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Random Taylor hypothesis and the behavior of local and convective
accelerations in isotropic turbulence
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The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical
simulations ~DNS! by decomposing the acceleration as the sum of local and convective
contributions~aL5]u/]t andaC5u•¹u!, or alternatively as the sum of irrotational and solenoidal
contributions@aI52¹(p/r) and aS5n¹2u#. The main emphasis is on the nature of the mutual
cancellation betweenaL andaC which must occur in order for the acceleration~a! to be small as
predicted by the ‘‘random Taylor hypothesis’’@Tennekes, J. Fluid Mech.67, 561 ~1975!# of small
eddies in turbulent flow being passively ‘‘swept’’ past a stationary Eulerian observer. Results at
Taylor-scale Reynolds number up to 240 show that the random-Taylor scenario^a2&!^aC

2 &
'^aL

2&, accompanied by strong antialignment between the vectorsaL andaC , is indeed increasingly
valid at higher Reynolds number. Mutual cancellation betweenaL andaC also leads to the solenoidal
part of a being small compared to its irrotational part. Results for spectra in wave number space
indicate that, at a given Reynolds number, the random Taylor hypothesis has greater validity at
decreasing scale sizes. Finally, comparisons with DNS data in Gaussian random fields show that the
mutual cancellation betweenaL and aC is essentially a kinematic effect, although the Reynolds
number trends are made stronger by the dynamics implied in the Navier–Stokes equations.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1375143#
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I. INTRODUCTION

As the material derivative of the velocity vector, th
fluid particle acceleration field in turbulent flow

a[
Du

Dt
5

]u

]t
1~u"“ !u ~1!

is a physical parameter of great interest for a variety of r
sons, ranging from studies of fine-scale intermittency to
plications in Lagrangian modeling of dispersion~see Refs.
1–21 and references therein!. Clearly, the acceleration ma
be written as the sum of the local accelerationaL[]u/]t
expressing the unsteady rate of change at a fixed point,
the convective accelerationaC[u"“u which expresses the
rate of change due to the spatial derivatives and also em
ies nonlinearity effects. In addition, for flows governed
the Navier–Stokes equations without body forces the ac
eration is also given by

a52
1

r
¹p1n“2u, ~2!

i.e., as the sum of pressure gradient and viscous contr
tions which in incompressible flow are respectively irro
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tional and solenoidal. In other words, in addition toa5aL

1aC , we can also writea5aI1aS , where aI[2“(p/r)
andaS[n“2u. The purpose of this article is to use data fro
direct numerical simulations~DNS! to explore several physi
cal issues in turbulence based on these two alternative
compositions of the acceleration vector. As discussed l
~Sec. III!, we also refer to the irrotational and solenoid
parts of the convective acceleration~as aC5aCI

1aCS
),

which are computed using the method described in Sec.
The first issue concerns a commonly used conc

known as therandom Taylor hypothesisor the sweeping
decorrelation hypothesis. It was suggested by Tennek11

that in turbulence at high Reynolds numberthe dissipative
eddies flow past an Eulerian observer in a time frame mu
shorter than the time scale which characterizes their o
dynamics. In turn this implies that Taylor’s ‘‘frozen-
turbulence’’ approximation would be valid for the analys
of the advection of the turbulence microstructure by t
large-scale motions. To assess its validity it should be rec
nized that, in fact, Tennekes’ hypothesis consists of two
gredients. First, it is proposed that the Lagrangian accel
tion ~a! of fluid particles is in some sense small, such th
time scales measuring Eulerian and Lagrangian rates
change could be estimated by simply settinga50 ~which, of
course, cannot be perfectly true!. It is noteworthy that this
assumption was formulated for the turbulent fluctuatio
4 © 2001 American Institute of Physics
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~which are local pointwise in space and time! instead of for
statistical measures of these quantities. The second ass
tion made by Tennekes is of statistical nature, namely,
the microstructure is statistically independent of the ener
containing eddies.

A survey of data in the literature10,13,17,19,22,23suggests
that the random Taylor hypothesis is qualitatively correct
also subject to a number of quantitative deviations. Howe
because of the Reynolds number limitations on previous d
~especially earlier work17 in DNS!, it is important to under-
stand in detail and quantify the Reynolds number dep
dence of the various statistical parameters involved. Here
draw upon a current DNS database for isotropic turbulenc
ensemble-averaged Taylor-scale Reynolds numbers ran
from about 38 to 240 using up to 5123 grid points, where
some limited inertial range properties can be observe24

While our primary interest in this article is on local an
convective contributions to the acceleration, new informat
is also provided on pressure gradients and viscous acce
tion which were studied recently using the same databas
Vedula and Yeung.13

Several specific aspects of the acceleration field are s
ied in this work. The most important, and basic, issue
perhaps the nature of the mutual statistical cancellation
tween the local and convective accelerations underlying
argument of the total acceleration being small by comp
son. Since these quantities are vectors the degree of this
tual cancellation can be studied in terms of the geometry
vector alignment. Furthermore, because the Reynolds n
ber is a measure of the range of scales, the nature of R
nolds number effects can be expected to vary with scale s
which is conveniently studied in terms of spectra in wa
number space. In homogeneous turbulent flows, includ
isotropic turbulence, it is well known that while one-poi
statistics are approximately Gaussian, two-point statistics
not. To highlight the effects of this non-Gaussianity we ma
comparisons between DNS data and those of Gaussian
dom fields which are constructed to have the same en
spectrum as that in DNS. Because these Gaussian field
not evolved from the Navier–Stokes equations, these c
parisons also allow us to distinguish between ‘‘kinemati
and ‘‘dynamic’’ effects in the present context.

