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1
General Introduction

Drones are having a lot of attention from both academia and industry for their ability to complete visual

tasks efficiently such as surveillance and inspection, obstacle avoidance, goods/medical delivery. However,

this comes with several consequences such as misuse of commercial drones in restricted air spaces as

well as their use on the battlefield as kamikaze drones. Examples for these concerns could include the

commercial misuse of a drone around the Gatwick Airport in London which caused severe delays [1],

the use of drones to deliver bombs by ISIS [2], the attempted attack on the Venezuelan president by the

use of 2 drones carrying explosives [3] and, more relevant to this research, the use of Iranian Shahed

kamikaze drones by Russia in the ongoing Russian-Ukranian war [4] as well as the Houthis [5]. This

research focuses on loitering munitions, which refer to unmanned aerial vehicles (UAVs) designed to loiter

in an area for extended periods, seeking targets autonomously or under remote control. These systems

are classified as non-cooperative targets, as they operate independently and often unpredictably, posing

significant challenges for interception and defense. At the moment, there are several ways of countering

these threats such as jammer systems, net carrying UAS or nets launched from ground [6], GPS spoofing

[7], a cheaper UAS controlled by a human dropping onto a more expensive UAS [4]. These methods

are either too complex to be generalized or have other implications to systems in the same environment.

Thus, neutralizing the loitering munition by slamming into it with a cheaper drone is deemed more feasible.

Nevertheless, in order to counter these drones, detecting them is essential which can be done in several

ways, including, analysing the radio frequency waves used by the communication between the drone and

its operator, acoustic sensors sensing the inherit sound of the drone mostly originating from the propeller

sound and the vibrations of the drone, optical sensors which include cameras to detect target drones and,

use of radar for detection [8]. This research will mostly study the air to air scenarios where a UAS carrying

a radar and a camera will be used to detect, track and intercept another target UAS, more specifically a

loitering munition.

1.1. Research Questions
Methods for air-to-air detection, tracking and interception of a non-maneuvering UAV is detailed in the

Literature Review (Chapter 2). In this analysis it can be followed that there are several methods for

detecting, tracking and intercepting a loitering munition, nevertheless a complete method for autonomous

detection, tracking and interception from start to interception is not detailed in academia or open-source.

In order to come up with a solution for air-to-air interception of a loitering munition, following research

objective and questions are detailed:

The main aim of the research is to design an algorithm that will run onboard a quadcopter which

will detect and intercept a loitering kamikaze drone using an initial location from a ground sensor,

with relatively high range, and an onboard camera as well as a distance value to the kamikaze

drone (simulating an onboard radar) which both have relatively short range.

Research Objective
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How to design a real time algorithm to detect, track and intercept loitering munition onboard a

quadcopter using infrared camera(s) and target distance information?

Research Question Main

How to implement the most efficient computer vision algorithm in terms of performance and

speed for air to air detection of small drones with an infrared camera?

Research Question 1

How to extract position, velocity and acceleration information of a target drone using infrared

camera and assuming a known distance to target drone?

Research Question 2

What is an optimal interception guidance law for intercepting UAS targets with the use of another

UAS?

Research Question 3

To keep the research in a reasonable time frame, several assumptions are made. These include:

• There is a ground system which detects the target drone from a further range and provides the

interceptor drone with an initial location of the target drone.

• There is an onboard radar which provides the distance of the interceptor to the target drone. This radar

is simulated by feeding the interceptor with the 3D distance between the target and the interceptor in

real-time.

1.2. Structure of the Report
The structure of this thesis is as follows:

• Chapter 2 gives the state of the art methods in this research, comparison of these methods and the

background theory behind the chosen method.

• Chapter II is a standalone document detailing the related work, methods used in the research,

experiments to validate the methods and results and conclusions from the research.

• Chapter 4 details the additional results and work that were not put into the scientific article but still

compliments the research.

• Chapter 5 presents the final conclusions and recommendations for the research.
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2
Literature Review

2.1. Executive Summary
As drones become increasingly widespread and user-friendly, their presence around critical infrastructure for

inspection and surveillance purposes is now commonplace. However, the accessibility of drone technology

also introduces risks, as misuse of drones for harmful or hostile purposes becomes more frequent. This

risk is especially apparent in ongoing conflicts, such as in Ukraine and Palestine, where commercial

drones are being weaponized. To address these threats, this research proposes a counter-drone system

utilizing a quadcopter designed to detect, track, and intercept loitering munitions. By providing an effective

and responsive defense mechanism against adversary drones, this approach contributes significantly to

advancing safer skies and protecting sensitive assets. In this review the literature is investigated to identify

improvements on the current air-to-air interception methods.

Preliminaries
Air-to-air interception of adversary UAV requires a combination of advanced detection, tracking, and

guidance systems. Effective interception involves predicting the target’s motion, planning the interceptor’s

trajectory, and executing maneuvers to neutralize the threat.

The process typically involves multiple stages, starting with the detection of the loitering munition. Once

detected, the target must be tracked to maintain its position relative to the interceptor drone. As the

interceptor approaches the target, it must be guided using a control law to adjust its trajectory, ensuring a

successful interception. Various guidance laws are employed to optimize the interception, considering the

dynamics and/or path and motion of both the interceptor and the target. The interception of maneuvering

targets also requires real-time adjustments to the flight path of the interceptor based on dynamic feedback,

integrating trajectory generation methods that respect the system’s physical limitations. These methods

aim to minimize the terminal miss distance and ensure that the interceptor can engage the target effectively,

whether in a head-on or chasing geometry. Thus, the research is divided into 2 main aspects:

• Methods for detecting and tracking a UAV

• Guidance laws for air-to-air interception of a UAV

The UAV Detection and Tracking Algorithm
The detection and tracking of small Unmanned Aerial Systems (UAS) using monocular RGB cameras is

a key area of research in this study, focusing on air-to-air detection applications. Existing methods for

detecting small drones fall into two categories: conventional and deep learning approaches. Conven-

tional methods are often based on prior knowledge of the object of interest, utilizing techniques such as

background subtraction, local contrast, and noise estimation. These methods excel in controlled settings

but face limitations in complex environments, where their reliance on predefined object characteristics

constrains adaptability [9], [10].

In contrast, deep learning approaches, particularly convolutional neural networks (CNNs), offer more

advanced detection capabilities through model-based learning. One-stage detectors like YOLO and SSD

balance detection accuracy and speed, while two-stage detectors, including R-CNN and its derivatives,

4
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achieve higher accuracy at the cost of increased computational demands[11], [12]. The trade-off be-

tween appearance-based, motion-based, and hybrid detectors also influences detection performance.

Appearance-based detectors focus on visual features, with methods that range from global models, which

analyze the entire image, to local models that focus on predefined regions of interest [10]. Motion-based

detectors, alternatively, identify moving objects through temporal changes, using techniques such as

frame differencing and optical flow, though these methods risk detecting irrelevant objects due to camera

motion or other moving background elements [13]. Hybrid models combine appearance and motion-based

approaches to enhance real-time detection capabilities [10].

For tracking, both deep learning and optical flow techniques are widely used. Optical flow provides

real-time tracking by analyzing pixel movement, with sparse optical flow often used to reduce processing

requirements. Kalman filters are applied to maintain tracking accuracy during detection lapses, enabling

continuous estimation of the target’s position and velocity [13].

Interception Guidance
The interception guidance for drones can be achieved using both simple guidance laws and more complex

trajectory generation algorithms. A basic approach involves keeping the target in the center of the field of

view and approaching it with constant divergence. This method has been demonstrated in applications

like landing towards a stationary target but is less applicable for moving targets. More advanced trajectory

generation techniques, often used in homing missile guidance, have been explored extensively in the

literature. These techniques, including Proportional Navigation (PN) and its variants, are widely regarded

as optimal for minimizing terminal miss distance when intercepting non-maneuvering targets [14], [15],

[16], [17].

PN and its derivatives, such as Pure Proportional Navigation (PPN), True Proportional Navigation

(TPN), and Generalized True Proportional Navigation (GTPN), adjust the interceptor’s lateral acceleration

based on the rate of change in the line of sight. PPN has been shown to provide effective interception

behavior for simple target maneuvers. However, PN requires specific conditions, such as the interceptor

closing in on the target and having an acceleration greater than or equal to that of the target [14], [17].

The methods proposed by Hehn et al. [18], [19] and Mellinger et al. [20] provide foundational insights

into trajectory generation and control for interception maneuvers. Hehn et al. propose an approach

that focuses on real-time, feasible trajectory planning that respects dynamic constraints, employing

Pontryagin’s minimum principle and a bang-bang control strategy to ensure time-optimal solutions. This

method guarantees that the quadcopter reaches a designated interception point while minimizing overshoot

and excessive deceleration. In contrast, Mellinger et al. propose a work that introduces a sequence of

trajectory segments and dynamic mode switching between controllers for various flight phases, allowing

the quadcopter to perform precise, aggressive maneuvers. These controllers are adjusted in real time to

adapt to changes in the environment, making this approach highly suitable for interception tasks. Also

explored is the Model Predictive Conrol (MPC) as proposed by Ahmet et al. [21] for air-to-air interception

which incorporates terminal constraints to ensure engagement at a desired impact angle, prioritizing

visual alignment within the camera frame. By modifying the objective function to minimize maneuvering

requirements near the end of the trajectory and tailoring the prediction horizon to vehicle limits, the approach

enhances interception feasibility and robustness against processing delays.

Benchmark Testing and Future Research
The detection, tracking and interception guidance algorithms are developed in Matlab and tested first in a

simulation. After satisfactory results from the simulation are achieved, series of flight tests are conducted

on a quadcopter to test the real time applicability of the algorithm. For the onboard implementation of

the algorithms, C and Python programming languages are used for their efficiency. For the flight test

all the available facilities are used including the Cyberzoo in TU Delft campus for indoor testing and the

Unmanned Valley in Valkenburg for outdoor testing.
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2.2. Introduction
In this research an onboard interception guidance algorithm for intercepting loitering kamikaze drones is

developed. The scope of the algorithm includes detecting, tracking and intercepting the kamikaze drone

using onboard and ground based sensors. The onboard sensors include a camera and a radar. This

research will focus on the data from the camera while the radar data is not actually collected onboard and is

simulated by feeding the distance value to the interceptor drone. The ground based sensor is assumed to

only give an initial location of the kamikaze drone. The main aim of the research is to design an algorithm

that is run onboard a quadcopter which detect and intercept a loitering kamikaze drone using an initial

location from a ground sensor, with relatively high range, and an onboard camera as well as a distance

value to the kamikaze drone (simulating an onboard radar) which both have relatively short range.

There are several challenges that are addressed in this research.

Firstly the target drone needs to be detected. The initial location of the loitering munition is provided by

a ground based system which make use of infrared cameras and acoustic sensors and will have a much

greater detection range. The detection of drones from ground based systems including various sensors

has been studied widely by academia [22], [23], [24]. The approaches of ground based detection are then

translated into air-to-air detection of target drones which requires a transition from static measurements to

dynamic measurements of the target drone, making detection more challenging.

Air-to-air detection of small drones is a recent and relevant research area. As air to air detection require

measurements onboard another drone, the sensor suit available is limited related to mass and power

requirements of small drones and mostly optical sensors are used [8]. Also it is seen that mostly RGB

cameras (making use of the visible light range) have been studied in the literature for the purpose of drone

detection. The challenges associated with air-to-air detection via an optical sensor include the dynamic

measurement of target drone (requiring ego-motion analysis), target drones covering only a few pixels in

the image limiting the detection range, other moving objects which have similar size as a drone such as

birds making false positives a problem [25]. Initially it was determined that infrared camera(s) would be

used instead of RGB cameras as they provide more contrast between background and the target making

detection easier for most cases. Nevertheless, after further investigation during the research the focus

shifted to RGB cameras and the reason is further elaborated in the literature study.

Secondly, the target drone needs to be tracked and necessary parameters for the guidance need to

be extracted from it such as the position, velocity and possibly the acceleration data. This is done, in the

literature, as a part of the detection [26] as well as separately [13], nevertheless both approaches are

relevant for this research.

Finally the detected and tracked target drone needs to be intercepted by the interceptor drone, which

could be done by a wide pool of methodologies ranging from simple guidance laws to complicated trajectory

generation algorithms depending on the available sensor suit. Intercepting a target drone with the use of an

interceptor drone follows a similar logic to a homing missile intercepting a non-stationary target, especially

the terminal stages of homing missiles are relevant as that is the typical range for interception in this study.

Homing missiles use Proportional Navigation (PN) law in its terminal phase and a lot of research has been

done in this area due to PN’s optimality, with assumptions, in the sense of minimum miss distance as well

as its ease of implementation [14]. Some literature has adapted these missile researches to drones which

have similar trajectories but different actuation [6].

All of these areas were studied extensively in the literature in the context of detecting, tracking and

intercepting target UAS but mostly separately. This research aims to combine the most efficient ways of

detection, tracking and interception of a target UAS into one research and help pave the way to a more

complete air-to-air counter drone system.

2.3. Detection and Tracking of a Non-cooperative UAV
The previous sections highlighted the growing importance of unmanned aerial vehicles (UAVs) in both civil

and defense aerospace sectors, as well as the critical need for effective countermeasures to prevent attacks

and mitigate risks posed by adversarial or unauthorized UAVs. This chapter introduces the theoretical

foundation for detecting and tracking a non-cooperative UAV. To provide context, an overview of the

extensive research conducted in this field will be presented, summarizing key methodologies from relevant
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studies and publications. The discussion will cover various detection and tracking approaches, detailing

the techniques commonly used.

