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ABSTRACT ARTICLE HISTORY

We present a general framework for Bayesian estimation of Received 15 December 2016
incompletely observed multivariate diffusion processes. Observations %?‘;pted 14 September
are assumed to be discrete in time, noisy and incomplete. We

assume the drift and diffusion coefficient depend on an unknown KEYWORDS

parameter. A data-augmentation algorithm for drawing from the Data augmentation;
posterior distribution is presented which is based on simulating enlargement of filtration;

guided proposal; filtered
bridge; smoothing diffusion
processes; innovation

diffusion bridges conditional on a noisy incomplete observation at an
intermediate time. The dynamics of such filtered bridges are derived
and itis shown how these can be simulated using a generalised version

scheme;
of the guided proposals introduced in Schauer, Van der Meulen and Metropolis-Hastings;
Van Zanten (2017, Bernoulli 23(4A)). multidimensional diffusion
bridge; partially observed
diffusion

1. Introduction

We consider Bayesian estimation for incompletely, discretely observed multivariate dif-
fusion processes. Suppose X is a multidimensional diffusion with time dependent drift
b: Ry x R? — R? and time dependent dispersion coefficient o : R4 X RY — Rdxd
governed by the stochastic differential equation (SDE)

dX; = b(t, Xy) dt + o (£, X;) dW. (1.1)

The process W is a vector valued process in RY consisting of independent Brownian
motions. Denote observation times by 0 = #y < t; < - - - < ;. Denote X; = X}, and assume
observations
Vi=LX;+ ni, i=0,...,n,

where L; is a m; x d-matrix. The random variable 7; is assumed to have a continuous density
gi» which may for example be the Ny, (0, X;)-density. Further, we assume 79, ...,n, is a
sequence of independent random variables, independent of the diffusion process X. This
setup includes full observations in case L; = I (the identity matrix of dimension d x d).
Further, if my < d we have observations that are in a plane of dimension strictly smaller than
d, with error superimposed. Suppose b and o depend on an unknown finite dimensional
parameter 6. Based on the information set
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D:={V;,i=0,...,n}

we wish to infer 6 within the Bayesian paradigm.

From an applied point of view, there are many motivating examples that correspond to the
outlined problem. As a first example, in chemical kinetics the evolution of concentrations
of particles of different species is modelled by stochastic differential equations. In case
it is only possible to measure the cumulative concentration of two species but not the
single concentrations, we have incomplete observations with L = [1 1]. A second example
is given by stochastic volatility models used in finance, where the volatility process is
unobserved. If the price of an asset is the first component of the model and the latent
volatility the second component, then we have incomplete observations with L = [1 0].
Note that in our setup the way in which the observations are incomplete need not be the
same at all observation times (that is, L; may differ from L; for i # j). Hence, missing data
fit naturally within our framework.

1.1. Related work

Even in case of full discrete time observations the described problem is hard as no closed
form expression for the likelihood can be written down, aside from some very specific
easy cases. To work around this problem, data-augmentation has been proposed where the
latent data are the missing diffusion bridges that connect the discrete time observations.
See for instance [3,4,6,11-13,21,24,27]. The resulting algorithm has been shown to be
successful provided one is able to draw diffusion bridges between two adjacent discrete
time observations efficiently. A major simplification that the fully observed case brings is
that diffusion bridges can be simulated independently. The latter property is lost in case
of incomplete observations: the latent process between times t;—; and ¢; depends on all
observations Vy, V1,...,V,. This dependence may seem to imply that it is infeasible to
draw such diffusion bridges. Indeed this is hard, but it is in fact not necessary as we can
draw (X;, t € [0, T]) in blocks. This idea has appeared in several papers. Both [11,12]
consider the case where L; = I; with possibly several rows removed (which corresponds
to not observing corresponding components of the diffusion). For i < jset X(;;j) = {X;, t €
(ti> t)}. [12] discretise the SDE and construct an algorithm according to the steps:

(1) Initialise X(o.,y and 6.

(2) Fori = 0,...,n — 2, sample filtered diffusion bridges X;.i+2), conditional on Xj,
Vit1, Xit2 and 6. Sample X(g.1) conditional on Vy, X; and 6. Sample X(,—1.)
conditional on X,,_1, V,, and 6.

(3) Sample 0 conditional on X(q.p).

In fact, the second step is carried out slightly differently using the ‘innovation scheme’,
as we will discuss shortly (moreover, updating the first and last segment requires special
care). [11] (Section 7.2) proposes a similar algorithm using some variations on carrying out
the second step. In both references, bridges are proposed based on the Euler discretisation
of the SDE for X with b = 0 and accepted using the Metropolis—Hastings rule. In case of
either strong nonlinearities in the drift or low sampling frequency this can lead to very low
acceptance probabilities.
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A diffusion bridge is an infinite-dimensional random variable. The approach taken in
[11,12] is to approximate this stochastic process by a finite-dimensional vector and next
carry out simulation. [23] call this the projection-simulation strategy and advocate the
simulation-projection strategy where an appropriate Monte-Carlo scheme is designed that
operates on the infinitely-dimensional space of diffusion bridges. For practical purposes it
needs to be discretised but the discretisation error can be eliminated by letting the mesh-
width tend to zero. This implies that the algorithm is valid when taking this limit. We refer
to [23] to a discussion on additional advantages of the simulation-projection strategy, which
we will employ in this paper.

Within the simulation-projection setup a particular version of the problem in this article
has been treated in the unpublished Ph.D. thesis [15] (Chapter 6). Here, it is assumed that
certain components of the diffusion are unobserved, whereas the remaining components
are observed discretely without error. A major limitation of this work is that it is essential
that the diffusion can be transformed to unit diffusion coefficient.

