis

In order to compute the RTM of a system, the first step
provides an architectural view of the system at the right
level of granularity. In RiTMO, the architecture of the
system is represented by a static dependency graph, the
CIG, as depicted in Figure 2. This graph provides infor-
mation on the call dependences between each method of
each component in the system. A vertex of the graph rep-
resents a method, and an edge represents a call depen-
dence of one method on another method.

Vertices in the CIG are obtained by examining the re-
quired and provided interfaces of each component in-
stance. For each method of each interface, a vertex is
created. If a method of a required interface is not used,
i.e., no code of the component uses this part of the in-

terface, the corresponding vertex is removed as it would
add unreachable paths. It is important to note that when
there exist multiple instances of a same component, each
instance corresponds to different vertices, as their depen-
dencies are different. Composite components are treated
in a similar way: vertices are added for each of the meth-
ods in the interfaces.

Edges are generated in two independent steps. The first
step of edge generation consists in finding the dependen-
cies between the provided and required interfaces inside
components. This task is challenging, because the very
philosophy of component-based development hides the
dependencies between interfaces: components are black
boxes. There are, nevertheless, several ways to obtain this
information:

• From the specification. If the models of the com-
ponent behaviour are precise enough, it is possible
to deduce for each provided functionality (interface
method), which required method it depends on. For
example, using sequence diagrams used to specify a
component, the edge generation can be done auto-
matically. The drawback is that even if the specifi-
cation is precise enough, the implementation might
be different due to optimisation (e.g. caching) or
limitations (e.g. some functionalities are not imple-
mented).

• From the implementation, statically. If the
component’s implementation is actually available,
analysing the source code will allow to precisely de-
termine which required methods are used for every
provided method.
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Activity Actors Inputs Outputs
Architecture analysis Integration Engineer Component designs

Bindings
CIG

Impact analysis Integration Engineer
Analyst

CIG
Domain knowledge
Design knowledge

Untestable vertices
Initial RTM value

Cost estimation Test Engineer CIG
Untestable vertices
Component designs
Isolation techniques

Vertex fix proposal
Vertex fix costs

Action planning Test Engineer CIG
Untestable vertices
Vertex fix costs
Target Budget or RTM

Action plan
Estimated cost
Estimated RTM value

Implementation Developer Action plan
Vertex fix proposal

Test support code

Table 1. Actors, inputs and outputs of each activity involved in RiTMO.

• From the implementation, dynamically. Even if
neither a model nor the component’s source are avail-
able, it is still possible to deduce the dependen-
cies between the methods using a tracing mecha-
nism [16]. The component can be exercised either
by using available unit test cases, or by observing it
running in the actual system. The drawback of this
method is that some dependencies might not be de-
tected if the calls are not triggered by the operational
profile used during tracing.

Secondly, the CIGs of individual components are com-
posed, by adding edges from required to provided meth-
ods, which can be directly obtained from the bindings be-
tween the component instances in the system. For each
connection of a required interface to a provided inter-
face, an edge is added between the corresponding vertices.
Similarly, all delegation dependencies between an inter-
face of a composite component and the interface of the
subcomponent in which it delegates, are also represented
as edges.

Dependencies between components can be determined
in two ways:

• By introspection. Runtime architecture reconstruc-
tion [13] can be applied if the component frame-
work provides introspection functionality, such as
EJB, CCM or Fractal. In this case, this step can be
done entirely automatically.

• From the specification. If such functionality was
not available, it is still possible to derive the edges
either from a model of the system, such as a UML
component model.

The CIG of an example composite component obtained
by our method is depicted in Figure 2. The crossed out
vertices and dashed edges represent elements that will be

removed as they are unreachable (o3 is never used, and B.v
cannot be used from outside C). Still, this way of deriving
a CIG often leads to redundant vertices and edges, e.g.,
(o1,u1), or all the (i,m) pairs. This choice was made in
order to keep the composition method of the CIG simple.
Moreover, if there are modifications of the CIG due to
an architectural reconfiguration, more paths will be kept
compared optimised CIG, which will facilitate compari-
son with the old system.

o

A
m

n x

B
u

v

w

m1

m2

n1

u1o1

v1

o2
u2

u3

o3

w1

x1

w2

v2

k1

l1

k2

i1

i2

j1

k

l

C

i

j

Figure 2. Example of CIG representation of a sys-
tem.

