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1. Introduction

Experimental wave basins are used to measure wave effects
on various types of structures and vessels, including models of
ships, offshore platforms, and other bodies. The usual objective is
to simulate the open-water environment where the free surface is
unbounded, except by the body (or by multiple bodies). In order
to achieve this objective it is necessary to eliminate or minimize
hydrodynamic effects associated with the finite dimensions of the
basin. Wall effects which are not related directly to waves are
negligible if the basin is sufficiently large relative to the body
length scale. However the effects associated with wave reflection
from the walls will persist regardless of the size of the basin. Thus
it is essential to both generate and absorb waves in a controlled
manner, to simulate the open-water conditions.

Square or rectangular wave basins are usually equipped with
banks of wavemakers on one or two sides. Beaches are used on
the opposite sides to avoid or minimize reflected waves. Most
beaches consist of sloping porous surfaces which absorb the wave
energy through a combination of viscous dissipation and breaking.
Partial reflection from beaches is unavoidable. In some cases it is
necessary to limit the time of an experiment so that the reflected
waves do not affect the test area of the basin.

As an alternative to passive beaches, wavemakers with suitable
controls can be used as absorbers [1-5]. We shall refer here to
‘wavemakers’ as devices which can be used either to generate
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or absorb waves, or to perform both functions simultaneously.
Absorbing wavemakers have several advantages relative to
conventional beaches. At least in linear theory, low or zero
reflection can be achieved, and less space is required in the
experimental domain of the basin. Another advantage is that
waves which are reflected back toward the generators can be
absorbed. Absorbing wavemakers can also be used to reduce the
time required for residual wave attenuation between experimental
runs.

In addition to their use in physical wavetanks, absorbing
wavemakers are also used in numerical wavetanks to prevent
wave reflections from the boundaries of the computational domain
[6-9]. Usually this is achieved by modifying the free-surface
boundary condition over a finite region near the boundaries.
In this respect the numerical model is similar in the physical
context to a pneumatic wavemaker, with an oscillatory pressure
applied to the free surface. Insofar as these numerical schemes
rely on optimized constant parameters in the boundary conditions,
they are more closely related to passive beaches as opposed to
absorbing wavemakers with active controls.

The linear analysis of wavemakers and absorber control
systems is relatively straightforward in two dimensions, but
the situation is more complicated if the wave motion is three-
dimensional. In order to generate and absorb plane waves at
oblique angles it is necessary to use a large number of wavemaker
elements with small widths compared to the wavelength [10].
A more fundamental problem is to control the absorbers in an
effective manner for oblique or multi-directional waves.

Wavemakers can be analyzed with Havelock's theory [11],
which applies to a semi-infinite fluid domain. In the case of
generators a radiation condition is imposed, and each wavemaker
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radiates waves which propagate to infinity. For absorbers the
same theory applies, but with the waves moving in the opposite
direction. As in the case of a floating body in an infinite fluid, the
hydrodynamic pressure force acting on each element includes both
added-mass and damping components. This approach is intuitively
logical if the horizontal scale of the basin is large compared to the
wavelength, and if reflections are ignored.

It is more rational to consider the basin as a finite domain,
but this changes the linear inviscid theory in a fundamental
manner. Waves are reflected on the basin walls, and there is no
energy radiation. Considering each wavemaker mode separately,
and assuming steady-state harmonic time dependence, standing
waves are generated and the fluid velocity throughout the basin
oscillates with the same phase. There is no wave damping,
and the pressure force acting on each wavemaker element can
be expressed completely in terms of an added-mass matrix.
Nevertheless progressive waves can be generated, with ‘effective’
damping and energy absorption, by combining the motions of
different wavemaker elements with appropriate phase differences.

In this paper linear theory is used to study the performance
of wavemakers in basins. We restrict our attention to basins with
a square or circular planform, and to ‘hinged-flap’ wavemakers
with vertical surfaces which rotate about a submerged horizontal
axis. The numerical results presented in Sections 5 and 6
are obtained using the three-dimensional radiation-diffraction
code WAMIT, which is based on the boundary integral-equation
method. This facilitates computations to be performed for arbitrary
geometrical configurations, with or without floating bodies or
other obstructions within the basin, and for different types of
wavemakers such as the ‘piston’ type which is often used in
shallow basins. Similar results are expected in the latter case since
the radiated waves generated by different types of wavemakers
are the same except for their amplitude and phase. The results
presented here are based on the higher-order method of solution,
with exact representation of the geometry of the tank and body.

The first problem considered is that of generating and absorbing
a plane progressive wave system without the presence of a body.
The theoretical framework is outlined in Section 2. Wavemakers
and conditions for optimizing absorbers are considered for two-
dimensional basins in Section 3, for oblique waves in Section 4,
and for three-dimensional basins in Section 5. The extension to
include a body is considered in Section 6, where it is shown that
close approximations to the open-water forces on a floating body
can be achieved with suitable control of the absorbers. In Section 7
two-dimensional wavemakers are analyzed in the time domain,
to compare the transient effects of different absorber strategies.
Section 8 gives a brief 2 description of the computational methods,
and Section 9 includes discussion and conclusions.

Nonlinear effects may have special importance in some cases,
for example if the amplitude of the wavemakers is large, the
tank depth is shallow, or special features of the tank or the body
cause them to be particularly sensitive to sub- or super-harmonic
resonance. Several of the references cited above consider nonlinear
effects based on second-order perturbation analysis, cnoidal wave
theory, or fully-nonlinear spectral analysis. It is not possible
to make general statements about the importance of nonlinear
effects, or the validity of linear analysis. Nevertheless the linear
Fesplts presented here may provide qualitative or quantitative
insight in many cases of practical importance.