Besides potentially difficult simulation of diffusion bridges, there is another well known
problem related to MCMC-algorithm for the problem considered. In case there are unknown
parameters in the diffusion coefficient o, any MCMC-scheme that includes the latent
diffusion bridges leads to a scheme that is reducible. The reason for this is that a continuous
sample path fixes the diffusion coefficient by means of its quadratic variation process.
This phenomenon was first discussed in [24] and a solution to it was proposed in both
[6,12] within the projection-simulation setup. The resulting algorithm is referred to as the
innovation scheme, as the innovations of the bridges are used as auxiliary data, instead
of the discretised bridges themselves. A slightly more general solution was recently put
forward in [27] using the simulation-projection setup.

1.2. Approach

Assume without loss of generality that n is even. The basic idea of our algorithm consists
of iterating steps (2)—(4) of the following algorithm:

(1) Initialise X(o.,) and 6.

(2) Fori =1,...,n/2, sample filtered diffusion bridges X(2;—2.2), conditional on X5;_,,
Vai—1, X2i and 6.

(3) Sample 6 conditional on X(q.p).

(4) Fori=1,...,n/2—1, sample filtered diffusion bridges X(2i—1:2i+1), conditional on
X2i—1, V2i, X2i+1 and 6. Sample X(o.1) conditional on Vj, X; and 6. Sample X,,—1.p)
conditional on V,,, X,,_1 and 6.

(5) Sample 0 conditional on X(q.p).

The proposed scheme for updating in blocks is illustrated in Figure 1 in case n = 4. Steps
(2) and (4) boil down to sampling independent bridges of the type depicted in Figure 2.

Here, we have complete observations xp and x7 at times 0 and T respectively, and an
incomplete observation vg in between at time S € (0, T). We need to simulate a bridge
connecting xp and xr, while taking care of the incomplete observation at time S. For
t € (0, S] this means that we need to incorporate 2 future conditionings: an incomplete
(noisy) observation at time S and a complete observation at time T. As X is Markov and
we have a full observation at time T this type of conditional process is independent of all
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Gep 2 m

Step 4

to 1 2} t3 ty
O incomplete observation . complete observation

Figure 1. lllustration of block updating of filtered bridges in case n = 4.

Xs

vs

Figure 2. lllustration of filtered bridges in case L = [1 0] (only the first component of the diffusion is
observed with error). Filled circles: xo and x7 (fully observed). At time S, vs is observed; xs is unobserved.

observations after time T. For t € (S, T) we need to sample a diffusion bridge connecting
complete observations at times S and T. The latter case has been researched in many
papers over the past 15 years. See for instance [3,5,7-10,18,25,26] and references therein.
However, simulation of a bridge that is conditioned on one incomplete noisy observation
ahead and one additional complete observation further ahead is clearly more difficult. We
call such a bridge a filtered (diffusion) bridge. To the best knowledge of the authors, the
problem of simulating such filtered bridges hasn’t been studied in a continuous time setup.

Using the theory of initial enlargement of filtrations, we show in Section 2 that the
filtered bridge process is a diffusion process itself with dynamics described by the stochastic
differential equation

dX} = b(t, X)) dt + o (t, X)) AW + a(t, X)) r(t, X)) dt,  X§ = x0

Here, a = o0’ and the function r depends both on the unknown transition density p and the
error density g. This SDE is derived by adapting results on partially observed diffusions
obtained by [20].

As p is intractable, direct simulating of filtered bridges from this SDE is infeasible.
However, if we replace p with the transition density p of an auxiliary process X, then
we can replace r with the function 7, where 7 depends on 7 in exactly the same way as
r depends on p. Exactly this approach was pursued in [25] in case of full observations.
Naturally we choose the process X to have tractable transition densities. We concentrate
on linear processes, where X satisfies the SDE

dX; = (Bt + B(HX,) dt +5(H) dW,.
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Next, we can simulate from the process X° defined by
dX7 = b(t, X)) dt + o (£, X7) dW; + a(t, X))7(£, X)) dt, X5 = xo

instead of X*. Deviations of X° from X* can be corrected by importance sampling or an
appropriate acceptance probability in a Metropolis—Hastings algorithm, provided the laws
of X° and X* (considered as Borel measures on C[0, T]) are absolutely continuous. Precise
conditions for the required absolute continuity are derived in Section 3. Comparing the
forms of the SDE’s for X and X° we see that an additional guiding term appears in the drift
for X°. For this reason, similar as in [25], we call realisations of X° guided proposals. The
choice of the auxiliary process X is discussed in Section 4.4 in [27]. Intuitively, X should
be chosen such that it is similar to X in areas visited by the true conditional process.

In Section 5 we show how the innovation scheme of [27] can be adapted to the in-
completely observed case considered here. Compared to [15] this scheme removes the
restrictive assumption that the diffusion can be transformed to unit diffusion coefficient.
As a more subtle important additional bonus, the scheme enables adapting the innovations
to the proposals used for simulating bridges (for additional discussion on this topic we refer
to [27]).

A byproduct of our method is that we reconstruct paths from the incompletely observed
diffusion process, which is often called smoothing in the literature.

1.3. Outline of this paper

In Section 2 we derive the stochastic differential equation for the filtered bridge process
corresponding to Figure 2. Based on this expression we define guided proposals for filtered
bridges. In Section 2.2 we derive closed form expressions for the dynamics of the proposal
process in case the measurement error is Gaussian. In Section 3 we provide sufficient
conditions for absolute continuity of the laws of the proposal process and true filtered bridge
process. This is complemented with a closed form expression for the Radon—Nikodym
derivative. The innovation scheme for estimation is presented in Section 5. The proofs of
a couple of results are collected in the appendix.