2.3.1. Detection Strategy
Detecting loitering kamikaze drones is crucial for implementing effective countermeasures. Several

detection methods are available, each leveraging different characteristics of UAVs. One approach involves

analyzing radio frequency (RF) signals to intercept communications between the drone and its operator,

allowing early detection and tracking [8]. Acoustic sensors provide another solution by capturing the

distinctive sounds produced by drone propellers and structural vibrations, which can be useful in detecting

low-flying or stealthy UAVs [27]. Optical sensors, including various types of cameras, enable visual

detection and identification, allowing for precise tracking of target drones based on their visual signatures.

Additionally, radar systems offer robust detection capabilities by capturing the drone’s movement and

position, even under challenging visibility conditions [8]. Advanced methods may integrate multiple sensor

types—such as combining RF analysis with optical or radar detection—to improve detection accuracy and

reliability in complex environments.

For accurate distance estimation, radar is an effective tool due to its capacity to measure range precisely

by calculating the time delay between signal transmission and reflection. This ability makes radar highly

reliable for detecting an object’s position in space. However, radar systems often struggle with accurately

determining the orientation or angle of an object, especially in single-snapshot measurements where angle

accuracy depends on the antenna array size and signal processing techniques used. Radar systems like

millimeter-wave radar can provide accurate range data but may have limitations in angular accuracy due

to the resolution of the radar’s direction-of-arrival (DoA) estimation [28]. Many research efforts focus on

improving angular resolution, often by employing advanced algorithms or multiple snapshots, but these

solutions still fall short in dynamic or noisy environments [29]. Consequently, radar is usually combined

with other sensing methods—such as optical or infrared sensors—to enhance orientation accuracy and

achieve a more comprehensive understanding of an object’s movement and position [29].

Combining a camera and radar system offers an optimal solution for accurately determining the location

and velocity of a target drone. In this setup, the camera excels in providing a precise estimate of the

target drone’s orientation relative to the interceptor drone, thanks to its high angular resolution and detailed

visual feedback. Meanwhile, the radar complements this by delivering an accurate distance measurement,

allowing for reliable range tracking even in conditions with low visibility or challenging lighting. This

combination of camera-based orientation with radar-based distance estimation enables a robust and

precise tracking system, improving the interceptor drone’s ability to pursue and engage with the target.

2.3.2. Choice of Electromagnetic Wavelength
The choice of detection method has been narrowed down to using cameras, rather than alternatives such

as acoustic sensors or radio frequency detectors. However, it remains essential to select the optimal

electromagnetic wavelength for imaging, as several camera options are available that operate across

different bands. Based on Follansbee et al. [30] study, the following points outline the performance

characteristics of various wavelengths for drone detection:

• Visible (RGB) (0.4–0.7 µm): Widely available sensors that offer high diffraction-limited resolution,

low size, weight, and power (SWaP) requirements, and a small pixel pitch. This results in high image

quality and photon availability, making RGB sensors effective under clear lighting conditions. RGB

also maintains a consistent signal-to-noise ratio (SNR) with range, making it reliable for recognition

and identification. However, object-sky contrast can be a limitation, especially in low-contrast lighting

environments.

• Near Infrared (NIR) (0.7–1 µm): Shares advantages with the visible band, including high resolution,

low SWaP, and small pixel pitch. NIR can improve contrast slightly in low-light conditions, enhancing

its utility in some environments, although it provides minimal improvement over RGB under clear

skies. SNR remains constant with distance, similar to RGB, which makes it suitable for short- to

medium-range detection.

• Short-Wave Infrared (SWIR) (1–1.7 µm): Excels in degraded visual environments, such as haze,

smoke, or fog, due to increased atmospheric transmission. SWIR also enhances target-sky contrast,

providing greater detection range under low-visibility conditions. However, SWIR sensors often have
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larger pixel pitches, resulting in lower image resolution, and may be limited by object-sky contrast at

longer distances.

• Extended Short-Wave Infrared (eSWIR) (2–2.5 µm): Provides the highest atmospheric transmission

among the bands studied, which improves target-sky contrast and diffraction-limited resolution over

SWIR. This capability makes eSWIR suitable for highly degraded environments where visibility is

a challenge. However, eSWIR’s large pixel pitch limits detection resolution, and SNR declines

significantly with distance, reducing its effectiveness for long-range detection.

After reviewing the strengths and limitations of each spectral band, RGB (visible light) presents a

balanced solution for drone detection in typical operational environments. RGB cameras offer reliable

performance with high resolution, consistency in SNR over varying distances, and availability in a cost-

effective format. While SWIR and eSWIR provide advantages in extreme visibility conditions, RGB’s

versatility across diverse lighting and atmospheric conditions makes it the optimal choice for general drone

detection applications.

2.3.3. Conventional Methods For Drone Detection From a Camera
The conventional methods for small target detection, including those used in drone detection, often rely

heavily on prior knowledge of the target and the environment, which can limit their adaptability in dynamic

or complex settings [12]. These methods, designed around specific assumptions, may not generalize well

to unknown environments or targets [10].

Background subtraction techniques, such as the top-hat algorithm [31], max-mean, and max-median

algorithms [32], are widely used to identify small targets by comparing consecutive frames and isolating

the moving object from the static background. While they can be effective in environments where the

background is relatively stable, they struggle in dynamic or cluttered scenes, especially under varying

lighting conditions or with objects that blend into their surroundings. More advanced methods, such as the

average absolute gray difference (AAGD) [33] and generalized structure tensor (GST)-based methods

[34], attempt to enhance contrast and detect small targets by suppressing the background or analyzing

local object textures, respectively. However, these methods still rely on prior assumptions, which makes

them less robust in unfamiliar scenarios.

To overcome some of these limitations, noise estimation techniques treat the small target as a special

form of noise and separate it from the background using noise models. The Mixture of Gaussians

(MoG) model [35], for instance, models the small target as a sparse component of the background

noise, allowing for target detection in complex environments. Despite being more flexible than traditional

background subtraction methods, noise estimation still requires accurate modeling of both the target and

the environment, making it difficult to apply in highly variable conditions.

Local contrast-based methods, such as the Local Contrast Measure (LCM)[36] and tri-layer local

contrast method (TLLCM), enhance small targets by measuring pixel contrasts within localized regions of

the image using sliding windows. These methods rely on adaptive thresholds to distinguish targets from

the background, but their performance can degrade in highly variable environments where local contrasts

may not be easily distinguishable. Furthermore, they often require fine-tuning for each specific setting,

limiting their generalization.

While these conventional methods have shown promise in controlled environments, they struggle to

maintain consistent performance in more complex or dynamic real-world conditions. Their reliance on

expert prior knowledge about the target and environment means they are not easily adaptable to new or

unseen scenarios. As a result, their ability to detect small targets, such as drones, beyond the assumptions

of the prior knowledge is often limited. A data-driven approach, which learns from large datasets of

various targets and environments, has the potential to overcome these challenges by providing greater

generalization and adaptability, enabling the detection of unknown targets under more diverse conditions.

2.3.4. Deep Learning Methods For Detection From a Camera
Neural networks, particularly deep learning models, have shown significant promise in the detection and

classification of drones in various environments. Traditional methods for drone detection, such as object

feature extraction (e.g., Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT))

followed by classification through machine learning algorithms like Support Vector Machines (SVM) or



2.3. Detection and Tracking of a Non-cooperative UAV 9

IoU threshold 0.5 IoU threshold 0.75

Figure 2.1: Precision comparison of several CNNs for drone detection [26]

AdaBoost, often fall short when handling the complexity and variability of UAV detection [37]. These

conventional methods rely heavily on precise feature engineering, which can be computationally expensive

and may struggle to adapt to new or unknown scenarios. In contrast, deep learning approaches, such as

Convolutional Neural Networks (CNNs), have been applied to UAV detection with remarkable success. By

directly learning relevant features from raw pixel data, CNNs can automatically adapt to various object

appearances, backgrounds, and lighting conditions, making them more robust and versatile for detecting

drones in dynamic environments.

Comparison of Models
CNNs give promising accuracy and precision results for drone detection. Nevertheless, there are a

significant amount of CNNs to chose from with each having advantages and disadvantages. Based on the

paper by Ye Zheng et al. [9] several CNNs are compared in order to come up with an optimal algorithm for

target drone detection.

Single-Shot Detector (SSD)
As a one-stage detector, SSD is recognized for its high computational efficiency, particularly in its SSD512

variant, which offers stable and reliable performance. Given its relatively lightweight design, SSD is a good

choice for applications with limited computational resources, such as real-time drone detection on mobile

platforms.

RetinaNet
Another one-stage detector, RetinaNet achieves a balance between computational efficiency and accuracy

similar to SSD. Its use of a focal loss function addresses the imbalance between foreground and background,

making it effective for drone detection in cluttered environments. RetinaNet is a strong choice for resource-

constrained applications, providing stable detection performance with relatively low computational demand.

YOLOv3
Known for its speed, YOLOv3 is the fastest algorithm in this comparison, providing real-time detection

capabilities. This makes it highly suitable for fast-moving drone detection scenarios where quick response

times are crucial. YOLOv3 outperforms models like RefineDet and Faster R-CNN in terms of speed,

making it ideal for applications requiring both accuracy and low latency [38].

RefineDet
RefineDet, another one-stage detector, aims to enhance detection accuracy by refining object boundaries

at an intermediate stage. While faster than some two-stage detectors, it does not match YOLOv3 in speed.

This architecture can be a good compromise for applications prioritizing accuracy over speed, though it

may not be ideal for real-time drone tracking in highly dynamic environments.
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Faster R-CNN
As a two-stage detector, Faster R-CNN separates the tasks of region proposal and object detection, leading

to higher accuracy but lower speed compared to one-stage detectors. It is suitable for applications with

ample computational resources and less critical speed requirements, such as in surveillance-based drone

detection where precise localization is necessary.

Feature Pyramid Network (FPN)
Another two-stage model, FPN improves the detection of objects at different scales by using a pyramid

structure to extract features at multiple resolutions. For drone detection, where target sizes can vary signif-

icantly with distance, FPN’s scale-invariant approach enhances accuracy but requires more computational

power than one-stage models, making it suitable for settings with sufficient resources.

Cascade R-CNN
Cascade R-CNN, also a two-stage model, is noted for achieving high average precision (AP), making it

an excellent choice in applications where accuracy is paramount. Its stable and superior performance

across various backgrounds and target scales makes it suitable for drone detection in complex and varied

environments. However, its computational demands are higher, limiting its use in real-time applications on

mobile platforms.

Grid R-CNN
The Grid R-CNN is one of the most accurate models, achieving the highest AP among the models compared.

It excels in detecting small targets, like drones, even in complex backgrounds and with varying scales,

which is ideal for challenging drone detection tasks. However, it is the most time-consuming model due to

its intricate grid-based refinement mechanism, best suited for high-precision applications where speed is

less critical, such as post-event analysis or drone identification in static images.

Main Takeaways
• For real-time drone detection with limited computational resources, YOLOv3 is typically the best

option due to its speed and reliable performance.

• For applications with a moderate computational budget and a focus on accuracy, SSD512 or Reti-

naNet provide a balance between speed and stability.

• For high-accuracy, resource-intensive applications, Cascade R-CNN or Grid R-CNN offer superior

performance but at the cost of higher computational demands, making them suitable for offline

processing or high-powered systems.

Several research has been conducted to achieve a good balance between detection speed and accuracy.

Selected methods are presented in this study. A prominent research has been conducted by Hanqing Guo

et al. [10] where a combined global-local detection method leverages both motion and appearance-based

classifiers to enhance accuracy and adaptability. The method begins with a global detector, where a

YOLOv5s model, optimized for high-confidence, appearance-based detection, scans the full image. This

global approach is complemented by a motion-based module that activates if the appearance detector

does not confidently detect a target. Motion compensation in this module relies on grid-based keypoints to

estimate homography, with frame alignment achieved through a pyramidal Lucas-Kanade method and

RANSAC for outlier rejection. Moving objects are then segmented via frame differencing, followed by

post-processing with morphological operations and connected component analysis to filter out non-target

regions.

When the global detector locates a target, a local detector refines the search, focusing on a cropped

area around the target to reduce computational load. This local detector utilizes a low-confidence threshold

for appearance-based detection, while a motion-based classifier assesses target movement through

velocity and angle variations. A Kalman filter estimates the target’s position for an adaptive search region,

predicting future frames to keep the target centered. A detector switcher manages transitions between

global and local detectors: switching from global to local upon initial detection and reverting if successive

local detections fail, leveraging the assumption that the target has not moved substantially.

This method is particularly robust in challenging conditions, using adaptive search regions and classi-

fier switching to handle dynamic scenes, thus offering a balance between accuracy and computational
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efficiency.

Another noteworthy method for drone detection is presented by Jie Zhao et al. [11] where The YOLO-ViT

model is integrated with the MobileViT network as its backbone, leveraging both CNNs and transformers to

enhance feature extraction for drone detection. This combination generates multi-scale feature maps with

detailed information by capturing both local and global features within an image, yet operates with fewer

parameters and a simplified training process. The architecture is built with a C3-PANet neck network, a

multi-scale feature fusion structure that includes key components like the SPPCSPC module, CARAFE

upsampling, C3 layers, and MP downsampling. This configuration aggregates information across different

layers in a bottom-up manner, effectively merging fine details from feature maps and enhancing the model’s

detection accuracy for small, complex targets.

Despite MobileViT’s lightweight design, which could reduce model accuracy, the C3-PANet architecture

optimizes the feature propagation path and perceptual field, enhancing small-target detection while

mitigating information loss. K-Means++ clustering further improves performance by refining anchor box

sizes to better accommodate multi-scale and occluded small targets typical in aerial UAV imagery. The

clustering of anchor boxes ensures appropriate sizing, minimizing the risk of target loss due to overly large

anchors.