The rest of the article is organized as follows. First,
Sec. II we give a brief description of the numerical proc
dures and the data used. In Sec. III we show DNS results
different contributions (aL ,aC ,aI ,aS) to the total accelera
tion, in terms of single-point variances and correlation co
ficients, geometric statistics of vector alignment, as well
scale-dependent quantities. Comparisons between velo
fields in DNS evolved from the Navier–Stokes equations a
their Gaussian random field counterparts are given in S
IV. Finally, conclusions are summarized in Sec. V.

II. SIMULATION AND DATA ANALYSIS

We analyze velocity fields obtained from direct nume
cal simulations~DNS! carried out using the Fourier pseud
spectral algorithm of Rogallo.25 Differencing in time is ex-
plicit and second order. As in recent work,13 the velocity
oaded 28 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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field considered is stationary isotropic turbulence with e
ergy maintained by forcing at the large scales.26 Data analy-
sis is performed at each grid resolution in a pseudo-spec
manner for a number of velocity fields that were previou
saved~as single-time snapshots! at time intervals approxi-
mately one eddy-turnover time apart. The statistical indep
dence implied by this separation in time allows each data
to be taken as one of a number of different realizations
ensemble averaging. Aliasing errors associated with tak
products in physical space are controlled by a combination
phase shifting and the truncation of aliased modes in w
number space. The actual grid resolutions and Reyno
numbers are listed in Table I. Other quantities also listed
reference include the ratio between longitudinal integ
length scaleL1 and the Kolmogorov scaleh, the nondimen-
sional parameterkmaxh ~kmax being the highest wave numbe
resolved by the grid! which measures the numerical resol
tion of the small scales, rms velocity fluctuation, Taylor m
croscale, kinematic viscosity and the averaged energy d
pation rate.

The main numerical tasks involved in the calculation
acceleration quantities in this work are concerned with
convective acceleration and the pressure gradient. In the
of aC we calculate terms of the type~in tensor notation!
uj]ui /]xj , where differentiation is performed in wave num
ber space and products are taken in physical space. The
sure gradient and viscous acceleration are obtained in
same way as described in Ref. 13, with the former involv
the recovery of pressure fluctuations by solving its Pois
equation in Fourier space. Finally, knowledge ofaC , aI , and
aS together allows us to determine the local acceleration

aL5aI1aS2aC . ~3!

Although this procedure for the calculation ofaL seems in-
direct, it is much more convenient than the task of taking
time derivative from two instantaneous velocity fields th
would otherwise have to be saved at a very small time in
val apart. For a test of accuracy we use the property
incompressibility requires the local acceleration must be
lenoidal ~since otherwise the velocity field computed fro
the Navier–Stokes equations would become nonsoleno
as it evolves!. It should be noted that for any vectorV we can
apply a Hemholtz decomposition in Fourier space, with
Fourier coefficients of irrotational and solenoidal parts be
given respectively by

V̂~ I !~k!5~k"V̂!k/k2; V̂~S!5V̂2V̂~ I !. ~4!

TABLE I. Basic simulation parameters for the DNS database.

Grid 643 1283 2563 5123

Rl 38 90 141 243
L1 /h 22 57 101 191
kmaxh 1.47 1.52 1.40 1.46
urms 1.60 1.26 1.44 1.41
l 0.60 0.47 0.27 0.18
n 0.025 0.006 546 0.0028 0.0011
^e& 2.70 0.72 1.20 0.99
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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The numerical procedures we use are capable of produ
negligibly small values for the~nominally zero! divergence
of the local acceleration vector.

Some remarks concerning the generation of Gaus
random fields noted in Sec. I are appropriate here. The
is to construct velocity fields which are Gaussian in the se
of the velocity gradients being~artificially! Gaussian, but
have the same form of the energy spectrum and Reyn
number corresponding to each grid resolution in Table
This is accomplished by first taking an ensemble averag
the energy spectrum function from ‘‘real’’ DNS data sets
each grid resolution, and then using a slight modification
the initialization procedure in Ref. 23 to create a randomiz
velocity field which has the desired statistical spectrum a
is orthogonal to the wave number vector~hence divergence
free! for each Fourier mode. A Gaussian random num
generator is used, and the method is tested by checking
skewness and flatness factors of velocity gradients versu
standard Gaussian values~0 and 3!. Gaussianity is attained
very closely except on a 5123 grid, where we found tha
~because of the large number of samples! the finite period of
computerized pseudo-random number generators affects
quality of statistical sampling to a certain extent.