1.4. Notation: derivatives

Forf: R™ — R" we denote by Df the m x n-matrix with element (i, j) given by Djf (x) =
(9f;/0xi)(x). If n = 1, then Df is the column vector containing all partial derivatives of
f. In this setting we write the i-th element of Df as D;f(x) = (df/9x;)(x) and denote
sz = D(Df) so that Dizf-f(x) = 82f (x)/(9x;0x;). Derivatives with respect to time are
always written as d/0t.

2. Guided proposals for filtered bridges

Consider the filtered probability space (€2, F, (F¢)¢>0, P). Assume (W;)>0 is an F;-adapted
Brownian motion. Let X be a strong solution to the SDE given in Equation (1.1) on this setup.
Throughout we assume 0 < § < T. Define Vg = LXs + s, where ng is an Fg-measurable
m-dimensional random vector, independent of Fs_. Assume that ng has density q.
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We will derive that the process X, conditioned on Y = (Vs, Xr), is a diffusion process
itself on a filtered probability space with a new filtration. To derive this result, we employ
results of [14] on grossissements de filtrations (see also [16]). Furthermore, we follow the
line of reasoning outlined in [20], where a similar type of problem is dealt with. The results
we use are also nicely summarised in Section 2 of [1]. Define the enlarged filtration by

Gr = m (Frge Vo(Y)).

>0

The idea is to find the semi-martingale decomposition of the F;-Wiener process W relative
to gt.

Denote the law of the process X started in x at time s by P&*). We assume that X
admits smooth transition densities such that P®¥) (X, € dy) = p(s,x; 7,y) dy (with T > 5).
Suppose t € [0,S). For vs € R™ and x1 € R9 we have

P (Vs < vs, X1 < x7) = /P(S’S) (ns < vs — L&, X7 < x7) p(t,x; S, §) d§
_ / Pns < vs — LEYPSD (Xr < xp) pltax: $,£) de.

From this we find that for ¢ € [0, S), (Vs, X1) | X; = x has density
[ pttxss. (5.6 Toxracs — Le) de

with respect to Lebesgue measure on R+, Similarly, for t € [S,T), Xt | X; = x has
density p(t,x; T, xr). The function defined in the following definition plays a key role in
the remainder.

Definition 2.1: Suppose 0 < S < T. Define

[pt,x; S, 6)p(S,&; Toxr)g(vs —LE)dE  if < S

t,x; S, vs; T,xT) = .
P SR {p(t,x;T,xT) if S<t<T

For notational convenience we write p(t, x) instead of p(¢,x; S, vs; T, xr), when it is clear
from the context what the remaining four arguments are. To avoid abuse of notation, a
transition density is always written with all its four arguments. Define

R(t,x) =logp(t,x), r(t,x) = DR(t,x), H(t,x) = — D?R(t,x).

Here D denotes differentiation, with precise conventions outlined in Section 1.4.

Lemma 2.2: Fort € [0, T), the diffusion conditioned on Vs = vs and X1 = xr satisfies
the SDE

dX; = b(t, X)) dt + o (£, X)) AW, + a(t, X)r(t, X)) dt, X3 =x0,  (2.1)

where W, is a G;-Wiener process.

Proof: The proof is similar to the proof of Théoreme 2.3.4 in [20]. Let r(¢,y, T, xT) =
Dlogp(t,y; T,xr) with D acting on the second argument. For ¢ € [0, T), the diffusion X
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satisfies the SDE
dX; = (b(t, Xy) + a(t, X)r(t, Xp: T, X)) dt + o (£, X;) dW,. (2.2)

where W is a Wiener process with respect to the filtration gf“ = Nes0 (.7-}+g \Y CT(XT))
(Cf. section 3.3 in [2]). Then for a Borel set A C R

ol _ [ p&Xe; S v T, Xr)
E[IA(VS)|gt ]_/A o(t, X, T,X7) dv 0=<t<S.

Define the G;-measurable conditional density

P(t>Xt, S) VS, T)XT)
P(t,Xh T)XT)

,O(t,Xt)Z 0<t<S.

Let
k(s,x) = o (s,x)' Dlog p(s, x).

Lett € [0,S). We have

t

t
/ k(s, Xs)p (s, Xs) d(W)s = / o(s,X)'D p (s, Xs) ds. (2.3)
0 0
By It6’s lemma

dp(s,Xs) = [b(s, Xs) +a(s, Xo)r(s, Xs; T, XT)]/ D p(s,X5) ds

-1 92
+0(5,X) Dp(s, Xs) dW, + = Z aii(s, X;) 0(s, %) ds.
2~ axiaxj X
ij X=As
Hence
(p(s, X5), W) = </ O’(S,XS)/D,O(S,XS) dWs’/ dWs>
0 0 (2.4)
= / o(s,Ys)' D p (s, Xs) ds.
0
Combining Equations (2.3) and (2.4) gives
t —~ —~
/ k(S,Xs)p(S,XS) d(W>S = (,O(S,Xs), WS)t-
0
Théoréme 2.1 of [14] implies that
— _~ [ —~~
We=W, — / k(s, X) (W), (2.5)
0

is a local martingale with respect to G;. By computing the quadratic variation of W itis seen
that W is a G;-Wiener process on [0, S), independent of o(Vs,X1) C Go. For§ <t < T
define

Wt = Wt - Ws +WS_.
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For t > S, we have gf” = G, since ng € Fs and therefore also Vg € gg”. Hence, W, is a
G;-Wiener process on [0, T1.
Multiplying both sides of Equation (2.5) with o (¢, X;) and plugging in (2.2) gives

dX; = b(t,Xy) dt + o (t, X;) AWy + a(t, X)r(t, Xs; S, Vs; T, Xr) dt.