2. Theoretical analysis

Cartesian coordinates ¥, y, z are used, with z = 0 the plane of
the equilibrium free surface and the +z-axis directed upwards. The
fluid depth h is constant, with the bottom at z = —h. The sides
of the basin are assumed to be vertical, and covered by an array

of N wavemakers. The fluid domain is enclosed by the boundary
surface S including the wavemakers and bottom of the basin, and
by the free surface. The normal vector n is directed out of the fluid
domain on S. The complex time-factor el®t is assumed throughout,
except in Section 7.

If the jth wavemaker oscillates with complex amplitude §j, the
velocity potential can be defined as

N
¢ =i ) & (1
j=1

Here ¢; is the radiation potential for each wavemaker, satisfying
the boundary condition

a¢

an nj (2)
on the submerged surface S; of the jth wavemaker, where n; is the
normal displacement when £ = 1. If the wavemakers are hinged
about the bottom,

z+h

n = ons;. (3)

The normal velocity d¢;/dn = 0 on the other wavemakers, and
on the bottom of the basin. It is convenient to define n; = 0
everywhere on S except on §j, so that (2) applies everywhere on
S. The normal displacement n; is real, with the same phase at all
points on the wavemaker. (More generally, in cases where the
motion of a wavemaker is complex, it can be decomposed into two
real modes.)
The linear free-surface conditiononz = 01is

8 ¥
w52 =0, )

where g is the gravitational acceleration.
The generalized pressure force acting on the ith wavemaker is

F = f/spn,'ds = —ipw //s ¢n;dS

N
- 2 ; N
= pw ;“g’j ‘/:/Sd)Jn,dS (5)

where the linear form of Bernoulli’s equation is used to evaluate
the pressure p, p is the fluid density, and there is no contribution
from the hydrostatic pressure since the wavemaker's normal
displacement is horizontal. In the present case F; is equivalent to
the moment about the hinge axis.

Since the fluid domain is bounded and the only inhomogeneous
boundary condition is real, it follows that ¢; is real and the
generalized pressure force acting on the ith element can be
expressed in the form

N
Fi=w*) Ay (6)
j=1

where

Aj = p//S nig;dS (7)

is the added-mass matrix.

We shall assume that the principal objective is to generate a
progressive ‘incident’ wave system of amplitude A, represented by
the potential

_ iﬁCOSh ko(Z 41 _ikg(xcos pysinp)

e : (8)
w cosh koh :

where B is the angle of propagation relative to the +x-axis. Th

wavenumber kg is the positive real root of the dispersion relation

wZ
— = ktanh kh. (9)
g
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The wave system (8) can be produced in a basin with no
obstructing bodies if the normal velocity everywhere on the walls
of the basin is equal to d¢;/dn. This ideal condition can be
approximated if the wavemaker width is sufficiently small relative
to the wavelength 27 /kg, and the amplitude of each element is
defined by

& = (nycos B+ nysin ﬂ) e~ iko(xj cos f+yjsin fi) (10)

Here (x;,y;) are the horizontal coordinates of the wavemaker
centroid and (ny, ny) are the components of the normal vector.

The condition when (10) is used to define the wavemaker
amplitudes a priori will be referred to as ‘kinematic’ absorption. The
principal approximation in this scheme is to neglect evanescent
modes which are only significant close to the wavemalkers, aregion
that usually is not used for experiments.

Kinematic absorption is not appropriate if there are distur-
bances of the incident wave system, due to radiation and scattering
from bodies within the basin or any other cause. In experimen-
tal applications it is customary to control the absorbers based on
measured values of either the incoming waves, as in [1], or the hy-
drodynamic force acting on the wavemaker, as discussed in [2,3].
Following the latter approach, we shall consider ‘dynamic’ absorp-
tion where each absorber responds to the pressure force it experi-
ences in accordance with the equation of motion

N
> A+ (m; — idi/w) & = 0. (11)
j=1

Here m; and d; represent the inertial and damping coefficients of
a linear control system which restrains the absorber i. If a subset
of the wavemakers (1 < j < Ny) act as absorbers and the others
(Ny+1 <j < N) as generators, (11) is applied with (1 < i < Ny),
to solve for the absorber amplitudes, and the amplitudes of the
generators are defined by (10).

3. Two-dimensional wavemalkers

It is useful to consider the case of two-dimensional motion with
two identical wavemakers at the opposite ends of a rectangular
basin. The first wavemnaker, say at x = 0, oscillates with amplitude
&, and radiates waves in x > 0. Neglecting the evanescent near-
field motion, the potential on the free surface is represented in the
form

E1p1(x, 0) = &ce koY, (12)

where the coefficient & depends on w. If the tank length is L and
the second wavemaker is stationary, perfect reflection will occur at
x = L with the reflected wave system represented by the potential

dr(x, 0) = £y R0, : (13)

The sum of (12) and (13) is a standing wave with zero normal
velocity on the wall x = L.

The second wavemaker, located at x = L and oscillating w1th
amplitude &, radiates a wave system moving toward x = 0 with
the form

E2pa(x, 0) = Eae R0, (14)
This will cancel the reflected system (13) if
£, = —gre ok, (15)

This construction, based on the cancellation of the reflected wave
system, gives the same result for the absorber amplitude as in
the kinematic derivation represented in the more general three-
dimensional case by (10). Note that the amplitude &; is defined
in the positive sense with reference to the normal vector on the

wavemaker element. Thus the minus sign in (15) is consistent with
(10).

Reflections from the wavemaker at x = 0 are ignored in the
above analysis..To complete the solution it is necessary to add
reflected waves from the periodic image boundaries at x = =£nL for
all integer values of n. This leads to a modified steady state, with
the sum of (12)-(14) replaced by

o(x,0) ~ d [£1 cos ko(L — X) + &; cos kox] , (16)
sin koL

but the relation (15) for the optimum absorber amplitude is
unchanged. In general the solution (16) is singular at the resonant
‘sloshing’ modes of the basin where koL = nsr, but (16) reduces to
(12) when (15) is substituted for the absorber amplitude. Thus the
absorber prevents the occurrence of resonant modes.