III. RESULTS FROM DNS

In this section we present DNS data bearing upon
validity of the random Taylor hypothesis involving mutu
cancellation of local and convective accelerations. We co
several aspects, including conventional second-moment
tistics, geometric vector alignment, and scale-size dep
dence as viewed in wave number space.

A. Variances and correlations

We begin with a basic characterization of various co
tributions (aL ,aC ,aI ,aS) to the total acceleration@according
to Eqs.~1! and~2!# in terms of simplest measures such as
variances of different contributions and the correlation co
ficients as indicators of their statistical relationships to e
other. Ensemble-averaged variances of these quantitie
each grid resolution are shown in Table II. However, sca
plots showing one data point for each realization at its o
Reynolds number~in a manner similar to Ref. 13, Fig.
therein! are perhaps more helpful in assessing the ove
Reynolds number scaling behavior.

TABLE II. Acceleration variance and related quantities at differe
ensemble-averaged Reynolds numbers in DNS. All quantities are nor
ized by ^e&3/2n21/2.

Grid 643 1283 2563 5123

Rl 38 90 141 243
Var~a! 1.26 2.33 2.75 3.54
Var(aI) 1.21 2.27 2.70 3.49
Var(aS) 0.05 0.05 0.05 0.05
Var(aL) 1.21 4.56 8.19 17.05
Var(aC) 2.47 6.89 10.96 20.61
Var(aCI

) 1.21 2.27 2.69 3.49
Var(aCS

) 1.26 4.61 8.24 17.10
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As noted in Sec. I, a key assumption in Tennekes’ h
potheses is that the total acceleration should be small c
pared to its local and convective contributions, which in tu
should have variances close to each other. At the sec
moment level this is illustrated directly by a comparison
variances. Figure 1 shows scatter plots for ratios between
variances ofa, aL , andaC , with different symbols for each
grid resolution. The behavior predicted by Tennekes’ h
potheses is indeed observed in the figure, which also sho
definite Reynolds-number trend for each quantity—nam
that ~to a close approximation! both ^a2&/^aL

2& and^a2&/^aC
2 &

vary as Rl
21/2, such that the ratiôaL

2&/^aC
2 & approaches a

constant at high Reynolds numbers.
Since a5aL1aC the relative smallness of̂a2& noted

above implies thataL andaC must be significantly negatively
correlated. The correlation coefficients~r! amonga, aL , and
aC for the same data sets are shown in Fig. 2. In the bot
part of this figure we can see that the correlation coeffici
r(aL ,aC) is about 20.7 at Rl'40, about 20.9 at Rl

'240, and appears to approach the limiting value of21.0
with increasing Reynolds number. However, as a con
quence of the solenoidal nature ofaL it is important to note
that aL andaC cannot cancel each other completely. To s
this, we note that sinceaL is solenoidal~with its irrotational
partaLI

being identically zero!, adding up the irrotational and
solenoidal parts of bothaL andaC yields

aCI
5aI , ~5!

aL1aCS
5aS . ~6!

The smallness in variance ofaS versus those ofaL andaCS
in

Table II indicates an increasingly strong degree of cance

al-

FIG. 1. Scatter plot of DNS data from multiple realizations on~a! ^a2&/^aL
2&,

~b! ^a2&/^aC
2 &, and~c! ^aL

2&/^aC
2 &, all vs Reynolds number (Rl). Symbols for

different grid resolutions are 643 ~s!, 1283 ~n!, 2563 ~h!, and 5123 ~L!.
Dashed lines with slopes 1 and2

1
2 are drawn to infer trends of scaling

behavior.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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tion between the solenoidal parts ofaL andaC at high Rey-
nolds number. However, cancellation betweenaL and aC is
not complete, since the irrotational part of their sum, i.e.,aI

remains finite and is a dominant contributor to the varian
of a at all Reynolds numbers.

In Fig. 2 it is also worth noting thata is positively cor-
related withaC ~although less so at higher Reynolds numb!
but practically uncorrelated withaL regardless of the Rey
nolds number. This latter lack of correlation can also be
plained by noting that, whereasaL is solenoidal,a is—
because of the dominance ofaI over aS ~as seen in Ref.
13!—nearly irrotational. Since irrotational and solenoid
vectors are uncorrelated in homogeneous turbulence, it
lows thata andaL are, as observed, nearly uncorrelated w
each other.

It is clear from Eq.~6! that a smallaS can be interpreted
as the result of strong mutual cancellation betweenaL and
aCS

, i.e., these two terms must be nearly the same in ma
tude but~as vectors! almost antiparallel to each other. The
properties are evident in Fig. 3, which shows the ratio
variances betweenaL and aCS

, their correlation coefficient

and the ratio between̂aS
2& and ^aL

2&. It can be seen that a
the Reynolds number increases, the ratio^aL

2&/^aCS

2 & indeed

approaches 1.0 whereasr(aL ,aCS
) approaches21.0. On the

other hand, even at the lowest Reynolds number in the
ure,^aS

2& is seen to be only about 5% of either^aL
2& or ^aCS

2 &,
becoming smaller still at higher Reynolds numbers. In ot
words, the tendency of increasing mutual cancellation
higher Reynolds numbers betweenaL andaCS

tends to make
the solenoidal part (aS) of the acceleration very small com
pared to its irrotational part (aI). This tendency may be
called areduction of solenoidalityof the total acceleration
and is in contrast to an accompanyingenhancementof sole-

FIG. 2. Scatter plot of correlation coefficientsr(a,aL), r(a,aC), and
r(aL ,aC). Symbols are the same in Fig. 1.
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noidality of the convective acceleration. The latter oppos
trend can be seen in Table II by noting that the variance
the solenoidal partaCS

becomes larger compared to that
the irrotational part (aCI

) of aC as the Reynolds number in
creases.