Next, conditioning X on (Vs,X1) = (vs,x7) using the independence of W and (Vs, X7)
gives the result.
O

This result demonstrates that the filtered bridge process is a diffusion process itself with
an extra term superposed on the drift of the original diffusion process. The term a(¢, x)r (¢, x)
will be referred to as the pulling term, as it ensures a pull of the diffusion process to have
the right distributions at time S and T. In case there is no measurement error, we have that
fort< S

p(t,x) = f p(t.x: $.6) p(S.£; T, xr) dE.
{§: L& =vs)

As the dynamics of the bridge involve the unknown transition density of the process, it
cannot be used directly for simulation purposes. For that reason, we propose to replace
p(-+; - -) with the transition density p(-,-; -, -) of a process X for which P is tractable to
obtain a proposal process X°.

Definition 2.3:  Guided proposals are defined as solutions to the SDE
dX; = b(t, X)) dt + o (£, X)) dW; + a(t, X)) 7(t,X;)dt, Xo=u (2.6)
Here 7(t,x) = Dlogp(t, x), where

B Jp(t,x; S, 6)p(S, & Toxr)q(vs — LE)dE ift< S

p(t,x) =17
plt.%) p(t,x; T,xT) ifS<t<T

and ¢ is a probability density function on R™, with m = dim (vs).
This approach was initiated in [25]. We will assume throughout that X is alinear process:

dX, = B(t)dt + BOX, dt + 5 () dW,. 2.7)

Define R(t, x) = logp(t,x), 7(t,x) = DR(t,x) and H(t,x) = — D*R(t, x).

2.1. Notation: diffusions and guided processes

We denote the laws of X, X* and X° viewed as measures on the space C([0, t],]Rd) of
continuous functions from [0, ¢] to R¥ equipped with its Borel-o -algebra by P;, P} and P}
respectively. For easy reference, the following table summaries the various processes and
corresponding measures around.

The infinitesimal generator of the diffusion process X is denoted by L.
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X original, unconditioned diffusion process, defined by (1.1) Py
X* corresponding filtered bridge, conditioned on vg and x7, defined by (2.1) Py
X° proposal process defined by (2.6) P?
X linear process defined by (2.7) whose transition densities p appear

in the definition of X°

2.2. Pulling term induced by a linear process

In this section we derive closed form expressions for 7 and H. For the remainder of the this
paper we make the following assumption.

Assumption 2.4: 7 is the density of the N (0, X) distribution.

Note that this is an assumption on g which appears in the proposal, and not on g; which
is the density of the error at time ¢;.

We start with a recap of a few well known results on linear processes. See for instance
[19]. Define the fundamental matrix ®(¢) as the matrix satisfying

t
d(t) = 1+/ B(r)® (1) dr.
0

Set ®(t,s) = ®(t)D(s)"!. Let ¢(x; i, X) denote the density of the normal distribution
with mean u and covariance matrix X, evaluated at x. Define @ = o'". For a linear process
it is known that its transition density p satisfies

p(t,x; S, x5) = @(xs; DS, )x + gs(1),Ks(H))  0=<t<$

with S
gs(t) = / (S, (1) dr 2.8)

and s t
Ks(t) =/t CI)(S,T)E(‘E)CD(S,‘L’)/d‘C. (2.9)

Lemma 2.5: Fort< S

- (Lo ] vs — Lgs(t) — L& (S, t)x
Tt %) = [QJ(T, t)} v |:xT — gr(t) — &(T, Hx } 10
and ,
~ L&) LO(S, 1)
H@® = [ ®(S, 1) ] U [ ®(S, 1) } :
Here, .
[ LKs()L + = LKs(HH®(T,S) ]~
v = [(D(T, SKs(OL  Kp(t) ] 21D
Proof: The proof is given in section 6.1. O
Corollary 2.6: Assume a(t) = @ and B(t) = 0. Define
., T —t !

Q(t) = L'N(t)L. (2.13)
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Then he(tn) ()
~ 1) asthx) ~>-1 _ ) ArLX) ey o 0,S
F(tx) = {?_(l)hgﬁzi) HET S QOIEEE peelos) (2.14)
a T lft e[S, T)
and _
~ a4+ 2Q@ iftelo,S
(- pii - |7 QW el
a! iftelST)
Here,
S T _
hs(t,x) = ug — / B(t)dt —x and hr(t,x) = x7 — / B(r)drt — x
t t
with ug any vector such that Lug = vs.
Moreover, B (S.x)
Em7(t,x) = I'S~ L(ug — x) + a1 LX)
tl%rsl r(t,x) (us —x) +a T3S
Proof: In this case we can carry out the inversion in Equation (2.11) in closed form. The
proof is given in Section 6.2. |

Remark 2.7: Suppose L = ;x4 and ¥ = 04,4 which corresponds to a full observation
at time S without error. Then Q(¢) = @~ ! and the second term in 7 (for t < S) disappears.
Furthermore then, H (t) = @ 1(S — t)~L. In this way, we recover the result for the full
observation case.