This approach not only preserves accuracy but also achieves computational efficiency. Experimental

results indicate that YOLO-ViT reduces parameters and computational demands by 52.6% and 69.3%,

respectively, compared to the YOLOv7 model, while yielding a modest increase of 0.9% in mean average

precision (mAP) and a 0.5% enhancement specifically in vehicle target detection accuracy.

2.4. Interception Guidance
The detection and tracking algorithm is complimented by the interception guidance methods where the

tracked target drone is intercepted in mid-air. There are several methods to accomplish this feat. Several

of the promising methods are detailed in this section.

2.4.1. Proportioal Navigation
Proportional Navigation (PN) has been a dominant guidance law in missile interception for decades, valued

for its simplicity, practicality, and robustness across a wide range of applications, including surface-to-air,

air-to-air, and air-to-surface missiles, as well as space rendezvous missions [14]. PN’s fundamental appeal

lies in its reliance on the rate of change of the line of sight (LOS) between the pursuer and the target,

allowing the interceptor to apply a control force proportional to this rate, with the goal of minimizing the

terminal miss distance. Its relatively low demand for complex sensor inputs and the ease of implementation

make PN an ideal choice for many tactical systems, especially when rapid and accurate interception is

required.

The concept of PN encompasses two primary variants: True Proportional Navigation (TPN) and

Pure Proportional Navigation (PPN). These differ primarily in how the navigation constant is defined and

referenced. In TPN, the interceptor’s guidance is referenced directly to the LOS vector, meaning that

the interceptor’s maneuver is based on the geometry of the target’s motion relative to the interceptor. In

contrast, PPN uses the interceptor’s velocity vector as the reference frame, leading to a guidance law

that is based on the velocity of the interceptor and the rate of change of the LOS. While TPN tends to be

more analytically tractable—especially for non-maneuvering targets, PPN is often seen as more “natural”

in practical applications, especially when the target is actively maneuvering or when minimal information

about the target’s motion is available [17].

The application of PN, and specifically PPN, in the interception of a quadcopter presents a unique

set of challenges and opportunities. Quadcopter targets are typically small, highly agile, and capable

of performing rapid, unpredictable maneuvers, which complicates interception dynamics. Despite these

challenges, the inherent simplicity and adaptability of PN, especially PPN, make it an attractive choice

for the guidance of interceptors designed to neutralize such targets [6]. By applying the principles of PN,

the interceptor can continuously adjust its trajectory based on the observed relative motion of the target,

ensuring that it remains on an optimal intercept course despite the target’s evasive actions.

In this context, both TPN and PPN have their respective advantages and limitations. True Proportional

Navigation offers a more direct and mathematically elegant approach, particularly when the target’s motion
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can be considered in a more predictable manner. However, TPN’s reliance on LOS-based acceleration

and deceleration introduces practical implementation challenges, particularly for real-time control systems

and for targets that exhibit rapid, erratic motion [14]. On the other hand, Pure Proportional Navigation is

often more robust and easier to implement in practical systems, as it requires fewer sensor inputs and

tends to be less sensitive to variations in the engagement geometry. It can also be more forgiving in terms

of initial conditions, which is critical in real-world missile intercepts where uncertainty in target position,

speed, and trajectory is common [17].

This section will explore the application of PN, specifically, PPN in the interception of a quadcopter.The

section discusses the adaptation of this guidance law to the unique dynamics of quadcopters, how both TPN

and PPN qualitevly compare with each other. By delving into the practical considerations of implementing

PN for this novel type of target, it is aimed to highlight the strengths and limitations of each variant in

achieving successful interception. Through this analysis, it is demonstrated how, despite the complex

nature of intercepting agile aerial targets like quadcopters, Proportional Navigation remains a highly viable

and effective guidance law.

Derivation of Proportional Navigation Law

The derivation of the PN guidance law is essential to understand how the method accomplishes the

necessary interceptor maneuvers for air-to-air interception. It also sheds light into how the interception

conditions and assumptions are put together as well as which scenarios are fitting for an interception using

the PN laws. The derivation is based on the papers published by Palumbo et al. [14] and Shukla et al.

[17]. Consider a interception geometry as seen in Figure 2.2, where ri,w and rt,w are the position vectors

.

.
Interceptor

Target

Fixed coordinate
frame

Line of sight
coordinate 
frame

Figure 2.2: An arbitrary interception geometry and the corresponding coordinate frame definitions.

of the interceptor and target in the world coordinate frame respectively. The relative position vector rr is

defined as shown in Equation 2.1:

rr = rt,w − ri,w. (2.1)

In Figure 2.2, the line of sight (LOS) coordinate system originating from the interceptor is defined where

the 1r is the unit vector parallel to the relative position vector rr, 1n is the unit vector aligned with direction

of the change in line of sight and 1ωωω is defined as 1ω = 1r × 1n. Subsequently the relative position vector

can also be calculated as rr = R1r. R is defined as the Euclidean distance of the line of sight, ‖rr‖. To
calculate the relative velocity,vr, the relative position is differentiated with respect to the fixed coordinate

frame to obtain the following relative velocity expression in Equation 2.2:

vr = Ṙ1r +R
δ

δt
1r. (2.2)

In Equation 2.2 the relative velocity is seen to have two parts: (1) a change in the line of sight line due

to a change in distance and (2) a change in direction due to change in the rate of line of sight unit vector



2.4. Interception Guidance 13

(1r). As mentioned earlier, the vector n is defined along the change in the rate of line of sight line with the

following expression in Equation 2.3:

n =
δ

δt
1r. (2.3)

The unit vector along the vector n is defined as 1n = n
‖n‖
n

‖n‖
n

‖n‖ . The third and final unit vector to complete the

right handed line of sight coordinate frame the 1ωωω is defined, as mentioned earlier, as the cross product

between the former two unit vectors, perpendicular to both.

A significant variable in the derivation is the angular velocity of the line of sight coordinate system with

respect to the inertial reference frame _ϕ and is given by the following expression in Equation 2.4:

ϕ̇ϕϕ = φ̇φφr1r + φ̇φφn1n + φ̇φφω1ω (2.4)

where the components of the rotation of the line of sight coordinate frame are given by Equation 2.5:

φ̇φφr = ϕ̇̇ϕ̇ϕ1r,

φ̇φφn = ϕ̇̇ϕ̇ϕ1n,

φ̇φφω = ϕ̇̇ϕ̇ϕ1ω.

(2.5)

Following the angular velocity of the line of sight coordinate frame, the n vector can be calculated as

Equation 2.6:

n =
d

dt
1r + ϕ̇̇ϕ̇ϕ× 1r. (2.6)

. In this equation, the d
dt represents the time derivative with respect to a rotating coordinate frame.

It is known that the line of sight unit vector is constant and hence, the vector can be calculated as n = ϕ̇̇ϕ̇ϕ×1r.

Consequently the unit vector has the definition: 1r =
ϕ̇̇ϕ̇ϕ×1r

‖ϕ̇̇ϕ̇ϕ×1r‖ . On top of this, the relative velocity formula is

derived as the following expression in Equation 2.7:

vr = Ṙ1r +R(ϕ̇̇ϕ̇ϕ× 1r). (2.7)

In order to obtain the relative acceleration expression, the relative velocity is differentiated as shown:

δ

δt
vr = R̈1r + 2Ṙ(ϕ̇̇ϕ̇ϕ× 1r) +R(ϕ̈̈ϕ̈ϕ× 1r) +R[ϕ̇̇ϕ̇ϕ× (ϕ̇̇ϕ̇ϕ× 1r)]. (2.8)

Looking at the individual components in Equation 2.8, the cross product terms are expanded upon to

achieve the desired relative acceleration in terms of the angular velocity components of the line of sight

coordinate frame with respect to the inertial frame. Using Equation 2.4 and 1r = [100]T , the term ϕ̇̇ϕ̇ϕ× 1r is

developed resulting in the following equation:

ϕ̇̇ϕ̇ϕ× 1r = det

∣∣∣∣∣∣∣
1r 1n 1ω1ω1ω

φ̇rφ̇rφ̇r φ̇nφ̇nφ̇n φ̇ωφ̇ωφ̇ω

1 0 0

∣∣∣∣∣∣∣ = φ̇ωφ̇ωφ̇ω1n − φ̇nφ̇nφ̇n1ω1ω1ωϕ̈̈ϕ̈ϕ× 1r = φ̈ωφ̈ωφ̈ω1n (2.9)

It is known from Equation 2.3 that the direction of n can’t have a component along 1ω1ω1ω and hence, the

component φ̇nφ̇nφ̇n1ω1ω1ω is zero. Following a similar derivation the other cross product components in Equation

2.8 are expanded upon and result in the following expressions:

ϕ̇̇ϕ̇ϕ× 1r = det

∣∣∣∣∣∣∣
1r 1n 111ω

φ̇̇φ̇φr φ̇̇φ̇φn φ̇̇φ̇φω

1 0 0

∣∣∣∣∣∣∣
= φ̇̇φ̇φω1n − φ̇̇φ̇φn111ω,

ϕ̈̈ϕ̈ϕ× 1r = φ̈̈φ̈φω1n.

(2.10)
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Putting in Equations 2.9 and 2.10 in Equation 2.8, the relative acceleration in terms of the components

of the angular velocity of the line of sight coordinate system is derived as follows:

δ

δt
vr = at,w − ai,w = (R̈−Rφ̇ωφ̇ωφ̇ω

2)1r + (2Ṙφ̇ωφ̇ωφ̇ω +Rφ̈ωφ̈ωφ̈ω)1n + (Rφ̇ωφ̇ωφ̇ωφ̇rφ̇rφ̇r)1ω1ω1ω. (2.11)

In Equation 2.11 the individual components in the line of sight coordinate frame which influence the

desired relative acceleration can be observed. Looking at the first component along the line of sight line

(1r) several conditions for interception can be devised such as:

• The line of sight rate φ̇ωφ̇ωφ̇ω should go to zero.

• The interceptor should be able to achieve a higher acceleration than the target along the line of sight

line (ai,w1r ≥ at,w1r).

• The initial rate of change in the range should be negative (Ṙ(0) < 0). This way the range R will

decrease linearly ((at,w − ai,w)1r = 0).

In order for the interceptor to intercept the target it should accelerate such that the line of sight rate

goes to zero. Observing the second component of Equation 2.11, first the closing in velocity is defined as

vc = −Ṙ. From the conditions it is known that the closing in velocity has to be positive (vc > 0). Treating
the closing in velocity and range as constant, the Laplace transform of the second component is taken as

follows:

(at,w(s)− ai,w(s))1n = (sR− 2vc)φ̇ωφ̇ωφ̇ω(s). (2.12)

where s is the Laplace variable. Defining the interceptor acceleration to be perpendicular to the line of

sight line as ai,w1n(s) = ΛΛΛφ̇ωφ̇ωφ̇ω(s), the transfer function from the acceleration of the target to the line of sight

rate is given as following:

φ̇ωφ̇ωφ̇ω(s)

at,w1n
=

1

sR− 2vc + Λ
. (2.13)

As seen in Equation 2.13, to guarantee a stable system Λ > 2vc condition should be satisfied. Hence

the True Proportional Navigation law is derived as:

ai,wr
= Nvcφ̇ωφ̇ωφ̇ω, N > 2. (2.14)

Similarly the Pure Proportional Navigation law is given in the following expression satisfying the

aforementioned conditions:

ai,wr = Nϕ̇̇ϕ̇ϕ× vi,w. (2.15)

2.4.2. Comparison TPN vs PPN
The qualitive analysis of the TPN vs PPN is given by Shukla et al. [17]. The main takeaways can be

followed below.

Proportional Navigation (PN) is a widely employed guidance law in missile defense systems, precision

intercept technologies, and space applications due to its simplicity, effectiveness, and robustness in

maneuvering targets. The two principal variants of PN—PPN and TPN—differ in their mathematical

formulation, practical implementation, and overall effectiveness in a variety of scenarios. While both

methods aim to minimize the miss distance between the pursuer and the target, they each exhibit distinct

advantages and limitations. This section explores and contrasts the two guidance laws, comparing them on

the basis of their theoretical foundation, implementation challenges, trajectory behavior, control efficiency,

and overall robustness in real-world applications. It is important to understand the differences between the

two methods and how they perform in certain situations. For this purpose Shukla et al. has compared the

two methods and the findings and main takeaways are detailed below.
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Theoretical Foundations and Mathematical Formulation
The key distinction between PPN and TPN lies in how the guidance commands are applied relative to the

pursuer’s velocity vector and the line of sight (LOS) between the pursuer and the target.

PPN: In Pure Proportional Navigation, the interceptor’s acceleration is applied perpendicular to its

velocity vector. This means that the interceptor’s guidance law is based on the angular rate of the target

relative to the interceptor, without introducing any longitudinal (forward) acceleration or deceleration

components. As a result, the interceptor’s forward velocity remains constant throughout the engagement.

The guiding principle of PPN is relatively straightforward: it keeps the pursuer’s trajectory oriented towards

the target by adjusting its lateral acceleration in proportion to the rate of change of the LOS angle.

TPN: In contrast, True Proportional Navigation defines the pursuer’s acceleration in terms of the LOS

angle between the pursuer and the target. This results in a more complex maneuvering requirement, as the

acceleration has components both along and perpendicular to the pursuer’s velocity vector. The forward

acceleration component in TPN, which is proportional to the sine of the angle between the pursuer’s velocity

and the LOS, leads to a change in the pursuer’s speed throughout the interception. This forward velocity

variation requires additional considerations, particularly in practical applications where such acceleration

might not be feasible using control surfaces and/or small motors.

Implementation Challenges and Control Effort
One of the most critical factors in comparing PPN and TPN is how the guidance laws are implemented and

the control effort required to execute them.

