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The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical
simulations (DNS) by decomposing the acceleration as the sum of local and convective
contributions(a, = du/dt andac=u- Vu), or alternatively as the sum of irrotational and solenoidal
contributions[a,= — V(p/p) andag=»V2u]. The main emphasis is on the nature of the mutual
cancellation betweer, andac which must occur in order for the accelerati@) to be small as
predicted by the “random Taylor hypothesi§Tennekes, J. Fluid Mecl67, 561(1975] of small

eddies in turbulent flow being passively “swept” past a stationary Eulerian observer. Results at
Taylor-scale Reynolds number up to 240 show that the random-Taylor scefegic(a3)

~<af), accompanied by strong antialignment between the veafoasda., is indeed increasingly

valid at higher Reynolds number. Mutual cancellation betwsgeamda. also leads to the solenoidal

part of a being small compared to its irrotational part. Results for spectra in wave number space
indicate that, at a given Reynolds number, the random Taylor hypothesis has greater validity at
decreasing scale sizes. Finally, comparisons with DNS data in Gaussian random fields show that the
mutual cancellation betweesy and ac is essentially a kinematic effect, although the Reynolds
number trends are made stronger by the dynamics implied in the Navier—Stokes equations.
© 2001 American Institute of Physic§DOI: 10.1063/1.1375143

I. INTRODUCTION tional and solenoidal. In other words, in addition de a,
As the material derivative of the velocity vector, the T8, We can also writta=a +as, whereg=—V(p/p)
fluid particle acceleration field in turbulent flow andas=»V?u. The purpose of this article is to use data from
direct numerical simulationdNS) to explore several physi-
aEE: a—u+(u-V)u 1) cal issues in turbulence based on these two alternative de-
Dt 4t compositions of the acceleration vector. As discussed later

is a physical parameter of great interest for a variety of rea(S€C: IIl, we also refer to the irrotational and solenoidal
sons, ranging from studies of fine-scale intermittency to apParts of the convective acceleratiofas ac=ac, +acy),
plications in Lagrangian modeling of dispersitsee Refs. which are computed using the method described in Sec. Il.
1-21 and references thergitClearly, the acceleration may The first issue concerns a commonly used concept
be written as the sum of the local acceleratigr=gu/gt  known as therandom Taylor hypothesisr the sweeping
expressing the unsteady rate of change at a fixed point, arfiecorrelation hypothesis. It was suggested by Tenriékes
the convective acceleratios=u-Vu which expresses the that in turbulence at high Reynolds numlike dissipative
rate of change due to the spatial derivatives and also embogddies flow past an Eulerian observer in a time frame much
ies nonlinearity effects. In addition, for flows governed by shorter than the time scale which characterizes their own
the Navier—Stokes equations without body forces the accelynamics In turn this implies that Taylor's “frozen-

eration is also given by turbulence” approximation would be valid for the analysis
1 of the advection of the turbulence microstructure by the
a=——-Vp+vVZay, 2) large-scale motions. To assess its validity it should be recog-

p nized that, in fact, Tennekes’ hypothesis consists of two in-

i.e., as the sum of pressure gradient and viscous contrib@redients. First, it is proposed that the Lagrangian accelera-
tions which in incompressible flow are respectively irrota-tion (a) of fluid particles is in some sense small, such that
time scales measuring Eulerian and Lagrangian rates of
dElectronic mail: tsinober@eng.tau.ac.il change could be estimated by simply setting0 (which, Of
bElectronic mail: p.vedula@wbmt.tudelft.nl course, cannot be perfectly toudt is noteworthy that this
9Electronic mail: yeung@peach.ae.gatech.edu assumption was formulated for the turbulent fluctuations
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(which are local pointwise in space and timestead of for  TABLE I Basic simulation parameters for the DNS database.
statistical measures of these quantities. The second assump-__

. . . Grid 64 128 256° 512
tion made by Tennekes is of statistical nature, namely, that
the microstructure is statistically independent of the energy- R 38 90 141 243
containing eddies Liln 22 57 101 191
. . +%13,l7,19,22,2% kmaxﬂ 1.47 152 140 146

A survey of data in the Ilter_atg o uggests Ure 1.60 126 144 141
that the random Taylor hypothesis is qualitatively correct but ) 0.60 0.47 0.27 0.18
also subject to a number of quantitative deviations. However, » 0.025 0.006 546 0.0028 0.0011
because of the Reynolds number limitations on previous data (€ 2.70 0.72 1.20 0.99

(especially earlier wor¥ in DNS), it is important to under-
stand in detail and quantify the Reynolds number depen-
dence of the various statistical parameters involved. Here we
draw upon a current DNS database for isotropic turbulence dteld considered is stationary isotropic turbulence with en-
ensemble-averaged Taylor-scale Reynolds numbers rangirggy maintained by forcing at the large scai&Bata analy-
from about 38 to 240 using up to 513rid points, where  sis is performed at each grid resolution in a pseudo-spectral
some limited inertial range properties can be obseffed. manner for a number of velocity fields that were previously
While our primary interest in this article is on local and saved(as single-time snapshotat time intervals approxi-
convective contributions to the acceleration, new informatiormately one eddy-turnover time apart. The statistical indepen-
is also provided on pressure gradients and viscous accelergence implied by this separation in time allows each data set
tion which were studied recently using the same database ki be taken as one of a number of different realizations for
Vedula and Yeung? ensemble averaging. Aliasing errors associated with taking