Example 2.8: Suppose X is atwo-dimensional Brownian Motion, where we only observe

the first component at time S and both at time 7'. In thiscase L = [1,0],g = 0and ® = I, 4».
It is easy to see that

T—t 2>_1 (S—t)(T =)

N<t>=<1+m T ST -+=(T—0)

By Corollary 2.6, it follows that for t < S

1 vs—Lx XxT—Xx 1 XT — X
r(t,x)=|:01|N(t) ST T T —[0:|N(t)[1 0] e

Denote the i-th component of a vector x by x(). The first component of r equals

vs — x X — x®

NO=——+1A=NO)~——,

while the second component equals (T — t)~! (x(Tz ) _ x(2)>. From this, we see that the

second component is the same as when there would be no conditioning at time S.

3. Absolute continuity result

In this section we derive conditions for which P% <« IP7. and give a closed form expression
for the Radon—-Nikodym derivative. We have the following assumption on X.
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Assumption 3.1: (1) The functions b and o are uniformly bounded, Lipschitz in both
arguments and satisfy a linear growth condition on their second argument.
(2) Kolmogorov’s backward equation holds:

B
&p(s, x;t,y) = (Lp)(s,x; t,y) = 0.

Here £ acts on (s, x).
(3) Uniform ellipticity: there exists an ¢ > 0 such that for all s € [0, T], x € R4 and
d
yelR

yals,x)y = elyl®
We have the following assumption on X.
Assumption 3.2: B and B are continuously differentiable on [0, T], & is Lipschitz on

[0, T] and there exists a > 0 such that for all t € [0, T] and all y € R4,

yay = gllyl*.

Theorem 3.3:  Suppose Assumptions 3.1 and 3.2 apply. Define

t
W(X°; t) = exp (/ G(s,Xf)ds), t<T, (3.1
0
where

G(s,x) = (b(s,x) — b(s, %)) F(s, x)
1 ~ ~ ~ ~ /
— Etr ([a(s, x) — af(s, x)] [H(s, x) —71(s,x)7 (s, x) ]) . (3.2)

If d(T) = a(T,xr), then X* and X° are equivalent on [0, T] with Radon—Nikodym
derivative given by

dP%,. xX°) — P(0,u) g(vs — LX3)
dPg. p(0,u) G(vs — LX3)

(X% T).

The proof is given in the next subsection.

3.1. Proofof Theorem 3.3

For proving Theorem 3.3, we need a few intermediate results.

Lemma 3.4: If we define the process (Z;, t € [0,T)) by Z; = p(t,X;), then (Z;) is a
Fi-martingale.
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Proof: For0 <s <t <S8,
ElZ | Fs]=E [P(t,Xt) | fs]
= / (/p(t,x; S,E)p(S,&; T, x)q(vs —Lé)dé)p(s,Xs; t,x) dx

= / (/P(S>XS; t’x)p(t)x; S’é:) dx) p(Sag, T;XT)CI(VS - L.;;:) dg

= /p(SrXs>S’€)p(S>S; T,xr)q(vs — L&) d§
= p(s, Xs) = Zs,

where we applied the Markov property at the second equality, Fubini at the third equality
and the Chapman—Kolmogorov equations at the fourth equality. The argument on [S, T)
follows along the same lines. O

Corollary 3.5: The function p(t,x) satisfies Kolmogorov’s backward equation both for
t€(0,S)andt € (S, T):

0
ap(t,x) + L(p(t,x)) = 0.

Proof: The generator of the space—time process (t,X;) is given by K = (d/dt) + L.
As p(t,Xy) is a martingale, (¢t,x) — p(t,x) is space—time harmonic: Cp(t,x) = 0 (Cf.
Proposition 1.7 of Chapter VII in [22]). This is exactly Kolmogorov’s backward equation.

O

L .6:
emma 3.6 pS) )
lim = .
1S p(t,x) q(vs — Lx)

and similarly for p (with q appearing in the limit).

Proof: First note that under our assumptions on b and o, Theorem 21.11 in [17] implies
that the process X is Feller. Take t < S. The transition operator is defined by

Pif = [ pitxi .66 ds.
Hence with f (&) = p(S,&; T,x7)q(vs — L&)
p(tsx) - /P(t’xé S»E)P(S’Sa T’ XT)Q(VS - Lé) dg = Pt,Sf(x)

As X is Feller, lims4s Py sf (x) = f(x) from which the result follows easily. O

Lemma 3.7:  Suppose t € [S, T). Then 7 is Lipschitz in its second argument and satisfies
a linear growth condition on both [0, S) and [S, t].

Proof: On [0,9), it is clear from Lemma (2.5) that x — 7(t,x) is linear. On [S, ] this is
proved in [25]. O

Proof of Theorem 3.3: The proof follows the line of proof in Proposition 1 of [25].
Consider t € [S, T). By Lemma 3.7, 7 is Lipschitz in its second argument and satisfies a
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linear growth condition on both [0, S) and [S, t]. Hence, a unique strong solution of the
SDE for X° exists on [0, ].

By Girsanov’s theorem (see e.g. [19]) the laws of the processes X and X° on [0, ¢] are
equivalent and the corresponding Radon-Nikodym derivative is given by

dP; ! | L
X°) = LW — = s ;
a5 X ep ([ viawi—3 [ il as)

where W is a Brownian motion under P} and y; = y (s, X;) solves

o(, X))y (s, X]) = b(s,X;]) — b°(s, X7).