Although we have focused on local and convective
celerations, it is useful to include a comparison with the
ternative decomposition into irrotational and solenoidal
celerations. The dominance ofaI overaS is well known~e.g.,
Ref. 27!, has been verified recently in DNS,13 and can be

FIG. 4. Scatter plot ofr(a,aI), r(a,aS), andr(aI ,aS). The last quantity is
close to 0. Symbols are the same in Fig. 1.

FIG. 3. Scatter plot of~a! ^aL
2&/^aCS

2 &, ~b! r(aL ,aCS
), and ~c! ^aS

2&/^aL
2&.

Symbols are the same as in Fig. 1.
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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seen by taking the ratios of^aI
2& to ^aS

2& in Table II. As noted
in Ref. 13, the Reynolds number trend resides primarily
aI , whereasaS is nearly universal when scaled by Kolmo
orov variables. A scatter plot of correlation coefficien
amonga, aI , andaS is shown in Fig. 4, where it can be see
that aI and aS are ~due to homogeneity! uncorrelated,
whereasa is almost perfectly correlated withaI but only
weakly correlated withaS .

The results of this subsection show that higher Reyno
numbers tend to produce reduced solenoidality of total ac
eration but at the same time also enhanced solenoidalit
the convective acceleration. The mutual cancellation
tween local and convective accelerations which is centra
the random Taylor hypothesis has been observed to bec
stronger at the second-moment level as the Reynolds num
is increased. However, it should be noted that the degre
statistical correlation between fluctuating vector quantit
depends on both the properties of coordinate compon
and the geometric orientation~or alignment! of these vectors
with each other. These alignment properties are studie
the next subsection.

B. Geometrical statistics

To provide information complementary to that in Se
III A, we consider here the alignment properties ofa, aL , and
aC relative to one another, followed by the same fora, aI ,
andaS . In each case we consider both the shape of the p
ability density function~PDF, in Figs. 5 and 6! of the angle,
as well as the mean value of its cosine~Table III! which
provides a useful quantitative measure. We use the nota
u(V1 ,V2) for the angle between any two vectorsV1 andV2 .

If the magnitude of the total acceleration,a5aL1aC , is
to be small compared to those ofaL andaC , then the vectors

FIG. 5. ~a! PDFs ofu(aL ,aC) for Rl 38 and 240~lines A and B, respec-
tively!. The inset shows the same PDFs on a logarithmic scale.~b! PDFs of
u(a,aC) ~lines A, B! andu(a,aL) ~lines C,D! at Rl 38 and 240.
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aL and aC must be nearly antiparallel. This in turn implie
that the angle betweenaL and aC , denoted byu(aL ,aC),
should have a high likelihood of being close to 180 degre
In Fig. 5 we show ensemble-averaged PDFs at the low
and highest Reynolds numbers in our calculations,
u(aL ,aC) ~in the upper half of the figure! as well asu(a,aL)
and u(a,aC) ~in the lower half!. A very strong peak in the
PDF around 180° is indeed seen foru(aL ,aC), with a more
complete view of data in the range close to 180° given in
inset using linear-log scales. It is clear that the degree
antialignment betweenaL andaC becomes stronger with in
crease in Reynolds number. This Reynolds number tren
also supported by the behavior of the mean of the cosin
the alignment angle, which in Table III is seen to becom
very close to21.0.

In the lower half of Fig. 5 we can observe thata is in
general positively aligned with both ofaL and aC , with a
modest peak of these PDFs being at zero degrees. Altho
the alignment withaC appears to be stronger than that f
aL , it also weakens significantly at higher Reynolds numb
However, the alignment ofa with aL shows no appreciable
Reynolds number dependence. Similarly, it can be see

FIG. 6. ~a! PDFs ofu(aI ,aS) at Rl 38 and 240~lines A and B, respectively!.
~b! PDFs ofu(a,aI) ~lines A, B!, and PDFs ofu(a,aS) ~lines C,D! at Rl 38
and 240. The inset shows the same PDFs on a logarithmic scale.

TABLE III. Mean values of the cosines of the angles betweena, aL andaC

anda, aI , andaS in DNS.

