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Equations are more important to me, because politics is for the present, but an
equation is something for eternity. - Albert Einstein (1879-1955)





Contents

1 Introduction 1

1.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theoretical preliminaries: a pedestrian approach . . . . . . . . . . 3
1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Effective one-component description . . . . . . . . . . . . . 4
1.2.3 Virial expansion . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 The Baxter potential . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Higher concentrations . . . . . . . . . . . . . . . . . . . . . 9

1.3 Theoretical preliminaries: rigorous treatment . . . . . . . . . . . . 12

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Effective one-component description . . . . . . . . . . . . . 13
1.3.3 Virial expansion . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Distribution function theories . . . . . . . . . . . . . . . . . 18

1.3.5 The Baxter potential . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Optimized Baxter model of protein solutions: Electrostatics versus ad-
hesion 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Second virial coefficient . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1.1 Second virial coefficient . . . . . . . . . . . . . . . 30

2.2.1.2 Effective attractive well . . . . . . . . . . . . . . . 32
2.2.1.3 Attractive well in the Baxter limit . . . . . . . . . 35

2.2.2 Application to lysozyme . . . . . . . . . . . . . . . . . . . . 36
2.2.2.1 Experimental Data . . . . . . . . . . . . . . . . . 36

2.2.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



iv CONTENTS

2.3 Liquid state theory at higher densities . . . . . . . . . . . . . . . . 42
2.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1.1 Density dependent attractive well in the Baxter
limit . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1.2 Approximate radial distribution function for the
Baxter potential . . . . . . . . . . . . . . . . . . . 44

2.3.1.3 Determination of the effective adhesion . . . . . . 45
2.3.2 Application to lysozyme . . . . . . . . . . . . . . . . . . . . 47

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.1 Effective charge . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.2 Dependence of B2 on ionic strength . . . . . . . . . . . . . 51
2.5.3 Corrections to the free energy . . . . . . . . . . . . . . . . . 52

3 Application of the optimized Baxter model to the hard-core attractive
Yukawa system 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Phase equilibrium . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Consistency test in the fluid phase . . . . . . . . . . . . . . 67

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.1 Finite size effects . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.2 Second-order correction to the free energy . . . . . . . . . . 74

4 Fluid-crystal coexistence for proteins and inorganic nanocolloids: De-
pendence on ionic strength 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Optimized Baxter model . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Solubility curves: chemical potential of the fluid phases . . . . . . 84
4.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Lysozyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Silicotungstates (STA) . . . . . . . . . . . . . . . . . . . . . 87

4.4 Crystal model: Donnan effect . . . . . . . . . . . . . . . . . . . . . 91
4.4.1 Comparison with experiment . . . . . . . . . . . . . . . . . 95

4.4.1.1 Lysozyme crystal . . . . . . . . . . . . . . . . . . . 95
4.4.1.2 STA crystals . . . . . . . . . . . . . . . . . . . . . 96
4.4.1.3 H4STA.31H2O . . . . . . . . . . . . . . . . . . . . 96
4.4.1.4 Li4STA.24H2O/Li4STA.26H2O . . . . . . . . . . . 97
4.4.1.5 Na4STA.18H2O . . . . . . . . . . . . . . . . . . . 98

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



CONTENTS v

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.1 Phase diagram of hard spheres interacting by attractive

Yukawa forces . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6.2 Poisson-Boltzmann equation in a crystal or porous medium 101

5 Collective diffusion coefficient of proteins with hydrodynamic, electro-
static and adhesive interactions 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.1 Effective interaction . . . . . . . . . . . . . . . . . . . . . . 106
5.2.2 Stickiness parameter . . . . . . . . . . . . . . . . . . . . . . 108
5.2.3 General expression for λC . . . . . . . . . . . . . . . . . . . 109
5.2.4 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.5 Determination of λC . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Comparison with experiment . . . . . . . . . . . . . . . . . . . . . 115

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121

Summary 135

Samenvatting 139

Curriculum Vitae 143

List of Publications 145

Dankwoord 147





Chapter 1
Introduction

1.1 Proteins

Proteins are among the key components in cells of living organisms. They perform
a broad range of different tasks, from the catalyzation of reactions by enzymes to
the packaging of DNA by histone proteins and from the transport of molecules
through membranes by membrane-bound transporters or inside the cell by motor
proteins, to the spatial organization of the cell by cytoskeletal filaments [1]. In
fact, one of the main functions of DNA, the carrier of genetic information, is to
store the information on how to build the different proteins that a cell needs.
The number of different proteins in a living organism ranges from typically a few
thousand in prokaryotes (eubacteria and archaea) to a few tens of thousands in
multicellular eukaryotes (animals, plants and fungi) [1].

The basic building blocks of proteins are amino acids. There are hundreds of
types of naturally occurring amino acids [2] but only 20 are commonly used by
organisms to build proteins [1]. An amino acid consist of a carboxyl group, an
amino group and a side chain all linked to the same carbon atom. The carboxyl
group links covalently to the amino group of another amino acid, forming the
(linear) backbone of the protein. Except for the ends, the backbone is uncharged.
The side chain of an amino acid can be either polar or nonpolar (hydrophilic or
hydrophobic). The polar side chains can be basic, acidic or neutral (positively
charged, negatively charged or neutral, depending on the pH). The backbone of
the protein and some of the side chains can also form hydrogen bonds, and the
amino acid cysteine can form a disulfide bond with another cysteine [1].

The molar mass of amino acids in proteins ranges from 75 Da (1 Dalton (Da)
is equivalent to 1 g mol−1) for glycine to 204 Da for tryptophan [3]. The minimum
number of amino acids in a protein is about 20 to 30. Smaller amino acid chains
generally do not have a unique, well-defined structure and are called peptides [4].
One of the largest known proteins is titin, a protein that is relatively abundant in

1
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striated muscle. It has a molar mass of about 2.6−2.8 MDa [5]. A typical protein
consists of a few hundred amino acids, has a molar mass of a few tens of kDa and
a radius of a few nanometers. In yeast, for example, a protein on average consists
of 466 amino acids and weighs 52.7 kDa [4].

Unlike linear polymers in good solvents, proteins generally fold into a dense
and unique three-dimensional structure. Biologists distinguish four levels of or-
ganization herein [1]. The first level, the primary structure, is the amino acid
sequence. Parts of the amino acid chain can form localized regular repeating
structures that are stabilized by hydrogen bonds. These structures are called sec-
ondary structures and the most important ones are the α helix and the β sheet.
Usually, the full three-dimensional or global structure of a protein is called the
tertiary structure. If a protein forms a complex with other proteins the complete
structure of this complex is called the quaternary structure.

Since the side chains of amino acids have such different properties, the surface
of a protein can be very heterogeneous. There may be charged patches, neutral
hydrophilic patches and hydrophobic patches. In fact, the heterogeneous nature of
the protein surface, together with the overall shape of the protein, makes proteins
very suitable for performing specific tasks in a cell. Fig. 1.1 on the flap on
the back cover shows an example of a protein, lysozyme obtained from hen egg
white. The shape of the surface is shown as well as the distribution of charged
and hydrophobic amino acids. Whenever we compare theoretical predictions of
properties of protein solutions in this thesis with experimental results on proteins,
we turn to lysozyme, since this is one of the best-studied proteins. The main
reason for that is that lysozyme from hen egg white is easy to obtain and easy to
purify, because it crystallizes relatively easily.

To understand the specific interactions between proteins or between a protein
and other biological material in a cell, like for example DNA, RNA or membranes,
it is important to know the three-dimensional structure of the protein and the
distribution of side chains near the surface. These can be determined by X-ray
diffraction on a protein crystal or nuclear magnetic resonance (NMR) spectroscopy
on a protein solution. Due to technical limitations, structure determination of
proteins by NMR spectroscopy is primarily limited to small proteins, usually
smaller than 25 kDa, although structures of proteins as large as 30 to 40 kDa have
been determined [9]. By contrast, X-ray diffraction can be used for structure
determination of much larger proteins. The biggest difficulty with this method is
that the protein has to be crystallized. This crystallization is generally not easy to
achieve since one does not know a priori if and under which conditions a protein
will crystallize [10]. The main goal of this thesis—a better understanding of the
thermodynamic behavior of protein solutions—may help in finding the proper
crystallization conditions.

Proteins also have wide application in the food industry. Some examples are
soy proteins (known under collective names such as α-conglycinin, β-conglycinin,
γ-conglycinin and glycinin), milk proteins like caseins and the whey proteins
(β-lactoglobulin, α-lactalbumin, bovine serum albumin, immunoglobulins and
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proteose-peptones) and egg proteins (like for example ovalbumin, ovotransfer-
rin, ovomucoid, lysozyme, ovoglobulin and ovomucin in egg white and livetins
and lipoproteins in egg yolk) [11]. A better understanding of the thermodynamic
behavior of these proteins in solution will help to develop new products.

1.2 Theoretical preliminaries: a pedestrian approach

The goal of this thesis is to develop a simple description of protein solutions, i.e.
solutions of one kind of protein in water with added monovalent salt, that can
be used to predict their thermodynamic properties with as little input data from
experiment as possible. In this section we introduce preliminaries to the theory,
which is mainly developed in Chapter 2 and then applied in Chapters 3, 4 and 5.
This section should suffice as an introduction but we refer the reader interested
in a more rigorous treatment of some aspects to Section 1.3.

1.2.1 Introduction

If one wishes to gain insight into the thermodynamic properties of protein solu-
tions, one usually measures the osmotic pressure. Other thermodynamic proper-
ties, such as the chemical potential or the osmotic compressibility, for example,
can then be determined by simple analysis. At very low concentrations of protein,
the interactions between the protein molecules may be neglected and the solution
behaves ideally. In that case the osmotic pressure Π of the solution is given by
Van ’t Hoff’s law (see for example Ref. [12])

Π = ρkBT, (1.1)

which is formally equivalent to the ideal gas law for gases. Here ρ is the number
of particles per unit volume, T is the absolute temperature and kB is Boltzmann’s
constant.

The osmotic pressure is a quantity that can be determined experimentally by
membrane osmometry (see for example Ref. [13]). There are two compartments
that are separated by a semipermeable membrane that is permeable to the solvent
(water) but not to the solute (protein), see Fig. 1.2. One chamber (I) contains pure
solvent while the other (II) contains solvent and solute. Since the solvent is free
to diffuse from one compartment to the other, the chemical potential µw(pII , xw)
of the solvent in compartment II, should be equal to the chemical potential of
the pure solvent in compartment I, µw(pI , 1). Here xw is the mole fraction of
solvent in compartment II and pi is the pressure in compartment i, which can
be measured with a pressure sensor, for example. The mole fraction of solvent
in compartment I equals unity, of course. The pressures in both compartments
are not identical, in principle, and their difference is the osmotic pressure. This
pressure must be imposed on compartment II by external means in order to assure
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I II

pure solvent solvent and solute

µw, T µw, T

pI , VI pI + Π, VII

ρ = 0 ρ

Semipermeable
membrane

SSo

Figure 1.2: Principle of membrane osmometry. Both compartments, of volume VI and
VII , contain solvent (water), but only the right one (II) contains the solute (protein),
at density ρ. The temperature T is the same for both compartments. The membrane
separating the two compartments is permeable to the solvent, so the chemical potential µw

of the solvent is the same in both compartments. At equilibrium, the pressure difference
between the two compartments is equal to Π.

mechanical equilibrium. One can derive Van ’t Hoff’s law (Eq. (1.1)) if one notes
that xw is close to unity in compartment II because the solution is dilute.

1.2.2 Effective one-component description

Van ’t Hoff’s law is generally valid for all solutions of uncharged species at van-
ishingly low concentrations of solute. We are interested in protein solutions at
higher concentrations however. In that case interactions between particles are
important and we have to include them in our description. The protein solutions
we study contain several kinds of molecules. First of all we have the proteins and
the solvent water. Moreover, the proteins are charged and the counterions are dis-
solved in the water, and monovalent salt is present. All these molecules interact
with each other and a full description of all these interactions is complicated. We
want a simplified description in which we only have proteins interacting with each
other through an effective interaction that may depend on the other components.

The protein molecules cannot overlap so the effective interaction between the
protein molecules consists first of all of the steric interaction. For simplicity, we
assume that the interactions between the protein molecules are isotropic and we
model the proteins as incompressible hard spheres (for proteins that are spherical,
more or less, this is a good approximation though, obviously, the theory will not
work for very elongated proteins). We set the volume of a sphere equal to the
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volume of a protein. The hard sphere interaction potential UHS(r) is given by

UHS(r)

kBT
=

{
∞ 0 ≤ r < 2a

0 r ≥ 2a
, (1.2)

where a is the radius of the sphere. Eq. (1.2) shows that two spheres cannot inter-
penetrate if the distance between their centers r is less than the sphere diameter
2a.

Since the proteins are charged there are electrostatic interactions between
them. We assume that the pH is far from the isoelectric point so dipole and
higher order multipole interactions of the fluctuational type can be neglected.
We model the electrostatic interaction between two proteins with a Debye-Hückel
potential [14]

UDH(r) =
Z2
p

ǫr

e−ω(r/a−2)

(1 + ω)2
. (1.3)

Here, Zp is the protein charge, ǫ is the permittivity of water, ω ≡ κa, κ−1 is
the Debye length defined by κ2 = 8πQI, I is the ionic strength, Q = q2/ǫkBT
is the Bjerrum length, which equals 0.71 nm in water at 298 K, and q is the ele-
mentary charge. Note that one part of the Debye-Hückel potential is equivalent
to Coulomb’s law for the interaction between two charges in a dielectric of per-
mittivity ǫ. The second factor describes the screening of the interaction by the
salt ions; here we suppose there is an excess of salt so we may neglect counterions
arising from the proteins themselves. Thus, we see how the effective interaction
between the proteins explicitly depends on properties of the other components,
namely those of water and salt. The Debye-Hückel potential, Eq. (1.3), is valid
at large distances and low charge densities. The fact that the potential is less ac-
curate at close distances does not influence the results much since the Boltzmann
factor exp(−U/kBT ) arises in our calculations and this only depends weakly on
U if U/kBT ≫ 1, which is the case only at close distances. In Chapter 2 we
determine an effective charge to correct for the fact that the surface charge of
proteins is relatively high using the Poisson-Boltzmann approximation to account
for nonlinear screening.

Finally, there are several other interactions, like the hydrophobic and the
polarization interactions that we have not discussed yet. It is still unclear what
the status of these forces is and how these interactions should be incorporated
in a quantitative theory. It will become apparent in the next section that we
are forced to include a salt-independent attraction of short range to describe the
experimental data relating to the second virial coefficient.

Furthermore, we have implicitly assumed that the interactions between pro-
teins are pairwise additive. This means that the interaction between a certain
number of particles is equal to the sum of interactions between all pairs of par-
ticles. This is not necessarily always the case. A charged protein, for example,
may change the distribution of ions around two other proteins, thus influencing
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the screening between those two proteins. However, we assume that these effects
are unimportant. For more details on the effective one-component description we
refer to Section 1.3.

1.2.3 Virial expansion

One useful approach at moderate concentrations of protein is to write a Taylor
expansion of the osmotic pressure [15]

Π = ρkBT (1 +B2ρ+B3ρ
2 + · · · ). (1.4)

The coefficients Bn are called the virial coefficients and the series is called a virial
expansion. If the density ρ is low enough, higher order terms can be neglected
and, usually, one only retains the first few terms in the expansion.

Once the two-particle interaction potential U is known, the virial coefficients
can be calculated. For example, if we assume that the interaction between the
particles only depends on the distance r between the centers of two particles, the
second virial coefficient B2 is given by [15]

B2 = 2π

∫ ∞

0

r2dr
(
1 − e−U(r)/kBT

)
. (1.5)

One can see that if there is no interaction between the particles (U ≡ 0) then
B2 = 0. Furthermore, a purely attractive interaction (U(r) ≤ 0) leads to a
negative B2 and an osmotic pressure lower than in the ideal case, and a purely
repulsive interaction (U(r) ≥ 0) leads to a positive B2 and a higher osmotic
pressure. If we set U = UHS +UDH (see Eqs. (1.2) and (1.3)) then B2 is positive.

We want to introduce as few relevant data as possible, for example only the
protein size and its charge, and we want to replace the protein solution by another
system that is simpler if possible. The parameters in the latter depend on those of
the original system (for example the protein parameters and salt concentration).
One example of an effective system is a fluid of hard spheres (see Eq. (1.2)). The
second virial coefficient of the hard sphere system is given by BHS2 = 4v0, where
v0 = 4πa3/3 is the volume of a single sphere.

One simple-minded procedure could then be to measure experimentally the
second virial coefficient of the protein solution as a function of solution conditions
(for example ionic strength and pH) and choose the only parameter in the hard
sphere system, the radius a, by equating the respective second virials. This yields
a hard sphere radius that depends on these solution conditions (but not on the
protein concentration!). Since the virial coefficients of the hard sphere system and
the protein solution are equal, the osmotic pressures are identical up to second or-
der in the density (see Eq. (1.4)). This means that the thermodynamic properties
are the same, at least at low concentrations of protein.

The second virial coefficient can be determined from light scattering experi-
ments. One shines laser light on a sample and measures the light that is scattered
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in a certain direction. The difference between the scattered intensity of the solu-
tion with protein and the scattered intensity of the solution without protein, Iθ,
depends on the protein concentration and at low concentrations we have (see for
example Ref. [16])

Acp
Iθ

≃ 1

M
+

2B2NAcp
M2

. (1.6)

Here M is the molar mass of the protein, cp is the concentration of protein, NA
is Avogadro’s number and A is a constant that depends on the optical properties
of the solvent and of the protein solution and the wavelength of the laser. To
determine the second virial coefficient, one prepares samples at various protein
concentrations under the same solution conditions. One then plots Acp/Iθ as a
function of cp and a linear function is fitted through the data. The ordinate of
the point where the line crosses the vertical axis (cp = 0) is equal to 1/M and B2

can be determined from the slope of the line.

Fig. 1.3 shows the second virial coefficient of lysozyme as a function of ionic
strength at pH 4.5, determined by light scattering experiments. At this pH the
protein is positively charged and one expects an electrostatic repulsion between
the protein molecules that becomes less strong with increasing ionic strength, due
to screening by the salt ions (see Eq. (1.3): at fixed distance r, UDH decreases
if I increases). As described earlier, in a naive procedure, we might want to
replace the protein solution by an effective hard sphere system. We choose the
radius of the spheres in such a way that the second virial coefficients are equal.
Since we have repulsion both from the actual hard interaction between the protein
molecules and from the electrostatic interaction, we would expect the adjustable
radius of the hard spheres to be somewhat larger than the real (effective) protein
radius. We also expect that this hard sphere radius decreases with increasing
salt concentration to a limiting value that is equal to the real (effective) radius of
the protein, since UDH is negligible at very large ionic strengths (see Eq. (1.3)).
However, from Fig. 1.3 we see that for large enough values of the ionic strength
(I & 0.1 M), the second virial coefficient is smaller than the value one would
expect if there were no electrostatic interaction (B2/B

HS
2 < 1, where BHS2 is the

second virial coefficient of spheres with a radius equal to the effective protein
radius). In other words, in that case the radius of the spheres in the hard sphere
system has to be less than the (effective) radius of the proteins. For larger values
of the ionic strength (I & 0.2 M) the second virial coefficient becomes negative
even, implying a negative radius!

We draw two conclusions from these results. First of all, the sum of a hard
interaction plus an electrostatic repulsion only is not enough to describe the in-
teraction between the proteins. Apparently, there is also an attractive interaction
between the proteins and we have to include this in our description to explain the
experiments. This is what we do in the first part of Chapter 2. We introduce an
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Figure 1.3: Experimental data of the second virial coefficient B2 of lysozyme as a
function of the ionic strength I at a pH of about 4.5. The second virial coefficient is
scaled by the hard sphere value BHS

2 . Black squares: Bonneté et al. [17], pH 4.5, 20 ◦C;
grey triangles: Curtis et al. [18], pH 4.5, 20 ◦C; grey squares: Muschol et al. [19], pH
4.7, 20 ◦C; black stars: Curtis et al. [20], pH 4.5, 25 ◦C; black diamonds: Bonneté et
al. [17], pH 4.5, 25 ◦C; black triangles: Velev et al. [21], pH 4.5, 25 ◦C; white squares:
Rosenbaum et al. [22], pH 4.6, 25 ◦C; white diamonds: Rosenbaum et al. [23], pH 4.6,
25 ◦C; grey stars: Bloustine et al. [24], pH 4.6, 25 ◦C; white stars: Piazza et al. [25],
pH 4.7, 25 ◦C; white triangles: Behlke et al. [26], pH 4.5; grey diamonds: Bloustine et
al. [24], pH 4.7. In all cases, the electrolyte is NaCl, often with a small amount of Na
acetate added.

attractive square well interaction of short range

USW (r) =






0 0 ≤ r < 2a

−UA 2a ≤ r ≤ 2a+ δa

0 r > 2a+ δa

, (1.7)

and we use a variety of measurements of the second virial coefficient by a large
number of groups to determine the strength UA and range δa of this interaction.
We assume that these parameters are independent of the ionic strength and we
show that they are probably also independent of the pH. The second conclusion is
that the hard sphere system is not suitable as a model system here. We therefore
introduce the adhesive hard sphere system in the next section.
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1.2.4 The Baxter potential

In the Baxter or adhesive hard sphere (AHS) model the particles behave as hard
spheres, but they also have a sticky interaction. The interaction potential UAHS
is given by [27]

UAHS(r)

kBT
=





∞ 0 ≤ r < 2a

ln 12τζa
2a+ζa 2a ≤ r ≤ 2a+ ζa

0 r > 2a+ ζa

, (1.8)

where τ is a constant and the limit ζ ↓ 0 has to be taken after all integrations
have been done. In other words, we have a hard sphere system with a square well
attraction of vanishing width and infinite depth in such a way that the second
virial coefficient remains finite

BAHS2 = BHS2

(
1 − 1

4τ

)
. (1.9)

This is derived by inserting Eq. (1.8) into Eq. (1.5). Here BHS2 = 4v0 is the
second virial coefficient pertaining to hard spheres without the attraction. One
sees that for small enough values of τ the second virial coefficient is negative.

In Chapter 2 we approximate the protein solution by a system of adhesive
hard spheres. We set the radius of the spheres equal to the effective radius of the
proteins and we choose the stickiness parameter τ = τ0 in such a way that the
virial coefficients of the AHS system and the protein solution are the same taking
into account the electrostatic interactions. (For clarity, τ0 refers to the value of τ
at low concentrations, when its value is determined by matching second virial co-
efficients, and τ refers to the value that is also valid at higher concentrations, and
which is determined differently (see the next sections and Chapter 2)). The stick-
iness parameter τ0 is then a function of solution conditions such as, for example,
the ionic strength and pH (protein charge) and it depends on parameters like the
strength and the range of the short range attraction: τ0 = τ0(Z, I;UA, δ). Ther-
modynamic properties of the system can then be determined from the osmotic
pressure

Π

kBT
= ρ+BAHS2 (τ0)ρ

2 (1.10)

where τ0 is a known function of the solution conditions and BAHS2 is given by Eq.
(1.9). We emphasize that this replacement is valid at low enough concentrations
i.e. when virials beyond the second may be neglected.

1.2.5 Higher concentrations

At higher concentrations the approximation of the osmotic pressure by the first
two terms in the virial expansion deteriorates. For comparison, we show the sum
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of the first two terms of the virial expansion and the “exact” osmotic pressure from
simulations [28] as a function of protein volume fraction η ≡ ρv0 at various values
of the stickiness parameter τ0 in Fig. 1.4. We see that the difference between the
two curves is appreciable even at relatively small protein volume fractions. Note
also the strong dependence of the osmotic pressure on the stickiness τ0.

τ0 = 0.12

τ0 = 0.2

τ0 = 0.4

τ0 = 1

η

Π
/ρ

k
B
T

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

Figure 1.4: Comparison between the osmotic pressure Π as a function of volume frac-
tion of particles η from the first two terms in the virial expansion, Eq. (1.4), with the
second virial coefficient from Eq. (1.9) (dash-dotted lines), and the “exact” result from
simulations [28] (solid lines), at various values of the stickiness τ0. For both dash-dotted
and solid lines we have from bottom to top τ0 = 0.12, τ0 = 0.2, τ0 = 0.4 and τ0 = 1.

One strategy to deal with higher concentrations is to include more terms in
the virial expansion. However, the higher virial coefficients are increasingly more
difficult to compute. Another approach is to focus on correlations between the
particles in the liquid. A quantity that is often used, and that can be measured
relatively easily by scattering techniques, is the radial distribution function g(r),
which describes the correlation between two particles (see for example Ref. [29]).
More specifically, 4πr2ρg(r)dr equals the average number of particles in a shell of
thickness dr at a distance r from a particle. Once the radial distribution function
is known, one can determine thermodynamic properties of the system by using
the compressibility equation [30]

kBT

(
∂ρ

∂Π

)

〈N〉,T
= 1 + 4πρ

∫
r2 dr [g(r) − 1] , (1.11)
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the virial equation

Π = ρkBT − 2πρ2

3

∫
r3 dr

dU(r)

dr
g(r), (1.12)

or the energy equation

E

V
=

3

2
ρkBT + 2πρ2

∫
r2 dr U(r)g(r). (1.13)

Here E is the average energy of the system, N is the number of particles and V
is the volume of the system. If g(r) is known exactly, all three equations yield
identical thermodynamics. For example, in the ideal case U ≡ 0 we have g(r) ≡ 0
and we find Π = ρkBT and E = 3

2NkBT . For low particle densities, when
only two particle interactions are important, we have a Boltzmann distribution
g(r) = exp[−U(r)/kBT ] and we find from Eq. (1.11) or Eq. (1.12), in combination
with Eq. (1.5), Π/ρkBT = 1 +B2ρ.

In most cases one does not have an exact expression for g(r) however, and one
tries to solve g(r) from an approximate integral equation. A famous example that
gives accurate results for short-range potentials is the Percus-Yevick equation [31]

eU(r1)/kBT g(r1) = 1 + ρ

∫
dr2 [g (r12) − 1]

[
1 − eU(r2)/kBT

]
g(r2), (1.14)

where r12 ≡ |r2 − r1|. Note that for vanishing particle density ρ we recover the
exact result g(r) = exp[−U(r)/kBT ]. For most interaction potentials the Percus-
Yevick equation cannot be solved exactly and one has to resort to approximate
methods or numerical solutions, but in some cases, for example in the case of hard
spheres [32] and also in the case of adhesive hard spheres [27], the Percus-Yevick
equation admits an analytical solution. This makes the adhesive hard sphere
system useful as a reference system. Note that because the expression for g(r)
from the Percus-Yevick equation is merely approximate, the three results from
the compressibility equation, the virial equation and the energy equation are not
entirely consistent (see Section 1.3.5).

Now, instead of trying to solve the Percus-Yevick equation, or some other in-
tegral equation, for the complicated interaction potential of our original system
(U = UHS + UDH + USW , see Eqs. (1.2), (1.3) and (1.7)), we again want to
replace ours by a system of Baxter spheres. We can then use the solution of the
adhesive hard sphere system in the Percus-Yevick approximation to determine
thermodynamic properties of the original system. The second part of Chapter
2 describes how to do this. We again set the radius of the spheres equal to the
effective radius of the proteins but we now choose the stickiness parameter τ in
such a way that the free energy of the AHS system and the protein solution is
the same, at least to an excellent approximation. Then the stickiness parameter
τ not only depends on the solution conditions, such as the ionic strength and pH,
but also on the protein concentration. In order to do this, we only need the pair
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distribution function of the Baxter model and not of the original system. In other
words, we first determine τ = τ(Z, I, η;UA, δ). Then we can determine thermody-
namic properties from the expressions for these thermodynamic properties for the
AHS model (see for example Section 1.3.5 for expressions for the osmotic pressure
and the chemical potential).

1.3 Theoretical preliminaries: rigorous treatment

1.3.1 Introduction

Even in the relatively simple case of a protein solution that contains only water, a
single type of protein, and monovalent salt, the interactions between the proteins
can be quite complicated. Since protein molecules cannot overlap, they first of all
interact sterically. Although proteins are quite dense objects, they can in principle
be slightly deformed. Next, some amino acids are acidic or basic. This means
that proteins are charged in water and this charge fluctuates due to the constant
binding and unbinding of protons to these amino acids [33]. The equilibrium
constants associated with these processes depend on the electrostatic potential
at the binding site. This means that surrounding charges influence the binding
constant at a particular site and the charge of a protein cannot be determined by
solely considering the values of the equilibrium constants of the separate amino
acids, although such an estimate is usually not wide off the mark. For accurate
estimates on the protein charge titration experiments have to be performed.

The charges on a protein are not distributed homogeneously so the sign of
the charge and its density can differ from place to place, which complicates mat-
ters. The salt ions in the solution interact with the charges on the protein, ef-
fectively screening the interactions and making them of shorter range. Since the
electrostatic interactions are screened by the salt, the binding constants for the
protonation and deprotonation of the basic and acidic amino acids depend on
the salt concentration. In other words, the titration curves depend on the salt
concentration.