(Here we lightened notation by writing y; instead of y (s, X{). In the remainder of the proof
we follow the same convention and apply it to other processes as well.) Observe that by

definition of 7 and b° we have y; = —0.7; and BslI? = T.asts, hence
dP L 1 (', -
dIP’;t’ (X°) = exp ( — /0 rosdWs — E./o T.asTs ds). (3.3)

Denote the infinitesimal operator of X° by £°. By definition of X° and R we have L°R =
LR +7ar. By 1td’s formula

-~ e~ o N
R, — Rg = / (—Rs + ERS) ds + / 7.asts ds +f .05 dW;.
[S,t) \0s [S,) (S,6)

Applying 1to’s formula in exactly the same manner on [0, s] with s < S and subsequently
taking the limit s 1 S we get

- 3 o N
Rs_ — Ry = / (—Rs + ERS> ds +/ riasts ds +/ rios dWs.
[0,5) \0s [0,5) [0,S)

Combining the preceding two displays with (3.3) we get

P,
dP?

t
(X°) = exp (—Rt +Ro + Rs — Rs— + / G; ds) , (3.4)
0

where 3 .

If p(t,x) and 5(1‘, x) satisty Kolmogorov’s backward equation, then the first term between
brackets on the right-hand-side of this display equals LR — LR — %’F/ ar. This follows from
Lemma 1 in [25]. This is naturally the case on (S, T)) and by Corollary 3.5 on (0, S) as well.

Substituting this in Equation 3.5 we arrive at the expression for G as given in the statement
of the theorem. By Lemma 3.6

- e e~ 2(0,u)  P(S, X2
—Rt+R0+Rs—R5_:log(p( ) M S))

P, X)) p(S— X))

( PO, u) 1 )
=log| == — .
p(t, X7) q(vs — LXS)
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Combined with Equation (3.4), we obtain

dP; . p(0,u) 1 ‘ o )
X°) = < = , X .
i ") = 0 x0) T — LX) ex"(/o Gls X ds

An entirely similar calculation reveals that

dP? P(t>Xt) P(S_>XS—) p(t)Xt)
X) = = vs — LXs).
BT p0w p X9 pow 1T
Combining the previous two displays gives
* = o —LX°
d;P)i(Xo) — p(o)u)g(t>Xi)z(VS i)\IJ(XO,t)
dP; p(0,u) p(t, X7) q(vs — LXS)

_ (O, u) g(vs — LXZ) p(t, X7 T, x7)
p(0,u) G(vs — LX) p(t, X7; T, xT)

W(X°; ).

From here, the limiting argument ¢ 1 T is exactly as in [25].

4, Special bridges near tp and t,

In Section 5 we will need filtered processes which take the boundary conditions near ¢
and ¢, into account.

4.1. Near the endpointt,

Near t,, we wish to simulate a filtered bridge conditioned on X,,_; and V}, on [t,_1, t,]. For
this purpose, we derive the dynamics of a diffusion process starting in Xy = x¢, conditioned
on Vg = LXg+ns. We can use exactly the same techniques as in Sections 2 and 2.2 to derive
the SDE for the conditioned process. In this case, p(t,x; S, vs; T, xr) should be replaced
by

pen(t) 1= [ (x5, 09005 — 1) di.
In Lemma 2.5 we should replace 7(t, x) and H (t) by
Fend (%) = ©(S, )L (LKs(DL' + £) 'L (us — gs(®) — DS, 1)x) (4.1

and

Hena (1) = (S, 1)L’ (LKs(t)L' + =)' L& (S, 1)

respectively. Then X* and X° are equivalent on [0, S] with Radon—Nikodym derivative
given by

dP Pend (0, — LX?

S (x°) = Pend (0, u) q(vs S)

K = = W (X°;S).
dPS Pend (0, u) g(vs — LXs)
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4.2. Near the starting point ty

Near fy we wish to simulate a filtered bridge conditioned on Vj and X; on [y, f;]. Assume
Xo has prior distribution v. We simulate the filtered bridge in two steps:

(1) simulate X, conditional on (vg, xs);
(2) simulate a bridge connecting x( (the realisation of Xj) and xs.

Suppose we wish to update (xo,X°) to (X, X°) (the proposal). Each proposal will be
generated by first drawing X conditional on x( using some kernel q(xo | xo) followed by
sampling a bridge connecting xy and xs. Denote the conditional density of xy conditional
on vy by v(xg | vo). The “target density” is proportional to

dP% W(X°, S)v(xo | vo)

—Xo 0) ;S’ = S
dIP’E( P03 $,25)v (00 [ v0) = =0~ S v

(note that the intractable term p(0,xp; S, xs) cancels). The acceptance probability then
equals A A 1, where

_ W (X°,8) v(Xo | vo) P(0,Xo; S, vs) q(xo | Xo)
W(X°,8) v(xg | vo) P(0,x0; S, vs) q(Xo | x0)

When 7 (the distribution of the noise on the observations) is N (0, ), a tractable expression
for v(xp | vp) is obtained by taking v ~ N(u, C). In that case the vector [xp, vo] is jointly
Gaussian which implies that

Xo | Vo =vy~ N (n+ CL'(LCL' + £) "' (vo — Lp),C — CL'(LCL' + X£)"'LC).

5. Estimation by MCMC using temporary reparametrisation

In this section we present a novel algorithm to draw from the posterior of 6 based on incom-
plete observations. The basic idea for this algorithm is quite simple and outlined in section
1.2. Unfortunately, this basic scheme collapses in case there are unknown parameters in the
diffusion coefficient. This is a well known phenomenon when applying data-augmentation
for estimation of discretely observed diffusions. It was first noticed by [24] and we refer to
that paper for a detailed explanation. [12] developed an MCMC algorithm that alternatively
updates the parameter and the driving Brownian motion increments of the proposal process.
Their derivation was developed entirely by first discretising the process. [27] showed how
this algorithm can be derived in the simulation-projection setup. Quoting from this paper:

The basic idea is that the laws of the bridge proposals can be understood as parametrised
push forwards of the law of an underlying random process common to all models with
different parameters 6. This is naturally the case for proposals defined as solutions of stochastic
differential equations and the driving Brownian motion can be taken as such underlying random
process.