PPN Implementation: PPN is generally considered easier to implement, especially in interceptors

relying on control surfaces and/or motors. Since the acceleration is purely lateral to the pursuer’s velocity

vector, the system requires less complexity in terms of control surface deflections or thruster management.

Additionally, PPN does not require any longitudinal acceleration or deceleration, which makes it more

practical for real-time control in dynamic environments. The absence of forward acceleration simplifies the

system design and improves robustness by reducing the number of required actuators and systems in the

missile.

TPN Implementation: In True Proportional Navigation, however, the need to apply acceleration both

along and perpendicular to the velocity vector creates significant implementation challenges, particularly

for systems relying on control surfaces. The forward velocity component that must be controlled can be

problematic for interceptors using conventional aerodynamic surfaces, as controlling both the direction

and speed of the interceptor simultaneously is difficult and often inefficient. TPN may require more

sophisticated systems, such as reaction thrusters, which are commonly used in space applications but are

cumbersome and less efficient in atmospheric engagements. The additional forward velocity variations

introduce complexity in autopilot design, and the control surfaces must manage more variables, making

the system more prone to errors and inefficiencies.

Forward Velocity and Acceleration
One of the most important differences between PPN and TPN is the way they handle the forward velocity

of the pursuer.

PPN and Constant Forward Velocity: In PPN, since the commanded acceleration is applied purely in

the lateral direction, the pursuer’s forward velocity remains constant throughout the interception. This is an

advantageous property for interceptors, as maintaining a constant speed minimizes the variability in the

aerodynamic characteristics and simplifies the control system’s task. The steady forward velocity also

means that the interceptor’s trajectory is easier to predict and adjust, leading to higher reliability and fewer

control errors.

TPN and Forward Velocity Variations: In TPN, the commanded acceleration introduces both lateral

and longitudinal components. The longitudinal acceleration causes the pursuer’s forward velocity to

fluctuate during the engagement, which can have detrimental effects. In particular, when the geometry of

the engagement deviates from a direct tail-chase or collision course, TPN requires significant acceleration

and deceleration to adjust the pursuer’s velocity. These speed fluctuations can lead to problems in

interceptor trajectory prediction, as they introduce non-linearities into the system and result in more

complex, and potentially unstable, flight paths. Furthermore, the required acceleration/deceleration
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increases dramatically as the engagement geometry moves further from a direct line-of-sight approach,

making TPN particularly inefficient in these scenarios.

Control Efficiency and Practicality
PPN and Control Efficiency: From a control-efficiency standpoint, PPN consistently requires less control

effort than TPN. Since the pursuer’s speed remains constant and only lateral adjustments are required, the

control effort is minimized. The absence of longitudinal acceleration/deceleration means that the control

surfaces or thrusters only need to handle lateral acceleration, making the system more energy-efficient.

Moreover, PPN has fewer restrictions on initial conditions, allowing for greater flexibility in the intercept

scenario. For most engagement geometries, PPN results in a more efficient use of control resources and

provides a higher level of robustness to variations in target behavior or environmental conditions.

TPN and Control Inefficiency: TPN, by contrast, is less efficient in its control effort due to the

longitudinal velocity variations and the resulting need for acceleration/deceleration in both the lateral and

forward directions. As demonstrated in numerical simulations in [17], the extra control effort required for

TPN increases significantly for large departures from tail-chase or collision course conditions. In an air-to-air

interception scenario, this inefficiency could manifest as wasted fuel or power, and could potentially lead to

errors in trajectory corrections or missed intercepts. The necessity for sophisticated control mechanisms

to manage both lateral and longitudinal components of acceleration reduces the overall efficiency of the

TPN law, especially in atmospheric engagements.

Trajectory Behavior and Robustness
PPN and Trajectory Stability: The trajectory behavior of a missile under PPN is typically more stable

and predictable. Since the forward velocity is constant, the missile follows a more straightforward path

towards the target, with the primary challenge being to maintain a constant lateral acceleration based

on the changing LOS angle. This simplicity in trajectory design makes PPN an inherently more robust

choice for a wide range of engagement conditions, especially when dealing with targets that are highly

maneuverable.

TPN and Unbounded Trajectory Variations: The trajectory behavior under TPN, however, can

become erratic and unpredictable, particularly when the engagement geometry deviates from a near-

collision course. The need to accelerate and decelerate along the forward direction introduces the possibility

of unbounded acceleration in some cases, which can result in significant instability. This is especially

problematic for targets that are highly maneuverable or when there is uncertainty in the initial engagement

geometry. Additionally, TPN imposes strict limitations on the initial conditions, such as the requirement for

the LOS rate to remain bounded and for the relative velocity between the pursuer and target to be within

certain limits. These constraints make TPN less robust in real-world applications, where initial conditions

may not always align perfectly with the assumptions of the guidance law.

Practical Considerations
While both PPN and TPN provide effective interception strategies, PPN is generally the superior choice

for most practical applications. The main reasons for this are its simplicity, reduced control effort, and

robustness in a variety of engagement scenarios. PPN’s constant forward velocity and lateral-only

acceleration allow for easier implementation in interceptors which have lower acceleration capabilities,

resulting in more efficient use of resources and a more stable trajectory. TPN, while analytically attractive

in certain cases, is less practical due to its complex trajectory behavior, requirement for forward velocity

variation, and the additional control effort needed to manage both longitudinal and lateral components of

acceleration.

From a practical standpoint, PPN is more adaptable, requiring fewer restrictions on initial conditions

and providing a more efficient and robust solution in real-world missile interception systems. On the

other hand, TPN may find limited application in scenarios where reaction thrusters are used, such as in

space-based systems, but it is generally less suitable for conventional, aerodynamically controlled missiles

and quadcopters which have small motors. Thus, for the majority of interceptor systems, PPN remains the

more practical, efficient, and robust guidance law.



2.4. Interception Guidance 17

2.4.3. Modern Interception Guidance Methods
Interception guidance for air-to-air interception by quadcopters has gained significant attention in recent

years. To achieve precise, rapid, and feasible interception maneuvers, various trajectory generation and

control methods have been developed. This literature review explores three primary works—those of

Markus Hehn et al. [18], [19] and Daniel Mellinger et al. [20] each offering unique contributions to trajectory

generation and control strategies applicable to quadcopter interception maneuvers.

Feasible Trajectory Generation and Control
Markus Hehn et al. work on Quadrocopter Trajectory Generation and Control [18] focuses on generating

feasible trajectories that respect both dynamic and input constraints of a quadcopter. The main goal is

to create a trajectory generation algorithm that can plan paths from any initial state to a target position,

allowing for online updates at a frequency of approximately 50 Hz. Key points of the approach include:

• Trajectories are designed to bring the quadcopter to a target as quickly as possible while ensuring

dynamic feasibility.

• An implicit feedback control law is integrated by replanning the trajectory at each controller update.

• The method considers the jerk of each translational degree of freedom (DoF) as planning inputs,

limiting both jerk and acceleration to avoid control saturation.

In terms of dynamic modeling, direct control over the quadcopter’s rotational rates (ωx, ωy, ωz) and
mass-normalized thrust a is assumed. While rotational dynamics are largely ignored, the model limits

control inputs based on feasibility conditions. The trajectory planning itself focuses on decoupled jerk

trajectories, which are time-optimal for each DoF, subject to feasibility checks.

Real-Time Trajectory Generation for Interception Maneuvers
In a complementary work, Hehn et al. explores real-time trajectory generation in the context of interception

maneuvers [19]. This work emphasizes real-time, lightweight trajectory computation that allows the

quadcopter to reach a specified interception point (x, y, z) at a designated time t. Highlights of this

approach include:

• The trajectory generation algorithm plans from arbitrary initial states and guarantees feasibility with

respect to defined constraints.

• By using Pontryagin’s minimum principle, necessary conditions for optimal input trajectories are

derived, utilizing a bang-bang control approach for time-optimal solutions.

• The planned trajectory emphasizes reaching rest after interception to avoid overshoot and excessive

deceleration.

Hehn et al. addresses state constraints through a direct adjoining approach, where the Hamiltonian

function is augmented by state constraints with a focus on minimizing final time. The trajectory generation

approach is adaptable, allowing the quadcopter to cross a specified position at a precise time while

respecting dynamic limitations.

Precise Aggressive Maneuvers
Daniel Mellinger et al. work on Trajectory Generation andControl for AggressiveManeuvers with Quadrotors

[20] takes a different approach, focusing on designing dynamically feasible trajectories for aggressive

maneuvers. Mellinger et al. introduces a family of trajectory controllers that achieve precise positioning in

a desired state within state space. The main aspects of the approach include:

• Development of a sequence of trajectory segments, each associated with a controller defined by a

goal state in the quadrotor’s state space.

• The design of three distinct controllers—attitude control, hover control, and 3D path following—which

are sequentially applied to achieve complex maneuvers.

• Real-time refinement of controllers through iterative trials, adjusting feedforward parameters to

compensate for dynamic model errors and actuator limitations.
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In trajectory generation, Mellinger et al. [20] emphasizes mode switching between controllers, which

can be triggered by either time or events. This flexible controller sequencing allows the quadrotor to

perform complex interception maneuvers effectively by transitioning through various control modes as

needed.

The trajectory generation and control methods explored in these works provide a foundational un-

derstanding of air-to-air interception maneuvers for quadcopters. Hehn et al. [18] contributions offer a

structured approach for real-time, feasible trajectory planning, with attention to dynamic constraints and

optimality. Mellinger et al. [20] focus on aggressive maneuvers and mode switching contributes to effective

interception strategies that can adapt to dynamic environments. Together, these approaches serve as a

basis for advanced interception guidance methods, forming a robust foundation for future developments in

this field.

2.5. Control
The control methodology used to follow the references created by the guidance law is also significant for

the interception. Two promising method for control are discussed in this section.

2.5.1. Thrust Vectoring Control (TVC)
The Thrust Vectoring Control (TVC) is demonstrated by Marina et al. [6] is capable of following PN guidance

law for successful interception. This section is based on the derivation and results obtained by Marina et al.

[6]. TVC is a control strategy in which the required thrust vector is initially determined, and subsequently,

control actions are defined based on this vector. In TVC, external forces and disturbances, such as drag,

gravity, and wind, can be accounted for directly. This integration allows for faster disturbance rejection, as

these forces are introduced through feedforward control. Consequently, the performance of the TVC is

highly dependent on the accuracy of the estimates for these external forces and disturbances.

For a UAV, which possesses four controllable degrees of freedom (attitude angles yaw, pitch, roll, and

thrust), only three are necessary to define the thrust vector: roll, pitch, and thrust magnitude. The yaw

angle can be controlled independently, which can enhance the UAV’s capability to track a moving target.

The commanded thrust vector, as defined in TVC, can be formulated as [6]:

Tcmd = kp ◦ ep + kpi ◦
∫ ∆t

0

ep dt+ kv ◦ ev + ka ◦ ea +mg +macmd + FD, (2.16)

where kp, kpi, kv, and ka are vector gains associated with position, velocity, and acceleration errors, given

by ep, ev, and ea. The element-wise multiplication ◦ allows each axis to have different gain values due to

the varying dynamics along the z-axis compared to the x and y axes. The error terms are defined as

ep = pcmd − p, ev = vcmd − v, ea = acmd − a, (2.17)

where pcmd, vcmd, and acmd denote the commanded position, velocity, and acceleration, typically derived

from the guidance system. Equation (3.27) includes both feedback-related terms (the first four) and

feedforward terms, all expressed in the inertial frame.

When wind velocity is ignored, the drag force FD is described by

FD = TRAblaR
T v + kpar ◦ kv‖v‖, (2.18)

where Abla represents the Blade Flapping Coefficients matrix, and kpar is the Parasitic Drag Coefficients

vector. The first term dominates at low speeds, while the second term becomes significant for speeds

exceeding 10 m/s, which is relevant for this mission.

To convert the commanded thrust vector into roll, pitch, and thrust magnitude, the UAV’s desired

orientation must be determined.

This requires taking into account the independent commanded yaw angle ψcmd. The intermediate

orientation vector along the x axis, denoted as xψcmd, can be expressed as:

xψcmd =

cos(ψcmd)

sin(ψcmd)

0

 . (2.19)
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The desired z-axis orientation in the body-fixed frame, zBcmd, is then defined by normalizing the commanded

thrust vector:

zBcmd =
Tcmd

‖Tcmd‖
. (2.20)

Using the orthogonality property of the reference frames, the y axis of the desired orientation, yBcmd, can be

obtained as

yBcmd =
zBcmd × xψcmd

‖zBcmd × xψcmd‖
. (2.21)

The xBcmd vector can then be calculated as

xBcmd = yBcmd × zBcmd. (2.22)

Using these three orthogonal vectors, the commanded rotation matrix Rcmd is given by

Rcmd =
[
xBcmd yBcmd zBcmd

]
. (2.23)

Based on Equation (3.34) and by equating terms in the Rotation Matrix defined in Section 3.6, the

required roll and pitch angles can be extracted as:[
φcmd

θcmd

]
=


tan−1

(
R32

R33

)
tan−1

(
−R31√
R2

32+R
2
33

) . (2.24)

The thrust magnitude Tcmd can be computed by projecting the commanded thrust vector onto the body-fixed

z axis:
Tcmd = Tcmd · zBcmd. (2.25)

These resulting values, φcmd, θcmd, and Tcmd, are then sent to the Flight Controller, enabling the UAV to

follow the specified trajectory.