Grid 643 1283 2563 5123

Rl 38 90 141 243
cos(a,aL) 0.103 0.109 0.105 0.093
cos(a,aC) 0.568 0.427 0.353 0.267
cos(aL ,aC) 20.581 20.699 20.762 20.836
cos(a,aI) 0.951 0.971 0.973 0.977
cos(a,aS) 0.224 0.169 0.156 0.146
cos(aI ,aS) 0.022 0.018 0.014 0.013
se or copyright; see http://pof.aip.org/about/rights_and_permissions
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Table III that whereaŝcosu(a,aC)& decreases strongly with
Reynolds number,̂cosu(a,aL)& remains at a nearly constan
~but low! value of order 0.1. It is noteworthy that the stron
antialignment betweenaL andaC was observed only recentl
in experiments in the laboratory28 and in the atmospheric
surface layer.29

Figure 6 shows information analogous to that in Fig.
but for the vectorsa, aI , and aS . BecauseaI and aS are
statistically orthogonal~in the sense that̂aI•aS&50! due to
incompressibility and homogeneity, they are expected
have no net tendency for preferential alignment with ea
other. The PDF ofu(aI ,aS) is seen to be relatively flat, with
highest values at close to 90°, and no significant Reyno
number dependence. The closeness of this PDF to a uni
distribution is consistent witĥcosu(aI ,aS)& being close to
0, as seen in Table III.

Because of the dominance of the irrotational part of
acceleration over its solenoidal part, it seems almost in
table thata would be aligned much more closely withaI than
with aS . Indeed, together with the inset~on semi-log scales!
in its lower half, Fig. 6 also shows that the PDF ofu(a,aI)
has a high peak at zero, with the peak value increasing w
Reynolds number. In contrast, the PDF ofu(a,aS) shows
much weaker alignment, being nearly flat and increasingly
at higher Reynolds number.

C. Spectra in wave number space

To understand the contributions of different scale si
to the behavior of the acceleration~a! and its constituents
(aL ,aC ,aI ,aS) it is convenient to study the spectra of the
quantities~denoted byS, SL , SC , SI , SS , respectively! in
wave number space. The spectra of these quantities
shown in Figs. 7 and 8, for DNS data at the lowest a
highest Reynolds number, respectively~Rl;38 and 240!,
and in a form normalized by Kolmogorov variables based

FIG. 7. Ensemble-averaged spectra ofa, aL , aC , aI , andaS in wave num-
ber space normalized byn1/4^e&5/4, denoted by lines A–E, respectively, fo
DNS data at Rl 38. Dashed lines with slopes

2
3 and

7
3 are shown.
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viscosity and the energy dissipation rate. Generally, it can
seen that all exceptSS have a peak at an intermediate wa
number range,kh;0.1– 0.2, and thatSS makes a significant
contribution toSonly at the small scales, i.e., for wave num
bers atkh;1 or higher.

The spectra of local and convective accelerations are
special interest here. It can be seen that the spectrum ofaC is
monotonically above or equal to that ofaL at all wave num-
bers. However, especially at high Reynolds numbers, we
that the gap between these two spectra narrows substan
at higher wave numbers. At the same time, the spectrum
their sum~the acceleration itself! becomes much lower by
comparison. In other words, for the small scales at high R
nolds number we find the comparisonS!SL'SC , which
corresponds tôa2&!^aL

2&'^aC
2 &, and hence to the mutua

cancellation between the vectorsaL andaC studied in the two
previous subsections. The observations here also indi
that the mutual cancellation is more nearly complete at
small scales. In turn, this implies that the random Tay
hypothesis has greater validity at the small scales, and
thermore the range of scales over which the hypothesi
valid becomes wider~spreading from small towards interme
diate length scales! with increasing Reynolds number. Ex
trapolation of our results towards Reynolds numbers hig
than the DNS data range would suggest thatSL andSC be-
come coincident at nearly all wave numbers except perh
the energy-containing range.

Another natural question concerning the data in Figs
and 8 is whether there is evidence for inertial range behav
It is clear that the spectrum ofaS ~line E! has ak7/3 scaling
range, which is a direct result ofk25/3 inertial range behavior
in the energy spectrum.13 Other inferences are less definit
However, it does appear that, at high Reynolds number~Fig.
8!, the convective acceleration has ak2/3 scaling behavior
over the rangekh'0.02– 0.05, which coincides approx
mately with the wave number range for inertial scaling in t
energy spectrum.24 While an explanation for this result is no

FIG. 8. Same as Fig. 7, but for Rl 240.
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obvious, we also note that this scaling exponent is differ
from that of the acceleration spectrum which has a sma
slope. Since the spectra ofa, aC , andaS all have the same
physical dimensions, the differences observed between t
also serve as a reminder that dimensional reasoning and
ditional Kolmogorov similarity arguments are not sufficie
for predicting the behavior of acceleration spectra.

The spectrum ofa is ~as seen in the results of Ref. 13!
dominated by that ofaI except possibly at very high wav
numbers, where the spectrum ofaS becomes comparable t
that of aI . Plots comparing normalized acceleration spec
~Fig. 6 of Ref. 13! show that the strongest sensitivity
Reynolds numbers is in the spectrum ofaI at low wave num-
bers. Since the spectrum ofaI at low wave numbers contrib
utes dominantly~via its integral in wave number space! to
the variance ofaI , this result is consistent with the tren
seen in Table II that̂aI

2& and hencê a2& increases with Rl
under Kolmogorov scaling.