Here, we propose to derive such an algorithm in case of incomplete observations, which
complicates the derivations considerably. We define a Metropolis—Hastings algorithm that
uses temporary reparametrisations. Suppose t € (a, b) and let Z be a continuous stochastic
process. Let W) = (W4, t € (a,b)). Lets € (a, b).
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Assume o is invertible. We define the map g(x,,v,,x,) by

(CA X?a,b)) = Z(xa,Vsrxp) o, W(a,b))

using the strong solution to (2.6). There exists Z,p) = (Z;, t € (a, b)) such that g, 1. x,)
maps (6, Za,p)) to (6, X7, )

dZ; = o (t, X)) " (dX} — b(t, X}) dt — a(t, X))F(t, X}) dt),

(the construction is exactly as derived in Proposition 3.1 in [27]). The process Z, ) is
referred to as the innovation process. The main idea of the algorithm below is that when
we update (6, X™) in blocks, we temporarily reparametrise to (9, Z).

In the algorithm below, we assume # is even (adaptation to the case where # is odd is
straightforward). For i < j denote Z;;j) = {Z;,t € (¢, tj)} and Xz(izj) = {X},t € (ti, 1))}

‘We refer to subsection 4 for simulation of X(*O:I) and X(*n_h n at the boundaries. We write
8(vo.xy) for the corresponding map from (6, Wo.1)) to (0, X)) and similarly gex,_,,v,,)
for the map from (8, W,—1.4)) to (0,XE’n_1: n)). In order to conveniently handle boundary
cases in the algorithm below we make the convention that the expressions ( — 1 : 1)
and g(x_,,v,.x,) are to be understood as (to, t1) and g(v, x,) respectively. We use a similar
convention on the right boundary.

Define

Xien = {X35,i=0,...,n/2} odd = 1X35,,1,i=0,...,n/2 —1}.

even

We change the notation on W defined in (3.1) slightly to accommodate dependence on 6:

b
W (0, Zap))) = exp (/ Go (£, 8(xaency) (05 Z(a:p)) (1)) dl‘)

with the modifications for the boundary cases as before.
We propose the following algorithm.

Algorithm 1: (1) Initialisation. Choose a starting value for 6 and initialise X[*O’T].
(2) Update{Z>;_2.2i), i =1,...,n/2} | (6,D,X],.,)-Independently,fori = 1,...,n/2
do
(a) Compute Z2i—2:2i) = g(;(z'i,z,VZifl,Xz*i)(G’X(*Zi—Z:Zi))'
(b) Sample a Wiener process ZFZi—Z:Zi)'
(¢) Sample U ~ U(0,1). Compute

v (g(X;,-,z,Vzi—l)qi)(G’ZE)Zi—Z:Zi))>

v <g(X;i_2,V2i_1,X§i)(G’Z(ZifZ:Zi)))

A =

Set
Z@i-22i) = Z(Zi—2:2i) if U<A, '
Zgi—22i) if U>A;

(3) Update 6 | (Zaimz2is i = L. .,1/2). D, Xiyen).
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(a) Sample 6° ~ gq(- | 6).
(b) Sample U ~ U4(0, 1). Compute

2~
_ m(6°) q(0 1 6°) ﬁ Poe (tai—2, X3;_5: i1, Vai—1; t2is X3;)
mo(6) q(0°16) -] Do (22, X355 taie1> Vaic1; 02ir X3;)

q(Vaic1 — Lpi1X3;_ 1) v (g(XEifz»VZifl’XEi)(GO’ZZi_ZZZi))
-4 . —_ . *
A(Vaic1 = Lai1 X3 1) g (g(X;i_z,Vz,-_l,Xz*i)(9>ZZi—2:2i)>

Set
e if u=a,
e if UsA,

(4) Adjust X*.Fori=1,...,n/2 compute

XOizaai) = 835,y Vai1,X3) (0> Z2i2:20))-

(5) Update{Z:;i 12it1), i =0,...,n/2} | (6,D,X}4,). Independently, fori = 0,...,n/2
do
-1
(a) Compute Zzi—1:2i+1) =803, Vans,
(b) Sample a Wiener process Z(Zz 12i41)"
(¢) Sample U ~ U(0,1). Compute

e )(9 X(21 121+1))

v (gocgi_l,vz,- §,+1)(9 Zf)zi 1-2i+1))>

v (g(xz*ifl,vz, x5, (05 Z i 12:+1))>

Az =

Set
Z@i—12i41) = Loimrzieny T U<4s
' Zgi—12iyy if U > Aj
(6) Update 0 | ({Z@i-12i+1), i = 0,...,n/2}, D, X ))-
(a) Sample 6° ~ gq(- | 0).
(b) Sample U ~ U(0, 1). Compute

7.[0(90) Q(9 | 00 12_[ P@o(tZI 1) 2, 1, 12y V217 t21+1; 21+1)
mo(6) q(6° | 60)

=1 PG(tZt 1’X21 15 b2is Vais iy 1, 2,+1)

q(Vai — LX) ¥ (g(X;Fl,Vz,-,X;iH)(QOaZZi—l:Zi-H))

= ¢ — . *
q(Vai L21X2i) v (g(XEi_pVZi»XE,-H)(Q’ZZi*1:2i+1)>

Set
b 6° if U< Ay
e if UsAy
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(7) Adjust X*.Fori=1,...,n/2 compute

X?Zi—1:2i+1) = g(Xz*,»,l,Vzi,XEiH)(Q’Z(Zi—1:2i+l))-

(8) Repeat steps (2)—(7).