Several specific aspects of the acceleration field are stugroducts in physical space are controlled by a combination of
ied in this work. The most important, and basic, issue isphase shifting and the truncation of aliased modes in wave
perhaps the nature of the mutual statistical cancellation benumber space. The actual grid resolutions and Reynolds
tween the local and convective accelerations underlying th@umbers are listed in Table I. Other quantities also listed for
argument of the total acceleration being small by comparireference include the ratio between longitudinal integral
son. Since these quantities are vectors the degree of this migngth scald_, and the Kolmogorov scale, the nondimen-
tual cancellation can be studied in terms of the geometry o§ional parametek,,,7 (Kmax D€INg the highest wave number
vector alignment. Furthermore, because the Reynolds nuntesolved by the gridwhich measures the numerical resolu-
ber is a measure of the range of scales, the nature of Reyion of the small scales, rms velocity fluctuation, Taylor mi-
nolds number effects can be expected to vary with scale sizeroscale, kinematic viscosity and the averaged energy dissi-
which is conveniently studied in terms of spectra in wavepation rate.
number space. In homogeneous turbulent flows, including  The main numerical tasks involved in the calculation of
isotropic turbulence, it is well known that while one-point acceleration quantities in this work are concerned with the
statistics are approximately Gaussian, two-point statistics argonvective acceleration and the pressure gradient. In the case
not. To highlight the effects of this non-Gaussianity we makepf ac we calculate terms of the typén tensor notation
comparisons between DNS data and those of Gaussian rag:u; /9x; , where differentiation is performed in wave num-
dom fields which are constructed to have the same enerdyer space and products are taken in physical space. The pres-
spectrum as that in DNS. Because these Gaussian fields as@re gradient and viscous acceleration are obtained in the
not evolved from the Navier—Stokes equations, these comsame way as described in Ref. 13, with the former involving
parisons also allow us to distinguish between “kinematic” the recovery of pressure fluctuations by solving its Poisson
and “dynamic” effects in the present context. equation in Fourier space. Finally, knowledgesgf, a,, and

The rest of the article is organized as follows. First, inag together allows us to determine the local acceleration by
Sec. Il we give a brief description of the numerical proce-
dures and the data used. In Sec. Il we show DNS results for =& +tas~ac. ©)
different contributions & ,ac,& ,as) to the total accelera- athough this procedure for the calculation af seems in-
tion, in terms of single-point variances and correlation coefiract ‘it is much more convenient than the task of taking a
ficients, geometric statistics of vector alignment, as well a§ime derivative from two instantaneous velocity fields that
scale-dependent quantities. Comparisons between velocity, 4 otherwise have to be saved at a very small time inter-
fields in DNS evolved from the Navier—Stokes equations and, apart. For a test of accuracy we use the property that
their Gaussian random field counterparts are given in SeG,compressibility requires the local acceleration must be so-
IV. Finally, conclusions are summarized in Sec. V. lenoidal (since otherwise the velocity field computed from

the Navier—Stokes equations would become nonsolenoidal
Il. SIMULATION AND DATA ANALYSIS as it evolves It should be noted that for any vectdrwe can
apply a Hemholtz decomposition in Fourier space, with the

We analyze velocity fields obtained from direct numeri- poyrier coefficients of irrotational and solenoidal parts being
cal simulationDNS) carried out using the Fourier pseudo- giyen respectively by

spectral algorithm of Rogall&. Differencing in time is ex- R R R o
plicit and second order. As in recent wdrkthe velocity VO(k)=(k-V)k/k?; VS=v-vD, (4)

Downloaded 28 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1976 Phys. Fluids, Vol. 13, No. 7, July 2001 Tsinober, Vedula, and Yeung
TABLE Il. Acceleration variance and related quantities at different 10" per— - T
ensemble-averaged Reynolds numbers in DNS. All quantities are normal- ‘:1\ -
ized by (€)%~ 172, Tl
R S S
Grid 64 128 256° 512 S e e AR
-1/2 R R
T
R, 38 90 141 243 . . BRI
Var(a) 1.26 2.33 2.75 3.54 (@ "5 - 102 10°
Var(a) 1.21 2.27 2.70 3.49 10° e :
Var(ag) 0.05 0.05 0.05 0.05 e
Var(a,) 1.21 4.56 8.19 17.05 - ol
Var 2.47 6.89 10.96 20.61 a? o e
(ac) %;g% o
Var(ac,) 1.21 2.27 2.69 3.49 . B~
Var(ac.) 1.26 4.61 8.24 17.10 ~l W 12
(b) 75 o o?
10° T
i i v
The numerical procedures we use are capable of producing ¥
negligibly small values for thénominally zer9 divergence %%
of the local acceleration vector. °
Some remarks concerning the generation of Gaussiar
random fields noted in Sec. | are appropriate here. The goa(c) - ppe E—

is to construct velocity fields which are Gaussian in the sense R,

of the velocity gradients beingartificially) Gaussian, but 61 s ot of DNS data f Hiple realizations(@(a)/(ed)
. 1. Scatter plot o ata from multiple realization a a),
have the same form of the energy spectrum and Reynold%<a2>/<aé>' and(c) (a2)/(z2), all vs Reynolds number (. Symbols for

”“mper correspondlng to_ eaCh.g”d resolution in Table I yteren grid resolutions are 840), 128 (A), 256 (0), and 513 (0).

This is accomplished by first taking an ensemble average Gbashed lines with slopes 1 and% are drawn to infer trends of scaling
the energy spectrum function from “real” DNS data sets atbehavior.

each grid resolution, and then using a slight modification of

the initialization procedure in Ref. 23 to create a randomized

velocity field which has the desired statistical spectrum and As noted in Sec. |, a key assumption in Tennekes’ hy-
is orthogonal to the wave number vectbence divergence- potheses is that the total acceleration should be small com-
free) for each Fourier mode. A Gaussian random numbepared to its local and convective contributions, which in turn
generator is used, and the method is tested by checking trhould have variances close to each other. At the second
skewness and flatness factors of velocity gradients versus theoment level this is illustrated directly by a comparison of
standard Gaussian valué3 and 3. Gaussianity is attained variances. Figure 1 shows scatter plots for ratios between the
very closely except on a 532grid, where we found that variances of, a_, andac, with different symbols for each
(because of the large number of samplbe finite period of  grid resolution. The behavior predicted by Tennekes’ hy-
computerized pseudo-random number generators affects tip@theses is indeed observed in the figure, which also shows a
quality of statistical sampling to a certain extent. definite Reynolds-number trend for each quantity—namely
that (to a close approximatiorboth(a2)/(a?) and(a?)/(aZ)

vary as RY2, such that the ratiqa’)/(a%) approaches a
constant at high Reynolds numbers.