Apart from the steric interactions between the protein molecules and the
screened Coulomb interactions between their charges, there are also polarization
forces between the protein molecules, which are essentially also electrostatic in
origin [34]. These forces are of short range but there is no accurate quantita-
tive theory to describe them for complicated molecules such as proteins. Finally,
there is the solvent, water, the exact effects of which are not very well known. It
is claimed that water structuring around the protein and the salt ions influences
the interactions [34], but there is no quantitative theory to describe this.

Another issue that makes calculating the properties of protein solutions non-
trivial is the fact that, in principle, the interactions between proteins depend on
their orientation. However, in order to develop an analytical theory, one resorts
to approximations. Here we assume the interactions to be isotropic i.e. the pro-
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tein molecules are spherical and the charge is distributed homogeneously on the
surface. This means that our theory cannot be used for proteins with a large as-
pect ratio, such as bovine serum albumin, or proteins with a greatly asymmetric
charge distribution or at a pH close to the isoelectric point of the protein. We
come back to all this in more detail in the next chapter, but for the remainder
of this chapter it is important to note that the effective interaction between the
proteins only depends on the distance r between their centers of mass.

We do not take the water molecules and the salt ions as such explicitly into
account. We integrate out the degrees of freedom of these particles and we are left
with particles of one type, the proteins, that interact through an effective two-
particle interaction. We discuss this effective one-component description next.

1.3.2 Effective one-component description

We are interested in the thermodynamic properties of protein solutions. As de-
scribed in the previous section, the interactions between the protein molecules
are influenced by the other molecules present in the solution, that is, the water
molecules, the ions of the monovalent salt and possibly other molecules that are
present. This means that, in principle, in a description of the total system all
the particles have to be taken into account. However, in order to simplify the
description, we want to get rid of the explicit dependence of the interaction on
these other molecules and we want to describe the system effectively as a one-
component system of only proteins. A convenient framework in which to carry
this out is the McMillan-Mayer solution theory [35] (see Ref. [29] for an extensive
discussion of this theory).

Let us start by considering an open system, that is, a system where the tem-
perature T and volume V are constant and where particles can be exchanged
with a reservoir. Suppose we have K species of molecules in the solution. The
activity of species k (k ∈ {1, 2, . . . ,K}) is defined by zk ≡ exp(µk/kBT )/Λ3

k

where µk is the chemical potential of species k, kB is Boltzmann’s constant and
Λk = h/

√
2πmkkBT is the thermal wavelength. Here h is Planck’s constant and

mk is the particle mass. Now suppose the number of molecules of species k in a
certain configuration equals Nk and suppose the coordinates of the Nk molecules
of species k in that configuration are denoted by xk ≡ {x1

k,x
2
k, . . . ,x

Nk

k }, where
x
i
k are the coordinates of molecule number i of species k. For convenience we

write x ≡ {x1,x2, . . . ,xK}. The interaction potential in a certain configuration

depends on the coordinates of all the molecules and we denote it by Ũ(x). Then
the grand partition function Ξ of the system is defined by

Ξ(z, V, T ) ≡
∞∑

N1=0

∞∑

N2=0

. . .

∞∑

NK=0

(
K∏

k=1

zNk

k

Nk!

)∫
dx e−Ũ(x)/kBT , (1.15)

where the integral extends over all possible configurations of that particular collec-
tion of molecules and where we used the shorthand notation z ≡ {z1, z2, . . . , zK}.
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From the grand potential all thermodynamic properties can be derived such as
the average pressure

p = kBT
ln Ξ(z, V, T )

V
(1.16)

and the average number of particles of species k

〈Nk〉 = zk

(
∂ ln Ξ(z, V, T )

∂zk

)

V,T,{zi}i6=k

. (1.17)

Now let species 1 denote the protein. We are interested in the properties of
the solution compared to that of a similar solution without the proteins present.
In other words, we compare our original system with a system at the same tem-
perature T and volume V with the same activities for all the molecule species
except that z1 = 0. Since the grand potential −pV is proportional to ln Ξ, we
are interested in Ξ(z, V, T )/Ξ(z̃, V, T ), where z̃ ≡ {0, z2, z3, . . . , zK}. We rewrite
Eq. (1.15) as

Ξ(z, V, T )

Ξ(z̃, V, T )
=

∞∑

N1=0

(z1/γ
0
1)N1

N1!

×
∫
dx1

[
(γ0

1)N1

Ξ(z̃, V, T )

∞∑

N2=0

. . .

∞∑

NK=0

(
K∏

k=2

zNk

k

Nk!

)∫
dx̃ e−Ũ(x)/kBT

]
. (1.18)

Here x̃ ≡ {x2,x3, . . . ,xK} and γ0
1 denotes the limiting value of the activity co-

efficient γ1 as z1 → 0, where γ1 is defined by γ1 ≡ z1/ρ1 and ρ1 ≡ 〈N1〉/V .
Since we are looking for a one-component description, we need to find an effec-
tive interaction such that Eq. (1.18) resembles the grand partition function of a
one-component system. The way in which Eq. (1.18) has been written already
suggests a possible choice. We define an effective interaction (or potential of mean
force) Φ(N1)(x1, z̃, T ) between particles of species 1 by

e−Φ(N1)(x1,z̃,T )/kBT

≡ (γ0
1)N1

Ξ(z̃, V, T )

∞∑

N2=0

. . .

∞∑

NK=0

(
K∏

k=2

zNk

k

Nk!

)∫
dx̃ e−Ũ(x)/kBT . (1.19)

We first have to prove that this is indeed the potential from which the force
between the proteins can be derived. Suppose q is an arbitrary coordinate associ-
ated with one of the particles of species 1. Then the force F experienced by that
particle along the direction of coordinate q is the force experienced in a certain
configuration of molecules averaged over all possible configurations of particles
with the particles of species 1 fixed

F = −
〈
∂Ũ

∂q

〉
=

∫
dx̃
(
∂Ũ/∂q

)
e−Ũ(x)/kBT

∫
dx̃ e−Ũ(x)/kBT

. (1.20)
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It is not difficult to show that (see for example Ref. [29])

−∂Φ(N1)

∂q
= −

〈
∂Ũ

∂q

〉
. (1.21)

This equation shows that the average force is derivable from a potential and that
this potential is Φ(N1). In principle one could add an arbitrary constant to Φ(N1)

and still have a function that obeys Eq. (1.21). However, we note that in the

limit z → 0, Φ(N1) → Ũ so Eq. (1.19) is the correct expression for the potential
of mean force.

If we now substitute the expression for the potential of mean force, Eq. (1.19),
in Eq. (1.18) we find

Ξ∗(z, V, T ) ≡ Ξ(z, V, T )

Ξ(z̃, V, T )
= e(p(z)−p(z̃))/kBT

=

∞∑

N1=0

(z1/γ
0
1)N1

N1!

∫
dx1 e−Φ(N1)(x1,z̃,T )/kBT . (1.22)

This is the main result of this section and it shows that we can describe the protein
solution as a one-component solution if we make the substitutions z1 → z1/γ

0
1 ,

p → Π = p(z) − p(z̃), Ξ → Ξ∗ and if we use Eq. (1.19) for the interaction. Π
is the osmotic pressure and γ1/γ

0
1 can be considered as a “concentration activity

coefficient” and z1/γ
0
1 as a “concentration activity” with γ1/γ

0
1 → 1 and z1/γ

0
1 →

ρ1 as ρ1 → 0. A very practical consequence of this result is that one can use all
the methods developed for the theoretical description of gases (virial expansions,
integral equations for distribution functions etc.) to describe the protein solution
without any further modifications.

The two main difficulties now lie in finding the potential of mean force
Φ(N1)(x1, z̃, T ) and calculating Eq. (1.22). Usually the interaction potential Ũ(x)
is not known and even if it is, the integrals in Eq. (1.19) cannot be performed
analytically in general. One therefore has to find some approximate potential of
mean force. We come back to this problem in Chapter 2. We discuss approximate
methods to calculate Eq. (1.22) in the next sections.

1.3.3 Virial expansion

For convenience, we drop the subscript 1 from now on and write N ≡ N1, z ≡ z1
etc. We also drop the explicit mention of dependencies on fugacity z̃, volume V
and temperature T , and we define z∗ ≡ z/γ0. For clarity we denote the positions
of the N proteins in a certain configuration by r

N = {ri}Ni=1, where ri is the
position of protein i.

In principle, in order to calculate the grand partition function Eq. (1.22), one
has to calculate expressions of the form

Z∗
N ≡

∫
drN e−Φ(N)(rN ))/kBT . (1.23)
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In practice these integrals cannot be performed analytically, even if relatively
simple approximations for the functions Φ(N)(rN ) are used, and the configuration
space is too large for a brute force numerical calculation. Therefore one has to
resort to approximate methods. The first of these we discuss is the virial expan-
sion. Since it produces a systematic expansion of the thermodynamic quantities
of interest for small values of the density ρ ≡ 〈N〉/V , this method is very useful
at low concentrations of particles.

We assume that the interaction between the particles is pairwise additive

Φ(rN ) =

N∑

i=1

N∑

j>i

U(rij). (1.24)

Here rij ≡ ri − rj and rij ≡ |rij | is the distance between particles i and j. We
start by introducing the Mayer function

f(rij) = e−U(rij)/kBT − 1 (1.25)

and write the configurational integral in Eq. (1.23) as

Z∗
N =

∫
drN

N∏

i=1

N∏

j>i

[f(rij) + 1] . (1.26)

From its definition, Eq. (1.25), it is clear that the Mayer function is small if
the interaction between the particles is small, so for short-range potentials it
seems natural to expand the product in the integrand of Eq. (1.26). If one then
substitutes this expansion in Eq. (1.22) and collects terms with the same number
of Mayer functions one finds, after some algebra,

Ξ∗ = eV
∑∞

N=1 bN (z∗)N

, (1.27)

and
Π

kBT
=

∞∑

N=1

bN (z∗)N . (1.28)

The first three of the cluster integrals bN are given by (see Ref. [36] for more
details)

b1 = 1, (1.29)

b2 =
1

2V

∫
dr1

∫
dr2 f(r12) (1.30)

and

b3 =
1

6V

∫
dr1

∫
dr2

∫
dr3 [f(r31)f(r21) + f(r32)f(r31) + f(r32)f(r21)

+ f(r32)f(r31)f(r21)] . (1.31)



1.3 THEORETICAL PRELIMINARIES: RIGOROUS TREATMENT 17

We then use Eq. (1.17) to find an expression for the density as a function of the
activity

ρ =

∞∑

N=1

NbN (z∗)N . (1.32)

For a comparison with experiments, it is often convenient to have expressions
for thermodynamic quantities as a function of the density instead of the activity.
We therefore invert Eq. (1.32) to get an expression for the activity as a function
of the density which we then substitute in the equation for the osmotic pres-
sure, Eq. (1.28). The final expressions for the osmotic pressure and the chemical
potential are

Π

kBT
= ρ

(
1 −

∞∑

N=1

N

N + 1
βNρ

N

)
(1.33)

and
µ

kBT
= 3 ln Λ + ln ρ−

∞∑

N=1

βNρ
N . (1.34)

The isothermal compressibility κ is given by

κ =

(
ρ
∂Π

∂ρ

)−1

T

=
1

kBT

(
1 −

∞∑

N=1

NβNρ
N

)−1

. (1.35)

One can prove [36] that these expressions are valid as long as ρ < ρs, where ρs is
the first singularity of

∑
βNρ

N on the positive real axis, and
∑∞

N=1NβNρ
N < 1.

The first two coefficients βN are related to the bN by

β1 = 2b2 (1.36)

and

β2 = 3
(
b3 − 2b22

)
. (1.37)

The virial coefficients BN are related to the coefficients βN by

BN = −N − 1

N
βN−1. (1.38)

It is clear that in order to get more accurate expressions for higher concen-
trations, one should calculate more cluster integrals bN . These cluster integrals
contain integrals over products of Mayer functions, which become increasingly
more difficult to compute as the number of Mayer functions increases and usually
these integrals have to be performed numerically. Moreover, the expansion con-
verges poorly at high densities so at higher concentrations of particles the virial
expansion method is inadequate and we have to use other methods. We describe
one of these methods in the next section.
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1.3.4 Distribution function theories

Another approach to developing liquid state theories focuses on correlations be-
tween the particles in the liquid. In the grand canonical ensemble, the radial
distribution function, which was introduced in Section 1.2.5, can be determined
from the total interaction potential by the expression [29]

ρ2g(r) = ρ(2)(r) =
1

Ξ∗

∞∑

N=2

(z∗)N

(N − 2)!

∫
dr3 · · ·

∫
drN e−Φ(rN )/kBT , (1.39)

where ρ(2)(r) is the two-particle distribution function. Next one determines the
thermodynamic properties of the system by using the compressibility equation,
the virial equation or the energy equation (Eqs. (1.11)-(1.13)). In the case of
the compressibility equation the total interaction potential does not have to be
pairwise additive, in the other two cases it does.

The expressions Eqs. (1.11)-(1.13) look considerably more simple than
Eq. (1.22), but they are not. In fact, up until now we have only written Eq. (1.22)
differently. The real difficulty now lies in finding an (approximate) expression for
g(r). In the literature there are many approaches to devising analytical or numeri-
cal approximations of the two-particle distribution function or other multi-particle
distribution functions. One class consists of formulating integral equations that
relate various multi-particle correlation functions. These equations define a hi-
erarchy of relations between the functions. At some point this hierarchy has to
be broken. This is usually done by positing an approximate relation between the
(n+ 1)-particle distribution function and the n-particle distribution function. A
famous example is the Kirkwood superposition approximation which gives an ap-
proximate relation between the three-particle and two-particle distribution func-
tions [37].

We will focus here on approximate integral equations for the radial distribution
function in the case when the total interaction potential is pairwise additive since
this is relevant for the next section. In a method due to Percus [38], we imagine
that one particle is fixed at the origin and we consider the interaction of this
particle with the other particles as an external field W (r) that acts on the other
particles. In that case the grand partition function is

Ξ∗(W ) =

∞∑

N=0

(z∗)N

N !

∫
drN e−

∑N
i=1W (ri)/kBT e−Φ(N)(rN )/kBT , (1.40)

where Ξ∗(0) denotes the grand partition function in the absence of the external
field and ri = |ri|. From this we can easily see that

Ξ∗(U) = Ξ∗(0)
ρ

z∗
. (1.41)

The one-particle density ρ(1)(r;W ) only depends on the distance r from the
fixed particle (at the origin). Its value for W = U can be found by keeping
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one particle fixed at distance r from the origin and integrating over all possible
configurations of the other particles weighted by their Boltzmann weight

ρ(1)(r;U) =
1

Ξ∗(U)

∞∑

N=1

(z∗)N

(N − 1)!

∫
dr2 · · ·

∫
drN e−

∑N
i=1 U(ri)/kBT e−Φ(rN )/kBT

= ρg(r). (1.42)

The last equality follows from Eqs. (1.39) and (1.41). If we now suppose that
the interaction due to the particle at the origin is gradually switched on, the
interaction varies by ∆W (r) = U(r) and its response, the one-particle density,
varies by ∆ρ(1)(r) = ρ(1)(r;U) − ρ(1)(r; 0) = ρh(r). Here, we have introduced
the total correlation function h(r) ≡ g(r) − 1 and we have used the fact that
ρ(1)(r; 0) = ρ.

Various approximate integral equations can now be derived by viewing U(r) as
a perturbation and considering functional Taylor expansions of various functionals
of U with respect to ∆W or ∆ρ(1). Some of these integral equations can then be
solved analytically for certain interaction potentials to find the radial distribution
function g(r). Others have to be solved by numerical methods.

For convenience we first introduce the direct correlation function

c(r12) = lim
W→0

δ ln
[
ρ(1)(r1;W )/ze−W (r1)/kBT

]

δρ(1)(r2;W )
. (1.43)

One can show that the direct correlation function is related to the total correlation
function by the Ornstein-Zernike relation [39]

h(r1) = c(r1) + ρ

∫
dr2 c (r12)h(r2). (1.44)

Expanding ∆ρ(1) in powers of ∆W to first order leads to the Yvon equation
which is equivalent to the Ornstein-Zernike equation Eq. (1.44) together with the
following approximation for the direct correlation function

c(r) = −U(r)/kBT. (1.45)

The Yvon equation is not very suitable for potentials that are strongly repulsive
at short range [30].

Expansion of ρ(1)(r1;U)/ze−U(r1)/kBT in terms of ∆ρ(1) to first order leads to
the Percus-Yevick equation

eU(r1)/kBT g(r1) = 1 + ρ

∫
dr2 [g (r12) − 1]

[
1 − eU(r2)/kBT

]
g(r2), (1.46)

which is equivalent to the Ornstein-Zernike equation Eq. (1.44) together with the
approximation for the direct correlation function

c(r) =
(
1 − eU(r)/kBT

)
g(r). (1.47)
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It is the most successful first-order integral equation when the interaction is of
short range. It has been solved for the hard sphere case [32] (see Eq. (1.2)), and
also for the Baxter potential [27] (see the next section).

As a final example we mention the hypernetted chain (HNC) theory in which
the direct correlation function is approximated by [40]

c(r) = −U(r)/kBT + g(r) − 1 − ln g(r). (1.48)

It is obtained by expanding ln
[
ρ(1)(r1;U)/ze−U(r1)/kBT

]
to first order with re-

spect to ∆ρ(1).

1.3.5 The Baxter potential

One of the simplest extensions of the hard sphere potential that incorporates
attractive interactions is the adhesive hard sphere (AHS) potential, which was
introduced by Baxter in 1968 [27], and which we described briefly in Section
1.2.4. A big advantage of the Baxter potential over other interactions such as the
square well attraction of finite depth and finite range, is that it has been solved in
the Percus-Yevick approximation [27]. This makes calculating properties of the
Baxter fluid, such as the pressure and the chemical potential, relatively easy. Since
we make extensive use of the AHS potential in the rest of this thesis, we report
the pressures ΠAHS and chemical potentials µAHS one obtains by inserting the
Percus-Yevick approximation for g(r) in the compressibility equation, the virial
equation and the energy equation (Eqs. (1.11)-(1.13)) respectively.

From the compressibility equation (Eq. (1.11)) we find for the pressure ΠAHS
c

[27]

ΠAHS
c

ρkBT
=

1 + η + η2

(1 − η)3
− η(1 + η/2)

(1 − η)2
λ+

η2

36
λ3. (1.49)

Here η = ρv0 is the volume fraction of particles, v0 = 4πa3/3 is the volume of a
sphere and λ is given by the smallest root of

τ =
1 + η/2

(1 − η)2
1

λ
− η

1 − η
+

η

12
λ. (1.50)

When the roots of Eq. (1.50) are complex, the pressure cannot be determined
for the physical realization of the liquid state breaks down, at least within the
Percus-Yevick approximation. The chemical potential µ of the spherical parti-
cles is determined by using the pressure from Eq. (1.49) and the Gibbs-Duhem
equation at constant temperature [41]

µAHSc − µ0

kBT
= ln η − 1 − ln(1 − η) +

3η(2 − η)

2(1 − η)2
+

1 + η + η2

(1 − η)3
+ Jc(η, τ). (1.51)
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Here

Jc(η, τ) =
1

36
η3λ3 +

3

2
η2λ2 − η(6 + 20η − 23η2)

2(1 − η)2
λ+

6η(2 + η)

(1 − η)2
− 18η

1 − η
τ (1.52)

− 6(τ − τc)
2

τc(1 − 6τc)
ln

∣∣∣∣
λ(1 − η) − τ−1

c

τ−1 − τ−1
c

∣∣∣∣+
6τc(18ττc − 1)2

1 − 6τc
ln

∣∣∣∣
λ(1 − η) − 18τc
τ−1 − 18τc

∣∣∣∣

is the contribution to the chemical potential that vanishes in the hard-sphere limit
(τ → ∞) and

µ0

kBT
= ln

1

v0

(
h2

2πmkBT

)3/2

, (1.53)

where m is the mass of a sphere. The critical value of τ below which there is a
range of densities where there is no real solution of λ, is given by

τc =
2 −

√
2

6
. (1.54)

The pressure ΠAHS
v one finds from the virial equation is given by

ΠAHS
v

ρkBT
=

1 + 2η + 3η2

(1 − η)2
+ ηJv(η, τ), (1.55)

with

Jv(η, τ) = − 4η

1 − η
λ+

η

3
λ2 − 1

3τ

[
3(1 + η)α1 + 4α2 +

1

6
ηλ2 +

1

24
η2λ3

]
, (1.56)

α1 =
(1 + 2η − λη(1 − η))2

(1 − η)4
(1.57)

and

α2 =
−3η(2 + η)2 + 2λη(1 − η)(1 + 7η + η2) − λ2η2(1 − η)2(2 + η)

2(1 − η)4
. (1.58)

The chemical potential is given by

µAHSv − µ0

kBT
= ln η − 1 + 2 ln(1 − η) +

6η

1 − η
+

1 + 2η + 3η2

(1 − η)2
+ ηJv(η, τ)

+

∫ η

0

dη′ Jv(η
′, τ). (1.59)

Finally, we present the thermodynamic properties computed via the energy
equation. Since there is no solution of the energy equation in the Percus-Yevick
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approximation for hard spheres, the expressions for the AHS system are given
relative to those for purely hard spheres [42]. For the pressure ΠAHS

e we have

ΠAHS
e − ΠHS

ρkBT
=

6η

(1 − η)2
ln

[
2τλ(1 − η)2

2 + η

]
− 1 − 4η

(1 − η)2

√
6η

|2 − 5η| Je(η, τ), (1.60)

where

Je(η, τ) =





arcsin
√

6η
2+η − arcsin

[√
6η

2+η

(
1 − 2−5η

6τ(1−η)

)]
η ≤ 0.4

ln
[
1 + λη(5η−2)

6τ(2+η) + η
τ(1−η)

√
5η−2
6η

(
1 − λη(1−η)

2+η

)]
η > 0.4

(1.61)

For the pressure of the hard sphere system we use the accurate Carnahan-Starling
expression [43]

ΠHS
cs

ρkBT
=

1 + η + η2 − η3

(1 − η)3
. (1.62)

The chemical potential is given by the expression

µAHSe − µHS

kBT
= ηλ+

6η(2 − η)

(1 − η)2
ln

[
2τλ(1 − η)2

2 + η

]
− 3 − 11η + 5η2

(1 − η)2
Je(η, τ), (1.63)

where we again use the Carnahan-Starling result for the chemical potential of the
hard sphere system

µHSCS − µ0

kBT
= ln η − 1 + η

4 − 3η

(1 − η)2
+

1 + η + η2 − η3

(1 − η)3
. (1.64)

Recently, the equation of state has also been determined with the help of
computer simulations [28]. In Figs. 1.5 on page 25 and 1.6 on page 27 we compare
the results of the simulations for the pressure and the chemical potential for
various values of the stickiness parameter τ as a function of volume fraction η
with the results of the compressibility equation, the virial equation and the energy
equation.

1.4 Outline of the thesis

In Chapter 2, we set up the theoretical framework that describes how to deal with
solutions of globular proteins that are to a good approximation spherical in shape,
at a solution pH that is not too close to the isoelectric point of the protein. We first
approximate the original system of proteins in water with added salt by a system
of spherical particles that interact by a nontrivial isotropic potential consisting of
a steric repulsion, a short range attraction and electrostatic repulsion. We then
show how to replace this system by a system of particles that interact through the
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relatively simple Baxter potential. We are able to choose the attractive strength of
the Baxter potential to mimic the correct thermodynamic behavior of the original
system. We name this the optimized Baxter model (OBM) for reasons which will
become clear in Chapter 2.

In Chapter 2 we make two important approximations. First, we approximate
the original solution by a system of spherical particles interacting isotropically.
Then we approximate the latter by a solution of Baxter spheres. We then compare
the theoretical results to experiments on the original protein system. Hence,
the accuracy of the theoretical predictions gives information on how good the
combination of both approximations is, but if there is a discrepancy, its cause will
not be clear. Therefore, in Chapter 3, we test the OBM on a model system, that
of hard particles with an attractive Yukawa interaction. The “measurements” in
this case are computer simulations on this system.

In Chapter 4, we use the OBM to determine the thermodynamic properties
of protein crystals that are present in a solution of proteins. We make use of
the fact that there is chemical and mechanical equilibrium between a crystal and
the surrounding fluid. In other words, the pressure and chemical potential of
the crystal must be the same as the respective quantities in the fluid which we
determine with the help of the OBM. We also develop an electrostatic model for
protein crystals to rationalize the results.

In the final chapter we consider the collective diffusion of proteins. The collec-
tive diffusion coefficient describes how quickly a small gradient in the concentra-
tion of proteins will disappear. In Chapters 2 and 3, we use the Baxter potential
to describe thermodynamic behavior. For a non-equilibrium quantity like the
diffusion coefficient one cannot expect the Baxter potential to give an entirely
correct prediction for the concentration dependence (in the real system there may
be ionic friction, for instance). Nevertheless, in Chapter 5 we show that it does
work, to a good approximation.
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Figure 1.5: Pressure Π of the adhesive hard sphere system divided by the ideal con-
tribution ρkBT as a function of volume fraction of particles η for several values of the
stickiness parameter τ . The black solid line denotes the results from simulations [28],
the dash-dotted line, the dotted line and the dashed line denote the results from the so-
lution of the Percus-Yevick approximation and respectively the compressibility equation
(Eq. (1.49)), the virial equation (Eq. (1.55)) and the energy equation (Eq. (1.60)). In
the last case we used the Carnahan-Starling equation [43], Eq. (1.62), for the pressure
of the hard sphere system. The grey line in the last picture shows the result for the hard
sphere case (τ → ∞) from the Carnahan-Starling equation.
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Figure 1.6: Dimensionless chemical potential (µ−µ0)/kBT of the adhesive hard sphere
system minus the density dependent part of the ideal contribution, ln η, as a function of
volume fraction of particles η for several values of the stickiness parameter τ . The
black solid line denotes the results from simulations [28], the dash-dotted line, the dot-
ted line and the dashed line denote the results from the solution of the Percus-Yevick
approximation and respectively the compressibility equation (Eq. (1.51)), the virial equa-
tion (Eq. (1.59)) and the energy equation (Eq. (1.63)). In the last case we used the
Carnahan-Starling result, Eq. (1.64), for the chemical potential of the hard sphere sys-
tem. The grey line in the last picture shows the result for the hard sphere case (τ → ∞)
from the Carnahan-Starling equation.





Chapter 2
Optimized Baxter model of protein

solutions: Electrostatics versus adhesion

Abstract A theory is set up of spherical proteins interacting by screened elec-
trostatics and constant adhesion, in which the effective adhesion parameter is
optimized by a variational principle for the free energy. An analytical approach
to the second virial coefficient is first outlined by balancing the repulsive electro-
statics against part of the bare adhesion. A theory similar in spirit is developed
at nonzero concentrations by assuming an appropriate Baxter model as the ref-
erence state. The first-order term in a functional expansion of the free energy is
set equal to zero which determines the effective adhesion as a function of salt and
protein concentrations. The resulting theory is shown to have fairly good predic-
tive power for the ionic-strength dependence of both the second virial coefficient
and the osmotic pressure or compressibility of lysozyme up to about 0.2 volume
fraction.

2.1 Introduction

It has been intimated that the solution properties of globular proteins may bear
relation with their crystallization properties [44, 45]. Since the characterization
of proteins commands ever more attention, such a contention is of considerable
interest so much work has been carried out on this topic recently [46–51].

The difficulty of setting up a predictive theory of protein suspensions based on
what is known about the interaction between two proteins, has been acknowledged
for some time [52]. Best fitting of the osmotic pressure of, for instance, bovine
serum albumin up to 100 g/l, leads to effective excluded volumes whose behavior
as a function of salt is enigmatic [53].

In recent years, there has been a tendency to forget about all detail of the

29
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protein interaction altogether—both attractive and repulsive—and to introduce
a single adhesion parameter [23, 53–56]. Despite the electrostatic repulsion which
is substantial, the data are often merely rationalized in terms of the bare protein
diameter within the context of an adhesive sphere model and such an approach
seems to have merit [23, 53–56]. This empiricism has prompted us to develop a
theory of screened charged protein spheres that have a constant stickiness, but
where the electrostatic interaction is compensated, in part, by the adhesive forces.
Thus, we argue that, effectively, the spheres are assigned a hard diameter identical
to the actual diameter provided the remnant adhesive interaction now depends
on the electrolyte and protein concentrations in a manner to be determined vari-
ationally. Our primary aim is to formulate a new liquid state theory of protein
solutions with the Baxter model as reference state. First, however, we analyze
the second virial coefficient as such, for this will point toward a way of dealing
with the osmotic pressure at nonzero concentrations. We focus on experiments
with lysozyme, a protein which is reasonably spherical and has been well studied
for a long time [57]. In particular, we show that there are enough measurements
of the second virial of lysozyme to determine an adhesion parameter with some
confidence.