Using (6), the pressure force acting on each wavemaker is given

by
Fi = o? (E1An + &An) = 0*& (A —e70'Ap), (17)

F, = 0 (1A + £A) = 0’ (A — e"0Ay) . (18)

The last factors in parenthesis can be interpreted as the ‘effective’
added mass and damping of each wavemaker by itself, when their
motions are optimized according to (15). From symmetry it follows
that A;; = Ay and Aj; = Ay1. Thus the effective added mass

a=Ay; — A coskgl (19)

is the same for both wavemakers. The effective damping coeffi-
cients are &=b where the upper sign applies to the wave generator
at x = 0, the lower sign to the absorber at x = L, and

b/a) = —A12 sin I(UL. ' (20)

It is logical to expect that the damping is positive for the generator
and negative for the absorber. This can be confirmed from the
analysis in Appendix A, using (59) and neglecting the infinite series
which is exponentially small for physically relevant values of the
length L.

Since there is only one absorber, the equation of motion (11) for
dynamic control is

& (A +m —id/w) = —Apé. (21)

Optimum values for the inertia and damping coefficients can be
derived by substituting (15) in (21). Thus

m=—a and d=b, (22)

where (19) and (20) have been used. These relations are noted
by Naito [3] and attributed to Bessho [12]. From the physical
viewpoint, the external inertia force should cancel the added mass
(or more generally, should be evaluated with a corresponding
stiffness coefficient to achieve resonance), and the optimum
external damping is equal to the hydrodynamic damping. Similar
relations are well known in the field of wave-power conversion, as
reviewed by Evans [13].

4. Generation and absorption of oblique waves

The analysis in Section 3 can be extended for oblique wave
generation and absorption by ‘snake’ wavemalkers which extend
to y = 00, with the horizontal displacement of each wavemaker
proportional to e~#o¥sin# Neglecting the evanescent near-field
motion, the potential on the free surface due to the wavemaker at
x=0is

51(151 (X, O)e—ikgysinﬂ ~ é__]ae—ikg(xcos ;‘H—ysinﬁ). (23)

In the case where the fluid domain extends to x = co, analogous
to the two-dimensional wavemaker in a semi-infinite domain, the
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Fig. 1. Effect of oblique incidence on the added mass of the ‘snake wavemaker'.
These results are based on (64), and normalized by the limiting value for § = 0,
which corresponds to the two-dimensional added mass (51). Wave periods (PER)
are in seconds.

differential hydrodynamic pressure force acting on the wavemaker
can be expressed in the form

F} = (0*A' — iwB') Eye0VsnP, (24)

where the added mass A’ and damping B’ depend on f. These
coefficients are derived in Appendix B. The dependence of A’ on
B is illustrated in Fig. 1. The dependence of B’ on S is given by the
simple relation

B'(B) = B'(0) csc B = Bcesc B, (25)

where B is the two-dimensional damping coefficient (52). Thus the
damping in oblique waves is greater than in two dimensions.

If the fluid domain is bounded by a wall at x = L, the reflection
of the wave system (23) can be canceled by an absorber at x = L if

‘EZ - _E]e—ikgLCOSﬁ' (26)

In this case ¢; and ¢, are real, and the differential force on each
wavemaker is given by

Fi = o (47 + BA),) e "o

s a)ZE1 (A/” — e—lkOLcos ﬁA/]Z) e—lkoysm ﬂ, (27)
B = o (£l + ) e om0

- wZEz (A/22 _ elkoLCOS ﬂAIZ]) e—lkgysm ﬂ‘ (28)
Thus the effective added mass and damping are
a = A, — AL, cos(koL cos B) (29)

11 12

and
b'fw = —A), sin(koL cos B). (30)

Neglecting exponentially small terms in (66) and (67), it follows
from the analysis in Appendix B that (29) and (30) are equal to the
coefficients A’ and B’/ defined by (64) and (65).

If the equation of motion for dynamic absorber control is

& (A +m —id/w) = —Apks, (31)

optimum values of the inertia and damping can be derived by
substituting (26) in (31). Thus

m=—d and d=V, (32)

asin(22), and optimum dynamic control can be achieved in oblique
waves by using the corresponding added-mass and damping
coefficients A’ and B’ in place of the two-dimensional coefficients
AandB.

5. Three-dimensional wavemalers and basins

The three-dimensional case is treated numerically, using the
radiation-diffraction code WAMIT. Two examples are considered,
a square basin 16 m by 16 m by 2 m depth, and a circular basin
of radius 10 m and depth 2 m. Hinged wavemakers are distributed
uniformly around the periphery, with the hinges at the bottom of
the basin. For the square basin the generating wavemakers are on
two adjacent sides and the absorbing wavemakers are on the two
opposite sides. For the circular basin the generating and absorbing

. wavemalkers occupy opposite semi-circular arcs. In Figs. 2-4 the

generating elements are shown in black and the absorbers in red.
Results are shown for the square basin at the incidence angles
B = 0and B = 30°, relative to the +x-axis. For the circular basin
the incidence angle is 8 = 90°.

The results presented here are for a period of 2 s, corresponding
to a wavelength of 6.05 m. Figs. 2-4 show contour plots of the
wave amplitude over the free surface, excluding a 1 m strip
adjacent to the wavemakers. For progressive waves of the form
(8) the amplitude is spatially constant. Reflections and other
imperfections in the incident wave system are indicated by
fluctuations of the amplitude. The magnitude of the fluctuations
is measured in each plot by the standard deviation o, defined as
the square-root of the variance over the computational domain
displayed in the figures and normalized by the mean value.
Similar results are shown in [14] for basins with a depth of 1 m.
The reflection coefficient, defined as the difference between the
maximum and minimum elevations divided by their sum, is 2-3
times larger than o, but in most cases the largest fluctuations are
near the outer boundary of the computational domain and the
reflection coefficient near the center of the basin is smaller than
this estimate would indicate.