In this section we present DNS data bearing upon the  Since a=a, +ac the relative smallness ofa®) noted
validity of the random Taylor hypothesis involving mutual ahove implies thas, andac must be significantly negatively
cancellation of local and convective accelerations. We covegorrelated. The correlation coefficier amonga, a, , and
several aspects, including conventional second-moment sta:. for the same data sets are shown in Fig. 2. In the bottom
tistics, geometric vector alignment, and scale-size deperpart of this figure we can see that the correlation coefficient
dence as viewed in wave number space. p(a ,ac) is about —0.7 at R~40, about—0.9 at R
~240, and appears to approach the limiting value-df.0
with increasing Reynolds number. However, as a conse-

We begin with a basic characterization of various con-duénce of the solenoidal nature &f it is important to note
tributions (@, ,ac,a ,as) to the total acceleratiofaccording thata, andac cannot cancel each other completely. To see
to Egs.(1) and(2)] in terms of simplest measures such as thdhis, we note that sinca, is solenoidalwith its irrotational
variances of different contributions and the correlation coef{arta,, being identically zerly adding up the irrotational and
ficients as indicators of their statistical relationships to eaclsolenoidal parts of both, andac yields
other. Ensemble-averaged variances of these quantities at ac =ay (5)
each grid resolution are shown in Table Il. However, scatter ! '
plots showing one data point for _ea_ch realization at i_ts own a +ac =as. (6)
Reynolds numbefin a manner similar to Ref. 13, Fig. 1
therein are perhaps more helpful in assessing the overallhe smallness in variance af versus those oy andac in
Reynolds number scaling behavior. Table Il indicates an increasingly strong degree of cancella-

IIl. RESULTS FROM DNS

A. Variances and correlations
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FIG. 2. Scatter plot of correlation coefficienifa,a ), p(a,ac), and
p(a_,ac). Symbols are the same in Fig. 1.

tion between the solenoidal parts &f andac at high Rey-
nolds number. However, cancellation betwegnand a; is
not complete, since the irrotational part of their sum, ie.,

Random Taylor hypothesis and the behavior 1977
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FIG. 3. Scatter plot ofa) (af)/(ag), (b) p(a,acy), and (c) (ad)/(&f).
Symbols are the same as in Fig. 1.

noidality of the convective acceleration. The latter opposite
trend can be seen in Table Il by noting that the variance of
the solenoidal paréc, becomes larger compared to that of

the irrotational part :ch) of ac as the Reynolds number in-

remains finite and is a dominant contributor to the variancereases.

of a at all Reynolds numbers.
In Fig. 2 it is also worth noting thad is positively cor-

Although we have focused on local and convective ac-
celerations, it is useful to include a comparison with the al-

related withac (although less so at higher Reynolds number ternative decomposition into irrotational and solenoidal ac-
but practically uncorrelated with, regardless of the Rey- celerations. The dominance afoverag is well known(e.g.,
nolds number. This latter lack of correlation can also be exRef. 27, has been verified recently in DN3,and can be

plained by noting that, whereas is solenoidal,a is—
because of the dominance ef over ag (as seen in Ref.

13—nearly irrotational. Since irrotational and solenoidal
vectors are uncorrelated in homogeneous turbulence, it fol-
lows thata anda, are, as observed, nearly uncorrelated with

each other.

It is clear from Eq.(6) that a smallg can be interpreted

as the result of strong mutual cancellation betwegrand

acg i.e., these two terms must be nearly the same in magni-

tude but(as vectorsalmost antiparallel to each other. These
properties are evident in Fig. 3, which shows the ratio of

variances betwees, andac,, their correlation coefficient,

and the ratio betwee(e2) and(a?). It can be seen that as

the Reynolds number increases, the rdtf)/(a ) indeed
approaches 1.0 wherepéa, ,aCS) approaches-1.0. On the

other hand, even at the lowest Reynolds number in the fig-

ure,(ad) is seen to be only about 5% of eithe?) or (aés>,

becoming smaller still at higher Reynolds numbers. In other
words, the tendency of increasing mutual cancellation at

higher Reynolds numbers betwea:_nandacS tends to make

the solenoidal partgs) of the acceleration very small com-
pared to its irrotational parta). This tendency may be
called areduction of solenoidalityf the total acceleration,

and is in contrast to an accompanyieghancementf sole-

1.0 T T

Correlation coefficients

plar,as)
O t

10" 10* 10°
R,

| e | ) 1 aven L !

FIG. 4. Scatter plot op(a,a), p(a,as), andp(a ,ag). The last quantity is
close to 0. Symbols are the same in Fig. 1.
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FIG. 5. (a) PDFs of 6(a_,ac) for R, 38 and 240(lines A and B, respec-  FIG. 6. (a) PDFs of6(a, ,as) at R, 38 and 24(lines A and B, respectively
tively). The inset shows the same PDFs on a logarithmic s@alé2DFs of (b) PDFs off(a,a) (lines A, B), and PDFs ofj(a,as) (lines C,D at R, 38
6(a,ac) (lines A, B) and 6(a,a) (lines C,D at R, 38 and 240. and 240. The inset shows the same PDFs on a logarithmic scale.