The parameter 6 gets updated twice during a full cycle of the algorithm, but one can
choose to either omit step (3) or (6). The proof that A, and A4 are the correct acceptance
probabilities goes along the same lines as in the completely observed case discussed in
[27]. As demonstrated there, in steps 2(a) and 5(a), one can also propose Z° based on the
current value of Z in the following way

Zto =ﬁZ¢+\/1—th,

where p € [0,1) and W is a Wiener process that is independent of Z. The acceptance
probability remains the same under this proposal.

Remark 5.1:  If g; (the density of the noise at time ¢;) depends on an unknown parameter
&, then we equip this parameter with a prior density 7o(€). The parameter € can then be
updated in a straightforward manner in a separate Metropolis—Hastings step given the full
path and the observations.

6. Proofs and Lemmas
6.1. Proof of Lemma 2.5

For notational convenience we sometimes drop dependence on ¢. For instance, we may
write U instead of U(t).

To compute the pulling term at time ¢ we need to obtain to density of (LXs + ns, XT)
conditional on X;. First, we obtain the density of (Xg, X1) | X;. For this, note that their
joint density is given by p(t, x; S, x5)p(S, xs; T, xT). Hence,

p(t,x; S, x5)p(S, xs; T, x7)

1 ’ 1
exp (=7 (xs — gs(t) — (S, H)x) Ks(t) ™" (x5 — gs(t) — (S, H)x)

1 ’ _
X exp (—5 (xr — gr(8) — ®(T, S)xs) Kr(S) ™" (xr — gr(S) — (T, S)xs)) ,

the proportionality sign o referring to (xs, xr). The exponent equals

le, XS AN
-3 [xs xT] A |:XT:| +4q r

A Ap Q1:|
A= 5 =
|:A21 A22:| 1 |:112

where
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with

Ay = Ks(H) ™' + ©(T, ) Kr(S) "1 (T, S)

Ap = —®(T,9)'Kr(S)™!

Ay =AY,

Ay =Kr(S)™!
q1 = Ks() ™' (gs(t) + ®(S, )x) — D(T,9)'Kr(S) ' gr(S)
3 = Kr(S$)'gr(S)

This implies that the joint distribution of (Xg, X1) conditional on X; is normal with covari-
ance matrix Y = A~! and mean vector i = Yq. Here, (using expressions for the inverse
of a partitioned matrix and Woodbury’s formula)

e |:T11 le} :[ Ks(t) Ks(H)®(T, S ]
T, T D(T,S)Ks(t) Kr(S) + (T, S)Ks(t)P(T,S)

_ [ Ks(t) Ks(®)®(T, S)/]
O (T, S)Ks(t) Kr(t)

and

_ [m} _ [ gs(t) + @ (S, Hx } _ [gg(t) + @S, t)x]
= gr(S) + @(T,S)gs(t) + (T, t)x| | gr(t) + (T, t)x ]|’

Therefore, conditional on X; = x,

LXs+mns| | L Omxdl|]|Xs ns| Lty »
[ Xr ]_[ded Idxdi||:XT:|+|:0i| Nm+d<[m}’U(t) ) (6.1)

where U (t) denotes the precision matrix, defined in Equation (2.11). This implies that

~ m+d 1 _ 1 VS—L/,LI/ vs — L
R(t,x) = — log (27) — = log |[U®) 7Y — = U(t )
(t,x) 5 log(2m) — S log UM ™| 2[xT_M Of e

It may appear that x does not show up in the formula, but it appears in both w; and ;.
Next, we need to take the gradient with respect to x. This gives

- (Lo ] vs — L
r(t,x) = |:<I>(T,t)i| U(t) |:XT —M2:|'

Negating and differentiating once more yields the expression for H.

6.2. Proof of Corollary 2.6
We have ® (s, t) = I for all s and ¢. This implies

_ Lal' +S—v~'s La
U(t)lz(S—t)[“ $=1 _fa].

!/
alL —

~

(2]
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The Schur complement of this matrix is

~1
(= 01aL + = — (8 = nlaga"a's - 0)

=T =9
(e

Lar 2)1——T_t N(t
TE) = Goaa—s

Applying the formula for the inverse of a partitioned matrix gives

——— l
U@ =| 6 t)(T 5NV (®) o TsN®L o
—rs N 75— pd S - t)L/mN(t)(S HLa—a"

1
—(S (T S)N(l‘) 1 1——N(t)L

Next, we compute
W =W, Wa] =[L' Iixa] U.

We have

—t ,

and

S—t
W:——L/NtL 2! L'N(t)L
2T Ty ()+T—“ T T T s N®
1

=—g'- L N(t)L.
T—t¢ T —

The result for 7 now follows upon computing
Wi(vs — Lgs(t) — Lx) + Wa(xr — gr(t) — x).

The expression for H follows from

H(t) =[L' I|U®) m = [w1 W3] m :

To assess the behaviour of the pulling term in Equation (2.14) as t 1 S, we write

-1
N#) =S -1 ((S —t)Lal' + —SZ) .

Hence it follows that

Qv _ L’—é\](t)tL SIS 64

and

Q1) Q(t) S—t
T—t S—tT—t
with O denoting a matrix with zeroes.

—~0, t18§
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