2.5.2. Nonlinear Dynamic Inversion (NDI)
Nonlinear Dynamic Inversion (NDI), first applied to aircraft control by Snell et al. [39] in 1992, was introduced

to manage the complex dynamics of supermaneuverable fighter aircraft, which experience significant

nonlinear behavior, especially at high angles of attack. NDI derives a nonlinear transformation from the

system model, which relates a set of pseudo-control inputs, denoted by ν (typically, desired time derivatives

of output vectors), directly to actuator commands. By assuming actuator dynamics are negligible, this

transformation allows the system to be treated as a linearized, decoupled system where ν links directly
to output derivatives. Consequently, proportional-integral (PI) or proportional-integral-derivative (PID)

controllers can generate ν with a single gain set to achieve consistent linear response irrespective of the

system state [40].

The general form of a control-affine nonlinear system is represented by:

ẋ = f(x) +G(x)u, y = h(x) (2.26)

where x ∈ Rm denotes the system state, y ∈ Rp the outputs to be controlled, f(x) the system’s natural

evolution, h(x) the output function, G(x) the input matrix dependent on state, and u ∈ Rn the control inputs.

In cases where the system has no internal dynamics, the inputs relate to output derivatives by dif-

ferentiating y with respect to time. For some elements, u may not appear after a single differentiation,

necessitating further derivation until an algebraic relationship between u and the time derivative of each

output yi is achieved. Assuming this relationship is found after one differentiation for all outputs, we define

the Lie derivatives Lfh(x) = ∇h(x)f(x) and LGh(x) = ∇h(x)G(x), yielding:

ẏ = Lfh(x) + LGh(x)u (2.27)

With a non-zero, square, and invertible LGh(x)matrix, the system dynamics can be decoupled and inverted

using the control input u as follows:

u = [LGh(x)]
−1(ν − Lfh(x)) (2.28)

where ν = ẏ represents the pseudo control input. This method, however, relies heavily on accurate models

of Lfh(x) and LGh(x); inaccuracies can reduce control effectiveness [39].
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2.5.3. Incremental Nonlinear Dynamic Inversion (INDI)
An incremental variant of NDI (INDI) addresses some NDI limitations by focusing on control input increments,

∆u, instead of the absolute control input u [41] [40]. INDI was initially motivated by its ability to manage

non-affine nonlinear actuator characteristics, but Sieberling et al. [40] demonstrated that INDI could

operate effectively by neglecting the aerodynamic model of the platform and instead measuring the current

achieved pseudo-control input, ẏ = ω̇ (for rotational accelerations in inner-loop control).

The INDI control law for rotational rates ω and accelerations ω̇ takes the form:

ω̇ = ω̇0 +
∂(JMc)

∂u

∣∣∣∣
ω0,u0

∆u (2.29)

where J represents the inertia matrix, andMc is the control effectiveness model. This approach minimizes

the need for a full aerodynamic model, but does require accurate current values of ω0 and ω̇0 [40].

To address challenges in estimating rotational accelerations, methods such as optimal filtering [40],

sensor processing with low-pass filters [42] have been applied. Adaptive implementations [42] further

reduce reliance on predetermined actuator effectiveness, which can vary under different flight conditions.

2.6. Revised Research Questions
The research objective and questions were initially determined. Nevertheless as the thesis progressed,

the main question and objective remained the same while sub-questions were subject to adjustments. To

reach the research objective several steps need to be taken. A significant step is to identify the research

gaps. While doing so, it is known that new and unexplored areas of interest may arise.

The detection and tracking of small drones from a camera have become a prominent area for research.

A lot of effort has been put on detecting drones from an image in different lighting and background conditions.

Nevertheless, to the authors knowledge the radar and the camera has not been combined to detect and

track a small UAV. On top of this air-to-air interception of non-cooperative UAVs have been studied by

the literature extensively and has shown promising results. The research gap this thesis tries to address

is combining both approaches in a simple manner for utilizing a quadcopter for air-to-air interception of

a non-cooperative UAV. With the research the theoretical methods are simplified and implemented to

achieve a robust framework and generalized for common application in real-life conditions. Although it

is known that private companies such as Auterion has a complete software solution that can intercept a

loitering munition from a camera, an open source solution has not been presented.

On top of this, even though the infrared camera was determined to be the first choice for the visual

feedback method, the devised setup was not sufficient for a detection. This was because the setup

consisted of a Raspberry Pi NoIR camera with a 940nm infrared bandpass filter above it provided too short

of a wavelength for using the benefits of the infrared spectrum such as the high contrast between the drone

and background. The longer wavelength infrared cameras were deemed too expensive for this research

and thus, the visual spectrum cameras replaced the infrared cameras.

Considering these the revised questions are as follows:

• How to design a real time algorithm to detect, track and intercept loitering munition onboard a

quadcopter using an RGB camera and target distance information?

• How to implement the most efficient computer vision algorithm in terms of performance and speed

for air to air detection of small drones with an RGB camera and a radar?

• How to extract position, velocity and acceleration information of a target drone using RGB camera

and assuming a known distance to target drone?

• What is an optimal interception guidance law for intercepting UAS targets with the use of another

UAS?
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Abstract—The increasing use of drones for both civilian and
military applications has raised substantial safety and security
concerns, including risks of misuse in restricted airspaces and on
the battlefield. Loitering kamikaze drones, in particular, repre-
sent a significant threat, necessitating effective countermeasures.
This paper proposes an onboard interception guidance algorithm
designed to detect, track, and intercept such drones, relying on
data from a camera and simulated radar input. The system is
initiated using the target’s initial location provided by ground-
based sensors, while the onboard system processes camera data
and simulated radar-derived distance values. The key challenge
is ensuring successful interception within the limited operational
range of these sensors. Several detection algorithms are im-
plemented and compared, and the chosen detection method is
integrated with the OpenCV CSRT tracker. A linear Kalman
filter is employed to estimate the target’s position and velocity,
effectively handling intermittent missed detections. The proposed
solution is evaluated by intercepting a simulated target UAV with
a real interceptor drone in TU Delft Cyberzoo, feeding targets
position and velocity to the interceptor, alongside validating the
detection and tracking algorithms.

I. INTRODUCTION

Drones have collected significant attention from both
academia and industry due to their efficiency in visual tasks
such as surveillance, inspection, obstacle avoidance, and the
delivery of goods or medical supplies. However, this increased
usage raises concerns, including the misuse of commercial
drones in restricted airspaces, exemplified by the incident
around Gatwick Airport in London, which caused severe
delays [29], as well as their use as kamikaze drones in conflict
zones. Notable examples include the use of drones to deliver
bombs by ISIS [17], the attempted attack on the Venezuelan
president using two explosive-carrying drones [2], and the
ongoing deployment of Iranian Shahed kamikaze drones by
Russia in the Russian-Ukrainian war [3], along with their use
by the Houthis [9].

To counter these threats, several methods have emerged,
including jamming systems, nets launched from the ground
[19], GPS spoofing [25], and less expensive UAS intercepting
more costly drones [3]. Nevertheless the solutions are not
fully autonomous and rely on a human operator. Effective
detection is crucial for these countermeasures and can be
achieved through various means, including analyzing radio
frequency communications, acoustic sensors that capture the

inherent sound of drones, optical sensors like cameras, and
radar detection [27].

This research aims to develop an onboard interception
guidance algorithm for detecting, tracking, and intercepting
loitering kamikaze drones. The algorithm will utilize onboard
camera data and simulated radar inputs, with ground-based
sensors providing initial location information for the target
drone. One of the primary goals of this work is to enhance the
drone’s capabilities towards achieving full autonomy, reducing
reliance on human operators.

II. RELATED WORK

The detection and tracking of small unmanned aerial sys-
tems (UAS) using monocular RGB cameras has become a
significant research topic. This includes detection scenarios
ranging from ground-to-air, air-to-ground, and air-to-air [7,
36]. Similarly, infrared cameras have been employed for
small target detection in both air-to-ground and ground-to-
air applications[18, 40, 6]. Detection methods can broadly be
categorized into two types: conventional and deep learning-
based approaches.

Conventional methods typically rely on prior knowledge of
the object of interest. These methods often focus on back-
ground subtraction to isolate small targets. Examples include
the top-hat algorithm [38], the max-mean algorithm [32], and
more sophisticated background suppression techniques such
as the average gray difference algorithm [1] and generalized
structure tensor-based methods [10]. Other methods include
noise estimation, where the target is treated as noise and
detected using specialized noise models [11]. Local contrast
methods, which search local regions using sliding windows,
are also prevalent; these methods include pixel-contrast ap-
proaches and adaptive thresholding techniques [13]. However,
conventional methods tend to underperform in complex back-
grounds or varying lighting conditions due to their reliance
on prior knowledge and are often only applicable in specific
scenarios [6].

Deep learning approaches, particularly those based on con-
volutional neural networks (CNNs), have achieved state-of-
the-art performance in UAV detection. Algorithms such as
Faster R-CNN and SSD (Single Shot Multibox Detector) have
produced strong detection results, balancing speed and accu-
racy [39, 37, 41]. Among these, Grid R-CNN and Cascaded



R-CNN offer superior accuracy in terms of Average Precision
(AP), but at the cost of higher computational demand [41].
The SSD algorithm, by contrast, offers good computational ef-
ficiency and strong performance across different target scales,
making it suitable for small object detection [41]. YOLO-
based detectors are particularly notable for their high speed;
YOLOv3 is recognized for being the fastest, while YOLOv5
achieves a balance between speed and accuracy, and YOLOX
provides better performance compared to YOLOv3 with faster
processing than YOLOv5 [41, 37, 40].

An important trade-off in detection is between appearance-
based, motion-based, and hybrid detectors. Appearance-based
detectors, which may use global or local methods, can be com-
putationally intensive when using global approaches, while
local methods may be inefficient without prior knowledge of
the target’s location [6]. Hybrid methods combine global and
local features, either by training CNNs to utilize both or by
dynamically switching between global and local detectors in
real time [14]. A prominent example is the local patch network
combined with global attention, which includes a supervised
attention module and an LPNet for extracting local features
[6]. Motion-based detectors, which focus on detecting moving
objects by analyzing motion features, also play a significant
role. Methods range from background subtraction techniques
[20] to spatio-temporal approaches [24]. Hybrid approaches,
which incorporate both appearance and motion features, are
employed to optimize detection performance and speed for
real-time applications [14].

Tracking of small UAS, another key area of research,
has been approached using both deep learning and optical
flow techniques. Deep learning-based methods include con-
volutional Siamese networks, Transformer-based methods like
TransT, and advanced trackers like LTMU, which employs a
meta-updater for improved performance [39]. Optical flow ap-
proaches, both dense and sparse, track features across frames.
Sparse optical flow methods such as Kalman trackers have
been particularly effective in estimating the relative velocity
and acceleration of a target using a ”constant velocity” model
[39], [20].

Finally, the interception guidance can be achieved by a
simple guidance law as well as more complex trajectory
generation algorithms. An interception guidance law could
be as simple as trying to keep the detected and tracked
object in the center of the field of view and approach it
with constant divergence. Trajectory generation algorithms
in the context of homing missile guidance as well as UAS
guidance have been studied extensively in the literature. In
general homing missiles which intercept manoeuvring targets
use Proportional Navigation (PN) and its derivatives Pure
Proportional Navigation (PPN), True Proportional Navigation
(TPN), Generalised True Proportional Navigation (GTPN),
Ideal Proportional Navigation (IPN), Augmented Proportional
Navigation (APN) [35]. PN in general is accounted as an
optimal guidance strategy which minimizes the terminal miss
distance [26]. The PN approaches try to create a guidance
law such that the lateral acceleration of the interceptor is

proportional to the line of sight rate and perpendicular to the
interceptor velocity direction (PPN, IPN) or to the line of sight
direction (TPN, GTPN), GTPN has a fixed angle to the normal
direction of the line of sight [26], [30], [8]. PPN seem to
show good interception behavior for simple maneuvers such
as circling or an abrupt change of direction [22]. However, PN
also has several assumptions such as the change in magnitude
of the line of sight (closing in speed) should be negative,
so the interceptor should be approaching towards the target
and in further distances should be in a near collision course
[26] [8]. Also the interceptor acceleration should be higher
or equal than the target acceleration along the line of sight
[26]. Proportional Navigation is also adapted to use in a UAS
for intercepting maneuvering targets [22]. Also used is the
Pontryagin’s Minimum Principle to find an optimal trajectory
which adheres to UAS constraints [15], [16]. Model predictive
control is used with impact angle constraints for keeping the
target drone at the camera FOV in [5] however, the included
terminal velocity constraint limits interception to head-on or
chasing geometries. In [23] trajectories are generated by the
sequential composition of different controllers in a hybrid
mode where changes to underlying parameters and set points
in the controllers allow different trajectories, nevertheless
requires a-priori knowledge of the interception location.

III. METHODS

A. Assumptions

The scope of the research necessitates several assumptions
for the design. These are as follows:

• A ground based radar provides an initial position and
speed estimate of the target drone. In a realistic scenario,
the interceptor drone is activated when the loitering muni-
tion is initially detected. Hence as an initial condition, the
first detected position and speed is fed to the interceptor.

• The interceptor drone is equipped with an onboard radar
that is providing the distance to the target drone. Due to
the scope of the research, integrating a radar is infeasible.
Nevertheless, a radar is effective at determining the range
to a target, but it is less capable of accurately indicating
the target’s precise direction relative to the radar. Thus,
just the range value is provided to the interceptor drone
by calculating and sending it from the ground control
station.

• The target drone remains mostly non-maneuvering, with
its acceleration kept to a minimum. Only minor variations
in the flight path are introduced to prevent the position
from being extrapolated based solely on the initial posi-
tion and velocity.

B. UAV Detection and Position Tracking Algorithm

It has been demonstrated that a target drone is most dis-
cernible within the visible and near-infrared wavelengths [18].
This enhanced visibility is attributed to the significant contrast
between the drone and the background in these spectral
regions. Initially, the target drone is expected to occupy a small
pixel area, approximately 10 to 20 pixels, making high contrast
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imperative for the initial detection and tracking processes. The
interception trajectory is designed to ensure that the interceptor
approaches the target from a lower altitude, utilizing the sky
as the background. This trajectory serves a dual purpose:
it enhances the contrast between the target drone and the
background while also simplifying the background complexity,
thereby reducing the likelihood of occlusion during detection
and tracking.