. . 5 -~ a andac must be nearly antiparallel. This in turn implies

seen by taking the ratios ¢&;) to (ag) in Table Il. As noted  that the angle betweea_ and ac, denoted byé(a, ,ac),

in Ref. 13, the Reynolds number trend resides primarily inshoyld have a high likelihood of being close to 180 degrees.
a , whereasas is nearly universal when scaled by Kolmog- |n Fig. 5 we show ensemble-averaged PDFs at the lowest
orov variables. A scatter plot of correlation coefficients gng highest Reynolds numbers in our calculations, for
amonga, g , andag is shown in Fig. 4, Wh_ere it can be seen g5 a.) (in the upper half of the figujeas well asé(a,a,)

that & and as are (due to homogeneily uncorrelated,  and g(a,ac) (in the lower half. A very strong peak in the
whereasa is almost perfectly correlated witey but only  ppg around 180° is indeed seen fl@, ,ac), with a more

weakly correlated withas. . . complete view of data in the range close to 180° given in the
The results of this subsection show that higher Reynoldgset using linear-log scales. It is clear that the degree of

numbers tend to produce reduced solenoidality of total accelyntialignment betwees, andac becomes stronger with in-
eration but at the same time also enhanced solenoidality Qfrease in Reynolds number. This Reynolds number trend is

the convective acceleration. The mutual cancellation beg|so supported by the behavior of the mean of the cosine of

the random Taylor hypothesis has been observed to becomgry close to—1.0.
stronger at the second-moment level as the Reynolds number |y the Jower half of Fig. 5 we can observe thais in

is increased. However, it should be noted that the degree Qfeneral positively aligned with both & and ac, with a
statistical correlation between fluctuating vector quantitiesnodest peak of these PDFs being at zero degrees. Although
depends on both the properties of coordinate componenife alignment withac appears to be stronger than that for
and the geometric orientatidor alignment of these vectors 5 it also weakens significantly at higher Reynolds number.
with each other. These alignment properties are studied ipjowever, the alignment ad with a, shows no appreciable

the next subsection. Reynolds number dependence. Similarly, it can be seen in

B. Geometrical statistics

TABLE lll. Mean values of the cosines of the angles betwaea andac

To provide information complementary to that in Sec.anda’ a, andag in DNS.

[l A, we consider here the alignment propertiesapf, , and

ac relative to one another, followed by the same &, , Grid 64 128 256 512
anq.as. In egch case we consider both the shape of the prob- 38 9 141 243
ability density function(PDF, in Figs. 5 and Y6of the angle, cos@,a,) 0.103 0.109 0.105 0.093
as well as the mean value of its cosifigable Ill) which cos@,ac) 0.568 0.427 0.353 0.267
provides a useful quantitative measure. We use the notation €0sé..ac) —0.581  —0.699 —0.762 —0.836
6(V1,V,) for the angle between any two vectdfs andV,. cos@.a) 0.951 0.971 0.973 0.977
. . 3 cos@,ag) 0.224 0.169 0.156 0.146
If the magnitude of the total acceleratiaasa_ +ac, is cos@, ,aq) 0.022 0.018 0014 0013

to be small compared to those &f andac, then the vectors
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FIG. 7. Ensemble-averaged spectraapé, , ac, & , andag in wave num- FIG. 8. Same as Fig. 7, but for,R40.

ber space normalized by*%(€)®“, denoted b}/ lines A—E, respectively, for
DNS data at R 38. Dashed lines with slope§and§ are shown.

viscosity and the energy dissipation rate. Generally, it can be
seen that all exces have a peak at an intermediate wave
number rangekn~0.1-0.2, and tha®s makes a significant
contribution toSonly at the small scales, i.e., for wave num-
bers atkp~1 or higher.

The spectra of local and convective accelerations are of
special interest here. It can be seen that the spectriag isf
monotonically above or equal to that af at all wave num-
'bers. However, especially at high Reynolds numbers, we find
but _fo_r the vectorsa, &, andas. Becauses and as are that the gap between these two spectra narrows substantially
;tat|st|cally prt_hogonaf[m the sense thata, - a) =0) due to at higher wave numbers. At the same time, the spectrum of
incompressibility and homogeneny,. they are expgcted tcfheir sum(the acceleration itselfoecomes much lower by
have no net tendency for preferential alignment with eaCI'bomparison. In other words, for the small scales at high Rey-
other. The PDF of(q ,as) is seen to be relatively flat, with nolds number we find the,comparis&és,_wsc which
highest values at close to 90°, and no significant Reynold§Orresponds tqa®)<(a?)~(a2), and hence to tr,1e mutual
n.um'ber'dep'endenc'e. The gloseness of this P.DF toa uniforrcnémcellation between the vectca;LsandaC studied in the two
distribution is consistent witiicos6(a; ,as)) being close to previous subsections. The observations here also indicate
0, as seen in Table lI. . . . that the mutual cancellation is more nearly complete at the

Because of the dominance of the irrotational part of theSmall scales. In turn, this implies that the random Taylor
acceleration over its s_olenoidal part, it seems almost inevihypothesis has great;ar validity at the small scales, and fur-
taple tha@ would be allgned.much more cIose!y wiathan thermore the range of scales over which the hypothesis is
W't.h 3s. Indeed, tqgether with the insedn semi-log scalgs valid becomes widefspreading from small towards interme-
n its onver half, Fig. 6 alsq shows that the PI_DF&(fa,g{) . diate length scalgswith increasing Reynolds number. Ex-
has a high peak at zero, with the peak value increasing W'tlﬂapolation of our results towards Reynolds numbers higher
Reynolds number. In contrast, the PDF &fa,as) shows than the DNS data range would suggest Baand Se be-
muc_h weaker alignment, being nearly flat and increasingly S%ome coincident at nearly all wave numbers except perhaps
at higher Reynolds number. the energy-containing range.

Another natural question concerning the data in Figs. 7
and 8 is whether there is evidence for inertial range behavior.
To understand the contributions of different scale sizest is clear that the spectrum @& (line E) has ak”® scaling

to the behavior of the acceleratidn) and its constituents range, which is a direct result & *? inertial range behavior
(a_,ac,a ,ag) it is convenient to study the spectra of thesein the energy spectrui.Other inferences are less definite.
quantities(denoted byS, S, , S, S;, Ss, respectively in However, it does appear that, at high Reynolds nuniBiy.
wave number space. The spectra of these quantities aB, the convective acceleration hask4® scaling behavior
shown in Figs. 7 and 8, for DNS data at the lowest andover the rangekn~0.02—0.05, which coincides approxi-
highest Reynolds number, respectivély, ~38 and 240, mately with the wave number range for inertial scaling in the
and in a form normalized by Kolmogorov variables based orenergy spectrurfi* While an explanation for this result is not

Table Il that whereagcosé(a,ac)) decreases strongly with
Reynolds number,cosf(a,a_)) remains at a nearly constant
(but low) value of order 0.1. It is noteworthy that the strong
antialignment betweea_ andac was observed only recently
in experiments in the laboratdf/and in the atmospheric
surface layef?