IV. COMPARISONS WITH GAUSSIAN RANDOM
FIELDS

The behavior of acceleration statistics studied in Sec
can be regarded as due to both kinematic constraints as
pressed by the continuity equation, and to the dynamics
momentum balance as expressed by the Navier–Stokes e
tions. In this section we attempt to separate the roles of
nematic versus dynamic effects, by comparing with Gauss
random fields~here denoted by GRFs for short! constructed
to ~see Sec. II! correspond to velocity fields in DNS havin
the same energy spectrum and Reynolds number. It sh
be noted that these Gaussian fields carry kinematic eff
only, since they satisfy the continuity equation but have
evolved in time according to the dynamics of the Navie
Stokes equations. In some aspects like intermittency, k
matic and dynamic effects can differ considerably,23,30 and
the contributions of kinematic effects can be ve
significant.31–33

An effective way to illustrate possible differences
Reynolds number dependence for velocity fields from D
versus GRF would be to examine results for the lowest
highest Reynolds numbers in the data available for b
types of velocity fields. However, because of the limitatio
of our pseudo-random number generator~as stated in Sec. II!
here we exclude the 5123 GRF data from our analysis an
instead present comparisons of data at 643 and 2563 resolu-
tions, at Rl respectively 38 and 141.

A comparison of variances and correlation coefficie
involving the acceleration~a! and its several distinct physica
constituents~aL , aC , aI , andaS! is first given in Table IV, at
the Reynolds numbers indicated above. It can be seen
the Reynolds number trends~e.g., the approach to unity o
the ratio^aL

2&/^aC
2 & at higher Reynolds number! for the vari-

ances and correlation coefficients shown are qualitativ
similar in both types of velocity fields. However, the magn
tude of Reynolds number effects~again, say in the ratio
^aL

2&/^aC
2 &! is generally stronger in DNS.

At a given Reynolds number, the data in Table IV ind
cate, remarkably, that the random-Taylor scenario of^a2&
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2 & is a better approximation for GRFs than
DNS. This suggests that the mutual cancellation betweenaL

andaC is primarily a kinematic effect. This is in agreeme
with purely kinematic results33 obtained via employing the
Millionshtikov hypothesis. On the other hand, the dominan
of ^aI

2& over^aS
2& is stronger in DNS than for GRFs, sugges

ing that this is a true consequence of Navier–Stokes dyn
ics. It should be noted that both of these differences obser
here appear to become weaker at the highest Reynolds n
ber shown. However, it cannot yet be ascertained whe
these differences would cease to exist at asymptotically h
Reynolds numbers.

From a statistical point of view, a key difference b
tween velocity fields in DNS and corresponding GRFs is t
velocity gradients calculated in DNS are non-Gaussian
intermittent, in fact increasingly so at higher Reynol
number.34 To characterize the effects of this non-Gaussian
on the probability distributions of the acceleration and
constituents, we make comparisons based on standard
PDFs in Figs. 9 and 10 and flatness factors in Table V.
view of isotropy the data have been averaged over three
tesian coordinate components. Logarithms of the PDFs
also taken in order to give a clearer picture of low probabil
events.

It is important to note that, even for Gaussian rando
fields, bothaC andaI are, because of nonlinearities in the
definitions, inherently non-Gaussian. On the other hand,aS is
Gaussian because it is linear and can be considered in G
as approximated by a finite difference scheme involving l
ear combinations of independent Gaussian velocity fluct
tions at neighboring grid points. Because of the domina
of aI overaS , and because of imperfect cancellation betwe
aC andaI , both the total accelerationa5aI1aS and the local
accelerationaL5a2aC are non-Gaussian. These properti
are clearly demonstrated by the flatness factors in Table
Furthermore, an exact resultaC can be deduced by notin
that because uncorrelated Gaussian random variables ar
dependent, each component ofaC ~asuj]ui /]xj ! is propor-
tional to the sum of three products of independent Gaus
variates. The flatness factor ofaC is thus the same as that o

TABLE IV. Comparisons between acceleration variances and related q
tities for DNS data and Gaussian random fields~GRFs!.

Grid
643

DNS
643

GRF
2563

DNS
2563

GRF

Rl 38 38 141 141
^a2&/^aL

2& 1.043 0.314 0.336 0.122
^a2&/^aC

2 & 0.511 0.248 0.251 0.110
^aL

2&/^aC
2 & 0.490 0.790 0.747 0.899

r(a,aL) 0.003 0.039 0.0000 0.016
r(a,aC) 0.713 0.463 0.502 0.317
r(aL ,aC) 20.699 20.867 20.867 20.943
^aCI

2 &/^aCS

2 & 0.962 0.304 0.327 0.117
^a2&/^aI

2& 1.044 1.075 1.019 1.047
^a2&/^aS

2& 23.18 14.29 52.37 22.50
^aI

2&/^aS
2& 22.21 13.36 52.39 21.50

r(a,aI) 0.951 0.964 0.989 0.977
r~a,aS! 0.224 0.265 0.139 0.211
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a random variableZ5Y11Y21Y3 where each of the latte
three is the product of standardized Gaussian random v
ables and have the moments^Y&50, ^Y2&51, and ^Y4&
59. Expanding the moments ofZ in terms of those ofY1 ,
Y2 , andY3 ~which are also independent of each other! then
leads to its flatness factor beinĝZ4&/^Z2&2545/(3)255.
This value is very close to the GRF data in Table V.