Four separate contour plots are included in each figure. The
upper left plots (a) show the standing waves which are generated
when the absorbers are stationary. The upper right plots (b) show
the wave amplitude with kinematic absorption. The lower left
plots (c) show the results with dynamic absorption using the two-
dimensional added mass and damping to evaluate the absorber
coefficients m and d in accordance with (22). The lower right
plots (d) show the results with dynamic absorption using the
oblique-wave added mass and damping to evaluate the absorber
coefficients m and d in accordance with (32), where 8 is defined as
the local incidence angle relative to each absorber.

Fig. 2 shows the wave amplitudes in the square basin for f =
0. Two-dimensional standing waves are present in Fig. 2(a). In
Fig. 2(b) and (d) the absorption is almost perfect, with o = 0.004.
The results in Fig. 2(c) show the limitation of using dynamic control
with two-dimensional added mass and damping for all of the
absorbers; in this case with 8 = 0 the absorbers on the lower
right wall should be stationary, as in Fig. 2(b), but instead they
react to the pressure of the passing wave system to extract energy
and distort the waves. In Fig. 2(d) this does not occur since the
local angle of incidence is 90°, resulting in ‘infinite’ damping of
the controller according to (32) and (25). (In the post-processor
used to compute these results a finite upper bound csc g < 10*
is employed to evaluate the damping.) .

Fig. 3 shows the corresponding results For § = 30°. The
standing-wave system in Fig. 3(a) is three-dimensional, with
substantial amplitude. This can be attributed to the proximity of
a resonant mode at 1.98 s with five longitudinal nodes and two
transverse nodes, not unlike the amplitude in Fig. 3(a). The results
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Fig. 2. Amplitude of waves in the square basin with generators (black) and absorbers (red). The waves propagate in the +x-direction (8 = 0). The upper left plot (a)
shows the standing-wave system without absorption. The absorbers are (b) kinematic, (c) dynamic with 2D added-mass and damping forces, and (d) dynamic with oblique
added-mass and damping forces. Note that different ranges of colors are used to represent the amplitude in each plot. The variance o indicates the magnitude of reflections
and nonuniformity in the wave system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Amplitude of waves in the square basin with generators (black) and absorbers (red). The waves propagate in the direction (8 = 30°) relative to the +x-axis. The
upper left plot (a) shows the standing-wave system without absorption. The absorbers are. (b) kinematic, (c) dynamic with 2D added-mass and damping forces, and (d)
dynamic with oblique added-mass and damping forces. Note that different ranges of colors are used to represent the amplitude in each plot. The variance o indicates the
magnitude of reflections and nonuniformity in the wave system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

using dynamic absorption with two-dimensional coefficients, in
Fig. 3(c), are better than the corresponding results in Fig. 2(c), but
substantial reflections are still present. The results in Fig. 3(b) and
(d) are clearly superior. It is surprising to note that the standard
deviation in 3(d) is smaller than 3(b), and this implies that the
values of o are not accurate in the third decimal place.

The results for the circular basin in Fig. 4 are similar to
the results for the square basin in oblique waves, with similar
conclusions regarding the different absorber schemes.

For the results shown in Figs. 2-4 a total of 128 wavemakers
are used, with a width of 0.5 m. Table 1 shows the effect on the

variance o using different widths of 1.0 m, 0.5 m, and 0.25 m, with
kinematic absorbers. The uniformity of oblique waves is improved
by reducing the width of the wavemakers, as expected.

6. Absorption of radiated and scattered waves

Floating or submerged bodies which are present in the basin
will radiate waves due to their motions, and also scatter the
incident waves generated by wavemakers. The radiated and
scattered waves propagate outward toward the sides of the basin.
It is necessary to absorb these waves in addition to the incident




76 J.N. Newman / Applied Ocean Research 32 (2010) 71-82

Z

a !
.‘\Y

| Abs(ETA)

4.88 !

ﬁ 368

j 2.48 |

=] 1.28 | -

:d 0.08 | 0=0.53

h_ <5
AbS(ETA) | -
B 14s |

| 1.16
0.86
0.57
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version of this article.)

Table 1
Effect of the wavemaker width on the variance o at different incidence angles, for
64, 128, and 256 wavemakers in the square basin.

B 64 x 1m 128 x 0.5m 256x0.25m
0 0.0036 0.0036 0.0036
22.5° 0.0324 0.0080 0.0032
45° 0.0505 0.0127 0.0039

wave field. Indeed, this more general requirement is the principal
reason for using dynamic absorbers.

In order toillustrate this type of problem we consider the case of
a floating hemisphere of radius 1 m at the center of the basin. The
simplest radiation problem to consider is heaving motion of the
hemisphere in the circular basin, since the motion is axisymmetric
and the absorbing wavemakers can be assumed to have the same
amplitude and phase. Two alternative approaches are used to
optimize the wavemaker motion in this case.

First we consider the two standing-wave systems generated by
the separate motions of the hemisphere and wavemalers. Their
amplitudes can be represented in the form

gmi = & (Gie™ + Cre™") / ko, (33)
where i = 1 denotes the hemisphere, i = 2 denotes the wave-

maker, G; is a complex coefficient and C;* denotes the conjugate.
The first and second terms in parentheses represent inward
and outward propagating ring waves, respectively. The inward
propagating waves are canceled if

E/5 = —(C1/Q). (34)

This is the optimum condition for the absorber, analogous to (15)
in two dimensions. In order to evaluate &,/&;, computations are
made of 7y and 7, along a radial line between r = 1.5 m and
r = 9.5 m in steps of 0.1 m. The coefficients C; are evaluated by
Fourier integration of this data. Fig. 5 shows the amplitudes of the
two standing-wave components (33) for several wave periods, and
also the radiated wave 7, — (C;/C3)7,. Using (6), the force acting

on the hemisphere in the latter condition is

Fi = 0*&[A11 — (C1/G)Ar] . (35)

The added mass and damping are given by the real and imaginary
parts of the factor in square brackets.