Figure 6 shows information analogous to that in Fig. 5

C. Spectra in wave number space
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obvious, we also note that this scaling exponent is differenf ABLE IV. Comparisons between acceleration variances and related quan-
from that of the acceleration spectrum which has a smallefities for DNS data and Gaussian random figlG&RFs.

slope. Since the spectra af ac, andag all have the same 64 64 256 256
physical dimensions, the differences observed between them Grig DNS GRF DNS GRF
also serve as a reminder that dimensional reasoning and tra= 8 3 a1 1
ditional Kolmogorov similarity arguments are not sufficient <;2>,<a5> 1.043 0.314 0.336 0.122
for predicting the behavior of acceleration spectra. (a)/(a2) 0511 0.248 0.251 0.110
The spectrum of1 is (as seen in the results of Ref.)13 (a?)I{aZ) 0.490 0.790 0.747 0.899
dominated by that of, except possibly at very high wave  r(aa) 0.003 0.039 0.0000 0.016
numbers, where the spectrum @f becomes comparable to ~ P(&) 0.713 0'4673 oézgz ng;7
that of 3. Plots comparing normalized acceleration spectra f (,%/’?;5 78:822 700'.83%4 70(')_327 oa17
(Fig. 6 of Ref. 13 show that the strongest sensitivity to  (2);(a?)° 1.044 1.075 1.019 1.047
Reynolds numbers is in the spectrumapfat low wave num- (a?)/(ad) 23.18 14.29 52.37 22.50
bers. Since the spectrum af at low wave numbers contrib- (af)/(ad) 2221 13.36 52.39 21.50
utes dominantly(via its integral in wave number space® r(a.a) 0.951 0.964 0.989 0.977
p(a,asS) 0.224 0.265 0.139 0.211

the variance ofa,, this result is consistent with the trend
seen in Table Il thata?) and hencda®) increases with R
under Kolmogorov scaling.

<(a?)~(a2) is a better approximation for GRFs than in
DNS. This suggests that the mutual cancellation betvegen
andac is primarily a kinematic effect. This is in agreement
The behavior of acceleration statistics studied in Sec. Ilwith purely kinematic resulf§ obtained via employing the
can be regarded as due to both kinematic constraints as ektillionshtikov hypothesis. On the other hand, the dominance
pressed by the continuity equation, and to the dynamics obf (af) over(aé) is stronger in DNS than for GRFs, suggest-
momentum balance as expressed by the Navier—Stokes equng that this is a true consequence of Navier—Stokes dynam-
tions. In this section we attempt to separate the roles of kiics. It should be noted that both of these differences observed
nematic versus dynamic effects, by comparing with Gaussiahere appear to become weaker at the highest Reynolds num-
random fieldshere denoted by GRFs for shptonstructed ber shown. However, it cannot yet be ascertained whether
to (see Sec. )lcorrespond to velocity fields in DNS having these differences would cease to exist at asymptotically high
the same energy spectrum and Reynolds number. It shouReynolds numbers.
be noted that these Gaussian fields carry kinematic effects From a statistical point of view, a key difference be-
only, since they satisfy the continuity equation but have notween velocity fields in DNS and corresponding GRFs is that
evolved in time according to the dynamics of the Navier—velocity gradients calculated in DNS are non-Gaussian and
Stokes equations. In some aspects like intermittency, kinentermittent, in fact increasingly so at higher Reynolds
matic and dynamic effects can differ considerabty° and  number®* To characterize the effects of this non-Gaussianity
the contributions of kinematic effects can be veryon the probability distributions of the acceleration and its
significant>! 33 constituents, we make comparisons based on standardized
An effective way to illustrate possible differences in PDFs in Figs. 9 and 10 and flatness factors in Table V. In
Reynolds number dependence for velocity fields from DNSview of isotropy the data have been averaged over three Car-
versus GRF would be to examine results for the lowest andesian coordinate components. Logarithms of the PDFs are
highest Reynolds numbers in the data available for botfalso taken in order to give a clearer picture of low probability
types of velocity fields. However, because of the limitationsevents.
of our pseudo-random number generdss stated in Sec.)ll It is important to note that, even for Gaussian random
here we exclude the 582ZGRF data from our analysis and fields, bothac anda, are, because of nonlinearities in their
instead present comparisons of data at &4d 256 resolu-  definitions, inherently non-Gaussian. On the other hagis
tions, at R respectively 38 and 141. Gaussian because it is linear and can be considered in GRFs
A comparison of variances and correlation coefficientsas approximated by a finite difference scheme involving lin-
involving the acceleratiofe) and its several distinct physical ear combinations of independent Gaussian velocity fluctua-
constituentsa, , ac, @, andag) is first given in Table IV, at  tions at neighboring grid points. Because of the dominance
the Reynolds numbers indicated above. It can be seen thaf a overag, and because of imperfect cancellation between
the Reynolds number trends.g., the approach to unity of ac anda,, both the total acceleraticar= g, + ag and the local
the ratio(a?)/(aZ) at higher Reynolds numbefor the vari-  accelerationa, =a—ac are non-Gaussian. These properties
ances and correlation coefficients shown are qualitativelyare clearly demonstrated by the flathess factors in Table V.
similar in both types of velocity fields. However, the magni- Furthermore, an exact reswdt can be deduced by noting
tude of Reynolds number effectagain, say in the ratio that because uncorrelated Gaussian random variables are in-
(a?)I(a%)) is generally stronger in DNS. dependent, each componenta&f (asu;du;/dx;) is propor-
At a given Reynolds number, the data in Table IV indi- tional to the sum of three products of independent Gaussian
cate, remarkably, that the random-Taylor scenariga  variates. The flatness factor af is thus the same as that of