Once this last step of the graph generation is done, the
CIG model is complete, providing an architectural know-
ledge of the system with a fine granularity. The next step
consists in determining which methods are not allowed to
be executed during runtime testing due to their excessive
impact on the running system or its environment.

3.2. Step 2: Impact Analysis and RTM

The goal of this step is to augment the CIG of the
system with information on the impact of executing each
method. In other words, it is necessary to annotate each
vertex of the graph with the test impact flag τi, as de-
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scribed in Section 2.2. The derivation of this information
cannot be easily automated, and it is up to the integra-
tion engineer and analyst to apply their design and domain
knowledge for deciding which method calls could disrupt
the normal operation of the system. In the case no in-
formation is available for a certain vertex, a conservative
approach should be taken, assigning τi = 1.

Performing the impact analysis step requires inspect-
ing each component specification or source code, check-
ing if any activity in a testing context can have either im-
pact on the state of the system or affect the system’s envi-
ronment in an undesired way. In case the system is large,
this can be a laborious task, however it can be greatly sim-
plified if component vendors associate test impact meta-
information to their components, so that this information
is easily reusable, and provided by those stakeholders,
who have the most precise knowledge about the compo-
nent.

Using this annotated graph, it is possible to compute
the value of RTM for the chosen coverage criteria (ver-
tex or context-dependence coverage), according to Equa-
tions 3 or 4. If this value is higher than the target coverage
value for the system tests, the method can stop, as the sys-
tem is sufficiently runtime testable. If this is not the case,
improvements on the system must be performed.

3.3. Step 3: Cost Estimation

The third step of the RiTMO method consists in com-
plementing the graph of the system with an estimation of
the effort needed for the implementation of countermea-
sures to reduce the test impact of untestable vertices. For
each vertex vi marked with a τi = 0, a cost, ci, which rep-
resents the estimated cost of making it runtime testable, is
associated. The cost unit is not fixed, but has to be uni-
form for the whole graph. Typically, the cost is expressed
in terms of time (e.g., man-hours) or money.

Every untestable method is assessed by combining
knowledge of the possible countermeasures (e.g., making
the method test-aware) with knowledge about the devel-
oper team capabilities, in order to obtain an estimation of
the implementation effort. Although this step cannot be
easily automated, the estimation does not need to be very
precise as long as the estimations are relatively consistent
with each other so that the computed plan is still valid in
relative terms.

3.4. Step 4: Computation of Action Plan

The completely annotated CIG contains information
about the untestable methods and the cost to make them
testable. It is then possible to compute an action plan au-
tomatically for obtaining the optimal RTM given a maxi-

mum budget. Conversely, it is also possible to compute an
action plan with the minimal cost to reach a fixed RTM.

A general exhaustive search algorithm could be used
to obtain the optimal plan. However, in practice, this ap-
proach is not usable for systems of realistic size due to its
exponential complexity. This is the reason why a heuris-
tic near-optimal algorithm was introduced in [10]. The
resulting action plan in both cases consists of the list of
methods to address, along with the final expected RTM
value.

In order to have the most information available about
the testability improvement, the optimal growth function
of the system’s RTM vs. fix cost can be calculated. From
such graph it is easy to read what is the minimal budget
required to reach a given RTM. An example is shown in
Figure 5.

3.5. Step 5: Application of the Plan

The last step of the method consists in following the ac-
tion plan by implementing the fixes for each of the method
selected by the algorithm.

It is likely that the cost of addressing a vertex was
under- (or over-) estimated. Therefore, it is advisable to
address the methods in an order which will maximize the
growth of RTM even when some of the vertices are not
yet been made runtime testable, so that the most features
have been made testable per unit of cost. The algorithm
in [10] already provides this ordering, however, if the so-
lution was obtained by the optimal algorithm, this order
is still unknown Although obtaining the ordering is once
again of exponential complexity, the heuristic algorithm
could be applied to the solution’s vertices to obtain a near-
optimal ordering.