2.2 Second virial coefficient

2.2.1 Theory

2.2.1.1 Second virial coefficient

The second virial coefficient B2 describes the first order correction to Van ’t Hoff’s
law

Π

ρkBT
= 1 +B2ρ+O(ρ2). (2.1)

Here, Π is the osmotic pressure of the solution, ρ is the particle number density, kB
is Boltzmann’s constant and T is the temperature. From statistical mechanics we
know that, given the potential of mean force U (r) between two spherical particles
whose centers of mass are separated by the vector r, one can calculate B2 from

B2 = −1

2

∫

V

dr f(r), (2.2)

where f(r) = e−U(r)/kBT − 1 is the Mayer function. In principle, the interaction
U(r) may be determined from experimental data on the second virial coefficient
by suitable Laplace inversion. This has been done for atoms and spherically sym-
metric molecules [58, 59], for which the second virial coefficient has been measured
over a broad enough range of temperatures. One might think of formulating a
procedure similar in spirit and applicable to protein solutions, but with the ionic
strength as independent variable instead of the temperature. However, to be able
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to determine the interaction by inversion, the experimental data have to be known
fairly accurately, which is not the case at hand, as will become clear further on.
We are therefore forced to adduce presumptions about the interaction.

We assume the protein to be spherical with radius a, its charge being dis-
tributed uniformly on its surface. For convenience, all distances will be scaled
by the radius a of the sphere and all energies will be in units of kBT . Because
monovalent ions (counterions and salt ions) are also present in solution, there will
be a screened Coulomb repulsion between the proteins, here given by a far-field
Debye-Hückel potential. We compute the effective charge qZeff in the Poisson-
Boltzmann approximation where q is the elementary charge. For now, we let the
attraction between two proteins be of short range, and we model it by a potential
well of depth UA and width δ ≪ 1. The total interaction UT (x) between two
proteins is of the form

UT (x) =






∞ 0 ≤ x < 2

UDH(x) − UA 2 ≤ x < 2 + δ

UDH(x) x ≥ 2 + δ

, (2.3)

x ≡ r

a
,

with Debye-Hückel potential [14]

UDH(x) = 2ξ
e−ω(x−2)

x
. (2.4)

Here, ξ ≡ Q
2a

(
Zeff

1+ω

)2

, κ−1 is the Debye length defined by κ2 = 8πQI, I is the

ionic strength, Q = q2/ǫkBT is the Bjerrum length, which equals 0.71 nm in water
at 298 K, ǫ is the permittivity of water and ω ≡ κa = 3.28a

√
I, if a is given in

nm and I in mol/l. We suppose 1-1 electrolyte has been added in excess so I is
the concentration of added salt.

In order to evaluate B2 analytically, we have found it expedient to split up B2

into several terms:

B2 = BHS2

(
1 +

3

8
J

)
, (2.5)

where BHS2 = 16πa3/3 is the second virial coefficient if the proteins were merely
hard spheres and we introduce the following integrals to facilitate analytical com-
putation

J ≡
∫ ∞

2

dxx2
(
1 − e−UT (x)

)
≡ J1 −

(
eUA − 1

)
J2, (2.6)

J1 ≡
∫ ∞

2

dxx2
(
1 − e−UDH(x)

)
, (2.7)

J2 ≡
∫ 2+δ

2

dxx2e−UDH (x). (2.8)
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Here, J1 is the value of J in the absence of attraction and may be simplified by
Taylor expanding the Boltzmann factor in the integrand for small values of UDH
to second order. However, to increase the accuracy of the expansion, we adjust
the coefficient of the second order term so that the approximation to the integrand
coincides with its actual value at x = 2, i.e., we approximate x

(
1 − e−UDH(x)

)
≃

2ξe−ω(x−2) − 2αξ2e−2ω(x−2), with α = e−ξ−(1−ξ)
ξ2 , resulting in

J1 ≃ 4
(
ω + 1

2

)
ξ

ω2

(
1 − α

2
ξ
)
, (2.9)

where we have neglected the small term αξ2/2ω2. For instance, in the case of
lysozyme, the deviation of the approximation Eq. (2.9) from the exact result
is smaller than about 3% for I ≥ 0.05 M and smaller than about 1% for I ≥
0.2 M. Since δ ≪ 1, J2 may be simplified by using the trapezoid approximation∫ 2+δ

2
dx g(x) ≃ 1

2δ [g(2) + g(2 + δ)], which leads to

J2 ≃ 2δ

[
e−ξ +

(
1 +

δ

2

)2

e−
ξ

1+δ/2
e−ωδ

]
. (2.10)

It is important to note that ωδ may be greater than unity even if δ ≪ 1. Again,
for lysozyme, this approximation deviates less than about 3% from the exact value
for I ≥ 0.2 M and δ ≤ 0.5 and less than about 1% for I ≥ 0.2 M and δ ≤ 0.15.

2.2.1.2 Effective attractive well

We next present a discussion of B2 in terms of equivalent interactions and their
Mayer functions even though the analysis of the previous section is self-contained.
Sections 2.2.1.2 and 2.2.1.3 may be viewed as preludes to the formulation of the
liquid-state theory developed in Section 2.3. At large separations (x > 2+ δ), the
interaction between the particles is purely repulsive, leading to a positive contri-
bution to the second virial coefficient. If, at a certain ionic strength, the second
virial coefficient is smaller than the hard-core value (B2 < BHS2 ), this positive
contribution is necessarily cancelled by only part of the negative contribution of
the attractive interaction at small separations, the part, say, between x = 2 + ǫ0
and x = 2 + δ (see Fig. 2.1).

The remaining potential, which we will call an effective attractive well, then
consists of a hard-core repulsion plus a short-range attraction of range ǫ0. The
value of ǫ0 is determined by noting that the free energy of the suspension must
remain invariant, which, in the asymptotic limit of low densities, leads to the
identity

B2,ǫ0 = B2, (2.11)

where B2 is the second virial coefficient of the previous section and B2,ǫ0 is the
second virial coefficient pertaining to the effective attractive well. Using Eq. (2.2),
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Figure 2.1: The integrand of Eq. (2.2) versus the distance r. As shown by the grey
regions, the repulsive tail is compensated by part of the attractive interaction provided
B2 < BHS

2 .

we rewrite Eq. (2.11) as
∫

V

d3
r∆f = 0, (2.12)

in terms of the difference in the respective Mayer functions

∆f ≡ f − fǫ0, (2.13)

where f is the Mayer function of the original interaction and fǫ0 is the Mayer
function of the effective attractive well. In dimensionless units, Eq. (2.12) is
equivalent to the condition

∫ ∞

2+δ

dxx2
(
1 − e−UDH (x)

)
=

∫ 2+δ

2+ǫ0

dxx2
(
eUAe−UDH (x) − 1

)
, (2.14)

where, using the same approximation that led to Eq. (2.9), we write

∫ ∞

2+δ

dxx2
(
1 − e−UDH (x)

)
≃ 2ξe−ωδ

ω

(
1 − α

2
ξe−ωδ

)(
2 + δ +

1

ω

)
(2.15)



34 OPTIMIZED BAXTER MODEL OF PROTEIN SOLUTIONS: ELECTROSTATICS
VERSUS ADHESION 2.2

and, using
∫ 2+δ

2+ǫ0
dxx2∆f(x) ≃ 2(δ − ǫ0) [∆f(2 + δ) + ∆f(2 + ǫ0)], we have

∫ 2+δ

2+ǫ0

dxx2
(
eUAe−UDH (x) − 1

)
≃

2(δ − ǫ0)
[
−2 + eUA

(
e−

ξ
1+δ/2

e−ωδ

+ e
− ξ

1+ǫ0/2
e−ωǫ0

)]
. (2.16)

To leading order, we then find an explicit relation for ε0

δ − ǫ0 ≃ ξe−ωδ

ωeUA
eξe

−ωδ

, (2.17)

which works well at high ionic strengths (i.e. at low values of ξ), e.g. whenever
I ≥ 1 M in the case of lysozyme at pH 4.5. A more accurate value of δ − ǫ0 is
obtained by equating Eqs. (2.15) and (2.16), and then iteratively updating the
factor (δ − ǫ0), starting with the initial value ǫ0 = δ.

Sometimes, it may be convenient to introduce an equivalent square well. The
second virial coefficient pertaining to the original potential UT (x) (Eq. (2.3)) is
now rewritten as

B2 = B2,ǫ0 = BHS2

(
1 +

3

8

∫ 2+ǫ0

2

dxx2
(
1 − eUAe−UDH (x)

))
. (2.18)

The depth UA−UDH(x) does not vary strongly though, since ε0 ≪ 1. To simplify
things computationally, we approximate the interaction by a square well potential,

USW (x) =






∞ 0 ≤ x < 2

−US 2 ≤ x < 2 + ǫ0

0 x ≥ 2 + ǫ0

. (2.19)

We choose US in such a way that B2 = BSW2 or, equivalently,
∫ 2+ǫ0

2

dxx2
(
eUS − eUAe−UDH (x)

)
= 0. (2.20)

To leading order in ǫ0, we have
∫ 2+ǫ0

2

dxx2eUS ≃ 4ǫ0e
US , (2.21)

and, using the approximation
∫ 2+ǫ0
2

dxx2g(x) ≃ 2ǫ0 [g(2 + ǫ0) + g(2)], we write
∫ 2+ǫ0

2

dxx2eUAe−UDH (x) ≃ 2ǫ0e
UA

[
e−ξ + e

− ξ
1+ǫ0/2 e−ωǫ0

]
. (2.22)

The depth US of the potential is then given by

eUS ≃ 1

2
eUA

(
e−ξ + e

− ξ
1+ǫ0/2

e−ωǫ0
)

(2.23)

in terms of the original variables. Finally, we point out that the two attractive
wells that we have introduced are physically meaningful only if B2 < BHS2 .
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2.2.1.3 Attractive well in the Baxter limit

We have shown that one may simplify the statistical thermodynamics of the pro-
tein suspension at low densities considerably, by replacing the original interaction,
consisting of an electrostatic repulsion and a short-range attraction, by a single
attractive well of short range. The electrostatic interaction may be substantial
but it is compensated by part of the original attractive well which is quite strong
(UA > 1). Another useful interaction expressing attractive forces of short range
consists of a hard-sphere repulsion and an attraction of infinite strength and in-
finitesimal range, namely the adhesive hard sphere (AHS) potential of Baxter
[27]

UAHS(x) =






∞ 0 ≤ x < 2

ln 12τζ
2+ζ 2 ≤ x ≤ 2 + ζ

0 x > 2 + ζ

, (2.24)

where τ is a constant and the limit ζ ↓ 0 has to be taken after formal integrations.
The second virial coefficient remains finite

BAHS2 = BHS2

(
1 − 1

4τ

)
. (2.25)

Because much is known about the statistical mechanics of the Baxter model, one
often defines τ in terms of some B2 and naively assumes there is a one-to-one
correspondence between the original and Baxter models. For instance, in our
case, BAHS2 = B2 = B2,ε0 = BSW2 . Since we have

BSW2 = BHS2

(
1 −

(
eUS − 1

) [(
1 +

ǫ0
2

)3

− 1

])

≃ BHS2

(
1 − 3

2

(
eUS − 1

)
ǫ0

)
, (2.26)

we thus identify

1

τ0
≃ 6ǫ0

(
eUS − 1

)
, (2.27)

where US is given by Eq. (2.23) and, for clarity, we use τ0 to refer to the value of
τ at low concentrations, when its value is determined by matching second virial
coefficients. However, it is important to realize that this procedure is legitimate
at small densities only. At finite concentrations, the optimal representation of the
real suspension of proteins by a Baxter model has to be derived and we will show
in Section 2.3 that the simple-minded identification of τ via BAHS2 (τ0) ≡ B2 no
longer applies.
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2.2.2 Application to lysozyme

2.2.2.1 Experimental Data

Lysozyme is, by far, the best studied protein with regard to solution properties.
This is one of the reasons for using this protein to test theory, another being its
moderate aspect ratio of about 1.5 so that it may be fairly well approximated
by a sphere. Bovine Serum Albumin (BSA) has also been well studied, but is
considerably more anisometric with an aspect ratio of about 3.5. Numerous mea-
surements of the second virial coefficient of lysozyme have been published. In
fact, there are quite a few sets of experiments pertinent to our analysis [17–26].

It turns out that there is appreciable scatter in the data if we plot all mea-
surements of B2 at a pH of about 4.5 as a function of ionic strength I (NaCl +
small amount of Na acetate; we have set the ionic strength arising from the latter
equal to 0.6×concentration [21]) (see Fig. 2.2).

Several sets of data [25, 26] appear to be way off the general curve within any
reasonable margin of error. An important criterion is how well the θ point (i.e.
when B2 = 0) is established since then attractive forces—which we would like
to understand—are well balanced against electrostatics—which we purportedly
understand well. Experimentally speaking, it ought to be possible to monitor B2

accurately about the θ point; large negative B2 values at I ≫ Iθ are more difficult
to determine because the proteins may start to aggregate or nucleate, in principle.
Various polynomial fits for all data close to the θ point yield Iθ = 0.20 ± 0.01 M.
Hence, we have regarded data sets [25, 26] markedly disagreeing with this ionic
strength as anomalous so we have not taken them into consideration. Fig. 2.3
displays all data we have taken into account.

Clearly, the composite curve yields a fairly reliable basis to test possible the-
ories of the attractive force. On the other hand, it is unclear at present how
the scatter in data in Fig. 2.3 translates into bounds for attractive interactions
inferred by inverting Eq. (2.2).

2.2.2.2 Theory

Electrostatics

Next, it is important to ascertain the actual and effective charges of lysozyme
under conditions relevant to the present work. Kuehner et al. [60] performed
hydrogen-ion titrations on hen-egg-white lysozyme in KCl solutions. By inter-
polation, we obtain the actual charge Z of the protein as a function of the 1-1
electrolyte concentration I (see Tables 2.1 and 2.2).

Experiments onB2 are usually carried out with NaCl (and some Na acetate) as
the supporting monovalent electrolyte but we here assume KCl and NaCl behave
identically in an electrostatic sense. We solve the Poisson-Boltzmann equation
to get the effective charge Zeff in the Debye-Hückel tail (for more detail, see

Section 2.5.1). The dimensionless radius is set equal to ω = 3.28a
√
I = 5.58

√
I



2.2 SECOND VIRIAL COEFFICIENT 37

I (M)

B
2
/B

H
S

2

0 0.5 1 1.5
-4

-2

0

2

4

Figure 2.2: Experimental data of the second virial coefficient B2 of lysozyme as a
function of the ionic strength I at a pH of about 4.5. The second virial coefficient is
scaled by the hard sphere value BHS

2 . Black squares: Bonneté et al. [17], pH 4.5, 20 ◦C;
grey triangles: Curtis et al. [18], pH 4.5, 20 ◦C; grey squares: Muschol et al. [19], pH
4.7, 20 ◦C; black stars: Curtis et al. [20], pH 4.5, 25 ◦C; black diamonds: Bonneté et
al. [17], pH 4.5, 25 ◦C; black triangles: Velev et al. [21], pH 4.5, 25 ◦C; white squares:
Rosenbaum et al. [22], pH 4.6, 25 ◦C; white diamonds: Rosenbaum et al. [23], pH 4.6,
25 ◦C; grey stars: Bloustine et al. [24], pH 4.6, 25 ◦C; white stars: Piazza et al. [25],
pH 4.7, 25 ◦C; white triangles: Behlke et al. [26], pH 4.5; grey diamonds: Bloustine et
al. [24], pH 4.7. In all cases, the electrolyte is NaCl, often with a small amount of Na
acetate added.

and Eq. (2.61) is used to compute the renormalized or effective charge. (Setting
a = 1.7 nm for lysozyme as in Refs. [18] and [22]; the Bjerrum length Q = 0.71 nm
for H2O at room temperature). The other dimensionless parameter is given by
ξ = 0.209(Z/(1 + ω))2, where Z = Zeff − 1 (see below).

Attractive well

We have assumed UA and δ to be independent of the ionic strength I. It is possible
to show that this does not contradict the data displayed in Figs. 2.2 and 2.4.

In Section 2.5.2, we prove that if the interaction between the proteins is given
by Eq. (2.3) but now UA = UA(x) is a general attraction, then dB2 /dω < 0
and d2B2 /dω

2 > 0, the last inequality being valid if ξ < 1. We recall that ω is
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Figure 2.3: A fit of Eq. (2.5) to the experimental data of Fig. 2.2 (except for those of
Refs. [25] and [26]). On the right-hand side of the figure, the upper solid line corresponds
to Iθ = 0.19, δ = 0.564 and UA = 1.48, the upper dash-dotted line to Iθ = 0.20, δ = 0.468
and UA = 1.70 and the middle solid line to Iθ = 0.21, δ = 0.379 and UA = 1.95, all at
an effective charge Zeff . The middle dash-dotted line corresponds to Iθ = 0.19, δ = 0.25
and UA = 2.4, the lower solid one to Iθ = 0.20, δ = 0.167 and UA = 2.87 and the lower
dash-dotted one to Iθ = 0.21, δ = 0.079 and UA = 3.70, all at a lowered effective charge
Z.

proportional to
√
I so that Figs. 2.3 and 2.4 indeed bear out these inequalities

after due rearrangement.

Next, we determine the optimal values of UA and δ yielding exact, numerical
B2(I) curves given by Eq. (2.5) which are the best fits to the data of Fig. 2.3.
We require that Iθ = 0.20 ± 0.01 M is predicted absolutely which fixes UA, say,
and δ is then determined by a nonlinear minimization procedure. We thus ob-
tain UA = 1.70 ± 0.25 and δ = 0.468 ∓ 0.097 but we note that the quantity
δ expUA = 2.56 ± 0.10 is much more narrowly bounded. Now, it can be ar-
gued that the Debye-Hückel potential with effective charge Zeff overestimates
the real potential in magnitude so we have repeated this numerical procedure
with a slightly lower effective charge, viz. Z = Zeff − 1 (see Tables 2.1 and
2.2). This yields the revised estimates UA = 2.87 ± 0.65, δ = 0.167 ∓ 0.086
and δ expUA = 2.95 ± 0.21. The numerically computed curves are displayed in
Fig. 2.3. We therefore conclude that the variables UA and δ as such are difficult
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I (M) Z Zeff Z ξ ω ǫ0 US τ0

0.05 9.5 8.8 7.8 2.52 1.25

0.10 9.8 9.2 8.2 1.84 1.76

0.15 10.0 9.4 8.4 1.48 2.16 0.0208 2.26 0.933

0.20 10.1 9.6 8.6 1.27 2.50 0.0466 2.52 0.314

0.25 10.2 9.7 8.7 1.10 2.79 0.0585 2.70 0.205

0.30 10.2 9.8 8.8 0.984 3.06 0.0644 2.82 0.164

0.45 10.3 10.0 9.0 0.752 3.74 0.0720 3.05 0.115

1.0 10.4 10.2 9.2 0.409 5.58 0.0773 3.37 0.0767

1.5 10.4 10.3 9.3 0.295 6.83 0.0782 3.47 0.0684

2.0 10.4 10.3 9.3 0.229 7.89 0.0785 3.53 0.0642

Table 2.1: Values of the actual charge Z of hen-egg-white lysozyme (from [60]), the
renormalized or effective charge Zeff (from Eq. (2.61)), the lowered effective charge
Z = Zeff − 1, and dimensionless interaction parameters ξ and ω, and ǫ0, US and τ0 as
a function of the ionic strength I. The pH equals 4.5 and ξ has been calculated using the
lowered effective charge Z. Values of US and τ0 have been computed using Eqs. (2.23) and
(2.27), respectively, and ǫ0 has been calculated using the procedure described immediately
after Eq. (2.17).

I (M) Z Zeff Z ξ ω ǫ0 US τ0

0.05 6.9 6.6 5.6 1.30 1.25

0.10 7.0 6.8 5.8 0.920 1.76 0.0493 2.83 0.212

0.15 7.1 6.9 5.9 0.728 2.16 0.0640 3.03 0.132

0.20 7.2 7.0 6.0 0.616 2.50 0.0695 3.14 0.108

0.25 7.2 7.0 6.0 0.524 2.79 0.0725 3.23 0.0943

0.30 7.3 7.1 6.1 0.473 3.06 0.0741 3.28 0.0877

0.45 7.3 7.2 6.2 0.357 3.74 0.0764 3.39 0.0758

1.0 7.1 7.0 6.0 0.174 5.58 0.0784 3.56 0.0623

1.5 6.9 6.9 5.9 0.119 6.83 0.0787 3.61 0.0590

2.0 6.8 6.8 5.8 0.0889 7.89 0.0788 3.63 0.0574

Table 2.2: Same as Table 2.1, but now with a pH equal to 7.5.

to ascertain unambiguously, though the variable δ expUA is quite robust. This is
also borne out if we use our approximations, Eqs. (2.9) and (2.10), instead of the
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Figure 2.4: Experimental data of the second virial coefficient B2 of lysozyme as a
function of the ionic strength I at a pH of about 7.5. The second virial coefficient is
scaled by the hard sphere value BHS

2 . Black stars: Rosenbaum et al. [22], pH 7.4, 25 ◦C;
black triangles: Velev et al. [21], pH 7.5, 25 ◦C; black squares: Rosenbaum et al. [23],
pH 7.8, 25 ◦C.

exact numerical computations. There are again wide variations in UA and δ but
the quantity δ expUA is strictly bounded: δ expUA = 2.70±0.11 (effective charge
= Zeff ) and δ expUA = 3.02 ± 0.21 (effective charge = Zeff − 1).

We now argue why δ expUA is indeed a relevant quantity, to a good approxi-
mation. At the θ point we have B2 = 0 so that Jθ = −8/3 from Eq. (2.5). From
Tables 2.1 and 2.2, we see that generally ω ≫ 1 and αξ ≪ 1; hence, we have J1 ≃
4ξ/ω and J2 ≃ 4δ exp−ξ for often ωδ > 1. This would lead to δ expUA ≃ 4.4.
On the other hand, at very high I, J1 and ξ tend to zero and, because UA ≫ 1,
the scaled virial coefficient B2/B

HS
2 reduces to − 3

8J2 expUA ≃ − 3
2δ expUA lead-

ing to δ expUA ≃ 3 estimated from Fig. 2.3. Hence, the two estimates at the
respective extremes are fairly consistent. To summarize, we may propose a crude
approximation to the second virial coefficient which is a universal function of
δ expUA

B2

BHS2

≃ 1 +
3ξ

2ω
− 3

2
e−ξδeUA . (2.28)

The third term on the right is exact in the limit δ → 0, whereas the absolute error
in the second term is smaller than 0.25 when I ≥ 0.1 M. Using Eq. (2.28) to fit
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the data leads to δ expUA = 4.2 when we use the effective charge Zeff , whereas
δ expUA = 3.7 when we use the lower effective charge Z (see Fig. 2.5).
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Figure 2.5: Fits of Eq. (2.28) to experimental data of Fig. 2.3. Full line (Zeff and
δ expUA = 4.2); Dash-dotted line (Z and δ expUA = 3.7).

In Fig. 2.3 on page 38 we see that the curves at low values of δ fit the data at
high ionic strengths better. In the remainder of this article, we therefore employ
the values δ = 0.079 and UA = 3.70, corresponding to the lowered effective charge
Z and Iθ = 0.21 M. In Fig. 2.6 we show a comparison between experimental data
at a pH of about 7.5 and the theoretical curve computed numerically with the
same parameters.

AHS potential

Values of ǫ0, US and τ0 at several ionic strengths are given in Tables 2.1 and 2.2
on page 39. Fig. 2.7 on page 43 displays the ionic-strength dependence of the
adhesion parameter τ0.

Near the θ point, τ0 decreases quickly with increasing I. At high ionic strength,

τ0 approaches the limiting value of
(
6δ(eUA − 1)

)−1
, which, upon the use of our

choice δ = 0.079 and UA = 3.7, is equal to 0.0535. We note that at pH 4.5 and
at ionic strengths I = 0.05 M and I = 0.1 M, the computed values of ǫ0, US and
τ0 become nonsensical. In that case, the attractive potential is simply not strong
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Figure 2.6: Comparison between the experimental data at pH 7.5 and full theory
Eq. (2.5). Parameters as in the lower dash-dotted curve in Fig. 2.3 (δ = 0.079 and
UA = 3.70).

enough to compensate the electrostatic repulsion completely so our analytical
approach breaks down. This can also be seen in Fig. 2.3 on page 38, where we
have B2 > BHS2 for these two values of the ionic strength. The same effect occurs
at pH 7.5 when I = 0.05 M.

2.3 Liquid state theory at higher densities

2.3.1 Theory

2.3.1.1 Density dependent attractive well in the Baxter limit

In Section 2.2, we introduced the AHS potential as a convenient first approxima-
tion to the interaction between proteins. We determined the adhesion parameter
τ by matching values of the second virial coefficient which is methodologically
correct only in the asymptotic limit of very low densities. In this section we pro-
pose a new procedure of choosing τ , which is valid at higher concentrations but τ
now depends on the protein density. We extend a method originally proposed by
Weeks, Chandler and Anderson [61, 62] for repulsive interactions. They variation-
ally determined an effective hard sphere diameter for a soft, repulsive potential of



2.3 LIQUID STATE THEORY AT HIGHER DENSITIES 43

I (M)

τ 0

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 2.7: Ionic-strength dependence of AHS parameter τ0 at pH 4.5 (solid line) and
pH 7.5 (dash-dotted line). The dashed line denotes the limiting value of τ0 as I → ∞.

short-range, but we argue that their scheme is more generally applicable as long
as the full interaction—attractive and repulsive—remains of short range, which
is the case here.

We start by introducing a functional expansion of the excess Helmholtz free
energy ∆A in terms of the Mayer function of the interaction UT

ρ−1A(ρ, T ;ϕs) = ρ−1A(ρ, T ;ϕAHS) +
η

2

3

4π

∫
dx BAHS(x) (2.29)

+
η2

2

(
3

4π

)2
a3

V

∫
dx1 dx2 dx3 BAHS(x12)BAHS(x13)J

(3)
AHS(x1,x2,x3) + . . . .

Here, V is the volume of the system, A = −∆A/V , ϕs(x) = e−UT (x), ϕAHS(x) =

e−UAHS(x), η = 4πa3ρ/3 is the volume fraction of particles, J
(3)
AHS(x1,x2,x3) is a

complicated function depending on two and three particle correlation functions
(see Refs. [61] and [62]) and x12 = x1 − x2 etc. We define the quantity

BAHS(x) ≡ yAHS(x) [ϕs(x) − ϕAHS(x)] , (2.30)

in terms of the so-called cavity function yAHS(x) ≡ gAHS(x)/ϕAHS(x) = 2
ρ2

δA
δϕ(x)

and radial distribution function gAHS(x) pertaining to an appropriate AHS po-
tential which is the reference state. Both these functions depend on ρ, T and the
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effective adhesive parameter τ , the latter to be determined variationally. From
now on, we omit the subscript AHS in BAHS(x), gAHS(x) etc. for the sake of
brevity.

We next choose τ by requiring that the first-order correction to the excess free
energy vanishes ∫

dxB(x) = 0. (2.31)

This is the analogue of Eq. (2.12). Hence, in the spirit of the previous section, we
split up this integral into two parts. The first indicates that the tail of the elec-
trostatic interaction is compensated by part of the original square well attraction

∫ ∞

2+ǫ

dxx2B(x) = 0 (2.32)

(0 < ε ≤ δ) and yields ǫ. The second determines the density dependent strength
τ of the AHS interaction ∫ 2+ǫ

2

dxx2B(x) = 0. (2.33)

This expresses the fact that the reference potential has to compensate for the
remaining part of the original interaction. We note that this scheme is only
consistent if the attraction is sufficiently strong (τ may never be negative).

2.3.1.2 Approximate radial distribution function for the Baxter potential

In order to be able to determine τ from Eqs. (2.32) and (2.33), we need to know
g(x), the radial distribution function of the reference interaction, the AHS po-
tential. In the Percus-Yevick approximation developed by Baxter, g(x) has a
singular contribution gζ(x) which, after the limit ζ → 0, acts like a delta function
and results from the stickiness of the interaction at the surfaces of two touching
spheres. We thus assume the functional expansion given by Eq. (2.29) exists after
the limit ζ → 0. This is obviously very difficult to prove in general although
we investigate the bilinear term in Section 2.5.3. We split g(x) into gζ(x) and a
regular term g̃(x) [27]

g(x) = g̃(x) + gζ(x) (2.34)

with

gζ(x) =






0 x < 2
λ(2+ζ)

12ζ +O(1) 2 ≤ x ≤ 2 + ζ

0 x > 2 + ζ

(2.35)

analogously to Eq. (2.24), where the amplitude λ is the smaller of the two solutions
of

τ =
1 + η/2

(1 − η)2
1

λ
− η

1 − η
+

η

12
λ. (2.36)
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For x < 2, g̃(x) equals zero owing to the hard-core repulsion, whereas g̃(x)
tends to unity for large x. For proteins, it turns out that ϕs(x) − ϕAHS(x) is
often appreciably nonzero only near the surface of the sphere so we approximate
g̃(x) in the interval 2 ≤ x ≤ 4 by the first two terms of its Taylor expansion

g̃(x) ≃





0 x < 2

G(1 +H(x− 2)) 2 ≤ x ≤ 4

1 x > 4

. (2.37)

The constants G and H may be computed with the help of the auxiliary function
F (t) introduced by Bravo Yuste and Santos [63] (See their Eqs. (3.19) and (3.21);
note that the first derivative we need in the Taylor expansion of g̃(x) is taken after
the limit ζ → 0). The Laplace transforms of the radial distribution and other
functions which were computed by Baxter [27] (see his Eq. (30)), are related to
F (t) by their Eq. (3.12). Expansions at high t then lead to

G = λτ (2.38)

and

H =
η

2τ(1 − η)

(
η(1 − η)

12
λ2 − 1 + 11η

12
λ+

1 + 5η

1 − η
− 9(1 + η)

2(1 − η)2
1

λ

)
. (2.39)

Numerical work [64] bears out that Eqs. (2.37), (2.38) and (2.39) are quite rea-
sonable for x − 2 ≪ 1. In the case of proteins, the range of both attractive and
electrostatic forces is much smaller than the diameter.