As an alternative procedure, analogous to (21), the equation

of motion for the absorber amplitude is solved using the two-
dimensional added-mass and damping coefficients. This avoids
measurement and analysis of the free-surface elevation, and is
simpler to employ in the experimental context. Fig. 6 shows
the added-mass and damping coefficients of the hemisphere,
comparing the results from the two approaches with computations
for the same body in open water. The results based on the first
approach are practically identical to the open-water results. The
second approach introduces a small oscillatory error for longer
wave periods, which may be explained by the fact that the two-
dimensional added-mass and damping coefficients are affected
by the curvature of the wavemaker to a greater extent in longer
waves. -
Next we consider the diffraction problem where the hemi-
sphere is fixed and plane progressive waves are generated by the
wavemakers with § = 0. Two separate sets of computations are
performed, with and without the hemisphere present in the basin.
The first computation is a ‘calibration’ of the basin and wavemak-
ers, where the amplitude Ej of the wavemakers is defined by (10),
as in Figs. 2(b) and 4(b). The resulting incident wave amplitude A
is computed at the center of the basin, and the added-mass coeffi-
cients A,-j are evaluated for the wavemakers.

In the second computation, with the hemisphere present in the
basin, the added-mass matrix Aj is evaluated including the hydro-
dynamic interactions between the hemisphere and wavemakers.
In general there are six additional modes, corresponding to the
rigid-body motions of the hemisphere, but it is only necessary to
account for surge and heave, denoted by the subscripts x and z re-
spectively. The amplitudes &; for the wavemakers, defined as the
solution of the linear system (11), can be expressed in the form

=&+, (36)
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Fig. 5. Plots showing the amplitudes of the standing waves in the circular basin,
generated by heaving motion of the hemisphere (green) and axisymmetric motion
of the wavemaker (blue) for different periods in seconds (PER). The amplitude of
the wavemaker motion is reduced by a factor of (1/10) for convenience in plotting.
The red lines represent the amplitude of the radiating wave from the hemisphere
with optimum absorption by the wavemaker. The abscissa is the radial distance r
from the center of the basin. The reflection coefficient R is defined by the relation
R = (max—"1min)/ (lmax~+min) Where (max, 7jmin) are the maximum and minimum
values of the radiated wave amplitude, multiplied by +/kr, in the range between
1.5 m and 9.5 m radius from the center. The hemisphere radius is 1 m and the basin
radius is 10 m. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig.6. Added mass(red upperlines)and damping(blue lower lines) for the heaving
hemisphere. The dashed lines are based on the optimum absorber amplitude
derived from the free-surface elevations, using (35). The dot-dash lines are from
computations with dynamic control of the wave absorber. The solid lines are from
computations in open water. The added mass is normalized by p and the damping
by pw. The abscissa is the wave period in seconds.
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Fig. 7. Exciting forces for the hemisphere in surge (red upper left lines) and
heave (blue lower left lines). The dashed lines (square basin) and dot-dashed lines
(circular basin) are based on computations using kinematic control to absorb the
incident waves and dynamic control to absorb the scattered waves. The solid lines
are from computations in open water. The exciting forces are normalized by pgA,
where the wave amplitude A is evaluated at the center of the basin without the
hemisphere. The abscissa is the wave period in seconds.

where §; is the correction to account for scattering. Since Ej is the
solution of (11) with A; replaced by Aj, it follows that

N
> A+ (m; — idi/w) §;

j=1

==Y (w-&)§ (=12..M. (37)

=

Note that this linear system is applied for all N wavemakers, and
the generators of the incident wave also serve to absorb back-
scattered waves from the body.

The principal advantage of solving (37) for §; is that the
kinematic amplitude (10) is used for the incident waves, and any
approximations associated with the absorbers are confined to the
component §;. In the following evaluation of the exciting force,
the inertia and damping coefficients m; and d; are replaced by the
corresponding constant values for a two-dimensional wavemaker.

The added-mass coefficients Ay, A; j = 1, 2, ..., N) represent
cross-coupling between the sphere and wavemakers. These
coefficients can be used with the solution of (37) to evaluate the
exciting force components

E  ane (A,
(8)=ox (e &

The values of |Fy| and |F;| are shown in Fig. 7 for the square and
circular basins, and compared with the exciting forces in open
water. The maximum absolute difference between the open-water
computations and basins is about 0.03. For the phase angles, the
maximum difference is about 4°. The most noticeable differences
in Fig. 7 are for the circular basin, in longer wavelengths; these
appear to be similar to the larger differences in Fig. 6, which are
attributed to the effects of curvature in longer wavelengths. Small
differences are apparent also for the surge force at periods between
1.0and 1.1s, which may be attributed to discretization errors at the
shortest wavelengths.
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The same computations have been performed for the square
basin using oblique added-mass and damping coefficients, based
on the angle of incidence from the center of the basin (varying
between 0° at the center of each side and 45° at the corners). The
exciting forces computed in this manner are practically the same
as those based on the two-dimensional coefficients.

Additional computations, not shown here, have been performed
with the exciting forces evaluated from (38) using the amplitudes
§j, without correcting for the effect of scattering. These results
are highly oscillatory in both basins, compared to the results in
Fig. 7, confirming that while the scattered waves may be small
compared to the incident waves, large standing waves can result
from their reflections especially in the vicinity of wave periods
where resonant modes exist.