IV. COMPARISONS WITH GAUSSIAN RANDOM
FIELDS
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0 ————— ——— TABLE V. Comparison of flathess factorsuf) of acceleration and its
| | constituents between DNS and GRFs.
|
—1tk : \ . 38 38 140 140
| | | R, DNS GRF DNS GRF
|
—2F | . a 7.9 3.9 24.4 4.0
A | a 6.3 45 12.8 5.0
o ac 7.6 5.1 15.3 5.3
b =3F I | | 7 a 8.1 40 24.8 4.1
= A / ! \\ ag 5.9 3.0 11.4 3.1
‘% _4’. / / [ 1 >} i
=2 » " ' \ \ 9
Z TR WNS
-5 | ! \ Q and a:, the reverse is true for GRFs. In other words, the
| [ ! 1 effects of mutual cancellation betweepn and a: tend to
i . . . .
-6 | : | . promote intermittency of in DNS but to reduce it for GRFs
b | \ which contain no Navier—Stokes dynamics information. An-
_7 A ! X other feature which is apparent from the flatness factors in

I " . i 1 I n
-1 -2 -8 76 -3 0 3 6 9 12 15 Table V is a strong increase in intermittency with Reynolds

standardized variable number in DNS. This increase is in contrast to the GRF
FIG. 9. Base-10 logarithms of the standardized PDFs,08 , and ac rleSUI.tS' WhI.C.h argwithin the limits of sampling uncertain-
denoted by lines A, B, C for DNS and lines D, E, F for Gaussian randomties) insensitive to Reynolds number.
fields (GRP), all at R, 140. The dashed line represents a standardized  Similar characteristics of intermittency can be seen in
Gaussian PDF for comparison. Fig. 10, which shows PDFs far, a , andag. Both the PDFs
shown and corresponding flatness factors in Table V indicate
. thata anda, are(as already knownvery close, and both are
a random variabl&Z =Y+ Y,+ Y3 where each of the latter & ( y y

. . . more intermittent thamag. In addition, we can observe that
three is the product of standardized Gaussian random var . bpEs in DNS have much wider tails than those of cor-
ables and have the moment¥)=0, (Y?)=1, and (Y*)

- . . responding quantities in GRF, and are accompanied by larger
;9' E):jp\?ndlnr? trr:e mor;wen_tsddfln tdermts ?f thohse ?tzl' flatness factors. In contrast, Gaussian random fields are by
2, andY; (which are also in ependen’ o} eac 0)2 BN definition not intermittent; the non-Gaussianity @f (as for
quds to |ts_ flatness factor bein@")/(Z >_ =45/(3y=5. a andac noted aboveis a result of its being nonlinear in
This value is very close to the GRF data in Table V. the velocity fluctuations
Itis clear from Fig. 9 that PDFs for the DNS data exhibit We continue compe.xrisons between DNS and Gaussian
much wider tails, indicating greater intermittency c:omparedfiel

. . ! ds by studying the alignment between and a; (Sec.
to the|_r Gausgan counterparts. It_can alsp be sger@{hgﬂ I1IB) for these cases. Figure 11 shows, for both DNS and
more intermittent tharg, , with slightly wider tails in its

. 7 ) GRF data, PDFs of the an , for simulations at
PDF and a higher flatness factor. It is interesting to observe gle(a, .ac)
that whereas in DN is more intermittent than both &

102 T T T T T T T T T T T 3
(a) ]
0 T T T 10" o
4 1 : /@//"“;
-1 1) | PDF 10° L .
E /@ 3
| \ | £ A/é/ E
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107 &=—A A——h —® -
-2 . E—p B g—8
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d X -1l P/e
—BF 107 o 3
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15 -12 9 6 3 0 3 6 9 12 15 f(ar,ac)
standardized variable
FIG. 11. PDFs o¥(a_,ac) at R, 38 and 14Qlines A and B. Part(a) of the
FIG. 10. Same as Fig. 9, but fer a,, andag. figure is for DNS, par{b) for GRFs.
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TABLE VI. Mean values of the cosines of the angles betwaes andac 102 - -
anda, a andag (similar to Table I) for Gaussian random fields. F
Grid 64 128 256° 512
[
R, 38 90 141 243 £ 10 :
cos@.a,) 0.133 0.109 0.098 0.108 § ]
cos@,ac) 0.358 0.272 0.233 0.195 o
cos@,,ac) —0.756 -0.836 -0.869 -0.883 %
cos@,q,) 0.931 0.947 0.954 0.959 § o
cos@,ag) 0.249 0.216 0.198 0.178 g 10 3
cos@, ,ag) 6.9x1074  1.3x10°%  7.9x105 —2.7x10°° E
3
:ﬁ v
g 107t o\\Jj 3
=]
-4

R,~40 and 140. Because these PDFs are highly peaked ;
(near 180 degregssemi-log scales are used on the PDF axis ' ‘
to display data over the entire range. Although there are
quantitative differenceéincluding the height of the peakit *010_2 E— "‘1“0_, — ""1‘00 — ""1‘01
is clear that the DNS and GRF data are very similar. These kn
similarities suggest that, consistent with indications from
variance ratios in Table IV, antiparallel alignment between®!C. 13. Ensemble-averaged spectraznfa,, and ac (normalized by
a,_ and ac is primarily a kinematic effect. The Reynolds (Ee) I:)) at R, 140 for DNS(lines A, B, O and Gaussian random fields
number trends for alignment betweep and ac are also T
similar, with the peak height of the PDF increasing with
Reynolds number. Further information can be obtained byTable VI) of mean values of the cosine of the angle between
comparing the mean values of the cosines of the angles beranda, at different Reynolds numbers. Indeed, comparison
tweena, a_, andac in Table VI with those for DNS in Table with DNS data in Table Ill shows that Reynolds number
lll. From these tables one can infer that the vectorial anti-effects on the a|ignment betweqmanda{ are stronger for
alignment betweem, andac is more sensitive to Reynolds DNS data than for Gaussian fields. Taken together, the data
number in DNS than for the Gaussian fields. in these figures and tables indicate that close alignment be-
A similar comparison for vectorial alignment between tweena anda, is also mainly a kinematic effect. On the other
and & is given in Fig. 12, where again semi-log axes arehand, the trend towards closer alignment betwaemd a,
used in view of a high peatnear O degregsAs fora_ and  due to the dominant contribution @ to a is essentially a
ac in Fig. 11, it is clear that the alignment properties areconsequence of the Navier—Stokes dynamics.
qualitatively very similar for DNS and Gaussian fields. How- Finally, we compare the spectra af a_, andac be-
ever, quantitative differences in the Reynolds number depenween DNS and Gaussian random fields in Fig. 13. It can be
dence also exist, whictbecause of semi-log scalingre not  seen that the spectra have essentially the same shapes in each
obvious in the PDF plots but can be seen in the behaviogase. Except for some differences at the lowest wave num-
bers, the magnitudes of the spectraapfandac are compa-
rable between DNS and GRF. However, the acceleration