2.3.1.3 Determination of the effective adhesion

We next determine τ from Eq. (2.33), first using Eq. (2.32) to obtain ǫ. From
Eqs. (2.24), (2.30) and (2.34), the function B(x) can be shown to have the fol-
lowing form (repressing terms that ultimately disappear in the limit ζ → 0)

B(x) = B̃(x) − gζ(x), (2.40)

where the regular term is given by

B̃(x) =

{
0 0 ≤ x ≤ 2

(e−UT (x) − 1)g̃(x) x > 2
. (2.41)

Eq. (2.32) may be conveniently expressed as

∫ ∞

2+ǫ

dxx2B(x) =

∫ 2+δ

2+ǫ

dxx2B̃(x) +

∫ ∞

2+δ

dxx2B̃(x) = 0. (2.42)
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Using
∫ 2+δ

2+ǫ dx f(x) ≃ 1
2 (δ− ǫ) [f(2 + δ) + f(2 + ǫ)] and neglecting terms of order

δ2 and ǫ2, we write the first integral as

∫ 2+δ

2+ǫ

dxx2B(x) ≃ G(δ − ǫ)K1(δ, ǫ), (2.43)

with

K1(δ, ǫ) ≡ 2
(
eUAe−

ξ
1+δ/2 e−ωδ

− 1
)

(1 + (1 +H) δ)

+ 2
(
eUAe−

ξ
1+ǫ/2 e−ωǫ

− 1
)

(1 + (1 +H) ǫ) . (2.44)

Again, we stress that, although δ ≪ 1 and ǫ ≪ 1, ωδ and ωǫ may be of order
unity. Furthermore, we note that if we take the limit η ↓ 0, then λ → τ−1

and G → 1, so we recover Eq. (2.16) if we neglect terms of order δ and ǫ. We
tackle the second integral by adopting the approximation: 1 − exp(−UT (x)) =
1−exp(2ξx−1e−ω(x−2)) ≃ 2ξx−1e−ω(x−2)−2ξ2x−2e−2ω(x−2)+2ξ3x−2e−3ω(x−2)/3
(note that in this Taylor expansion of the exponential we have replaced one factor
x−1 by 2−1 in the last term). We then write

−
∫ ∞

2+δ

dxx2B(x) ≃ G ((1 + δH)P1 +HP2) (2.45)

with

P1 =

∫ ∞

2+δ

dxx2(1 − e−UT (x)) ≃ 8

ω2
(1 + ωδ)M +

16

ω
M

(
1 −M +

8

9
M2

)
(2.46)

and

P2 =

∫ ∞

2+δ

dxx2(x − 2 − δ)(1 − e−UT (x))

≃ 8

ω3
(2 + ωδ)M +

16

ω2

(
M − 1

2
M2 +

8

27
M3

)
. (2.47)

Here, M ≡ ξe−ωδ/4. Using the approximations 1−M +8M2/9 ≃ (1+M)−1 and
M −M2/2 + 8M3/27 ≃ log(1 +M), we arrive at

P1 ≃ 8

ω2
(1 + ωδ)M +

16

ω

M

1 +M
(2.48)

and

P2 ≃ 8

ω3
(2 + ωδ)M +

16

ω2
ln(1 +M). (2.49)

Hence, the variable ǫ, which depends on the density by virtue of the density
dependence of H , is determined iteratively from

δ − ǫnew =
(1 + δH)P1 +HP2

K1(δ, ǫold)
. (2.50)
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One starts with ǫold = δ and iterates until a stationary ǫnew is reached.
The next step is to calculate τ from Eq. (2.33), which, with the help of

Eq. (2.40), is equivalent to the expression
∫ 2+ǫ

2

dxx2B̃(x) =
2λ

3
. (2.51)

We have taken the limit ζ → 0. Again using the approximation
∫ 2+ǫ

2 dx f(x) ≃
1
2ǫ [f(2 + ǫ) + f(2)], we write

∫ 2+ǫ

2

dxx2B̃(x)

≃ 2Gǫ
[(

eUAe−
ξ

1+ǫ/2
e−ωǫ

− 1
)

(1 + (1 +H) ǫ) +
(
eUAe−ξ − 1

)]
. (2.52)

Together with the expressions Eq. (2.51) and G = λτ (Eq. (2.38)), this leads to

1

τ
≃ 3ǫ

[(
eUAe−

ξ
1+ǫ/2

e−ωǫ

− 1
)

(1 + (1 +H) ǫ) +
(
eUAe−ξ − 1

)]
. (2.53)

Accordingly, τ may be determined iteratively if we recall that both H and ǫ also
depend on τ . A way of quickly determining τ and ǫ is choosing a starting value
for both (ǫ = δ and τ = 0.2 say), and then alternately using Eqs. (2.50) and (2.53)
until the iterates become stationary.

2.3.2 Application to lysozyme

We have already determined the interaction in Section 2.2.2.2 (δ = 0.079 and
UA = 3.70). We next compute τ iteratively from Eqs. (2.39), (2.44), (2.48),
(2.49), (2.50) and (2.53). They depend on both the density of protein and the
ionic strength. (See Table 2.3).

Thermodynamic properties like the osmotic compressibility κT are then also
simply obtained from τ . For instance, in the Percus-Yevick approximation, κT is
given by [27]

(ρkBTκT )
−1 ≡ 1

kBT

∂Π

∂ρ
=

(1 + 2η − λη(1 − η))2

(1 − η)4
, (2.54)

where λ is the smaller of the two solutions of Eq. (2.36). Fig. 2.8 on page 49
compares the predicted density dependence of the (scaled) inverse osmotic com-
pressibility at various ionic strengths with experimental data from Refs. [23] and
[56].

2.4 Discussion

One difficulty in comparing our computations with experiment has been the sub-
stantial margin of error in the osmotic measurements. By contrast, in the case
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η = 0 η = 0.05 η = 0.10 η = 0.15

I (M) τ ε τ ε τ ε τ ε

0.15 0.829 0.0230 0.712 0.0266 0.620 0.0303 0.544 0.0342

0.20 0.295 0.0483 0.289 0.0492 0.283 0.0502 0.276 0.0514

0.25 0.194 0.0596 0.193 0.0600 0.192 0.0603 0.191 0.0607

0.30 0.156 0.0653 0.155 0.0655 0.155 0.0656 0.155 0.0657

0.45 0.110 0.0725 0.110 0.0725 0.110 0.0725 0.110 0.0724

1.0 0.0735 0.0775

1.5 0.0656 0.0782

2.0 0.0616 0.0786

η = 0.20 η = 0.30 η = 0.40

I (M) τ ε τ ε τ ε

0.15 0.482 0.0383 0.380 0.0477 0.300 0.0600

0.20 0.268 0.0528 0.251 0.0563 0.228 0.0619

0.25 0.190 0.0611 0.186 0.0624 0.179 0.0651

0.30 0.155 0.0658 0.154 0.0663 0.152 0.0677

0.45 0.110 0.0723 0.110 0.0722 0.110 0.0724

Table 2.3: The scaled range ǫ of the effective attractive well and the strength of the
effective adhesive interaction τ at pH 4.5 as a function of the ionic strength I and volume
fraction η. The values of ǫ and τ have been evaluated from Eqs. (2.50) and (2.53).

of other biomacromolecules like rodlike DNA, it has been possible to obtain the
second virial B2 at better than 10% accuracy [65–67]. One possibility for the
occurrence of discrepancies in B2 is the variety of lysozyme types. Poznanski
et al. [68] have established that popular commercial lysozyme preparations like
Seikagaku and Sigma exhibit significant differences under dynamic light scatter-
ing. Nevertheless, the variation in B2 at, say, about 0.5 M NaCl (see Fig. 2.3 on
page 38), is so large that it needs to be explained. At nonzero concentrations, the
difference between the osmotic data of Refs. [23] and [56] is also substantial.

The relatively large variation in the experimental measurements of B2 makes it
difficult to falsify stringently other models of attractive forces like that of van der
Waals type, for instance. It proves feasible to get satisfactory agreement with the
experimental data displayed in Fig. 2.3 if we let the dispersion interaction be given
by the nonretarded Hamaker potential [14] for spheres of dimensions appropriate
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Figure 2.8: Inverse osmotic compressibility as a function of the volume fraction η at
various ionic strengths. Experimental data: black squares: I = 0.18 M; black triangles:
I = 0.23 M; black stars: I = 0.28 M; black diamonds: I = 0.33 M; open squares: I =
0.48 M. All data from Rosenbaum et al. [23], except for those at I = 0.23 M (black
triangles) (Piazza et al. [56]). Curves computed from Eq. (2.54) with δ = 0.079, UA =
3.70 and the lowered effective charge Z; τ has been determined from Eq. (2.53). From
top to bottom: I = 0.18 M, I = 0.23 M, I = 0.28 M, I = 0.33 M and I = 0.48 M.

for lysozyme, with an adjustable Hamaker constant of order kBT though with a
very short cut-off at around 0.1 − 0.2 nm. However, the necessity of such a cut-
off, which is already beyond the limit of validity of continuum approximations,
may be viewed as positing the equivalent of a short-range interaction like that of
Eq. (2.3), in large part. It is well to note that the long-range dispersion interaction
beyond some distance much smaller than the radius a, plays only a minor role.

Stell [69] has criticized the Baxter limit because divergences in the free energy
appear at the level of the 12th virial. Therefore, the most straightforward way to
interpret our liquid state theory is to stress that our zero-order theory describes
the reference state only up to and including the 11th virial within the Percus-
Yevick approximation. The analysis of phase transitions must be viewed with
caution (for a comparison of recent simulations—taking the limit of zero poly-
dispersity after the limit of vanishing well depth—with Percus-Yevick theory, see
Ref. [70]). A second problem is here that, at large ionic strengths, a considerable
electrostatic repulsion is balanced against a significant attraction (see Fig. 2.1 on
page 33) and it is difficult to see how good such a compensatory scheme should
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work at high concentrations near dense packing.
In summary, we have presented a fairly good theory of the ionic-strength de-

pendence of the osmotic properties of lysozyme in terms of a sticky interaction
which is independent of charge or salt concentration. This conclusion, by itself,
is not new for it has been reached earlier by formulating numerical work incorpo-
rating short-range forces and screened electrostatics and comparing it with X-ray
scattering [71, 72] and liquid-liquid phase separation [73–75]. The merit of the
current analysis is its transparency because it is analytical and it is based on a
nonperturbative variational principle for general short-range potentials so it may
be readily generalized.

2.5 Appendix

2.5.1 Effective charge

For the repulsive tail of the two particle interaction, we use the Debye-Hückel po-
tential, which is the far-field solution of the Poisson-Boltzmann equation. In our
case, the (dimensionless) potential at the surface is often merely of order unity,
so the Debye-Hückel potential slightly overestimates the solution to the Poisson-
Boltzmann equation. To remedy this, we use a renormalized charge within the
Debye-Hückel potential, chosen in such a way that, at large distances, the Debye-
Hückel potential coincides with the tail of the solution of the Poisson-Boltzmann
equation determined by the real charge [76]. This will result in an underesti-
mation of the potential at small separations, but the form of the Debye-Hückel
potential we use here (Eq. (2.4)) is in fact only accurate at large separations and
overestimates the interaction at small separations appreciably i.e. when overlap
of the two double layers occurs (by about 20%, see Ref. [14]). The two effects
thus partly cancel, although the latter effect is larger than the former.

The Poisson-Boltzmann equation for the dimensionless potential
ψ (r) ≡ qφ(r)/kBT of a single sphere of radius a and total charge qZ, assumed
positive for convenience, immersed in a solvent with Bjerrum length Q, at a con-
centration of ions leading to a Debye length κ, is written as

1

r2
d

dr
r2

d

dr
ψ (r) = κ2 sinhψ (r) , (2.55)

with boundary conditions

d

dr
ψ (r)

∣∣∣∣
r=a

=
ZQ

a2
; lim
r→∞

ψ(r) = 0. (2.56)

Linearizing Eq. (2.55) (ψ ≪ 1), we find the Debye-Hückel solution

ψ0 =
ZQ

1 + ω

e−κ(r−a)

r
. (2.57)
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We next derive the first-order correction to this solution. Putting ψ (r) = ψ0 (r)+
ψ1 (r), with |ψ1 (r)| ≪ |ψ0 (r)|, results in the following linear differential equation
for ψ1

1

r2
d

dr
r2

d

dr
ψ1 (r) =

1

6
κ2ψ3

0 (r) . (2.58)

Keeping in mind that ψ1 (r) = o(ψ0 (r)), as r → ∞, we integrate the differential
equation once to obtain

d

dr
ψ1 (r) = −κ

2

6

(
ZQeω

1 + ω

)3
E1(3κr)

r2
(2.59)

and a second time to derive

ψ1 (r) = −κ
3

6

(
ZQeω

1 + ω

)3(
e−3κr

κr
−
(

3 +
1

κr

)
E1(3κr)

)
, (2.60)

where E1(x) is the exponential integral defined by E1(x) =
∫∞
x

dt t−1e−t. Using
the first of the two boundary conditions, we then determine the renormalized
charge Zeff

Zeff =
a2

Q

d

dr
ψ (r)

∣∣∣∣
r=a

=
a2

Q

d

dr
ψ0 (r)

∣∣∣∣
r=a

+
a2

Q

d

dr
ψ1 (r)

∣∣∣∣
r=a

= Z − ω

18

(
Q

a

)2(
Z

1 + ω

)3

F (ω), (2.61)

where

F (ω) ≡ 3ωe3ωE1(3ω) ∼ 1 − 1

3ω
+

2

9ω2
− . . . (2.62)

Recapitulating, we have calculated, to leading order, the charge Zeff which
has to be inserted into the Debye-Hückel potential (Eq. (2.4)) so that this has the
correct asymptotic behavior at large r, coinciding with the tail of the Poisson-
Boltzmann solution.

2.5.2 Dependence of B2 on ionic strength

Here, we prove some simple inequalities describing the behavior of the second
virial coefficient as a function of the ionic strength for an interaction consisting of
a Debye-Hückel repulsion UDH(x) and a general attractive potential UA(x), the
latter not depending on the ionic strength. If we let U(x) = UDH(x) + UA(x),
then B2 is given by Eq. (2.5) with

J =

∫ ∞

2

dxx2
(
1 − e−U(x)

)
. (2.63)
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Then, we have

dJ

dω
=

∫ ∞

2

dxx2 dUDH (x)

dω
e−U(x)

=

∫ ∞

2

dxx2

(
d ln ξ

dω
− (x− 2)

)
UDH (x) e−U(x). (2.64)

In Fig. 2.9 we see that in the regime of interest d ln ξ
dω < 0, so we conclude that

dB2

dω
=

3

8
BHS2

dJ

dω
< 0. (2.65)

In the same way it is clear from the second derivative

d2J

dω2
(2.66)

=

∫ ∞

2

dxx2

(
d2 ln ξ

dω2
+

(
d ln ξ

dω
− (x− 2)

)2

(1 − UDH (x))

)
UDH (x) e−U(x)

and the fact that d2 ln ξ
dω2 & 0 in the regime of interest, that

d2B2

dω2
=

3

8
BHS2

d2J

dω2
> 0, (2.67)

if UDH (2) < 1, i.e. if ξ < 1 (a sufficient condition).

2.5.3 Corrections to the free energy

In Section 2.3, we viewed a suspension of proteins as a system of spheres with an
AHS interaction and we chose the parameter τ of the AHS potential such that the
first order correction in the functional expansion of the free energy (Eq. (2.29))
vanishes (see Eq. (2.31)). In an attempt to justify this approximation and explore
its regime of applicability, we estimate the size of the second order correction to
the free energy (from Eq. (2.29)) which is either positive or negative definite

∆ ≡ η2

2

(
3

4π

)2

a3V −1

∫
dx1 dx2 dx3 B(x12)B(x13)h(x23) =

9

4
η2Y. (2.68)

It is convenient to rewrite the integral in such a way that the angular integration
can be performed explicitly (see below).

Y ≡
∫ ∞

0

dt t2B(t)

∫ ∞

0

ds s2B(s)

∫ π

0

dϑ sinϑ h(
√
s2 + t2 − 2st cosϑ)

= 2

∫ ∞

0

dt tB(t)

∫ ∞

t

ds sB(s)

∫ s+t

s−t
du uh(u). (2.69)
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Figure 2.9: Dependence of ln ξ on ω at pH 4.5 (solid line) and pH 7.5 (dash-dotted
line). In both cases d ln ξ/dω < 0 and d2 ln ξ/dω2 & 0 if 1 ≤ ω ≤ 8.

Here we have used the Kirkwood superposition approximation J
(3)
BM (x1,x2,x3) =

h(x23) [61, 62], where h(x) = g(x) − 1 is the pair correlation function. We have
employed the substitution u2 = s2 + t2 − 2st cosϑ, with ϑ the angle between x12

and x13. Using the expression for g(x) (Eq. (2.34)) and defining h̃(x) = g̃(x)− 1,
we split Y into three parts

Y = Y0 + Y1 + Y2 (2.70)

where we have introduced the limit ζ → 0 and where

Y0 ≡ 2λ

3

∫ ∞

2

dt tB(t)

∫ t+2

t

ds sB(s)

≃ 2λ

3

∫ ∞

2

dt tB(t)

∫ ∞

t

ds sB(s) =
λ

3

[∫ ∞

2

dt tB(t)

]2

, (2.71)

Y1 ≡ 2

∫ ∞

2

dt tB(t)

∫ t+2

t

ds sB(s)

∫ s+t

s−t
du uh̃(u) (2.72)

and

Y2 ≡ 2

∫ ∞

2

dt tB(t)

∫ t+4

t+2

ds sB(s)

∫ s+t

s−t
du uh̃(u) ≪ Y1. (2.73)
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To simplify Eq. (2.72), we substitute Eq. (2.37) and note that s + t ≥ 4 and
0 ≤ s− t ≤ 2. We then derive

∫ s+t

s−t
du uh̃(u) =

2

3
(9G+ 10GH − 12) +

1

2
(s− t)2. (2.74)

Next, using Eq. (2.31), we integrate the nonconstant term leading to a product
of two integrals

∫ ∞

2

dt tB(t)

∫ t+2

t

ds sB(s)(s− t)2 ≃
∫ ∞

2

dt tB(t)

∫ ∞

t

ds sB(s)(s− t)2

=

[∫ ∞

2

dt tB(t)

] [∫ ∞

2

ds s3B(s)

]
. (2.75)

Hence, Y1 is written in terms of one-dimensional integrals

Y1 ≃ 2

3
(9G+ 10GH − 12)

[∫ ∞

2

dt tB(t)

]2

+

[∫ ∞

2

dt tB(t)

] [∫ ∞

2

ds s3B(s)

]
, (2.76)

and this is also the case for Y

Y ≃ 2

3

(
9G+ 10GH − 12 +

λ

2

)[∫ ∞

2

dt tB(t)

]2

+

[∫ ∞

2

dt tB(t)

] [∫ ∞

2

ds s3B(s)

]
. (2.77)

Our goal is to obtain explicit approximations for these integrals by expediently
using Eqs. (2.32) and (2.33). First, we consider integrals on the interval [2, 2 + ǫ]
which are dominated by the singular part of B(x). We substitute Eq. (2.40) into
(2.33) and let ζ → 0 ∫ 2+ǫ

2

dt t2B̃(t) =
2λ

3
. (2.78)

We use this relation to rewrite part of one of the integrals in Eq. (2.77) in two
ways, noting that ǫ≪ 1.

∫ 2+ǫ

2

dt tB(t) = −λ
3

+

∫ 2+ǫ

2

dt tB̃(t) = −1

2

∫ 2+ǫ

2

dt (t− 2)tB̃(t)

≃ − ǫ

4

∫ 2+ǫ

2

dt tB̃(t). (2.79)

We thus conclude that
∫ 2+ǫ

2

dt tB̃(t) ≃
(
1 − ǫ

4

) λ
3

(2.80)
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so the first equality in Eq. (2.79) allows us to attain the explicit expression

∫ 2+ǫ

2

dt tB(t) ≃ −λǫ
12
. (2.81)

Similarly, we use Eqs. (2.40) and (2.78) to evaluate part of the other integral in
Eq. (2.77).

∫ 2+ǫ

2

dt t3B(t) = −4λ

3
+

∫ 2+ǫ

2

dt t3B̃(t) =

∫ 2+ǫ

2

dt (t− 2)t2B̃(t) ≃ λǫ

3
. (2.82)

We note that both integrals in Eqs. (2.81) and (2.82) are O(ǫ) because the integral
in Eq. (2.78) is independent of ǫ owing to the singular part of B(x). If B(x) had
been completely regular, the integrals in Eqs. (2.81) and (2.82) would have been
O(ǫ2).

We next consider the remaining two integrals on the interval [2 + ǫ,∞). We
start by splitting Eq. (2.32) into two parts since 2 + δ demarcates two different
regimes ∫ 2+δ

2+ǫ

dt t2B(t) +

∫ ∞

2+δ

dt t2B(t) = 0. (2.83)

Using this equation and the approximation B(t) ≃ −2ξe−ω(t−2)/t, we may sim-
plify the two integrals, ultimately omitting O(δ) terms

∫ ∞

2+ǫ

dt tB(t) =

∫ 2+δ

2+ǫ

dt tB(t) +

∫ ∞

2+δ

dt tB(t)

≃ 1

2

(
1 − δ

2

)∫ 2+δ

2+ǫ

dt t2B(t) +

∫ ∞

2+δ

dt tB(t)

=
δ

4

∫ ∞

2+δ

dt t2B(t) − 1

2

∫ ∞

2+δ

dt t(t− 2)B(t) ≃ ξ

ω2
e−ωδ (2.84)

∫ ∞

2+ǫ

dt t3B(t) =

∫ 2+δ

2+ǫ

dt t3B(t) +

∫ ∞

2+δ

dt t3B(t)

≃ (2 + δ)

∫ 2+δ

2+ǫ

dt t2B(t) +

∫ ∞

2+δ

dt t3B(t)

= −δ
∫ ∞

2+δ

dt t2B(t) +

∫ ∞

2+δ

dt t2(t− 2)B(t) ≃ −4
ξ

ω2
e−ωδ. (2.85)

We remark that both expressions in Eqs. (2.84) and (2.85) are O(ω−2) because
B(t) is regular for t ≥ 2 + ǫ. We then combine Eqs. (2.81) and (2.84), and
Eqs. (2.82) and (2.85)

∫ ∞

2

dt tB(t) ≃ −λǫ
12

+
ξ

ω2
e−ωδ ≃ −1

4

∫ ∞

2

ds s3B(s). (2.86)
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Finally, using Eqs. (2.68), (2.77) and (2.86), we arrive at an approximation for
the correction to the free energy

∆ =
9

4
η2Y ≃ 9

2
η2

(
G+H − 6 +

λ

6

)[
ξ

ω2
e−ωδ − λǫ

12

]2
. (2.87)

Despite the variety of approximations used, this expression still retains its “defi-
nite” character (it turns out to be negative in the numerical calculations below).
However, the numerical coefficients within the last quadratic factor are not exact.
Furthermore, the status of the present theory differs from that of the Weeks-
Chandler-Anderson theory [61, 62]. In the latter, ∆ is of fourth order in the
perturbation whereas it is basically quadratic here for the reason stated below
Eq. (2.82).

η = 0.05 η = 0.10 η = 0.15

I (M) Π/ρkBT −2∆ Π/ρkBT −2∆ Π/ρkBT −2∆

0.15 1.143 0.004 1.290 0.019 1.437 0.044

0.2 1.033 0.001 1.074 0.006 1.123 0.014

0.25 0.949 0.0004 0.915 0.002 0.898 0.004

0.3 0.889 0.0001 0.805 0.0005 0.749 0.001

0.45 0.763 0.000008 0.575 0.00002 0.448 0.00002

η = 0.20 η = 0.30 η = 0.40

I (M) Π/ρkBT −2∆ Π/ρkBT −2∆ Π/ρkBT −2∆

0.15 1.583 0.085 1.866 0.228 2.17 0.488

0.2 1.183 0.026 1.361 0.068 1.659 0.143

0.25 0.904 0.008 0.988 0.022 1.231 0.046

0.3 0.721 0.003 0.753 0.008 0.960 0.016

0.45 0.375 0.000007 0.340 0.00002 0.470 0.0001

Table 2.4: The osmotic pressure from Eq. (2.88) and its correction from Eq. (2.90) as
a function of the ionic strength I and the packing fraction η.

To estimate the importance of this correction, we first calculate the osmotic
pressure resulting from the neglect of second and higher order terms in the func-
tional expansion Eq. (2.29). This amounts to determining τ from Eqs. (2.36),
(2.50) and (2.53) and then computing the osmotic pressure from Ref. [27] (see
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also Eq. (1.49))

Π

ρkBT
=

1 + η + η2

(1 − η)3
− η(1 + η/2)

(1 − η)2
λ+

η2

36
λ3. (2.88)

Then, we evaluate the correction to the osmotic pressure due to the second order
term in Eq. (2.29). The osmotic pressure is related to the free energy by

Π

ρkBT
= −η∂(ρ−1A)

∂η
. (2.89)

Because Y depends only weakly on η, we approximate the correction to the os-
motic pressure by

−η∂∆

∂η
≃ −2∆. (2.90)

We have compiled the pressure and its correction in Table 2.4 for the same sets
of parameters as in Table 2.1 on page 39 (omitting the trivial case where η = 0).





Chapter 3
Application of the optimized Baxter model

to the hard-core attractive Yukawa system

Abstract We perform Monte Carlo simulations on the hard-core attractive Yukawa
system to test the optimized Baxter model that was introduced in Chapter 2 to
study a fluid phase of spherical particles interacting through a short-range pair
potential. We compare the chemical potentials and pressures from the simulations
with analytical predictions from the optimized Baxter model. We show that the
model is accurate to within 10 percent over a range of volume fractions from 0.1
to 0.4, interaction strengths up to three times the thermal energy and interaction
ranges from 6 to 20% of the particle diameter, and performs even better in most
cases. We furthermore establish the consistency of the model by showing that the
thermodynamic properties of the Yukawa fluid computed via simulations may be
understood on the basis of one similarity variable, the stickiness parameter defined
within the optimized Baxter model. Finally we show that the optimized Baxter
model works significantly better than an often used, naive method determining
the stickiness parameter by equating the respective second virial coefficients based
on the attractive Yukawa and Baxter potentials.

3.1 Introduction

In Chapter 2 we devised a method to approximate systematically a system of
spherical hard particles that interact through a short-range pair potential, by a
system of particles interacting via an effective Baxter potential [27]. The latter
consists of a hard-core repulsion and a sticky attraction at the surface of the
particles which is computed by a variational principle for the free energy (hence
the name “optimized Baxter model”, see Chapter 2). The original short-range
potential was a sum of attractive and repulsive contributions (i.e. a square well

59



60 APPLICATION OF THE OPTIMIZED BAXTER MODEL TO THE HARD-CORE
ATTRACTIVE YUKAWA SYSTEM 3.2

plus a Debye-Hückel interaction), but the variational method also applies to a
purely attractive interaction provided its range is sufficiently smaller than the
particle diameter. The advantage of approximating the original interaction by
the Baxter potential is that the fluid phase of the Baxter model has been studied
extensively, both theoretically [27, 41, 42, 69, 77–80] and in computer simulations
[28, 64, 81, 82]. This means that, once the correspondence between the two
systems has been established, all the analytical results of the Baxter model can
be fruitfully used for the original system.

In the optimized Baxter model (OBM) (see Chapter 2), the free energy of the
actual system is functionally expanded in terms of the Mayer function, where the
reference state is a suspension of hard spheres interacting via an effective sticky
potential. The stickiness parameter associated with the latter is determined by
setting the first-order term in this expansion equal to zero. This constitutes a
variational principle because the second-order term turns out to be either positive
or negative definite. Nevertheless, the exact nature of the expansion is difficult
to assess analytically. For instance, there may be mathematical problems arising
from the limiting procedure in which the range of the effective adhesion goes to
zero as its magnitude becomes infinitely large. Thus, a computational test of the
OBM is important.