Given that the camera is not mounted on a gimbal and
is fixed at a specific angle relative to the interceptor’s body
reference system, these considerations are critical to maximiz-
ing the target drone’s visibility within the camera’s field of
view (FOV) throughout the interception process. Following
the implementation of the detection and tracking provisions,
an appearance-based detection method is deemed adequate for
interception purposes. Several methodologies have been inves-
tigated, including a YOLOv7-based detector, a Tiny YOLOv3-
based detector, and a blob detector. These approaches were se-
lected for their high accuracy and low computational demand.
The detection and tracking algorithms are executed on a Rasp-
berry Pi 4, which has limited computational capacity; thus,
convolutional neural network (CNN)-based detectors were
determined to be too computationally intensive for onboard
processing. Nonetheless, some preliminary results from these
detectors are presented in this study.

The CNN models (YOLOv7 and Tiny YOLOv3) are trained
on datasets collected using the Raspberry Pi NoIR camera
with IMX219 color calibration for RGB video recording on
the Parrot Bebop2. The images feature the black Sonicmodell
AR Wing Pro and Parrot Disco, used as target drones in
the Unmanned Valley Valkenburg. The dataset consists of
target drones in various orientations and attitudes, captured
at distances ranging from 50 to 100 meters.

The parameters of the YOLO models during training affect
the performance during inference. The YOLOv7 is trained
using an input image of 640x480 pixels with 3 color channels.
The rest of the essential training parameters for the YOLOv7
is given in table I.

The input to the Tiny YOLOv3 model consists of an
image frame resized to 416x416 pixels, with 3 color channels
representing the RGB spectrum. The original frame undergoes
a downsampling process to fit the 416x416 pixel requirement,
maintaining the necessary aspect ratio and spatial integrity to
ensure accurate detection, nevertheless decreases the accuracy
with respect to an image with 640x480 pixels. The remaining
training parameters are detailed in Table II.

The blob detection method exploits the fact that the target
drone is much darker than the background (sky) and hence
employs adaptive blob detection to identify a dark drone
against a lighter background. The approach begins by con-
verting the video frame to grayscale, simplifying the data and
reducing computational overhead. To account for variations in
lighting, an adaptive thresholding technique is applied, with
the threshold determined dynamically based on the mean pixel
intensity of each frame. This adjustment enhances robustness
in varying light conditions, critical for outdoor environments

Parameter Value
Initial Learning Rate (lr0) 0.01
Final Learning Rate (lrf) 0.1
Momentum 0.937
Weight Decay 0.0005
Warmup Epochs 3.0
Warmup Momentum 0.8
Warmup Bias Learning Rate 0.1
Box Loss Gain (box) 0.05
Class Loss Gain (cls) 0.3
Object Loss Gain (obj) 0.7
IoU Training Threshold (iou t) 0.20
Anchor Threshold (anchor t) 4.0
HSV Hue Augmentation (hsv h) 0.015
HSV Saturation Augmentation (hsv s) 0.7
HSV Value Augmentation (hsv v) 0.4
Image Translation (translate) 0.2
Image Scale (scale) 0.9
Image Flip Left-Right (fliplr) 0.5
Mosaic 1.0
Mixup 0.15
Loss OTA 1

TABLE I
YOLOV7 TRAINING PARAMETERS

Parameter Value
Momentum 0.9
Weight Decay 0.0005
Angle 0
Saturation 1.5
Exposure 1.5
Hue 0.1
Learning Rate 0.001
Burn-in 1000
Max Batches 500200
Policy Steps
Steps 400000, 450000
Scales 0.1, 0.1

TABLE II
TINY YOLOV3 TRAINING PARAMETERS

[28]. Following this, a Gaussian blur is employed to mitigate
image noise, improving the precision of contour extraction,
which is conducted using the OpenCV implementation of
Suzuki-Abe algorithm[33]. The method computes the bound-
ing box around the largest detected contour, capturing the
object’s location. By dynamically adjusting to background
exposure, the technique ensures efficient and accurate blob de-
tection, particularly in high-contrast scenarios. This algorithm
is computationally lightweight, making it highly suitable for
real-time object detection on edge devices.

The detection algorithm results can be seen in Figure 1.
The YOLOv7 and Tiny YOLOv3 detection capabilities are
found to be similar in terms of accuracy where the detection
is made within a confidence range of 60% − 97% and an
average confidence of 75% with the Tiny YOLOv3 having
half the inference time. YOLOv7 runs at 0.2 FPS while the
Tiny YOLOv3 runs at 0.4 FPS on the Raspberry Pi 4B. The
YOLO algorithms result a higher confidence when the target
drone is viewed from below Figure 1d outlining the fixedwing
shape while result in a lower confidence when target drone is
viewed from the front or back seen as a line Figure 1c. The
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blob detector has the worst accuracy out of the detectors but
runs at 8 FPS on the Raspberry Pi 4B.

(a) Blob detector detec-
tion where the target
drone is at 0◦ roll and
pitch attitude

(b) Blob detector detec-
tion where the target
drone is making a turn

(c) Tiny YOLOv3 detec-
tion where the target
drone is at 0◦ roll and
pitch attitude

(d) Tiny YOLOv3 de-
tection where the target
drone is making a turn

Fig. 1. Detection capabilities of different algorithms. The images captured
onboard Parrot Bebop2 in flight and hovering. The target drone is the black
Sonicmodell AR Wing Pro. (A) and (B) show blob detection, while (C) and
(D) show Tiny YOLOv3 detection.

On top of the detection algorithm, the target drone is
tracked in every consecutive frame for velocity estimate. This
is achieved by a built in OpenCV tracker, The CSRT tracker,
which is based on the Discriminative Correlation Filter with
Channel and Spatial Reliability (CSR-DCF) algorithm, works
by integrating both channel reliability and spatial reliability
into the tracking process. The spatial reliability map adjusts
the filter to focus on the most suitable regions of the object,
which helps track non-rectangular objects more accurately
and reduces drift during occlusion. The channel reliability
scores are used to weigh filter responses, enhancing the
tracking accuracy. This allows the CSRT tracker to handle
complex situations like occlusions, illumination changes, and
deformations [21]. The CSRT tracker runs at 10 FPS on the
Raspberry Pi 4B.

Due to computational constraints, the detection algorithm is
executed every n frames, with n being experimentally deter-
mined for each algorithm. Between detections, interim track-
ing is performed using the OpenCV CSRT (Discriminative
Correlation Filter with Channel and Spatial Reliability) tracker.
More computationally intensive algorithms, such as the CNNs,
require larger n values. Specifically, for the CNNs, n = 50
and n = 100 are tested, while for the lighter blob detector,
smaller values of n = 10 and n = 20 are used. This design
allows for object tracking between detection intervals, with

the detection algorithm supplying an updated bounding box
around the target drone. The necessity for periodic re-detection
stems from the dynamic size and appearance of the drone as
the interceptor moves closer to the target, requiring frequent
refreshment of the tracked object. The detection algorithm
is executed on frames Li where i is a multiple of n (i.e.,
i = k · n with k ∈ Z+). In each detection frame a bounding
box is generated around the detected drone using either CNN
based detector or the blob detector, and the pixels within this
bounding box serve as input to the CSRT tracker. To enhance
the tracker’s accuracy, the video frame undergoes grayscale
conversion, which simplifies the image by removing color
information and reducing dimensionality, thereby focusing on
intensity contrasts [12]. Subsequently, thresholding is applied
to increase the contrast between the drone and its background,
dynamically adjusting the threshold based on pixel intensity
to handle varying illumination conditions [28]. A Gaussian
blur is then applied to reduce noise and further enhance
the drone’s visibility by smoothing intensity variations in the
background [4]. These preprocessing steps ensure that the
tracker maintains robust performance, even in challenging
dynamic visual conditions, allowing reliable target tracking
throughout the visible frames.

C. Perspective Projection

(a) Pixel (image) coordi-
nate frame

(b) Camera coordinate frame
Fig. 2. Coordinate frame definitions

After the target is detected in the Lth
i frame, the centroid

of the bounding box is tracked as the position of the target.
The detected or tracked centroid is in the image coordinates
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as depicted in Figure 2a. The position of the target in world
coordinate frame is required for interception. Equation 1
demonstrates the transformation from world frame to pixel
frame. The position in the world coordinate frame is calculated
using the extrinsic and intrinsic matrices of the camera. Matrix
[R|t] is the extrinsic matrix and matrix A is the intrinsic
matrix.

Pp = A[R|t]Pw (1)

The extrinsic matrix is used to transform coordinates from
the world coordinate frame, which is an arbitrary right-
handed Cartesian coordinate system, first into the body-fixed
coordinate frame, and subsequently into the camera coordinate
frame, illustrated in Figure 2b, where the Z-axis is oriented
outward from the camera. The intrinsic matrix represent the
transformation from the camera frame to pixel frame. For
this the 3D point in the camera frame needs to be mapped
on to the 2D pixel space. Perspective projection is used to
determine the intrinsic matrix. Homogeneous coordinates are
used in perspective projections, depicted in Equation 2, to
unify rotation, translation, and depth scaling in a single ma-
trix operation, simplifying transformations between 3D world
coordinates and 2D image coordinates. They also handle the
perspective distortion by representing depth, ensuring accurate
projection of objects at varying distances from the camera [34].

pw =


xw
yw
zw
1

 pb =


xb
yb
zb
1

 pc =

xcyc
zc

 pp =

xpyp
1


(2)

The relationship between the world and body coordinate
frames is described by a rotation matrix, R, and a translation
vector, t. The translation vector represents the position of the
world coordinate frame’s origin relative to the body coordinate
frame, accounting for the positional difference between the
two origins. This vector can be computed by taking the
negative of the position components of the interceptor drone
in the world coordinate frame and then applying the rotation
matrix (R) that describes the transformation from the world
frame to the camera frame. The rotation matrix is a 3 × 3
matrix, while the translation vector is a 1× 3 column vector.
However, the interception guidance algorithm requires the
relative position of the target with respect to the interceptor,
the translation vector becomes redundant in the detection and
tracking algorithm.

pb =

[
Rwb t
0 1

]
pw (3)

The camera coordinate frame is obtained through two se-
quential rotations from the body coordinate frame: the first is
a 90-degree rotation about the Z-axis of the body, followed by
a second rotation of 90 + ζ degrees around the intermediate
X-axis, where ζ represents the angle between the camera’s Z-
axis and the body’s X-axis. The relationship between a point

in the world coordinate frame (pw) and in the body coordinate
frame (pb) is given by Equation 3 and Equation 4.

pc =
[
Rbc 0

]
pb (4)

Equation 5 demonstrates the transformation from the camera
coordinates pc to pixel coordinates pp. The intrinsic matrix A
is composed of the focal length and the optical center as can
be seen in Equation 6. Optical center (cx, cy) is the orthogonal
projection of the camera center to the image plane. The focal
length is the distance of the image plane to the optical center.
As the image plane can be a rectangle instead of a square
necessitating two focal lengths, fx and fy , in the two directions
of the image plane, x and y respectively.

pp = Apc (5)

A =

fx 0 cx
0 fy cy
0 0 1

 (6)

In this study the pixel frame to camera coordinate frame
transformation is used, the equations to achieve this transfor-
mation is found inverting Equation 5 and are demonstrated in
Equation 7 and Equation 8.

xc
zc

=
up − cx
fx

(7)

yc
zc

=
vp − cy
fy

(8)

As the camera frame position is calculated as a fraction of
the absolute depth, the radar data becomes significant in the
accuracy of the whole detection and tracking algorithm.

D. Velocity Tracking Algorithm

The tracked centroids of the bounding box detecting the
target drone across frames are used to calculate the velocity of
the target drone. Equation 10 and Equation 11, where xi = xc

zc
and yi = yc

zc
, give the velocity of the target drone for the x and

y axis in the pixel (image) frame respectively. The notation for
the translation and rotation are taken from Figure 2b and are
in the camera frame.

As the optical flow vectors calculated are caused by relative
motion of the interceptor and target, the translation vector
Tc,r = [U, V,W ] is also relative and unknown. The rotation
vector Rc = [A,B,C] is known only for the interceptor
drone which hosts the camera and is received from the gyro
measurements of the interceptor. Rc is related to the Euler
angles via Equation 4. The notation for both the rotation
and translation vector in the camera frame can be seen in
Figure 2b. The absolute scale zc is obtained using the absolute
distance from radar and the xc and yc camera coordinates
from the previous prediction assuming the movement of the
target is small and hence negligible across consecutive frames
(Equation 9).
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Fig. 3. Block diagram of the interception algorithm

zc,k+1 =
√
∥rk∥2 − x2c,k − y2c,k (9)

up = −U
zc

+ xi
W

zc
+Axiyi −Bx2i −B + Cyi (10)

vp = −V
zc

+ yi
W

zc
− Cxi +Ay2i +A−Bxiyi (11)

Equations 10 and 11 give the velocity of the target drone in
the pixel frame where up is the velocity along the x axis and
vp is the velocity along y axis shown in Figure 2a. Rearranging
equations 10 and 11 for calculating velocities in camera frame
results in equations 12 and 13. The W which is the velocity
along the z axis in the camera coordinate frame is calculated
by differentiating the zc position.