7. Two-dimensional wavemakers in the time-domain

Transient effects are significant in physical experiments,
even when the objective is to produce a monochromatic wave
system. To illustrate these effects we consider a two-dimensional
wavemaker at x = 0, starting from rest at time t = 0 and
moving with normal velocity U(t)f (z). The velocity potential can
be represented by a distribution of sources over the surface of the
wavemaker, with the source density equal to the normal velocity.
To simplify the analysis it will be assumed that the fluid depth
is infinite, and thus the appropriate source potential is given by
Wehausen and Laitone [15, Eq. 13.54]. The free-surface elevation
is represented by the convolution integral

t
r(x, t) = / U(t)kx, t — t)dr, (39)
0

where the impulse-response function is

] o0
k(x, t) = —;/ COS KX cosﬂ/gKt/f(z)e"zdsz. (40)
0

A hinged wavemaker is considered, as in the preceding sections,
with f(z) defined by (3) and the hinge axis 2 m below the free
surface. After evaluating the integral with respect to z analytically,
the remaining integral with respect to « is evaluated numerically,
as explained in Section 8. Fig. 8 shows plots of this function at six
successive time steps. These results are similar to the waves due to
a concentrated impulse on the free surface (cf. Lamb [16], Sections
238-239), usually referred to as the Cauchy-Poisson problem.
The longer waves propagate with relatively large velocity, and
shorter waves follow behind. Unlike the solution for a concentrated
impulse, the shorter waves in Fig. 8 diminish in magnitude due to
the vertical distribution of the sources on the wavemaker.

Hereafter it is assumed that the wavemaker velocity U(t)
= sinwt for t > 0, with the wave period 27 /w = 2 s. The
generated waves are shown for a sequence of time steps in Fig. 9.
The dashed lines in Fig. 9 confirm that the wave front moves
with the group velocity and the individual wave crests move with
the phase velocity. The waves behind the front quickly approach
their limiting sinusoidal form. Figure 6.10 in [17] shows a similar
sequence of waves based on photographs in a small physical wave
tank.

If the wavemaker is at one end of a basin, with an absorbing
wavemaker at the opposite end, the synthesis described in
Section 3 can be replicated in the time domain. For illustration a
basin of length L = 40 m is used, with the generating wavemaker
atx = O and the absorber at x = 40 m. An image wavemakeratx =
80 m is used to simulate the reflected wave, with the same velocity
U(t) as the generator. The absorber velocity is —U(t — koL/w),
where the time lag corresponds to the phase lag —ikoL in (15). The
superposition of these three wave systems is shown in Fig. 10. By
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-~ ,4'.“,’(}\/\/\/\/\/// — ]
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Fig. 8. Plots of the influence function (40) at a sequence of time steps t between 1
(top) and 6 (bottom) s. The distance x is in meters.

Fig. 9. Waves generated by the wavernaker at x = 0, at a sequence of time steps
t between 1.5 (top) and 60 (bottom) in steps of 1.5 s. The wave period is 2 s. The
slopes (dx/dt) of the upper and lower dashed lines are equal to the group velocity
and phase velocity, respectively.

following the crests along the lower dashed line it can be confirmed
that a steady propagating wave system is achieved, but only after
a substantial time. Prior to this partial standing waves are present.
These are due primarily to starting the wave absorber too soon, as
indicated by the waves that exist in Fig. 10 ahead of the original
front (above the upper dashed line near the right end). This can be
anticipated since the phase lag —ikgL corresponds to a time delay
propagating with the phase velocity instead of the group velocity.

As an alternative scheme the absorber velocity is assumed to
be proportional to the free-surface elevation ¢ due to the wave
generator, as measured at the absorber. Thus the contribution by
the absorber is

t
£t B =C / 5L, Tk(L — %, £ — T)dr. (a1)
0

Here the coefficient C is analogous to the transfer function between
U and ¢; in the frequency domain. The result of using this absorber
algorithm is shown in Fig. 11. It is clearly superior to Fig. 10,
with close approximation to a steady propagating wave system
shortly after the incident-wave front reaches the absorber. In
addition to delaying the absorber response until the waves arrive,
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Fig. 10. Waves generated by the wavemaker at x = 0, with an image wavemaker
atx = 80 mand anabsorberatx = 40 m, to simulate absorption in a basin of length
L = 40 m. The slopes (dx/dt) of the upper and lower dashed lines are equal to the
group velocity and phase velocity, respectively.

Fig. 11. Waves generated by the wavemaker at x = 0, with an absorber at
x = 40 m. The velocity of the absorber is proportional to the elevation of the

incident wave at the absorber, and the resulting waves are defined by (41). The

slopes (dx/dt) of the upper and lower dashed lines are equal to the group velocity
and phase velocity, respectively.

this algorithm also accounts for the gradual build-up of the wave
system at the front. Since the wave elevation and pressure are
closely correlated, it is likely that similar performance can be
achieved with ¢; replaced in (41) by the pressure force acting on
the absorber. This would give a time-domain representation of
dynamic absorption.

8. Computational details

The numerical results shown in Figs. 2-7 have been obtained
using the radiation/diffraction program WAMIT. This program is
intended primarily for the analysis of wave interactions with
bodies in open water, but it can be used for internal fluid domains
with a free surface, such as partially-filled tanks and wave basins.
The principal requirement is that the submerged surface of the
basin, as well as the body, is defined in the geometry input to
the program. (For a basin with constant depth, as in the cases
considered here, it is not necessary to include the bottom as

part of the input geometry since the boundary condition on the
bottom is satisfied by the Green function.) The results presented
here are based on the higher-order method of solution, with
exact representation of the geometry of the tank and body. The
unknown velocity potential on the boundary surface is represented
by continuous B-splines, and the number of degrees of freedom to
ensure accurate results is determined by convergence tests.

Each component ¢ is evaluated as the solution of a discretized
integral equation over the domain including the wavemakers
and body. The motion of each wavemaker is represented by
a generalized mode, with the normal velocity assigned in a
special subroutine as a function of the vertical position on the
wavemaker. The higher-order method of solution is used, with
the unknown potentials represented by B-splines. The geometry of
the basins and hemisphere are represented analytically, without
approximations. Each wavemaker is represented by a separate
patch, with subdivision used to achieve converged solutions.
Further details can be found in [18]. Special post-processing
utilities are used to convert the standard outputs from WAMIT to
the results presented here.