The model system we consider consists of hard-sphere particles with an at-
tractive Yukawa interaction

UY (x)

kBT
=

{
∞ 0 ≤ x < 2

−β e−κ(x/2−1)

x/2 x ≥ 2
. (3.1)

Here, x ≡ r/a is the dimensionless distance between the centers of mass of two
spheres, a is their radius, kB is Boltzmann’s constant, T is the temperature, β is
the dimensionless well depth and a/κ is a measure of the range of the attractive
tail (if we wish to set the actual well depth ≡ unity, β may be viewed as identical
with 1/kBT ). Note that we scale distances by a here although often distances are
scaled by the diameter 2a [46, 83].

The liquid-solid coexistence of this system has been studied before at various
values of κ [46, 83]. These papers do not report the chemical potentials and
pressures at coexistence however, which we need to test the validity of the OBM.
We therefore perform new simulations to determine the volume fraction, chemical
potential and pressure at various points along the phase boundaries. Moreover, we
also determine the chemical potential and pressure within the fluid region of the
phase diagram so as to gauge the accuracy of the OBM at lower concentrations.

We start by reviewing equations relevant to the OBM as applied to the Yukawa
potential (Eq. (3.1)) in the next section. In Section 3.3 we describe the numerical
simulations which, in Section 3.4, are compared with the theoretical predictions.



3.2 THEORY 61

3.2 Theory

Here we give a short summary of the theory developed in Chapter 2. The relevant
equations needed to determine the effective adhesion parameter τ and some of the
thermodynamic properties of the system are presented here. For details of the
derivation we refer to Chapter 2 and references mentioned there.

We consider a system of spherical particles of radius a. The interaction U
between the particles is pairwise additive and consists of a hard-sphere repulsion
plus a short-range interaction U1 that is either purely attractive or consists of a
combination of attractive and repulsive interactions (range ≪ a). In the latter
case, the attraction has to be strong enough to compensate for the repulsion—we
come back to this issue later. For convenience, all distances are scaled by the
radius a of the particles so we have

U(x) =

{
∞ 0 ≤ x < 2

U1(x) x ≥ 2
. (3.2)

We wish to replace this system by a suspension of adhesive hard spheres with the
same radius which is our reference state. The interaction of the latter is given by
the adhesive hard sphere (AHS) potential of Baxter [27]

UAHS(x)

kBT
=





∞ 0 ≤ x < 2

ln 12τζ
2+ζ 2 ≤ x ≤ 2 + ζ

0 x > 2 + ζ

. (3.3)

Here, τ is the stickiness parameter whose magnitude we wish to determine and
which signifies the strength of the effective adhesion. The limit ζ ↓ 0 has to be
taken after formal integrations. The reason for approximating the original system
by the AHS system is that the latter has been conveniently solved in the Percus-
Yevick approximation [27]. This means that once the correspondence between the
two systems has been established by appropriately choosing τ , other properties
like, for example, the chemical potential, the pressure and the compressibility
of the system can easily be computed analytically from the solution of the AHS
system.

We next describe how to choose the stickiness parameter τ . In the limit of
vanishing densities, this is done by equating second virial coefficients since we
must equate the respective free energies of the two systems.

B2 = 2πa3

∫ ∞

0

dxx2
(
1 − e−U(x)/kBT

)
≡ BAHS2 = BHS2

(
1 − 1

4τ0

)
. (3.4)

This amounts to choosing

τ0 =
2

3
∫∞
2

dxx2
(
e−U1(x)/kBT − 1

) . (3.5)



62 APPLICATION OF THE OPTIMIZED BAXTER MODEL TO THE HARD-CORE
ATTRACTIVE YUKAWA SYSTEM 3.2

Here, BHS2 = 16πa3/3 is the second virial coefficient of a solution of hard spheres.
At finite densities this procedure necessarily breaks down, however, because the
higher virials come into play. The stickiness parameter τ , which depends on the
density, has to be obtained by identifying the free energy of the actual system
with that of the reference state as well as possible. In the functional expansion of
the excess free energy in terms of the Mayer function [62], we then demand that
the first order correction vanishes. This leads to the condition

∫ ∞

0

dxx2(e−U(x)/kBT − 1)g̃(x) =
2λ

3
, (3.6)

where g̃(x) is the regular part of the pair correlation function g(x) of the reference
AHS system (which also has a singular term, see Chapter 2 and [27]) and

λ =
6(η + (1 − η)τ)

η(1 − η)

(
1 −

√
1 − η(2 + η)

6(η + (1 − η)τ)2

)
(3.7)

with η the volume fraction of particles. For x < 2, g̃(x) equals zero owing to the
hard-core repulsion, whereas g̃(x) tends to unity for large x. Since the interaction
U(x) is of short range, we approximate g̃(x) in the interval 2 ≤ x ≤ 4 by the first
two terms of its Taylor expansion

g̃(x) ≃





0 x < 2

G(1 +H(x− 2)) 2 ≤ x ≤ 4

1 x > 4

. (3.8)

Here, we define the functions
G = λτ (3.9)

and

H =
η

2τ(1 − η)

(
η(1 − η)

12
λ2 − 1 + 11η

12
λ+

1 + 5η

1 − η
− 9(1 + η)

2(1 − η)2
1

λ

)
. (3.10)

At a given volume fraction η, τ can then be determined iteratively from Eqs. (3.6)-
(3.10). An iterative scheme, which converges fast, consists of choosing a starting
value of τ , determining λ from Eq. (3.7), then τ from

τ =
2λ− 3

∫∞
4 dxx2(e−U(x)/kBT − 1)

3λ
∫ 4

2
dxx2(1 +H(x− 2))(e−U(x)/kBT − 1)

, (3.11)

λ again from Eq. (3.7) and so on until convergence to the required accuracy is
achieved.

There are two cases in which the above method does not yield meaningful
results. The first occurs when the short-range interaction has both attractive and
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repulsive components in the event that the repulsion is too strong in comparison
with the attraction. The total interaction is then effectively repulsive in nature
so it is clear that a suspension of particles interacting in such a way cannot be
approximated by an AHS system. In this case, the iteration scheme described
above leads to a τ which keeps on increasing and does not converge. If τ0 is
negative in the limit of vanishing density (Eq. (3.5)) implying a net repulsion, it
is advisable not to compute τ in that case, even though τ could attain positive
values at higher densities. Secondly, the attraction may be too strong. There
exists a critical value of the stickiness parameter τc below which there is a range
of densities for which there is no real solution of λ

τc =
2 −

√
2

6
. (3.12)

This means that if the attraction is strong enough (i.e. when τ is too small), there
will not be a positive real solution to Eq. (3.11). In this case the iteration scheme
would produce complex values of τ .

Finally, to compute the pressure P and the chemical potential µ we use the
expressions derived via the compressibility route [27, 41], see Eqs. (1.49) and
(1.51).

3.3 Simulations

We perform Monte Carlo simulations at constant volume V and temperature T
on a system of N = 256 hard spheres with a short-range Yukawa attraction so we
have (compare with Eq. (3.1))

U1(x)

kBT
= −β e−κ(x/2−1)

x/2
. (3.13)

We introduce a cutoff at x = 4, so that U(x) = 0 for x > 4. We determine the
Helmholtz free energy per particle fN at a chosen set of parameters of β, κ and
η by thermodynamic integration at constant κ and η, starting from the known
free energy per particle of the hard sphere system (β = 0) which is defined at the
same volume fraction (see e.g. Ref. [84])

fN(η, β) − fN(η, 0)

kBT
=

∫ β

0

dβ′ 1

β′

〈
U1

kBT

〉

N

. (3.14)

Here 〈U1〉N is the average energy per particle where the average is computed in
the state with β = β′. From this we determine the equation of state zN(η, β)

zN (η, β)−zN (η, 0) =
PN (η, β)

ρkBT
− PN (η, 0)

ρkBT
= η

∂

∂η

[
fN(η, β) − fN(η, 0)

kBT

]
, (3.15)
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where the particle density ρ is related to the volume fraction by ρv0 = η, and the
chemical potential µN (η, β) is given by

µN (η, β)

kBT
− µN (η, 0)

kBT
≃ ∂

∂η
η

[
fN (η, β) − fN (η, 0)

kBT

]
. (3.16)

The expression for the pressure is exact for a system consisting of a finite number
of particles N , whereas that for the chemical potential has an error of order N−1,
because in the simulations we change only the volume V of the box leaving the
number of particles invariant. (See Section 3.5.1 for details). For the equation of
state of the pure hard-sphere system we have

zl(η, 0) = 1 +
4η + 1.216224η2 + 1.246720η3

1 − 2.195944η+ 1.210352η2
(3.17)

valid when the system is a fluid [85]. It is quadrature to determine the chemical
potential

µl(η, 0)

kBT
= ln η − 1 + zl(η, 0) +

∫ η

0

dη′
zl(η′, 0) − 1

η′
. (3.18)

For the pressure of the hard sphere (fcc) solid we use [86]

zs(η, 0) =
3

1 − 6
π
√

2
η
−

0.5921
(

6
π
√

2
η − 0.7072

)

6
π
√

2
η − 0.601

(3.19)

and for the chemical potential

µs(η, 0)

kBT
= ln η − 1 + zs(η, 0) +

fs(η0)

kBT
+

∫ η

η0

dη′
zs(η′, 0) − 1

η′
, (3.20)

where fs(η0)/kBT = 5.91889(4) is the free energy of the hard sphere solid in the
thermodynamic limit N → ∞ at volume fraction η0 = 0.5450 [87]. We thus calcu-
late the pressure and the chemical potential of the system in the thermodynamic
limit using

P (η, β)v0
kBT

≃ ηzi(η, 0) + η2 ∂

∂η

∫ β

0

dβ′ 1

β′

〈
U1

kBT

〉

N

, (3.21)

and
µ(η, β)

kBT
≃ µi(η, 0)

kBT
+

∂

∂η
η

∫ β

0

dβ′ 1

β′

〈
U1

kBT

〉

N

(3.22)

where i = s, l. These expressions are not exact but correct to order N−1 because
the number of particles in the simulations is finite (see Section 3.5.1 for details).

To determine the average energy per particle 〈U1/kBT 〉N we need to initiate
the simulation by choosing a convenient starting configuration. In the case that



3.4 RESULTS AND DISCUSSION 65

the system is a solid, we assume it is an fcc crystal at the appropriate density.
For the liquid, a configuration at the required density is initiated by putting the
particles in the box at random and then running the simulation until the particles
no longer overlap. This is done at a low value of β and we then use this starting
configuration for all values of β at the same density. The simulation is then
run for 10,000 cycles (i.e. trial moves per particle) at the relevant value of β to
determine the appropriate maximum displacement of a particle at an acceptance
probability of a particle displacement of 0.40. The maximum displacement is
then fixed and the simulation is run for another 10,000 cycles for the system to
equilibrate. Finally, the average energy per particle is measured every 100 cycles
during another 50,000 cycles.

To perform the integration in Eq. (3.14) we run simulations at values of β
ranging from 0.1 until the appropriate value at intervals of 0.1. A simulation at
β = 0.02 is also performed. We then fit the points to a curve and use this to
perform the integration. To determine the density dependence of the free energy
fN about a certain density, we compute the free energy at about 10 values of the
density close to it, at intervals of 0.1. We again fit these to a curve which is used
in Eqs. (3.21) and (3.22) to determine the chemical potential and the pressure at
the desired density.

3.4 Results and discussion

3.4.1 Phase equilibrium

We first test the optimized Baxter model with respect to the fluid phase of hard
spheres with Yukawa attraction when it coexists with the solid phase. This coex-
istence has been studied before via computer simulations [46, 83] but these papers
did not report the pressure and chemical potential, data we do need here.

At a given strength β and inverse range κ of the attraction, we compute the
volume fractions of the coexisting fluid and solid phases by equating the pressures
and the chemical potentials in the respective phases. This is done for κ = 7 and
9, and β running from 0 to 2 at intervals of 0.25 (see Tables 3.1 and 3.2).

Our phase boundaries at κ = 7 agree well with those computed earlier by
Dijkstra [83] who used the same method, though with a smaller system ofN = 108
particles. The deviation in volume fraction is at most 2% (we determined the
phase boundaries from a plot presented in Ref. [83], so this may account for part
of the difference). At low values of β, the agreement with the simulations of Hagen
and Frenkel [46] is also good, but with increasing β the difference between their
phase boundary on the fluid side and ours becomes appreciable until our prediction
of the volume fraction is about 20% higher than theirs at β = 2. We note that
in Ref. [46] a different method was used to determine the phase boundary. The
phase boundaries on the solid side do agree within 3%. We regain essentially the
same picture at κ = 9 though the difference in the phase boundaries at the fluid
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β ηl ηs τ (OBM) τ0 (B2)

0 0.492 0.543 ∞ ∞
0.25 0.493 0.551 8.921 1.930

0.5 0.493 0.561 3.329 0.910

0.75 0.492 0.571 1.689 0.570

1 0.490 0.584 0.986 0.400

1.25 0.485 0.598 0.616 0.299

1.5 0.478 0.613 0.405 0.231

1.75 0.465 0.627 0.271 0.184

2 0.441 0.641 0.183 0.148

Table 3.1: Volume fraction of particles in the coexisting fluid and solid phases as a
function of β at κ = 7 determined by the simulations. The stickiness parameter is
computed via the optimized Baxter model (OBM) and the B2 method (B2).

β ηl ηs τ (OBM) τ0 (B2)

0 0.492 0.543 ∞ ∞
0.25 0.493 0.552 6.278 2.549

0.5 0.494 0.563 2.673 1.199

0.75 0.494 0.576 1.521 0.750

1 0.492 0.591 0.970 0.526

1.25 0.488 0.608 0.659 0.392

1.5 0.480 0.626 0.462 0.303

1.75 0.464 0.643 0.328 0.240

2 0.437 0.657 0.236 0.193

Table 3.2: Same as Table 3.1 but now for κ = 9.

side is less pronounced (about 14% at β = 2). The phase diagram at κ = 9 was
not determined in Ref. [83].

Next, we use the OBM to determine the effective stickiness parameter τ
(Eq. (3.11)) and the properties of the fluid at coexistence. By way of compar-
ison, we also evaluate τ0 by equating the respective second virial coefficients of
the attractive Yukawa interaction and the Baxter potential (see Eq. (3.5)) and
computing the properties of the resulting Baxter fluid. We will refer to this as
the B2 method which is strictly correct only at very low concentrations as we
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stressed above. We employ Eqs. (1.49) and (1.51) to calculate the pressure and
the chemical potential from the volume fractions and the respective values of τ
from the two methods. These predictions are compared with the simulations in
Figs. 3.1 and 3.2.
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Figure 3.1: Dimensionless chemical potential and dimensionless pressure as a function
of the strength β of the Yukawa potential for the coexisting fluid and solid phases. Here
κ = 7. The diamonds and the fitted line are results from the simulations. The squares
are predictions from the optimized Baxter model (at the same densities) and the triangles
have been computed by the B2 method.

It is clear from the figure that the predictions of the OBM are significantly
better than those via the B2 method along the whole phase boundary. The OBM
is actually quite accurate to within a few percent. Recall that at β = 0, i.e. in
the absence of attraction, the two volume fractions predicted by the two methods
necessarily coincide simply because τ = ∞ in both cases. However, this volume
fraction does not agree with that from the simulations which is due to the fact that
we use the accurate equation of state (Eq. (3.17)) in the latter. The analytical
theory is, of course, approximate and overestimates the pressure and the chemical
potential.

3.4.2 Consistency test in the fluid phase

The Baxter model itself has been solved in the Percus-Yevick approximation [27]
and we here use the compressibility route to obtain the thermodynamic properties.
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Figure 3.2: Same as Fig. 3.1 but now for κ = 9.

We know, however, that in the case of the hard sphere system, the analytical
calculations carried out in this way are too high (e.g. at η = 0.4, both the pressure
and the chemical potential are overestimated by 4%). We therefore seek to test
the argumentation leading to the replacement of the actual fluid by the OBM in a
way which is less sensitive to the Percus-Yevick approximation. For instance, we
note that the stickiness parameter τ in the OBM merely depends on the properties
of the distribution function g̃ very close to the sphere (see Eq. (3.8)). Though
this does depend on the Percus-Yevick approximation, it stands to reason that
the functions G and H are more robust to approximation than the oscillatory
behavior which g̃ actually displays in full (and which is implicit in Eqs. (1.49)
and (1.51)). Thus, in the following simulations for the fluid phase, we investigate
whether mathematical similarity [88] is achieved with respect to the parameter
τ as given by Eq. (3.11). This constitutes a reasonable consistency check with
regard to the representation of the real fluid by the OBM.

Our procedure is as follows. We start at a given volume fraction. Next we
choose a set of values of the inverse range of the Yukawa potential (i.e. κ = 5,
7, 9, 11, 13 and 15). We then fix a certain value of the stickiness parameter τ
and compute the concomitant value β for each κ with the help of Eq. (3.11). If
similarity [88] does apply, the thermodynamic properties should depend solely on
τ and η i.e. they ought to be independent of κ at constant τ .

We have performed this test on simulations in a suitable range of volume
fractions η and stickiness parameters τ with associated interaction parameters κ



3.4 RESULTS AND DISCUSSION 69

and β as chosen above. (See Figs. 3.3 to 3.6).
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Figure 3.3: Dimensionless chemical potential and dimensionless pressure of the fluid
phase as a function of the inverse range κ of the Yukawa potential at volume fraction
η = 0.1. The solid symbols are results from the simulations, the horizontal lines are
predictions from the optimized Baxter model at a variety of fixed values of τ . In the
simulations the strength of the attraction β is chosen in such a way that the optimized
Baxter model gives the appropriate value of τ : grey filled diamonds τ = 1, grey filled
squares τ = 0.5, black filled triangles τ = 0.2, black filled squares τ = 0.15 and black
filled diamonds τ = 0.1. The corresponding open symbols have been computed by the B2

method. Encircled points are metastable with regard to fluid-crystal coexistence.

In some cases the attraction is so strong in terms of β that the simulated
fluid is actually in the metastable region with respect to fluid-crystal coexistence.
In effect, if the system were macroscopic, phase separation into fluid and crystal
phases would occur. We are aware of this on the basis of simulations performed
by Hagen and Frenkel [46] and by Dijkstra [83]. In both these investigations,
fluid-crystal coexistence was assessed quantitatively by positing the two phases a
priori. We have not done this here because our main interest has been in testing
the OBM for the fluid phase. From their data, we judge our simulations to be
metastable in this sense for certain points encircled in Figs. 3.3-3.6. Despite the
pre-emption of phase separation, we may still determine the pressure and chemical
potential as if the phases were stable. The OBM pertains to the fluid phase and
cannot address this type of metastability, though invariance of the pressures and
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Figure 3.4: Same as Fig. 3.3 but now at volume fraction η = 0.2.

chemical potentials may be assumed in the two phases.

We first note that the simulated thermodynamic properties are generally quite
independent of κ. (See the filled symbols in Figs. 3.3 to 3.6). This implies that τ
is indeed a useful similarity variable and the OBM is a consistent approximation
scheme. The variation in the pressures and chemical potentials computed by
simulation is only a few percent with few exceptions. Sometimes, there are visible
deviations from the horizontal at low values of κ, for instance, when the volume
fraction is 0.4. By contrast, there are marked deviations from similarity when the
attraction is strong (τ = 0.1) at a volume fraction of η = 0.4 at κ = 11 and 13 (see
Fig. 3.6 on page 72). Mere visual scrutiny of the simulation snapshots shows that
gelation seems to be occurring—note that the attraction is so strong that we are
now well beyond the percolation threshold [28]. This refers to a second type of
metastability. It is beyond the scope of this paper to investigate this phenomenon
further or the possibility of fluid-fluid coexistence.

Next, it is of interest to compare the magnitudes of the simulated thermody-
namic properties with those computed with the help of the OBM (see the curves
in Figs. 3.3 to 3.6 which are horizontal because τ was forced to be constant in each
case). The analytical predictions are virtually quantitative, except at those densi-
ties at τ = 0.1 where gelation seems to occur as discussed above and with regard
to some of the pressures at higher concentrations. The latter are overestimated at
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Figure 3.5: Same as Fig. 3.3 but now at volume fraction η = 0.3.

τ = 0.5 and 1 in Figs. 3.5 and 3.6 which we attribute to deficiencies in the Baxter
model itself (i.e. the Percus-Yevick approximation), since the simulational data
are quite independent of κ as stressed above.

For the sake of comparison we have also displayed thermodynamic properties
computed by the B2 method. At a certain κ and β we evaluate τ0 with the
help of Eq. (3.5) using the Yukawa interaction Eq. (3.1) (thus τ0 is not constant
like τ) and then calculate the pressure and chemical potential within the Baxter
model. The B2 method works well at η = 0.1 (see Fig. 3.3 on page 69), which is
not surprising since neglecting to variationally adjust virials higher than second
is not so crucial in this case. However, the B2 method worsens progressively as
the concentration increases and ultimately becomes unreliable (see Figs. 3.4-3.6).
This is of course expected: the B2 method merely adjusts a single coefficient B2

whereas the free energy itself is variationally optimized in the OBM.

We conclude that the optimized Baxter model is a convenient quantitative,
analytical theory for computing the thermodynamic properties of a fluid of hard
spheres interacting by an attraction of short range. Moreover, the variational
scheme used in deriving the OBM is consistent, especially when the range of
the potential is short i.e. less than approximately 10% of the particle diameter
(κ & 10). Overall, the OBM is accurate to within 10 percent, except under some
conditions of very strong attraction at high volume fractions (τ = 0.1, η = 0.3
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Figure 3.6: Same as Fig. 3.3 but now at volume fraction η = 0.4.

and 0.4), and it is actually much more precise in most cases.

3.5 Appendix

3.5.1 Finite size effects

Here we show that the error incurred in Eq. (3.16) for the chemical potential of
the N -particle system is of order N−1, whereas Eq. (3.15) for the equation of
state is exact. We also prove that the error in the free energy of the system is of
order N−1.

Our simulations are carried out at a constant number of particles N . Hence,
we modify the volume fraction η by altering the volume of the simulation box.
The free energy difference per particle

∆fN (η, β) ≡ fN(η, β) − fN(η, 0) = kBT

∫ β

0

dβ′ 1

β′

〈
U1

kBT

〉

N

(3.23)

is determined as a function of the volume fraction, so in effect it is a function of
η (or ρ) and N (and of course β and κ). The exact equation of state zN(η, β) for
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the N -particle system is then

zN(η, β) ≡ − 1

ρkBT

(
∂FN (η, β)

∂V

)

N,T

= zN(η, 0) + η
∂

∂η

∆fN (η, β)

kBT
, (3.24)

where FN (η, β) = NfN(η, β) and the exact chemical potential is

µN (η, β)

kBT
≡ 1

kBT

(
∂FN (η, β)

∂N

)

V,T

=
µN (η, 0)

kBT
+

∂

∂η

η∆fN (η, β)

kBT
− 1

N

∂

∂N−1

∆fN (η, β)

kBT
. (3.25)

Here, and in the rest of the appendix, we have switched to the new independent
variables η and N so that derivatives with respect to η are taken at constant N
and derivatives with respect to N are taken at constant η. We see from Eqs. (3.24)
and (3.25) that Eq. (3.16) has an error of order N−1 whereas Eq. (3.15) is exact.

We now assume that we may Taylor expand ∆fN(η, β) for small values of
N−1 at constant volume fraction. It’s not obvious that this is allowed. In the
case of a crystal for example, the first-order correction to the free energy per
particle due to the fact that the number of particles is finite, is of order N−1 lnN
[87, 89]. This correction is the same for systems of identical numbers of particles
however, regardless of the interaction. Since our fN is the difference in the free
energies per particle pertaining to the two respective crystals (with different pair
potentials), the O(N−1 lnN) corrections simply cancel. Moreover, from Ref. [87]
we know that the leading higher order corrections to the free energy per particles
are of order N−1. These deliberations are confirmed in Figs. 3.7 and 3.8 which
show that the leading corrections to the average dimensionless energy per particle
〈U1/kBT 〉N are indeed of order N−1 at the representative values β = 1, κ = 15
and ρ(2a)3 = 0.4 (η = π/15 ≃ 0.20944) for the fluid and ρ(2a)3 = 1.2 (η = π/5 ≃
0.62832) for the solid.

Therefore, we conclude that the free energy per particle in a system containing
an infinite number of particles is given by

∆f∞(η, β) = ∆fN (η, β) +O

(
1

N

)
. (3.26)

In the same manner, the equation of state z∞(η, β) is then

z∞(η, β) = z∞(η, 0) + η
∂

∂η

∆fN (η, β)

kBT
+O

(
1

N

)
, (3.27)

and the chemical potential is expressed by

µ∞(η, β)

kBT
=
µ∞(η, 0)

kBT
+

∂

∂η

η∆fN (η, β)

kBT
+O

(
1

N

)
. (3.28)
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Figure 3.7: Example of the dependence of the average dimensionless energy per particle
〈U1/kBT 〉N in the fluid on the size of the system. Here κ = 9, β = 1 and η = π/15 ≃
0.20944 (ρ(2a)3 = 0.4). N denotes the number of particles.

3.5.2 Second-order correction to the free energy

We estimate the second-order correction to the free energy (see Section 2.5.3)

∆ =
9

4
η2Y. (3.29)

This correction leads for instance to a correction to the dimensionless pressure
Pv0/kBT approximately equal to −2η∆. The first part of the analysis in Sec-
tion 2.5.3 is also useful here and we again approximate Y by

Y ≃ 2

3

(
9G+ 10GH − 12 +

λ

2

)[∫ ∞

2

dt tB(t)

]2

+

[∫ ∞

2

dt tB(t)

] [∫ ∞

2

ds s3B(s)

]
, (3.30)

where

B(x) ≡ g(x)

[
exp

(
−UY (x)

kBT
+
UAHS(x)

kBT

)
− 1

]
(3.31)

and λ, G and H are given by Eqs. (3.7), (3.9) and (3.10). We split the pair
distribution function g(x) in the reference state into gζ(x) and a regular part g̃(x)
given by Eq. (3.8) (see also Chapter 2):

g(x) = g̃(x) + gζ(x) (3.32)
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Figure 3.8: Same as Fig. 3.7 but now for the solid at η = π/5 ≃ 0.62832 (ρ(2a)3 = 1.2).

with

gζ(x) =






0 x < 2
λ(2+ζ)

12ζ +O(1) 2 ≤ x ≤ 2 + ζ

0 x > 2 + ζ

. (3.33)

We then insert the expressions for the potentials Eqs. (3.1) and (3.3) into
Eq. (3.31) and derive in the limit ζ → 0

∫ ∞

2

dxxB(x)

= −λ
3

+G

∫ ∞

2

dxx(1 +H(x− 2))(e−UY (x)/kBT − 1) +O(e−κ) (3.34)

and

∫ ∞

2

dxx3B(x)

= −4λ

3
+G

∫ ∞

2

dxx3(1 +H(x− 2))(e−UY (x)/kBT − 1) +O(e−κ). (3.35)

In both cases the integration on the right hand side should run from x = 2 to
x = 4, so extending the integrals to ∞ only introduces errors of order e−κ. In the
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OBM, τ is determined by the condition that the first-order correction to the free
energy vanishes

∫ ∞

2

dxx2B(x) (3.36)

= −2λ

3
+G

∫ ∞

2

dxx2(1 +H(x− 2))(e−UY (x)/kBT − 1) +O(e−κ) = 0.

This expression is used to rewrite Eqs. (3.34) and (3.35)
∫ ∞

2

dxxB(x)

= −1

2
G

∫ ∞

2

dxx(x − 2)(1 +H(x− 2))(e−UY (x)/kBT − 1) +O(e−κ), (3.37)

∫ ∞

2

dxx3B(x)

= G

∫ ∞

2

dxx2(x− 2)(1 +H(x− 2))(e−UY (x)/kBT − 1) +O(e−κ) (3.38)

which are readily approximated. We substitute y = exp[−κ(x/2 − 1)] which
ultimately leads to

∫ ∞

2

dxxB(x) =
4G

κ2
J1(β) +O(κ−3) (3.39)

and ∫ ∞

2

dxx3B(x) = −16G

κ2
J1(β) +O(κ−3). (3.40)

Here we have introduced

J1(β) ≡ −
∫ 1

0

dy
eβy − 1

y
ln y. (3.41)

An approximation for J1(β) that is accurate to within 1.4% in the relevant
range 0 ≤ β ≤ 3.52 is given by

J1(β) ≃
{

β + 1
8β

2 0 ≤ β < 0.8

2.81
(
e0.34β − 1

)
0.8 ≤ β ≤ 3.52

. (3.42)

Finally, we insert Eqs. (3.39) and (3.40) into Eq. (3.30). We thus obtain an
approximation for the second-order correction to the free energy

∆ ≃ 24G2

κ4

(
9G+ 10GH − 18 +

λ

2

)
J2

1 (β)η2. (3.43)

In Table 3.3 we present typical values of ∆. The corrections to the pressure are
very small (compare with Figs. 3.1 on page 67 and 3.2 on page 68).
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Chapter 4
Fluid-crystal coexistence for proteins and

inorganic nanocolloids: Dependence on

ionic strength

Abstract We investigate theoretically the fluid-crystal coexistence of solutions of
globular charged nanoparticles like proteins and inorganic colloids. The thermo-
dynamic properties of the fluid phase are computed via the optimized Baxter
model. This is done specifically for lysozyme and silicotungstates for which the
bare adhesion parameters are evaluated via the experimental second virial coeffi-
cients. The electrostatic free energy of the crystal is approximated by supposing
the cavities in the interstitial phase between the particles are spherical in form. In
the salt-free case a Poisson-Boltzmann equation is solved to calculate the effective
charge on a particle and a Donnan approximation is used to derive the chemical
potential and osmotic pressure in the presence of salt. The coexistence data of
lysozyme and silicotungstates are analyzed within this scheme, especially with
regard to the ionic-strength dependence of the chemical potentials. The latter
agree within the two phases provided some upward adjustment of the effective
charge is allowed for.