It is clear from Fig. 9 that PDFs for the DNS data exhib
much wider tails, indicating greater intermittency compar
to their Gaussian counterparts. It can also be seen thataC is
more intermittent thanaL , with slightly wider tails in its
PDF and a higher flatness factor. It is interesting to obse
that whereas in DNSa is more intermittent than both ofaL

FIG. 9. Base-10 logarithms of the standardized PDFs ofa, aL , and aC

denoted by lines A, B, C for DNS and lines D, E, F for Gaussian rand
fields ~GRF!, all at Rl 140. The dashed line represents a standardi
Gaussian PDF for comparison.

FIG. 10. Same as Fig. 9, but fora, aI , andaS .
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and aC , the reverse is true for GRFs. In other words, t
effects of mutual cancellation betweenaL and aC tend to
promote intermittency ofa in DNS but to reduce it for GRFs
which contain no Navier–Stokes dynamics information. A
other feature which is apparent from the flatness factors
Table V is a strong increase in intermittency with Reyno
number in DNS. This increase is in contrast to the G
results, which are~within the limits of sampling uncertain
ties! insensitive to Reynolds number.

Similar characteristics of intermittency can be seen
Fig. 10, which shows PDFs fora, aI , andaS . Both the PDFs
shown and corresponding flatness factors in Table V indic
thata andaI are~as already known! very close, and both are
more intermittent thanaS . In addition, we can observe tha
the PDFs in DNS have much wider tails than those of c
responding quantities in GRF, and are accompanied by la
flatness factors. In contrast, Gaussian random fields are
definition not intermittent; the non-Gaussianity ofaI ~as for
aL andaC noted above! is a result of its being nonlinear in
the velocity fluctuations.

We continue comparisons between DNS and Gaus
fields by studying the alignment betweenaL and aC ~Sec.
III B ! for these cases. Figure 11 shows, for both DNS a
GRF data, PDFs of the angleu(aL ,aC) for simulations at

FIG. 11. PDFs ofu(aL ,aC) at Rl 38 and 140~lines A and B!. Part~a! of the
figure is for DNS, part~b! for GRFs.

TABLE V. Comparison of flatness factors (m4) of acceleration and its
constituents between DNS and GRFs.

Rl

38
DNS

38
GRF

140
DNS

140
GRF

a 7.9 3.9 24.4 4.0
aL 6.3 4.5 12.8 5.0
aC 7.6 5.1 15.3 5.3
aI 8.1 4.0 24.8 4.1
aS 5.9 3.0 11.4 3.1

d
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Rl'40 and 140. Because these PDFs are highly pea
~near 180 degrees!, semi-log scales are used on the PDF a
to display data over the entire range. Although there
quantitative differences~including the height of the peak!, it
is clear that the DNS and GRF data are very similar. Th
similarities suggest that, consistent with indications fro
variance ratios in Table IV, antiparallel alignment betwe
aL and aC is primarily a kinematic effect. The Reynold
number trends for alignment betweenaL and aC are also
similar, with the peak height of the PDF increasing w
Reynolds number. Further information can be obtained
comparing the mean values of the cosines of the angles
tweena, aL , andaC in Table VI with those for DNS in Table
III. From these tables one can infer that the vectorial a
alignment betweenaL andaC is more sensitive to Reynold
number in DNS than for the Gaussian fields.

A similar comparison for vectorial alignment betweena
and aI is given in Fig. 12, where again semi-log axes a
used in view of a high peak~near 0 degrees!. As for aL and
aC in Fig. 11, it is clear that the alignment properties a
qualitatively very similar for DNS and Gaussian fields. Ho
ever, quantitative differences in the Reynolds number dep
dence also exist, which~because of semi-log scaling! are not
obvious in the PDF plots but can be seen in the beha

TABLE VI. Mean values of the cosines of the angles betweena, aL andaC

anda, aI andaS ~similar to Table II! for Gaussian random fields.

Grid 643 1283 2563 5123

Rl 38 90 141 243
cos(a,aL) 0.133 0.109 0.098 0.108
cos(a,aC) 0.358 0.272 0.233 0.195
cos(aL ,aC) 20.756 20.836 20.869 20.883
cos(a,aI) 0.931 0.947 0.954 0.959
cos(a,aS) 0.249 0.216 0.198 0.178
cos(aI ,aS) 6.931024 1.331024 7.931025 22.731025

FIG. 12. Same as Fig. 11, but foru(a,aI).
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~Table VI! of mean values of the cosine of the angle betwe
a andaI at different Reynolds numbers. Indeed, comparis
with DNS data in Table III shows that Reynolds numb
effects on the alignment betweena and aI are stronger for
DNS data than for Gaussian fields. Taken together, the
in these figures and tables indicate that close alignment
tweena andaI is also mainly a kinematic effect. On the oth
hand, the trend towards closer alignment betweena and aI

due to the dominant contribution ofaI to a is essentially a
consequence of the Navier–Stokes dynamics.