In a closed basin each component ¢; should be real, as noted in
Section 2. Since the exterior Green function used in the program
is complex, one test of the numerical accuracy of the solution
in a closed basin is to compare the magnitudes of the real
and imaginary parts. Typically the computed ratios between the
damping and added-mass coefficients are on the order of 1073 or
smaller. The corresponding ratios for the wave amplitudes are on
the order of 10~ or smaller.

The two-dimensional time-domain computations described in
Section 7 have been performed with a program which evaluates
the impulse-response function and convolution integrals by
numerical quadrature. The impulse-response function (40) is
evaluated as the sum of two separate integrals involving the
sum and difference of the trigonometric arguments. These semi-
infinite integrals are replaced by infinite series of finite integrals,
defined such that the trigonometric arguments change by 2x
in each interval (except for one interval where the point of
stationary phase occurs). Adaptive Romberg quadratures are used
in each interval, with a convergence tolerance of 1072, and the
summations are continued until the last ten terms in the series
are smaller than 10~%, The convolution integrals (39) and (41) are
evaluated by the trapezoidal rule with time steps equal to 0.03. This
value of the time step gives converged results in Figs. 9-11, within
graphical accuracy.

9. Discussion and conclusions

The generation and absorption of waves in a closed basin has
been analyzed within the framework of linear potential theory.
Wavemalkers situated in the sides of the basin are used for both
generating and absorbing the waves. Specific results are presented
for square and circular basins, with wavemakers which are hinged
at the bottom of the basin. Other geometrical configurations can be
analyzed in a similar manner.

In a closed basin it is essential to absorb the incident waves
generated by the wavemakers, as well as radiated and scattered
waves from bodies within the basin. Two types of controls
are considered for the absorbers, referred to as ‘kinematic’
and ‘dynamic’. In the kinematic case all of the wavemaker
elements oscillate with prescribed amplitudes of motion, and
with appropriate phases, to coincide with the normal velocity
of a progressive wave at the center of each wavemaker. If the
wavemakers are sufficiently small, compared to the wavelength,
this simple approach ensures that both the wave generation and
absorption will be effective provided there are no bodies or other
sources of radiation or scattering within the basin.
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To provide for more general wave absorption, including
radiation or diffraction from bodies, a dynamic scheme is
introduced. Each absorbing element responds to the local pressure
force from the incident waves, with an external linear controller
which is represented by inertial and damping forces. Solution
of the coupled equations of motion gives the amplitude and
phase for each absorber. Optimum external control is achieved
if the inertia force is equal to the negative added mass and the
damping force is equal to the wave damping, based on Havelock’s
wavemaker theory. These optimum coefficients are evaluated for
normal incidence based on two-dimensional theory in Appendix A,
and for oblique incidence by a generalization of the same theory in
Appendix B.

Computations are performed in the frequency domain using
the radiation/diffraction code WAMIT. Contour plots of the wave
amplitude throughout the basin are shown comparing the results
without absorbers, with kinematic absorbers, and with dynamic
absorbers. The quality of the absorbers is measured by the
variance of the wave amplitude. Without absorbers there are
severe standing waves due to reflection from the walls opposite
to the wave generators, and from the generators themselves.
With kinematic absorbers the variance is very small, and there is
practically no reflection. The effectiveness of dynamic absorbers
depends on the assumptions used to derive the added-mass and
damping coefficients. For incident wave absorption in a basin
without radiation and scattering from a body, dynamic absorbers
are as effective as kinematic absorbers when oblique added-mass
and damping coefficients are used to account for the local incident
angle at the absorbers. The use of two-dimensional added-mass
and damping coefficients is less satisfactory.

In order to study the effects of radiation and scattering,
computations are performed with a floating hemisphere in the
center of the basin. Two specific applications are considered,
first to evaluate the added mass and damping due to heaving
motion of the hemisphere in a circular basin, and then to evaluate
the exciting force in incident waves for both the square and
circular basins. In the heaving problem the motion is axisymmetric,
and the absorbing wavemakers around the basin have the same
amplitude and phase. The absorber is optimized first by analysis
of the free-surface elevation in the basin, and then by a dynamic
approach. Both give good approximations for the added mass
and damping of the hemisphere in open water, but the dynamic
approach shows small oscillatory errors in longer wavelengths
which may be attributed to the use of two-dimensional theory for
the determination of absorber control.

The evaluation of the exciting forces on the hemisphere is
more challenging, since the three-dimensional scattered wave
field is superposed on the incident wave system and both must
be absorbed to achieve satisfactory results. The method adopted
here is to use kinematic absorption for the incident waves, and
dynamic absorption for the difference in the wave field due to
scattering. This gives good results for the exciting forces in both
the square and circular basins, based on comparisons with separate
computations in open water. Similarly good performance can be
expected if dynamic absorbers are used for both the incident and
scattered waves, provided their angle of incidence is measured and
accounted for using oblique added-mass and damping coefficients.

The two-dimensional time-domain analysis in Section 8
illustrates some transient phenomena that are relevant to absorber
control. Comparison of the results shown in Figs. 10 and 11
suggests the utility of wavemaker control based on measuring
the instantaneous free-surface elevation at the absorber. Similar
results are expected using the exciting force in place of the
elevation. In physical experiments it may be difficult to separate
the contribution due to the incident waves from the total elevation
or force including the absorber's own motion. Theoretical and
numerical analysis may be useful in this context.

The dynamic absorber control is frequency-dependent. This
complicates applications in the time domain, as discussed by
Maisondieu and Clément [19] and also by Naito [3]. Thus the
present work may represent an upper bound on the performance
of wave absorbers.