U = −W · xc
zc

+
A · xc · yc

zc
− B · x2c

zc
−B · zc+C ·Y −ui · zc

(12)

V = −W · yc
zc

− B · xc · yc
zc

− A · y2c
zc

+A · zc−C ·xc− vi · zc
(13)

The target velocity vector in the camera coordinate frame
can be transformed to the world coordinate frame using a
similar equation as Equation 3 and Equation 4. For this
transformation going from the camera coordinate frame to
world coordinate frame the R is the inverse of the world
to camera frame rotation matrix and the translation vector t
is replaced with the velocity of the interceptor drone vI in
the world coordinate frame. As detailed for the position, the
interception guidance requires the target velocity relative to the
interceptor and hence the velocity vector becomes redundant
in the coordinate transformation.

E. Kalman Tracking

The state vector xk = [pw,t,vw,t,aw,t] for time k is
composed of the position vector pw,t = [xw,t, yw,t, zw,t], ve-
locity vector vw,t = [ẋw,t, ẏw,t, żw,t] and acceleration vector

aw,t = [ẍw,t, ÿw,t, z̈w,t]. Also defined is the output vector
on = [pw,t,vw,t] which are the target states of interest for the
interception guidance. It is important to note that the position
and velocity of the target drone are in world coordinate system
but are relative to the interceptor drone.

xk = Fxk−1 + ϵn (14)

ok = Hxk + νk (15)

Equation 14 shows the state equation where constant accel-
eration is assumed and Equation 15 shows the output equation
where k is the time index. In the equations F is the state
transition matrix and H is the output matrix, ϵn ≈ N(0, σ2

ϵ )I
is the modelling error and νn ≈ N(0, σ2

ν) is the measurement
error. I is the identity matrix of appropriate size and dt is the
time step.

F =



1 0 0 dt 0 0 0.5 · dt2 0 0
0 1 0 0 dt 0 0 0.5 · dt2 0
0 0 1 0 0 dt 0 0 0.5 · dt2
0 0 0 1 0 0 dt 0 0
0 0 0 0 1 0 0 dt 0
0 0 0 0 0 1 0 0 dt
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(16)

H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

 (17)

Also the covariance matrix P initially has the form 18 with
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Fig. 4. An example interception trajectory and resulting scene geometry. aP can be observed to be orthogonal to ω and vw,t. T is the time of interception.

large values of Kp and Kv .

P =



Kp 0 0 0 0 0 0 0 0
0 Kp 0 0 0 0 0 0 0
0 0 Kp 0 0 0 0 0 0
0 0 0 Kv 0 0 0 0 0
0 0 0 0 Kv 0 0 0 0
0 0 0 0 0 Kv 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(18)

The Q is the matrix which represent the process noise
statistics. The cross-covariance components (σ2

pv , σ2
pa and σ2

va)
are assumed zero.

Q =



σ2
p 0 0 σ2

pv 0 0 σ2
pa 0 0

0 σ2
p 0 0 σ2

pv 0 0 σ2
p 0

0 0 σ2
p 0 0 σ2

pv 0 0 σ2
pa

σ2
pv 0 0 σ2

v 0 0 σ2
va 0 0

0 σ2
pv 0 0 σ2

v 0 0 σ2
va 0

0 0 σ2
pv 0 0 σ2

v 0 0 σ2
va

σ2
pa 0 0 σ2

va 0 0 σ2
a 0 0

0 σ2
pa 0 0 σ2

va 0 0 σ2
a 0

0 0 σ2
pa 0 0 σ2

va 0 0 σ2
a


(19)

The R is the matrix which represent the measurement noise
statistics. As the same measurement tools, camera and radar,
are used for all measurements, the covariance is assumed to
be the same across components.

R =


σ2
ν 0 0 0 0 0 0 0 0
0 σ2

ν 0 0 0 0 0 0 0
0 0 σ2

ν 0 0 0 0 0 0
0 0 0 σ2

ν 0 0 0 0 0
0 0 0 0 σ2

ν 0 0 0 0
0 0 0 0 0 σ2

ν 0 0 0

 (20)

The Kalman filter devised follows the linear Kalman filter
structure and has the following steps:

Step 1: Prediction state (Equation 21)

xk+1,k = F · xk,k (21)

Step 2: Prediction of the covariance matrix (Equation 22)

Pk+1,k = F ·Pk,k · FT +Q (22)

Step 3: Innovation of the state (Equation 23)

ok+1 = zk+1 −H · xk+1,k (23)

Step 4: Innovation of the covariance (Equation 24)

Sk+1 = H ·Pk+1,k ·HT +R (24)

Step 5: Kalman gain (Equation 25)

Kk+1 = Pk+1,k ·HT · S−1
k+1 (25)

Step 6: Updated optimal state estimation (Equation 26)

xk+1,k+1 = xk+1,k +Kk+1 · ok+1 (26)
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Step 7: Updated covariance (Equation 27)

Pk+1,k+1 = (I−Kk+1 ·H) ·Pk+1,k (27)

When a measurement is available, all the steps of the
linear Kalman filter are performed. However, in the case
of intermittent missed detections, the prediction state from
Equation 21 is used as the best estimate, and only Step 1
(prediction) and Step 2 (error covariance update) are executed.

F. Interception Guidance Algorithm

The Pure Proportional Navigation (PPN) guidance com-
mands an acceleration perpendicular to the interceptors veloc-
ity and the line of sight rate [30]. This acceleration generates a
turn which is proportional to the angular velocity of the line of
sight line ω. The goal is to accelerate such that ω = 0[rad/s]
which leads to a collision triangle as illustrated in Figure 4 if
the following assumptions hold:

• The interceptor acceleration is greater than or equal to
the target acceleration along the line of sight (los) line.

• The initial change in the line of sight range should be
negative (ṙ < 0[m]).

The collision triangle, under the assumptions mentioned above,
leads to interception. To abide by these assumptions, the
interception guidance algorithm initially commences after the
detection and tracking modules produce a first relative position
and velocity estimate. Subsequently, an initial velocity and
acceleration reference is produced for the interceptor. This
ensures that the line-of-sight range decreases throughout the
interception.

The PPN acceleration aP is calculated using Equation 28,
where vw,I is the interceptor velocity in world coordinate
frame and NP is the navigation gain and is analytically proven
to decrease the r to 0m over time when NP ≤ −3 [26].

aP = NPvw,I × ω (28)

The line of sight rate ω is computed using Equation 29,
where relative velocity vr = vw,I − vw,t.

ω =
r× vr

r · rT
(29)

In order to better track the desired velocity, especially
when there may be rapid change in velocity commands such
as during the interception of a circular moving target, also
a velocity reference vP is generated using the calculated
PPN acceleration. Employing Equation 30 the PPN velocity
reference is calculated. The initial velocity is calculated using
Equation 31. The first part of Equation 31 accounts for the
direction of the line of sight line and is scaled to increase
the velocity along the line and the second part adds the target
velocity ensuring the velocity of the interceptor is greater than
the target along the line of sight line. The velocity direction is
found by integrating the PPN acceleration and the velocity
magnitude VP is computed as VP = ∥vP0

∥. The velocity
reference in combination with the PPN acceleration is used to

create one acceleration reference for the guidance controller,
which can be seen in Figure 3.

vPk
= VP

vPk−1
+ dt · aPk−1

∥vPk−1
+ dt · aPk−1

∥
(30)

vP0
= b

r0
∥r0∥

+ vw,t (31)

The calculated reference values are then fed to the In-
cremental Non-Linear Dynamic Inversion (INDI) guidance
controller. This controller receives the necessary acceleration
aref and yaw angle ψref calculated using 32 and output
commanded pitch angle θcmd, roll angle ϕcmd, yaw angle
ψcmd and thrust magnitude Tcmd.

ψref = arctan(yw,t/xw,t) (32)

The inner INDI, implemented as detailed in [31], receives
the commanded Euler angles and thrust magnitude and out-
puts the necessary angular velocity of the motors u =
[ωp1

, ωp2
, ωp3

, ωp4
]. The overall structure of the interception

algorithm can be seen in Figure 3. Here the Detection and
Tracking Module receives the frame Li and attitude angles and
calculates the necessary yaw angle ψref , the state of the target
ok which is the best state estimate from the Kalman filter. The
PN Module receives the target states ok and interceptor states
pw,I and vw,I and outputs reference velocity and acceleration.

G. Visibility

For accurate detection and tracking, the visibility of the
target drone in the camera frame is maximized. The camera is
mounted on top of the interceptor and angled positively with
respect to the interceptor’s body x-axis, meaning the camera
is positioned to look above the interceptor. To maximize
visibility in this configuration and ensure that the background
remains primarily the sky, the interceptor approaches the target
from below. The effect of the parameter b is explored in
Equation 31, which is used to calculate the initial velocity
components. b scales the velocity along the direction of the
relative position; a larger b in a specific axis results in a greater
initial velocity in that axis.

To ensure the interceptor approaches from below, the ratio
between the relative positions in the x and y axes and the z
axis is considered using Equation 33. The motivation behind
the formula for Cb is to balance the interceptor’s velocity
across all axes to prevent it from reaching the target’s z-
axis position too quickly. The sum x + y is divided by 2
to account for the fact that two independent distances (x and
y) are being combined, while only one vertical distance z is
being considered. Without this normalization, the horizontal
component might dominate the ratio excessively, since x+ y
typically adds more value than z, making the interceptor
respond too aggressively to horizontal distances at the expense
of maintaining a smooth vertical approach. If the ratio Cb is
high, it means the interceptor needs to travel further in the x
and y directions compared to the z-axis. Without adjusting for
this, if the parameter b were kept the same across all axes,
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(a) Cb = 0.64
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(b) Cb = 0.82
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(c) Cb = 1.00
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(d) Cb = 1.19

Fig. 5. Target drone trajectory in the camera frame and corresponding density maps

the interceptor would reach the target’s z-axis position sooner
than its x− y position, potentially causing the target drone to
move out of the camera’s field of view.

By incorporating the ratio Cb, the initial velocity along
the z-axis is reduced when the horizontal distance (x and
y) is large, allowing the interceptor to maintain a consistent
approach from below while keeping the target within the
camera’s field of view. This ensures smoother, more effective
tracking and interception.

Cb =
rx + ry
2rz

(33)

In order to account for this effect, the z value of the
b parameter, bz , is scaled inversely with the ratio Cb. As
the displacement in the x and y axes increases significantly
relative to the z axis, the z value of the b parameter should
decrease, resulting in a lower initial velocity in the z axis.

A MATLAB simulation of several interception scenarios,
where the initial relative position satisfies ∥r0∥ ≤ 150 [m],
was conducted. From the simulation results, an empirical
formula for bz was derived to ensure that the final desired
positions in the x and y axes are not reached before the z

axis. The simulation also validated that detection and tracking
are feasible, and it was used to determine the camera angle ζ
that maximizes target drone visibility.

Figure 5 illustrates the simulation results with ζ = 80◦.
Each scenario shows different and increasing values of Cb, and
the target drone remains visible in each case when the scaled
bz is applied. Additionally, the simulation results show that
a camera angle of ζ = 80◦ maximizes target drone visibility,
with the target drone remaining in the camera frame for 83% of
the total time across all interception scenarios. The decrease in
visibility is primarily due to scenarios where the target drone is
in close proximity in the x-y plane while at a further distance
in z axis. To address this, the values of the b parameters in
the x and y axes should also be varied according to the Cb

ratio.
Another factor affecting target drone visibility occurs during

interceptions of circularly moving targets, where the intercep-
tor follows a curved path, as shown in Figures 7a and 8c.
Although this does not affect the overall interception result, it
may cause the target to temporarily move out of the field of
view. To mitigate this, the acceleration of the target drone
can be feedforwarded to the Proportional Navigation (PN)
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(a) (b) (c)
Fig. 6. Interception of a target moving in a straight line using JSBSim. From left to right, the figures show: (a) the 2D position of the target relative to the
interceptor, with the closest distance being 0.48, [m]; (b) the interceptor’s velocity during the interception; and (c) the line-of-sight rate between the interceptor
and the target.

(a) (b) (c)
Fig. 7. Interception of a circular moving target using JSBSim. From left to right, the figures show: (a) the 2D position of the target relative to the interceptor,
with the closest distance being 0.38, [m]; (b) the interceptor’s velocity during the interception; and (c) the line-of-sight rate between the interceptor and the
target.

acceleration in Equation 28.

IV. EXPERIMENTAL RESULTS

To validate the interception guidance algorithm, several
tests are conducted, including JSBSim simulations of realistic
interception scenarios and a flight test at the TU Delft Cy-
berzoo using a Parrot Bebop2 quadcopter as the interceptor
and a simulated target. For the experiments, the proportional
navigation algorithm is implemented in the Paparazzi autopilot
framework. In the JSBSim simulations, both the interceptor
and target drones are simulated, with initial distances and
velocities accurately reflecting real-world conditions. Despite
the simulations, the velocity and positional accuracy were
representative of a larger-scale outdoor experiment.

In the experiment in TU Delft Cyberzoo Lab, for each
scenario, the interceptor started at a fixed altitude of 1.0[m],
while the target remained at a fixed altitude of 5.0[m]. The
interception was considered complete when the interceptor
reached a distance of 0.5[m] from the target. During flight tests
in the Cyberzoo, where the target is simulated in JSBSim, the
position and velocity data from the simulated target were sent
to the ground control station. This data is then transmitted to
the interceptor, which is being tracked by the OptiTrack system
within the lab’s environment. Several interception scenarios

are presented, one where the target is moving in a straight
line, one where the target is circling at a fixed radius and the
interceptor starts from the center of the circle and one where
the target is circling and the interceptor starts outside the circle.
The plots can be seen from Figure 8. In each scenario the
interceptor is able to intercept the target in the given 0.5[m]
threshold.