4. Application Example

In this section we will describe an application example
of RiTMO to a component-based subsystem taken from
our industrial case study.

4.1. System Setup and Architecture

The system used in our integration experiment is a ves-
sel tracking system taken from our industrial case study,
codenamed AISPlot. It is part of a component-based sys-
tem coming from the maritime safety and security do-
main. The architecture of the AISPlot system is shown
in Figure 3.

The system is used to track the position of ships
sailing a coastal area, detecting and managing poten-
tial dangerous situations. Position messages are broad-
cast through radio by ships (represented in our experi-
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Figure 3. Runtime-reconstructed AISPlot Architecture

ment by the World component), and received by a num-
ber of base stations (BS components) spread along the
coast. If a message received from the simulator be-
longs to the area the base is covering, it is relayed to
the Merger component thorugh the AISin interface.
Merger removes duplicates (some base stations cover
overlapping areas), and offers a subscription service to
client components for receiving updates on the status of
vessels. Components interested in receiving these up-
dates, can subscribe to receive notifications through the
Merger-Client interface pair. The Merger inter-
face offers the Csubscribe and Cunsubscribe op-
erations for manging client subscriptions. The Client
interface offers four operations for notification of ship sta-
tus: Cnew, Cpublish, Creply and Cdispose. In
the current system, there are two clients: a safety monitor,
and a visualiser screen. The Monitor component scans
all the received messages in search for inconsistencies in
the data sent by the ships, in order to spot those which are
less reliable and which therefore require more care from
the operator. The Visual component draws the position
of all ships on a screen in the control centre, and also the
warnings generated by the Monitor component, via the
Warning interface.

4.1.1. Implementation. AISPlot is implemented in Java,
on the ATLAS/FRACTAL runtime integration and test-
ing research platform [8]. It is a dynamic, reflective
component-based platform that allows the insertion, mod-
ification and removal of components at run-time. In addi-
tion, ATLAS/FRACTAL provides a way of enabling com-
ponents to test the services they depend on, based on the
principles of Built-In Testing (BIT) [11]. ATLAS provides
components with the ability of requesting the execution
of test cases associated with them, in order to check that
the services on which they rely conform to their expec-

tations, and of receiving a notification of when they are
going to be involved in a test. At the time of this writ-
ing, ATLAS/FRACTAL does not provide means of inter-
leaving test and nominal operations. Therefore, during a
test, components only receive test invocations (this is re-
ferred to as blocking test execution context [9]).

For the purpose of this experiment, a number of new
features were introduced into ATLAS/FRACTAL:

• A CIG model can be associated to primitive compo-
nents, and retrieved at runtime.

• Composite components can compose their own CIG
from the CIG’s of their contained components.

• Special test support code can be injected at run-time
into any component during tests. This allows the de-
ployment of test isolation code into the components
that need it.

4.2. Application of RiTMO

4.2.1. Architecture analysis. Because of the reflective
capabilities of ATLAS/FRACTAL, the derivation of the set
of required and provided interfaces into vertices, and the
creation of the edges from external connections between
components in the system, were a straightforward and
completely automated process. Figure 3 shows the recon-
structed view of the system’s architecture (components
and run-time links) obtained by querying the reflection in-
terfaces provided by FRACTAL.

ATLAS/FRACTAL does not provide a way of reverse-
engineering primitive components to extract edges in-
duced by internal dependencies. Therefore, this process
was performed semi-automatically by source code inspec-
tion. The call hierarchy functionality of Netbeans1 was

1http://www.netbeans.org
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used to automatically derive a call tree of each of the pub-
lic operations in the implemented interfaces of each com-
ponent, and locate calls to methods of required interfaces.

The CIG models obtained this way were stored as
plain text files and associated to their components using
the mentioned functionality of ATLAS/FRACTAL. Dur-
ing the system deployment, the management console of
ATLAS/FRACTAL automatically composes all the CIGs of
the primitive components to obtain the complete CIG of
AISPlot, which can be seen in Figure 4.

