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Robust Quadrupedal Jumping With Impact-Aware
Landing: Exploiting Parallel Elasticity

Jiatao Ding , Member, IEEE, Vassil Atanassov , Edoardo Panichi, Jens Kober , Senior Member, IEEE,
and Cosimo Della Santina , Senior Member, IEEE

Abstract—Introducing parallel elasticity in the hardware design
endows quadrupedal robots with the ability to perform explosive
and efficient motions. However, for this kind of articulated soft
quadruped, realizing dynamic jumping with robustness against
system uncertainties remains a challenging problem. To achieve
this, we propose an impact-aware jumping planning and control
approach. Specifically, an offline kino-dynamic-type trajectory
optimizer is first formulated to achieve compliant 3-D jumping
motions, using a novel actuated spring-loaded inverted pendulum
(SLIP) model. Then, an optimization-based online landing strat-
egy, including preimpact leg motion modulation and postimpact
landing recovery, is designed. The actuated SLIP model, with the
capability of explicitly characterizing parallel elasticity, captures
the jumping and landing dynamics, making the problem of mo-
tion generation/regulation more tractable. Finally, a hybrid torque
control consisting of a feedback tracking loop and a feedforward
compensation loop is employed for motion control. Experiments
demonstrate the ability to accomplish robust 3-D jumping motions
with stable landing and recovery. Besides, our approach can be
applied to quadrupedal robots with or without additional parallel
compliance.

Index Terms—Control, optimization, parallel elasticity, quadru-
pedal robot.

I. INTRODUCTION

ROBUST jumping in uncertain environments can be real-
ized efficiently by animals through the use of the compliant

muscles and tendons system. Transferring this capability to a
quadrupedal robot is a long-lasting research topic. Articulated
soft designs provide a promising solution to achieve this goal,
whereby passive compliance is introduced through the elastic
design [1]. In the field of articulated soft quadrupeds with
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purposefully designed mechanical compliance, the series com-
pliance arrangement, such as [2], [3], and[4] and the parallel
arrangement, such as [5], [6], [7], and [8] each come with their
own benefits, among which parallel elasticity has the potential to
strengthen the joints and improve the energetic performance by
providing additional torques. However, the explosive jumping
of a soft quadrupedal robot with parallel compliance is still an
open problem that needs further investigation.

In terms of jumping with rigid quadrupeds, impressive re-
sults [9], [10], [11], [12], [13], and [14] have been achieved by
virtue of cutting-edge technologies such as trajectory optimiza-
tion (TO) and reinforcement learning (RL). However, the above
studies, especially the model-based methods, mainly focus on
take-off motion generation and control, ignoring the importance
of the landing motion. Although several recent works, such
as [15], [16], and [17] have paid attention to landing control, they
did not realize robust jumping with stable landing and recovery
in a unified way. Furthermore, very limited work has been
done on quadrupedal jumping by exploiting parallel elasticity.
The exception is SpaceBok [8], which is, however, specifically
designed to work in a low-gravity environment. Up to now,
robust jumps in only such low-gravity environments have been
reported [18], [19]. Therefore, no work has so far demonstrated
robust jumping of quadrupedal robots with parallel compliance
in standard gravity conditions.

This article aims to propose such a control architecture to-
gether with experimental validation, both in simulation and on
real hardware. More specifically, to successfully jump with the
soft quadruped, we notice that the robot should first squat toward
the ground to pretension the springs and use the potential energy
for an explosive takeoff, followed by a compliant touchdown to
ensure a stable landing and recovery. To accomplish this task
with robustness against dynamic disturbances, the robot should
1) obey the compliant dynamics, and 2) utilize an impact-aware
jumping control strategy. To this end, we first introduce an actu-
ated spring-loaded inverted pendulum (SLIP) model to capture
the compliant takeoff and landing dynamics, with the capabil-
ity of explicitly characterizing the parallel compliance. Based
on this reduced-order template model, an offline TO problem
is formulated for generating 3-D feasible jumping motion by
taking into account kino-dynamic (KD) constraints. Second, an
impact-aware landing control strategy is proposed for online
landing motion regulation (LMR). Particularly, based on the real
takeoff states, real-time quadratic programming (QP) is built to
adjust the leg motion in the air. After touchdown, an online TO
is then activated for recovery motion regulation.

Experimental results demonstrate that the rigid quadruped
Go1 [20] can accomplish versatile 3-D jumps with robustness
against dynamic disturbances, including unmodeled center of
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mass (CoM) and angular offsets, external forces, and surface
unevenness. Furthermore, this approach is directly applied to the
soft E-Go robot, a modified Go1 with the additional design of
parallel elastic actuators (PEAs), demonstrating that 1) parallel
elasticity encourages more explosive motion. For example, we
achieve at least a 20% increase in jumping distance and at least
50% in landing height, and 2) parallel compliance contributes to
a lower energy cost in accomplishing a dynamic jumping task.