Although position error of the interceptor is not taken
into account in the controller, in all interception scenarios,
the interceptor’s position remains aligned with the required
trajectory for successful interception. However, in scenarios
where the target is circling such as Figures 7a, 8b, 8c, the
initial trajectory prediction assumes the target moves without
acceleration, leading to the interceptor following a curved path.
This curve stem from the limitations of pure proportional
navigation, which does not account for target acceleration.
This suggests that a target executing a circular maneuver
can potentially deceive the interceptor, depending on the
initial conditions such as the target’s and interceptor’s velocity
and position, as well as the radius of the target’s circular
maneuver. These effects are shown in Figure 9, specifically
Figure 9c, demonstrating the effect of the target circle radii on
interception error, show that the interception error increases
significantly when the interceptor is intercepting a circular
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(a) (b) (c)
Fig. 8. 2D position plots of interception scenarios in TU Delft Cyberzoo where the interceptor is flown in real-life and the target is simulated using JSBSim.
In all scenarios the closest 3D distance is between interceptor and target is 0.5[m]. The plots, from left to right, depict: (a) a target moving in a straight line,
(b) a target moving in a circular path with the interceptor starting inside the circle, and (c) a target moving in a circular path with the interceptor starting
outside the circle.
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Fig. 9. Plots for closest 3D distance between the target and the interceptor given variations in, from left to right, initial range, target velocity and target
circling radius. The data is collected from experiments where both drones are simulated in JSBSim.

moving target and tighter the turn is for the circle maneuver
the larger the error due to increase in acceleration.

During the interceptions, the velocity remained fairly con-
stant in the scenario where the target was moving in a straight
line, demonstrated in Figure 6b. Nevertheless when the target
is moving in circles, slight oscillations are apparent in the
magnitude of the velocity, seen in Figure 7b. As the target
is accelerating/decelerating outside the predicted envelope of
the proportional navigation, the line of sight rate around the
specific axis increases/decreases, in turn this increase/decrease
in line of sight rate results in an increase/decrease in com-
manded acceleration in that axis. In a circling target scenario
the acceleration outside the predicted envelope happens at a
fixed period which causes the oscillation on the components
of the velocity. As the commanded velocity by the PN is
only changed in direction from the initial velocity and not in
magnitude as seen in Equation 30, this is attributed to a change
in acceleration commanded by the proportional navigation
guidance.

In theory the line of sight should go to 0[rad/s] as the
interception progresses. A similar trend can be observed in
the interception scenarios. Nevertheless, in close range the
line of sight rate seems to increase and oscillate. This can be

explained by looking at how the line of sight rate is calculated
in Equation 29. The line of sight rate is inversely proportional
to the line of sigh range squared. Meaning in close proximity
even a tiny change in the line of sight produce a high line of
sight rate.

In Figure 9, the effects of varying parameters, such as the
initial range between the interceptor and target, target velocity,
and the radius of the circular trajectory, are explored. First, it
is observed that a target moving in a circular path results in
a larger interception error (averaging 1.00,m) compared to a
target moving in a straight line (averaging 0.5,m), as shown in
Figures 9a and 9b for the straight-line case, and in Figure 9c
for the circular path case. Second, an increase in initial range
or target velocity does not significantly affect interception
performance, provided the interceptor has sufficient maximum
velocity. Third, a smaller circling radius leads to greater
interception error, due to the corresponding increase in the
required acceleration.

V. CONCLUSION

This paper presents a comprehensive solution for the
autonomous air-to-air interception of loitering kamikaze
drones. Several detection algorithms, including YOLOv7, Tiny
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YOLOv3, and a blob detector, were implemented and evalu-
ated in terms of accuracy and computational efficiency. While
YOLO-based models delivered superior detection accuracy,
with an average confidence of 75%, the blob detector offered
faster processing at 8 FPS on the Raspberry Pi 4B, making it
better suited for real-time onboard execution. For target track-
ing, the Discriminative Correlation Filter with Channel and
Spatial Reliability (CSRT) tracker was employed, enhanced by
image preprocessing techniques such as adaptive thresholding
and Gaussian blur, achieving approximately 10 FPS on the
same platform. A linear Kalman filter was integrated to fuse
data from the camera and radar, helping to mitigate the effects
of missed detections.

The guidance strategy was based on PPN, adapted for quad-
copters, and paired with an Incremental Nonlinear Controller
to ensure the interceptor approached the target from below.
Tests conducted in the TU Delft Cyberzoo and simulations
showed the algorithm could successfully intercept both cir-
cling and straight-line targets, with an average interception
error of 2.1m for circling targets and 0.5m for straight-line
targets, when the target’s position and velocity were provided.
The study found that accounting for the target’s acceleration
would improve interception accuracy, particularly for circular
movements, although this remains constrained by the onboard
sensor’s limitations in detecting acceleration.

A visibility study, which leveraged the decoupled yaw
axis for optimal camera positioning, showed that the target
remained within the camera’s field of view for 83% of the
interception duration, given an initial distance of up to 150m
between the interceptor and the target. The study concludes
that intercepting a loitering UAV using a camera and radar
is feasible but highlights several limitations. First, while con-
volutional neural networks (CNNs) offer better scalability for
detection, further optimization is required for edge deployment
to achieve a frame rate higher than 2 FPS. Second, intercepting
targets with circular movement would benefit from better
acceleration detection capabilities. Lastly, ensuring that the
interceptor drone can move faster than the target drone is
critical for accommodating a wider range of initial scene
geometries and improving scalability.

In the future, the devised detection and tracking algorithm
should be integrated with the interception guidance algorithm
to test the autonomous interception of a non-cooperative target
drone. On top of this an edge device with better computational
abilities, such as a GPU, should be explored for deploying
YOLO detection algorithms.
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4
More Results

This section highlights additional work conducted during the research that was not included in the scientific

article. It provides an overview of the UAVs used in the experiments, including their hardware configurations,

as well as the intermediate software developed to integrate these components effectively. Furthermore,

it elaborates on the Cyberzoo experiment results briefly mentioned in the scientific article, offering a

more comprehensive analysis. Additionally, a block diagram illustrating the visibility simulation process is

presented, along with supplementary visibility results to ensure completeness.

4.1. Hardware and Software
The ultimate goal of the thesis was to be able to demonstrate the interception in real-life with two drones.

The drones can be seen in Figure 4.1.

SonicModell AR Wing Pro Parrot Bebop2

Figure 4.1: Drones used in the experiments

The AR Wing Pro was received as a kit and was ready for manual flight. However, to facilitate the

experiments, it was necessary to enable autonomous flight for the target drone. Initially, the AR Wing Pro

was flown manually using the PaparazziUAV autopilot software with the attitude controller enabled in the
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rotorcraft firmware. Subsequently, the drone was configured for autonomous operation using the fixed-wing

firmware, where a PID controller was implemented and tested at the Unmanned Valley. Ultimately, the AR

Wing Pro achieved autonomous flight patterns, including oval and circular trajectories, which were suitable

for straight-line interception experiments. It was found that the AR Wing Pro had a minimum velocity of

approximately 15m/s in no-wind conditions, a critical parameter since the Parrot Bebop2 has a maximum

velocity of 18m/s. This velocity difference was important for ensuring that the Proportional Navigation (PN)

guidance method maintained an initial advantage in line-of-sight velocity for the interceptor.

The Parrot Bebop2 was chosen as the interceptor for the experiments due to its ease of implementation

and the availability of existing modules for autonomous flight. As noted earlier, the Bebop2’s lower

maximum velocity compared to the AR Wing Pro limited the interception geometries, restricting most

scenarios to head-on configurations. To enhance visibility, the camera’s yaw axis was used to track the

target. However, in high-velocity scenarios, motor saturation often rendered the yaw axis unavailable.

For image processing and camera operations, a Raspberry Pi 4B with 2 GB of RAM and a Raspberry

Pi NoIR V2 camera were used. Although the initial plan was to utilize the camera’s infrared mode, the

RGB mode was ultimately employed due to the considerations discussed in the literature review (Chapter

2). This was achieved using the IMX219 calibration already available on the Raspberry Pi 4B.

During the experiments, a significant challenge arose with the setup, as the Raspberry Pi camera

and its wires had to be mounted on top of the Bebop2. This placement occasionally interfered with the

Bebop2’s GPS signals, causing interruptions in GPS-based navigation.

Figure 4.2: Autonomous flight of the AR Wing Pro

4.2. Cyberzoo Experiments
Cyberzoo experiments, as detailed in the scientific article (Chapter II), were conducted to test the real-life

interception capabilities of the Proportional Navigation guidance. These tests, as can be seen from the

figures below, the interception velocity was around 1 − 2m/s. Even though this was not in the velocity

range for the real experiment, it validated the PN algorithm in low speed regimes. It should be noted that,

different from the planned outdoor experiment, the navigation used Optitrack data compared to the GPS.
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Position of the interceptor and

target in 2D where target is moving

in a straight line.

Position of the interceptor and

target in 2D where target is moving

in a circle and interceptor starts

from the center of the circle.

Position of the interceptor and

target in 2D where target is moving

in a circle and interceptor starts

outside the circle.

Magnitude of the reference and

actual velocity of the interceptor

where the target is moving in a

straight line.

Magnitude of the reference and

actual velocity of the interceptor

where target is moving in a circle

and interceptor starts from the

center of the circle.

Magnitude of the reference and

actual velocity of the interceptor

where target is moving in a circle

and interceptor starts outside the

circle.

The line of sight rate where the

target is moving in a straight line.

The line of sight range where

target is moving in a circle and

interceptor starts from the center

of the circle.

The line of sight range where

target is moving in a circle and

interceptor starts outside the circle.
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4.3. Visibility
A simplified Matlab block diagram for the simulation for determining the visibility of the target drone in the

field of view can be seen in Figure 4.3. Also additional visibility plots can be seen below. It should be noted

that the yaw controller is working to point the camera towards the target. As the Cb increases the target

drone is lower in the frame. This is due to the target drone being much further in the x− y plane and when

the interceptor pitches and rolls towards the target, the image appears on the lower half of the frame while

when the target drone is much closer in the x− y plane the target drone appears on the top half.
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Figure 4.3: Caption describing the figure.
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5
Conclusions & Recommendations

5.1. Conclusions
The thesis demonstrates the effectiveness of a comprehensive framework for autonomous air-to-air

interception of loitering kamikaze drones. Detection algorithms were evaluated, with YOLOv7 achieving

superior accuracy (75% confidence), while the blob detector provided faster processing at 8 FPS, making

it suitable for onboard execution. The tracking system, employing a CSRT tracker with preprocessing and

Kalman filtering, achieved 10 FPS, ensuring robust performance against missed detections. Guidance

tests showed consistent interception success, with an average error of 1.0 m for circling targets and 0.4 m

for straight-line targets. A visibility study revealed the target remained within the camera’s field of view for

83% of the interception duration for initial distances up to 150 m.

Here it is also explored whether the posed research questions were answered properly. The research

questions posed in ?? are repeated below for convenience.

How to design a real time algorithm to detect, track and intercept loitering munition onboard a

quadcopter using RGB camera and target distance information?

Research Question Main

How to implement the most efficient computer vision algorithm in terms of performance and

speed for air to air detection of small drones with an RGB camera?

Research Question 1

How to extract position, velocity and acceleration information of a target drone using infrared

camera and assuming a known distance to target drone?

Research Question 2

What is an optimal interception guidance law for intercepting UAS targets with the use of another

UAS?

Research Question 3

The research presented in this thesis addresses the challenge of designing a real-time algorithm for

detecting, tracking, and intercepting loitering munitions onboard a quadcopter using an RGB camera

and target distance information. The proposed methodology encompasses a detailed comparison of

state-of-the-art methods for detecting and tracking non-cooperative UAVs, evaluating their feasibility for

real-time application. Additionally, the study presents interception guidance laws, testing their efficacy

through simulations and real-world experiments involving a quadcopter interceptor targeting simulated
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UAVs. This integrated approach bridges theoretical advancements and practical applications, contributing

significantly to the domain of autonomous air-to-air interception.

Several computer vision algorithms were investigated, focusing on their speed and accuracy trade-offs.

CNN-based methods, such as YOLOv7, demonstrated superior detection accuracy but faced limitations

in computational speed when deployed on edge devices like the Raspberry Pi. Conventional methods,

including blob detection, offered faster processing but at the cost of reduced detection accuracy. The study

highlights that with advanced hardware, such as GPUs, CNN-based methods become the preferred choice

due to their scalability and precision. This insight underlines the importance of hardware optimization in

real-time aerial interception systems.

A robust method for extracting position and velocity data of the target drone was also developed using

a linear Kalman filter. This approach provided a systematic framework for sensor fusion and target state

estimation. However, due to the unavailability of real-world target drone data with accurately known position

and velocity, the validation of this method remained a limitation of the study. Future work should focus on

generating datasets that facilitate the evaluation of such algorithms under realistic conditions.

The thesis further delves into the comparison of interception guidance laws, identifying Proportional

Navigation (PN) as an optimal strategy under specific assumptions and constraints. PN was validated

through both literature and experimental results, showcasing its effectiveness in ensuring successful

engagements while maintaining simplicity and computational efficiency. These findings emphasize the

suitability of PN for UAV interception scenarios, particularly when paired with modern tracking and detection

systems.

5.2. Recommendations
The research highlighted improvements on the already existing air-to-air interception methods. Neverthe-

less, still more improvements are in place. Several recommendations after this study are as follows:

• Several videos of the target drone from the interceptor drone should be made with known position

and velocity data of the target drone at proper time stamps. This will enable the validation of the

detection and tracking algorithm.

• A better hardware for image processing should be used such as a GPU for speeding up the CNN

inference time. This will enable a more scalable detection algorithm to be employed

• The interception guidance should be tested in an outdoor setting with both drones present in real life

which will enable the validation of the interception guidance at proper distance and velocity regimes.
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