10* T T T T T T T spectrum itself is significantly lower for GRFs, which is con-
10’ \ (@) 4 sistent with stronger mutual cancellation noted above based
10° "\\ ﬂ on analyses of other quantities.
&4 3
por 10" \\54\ 3
102 S 3 V. SUMMARY AND DISCUSSION
T, - i i
1073 T AT A In this article we have used data from direct numerical
oty ] simulations of incompressible isotropic turbulence to inves-
0 30 60 , 90 20150 180 {igate the validity of the random Taylor hypothesisin
10? I ,(a’i") - terms of statistical gnd geometrical properties of 'the accel-
E 3 eration vector and its local and convective constitugats
10’ :\4\\ (b) a=a, +ac) compared with irrotational and solenoidal con-
100 _ \,\ _ stituents(as a=a +ag). The data cover ensemble-averaged
DN Taylor-scale Reynolds numbers in the range approximately
PDF 4oL K@\‘; - 38 to 240 on grids from 64to 512, and are compared with
10 of \S\\A\A 3 results extracted from Gaussian random fields with the same
: 5\?A\MAHA\A§ energy spectrum and Reynolds number.
1075 R ST B\'\%B—H:Tso Our results show that the variance of the total accelera-
8(ayar) tion a is indeed small compared to those af=du/dt and
ac=(u-V)u. This can be traced ta, andac being strongly
FIG. 12. Same as Fig. 11, but f&a,a,). negatively correlated, with correlation coefficient close to
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—0.9 at R 240. At the same time, it is well known thatis  antiparallel alignment betweesy and ac, suggesting that
close to a=—V(p/p), which is much larger tharag  these alignment properties are essentially kinematic in na-
=pV?2u. By taking a Hemholtz decomposition @ we ture. These alignments and the mutual cancellation between
show that the fact ofa®) being relatively small can be a_andac are, in fact, found to be stronger for GRFs. How-
viewed as the result of strong mutual cancellation betweerver, effects of Navier—Stokes dynamics are manifested in
a_ (which is solenoidaland the solenoidal part @ . This  the form of Reynolds number dependence, which is much
cancellation occurs in such a manner thats still a domi-  stronger for DNS data compared to Gaussian random fields.
nant contribution tca despite being small in variance com- By considering PDFs of different quantities we also find that,
pared toa, andac . within a general trend of increasing intermittency at higher

It is important to note that the effects described in theReynolds number, the effect of mutual cancellation between
preceding paragraph all become stronger at higher Reynolds andac is to makea more intermittent in DNS but less so
number. Consequently at sufficiently high Reynolds number$or Gaussian random fields.

we may expect the relations
(@<(@ ()= ()<Y~ (@) @) oM
! s P.V. and P.K.Y. gratefully acknowledge support from

to hold, where the <” sign is interpreted here as “at least the National Science Foundation, via Grant No. CTS-

an order of magnitude smaller than.” In particular, the rela-9705678, and via NSF cooperative agreement ACI-9619020
tion <a2><<af>~(aé) is in support of the random Taylor through computing resources provided by the National Part-
hypothesis. It may be appropriate, however, to give a mor@ership for Advanced Computational Infrastructure at the

limited interpretation of this hypothesis in the sense that thédan Diego Supercomputer Center.

microstructure isstatistically decorrelatedrom the energy

containing eddies. This is different from the original assump-‘F. H. Champagne, “The fine scale structure of the turbulent velocity

tion by Tennekes (and similay that themicrostructure is ~ field.” J. Fluid Mech.86, 67 (1978. .
W. J. A. Dahm and K. B. Southerland, “Experimental assessment of Tay-

stat|st|pally 'nd?pendem of the_energy CP”ta'”'”zg S‘%g'es lor’'s hypothesis and its applicability to dissipation estimates in turbulent
There is a growing body of experimental evidelfcd-?2-24 flows,” Phys. Fluids9, 2101(1997.
suggesting that large and small scales are not statisticallyE. Gledzer, “On the Taylor hypothesis corrections for measured energy

in nden i in racticall rrel This i _spectrq of turbulence,” Physica D04, 16_3(199?). _ _
depe dent desp te be g practically decorrelated S S4R. J. Hilland S. T. Thoroddsen, “Experimental evaluation of acceleration

sue, however, is beyond the scope of this a_rtide- correlations for locally isotropic turbulence,” Phys. Rev. 35, 1600
The DNS data show that local accelerati@)(and the (1997.

solenoidal part 4 ) of the convective acceleration are 5Y. Kaneda, “Lagrangian and Eulerian time correlations in turbulence,”
g .
. . . Phys. Fluids A5, 2835(1993.
mostly canceling each other, resulting in a very small sole-ey ‘s | vov, A. Pomyalov, and I. Procaccia, “Temporal surrogates of

noidal part @g) of the total acceleration vector. However, we spatial turbulent statistics: The Taylor hypothesis revisited,” Phys. Rev. E
emphasize this does not mean that they are not separately0 4175(1999.

important. For example, the main contribution to enstrophy g;im'ﬁ:t“wg‘éhagg g'(lMésgag'om' Microstructure of turbulent flow,

production in the mean-squared vorticity budget is associated; _r_pinton and R. Labbe, “Correction to the Taylor hypothesis in swirl-

with ac,, but not witha, . This issue is to be addressed ing flows,” J. Phys. 114, 1461(1994.
9 H H n .
separately elsewhere. M. B. Pinsky and A. P. Khain, “Turbulence effects on cloud and precipi-