4.1 Introduction

One current view of protein crystallization centers on the second virial coefficient
B2 being a relevant quantity determining the onset of crystallization [44, 45, 48,
90]. There exists a crystallization slot of negative B2 values which expresses a
necessary range of solution conditions for adequate crystals to grow. A negative
value of B2 implies a Baxter stickiness parameter as it is conventionally defined
via B2 only and we here denote by τ0. Thus, in a similar vein, there have been

79
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attempts to correlate τ0 with the solubility of nanoparticles in explaining fluid-
crystal coexistence curves [22, 47].

The free energy of a suspension of particles cannot, of course, depend on B2

alone. In Chapter 2 we introduced a new analytical theory for protein solutions in
which the real fluid is replaced by a suspension of spheres with an appropriately
chosen adhesion of the Baxter type. The stickiness parameter τ is computed by a
variational principle for the free energy instead of via B2. In our optimized Baxter
model, τ is not at all identical to τ0; τ depends not only on the ionic strength
but also on the protein concentration. In Ref. [47], Rosenbaum et al. plotted τ0
logarithmically as a function of the nanoparticle concentration which effectively
coarse-grains the experimental data they show. If we zoom in on their curve,
there is a lot of fine detail which we here argue to be related to the fact, in part,
that τ is a better similarity parameter. In particular, we seek to understand the
ionic-strength dependence of the fluid-crystal coexistence curves by going beyond
theory based solely on τ0.

In Chapter 3 we have tested the optimized Baxter model on a system of spheres
interacting via an attractive Yukawa potential analyzed by computer simulations.
The stickiness parameter τ , evaluated by optimizing the free energy, is indeed
a useful similarity variable for gaining insight into the pressures and chemical
potentials from simulations of the fluid phase. The magnitudes of these quantities
are also well predicted by the optimized Baxter model. However, τ is not a correct
similarity variable to describe fluid-crystal coexistence as we show in Section 4.6.1,
in view of the fact that the weighting of configurations is different in the respective
phases.

Here, we will not focus on the variable τ and the fluid phase but rather on
the coexistence itself. The systems we study are assumed to have a short enough
range so that the coexistence between two fluid phases is apparently circumvented.
An a priori theory is problematic because we would need a quantitative theory
of the crystal phase in terms of postulated attractive forces which are currently
unknown. Theoretical efforts exist in the literature [49, 50, 91] at the expense of
introducing unknown parameters which we want to avoid here. We do not present
conventional phase diagrams because we do not know the right thermodynamic
variable to plot to get a universal diagram of states. The variable τ itself is not
useful as we show in Section 4.6.1.

In practice, it may be very difficult to achieve ideal thermodynamic equilib-
rium between the liquid phase and some crystalline state. Equilibrium may not
have been reached, the crystal could be heterogeneous and the formation of ag-
gregates could complicate the attainment of equilibrium (see, for instance, the
discussion by Cacioppo and Pusey on lysozyme [92]). Nevertheless, it may still be
useful to assume equilibrium is ideally attained provided our goal is sufficiently
modest. The balance of chemical potentials has been used before to acquire infor-
mation about the crystal from the solubility in the fluid phase [90]. Our concern
here will be to try to gain insight into the ionic-strength dependence of the ther-
modynamic properties of the crystal. We may argue that this dependence could
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be approximated by a Donnan equilibrium so it would not be very sensitive to
the precise crystal habit adopted. We therefore compute the protein chemical
potential and osmotic pressure of the coexisting liquid phase at the experimen-
tally determined solubility with the help of the optimized Baxter model. We then
investigate whether their dependence on the electrolyte concentration agrees with
that predicted by a simple crystal model. The theory is applied to a protein
(lysozyme) and an inorganic nanocolloid (silicotungstate (STA)).

4.2 Optimized Baxter model

We first discuss how we obtain the bare adhesion parameters via the second virial
coefficient, and then summarize the optimized Baxter model (see Chapter 2),
which is an appropriate liquid state theory provided we use the right stickiness
parameter τ as emphasized in the Introduction. We consider a system of charged
nanometer-sized particles (e.g. proteins or nanocolloids) in water with added
monovalent salt of ionic strength I. We suppose the particles are spherical with
radius a. The charge is distributed uniformly on the particle’s surface. For conve-
nience, all distances in this section will be scaled by the radius a and all energies
by kBT , where kB is Boltzmann’s constant and T is the temperature. Because
monovalent ions (counterions and salt ions) are present in solution, the Coulomb
repulsion between the particles will be screened and it is here given by a far-
field Debye-Hückel potential. The effective number Zeff of charges on the sphere
(taken to be positive) will here be computed in the Poisson-Boltzmann approxi-
mation. We let the attraction between two particles be of range much shorter than
their radius, and we model it by a potential well of depth UA and width δ ≪ 1.
Actually, the attractive interactions are, of course, much more complicated than
this simple form. Dispersion forces, in particular, have been reinvestigated for
small particles recently [93, 94] although the continuum approximation certainly
becomes rather poor at the nanolevel dealt with here. Also, arbitrary cut-offs
need to be introduced (see Chapter 2); it turns out that a simple well is quite
adequate to describe the experimental data on B2 (see Section 4.3 below). The
total interaction UT (x) between two particles whose centers of mass are separated
by an actual distance r is thus of the form

UT (x) =





∞ 0 ≤ x < 2

UDH(x) − UA 2 ≤ x < 2 + δ

UDH(x) x ≥ 2 + δ

, (4.1)

x ≡ r

a
,

with Debye-Hückel interaction

UDH(x) = 2ξ
e−ω(x−2)

x
. (4.2)
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Here, ξ ≡ Q
2a

(
Zeff

1+ω

)2

and ω ≡ κa, which are given in terms of the Debye length

κ−1 defined by κ2 = 8πQI and the Bjerrum length Q = q2/ǫkBT , which equals
0.71 nm in water at 298 K (ǫ is the permittivity of water, q is the elementary
charge); ω = 3.28a

√
I, if the radius a is given in nm and the ionic strength I in

M. We suppose 1-1 electrolyte has been added in excess so I is the concentration of
added salt. We have derived the effective charge qZeff in the Poisson-Boltzmann
approximation (see Chapter 2)

Zeff = Z − ω2

6

(
Q

a

)2(
Z

1 + ω

)3

e3ωE1(3ω). (4.3)

Here E1(x) is the exponential integral defined by E1(x) =
∫∞
x dt t−1e−t and qZ is

the actual charge per particle. Eq. (4.3) is numerically consistent with a different
form recently proposed by Aubouy et al. [95] which is also valid at large values
of Z.

We suppose that the bare charge on the particles as a function of the ionic
strength is known from experiment, so the only unknown parameters are UA and
δ which are chosen to be independent of I. The latter are determined by fitting
preferably complete experimental data of the second virial coefficient B2 as a
function of the ionic strength I at constant pH to B2 computed numerically with
the help of the expression

B2 = 2πa3

∫ ∞

0

dxx2
(
1 − e−UT (x)

)
(4.4)

using Eq. (4.1). We have previously done this for a wide variety of B2 data on
lysozyme at two values of the pH (4.5 and 7.5) and we were able to obtain very
good fits (see Chapter 2) (see e.g. Fig. 4.1 on page 85 which is discussed in Section
4.3.2).

It is important to stress that though there are two adjustable parameters δ
and UA, the actual fit in practice depends almost solely on adjusting the single
combination δ expUA. This is because a convenient analytical approximation of
the second virial turns out to have the form (see Chapter 2)

B2

BHS2

≃ 1 +
3ξ

2ω
− 3

2
e−ξδeUA (4.5)

and is able to describe the experimental data on lysozyme quite well with an
appropriate value of δ expUA. Here, BHS2 is the second virial coefficient pertaining
to hard spheres. The strong correlation of adjustable parameters is not unusual
for it is well known in the theory of gases when one attempts to fit the temperature
dependence of the second virial coefficient in terms of a Lennard-Jones interaction,
for instance [96]. We note that Eq. (4.5) disagrees starkly with an approximation
put forward earlier [97], both with regard to the pure electrostatic and the adhesive
contributions. In particular, the third i.e. adhesion term in Eq. (4.5) is not at
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all independent of the ionic strength but rather diminishes fast as the electrolyte
concentration is lowered. Furthermore, the pure electrostatic term cannot be
derived from a Donnan equilibrium as we point out in Section 4.4.

At high salt concentrations, the parameter ξ becomes small owing to screening
so B2 becomes lower than the hard sphere value as can be seen from Eq. (4.5).
Nevertheless, the electrostatic repulsion still exerts itself, so an effective adhesion
parameter we may wish to introduce would be smaller than the bare value. We
therefore adopt a similar strategy to the liquid state at finite concentrations by
first introducing a suitable reference state amenable to analytical computation
(see Chapter 2). This is a solution of hard spheres whose radius is still a but with
a Baxter adhesion potential whose strength is defined by a suitable stickiness
parameter τ . The statistical properties of this suspension as a function of the
volume fraction of spheres η (= 4πa3/3 times number density) may be solved
in the Percus-Yevick approximation [27]. The parameter τ is adjustable and
is computed via a variational principle for the free energy. The latter may be
written as a functional expansion in terms of the so-called blip function which
is the difference in Mayer functions of the respective interactions (Eq. (4.1) and
the Baxter interaction) (see Chapter 2 and Ref. [62]). We set the first-order
deviation from the free energy pertaining to the reference state equal to zero.
This determines τ which depends not only on the well parameters δ and UA and
electrostatic variables ω and ξ but also on the volume fraction of nanospheres. It
is given by (see Chapter 2)

1

τ
= 3ǫ

[(
eUAe−

ξ
1+ǫ/2

e−ωǫ

− 1
)

(1 + (1 +H) ǫ) +
(
eUAe−ξ − 1

)]
, (4.6)

where
ǫ = δ −K−1 [(1 + δH)P1 +HP2] , (4.7)

P1 =
8

ω2
(1 + ωδ)M +

16

ω

(
M

1 +M

)
, (4.8)

P2 =
8

ω3
(2 + ωδ)M +

16

ω2
ln(1 +M), (4.9)

M ≡ ξe−ωδ/4, (4.10)

K = 2
(
eUAe−

ξ
1+δ/2

e−ωδ

− 1
)

(1 + (1 +H) δ)

+ 2
(
eUAe−

ξ
1+ǫ/2

e−ωǫ

− 1
)

(1 + (1 +H) ǫ) , (4.11)

H =
η

2τ(1 − η)

(
η(1 − η)

12
λ2 − 1 + 11η

12
λ+

1 + 5η

1 − η
− 9(1 + η)

2(1 − η)2
1

λ

)
(4.12)

and λ is given by

τ =
1 + η/2

(1 − η)2
1

λ
− η

1 − η
+

η

12
λ. (4.13)
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Note that τ is readily obtained by iteration. One starts with initial values for τ
and ǫ and then calculates λ, H and K from Eqs. (4.11)–(4.13). Then, a new value
of ǫ at fixed H is computed iteratively with the help of Eqs. (4.7) and (4.11).
Next, a new value of τ is given by Eq. (4.6) and then the cycle is repeated until
the variables become stationary.

Having obtained the effective adhesion parameter τ , we simply calculate ther-
modynamic properties of the reference state within the Percus-Yevick approxima-
tion. The free energy of the actual system does deviate slightly from that of the
reference state but we have shown that the deviations are very small (see Chap-
ter 2). To compute the osmotic pressure and chemical potential we use the result
from the compressibility route [27] (Eqs. (1.49) and (1.51)) which appears to be
more in line with simulations [30], see Figs. 1.5 on page 25 and 1.6 on page 27.

4.3 Solubility curves: chemical potential of the fluid phases

4.3.1 Method

Since we suppose the crystal is in thermodynamic equilibrium with the fluid,
the nanoparticle chemical potentials as well as the osmotic pressures in both
phases are uniform. The chemical potential of the counter and co-ions must also
be uniform but we will address this issue later within a Donnan equilibrium.
Solubility data from experiment represent the particle concentration in the fluid
phase as a function of the pH and the salt concentration. Thus we compute the
chemical potential and the osmotic pressure of the solution with the help of the
optimized Baxter model of the previous section. We have done this in two cases
of nanoparticles where we have sufficient experimental data on the second virial
coefficient to evaluate the well parameters UA and δ with sufficient accuracy.

4.3.2 Lysozyme

The protein hen-egg-white lysozyme has been well characterized in aqueous so-
lutions of simple electrolytes. We here choose the effective radius a such that
the volume of the model sphere is equal to the volume of a lysozyme molecule in
the tetragonal crystal state. The latter is determined from the water content of
the tetragonal crystal (0.335 mass fraction [98]), the crystal volume per protein
molecule (29.6 nm3, based on the dimensions 7.91×7.91×3.79nm3 of the unit cell
containing 8 protein molecules [99]), the density of the crystal (1.242 103 kgm−3

[98]) and the density of water (0.998 103 kg m−3). Thus we have a = 1.6 nm and
note that this is 0.1 nm less than the value of 1.7 nm we used previously in Chap-
ter 2, which was based on approximating the protein by an ellipsoid of dimensions
4.5× 3.0× 3.0 nm3 [100]. For the sake of consistency we here use the single value
a = 1.6 nm in computations pertaining to both phases.

The experimental data for the second virial coefficient of lysozyme have been
discussed by us at length in Chapter 2 and are presented in Fig. 4.1.
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Figure 4.1: The second virial coefficient of lysozyme as a function of the ionic strength.
The second virial coefficient is scaled by the hard sphere value BHS

2 . The data are taken
from a variety of experiments; see Chapter 2 for more details. The added salt is NaCl.
The solid line is a fit to the data with UA = 2.90 and δ = 0.183.

For details on determining the parameters UA and δ of the attractive potential
we also refer to Chapter 2. Since we are using a smaller effective radius here, we
deduce the values UA = 2.90 and δ = 0.183 which are somewhat different from
those derived earlier in Chapter 2. The values of the bare charge qZ of a lysozyme
molecule as a function of the ionic strength are the same as those used in Chapter 2
i.e. they are determined by interpolation from hydrogen-ion titration data in
KCl [60]. We assume that KCl and NaCl (see below) behave identically in an
electrostatic sense. The effective charge does differ slightly because it is a function
of a (see Eq. (4.3)). We again use the lowered effective charge Z = Zeff−1 instead
of the effective charge Zeff in order to fit B2 accurately at lower ionic strengths
when it is dominated by electrostatics. We set UA and δ to be independent of the
pH.

Accurate data on the solubility S as a function of the NaCl concentration
have been obtained by Cacioppo and Pusey [92] using column beds of tetragonal
microcrystallites of lysozyme in a range of pH and temperatures. We here employ
their data at 298 K and at three representative values of the pH. (See Table 4.1.)

The ionic strength I in M is determined from the ionic strength in %w/v by the
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relation I(M)= 0.06 + 0.171I(%w/v). Here, the value 0.06 accounts for the effec-
tive ionic strength of the 0.1 M sodium acetate buffer used and 0.171 = 10/MNaCl

where MNaCl = 58.44g mol−1 is the molar mass of NaCl. The dimension-
less parameter ω is then given by ω = 5.25

√
I , where I is given in M, and

ξ = 0.222(Z/(1 + ω))2.
The volume fraction η of protein in the liquid phase is given by η = SNAv0/M ,

where NA is Avogadro’s number, v0 = 4πa3/3 is the volume of a lysozyme
molecule and M = 14.3 103 gmol−1 [101] is the molar mass of lysozyme. The
parameter τ describing the effective adhesion is determined as described in Sec-
tion 4.2 (see Eqs. (4.6)–(4.13)), using the values UA = 2.90 and δ = 0.183. Then,
the dimensionless chemical potential (µ−µ0)/kBT and the dimensionless osmotic
pressure Πv0/kBT are determined from Eqs. (1.51) and (1.49) respectively. (See
Table 4.1). Fig. 4.2 shows the chemical potential as a function of the ionic strength
I at three different values of the pH.

I (M)

(µ
−

µ
0
)/

k
B
T
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Figure 4.2: The dimensionless chemical potential of lysozyme in the fluid phase as
a function of the ionic strength at pH 4.0 (diamonds), pH 4.5 (squares) and pH 5.4
(triangles). See also Table 4.1.

Fig. 4.3 shows the osmotic pressure under the same conditions.

4.3.3 Silicotungstates (STA)

The next system we consider is silicotungstate (STA) in water with three different
kinds of added salt: NaCl, HCl and LiCl. STA molecules are spherical, more or
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Figure 4.3: The dimensionless pressure of lysozyme in the fluid phase as a function of
the ionic strength at pH 4.0 (diamonds), pH 4.5 (squares) and pH 5.4 (triangles). See
also Table 4.1.

less, (see Fig. 2 in Ref. [102]) with an effective diameter of 1.1 nm [103, 104], so
we set a = 0.55 nm. The structural formula for the polyanion SiW12O

4−
40 implies

a molar mass MSTA = 2874.3g mol−1. We assume that the pH is low enough for
the molecule to be fully dissociated, i.e. Z = 4.

We determine the well parameters UA and δ for the attractive interaction by
fitting experimental data of the second virial coefficient in the same way as was
done for lysozyme in Chapter 2, except we now do not adjust Zeff . The second
virial coefficients for Li4STA, H4STA and Na4STA are taken from Ref. [105] and
plotted in Fig. 4.4.

In each case, the added salt is XCl, where X represents the counterion of
the crystal. The values of the dimensionless parameters ω = 1.80

√
I, ξ =

0.645(Zeff/(1 + ω))2, Z and Zeff pertaining to the data in Fig. 4.4 are given
in Table 4.2.

We have set δ = 0.05. A least-squares fit to the data represented in Fig. 4.4
then gives UA = 3.30. In fact, there is a range of combinations of δ and UA
that yield almost the identical curve as long as δ expUA ≃ 1.36 and δ ≪ 1, so
our choice of δ = 0.05 is a bit arbitrary. This similarity with respect to the sole
parameter δ expUA is in accord with our approximation for B2 give by Eq. (4.5).

The solubilities for Li4STA, H4STA and Na4STA have been measured by
Zukoski et al. [105], where the same electrolytes are used as in the measurements
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Figure 4.4: The second virial coefficient of STA as a function of the ionic strength. The
second virial coefficient is scaled by the hard sphere value BHS

2 . The experimental data
are taken from Zukoski et al. [105]. The added salt is LiCl (diamonds), HCl (squares)
and NaCl (triangles) respectively and in all cases the counterion of STA is the same as
that of the salt. The solid line is a fit to the experimental data with UA = 3.30 and
δ = 0.05.

I (M) ω Z Zeff ξ

0.3 0.99 4.0 3.42 1.905

1.0 1.80 4.0 3.58 1.054

3.0 3.13 4.0 3.76 0.536

4.0 3.61 4.0 3.80 0.439

5.0 4.03 4.0 3.83 0.373

Table 4.2: Values of the bare charge Z of STA, the effective charge Zeff (from Eq. (4.3))
and the dimensionless interaction parameters ω = 1.80

√
I and ξ = 0.645(Zeff /(1+ω))2

as a function of the ionic strength I. These entries apply to the data plotted in Fig. 4.4.

of B2. (See Table 4.3.)

The volume fraction η of STA is given by η = SNAv0/MX4STA, where S is
the solubility of STA (note that here it is given in g/ml, whereas for lysozyme it
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was given in g/l), v0 = 4πa3/3 is the volume of an STA molecule and MX4STA

is the molar mass, where X again represents the counterion in the respective
cases. We have MH4STA = 2878.3g mol−1, MLi4STA = 2902.0g mol−1 and
MNa4STA = 2966.2 gmol−1. The stickiness parameter τ is determined by the
method described in Section 4.2 (see Eqs. (4.6)–(4.13)), using the values UA = 3.30
and δ = 0.05. The chemical potential and the osmotic pressure are again deter-
mined from Eqs. (1.51) and (1.49) respectively. (See Table 4.3). We display these
thermodynamic variables as a function of the ionic strength in Figs. 4.5 and 4.6.

I (M)
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Figure 4.5: The dimensionless chemical potential of STA in the fluid phase as a func-
tion of the ionic strength. The added salt is LiCl (diamonds), HCl (squares) and NaCl
(triangles) respectively and in all cases the counterion of STA is the same as that of the
salt. See also Table 4.3.

4.4 Crystal model: Donnan effect

Having computed the thermodynamic properties of the fluid phases of lysozyme
and STA, and hence those of the respective crystal phases under the assumption of
equilibrium of the two phases, we now attempt to gain insight into them by intro-
ducing a simple model for the crystal. In the latter the spherical particles either
touch or are very close. There are thus minute “surfaces of interaction” where the
forces between two nearby spheres are predominantly attractive. It is therefore
reasonable to write the thermodynamic potential Ω of a crystal of N spheres in
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Figure 4.6: The dimensionless pressure of STA in the fluid phase as a function of the
ionic strength. The added salt is LiCl (diamonds), HCl (squares) and NaCl (triangles)
respectively and in all cases the counterion of STA is the same as that of the salt. See
also Table 4.3.

a volume V as a superposition of attractive and electrostatic contributions to a
first approximation

Ω =
1

2
k(c)

(V − V0)
2

V0
+Nfel(c, Ic) + Π(S, I)V − µ(S, I)N. (4.14)

The crystal is immersed in a large reservoir at a constant osmotic pressure Π and
chemical potential µ containing a saturated solution of nanospheres at a solubility
S and ionic strength I (Π and µ are given by Eqs. (1.49) and (1.51) respectively).
The crystal has elastic properties denoted by the modulus k which depends on
the density c = N/V and the crystal would have a volume V0 in the absence of
electrostatic forces (|V − V0| ≪ V0). Actually, the form of the elastic energy is
more complicated and depends on the precise crystal habit [106] but the simple
harmonic form in Eq. (4.14) suffices for our purposes. There is a Donnan equi-
librium (see below) which leads to a salt concentration Ic within the interstitial
region in the crystal. We adopt a continuum approximation: the electrostatic free
energy Nfel is computed for a lattice of charged spheres embedded in a solvent
of uniform permittivity ǫ and electrolyte concentration Ic.
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At equilibrium, Ω must be minimized (∂Ω/∂V = 0; ∂Ω/∂N = 0) so that

Π ≃ Πel − k

(
V − V0

V0

)
+

1

2
c

dk

dc

(
V − V0

V0

)2

, (4.15)

µ ≃ µel +
1

2

dk

dc

(
V − V0

V0

)2

. (4.16)

We have introduced the electrostatic counterparts of the osmotic pressure and the
chemical potential of a charged sphere in the crystal phase on the right hand sides
of Eqs. (4.15) and (4.16). In Eq. (4.15) the elastic term proportional to k may
easily be of order Πel but the quadratic form is negligible. In view of the fact that
Πel = O(cµel), we then have µ ≃ µel to a good approximation from Eq. (4.16).
In effect, as we change the ionic strength of the fluid phase, the solubility S
and the salt concentration Ic within the crystal readjust themselves whereas the
volume V remains virtually constant. The chemical potential is modified only by
virtue of the change in electrostatic shielding about a sphere in the lattice. But a
substantial hydrostatic pressure may be exerted within the crystal as we decrease
its volume a bit.

Next, we compute the electrostatic properties of the crystal. The colligative
properties of salt-free polyelectrolytes are often addressed in terms of a cell model
in which a test cylinder is surrounded by a boundary of similar symmetry on which
the electric field vanishes [107]. The boundary effectively replaces the effect of
the surrounding particles on the test particle. This picture is reasonable at low
volume fractions but must break down at high concentrations when the electric
field is highly heterogeneous. In the latter case, one of us has advocated focusing
on the voidlike regions instead of on a test particle (see Ref. [108] which deals with
a hexagonal lattice of DNA at very high concentrations). Thus, in a crystal of
spheres we may distinguish very small regions between particles that almost touch
which we view as thin boundary layers, and larger voids which we will simply
approximate by spheres. (We are here concerned with spheres of high charge
density which leads to counterions being “condensed”. At low charge densities,
it is possible to give a more general analysis; see Section 4.6.2). Discrete charge
effects should prevail when evaluating the electrostatics of the boundary layers.
These energies are here assumed to be independent of the ionic strength since the
relevant scales in the boundary layers are very small in crystals of nanoparticles.

We therefore first solve the Poisson-Boltzmann equation for a charged void or
spherical cavity of radius b without salt and then discuss the effect of monovalent
salt via a Donnan equilibrium. The charge density on the surface of the cavity is
uniform and the total number of charges is Z. In view of electroneutrality there
are Z counterions in the cavity, each bearing charge −q. Within a mean-field
analysis, the counterion density ρ(r) inside the cavity is given by a Boltzmann
distribution in terms of the electrostatic potential Ψ(r) at a distance r from its
center

ρ(r) = ρ eqΨ/kBT . (4.17)
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We choose Ψ = 0 at the center of the cavity so that ρ is the actual charge density
there. The charge density −qρ is also related to Ψ by Poisson’s equation

∆Ψ =
4πqρ

ǫ
(4.18)

leading to the Poisson-Boltzmann equation [107] which we conveniently express
in the scaled form

ψ′′(x) +
2

x
ψ′(x) = eψ. (4.19)

Here, we have defined λ−2 ≡ 4πQρ, x ≡ r/λ and ψ ≡ qΨ/kBT where λ may be
interpreted as a screening length. The two additional boundary conditions are

ψ′(0) = 0 (4.20)

owing to symmetry, and
b

λ
ψ′
(
b

λ

)
= Λ ≡ QZ

b
(4.21)

signifying the relation between the electric field and the charge density at the
surface of the cavity.

For small x, Eq. (4.19) admits a series expansion ψ(x) = Ax2 +Bx4 + ... with
A = 1/6 and B = O(1) independent of the value of the dimensionless variable
Λ. As Λ tends to zero, Eq. (4.21) reduces to the condition of electroneutrality.
Electrostatic screening vanishes in this limit and there are no counterions “con-
densed” on the surface of the sphere. It is straightforward to solve Eq. (4.19)
numerically starting with ψ(x) → 1

6x
2 as x → 0. We have fitted the solution to

the convenient approximation

ψ(x) ≃ −2 ln

(
1 − x2

12
− x4

1440
− x6

45330.3

)
, (4.22)

which is accurate to within 0.6% for 0 ≤ x ≤ 3.273687 (ψ(x) diverges at x ≃
3.27368734). This leads to an effective charge given by

Zeff ≡ 4πb3ρ

3
=

Z

3Λ

(
b

λ

)2

. (4.23)

This is always less than the actual charge Z which one may interpret as a certain
fraction of counterions being associated near the surface if Λ > 0. The effective
charge Zeff tends to Z as Λ → 0 (for a general analysis of this limit, see Section
4.6.2).

We now wish to analyze the thermodynamic properties of the crystal in the
presence of simple salt which we do within a Donnan approximation. At this stage
it is well to recall the incorrectness of applying Donnan arguments to a fluid of
charged colloidal particles. The probability of the double layers of two particles



4.4 CRYSTAL MODEL: DONNAN EFFECT 95

interpenetrating is very small owing to Boltzmann weighting. Hence, only the
Debye-Hückel tails in their interaction are important which represent effectively
the potential of mean force between the particles. In the case of excess salt,
we then use the McMillan-Mayer theory to calculate the statistical mechanical
properties of the fluid as has been done in Section 4.2 (see Eq. (4.2); this line
of argumentation goes back to Stigter [109]). The situation is decidedly different
when the particles are positionally ordered as in a crystal. The double layers
are forced to overlap in that case. A usual (Donnan) approximation is then to
suppose those points at zero electric field are in equilibrium with the reservoir
[107]. For the cavities in the crystal, this yields

Ic(ρ+ Ic) = I2 (4.24)

in view of the equality of the chemical potentials of the small ions in the respective
phases. The osmotic pressure is given by the additivity rule as argued by Oosawa
for polyions within conventional cell models [107]

Π = (ρ+ 2Ic − 2I)kBT = ρ kBT
[√

1 + w2 − w
]
, (4.25)

w ≡ 2I

ρ
.