Appendix A. Solution for two-dimensional wavemaker

A fluid of constant depth h is bounded on the left by a vertical
wavemaker at x = 0. The wavemaker oscillates with amplitude
f(z) cos wt, and normal velocity —wf (z) sinwt. If the harmonic
time dependence is represented by the complex factor et, the
velocity potential ¢ satisfies the boundary conditions

% =iwf(z) onx=0, (42)
0x
% =0 onz=—h, (43)
0z

and the free-surface condition (4). Following Havelock [7], the
potential can be expressed in the general form

oo
¢ = Cycoshkg(z + h)etikox 4 Z C, cos ky(z + h)eTknX, (44)
n=1
Here kg is the positive real root of the dispersion relation (9)
and k, denotes the positive imaginary roots. The eigenfunctions
(cosh ko(z + h), cos k,(z + h)) are complete and orthogonal in the
domain (—h <z <0).
It is convenient to define the mtegrals

0
Gy = f(2) coshky(z 4+ h)dz

—h
(koh sinh kgh — cosh koh + 1)/(k§h), (45)

0
f(z) cos ky(z + h)dz

= (k,,h sink,h + cos k,h — 1)/(1( h), (46)
6) apply for a hinged

|

Ch =

where the last results in (45) and (4
wavemaker with f(z) = (z+ h)/h.

For the usual case of a semi-infinite fluid domain (0 < x < 00)
a radiation condition is imposed with waves moving in the +x
direction. Thus

(0.9
¢ = Co cosh ko(z + h)e *o* 4 Z Cy cos kn(z + hyeknx, (47)

n=1

where
—40)C0
G=——7—"7""—"-—, 48
™ Sinh 2koh + 2koh sl
—4i
7= $ (49)
sin 2kph + 2k, h

The added-mass and damping coefficients follow from the integral
of the pressure force acting on the wavemaker,

0
w’A —iwB = —ipw | f(@)¢(0, z)dz. (50)
—h
Thus
&) 2
Cn
_ E 51
; sin 2k,h + 2k,h’ (1)
CZ
B=4po——m2———. (52)

sinh 2/{0’1 + 2koh
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More generally, if the hinge depth h is less than the fluid depth
H, Egs. (45) and (46) are replaced by

0
g = f(2) coshky(z + H)dz
—h
= [cosh ko(H — h)(koh sinh koh — cosh koh + 1)

+ sinh kq(H — h)(koh cosh kgh — sinh kqyh), ]/(kéh) (53)

0
G = f(z) cos ky(z + H)dz
—h

= [cos ky(H — h)(kyh sin kyh + cos k,h — 1)
+ sink,(H — h)(k,h cos k,h — sin k,,h)]/(kﬁh). (54)

For a basin of finite length, with the fluid domain (0 < x < L),
the radiation condition is replaced by the boundary condition ¢, =
0 on x = L and the potential is

¢ = Cycoshky(z + h) cos (ko‘(L — X))

+ i Cy €05 kn(z + h) cosh (ky (L — x)) e ¥nk, (55)
n=1
where
~ (sinh 2/<ohﬁ0;;<0h) sinkolL’ 28)
C, = —4cpweknt (57)

(sin 2knh + 2kph) sinh kL

In this case there is no damping, and the added-mass coefficients
defined in Section 3 are

0
An = p | f@)¢(0,2)dz
—h
2
cg cot koL c cothk,L -
_ . I 58
P hakoh L ok | ¥ Z sn2kht2kh’ O
0
Ap = f@d(L, z)dz
—h
c? csc koL cZeschiyL
R [ M i o
e sinh 2kgh + 2kgh ¥ Z sin 2k,h + 2k,h” 8]

The coefficients (58) and (59) are singular when koL = nr,
but the effective added mass and damping (19) and (20) are
nonsingular. When L/h >> 1 the differences between (19), (20),
(51) and (52) are exponentially small.

Appendix B. Solution for oblique waves

The analysis in Appendix A can be extended for oblique wave
generation and absorption by ‘snake’ wavemakers in the planes

= 0 and x = L, with sinusoidal variation of the amplitude in
the y-direction. Assuming the wavemakers extend to infinity in
both directions, the velocity potential can be represented in the
form ¢ (x, z)e—*0¥sin A The boundary conditions (42) and (43) are
unchanged, and (44) is replaced by

(o]
¢ = C coshko(z + h)e™ o + 3 ! cos ky(z + h)e*h*, (60)
0 n

n=1

where, in order to satisfy the Laplace equation,

ko = ko cos B

and

=/k2 + k3 sin® B.

For the case where the fluid domain extends to x = oo (47) is
replaced by

o0
¢ = Cyeoshko(z + hye~ikox 4 Z C, cos ky(z + hye~knx, (61)

n=1
where
Cy = Cocsc B, (62)
€ = Gyl /1) (63)

and the coefficients Cy and C, are given by (48) and (49). The added-
mass and damping coefficients defined by (24) are

o GaCka/k7)
A=dpy it 64
4 ; sin2kph + 2k,h” b

CO csc
smh 2koh + 2koh”
Thus the damping coefficient for oblique-wave generation is
simply proportional to csc 8. This can be confirmed by noting from
the x-derivative of (8) that the amplitude of the generated waves,
for unit wavemaker amplitude, is proportional to csc 8. Thus the
energy density is proportional to csc? 8. Since the component of
the group velocity normal to a control surface x = constant is
proportional to cos 8, the rate of energy flux is proportional to
csc f.

For a basin of finite length the added-mass coefficients ((58),
(59)) are replaced by

B = 4pw (65)

g cotkyLesc B

0
Ay = 2)$(0, z)dz = —
- @90, )z = o oh + 2koh
2. c2(kn/k.) coth kL
4 n n n 66
¥ p; sin2k,h + 2kh (8s]
v c?csckLesc B
A, = 2)p(L, z)dz = —4 s ik O it Sl
- SO P sinh 2koh + 2koh
+4p i c2(kn /K, )cschk/ L -

sin 2kyh + 2kph

n=1
As in the case of two dimensions, ¢ is real and the local force acting
on the wavemakers is expressed completely by the added-mass
coefficients.
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