Finally, we compare the spectra ofa, aL , and aC be-
tween DNS and Gaussian random fields in Fig. 13. It can
seen that the spectra have essentially the same shapes in
case. Except for some differences at the lowest wave n
bers, the magnitudes of the spectra ofaL andaC are compa-
rable between DNS and GRF. However, the accelera
spectrum itself is significantly lower for GRFs, which is co
sistent with stronger mutual cancellation noted above ba
on analyses of other quantities.

V. SUMMARY AND DISCUSSION

In this article we have used data from direct numeri
simulations of incompressible isotropic turbulence to inv
tigate the validity of the random Taylor hypothesis,11 in
terms of statistical and geometrical properties of the ac
eration vector and its local and convective constituents~as
a5aL1aC! compared with irrotational and solenoidal co
stituents~as a5aI1aS!. The data cover ensemble-averag
Taylor-scale Reynolds numbers in the range approxima
38 to 240 on grids from 643 to 5123, and are compared with
results extracted from Gaussian random fields with the sa
energy spectrum and Reynolds number.

Our results show that the variance of the total accele
tion a is indeed small compared to those ofaL5]u/]t and
aC5(u"“)u. This can be traced toaL andaC being strongly
negatively correlated, with correlation coefficient close

FIG. 13. Ensemble-averaged spectra ofa, aL , and aC ~normalized by
n1/4^e&5/4) at Rl 140 for DNS~lines A, B, C! and Gaussian random field
~D, E, F!.
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20.9 at Rl 240. At the same time, it is well known thata is
close to aI52“(p/r), which is much larger thanaS

5n“2u. By taking a Hemholtz decomposition ofaC we
show that the fact of̂ a2& being relatively small can be
viewed as the result of strong mutual cancellation betw
aL ~which is solenoidal! and the solenoidal part ofaC . This
cancellation occurs in such a manner thataI is still a domi-
nant contribution toa despite being small in variance com
pared toaL andaC .

It is important to note that the effects described in t
preceding paragraph all become stronger at higher Reyn
number. Consequently at sufficiently high Reynolds numb
we may expect the relations

^aS
2&!^a2&'^aI

2&5^aCI

2 &!^aCS

2 &'^aC
2 &'^aL

2& ~7!

to hold, where the ‘‘!’’ sign is interpreted here as ‘‘at leas
an order of magnitude smaller than.’’ In particular, the re
tion ^a2&!^aL

2&'^aC
2 & is in support of the random Taylo

hypothesis. It may be appropriate, however, to give a m
limited interpretation of this hypothesis in the sense that
microstructure isstatistically decorrelatedfrom the energy
containing eddies. This is different from the original assum
tion by Tennekes11 ~and similar! that themicrostructure is
statistically independent of the energy containing edd.
There is a growing body of experimental evidence10,19,22–24,30

suggesting that large and small scales are not statistic
independent despite being practically decorrelated. This
sue, however, is beyond the scope of this article.

The DNS data show that local acceleration (aL) and the
solenoidal part (aCS

) of the convective acceleration ar
mostly canceling each other, resulting in a very small so
noidal part (aS) of the total acceleration vector. However, w
emphasize this does not mean that they are not separ
important. For example, the main contribution to enstrop
production in the mean-squared vorticity budget is associa
with aCS

, but not with aL . This issue is to be addresse
separately elsewhere.

We also studied the statistics of acceleration from
perspectives of vectorial alignment in physical space
spectra in wave number space. Statistics of the angle
tween aL and aC show clear evidence of strong antialig
ment, with high probability in the range close to 180 degre
On the other hand, strong positive alignment is obser
betweena and aI , and both of these effects become mo
pronounced at higher Reynolds number. In wave num
space, we find that the spectrum ofa is comparable to those
of aL andaC at low wave number but much smaller in ma
nitude at high wave numbers. This dependence on w
number suggests that the random Taylor hypothesis
greater validity when applied to smaller scales being
vected by the large-scale motions.

Finally, comparisons between velocity fields obtained
DNS and Gaussian random fields~GRF, which have not
evolved according to the Navier–Stokes equations! at a
given Reynolds number show that there is a large kinem
contribution to effects described above. In particular, we fi
considerable qualitative similarities between DNS and G
results on the alignment between the vectorsa andaI and the
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antiparallel alignment betweenaL and aC , suggesting that
these alignment properties are essentially kinematic in
ture. These alignments and the mutual cancellation betw
aL andaC are, in fact, found to be stronger for GRFs. How
ever, effects of Navier–Stokes dynamics are manifested
the form of Reynolds number dependence, which is mu
stronger for DNS data compared to Gaussian random fie
By considering PDFs of different quantities we also find th
within a general trend of increasing intermittency at high
Reynolds number, the effect of mutual cancellation betwe
aL andaC is to makea more intermittent in DNS but less s
for Gaussian random fields.
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