Figure 4. AISPlot CIG during impact analysis

4.2.2. Impact analysis. The World and BS components
are stateless and have no interaction outside the system’s
boundaries. Therefore, no impact is caused by invoking
their operations during a test.

On the other hand, Merger and Monitor are state-
ful components, as both of them store tables of received
messages and vessel information internally. This informa-
tion will be altered by test operations, and therefore these
components are test sensitive. The merger component has
to manage vessel subscriptions from clients as well. Be-
cause the set of subscribed ships will be altered during
testing, this is also a source of test sensitivity.

The visualiser component stores internally a list of
observed vessels (ships to which it has subscribed in
Merger), which is already a source of test sensitivity.
Moreover, the visualiser component is interacting with a
real display through a socket connection. This interaction
must be isolated in some way so that users of the system
do not see the test vessels and warnings drawn on the dis-
play.

The preliminary estimation of the runtime testability of
the system can be seen in Table 2. Due to the pipelined
nature of the system, only a very low number of vertices
and paths are testable, those which are not related to the
main pipeline path, hence the extremely low RTM values.

4.2.3. Cost estimation and action planning. A number
of ATLAS/FRACTAL runtime test support artefacts had to
be developed in order to address the test sensitive opera-

Total Testable RTM
Vertices 86 4 0.046
Context-dependences 1621 6 0.003

Table 2. RTM results of the impact analysis

vi Operation Sensitivity Isolation Cost
13 monitor.Cnew state separate state 0.5
14 monitor.Creply state separate state 0.5
15 monitor.Cpublish state separate state 0.5
16 monitor.Cdispose state separate state 0.5
33 visual.Cnew state, interaction separate, redirect 2
34 visual.Creply state, interaction separate, redirect 2
35 visual.Cpublish state, interaction separate, redirect 2
36 visual.Cdispose state, interaction separate, redirect 2
42 visual.Warning interaction redirect output 2
54 merger.MessageIn state separate state 0.5
58 merger.Csubscribe state separate state 0.5
59 merger.Cunsubscribe state separate state 0.5

Table 3. Untestable operations in AISPlot

tions of the system. The development cost was estimated
as effort in man-hours required to program the needed iso-
lation code.

The test sensitive operations in Merger and
Monitor require maintaining separate tables for vessel
accounting (and subscription management in the case of
Merger). As both the vessel table and the subscription
table are implemented inside the components, the solution
we selected was to insert another instance of the compo-
nent as “test support instance”. In ATLAS/FRACTAL, the
test support functionality automatically redirects all the
calls happening during testing to this special instance.

The solution required for Visual is more involved,
as it requires isolating the low-level drawing commands
that the visualiser is sending to the display. Moreover, it
was decided that drawing commands resulting from a test
should not be discarded but sent to a different display so
that the observability of the system under test is enhanced.

Given our previous knowledge in implementing a set of
analogous measures for a system with components of sim-
ilar characteristics, the cost of implementing test support
for the untestable operations in Merger and Monitor
was estimated to be approximately 0.5 man-hours, and the
implementation of the isolation and observation code for
each operation in Visual would have an estimated cost
of 2 man-hours. Table 3 summarises all the test sensitive
operations in each component, along with suitable isola-
tion techniques and their estimated costs.

Figure 5 shows the RTM as a function of the cost spent
developing test support artefact, calculated by our testa-
bility optimisation tool. Because of the pipelined archi-
tecture of the system, all the untestable vertices in the
pipeline have to be fixed to obtain a substantial improve-
ment of testability. This can be seen on the big jump in
testability in Figure 5 when 10.5 man-hours are dedicated
to testability improvement. Without the information in the
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plot, it would have been difficult to find this issue.

Figure 5. Evolution of RTM for different action
plans in AISPlot

Total Testable RTM
Vertices 86 77 0.895
Context-dependences 1621 1597 0.985
Plan 13,15,16,33,35,36,42,54,58
Cost 10.5 man-hours

Table 4. RTM results of the action plan

Table 4 shows the final value for the RTM of the sys-
tem once all the countermeasures have been applied to the
untestable vertices, along with the vertices which are part
of the plan.