. .. . tation formation—A review,” J. Aerosol Sck8, 1177(1997).
We also studied the statistics of acceleration from theoa A praskovsky, E. B. Gledzer, M. Yu. Karyakin, and Y. Zhou, “Fine-

perspectives of vectorial alignment in physical space and scale turbulence structure of intermittent shear flows,” J. Fluid M24B,
spectra in wave number space. Statistics of the angle bqi493(1993k- Eulerian an o , . _
tweena, and ac show clear evidence of strong antialign- [ TeNNSKss, Eulsrian an 5'éalg(r12n%an fime microscales in isotropic tur-
ment, with high probability in the range close to 180 degreesizc. Tong, “Taylor's hypothesis and two-point coherence measurements,”
On the other hand, strong positive alignment is observed Boundary-Layer MeteoroB1, 399 (1966).
betweena and a and both of these effects become more“P. Vedula and P. K. Yeung, “Similarity scaling of acceleration and pres-
1' . . . . I . I . f . . I ” Ph .
pronounced at higher Reynolds number. In wave number,S:fl;%ssial“slt'zcgsL’lgggmer'ca simulations of isotropic turbulence,” Phys
space, we find that the spectrumanfs comparable to_ those G voth, K. Satyanarayan, and E. Bodenschatz, “Lagrangian acceleration
of a anda¢ at low wave number but much smaller in mag- measurements a large Reynold numbers,” Phys. FILgI2268(1998.
nitude at high wave numbers. This dependence on WavlesP. K. Yeung, “Direct numerical simulation of two-particle relative diffu-
) . sion in isotropic turbulence,” Phys. Fluids 3416(1994).
number Su.ggeStS that the. random Taylor hypOtheS'S hasP. K. Yeung, “One- and two-particle Lagrangian acceleration correlations
greater validity when applied to smaller scales being ad- in numerically simulated homogeneous turbulence,” Phys. FIgj@981
vected by the large-scale motions. (1997.
H . . . . .17 i . P . .
Finally, comparisons between velocity fields obtained in Z'm 'Elezﬁjunlgoiqgo?rbﬁgciﬁf&,e;iger?rggIi?uiséa&se“ccz%;msrgld({egcégnumencal
DNS and Gaus_S'an random f'?ld§RF’ which ha}ve not 18y, zhou and R. Rubinstein, “Sweeping and straining effects in sound
evolved according to the Navier—Stokes equatioat a generation by high Reynolds number isotropic turbulence,” Phys. Fluids
given Reynolds number show that there is a large kinemati(l:98, 647(1996. _ S _
contribution to effects described above. In particular, we find A Tsinober, “How important are direct interactions between large and
. [ o small scales in turbulent flows?” ilNew Approaches and Concepts in
considerable qualitative similarities between DNS and GRF 1pylence edited by T. Dracos and A. Tsinob@irkéuser, Basel, 1993

results on the alignment between the vectanda, and the p. 141.

Downloaded 28 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1984 Phys. Fluids, Vol. 13, No. 7, July 2001 Tsinober, Vedula, and Yeung

20M. S. Borgas and B. L. Sawford, “The small scale structure of accelera- International Symposium on Turbulence and Shear Flow Phenaomena
tion correlations and its role in the statistical theory of turbulent disper- Stockholm, Sweden, 27—29 June 20@1 press3.
sion,” J. Fluid Mech.228, 295 (1992). 29M. Kholmyansky, A. Tsinober, and S. Yorish, “Velocity derivatives in an
?IM. S. Borgas and P. K. Yeung, “Conditional fluid particle accelerations in - atmospheric surface layer at R&0". Further results,” inProceedings of

22turbulence,”_Theor. Comput. Fluid Dyi.1, 69 (1998_. o the 2nd International Symposium on Turbulence and Shear Flow Phenom-
K. R. Sreenivasan and B. Dhruva, “Is there scaling in high-Reynolds- ena Stockholm, Sweden, 27—29 June 2001 press.
number turbulence?” Prog. Theor. Phys. Sufd0, 103 (1998. ' '

30 n f .
X. Shen and Z. Warhaft, “The anisotropy of the small scale structure in
2M. Kholmyansky and A. Tsinober, “On the origins of intermittency in Ry

real turbulent flows,” inintermittency in Turbulent Flowsdited by J. C. high Reynolds number (fRe-1000) turbulent shear flow,” Phys. Fluids

Vassilicos(Cambridge University Press, Cambridge, UK, 20Qf) 183. 3112’ 29_76(200?' . L . |
24p_ K. Yeung and Y. Zhou, “Universality of the Kolmogorov constant in A Tsinober, “On one property of Lamb vector in isotropic turbulent

numerical simulations of turbulence,” Phys. Rev5E, 1746(1997). Bzflow,” Phys. Fluids A2, 484(1990. _ ‘
R, S. Rogallo, “Numerical experiments in homogeneous turbulence,” L+ Shtilman, M. Spector, and A. Tsinober, “On some kinematic versus
NASA Tech. Memo. 8131%1981). dynamic properties of homogeneous turbulence,” J. Fluid Médf, 65
%y Eswaran and S. B. Pope, “An examination of forcing in direct numeri- __(1993.
cal simulations of turbulence,” Comput. Fluid$, 257 (1988. 33M. Pinsky, A. Khain, and A. Tsinober, “Accelerations in isotropic and
2’M. Nelkin, “Universality and scaling in fully developed turbulence,”  homogeneous turbulence and Taylor's hypothesis,” Phys. F12d8195
Adv. Phys.43, 143(1994). (2000.

288, Liithi, U. Burr, W. Kinzelbach, and A. Tsinober, “Velocity derivatives **K. R. Sreenivasan and R. A. Antonia, “The phenomenology of small-
in turbulent flow from 3D-PTV measurements,” Rroceedings of the 2nd scale turbulence,” Annu. Rev. Fluid MecB9, 435(1997).

Downloaded 28 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