The ions have been considered as ideal and the electrostatic stress is zero in
Eq. (4.15). The chemical potential of the charged cavity, accurate to the same
level of approximation, is readily computed from Eq. (4.25) (this is analogous to
similar calculations for cell models of long charged rods [110])

µ = µref +
ZeffkBT

2
ln

[√
1 + w2 + 1√
1 + w2 − 1

]
(4.26)

where µref is a reference chemical potential independent of the concentration of
salt, and not identical with µ0 of Section 4.2. Because the number of particles
in the crystal is equal to the number of cavities, Eq. (4.26) also represents the
chemical potential of a charged sphere carrying Z charges but with a different
µref .

4.4.1 Comparison with experiment

4.4.1.1 Lysozyme crystal

The volume per lysozyme molecule in the tetragonal crystal is 29.6 nm3 (see Sec-
tion 4.3.2). The radius of the effective sphere is 1.60 nm so the volume of a cavity
is 12.4 nm3 and b = 1.43 nm. In Table 4.4, we show values of Z as a function of
the ionic strength I at three values of the pH.

From these we calculate the dimensionless quantities Λ, b/λ and Zeff via the
Poisson-Boltzmann equation. Then the pressure and the chemical potential are
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pH I (M) Z Λ b/λ Zeff w µ/kBT Πv0/kBT

0.40 11.1 5.51 2.52 4.27 1.41 2.83 1.92

0.57 11.2 5.56 2.53 4.29 2.00 2.07 1.43

4.0 0.74 11.4 5.66 2.54 4.32 2.57 1.64 1.14

0.92 11.6 5.76 2.55 4.35 3.14 1.36 0.95

1.26 11.7 5.81 2.55 4.37 4.30 1.01 0.71

0.40 10.2 5.06 2.48 4.13 1.45 2.66 1.81

0.57 10.3 5.11 2.49 4.15 2.06 1.94 1.34

4.5 0.74 10.3 5.11 2.49 4.15 2.68 1.52 1.06

0.92 10.4 5.16 2.49 4.17 3.28 1.25 0.88

1.26 10.4 5.16 2.49 4.17 4.51 0.92 0.64

0.40 9.1 4.52 2.42 3.94 1.53 2.42 1.66

0.57 9.1 4.52 2.42 3.94 2.18 1.75 1.21

5.4 0.74 9.2 4.57 2.43 3.95 2.81 1.38 0.96

0.92 9.2 4.57 2.43 3.95 3.46 1.13 0.79

1.26 9.1 4.52 2.42 3.94 4.77 0.82 0.58

Table 4.4: The ionic strength I, the actual number of charges Z, the effective number
Zeff , the chemical potential µ and the osmotic pressure Π for a lysozyme crystal (the
reference chemical potential has been set equal to zero).

evaluated using Eqs. (4.25) and (4.26). (See Table 4.4). The curves in Fig. 4.7
represent the chemical potential computed in this manner together with the pre-
dictions from the theory of the liquid state as displayed in Fig. 4.2 on page 87.

The former have been shifted by an amount which is unknown in the present
theory.

4.4.1.2 STA crystals

In order to compute the chemical potential we first need to discuss the crys-
tal habits of STA. It is known that H4STA is fully dissociated for a pH larger
than 5 [111]. Zukoski et al. [47, 105, 112] fail to mention the pH at which their
measurements were performed, though they did deduce that all forms of STA are
dissociated in their experiments judging from the conductivities of their solutions.

4.4.1.3 H4STA.31H2O

This crystallizes at room temperature [113] in the tetragonal form (long axis
= 1.856 nm, short axes = 1.301 nm [114]; there are 2 STA molecules per unit cell
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Figure 4.7: The chemical potential of lysozyme in the fluid phase as a function of the
ionic strength at pH 4.0 (diamonds), pH 4.5 (squares) and pH 5.4 (triangles) (see Fig. 4.2
on page 87). The solid lines denote predictions from the theory of the crystalline state
(Eq. (4.26)), with the effective charge from Table 4.4. The shift in chemical potential
in units of kBT has been chosen to be 7.4 (light grey line, pH 4.0), 7.3 (black line, pH
4.5) and 7.15 (dark grey line, pH 5.4) respectively. Dashed line denotes the theory of the
crystal for Zeff = 5.0 (shift = 7.9) and the dash-dotted line for Zeff = 5.9 (shift = 8.7).

of 3.142nm3). We have earlier set the radius of an STA ion equal to 0.55 nm
(see Section 4.3.3) so the volume of H2O per STA molecule is 0.874nm3 or b =
0.593 nm. In Refs. [47] and [112] the water content of this crystal is given in terms
of the molecular formula H4STA.31H2O.

4.4.1.4 Li4STA.24H2O/Li4STA.26H2O

Kraus describes two forms of Li4STA with 24 H2O and 26 H2O molecules attached
respectively [115]. Both crystals are rhombohedral (short axes in both cases
= 1.559 nm, long axis = 3.898 nm in the former, long axis = 4.118 nm in the latter;
the angle between the short axes = 120◦ [114]). Kraus also mentions that one Li
ion should probably be replaced by one H ion. There are actually three different
numbers quoted for the water content of Li4STA.nH2O in Refs. [47, 105, 112]:
n = 21, 24 and 26! We have opted for n = 25, namely the average number for the
crystal habits generally accepted. As there are 6 STA molecules per unit cell, the
volume of crystal per STA molecule is 1.406nm3 and the radius of our effective
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cavity is b = 0.553 nm.

4.4.1.5 Na4STA.18H2O

This crystallizes in the triclinic form within a narrow range around 308 K [113].
The absolute dimensions of the unit cell do not seem to be known. We thus
estimate the amount of H2O per STA molecule via the molecular formulas. The
water content in Na4STA.nH2O is stated to be n = 18 in Ref. [112] and n = 14
in Ref. [47]. The latter value seems too low and is possibly a misprint since n
should be equal to 20 according to the usual citation [116]. Accordingly, we adopt
n = 18 here to be used in the solubility studies [105]. A molecule of H2O has
a volume of 0.0285nm3 which is based on the amount of H2O in the unit cells
of H4STA.31H2O and Li4STA.26H2O. Therefore, Na4STA.18H2O has 0.513nm3

H2O per STA molecule so we have b = 0.496 nm.

Overall, it is not clear how much H2O is exactly present in the STA crystals.
Fortunately, the chemical potential (Eq. (4.26)) depends only logarithmically on
this quantity so the data compiled in Table 4.5 on page 100 are not so sensitive to
this type of uncertainty. The predicted chemical potentials are depicted as curves
in Fig. 4.8 together with the computations from our theory of the liquid state
(Fig. 4.5 on page 91).

4.5 Discussion

Except for a slight downward adjustment of the effective charge of lysozyme in the
fluid phase, there are essentially no adjustable parameters in our analysis. The
adjustment is by one unit only which is insignificant compared with the approx-
imations inherent in the standard electrostatic theory. The adhesion parameters
are completely constrained by the second virial curves (Figs. 4.1 on page 85 and 4.4
on page 89). We predict that the chemical potentials in the fluid and solid phases
should coincide apart from an unimportant shift in the vertical offset because
the reference potential is not known exactly for the crystal. This appears to be
almost the case for lysozyme (see Fig. 4.7) but there is an appreciable disparity
between the respective curves in the case of the silicotungstates (see Fig. 4.8).
Nevertheless, we note that the shapes of the curves are the same which implies
that the logarithmic form in Eq. (4.26) appears to be confirmed i.e. the Donnan
effect seems to apply to crystals of charged nanoparticles. This is borne out by
adjusting Zeff upward somewhat for both types of crystals. We then actually
attain coincident curves (see Figs. 4.7 and 4.8). A further implication is that the
precise crystal structure is unimportant with regard to the ionic-strength depen-
dence of µ. Eq. (4.26) results from approximating the cavities within the crystals
by spheres; the detailed electrostatics is independent of the salt concentration.

The coexistence equation for the osmotic pressure yields little information (see
Eq. (4.15)) because it is unclear at present how to relate the adhesive forces be-
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Figure 4.8: Chemical potential of STA in the fluid phase as a function of the ionic
strength (see Fig. 4.5). Salt added: LiCl (diamonds); HCl (squares); NaCl (triangles)
(counterion of STA is the same as that of the salt). Solid lines denote predictions from
the theory of the crystalline state (Eq. (4.26)), with the effective charge from Table 4.5.
The shift in chemical potential in units of kBT is 2.3 (black line, H4STA.31H2O), 2.4
(dark grey line, Li4STA.25H2O) and 2.55 (light grey line, Na4STA.18H2O) respectively.
Dashed line denotes predictions from the theory of the crystal for Zeff = 2.8 (shift
= 5.5).

tween spheres to the elastic properties of the crystal. To compute the latter we
need insight in the forces between the particles at the Ångström level which we
do not have at present. Adhesive interactions appear to play a minor role in the
STA crystals for the fluid and crystal pressures are quite close (compare Table 4.3
on page 90 with Table 4.5). By contrast, in lysozyme crystals the osmotic pres-
sure due to electrostatic forces is largely balanced by sticky interactions between
touching protein molecules. In a similar vein there is a marked difference be-
tween the two colloids with regard to their respective ionic strengths under theta
conditions when B2 equals zero (see Figs. 4.1 on page 85 and 4.4 on page 89).
These salt concentrations may be estimated with the help of Eq. (4.5). Although
δ expUA = 1.36 for STA is not substantially less than the respective value 3.33
for lysozyme, the concentrations differ appreciably because of the exponential
screening term multiplying the attraction in Eq. (4.5).

It is wise to emphasize the shortcomings in the approximations introduced in
the electrostatic interactions. Discrete charge effects have been disregarded en-
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X I (M) Z Λ b/λ Zeff w µ/kBT Πv0/kBT

0.60 4.0 4.789 2.452 1.67 0.629 2.08 0.738

1.20 4.0 4.789 2.452 1.67 1.257 1.22 0.466

H 1.81 4.0 4.789 2.452 1.67 1.886 0.85 0.332

2.41 4.0 4.789 2.452 1.67 2.514 0.65 0.256

3.01 4.0 4.789 2.452 1.67 3.143 0.52 0.207

0.60 4.0 5.134 2.488 1.61 0.531 2.23 0.950

1.20 4.0 5.134 2.488 1.61 1.062 1.35 0.626

Li 1.81 4.0 5.134 2.488 1.61 1.594 0.95 0.455

2.41 4.0 5.134 2.488 1.61 2.125 0.73 0.353

3.01 4.0 5.134 2.488 1.61 2.656 0.59 0.288

0.60 4.0 5.721 2.542 1.51 0.410 2.45 1.374

1.20 4.0 5.721 2.542 1.51 0.819 1.55 0.970

Na 1.81 4.0 5.721 2.542 1.51 1.229 1.12 0.728

2.41 4.0 5.721 2.542 1.51 1.639 0.87 0.575

3.01 4.0 5.721 2.542 1.51 2.049 0.71 0.473

Table 4.5: Same as Table 4.4 on page 96 but now for X4STA.nH2O. Here n = 31 when
X = H, n = 25 when X = Li and n = 18 when X = Na.

tirely. At the same level of approximation we have not addressed the electrostatics
of the minutely thin boundary layers between almost touching spheres within the
crystal phase. There are cavities at nanometer scales and these are assumed to
give rise to the ionic-strength dependence of the free energy of the crystal. The
Donnan approximation used suffers from the same drawback as always: the effec-
tive charge Zeff is posited to be independent of the electrolyte in the crystal and
thus the reservoir (the fluid phase in our case). It would be interesting to study
the fluid-crystal coexistence of globular particles of low charge density. The coun-
terions in the crystal would then be essentially free (see Section 4.6.2) and there
would be less uncertainty about the magnitude of the electrostatic interactions.

There is another potential problem in the fluid phases of silicotungstates.
At 1 M electrolyte, the solubilities of STA are remarkably high (see Table 4.3
on page 90). It would appear that the counterions arising from STA should
contribute to the screening on a par with the salt ions. This is not borne out
by the present analysis, however, since there is no levelling off of the chemical
potentials in the crystal phases in Figs. 4.7 and 4.8. Nevertheless, a liquid state
theory of concentrated charged nanoparticles needs to be developed in which the
counterions are duly accounted for. We note that the interaction between the
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particles is not pairwise additive in that case.

In summary, we have provided a semi-quantitative explanation for the ionic-
strength dependence of the fluid-crystal coexistence of suspensions of charged
nanoparticles. We believe this explanation is especially forceful because we have
considered two rather disparate types of globular particles in detail. In particular,
the solubility curves of lysozyme and silicotungstate differ markedly, yet the curves
for the chemical potentials turn out to have the same form.

4.6 Appendix

4.6.1 Phase diagram of hard spheres interacting by attractive Yukawa forces

Dijkstra [83] performed computer simulations, more elaborate than those carried
out by Hagen and Frenkel [46], on a system of hard spheres of diameter σ at-
tracting each other by exponentially decaying forces (the Yukawa interaction).
She varied both the amplitude β and the inverse range κ of the potential. The
variable τ in the optimized Baxter model has been computed by us for the at-
tractive Yukawa system in Chapter 3. At fluid-crystal coexistence in Dijkstra’s
simulations, we evaluate τ from κ, β and the volume fraction η of the fluid phase
which is displayed as a function of η in Fig. 4.9.

It is immediately seen that τ(η) is not a single universal curve but depends
markedly on the range of the interaction also. Of course, this is not surprising:
although τ is a correct similarity variable for the fluid phase (see Chapter 3),
it has nothing to do with the statistical properties of the crystal in which the
configurations are weighted totally differently than those in the fluid.

4.6.2 Poisson-Boltzmann equation in a crystal or porous medium

Here, we present only a sketch of a general analysis of the Poisson-Boltzmann
equation for the electrostatic potential Ψ(r) at position r within the aqueous in-
terstitial space inside a crystal (which may be considered to be a porous medium),
under appropriate conditions. The particles in the crystal are positively charged
and simple salt is absent at first. The potential is again related to the counterion
density ρ(r) via the Poisson Eq. (4.18). Now it is possible to discern some point
P in the void between several particles where the potential is a local minimum
and where the density is ρP (0) (see Fig. 4.10).

Point P is chosen as the origin. If the potential is scaled analogously as in
Section 4.4, we have ρ(r) = ρP expψ(r) (see Eq. (4.17)). Thus, the Poisson-
Boltzmann equation may be written as

∆ψ = λ−2
P eψ (4.27)

where the screening length λP is given by λ−2
P = 4πQρP .
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Figure 4.9: Fluid branches of the fluid-crystal coexistence computed by simulation for
the Yukawa interaction for several values of the inverse range of the interaction κσ = 7
(diamonds), κσ = 25 (squares) and κσ = 100 (triangles). The data were calculated
using the theory from Chapters 2 and 3 and the simulations from Ref. [83]. The lines
are a guide to the eye.
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Figure 4.10: Point P in a void of the crystal.
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In general, it is difficult to address Eq. (4.27) because λP is unknown. But
it is possible to progress if we suppose |d| . λP where |d| is the largest vector
distance between P and a point on the surface of the surrounding spheres (i.e.
those belonging to a cluster enclosing the void centered on P ). An inner solution
of Eq. (4.27) must have the form ψin(r/λP ) and may be written as a Taylor
expansion to second order

ψin(r) =
1

2
rr :

∂2ψin
∂r∂r

∣∣∣∣
r=0

(4.28)

if |d| . λP . There is an outer solution ψout needed to accommodate for the
complicated boundaries. Then, we have a boundary condition on the electric field
at r = d in terms of ψout which we rewrite in terms of ψin

n · ∂ψin
∂r

∣∣∣∣
r=d

= nd :
∂2ψin
∂r∂r

∣∣∣∣
r=0

= 4πk1σbQ. (4.29)

Here, σb is the uniform density of charge on a sphere and k1 is a numerical
coefficient of order unity associated with the matching of the inner and outer
solutions. The effect of an internal permittivity is disregarded. The left-hand side
of Eq. (4.29) scales as λ−2

P implying that ρP must be proportional to σb. In view
of electroneutrality we also require the average of ρ(r) to be proportional to σb.
Hence, the potential ψ(r) must be very small, which is consistent with the initial
Ansatz Eq. (4.28). We conclude that for small enough cavitylike voids, the density
of counterions is approximately constant so that the effective charge density is
virtually equal to the actual charge density. In that case, when the crystal is
immersed in a reservoir containing monovalent electrolyte, Eqs. (4.25) and (4.26)
are valid with ρ simply given by the concentration of counterions in the interstitial
space between the spheres; Zeff = Z in Eq. (4.26). Because |d| = O(a), we
ultimately require ZQ/a ≪ 1 as a necessary and sufficient condition for this
to hold true. In the spherical cavity approximation introduced in Section 4.4,
we have b = O(a) so Λ ≪ 1 is effectively the same requirement (which led to
Zeff = Z).





Chapter 5
Collective diffusion coefficient of proteins

with hydrodynamic, electrostatic and

adhesive interactions

Abstract A theory is presented for λC , the coefficient of the first-order correction
in the density of the collective diffusion coefficient, for protein spheres interact-
ing by electrostatic and adhesive forces. An extensive numerical analysis of the
Stokesian hydrodynamics of two moving spheres is given so as to gauge the precise
impact of lubrication forces. An effective stickiness is introduced and a simple
formula for λC in terms of this variable is put forward. A precise though more
elaborate approximation for λC is also developed. These and numerically exact
expressions for λC are compared with experimental data on lysozyme at pH 4.5
and a range of ionic strengths between 0.05 M and 2 M.

5.1 Introduction

Fick’s first law states that the particle flux is equal to minus the collective dif-
fusion coefficient times the gradient of the particle concentration. For colloids
or macromolecules in solution, this collective (also called cooperative or mutual)
diffusion coefficient is often determined experimentally with the help of dynamic
light scattering. If one extrapolates this coefficient to a vanishing concentration
of particles, it reduces to the single-particle diffusion coefficient since the interac-
tions between the particles are presumably negligible then. At non-zero volume
fractions, particle interactions, such as those of electrostatic and hydrodynamic
origin, influence the diffusion. At low enough concentrations, where three- and
higher body interactions may be disregarded, the parameter λC characterizes the
departure from the single-particle result.
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The concentration dependence of the collective diffusion coefficient of proteins
has been studied extensively in experiments, for example in the case of hemoglobin
[117–121], bovine serum albumin [122–125], β-lactoglobulin [126], ovalbumin [127]
and lysozyme [19, 128–137]. On the theoretical side, a fair number of papers [138–
146] deal with the diffusion of interacting colloidal particles in solution. Apart
from giving insight into the diffusion as such, the coefficient λC is also important
because it could yield information about the complex pair interaction between
protein molecules. Moreover, it has been argued that λC may be an alternative
parameter useful in diagnosing under what conditions proteins would crystallize
[132].

In Chapter 2 we approximated globular proteins in water with added monova-
lent salt by hard spherical particles that interact through a short-range attraction
and a screened electrostatic repulsion. We appropriately replaced this system
by one of spherical particles with sticky interactions only. At infinite dilution
the effective stickiness is readily determined by equating the respective second
virial coefficients of the two systems. In the effective stickiness, part of the bare
adhesion is balanced against the electrostatic repulsion.

In the next section, we formulate a theory for the coefficient λC . We first
introduce the interaction used previously to compute protein solution properties,
see Chapter 2, and give expressions for the effective stickiness. We then outline
the formal expression for λC due to Felderhof [138] in terms of the pair potential
between two protein spheres and a hydrodynamic mobility function. Although
the latter has been studied often in the past, we present a more extensive numer-
ical analysis in order to gain more insight into the asymptotics of the lubrication
regime for two moving spheres very close to each other. The coefficient λC is
then computed in three ways: exactly via numerics and in terms of two conve-
nient approximations. In Section 5.3, we compare these predictions for λC with
experiment. A discussion of the results is given in the last section.

5.2 Theory

5.2.1 Effective interaction

We model the globular proteins as spherical particles of radius a with a total
charge Zq per particle that is uniformly distributed over its surface. Here q is
the elementary (proton) charge. For convenience, we scale all distances by the
radius a and all energies by kBT where kB is Boltzmann’s constant and T is the
temperature. We approximate the interaction between two proteins by a steric
repulsion plus a short-range attraction of scaled range δ ≪ 1 and constant absolute
magnitude UA, and a far-field Debye-Hückel potential. The latter describes the
Coulomb repulsion that is screened due to the presence of monovalent salt of
ionic strength I. The effective number Zeff of charges associated with the far
field is computed in the Poisson-Boltzmann approximation. See Chapters 2 and
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4 for further details. The total interaction UT (x) between the two particles with
center-of-mass separation r is thus of the form

UT (x) =





∞ 0 ≤ x < 2

UDH(x) − UA 2 ≤ x < 2 + δ

UDH(x) x ≥ 2 + δ

, (5.1)

x ≡ r

a
. (5.2)

Here, the Debye-Hückel interaction is given by

UDH(x) = 2ξ
e−ω(x−2)

x
(5.3)

where ξ ≡ Q
2a

(
Zeff

1+ω

)2

and ω ≡ κa. The Debye length κ−1 is defined by κ2 ≡ 8πQI

and the Bjerrum length by Q ≡ q2/ǫkBT , which equals 0.71 nm in water at 298
K (ǫ is the permittivity of water); ω = 3.28a

√
I, if the radius a is given in nm and

the ionic strength I in M. We suppose 1-1 electrolyte has been added in excess so
I is the concentration of added salt only. We have derived an exact perturbative
expression for the effective charge qZeff in the Poisson-Boltzmann approximation
(see Chapter 2)

Zeff = Z − ω2

6

(
Q

a

)2(
Z

1 + ω

)3

e3ωE1(3ω). (5.4)

Here, E1(x) is the exponential integral defined by E1(x) =
∫∞
x dt t−1e−t. It turns

out that the first-order correction to the bare charge given by Eq. (5.4) is almost
always small for proteins or nanocolloids so Eq. (5.4) is a convenient expression
valid under a wide variety of conditions. However, Eq. (5.4) is not useful for highly
charged particles of colloidal size because the correction term is not perturbative
then.

Analysis of the Poisson-Boltzmann equation for a single sphere has a long
history which we cannot discuss fully here. Mathematically rigorous work on the
“condensation” of counterions on highly charged spheres was already presented
some time ago [147–150]. A simple physical argument for condensation was ad-
vanced in Ref. [151]. Various approximations for the potential at large µ as a
function of the distance have also been proposed [152–154] but the most complete
solution appears to have been derived by Shkel et al. [155] using the method of
multiple scales. It is straightforward to obtain Zeff from the latter (see Ref. [95]).
The resulting expression for the effective charge is quite accurate at all values of
the bare charge provided µ & 1. In the case of proteins at large µ, it happens to
be numerically very close to the expansion given by Eq. (5.4) but a small disparity
remains because the original solution [155] is not expanded beyond O(µ−1).
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We want to replace the system of particles interacting through the compli-
cated interaction Eq. (5.1) by a system of particles interacting through a simpler
potential, the adhesive hard sphere (AHS) potential of Baxter [27]

UAHS(x) =






∞ 0 ≤ x < 2

ln 12τζ
2+ζ 2 ≤ x ≤ 2 + ζ

0 x > 2 + ζ

. (5.5)

Here, τ is a positive constant which signifies the strength of the effective adhesion
and the limit ζ ↓ 0 has to be taken appropriately after formal integrations. In
order to replace the original system by this simpler system, we have to find the
correspondence between the parameter τ in the AHS potential and the parameters
ξ, ω, δ and UA in the original interaction Eq. (5.1). In this case, we do this by
matching the respective second virial coefficients, which ensures that the free
energy of the two systems at small concentrations are identical, and we denote
the value of the stickiness that is determined in this way by τ0. We emphasize that
in the general case, at arbitrary concentrations, we have to match the complete
free energies of the respective systems (see Chapters 2 and 4); it is then incorrect
to focus on the second virials as has often been done in the past.

5.2.2 Stickiness parameter

We already determined the stickiness parameter τ0 in Chapter 2. Here we repro-
duce the main results. The second virial coefficient B2 is given by

B2 =
1

2

∫

V

dr
(
1 − e−U(r)

)
, (5.6)

where U (r) is the pair potential scaled by kBT , and r is the unscaled position
vector connecting the centers of mass of the two particles. For the pair interaction
of Eq. (5.1), B2 may be expressed by

B2 = BHS2

(
1 +

3

8
J

)
, (5.7)

where we introduce the following integrals

J ≡
∫ ∞

2

dxx2
(
1 − e−UT (x)

)
≡ J1 −

(
eUA − 1

)
J2, (5.8)

J1 ≡
∫ ∞

2

dxx2
(
1 − e−UDH(x)

)
≃ 4

(
ω + 1

2

)
ξ

ω2

(
1 − α

2
ξ
)
, (5.9)

J2 ≡
∫ 2+δ

2

dxx2e−UDH(x) ≃ 2δ

[
e−ξ +

(
1 +

δ

2

)2

e−
ξ

1+δ/2
e−ωδ

]
. (5.10)
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Here, BHS2 = 16πa3/3 is the value of B2 if the proteins were solely hard spheres

and α = e−ξ−(1−ξ)
ξ2 . We equate Eq. (5.7) with the second virial coefficient of the

AHS model

B2 = BHS2

(
1 − 1

4τ

)
, (5.11)

which results in a stickiness parameter τ0 given by

τ0 = − 2

3J
. (5.12)

From Eqs. (5.1) and (5.8) we see how part of the original attraction is compensated
by repulsive electrostatics.

5.2.3 General expression for λC

For small volume fractions η of spherical particles, the collective diffusion coeffi-
cient DC may be written as

DC = D0

(
1 + λCη +O

(
η2
))
, (5.13)

where D0 is the diffusion coefficient in the dilute limit. The linear coefficient λC
may be split up into five contributions [138]

λC = λV + λO + λD + λS + λA. (5.14)

These terms have been studied for some time [138–141]: there is a virial correction
because a fluctuation in the osmotic pressure drives diffusion

λV = 3

∫ ∞

0

dxx2
(
1 − e−U(x)

)
, (5.15)

and four terms arising from the mutual friction between two hydrodynamically
interacting spheres. An Oseen contribution

λO = 3

∫ ∞

0

dxx
(
e−U(x) − 1

)
, (5.16)

and a dipolar contribution
λD = 1, (5.17)

express the long-range hydrodynamic interaction between two particles 1 and 2
whereas the short-range part of the hydrodynamic interaction comes into play in
the term

λS =

∫ ∞

2

dxx2e−U(x)

(
Att12(x) + 2Btt12(x) −

3

x

)
. (5.18)

Finally, the modification of the single-particle mobility is expressed by

λA =

∫ ∞

2

dxx2e−U(x)
(
Att11(x) + 2Btt11(x)

)
. (5.19)
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Here, Att11(x), A
tt
12(x), B

tt
11(x) and Btt12(x) are dimensionless hydrodynamic func-

tions given in terms of the translational mobility matrix for two spheres centered
at R1 and R2 (r = R1 − R2) and acquiring velocities V1 and V2 as a result of
the forces F1 and F2 acting on the spheres

V1 = µtt11(1, 2) · F1 + µtt12(1, 2) ·F2 (5.20)

V2 = µtt21(1, 2) ·F1 + µtt22(1, 2) · F2. (5.21)

In the notation of Cichocki and Felderhof [156], we have

µtt11(1, 2) =
1

6πη0a

[
I +Att11(r)

rr

r2
+Btt11(r)

(
I − rr

r2

)]
(5.22)

µtt12(1, 2) =
1

6πη0a

[
Att12(r)

rr

r2
+Btt12(r)

(
I − rr

r2

)]
, (5.23)

where η0 is the viscosity of the solvent and I is the unit tensor. The mobility
tensors in Eq. (5.21) are given by interchanging the labels in Eqs. (5.22) and
(5.23) while taking into account the symmetry relations

Att12(r) = Att21(r); Btt12(r) = Btt21(r). (5.24)

Recall that the particles have a hard-core interaction for x < 2 so exp−U(x)
vanishes for x < 2. We then sum Eqs. (5.15)-(5.19) and conveniently rewrite λC
as follows

λC = c0 + c1

∫ ∞

2

dxx2
(
1 − e−U(x)

)
+R. (5.25)

The constant c0 equals the value λC would adopt if the spheres were hard but
without any other interaction

c0 ≡ 3

∫ 2

0

dxx2 − 3

∫ 2

0

dxx+ 1 +

∫ ∞

2

dxx2

(
h(x) − 3

x

)

= 3 +

∫ ∞

2

dxx2

(
h(x) − 3

x

)
. (5.26)

Here, h(x) is the sum of scalar mobility functions

h(x) ≡ Att11(x) +Att12(x) + 2Btt11(x) + 2Btt12(x). (5.27)

The residual term R in Eq. (5.25) depends on the actual interaction

R ≡
∫ ∞

2

dxx2
(
e−U(x) − 1

)
(h(x) − h(2)) (5.28)

though it would vanish if the interaction U were adhesive and purely of the Baxter
type (see Eq. (5.5)). The second term on the right hand side of Eq. (5.25) is
proportional to the constant

c1 ≡ 3 − h(2) (5.29)
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and the integral is related to the second virial coefficient B2 by (see Eqs. (5.7)
and (5.8)) ∫ ∞

2

dxx2
(
1 − e−U(x)

)
=

8

3

(
B2

BHS2

− 1

)
. (5.30)

The resulting expression for λC is

λC = c0 +
8c1
3

(
B2

BHS2

− 1

)
+R (5.31)

which we can evaluate once we know h(x) given by Eq. (5.27).