4.3. Discussion

In our example, we have shown how this method can
be used in a component-based system, revealing a great
testability gap (from 30% to 90% runtime coverage pre-
diction) which would not have been easy to identify by
simply looking at the architecture of the system.

Although in our example RiTMO is applied at a late
stage of the system deployment, this is not the only possi-
ble application scenario. RiTMO can be applied to drive a
Design for Runtime Testability phase in the earlier stages
of the development life-cycle of a system, given that the
knowledge about which components will be integrated,
and their test sensitivities, is available. This way, the com-
ponent’s design can take into account runtime testability
concerns from a much earlier stage, saving resources in
the implementation of isolation measures later on the de-
velopment life-cycle.

As final positive remark, mention that even though in
our application example we have relied on specific sup-

port features provided by the ATLAS/FRACTAL platform,
e.g., model meta-information, introspection and test code
injection, RiTMO does not depend on these functionali-
ties. It is still possible to apply it to systems where the
platform does not provide runtime testing-specific fea-
tures.

Nevertheless, there are number of issues that have to
be considered concerning the applicability of the method.
First, for the practical application of the method, it must
be taken into account that the quality of the plan de-
pends greatly on the quality of the predicted costs. Care
should be taken in obtaining a development cost esti-
mation model to obtain realistic (and therefore, useful)
improvement plans. Second, as a system can have a
very large number of components and vertices, a (semi-
)automatic tool that supports all the steps of RiTMO is
needed. Although Figures 3 and 4 show our preliminary
implementation work, it is in a very early stage, especially
with respect to finding the components that contain test
sensitive features. Finally, for better cost estimation, the
process for defining isolation costs could refined to allow
dependencies between vertex fixes, as often several oper-
ations of a component have to be fixed as a whole.

5. Related work

A number of research approaches have addressed testa-
bility from different angles. However, runtime testability
has not been considered in depth so far. To the best of our
knowledge, our work is the first to define a cost-driven
method (RiTMO) to drive testability improvement efforts
in terms of a testability/cost optimisation problem.

Two articles form the base for our approach to run-
time testability, presented in [9], and complemented with
the definition of RiTMO in this paper. In [4], Brenner
et al. introduce the concepts of test sensitivity and isola-
tion. However no mention to nor relation with the con-
cept of runtime testability are done. In [18], Suliman et
al. discuss several test execution and sensitivity scenar-
ios, for which different isolation strategies are advised.
The factors that affect runtime testability cross-cut those
in Binder’s Testability [3] model, as well as those in Gao’s
component-based adaptation [7].

Testability improvement efforts have focused on re-
gression testing a well, selecting and prioritising the test
cases more prone to uncover faults (i.e., those which con-
tribute more test coverage) with the least cost [5, 15, 17].
Our approach to testability improvement is also cost-
based. However, their approaches are focused on test
cases, whereas our approach is focused towards the sys-
tem.

Other testability-related approaches have focused on
modeling statistically which characteristics of the source
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code of the system are more prone to uncovering faults [6,
19] for amplifying reliability information [2, 12]. Jung-
mayr [14] proposes a method based on a measurement of
testability from the point of view the static structure of the
system to assess the maintainability of the system. Our
approach is similar in that runtime testability is influenced
by the structure of the system under consideration.

6. Conclusions and Future Work

In this paper we have presented RiTMO, a cost-driven
method for the improvement of runtime testability based
on RTM, a measurement for the runtime testability of a
component-based system based solely on characteristics
of the system under test. RiTMO enables integration en-
gineers to identify critical situations of bad system run-
time testability and to compute and execute an action plan
to improve it. The next step in the development of our
work is the integration of RTM and RiTMO into a CASE
tool, enabling system engineers to receive timely feed-
back about the system they are designing.

Future work will also focus on an improvement of the
RTM measurement itself, as well as the development of
automated or semi-automated methods for performing the
impact analysis and fix cost estimation. Finally, additional
empirical evaluation using industrial cases and synthetic
systems is planned, in order to explore further the rela-
tionship between RTM and defect coverage and reliabil-
ity.
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