5.2.4 Hydrodynamics

The function h(x) was discussed by Batchelor [157] in his theory of the diffusion
of hard spheres. The sum Att11 +Att12 pertains to the mobility of a pair of spheres
moving in the direction of their line of centers whereas Btt11 + Btt12 is related to
their mobility when they move perpendicular to that line. (Note that in Ref. [157]
A11 ≡ Att11 + 1, B11 ≡ Btt11 + 1, A12 ≡ Att12 and B12 ≡ Btt12). In the latter case,
because the spheres are couple-free, the spheres must rotate as the pair translates.
At small separations (x−2 ≪ 1), lubrication forces with a logarithmic singularity
ln−1(x − 2) are then expected to develop on general grounds [158]. Goldman et
al. [159] proposed a form for the singularity which we will test below.

Batchelor [157] computed h(2) = 1.312 on the basis of numerical work on the
mobilities of touching spheres [160, 161]. Cichocki and Felderhof [156] evaluated
c0 = 1.454 (Eq. (5.26)) by numerically summing their series expansions of the
hydrodynamic interactions while keeping track of a logarithmic singularity at close
separations. Here we reanalyze h(x) and go well beyond previous computations
[156, 162] in order to gain more insight into the nature of the singularity and to
calculate the residual R.

We assume the interaction U(x) is of short range so we focus only on h(x) for
x− 2 . 1. First, we get an expression for Att11 + Att12 as an infinite sum from the
results of Stimson and Jeffery [163] who expressed the hydrodynamic problem in
terms of bispherical coordinates. (Note that there is an error in their paper as
pointed out in, for example, Ref. [164] in which one may find a similar expression
for Att11 − Att12 in case one needs Att11 and Att12 separately). Calculating Btt11 and
Btt12 is more involved. We use the numerical scheme by O’Neill and Majumdar
[165] which is similar to that of Goldman et al. [159]. (Note that there are a few
typographical errors in Ref. [165]. In their Eq. (3.9) d should be d1, the expression
for v in Eq. (4.1) should have a minus sign, ξ, φ and ψ in Eqs. (4.3)-(4.5) should
be replaced by cξ, cφ and cψ respectively, and sinh2|β| in Eq. (5.10) should be
sinh3|β|. Also, to obtain D2(An, Bn) (Eq. (3.29)) from D1(An, Bn) (Eq. (3.28))
the signs of δn−1, δn and δn+1 should be reversed as well (we only checked the
case of spheres of equal size). Their Table I is correct, however, for spheres of
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equal size, apart from the value for g12(1, 0.1) which should read -0.1017 instead
of -1.1017).

In order to investigate the regime of lubrication for a pair of spheres moving
under the action of applied forces normal to their line of centers, we performed
the numerical analysis down to r/a− 2 = 10−10 which implies two million terms
in the series expansions are needed. We attempted to speed up the iteration by
adapting the recurrence relationships introduced more recently by O’Neill and
Bhatt [166] for a sphere moving near a wall to the case of two spheres. However,
this did not turn out to be useful as it is for the wall configuration [167]. One way
of circumventing series expansions could be to elaborate on the trial functions
initially used by Fixman in his variational theorem for the mobility matrix [168]
but we did not investigate this.

Goldman et al. [159] were the first to give a comprehensive analysis of the
mobility of a pair of identical spheres of arbitrary orientation. They numerically
solved the Stokes and continuity equations using expansions in terms of bipolar
coordinates to high order. For moving spheres whose line of centers is perpen-
dicular to the applied force, the force consists not only of a term arising from
pure translation but also a term stemming from pure rotation of the spheres. The
latter involves a torque on one sphere diverging as [159]

Tr ∼
3 ln(x− 2)

160πη0Ωa3
(5.32)

at very small separations where Ω is its angular velocity. Eq. (5.32) was derived
by extending the nontrivial lubrication theory of Ref. [169] in which inner and
outer regions have to be matched. Eq. (5.32) ultimately leads to the following
analytical expression for h(x) valid at small separations

h(x) = h(2) − 0.47666

ln(x− 2) + c2
+O(x − 2). (5.33)

The coefficient 0.47666 is computed from the numerical tables presented in
Ref. [159]. We have added a constant c2 to the logarithm because we expect
the next higher order term in Eq. (5.32) to be a constant judging by the earlier
analysis of the sphere-wall problem [169]. In Fig. 5.1 we have fitted Eq. (5.33)
to the numerical results discussed above, letting h(2) and c2 be adjustable. The
intercept h(2) = 1.30993 turns out to be close to the value 1.312 quoted above
for touching spheres which lends credence to the validity of the asymptotic ex-
pression that we propose. Moreover, the resulting coefficient c2 = −4.694 and the
concomitant shift in Eq. (5.32) are consistent with the numerical values of the
torque Tr at small separations as presented in Table 3 of Ref. [159].

Next, we derive an expression for the residual term given by Eq. (5.28). First,
we propose an initial estimate h0(x) for h(x). We have plotted the numerical
values of h(x) as a function of x in Fig. 5.2. As a result of the lubrication regime,
h has a maximum as displayed in the inset. However, h(x) is only a strongly
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Figure 5.1: The hydrodynamic function h plotted in terms of the variable s =
−1/(ln(x−2)−4.694). Squares denote results from the numerical analysis to the accuracy
as explained in the text. The straight line signifies the function h = 0.47666s + 1.30993.

varying function for x < 2.04. We therefore simply force a linear fit to the data
for h at x = 2.1, 2.2 and 2.3

h0(x) ≃ 1.3670− 0.4745(x− 2). (5.34)

We then insert this estimate into Eq. (5.28) and add a correction term so as to
derive an expression for R accurate enough for our purposes.

R ≃ −0.147

(
B2

BHS2

− 1

)
+ 0.4745

∫ ∞

2

dxx2 (x− 2)
(
1 − e−U(x)

)

+ 9 × 10−4
(
1 − e−U(2)

)
. (5.35)

The first term on the right comes from the fact that the linear interpolation
gives h0(2) = 1.3670 whereas the real value is h(2) = 1.312. Since the interaction
usually does not change appreciably for 2 < x < 2.04, it is straightforward to write
an estimate for the error—the third term—owing to the deviation of Eq. (5.34)
from the exact function h(x) (see inset Fig. 5.2). In our case the error term turns
out to be an order of magnitude smaller than the first two terms.
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Figure 5.2: The hydrodynamic function h(x) as a function of the dimensionless sepa-
ration x ≡ r/a between the centers of two spheres. The straight line signifies h0(x) given
by Eq. (5.34).

5.2.5 Determination of λC

It is clear from Eq. (5.28) that R would vanish if the actual interaction were a
pure AHS potential. If we then insert Eq. (5.11) into Eq. (5.31), we obtain [141]

λC = c0 −
2c1
3τ0

. (5.36)

Inspection of the various terms in Eq. (5.35) reveals that R is often much smaller
than unity when the interaction is given by Eq. (5.1). Hence, a possibly convenient
approximation to the coefficient λC is from Eq. (5.12)

λC = c0 + c1J = c0 +
8c1
3

(
B2

BHS2

− 1

)
(5.37)

where J may be evaluated numerically or approximately with the help of Eqs. (5.8)-
(5.10).

The full expression for the dynamical coefficient is written as

λC = c0 + c1J +R, (5.38)

using Eqs. (5.7) and (5.31). Now R from Eq. (5.35) is reexpressed as

R ≃ −0.055J + 0.4745K − 9 × 10−4
(
eUA−ξ − 1

)
. (5.39)
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in view of Eqs. (5.1) and (5.3). Here we have introduced the function K for which
we derive a convenient approximation.

K ≡
∫ ∞

2

dxx2 (x− 2)
(
1 − e−UT (x)

)
≡ K1 −

(
eUA − 1

)
K2, (5.40)

where

K1 ≡
∫ ∞

2

dxx2 (x− 2)
(
1 − e−UDH (x)

)
(5.41)

and

K2 ≡
∫ 2+δ

2

dxx2 (x− 2) e−UDH (x). (5.42)

In the same spirit as in Chapter 2, we approximate x
(
1 − e−UDH (x)

)
≃ 2ξe−ω(x−2)−

2αξ2e−2ω(x−2), with α = e−ξ−(1−ξ)
ξ2 . We then have

K1 ≃ ξ (ω + 1) (4 − αξ)

ω3
, (5.43)

where we have neglected the small term αξ2/2ω3. In the case of lysozyme at pH
4.5, the deviation of Eq. (5.43) from the exact result is smaller than about 3% for
I ≥ 0.05 M and smaller than about 1% for I ≥ 0.3 M. For the second integral we

use the trapezoid approximation
∫ 2+δ

2 dx g(x) ≃ 1
2δ [g(2) + g(2 + δ)] (δ ≪ 1) and

we neglect a factor (1 + δ/2)2

K2 ≃ 2δ2 exp

[
− ξe−ωδ

1 + δ/2

]
. (5.44)

For lysozyme at pH 4.5 with δ = 0.079 (see below), this approximation deviates
less than about 5% from the exact value for I ≥ 0.05 M and less than about 3%
for I ≥ 0.2 M.

5.3 Comparison with experiment

We compare our predictions of λC as a function of the ionic strength I with
experimental results for lysozyme at room temperature and at a pH of about 4.5.
The added salt is NaCl and in most cases a small amount of Na acetate has been
added as buffer. The reason for choosing lysozyme under these conditions is that
we have previously evaluated the range and strength of the short-range attraction
(see Chapter 2) and a lot of experimental data on the collective diffusion coefficient
are available in the literature (see Fig. 5.3).

Lysozyme has a moderate aspect ratio of about 1.5 and we approximate it by a
sphere of radius a = 1.7 nm [100]. The dimensionless parameter ω is then given by
ω = 5.58

√
I, where the ionic strength I is given in M, and ξ = 0.209(Z/(1+ω))2.



116 COLLECTIVE DIFFUSION COEFFICIENT OF PROTEINS WITH
HYDRODYNAMIC, ELECTROSTATIC AND ADHESIVE INTERACTIONS 5.3

I (M)

λ
C

0 0.5 1 1.5 2
-30

-20

-10

0

10

20

30

Figure 5.3: Experimental data and theoretical predictions of λC for lysozyme as a
function of the ionic strength I at a pH of about 4.5. Data: black squares: Nyström
et al. [128], pH 4.0, 25 ◦C; grey squares: Mirarefi et al. [129], pH 4.6; white squares:
Mirarefi et al. [129], pH 4.6; black diamonds: Muschol et al. [19], pH 4.7, 20 ◦C; grey
diamonds: Zhang et al. [130], pH 4.5, 20 ◦C; white diamonds: Skouri et al. [131], pH
4.6, 20 ◦C; black triangles: Eberstein et al. [132], pH 4.2, 20 ◦C; grey triangles: Leggio et
al. [133], pH 4.75, 25 ◦C; white triangles: Price et al. [134], pH 4.6, 25 ◦C; black circles:
Annunziata et al. [135], pH 4.5, 25 ◦C ; grey circles: Annunziata et al. [135], pH 4.5, 25
◦C; white circles: Retailleau et al. [136], pH 4.0. In all cases, the supporting electrolyte
is NaCl, often with a small amount of Na acetate added. The grey line denotes the
theoretical curve setting R ≡ 0 i.e. Eq. (5.36) with τ0 given by Eq. (5.12), and the black
line is the curve given by Eq. (5.38). The functions J and K have been approximated as
outlined in the text.

Here we follow our discussion in Chapter 2 and use the adjusted charge on the
lysozyme sphere Z = Zeff − 1 instead of the effective charge Zeff . Values of Z,
Zeff and Z as a function of ionic strength can be found in Table 5.1 as well as
the corresponding quantities ω and ξ. For the range δ and strength UA of the
attraction we use δ = 0.079 and UA = 3.70 which were computed on the basis of
a wide variety of data on the second virial coefficient (see Chapter 2).

We next employ three methods to predict λC theoretically. In the first, we
compute τ0 by equating the respective second virial coefficients of Section 5.2.2
(see Eqs. (5.8) and (5.12)). We then calculate λC from Eq. (5.36) using c0 = 1.454
and c1 = 1.688. In the second method we use Eq. (5.38) to determine λC , where
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R is evaluated with the help of Eq. (5.39). In both cases the approximations
for J and K given by Eqs. (5.8)-(5.10) and Eqs. (5.40), (5.43) and (5.44) were
used (see Table 5.1 and Fig. 5.3). Note that there are no free parameters so the
curves in Fig. 5.3 are predictions not fits. For comparison, we also calculate λC
from Eq. (5.14) exactly, that is by performing the integrals in Eqs. (5.15)-(5.19)
numerically with the help of a highly accurate interpolation formula for h(x) (see
Table 5.1). Finally, in Fig. 5.3 we have also plotted data of λC measured by
several experimental groups.

5.4 Discussion

In Section 5.2.5 we have outlined two approximate methods to calculate λC . As
one can see from Table 5.1, both the direct method incorporating an approxima-
tion for the residual R and the method relying solely on the stickiness τ0 via the
second virial yield results that are often close to the exact numerical computa-
tions. The direct method is, of course, somewhat more accurate. The τ0 method
breaks down below 0.2 M. Note that in the important regime I > 0.2 M pertain-
ing to protein crystallization, R is much smaller than the absolute magnitude of
λC . This may explain why λC is a useful parameter to characterize the onset of
crystallization [132].

We also note in Fig. 5.3 that λC decreases monotonically with increasing ionic
strength or effective attraction. The friction per particle becomes less as the
chance of two spheres clustering together is enhanced, yet this is offset by the
decrease in the osmotic pressure driving the diffusion, for numerical reasons (see
Eqs. (5.25) and (5.29); the residual R is merely a perturbation).

In Fig. 5.3, it is clear that there is a large degree of scatter which may be
attributed to the systematic variation in sets of data from the various groups,
especially at large ionic strengths (I > 0.4 M). We do not know what is the cause
of this. In one experiment [129], we do observe there is considerable scatter in a
plot of the diffusion coefficient versus the protein solubility which might explain
the extreme downturn of several data in Fig. 5.3 at about 0.5 M. Fig. 5.3 also shows
that our predicted curves lie fairly neatly in the midst of the swarm of data. We
emphasize again that we have no adjustable parameters in our calculations except
for a slight downward adjustment of the effective charge (see also the discussion
in Chapters 2 and 4). The model is thus not inconsistent with the experimental
data though we will have to await more experiments under conditions which are
better controlled before one may reach a more definitive conclusion. In a similar
vein, it is not possible to claim that the neglect of electrolyte friction assumed
here is entirely warranted.

In summary, we have approximated proteins by spherical particles interacting
by a hard-core and electrostatic repulsion together with a short-range attraction.
An analysis of the two-particle statistics and hydrodynamics leads to a reasonable
prediction of the ionic-strength dependence of the linear coefficient λC . At high
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ionic strengths, when B2 is negative, the residual R is relatively small so there
is then an interesting direct relationship between λC and B2 (Eq. (5.37)) which
could be tested experimentally.
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Summary

Statistical mechanics of protein solutions

The goal of this thesis is to develop a thermodynamic description of solutions
of globular proteins in water with added monovalent salt. Current theories mainly
focus on low concentrations of protein but here we also look at higher concentra-
tions. A better understanding of the thermodynamic behavior of protein solution
helps, for example, in finding the right conditions to grow protein crystals for
structure determination or can assist in developing new food products.

In the first part of Chapter 1 we give an introduction to proteins. Then we
show how one can build a theory to describe protein solutions and we explain
which difficulties one runs into, for example the fact that one has to introduce an
attractive interaction to explain the experimental data or the fact that the virial
approach does not work at high concentrations, and we show how we deal with
them. This part serves as an introduction to the theory in the rest of the thesis
and focuses on some points that are not explained further on. The last part of the
introduction deals with some issues of the theory more thoroughly. We go deeper
into the one-component description and we show what the potential of mean force
is, from a statistical mechanical point of view. We also show some thermodynamic
properties of adhesive hard spheres, spherical particles with a hard-core repulsion
and a sticky attraction, that are useful later on.

In Chapter 2, we set up a theory to describe the thermodynamic behavior
of protein solutions. We assume the particles are spherical and we approximate
the interaction potential by an isotropic interaction that consists of a steric in-
teraction plus an electrostatic repulsion and a short range attraction. We then
approximate the system by an adhesive hard sphere (AHS) system and we derive
an approximate expression for the stickiness parameter in the AHS system as a
function of ionic strength by equating second virials. We apply this to lysozyme

135



136 SUMMARY

solutions at pH 4.5. The steric interaction is determined by the size of the protein,
which is known, and the electrostatic interaction depends on the charge, which we
know from titration experiments. We determine the ionic strength-independent
range and strength of the short range attraction by fitting second virial data as a
function of ionic strength and we show that we can also predict the second virial
coefficient at pH 7.5 by using the same values for these two parameters. Thermo-
dynamic properties of the lysozyme solution at low concentrations of protein can
then be determined by using the results from the AHS model at low concentra-
tions and the relation between the stickiness parameter and the properties of the
lysozyme solution (for example ionic strength and protein charge).

Next we develop a theory to deal with protein solutions at higher concentra-
tions of protein. We again approximate the original system by the AHS system
but now we determine the stickiness by matching the free energies of the two
systems. We do this by making a functional expansion of the free energy of the
original system with the AHS system as the reference system. The stickiness,
which now also depends on the protein concentration, is determined by putting
the first order correction in the expansion equal to zero. We call this procedure
the optimized Baxter model (OBM). We then use these results to predict (there
are no adjustable parameters in our theory) the compressibility of lysozyme so-
lutions at pH 4.5 as a function of protein concentration for various values of the
ionic strength. We show that we can predict the experimental data pretty well.

In Chapter 2 we use the OBM to predict experimental data on lysozyme
solutions. However, both the OBM and the interaction potential are approximate
and it is unclear how much each approximation contributes to the error. Therefore
we test the OBM in Chapter 3 on a system with a known interaction potential,
the Yukawa system. We perform Monte Carlo simulations on the Yukawa system
to determine thermodynamic properties such as the pressure and the chemical
potential and we then compare the results to predictions of the OBM. First we
show that we can predict these properties very well along the fluid line of the
fluid-solid coexistence region. Then we do a consistency test in the fluid phase.
For a given range of the Yukawa interaction and a given particle concentration we
predict what the strength of the interaction has to be to get a certain value for the
stickiness. Then we determine the pressure and chemical potential by simulation
and we compare these to pressures and chemical potentials at the same stickiness
and particle concentration but different ranges of the Yukawa interaction to see if
they are indeed equal, as the OBM predicts. An advantage of doing this in such a
way is that we then only need the accurate pair correlation function for the AHS
system and not the expressions for the thermodynamic properties, which are only
approximate. We show that the OBM is accurate to within 10 percent and is
actually much more precise in most cases. We also show that the naive method
of equating second virials performs not as well as the OBM.

In Chapter 4 we use the OBM to determine the pressure and chemical poten-
tial of protein crystals and of crystals of inorganic colloids. We do this indirectly
by determining these properties for the surrounding liquid which is in equilibrium
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with the crystal. We then apply this to lysozyme crystals and to crystals of Sili-
cotungstate (STA). We then set up a theory for the crystal phase. We calculate
the electrostatic part of the crystal free energy by assuming that the interstitial
volumes are spherical and we solve the Poisson-Boltzmann equation to determine
the effective charge of the particles in the salt-free case. Then a Donnan ap-
proximation is used to calculate the pressure and chemical potential when salt is
present. We show that the salt dependence of the chemical potential agrees with
experiments.

In the final chapter, Chapter 5, we study the collective diffusion of proteins.
The collective diffusion coefficient describes how a protein solution reacts to a
small gradient in the protein concentration. It is a non-equilibrium property
and it is not clear whether we can still use the results from the OBM, since
the stickiness parameter is determined by matching equilibrium properties (the
second virial coefficient or the free energy). We show that one can still do this,
however, since, although the method is not exact, the error is only small. We
predict the collective diffusion coefficient for lysozyme at pH 4.5 as a function of
ionic strength for low concentrations of lysozyme and we show that the results
compare well with experimental data.

Peter Prinsen





Samenvatting

Statistische mechanica van eiwitoplossingen

Het doel van dit proefschrift is het ontwikkelen van een thermodynamische be-
schrijving van waterige oplossingen van globulaire eiwitten met toegevoegd enkel-
waardig zout. Bestaande theorieën richten zich voornamelijk op lage concentraties
eiwit maar wij bekijken hier ook hogere concentraties. Een beter begrip van het
thermodynamisch gedrag van eiwitoplossingen draagt bijvoorbeeld bij aan het
vinden van de juiste omstandigheden voor de groei van eiwitkristallen, die ge-
bruikt kunnen worden voor de bepaling van de structuur van het eiwit, of het kan
helpen bij het ontwikkelen van nieuwe voedselproducten.

In het eerste deel van Hoofdstuk 1 geven we een inleiding over eiwitten. Vervol-
gens laten we zien hoe men een theorie kan opbouwen waarmee eiwitoplossingen
beschreven kunnen worden en we leggen uit tegen wat voor soort problemen men
aan kan lopen, bijvoorbeeld het feit dat men een aantrekkende wisselwerking in
moet voeren om de experimentele gegevens te verklaren of het feit dat de viriaal-
benadering niet werkt bij hoge eiwitconcentraties, en we laten zien hoe we met
deze problemen omgaan. Dit gedeelte dient als een inleiding tot de theorie in de
rest van het proefschrift en het richt zich op een aantal punten dat verderop niet
wordt uitgelegd. Het laatste gedeelte van de inleiding behandelt enkele onderdelen
van de theorie wat uitvoeriger. We gaan wat dieper in op de één-component be-
schrijving en we laten zien wat een potentiaal van gemiddelde kracht is, vanuit een
statistisch mechanisch oogpunt. We tonen ook enkele thermodynamische eigen-
schappen van plakkende harde bollen, bolvormige deeltjes met een harde afstoting
en een plakkerige aantrekking, die later in het proefschrift gebruikt worden.

In Hoofdstuk 2 bouwen we een theorie op om het thermodynamisch gedrag
van eiwitoplossingen mee te beschrijven. We nemen aan dat de deeltjes bolvormig
zijn en we benaderen de wisselwerkingspotentiaal door een isotrope wisselwerking
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die bestaat uit een sterische afstoting plus een elektrostatische afstoting en een
aantrekking met korte dracht. Vervolgens benaderen we het systeem met een
systeem van plakkende harde bollen (AHS-systeem) en we leiden een benaderde
uitdrukking af voor de parameter die de sterkte van de plakkende kracht aanduidt
als functie van de ionsterkte door tweede viriaalcoëfficiënten aan elkaar gelijk te
stellen. Dit passen we vervolgens toe op oplossingen van lysozyme bij een pH
van 4.5. De sterische wisselwerking wordt bepaald door de grootte van het eiwit,
welke bekend is, en de elektrostatische wisselwerking hangt af van de lading, die
we kennen door titratie-experimenten. We bepalen de dracht en sterkte van de
aantrekkende wisselwerking, welke niet van de ionsterkte afhangen, aan de hand
van experimentele gegevens van de tweede viriaalcoëfficiënt als functie van de ion-
sterkte, en we laten zien dat we de tweede viriaalcoëfficiënt bij een pH van 7.5
kunnen voorspellen door dezelfde waardes voor deze twee parameters te nemen.
Thermodynamische eigenschappen van de lysozyme-oplossing bij lage eiwitcon-
centraties kunnen dan worden bepaald door resultaten van het AHS-systeem bij
lage concentraties te gebruiken samen met de relatie tussen de plakkracht en de
eigenschappen van de lysozyme-oplossing (bijvoorbeeld de ionsterkte en de eiwit-
lading).

Vervolgens ontwikkelen we een theorie die eiwitoplossingen bij hogere eiwit-
concentraties beschrijft. We benaderen het oorspronkelijke systeem weer door het
AHS-systeem maar nu bepalen we de plakkracht door de vrije energieën van de
twee systemen aan elkaar gelijk te stellen. We doen dit door een functionaalont-
wikkeling van de vrije energie van het oorspronkelijke systeem te maken waarbij
we het AHS-systeem als referentiesysteem gebruiken. De plakkracht, die nu ook
van de eiwitconcentratie afhangt, wordt bepaald door de eerste-orde correctie in
de ontwikkeling gelijk aan nul te stellen. We noemen deze methode “the optimized
Baxter model” (OBM), oftewel het geoptimaliseerde Baxter model. We gebruiken
dit resultaat vervolgens om de samendrukbaarheid van de lysozyme-oplossing bij
een pH van 4.5 en verschillende ionsterkten te voorspellen (de theorie bevat geen
aanpasbare parameters). We laten zien dat we de experimentele gegevens vrij
aardig kunnen voorspellen.

In Hoofdstuk 2 hebben we het OBM gebruikt om experimentele gegevens van
lysozyme-oplossingen te voorspellen. Echter, zowel het OBM zelf als de wis-
selwerkingspotentiaal die we gebruiken is een benadering en het is onduidelijk
hoeveel elk bijdraagt aan de totale fout. Om die reden testen we het OBM in
Hoofdstuk 3 op een systeem met een wisselwerking die bekend is, de Yukawa-
wisselwerking. We doen Monte Carlo simulaties van het Yukawa-systeem om
thermodynamische eigenschappen zoals de druk en de chemische potentiaal te
bepalen en vervolgens vergelijken we deze resultaten met voorspellingen van het
OBM. Eerst laten we zien dat we deze eigenschappen erg goed kunnen voorspellen
langs de coëxistentielijn van de vloeistof en de vaste stof. Vervolgens testen
we de consistentie van de methode. Voor een gegeven dracht van de Yukawa-
wisselwerking en een gegeven deeltjesconcentratie voorspellen we wat de sterkte
van de wisselwerking moet zijn om een bepaalde waarde voor de plakkracht te



SAMENVATTING 141

krijgen. Vervolgens bepalen we de druk en de chemische potentiaal in de simula-
tie en we vergelijken deze met de drukken en de chemische potentialen behorende
bij dezelfde plakkracht en deeltjesconcentratie maar bij andere lengtes van de
dracht van de Yukawa-wisselwerking om te zien of deze inderdaad gelijk zijn,
zoals het OBM voorspelt. Een voordeel van deze methode is dat men zo het
OBM kan testen onafhankelijk van de uitdrukkingen voor de thermodynamische
eigenschappen van het AHS-systeem, welke minder nauwkeurig bekend zijn, om-
dat men alleen de nauwkeurig bekende paarcorrelatiefunctie van het AHS-systeem
nodig heeft. We laten zien dat het OBM binnen 10 procent nauwkeurig is en in
veel gevallen zelfs een stuk nauwkeuriger. We laten ook zien dat de naieve metho-
de waarbij men tweede viriaalcoëfficiënten aan elkaar gelijkstelt slechter presteert
dan de OBM-methode.

In Hoofdstuk 4 gebruiken we het OBM om de druk en de chemische poten-
tiaal van eiwitkristallen en van kristallen van anorganische collöıden te bepalen.
We doen dit op een indirecte wijze door deze eigenschappen te bepalen voor de
omringende vloeistof welke in evenwicht is met het kristal. We passen dit toe op
lysozymekristallen en kristallen van siliciumwolframaat. Vervolgens ontwikkelen
we een theorie voor de kristallijne fase. We berekenen het elektrostatische gedeelte
van de vrije energie van het kristal door aan te nemen dat de tussenruimtes tussen
de deeltjes bolvormig zijn en we lossen de Poisson-Boltzmann vergelijking op om
de effectieve lading van de deeltjes in het zoutloze geval te bepalen. Vervolgens
gebruiken we een Donnan-benadering om de druk en chemische potentiaal te
bepalen in aanwezigheid van het zout. We laten zien dat de zoutafhankelijkheid
van de chemische potentiaal overeenkomt met experimentele resultaten.

In het laatste hoofdstuk, Hoofdstuk 5, bestuderen we de collectieve diffusie
van eiwitten. De collectieve diffusiecoëfficiënt beschrijft hoe een eiwitoplossing
reageert op een kleine gradient in de eiwitconcentratie. Het is een niet-even-
wichtseigenschap en het is onduidelijk of we de resultaten van het OBM hier
kunnen gebruiken omdat de plakkracht bepaald is door evenwichtseigenschap-
pen aan elkaar gelijk te stellen (de tweede viriaalcoëfficiënt of de vrije energie).
Echter, wij laten zien dat men dit kan doen omdat, hoewel de methode niet exact
is, de gemaakte fout klein is. We voorspellen de collectieve diffusiecoëfficiënt van
lysozyme bij een pH van 4.5 als functie van de ionsterkte bij lage eiwitconcen-
traties en we laten zien dat de resultaten goed overeenkomen met experimentele
resultaten.

Peter Prinsen
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