To summarize, this work contributes to the state of the art in
dynamic jumping of quadrupeds as follows.

1) A SLIP-based KD-type1 TO for 3-D jumping motion
generation that can actively exploit parallel elasticity for
dynamic jumping without requiring a precomputed refer-
ence joint trajectory.

2) An impact-aware LMR. Through online optimization, the
preimpact leg motion modulation (LMM) and postimpact
landing recovery (LR) endow the robot with robustness
against uncertainties.

3) Extensive experiments on quadrupedal jumping with par-
allel compliance. These validations demonstrate for the
first time the controlled robust jumping of a PEA-driven
quadruped in standard gravity conditions.

The rest of this article is organized as follows. Section II
reviews the related works, followed by an introduction to our
methodology in Section III. Section IV and Section V sepa-
rately present the methodology for SLIP-based jumping motion
generation and impact-aware landing control. In Section VI, we
introduce the details of motion implementation. Sections VII
and VIII separately present simulation and hardware experimen-
tal results. Finally, Section IX concludes this article and draws
connections with current studies by overall discussions.

II. STATE OF THE ART

A. Model-Based Dynamic Jumping With Parallel Compliance

Based on full-body dynamics, the works in [9], [10], [22],
and [23] generated the feasible jumping motion, requiring a
reference joint trajectory defined in advance. The work in [24]
proposed an offline framework without requiring prior knowl-
edge of reference motion and contact schedule, relying on a
time-consuming evolutionary search. To improve the computa-
tional efficiency, single rigid body (SRB) dynamics, e.g., [11],
[15], and [25], and centroidal dynamics, e.g., [12] and [26], could
be used, which, however, again require the reference trajectory
and assume a fixed stance time. In addition, no parallel elasticity
is considered in the above frameworks.

Although recent work [27] has managed to plan natural
locomotion using full-body compliant dynamics, no jumping
evaluation has been reported. In contrast to the high-order model,
SLIP [28] captures the compliant jumping dynamics with very
few open parameters. However, the assumption of constant
spring stiffness and a fixed rest leg length in the canonical SLIP
model [29] limits its application to highly dynamic locomotion,
such as high-speed running and jumping. To tackle this issue,
researchers introduced the concept called “actuated” SLIP, by
changing rest leg length [30], [31], [32], spring constant [33], or
force rules [34]. These SLIP variants have been applied in the
locomotion of compliant legged robots, such as [35], [36], [37],

1KD optimization usually refers to the problem formulation obeying cen-
troidal dynamics while fulfilling the full-body kinematic constraints [21]. This
work follows the SLIP dynamics while considering joint-level kinematics.

and [38]. Nevertheless, to the best of the authors’ knowledge,
there is no application to quadrupedal jumping with parallel
elasticity yet.

Two problems must be answered before applying the SLIP
model to quadrupedal jumping with parallel compliance. That
is, 1) How to model the parallel compliance introduced by the
mechanical design? 2) How to guarantee feasibility in motion
planning, e.g., satisfying actuation constraints? Regarding point
1), current works estimate the stiffness of the quadruped robot at
the system level. Thus, it is hard to highlight the contribution of
parallel compliance in executing jumping motions. Regarding
point 2), existing SLIP-based motion planners focus on the
generation of Cartesian trajectory, including the CoM and leg
trajectories, usually ignoring the joint space constraints. As a
consequence, an infeasible trajectory could be generated.

To tackle these issues, we first introduce a novel actuated SLIP
model, decoupling the system actuation with parallel elasticity.
Then, we propose a KD-type TO for jumping planning, simul-
taneously optimizing the SLIP motion and the joint motions.
Particularly, a 3-D TO is built, enabling the robot to accomplish
versatile jumping tasks.

B. Stable Landing With Recovery

Aside from the take-off motion, landing with compliant re-
covery plays a crucial role in robust jumping, which is usually
ignored by previous studies. Traditionally, stable landing can be
achieved by lower gain feedback control [9], [22], [24], model
predictive control (MPC) [10], [39], or full-body control [40].
However, tracking the predefined trajectories itself is not robust
enough against severe dynamic uncertainties, such as those
caused by modeling mismatch and unknown ground surfaces.
Besides, desired tasks such as landing on a certain position
cannot be achieved if there are tracking errors at the take-off
moment. To tackle these issues, online impact-aware motion
modulation and control are required, which, according to the
impact status, can be divided into preimpact motion modulation
(in the air) and postimpact LR (after touchdown).

To enhance the body reorientation capability in the air, Kol-
venbach et al. [18] added a reaction wheel inside the robot,
and Kurtz et al. [41] increased the mass of the foot to modulate
the mass distribution. Recently, Tang et al. [42] designed a
morphable tail on the back of a quadruped. Aside from hardware
reformulation, some works, e.g., [43] and [44] modulated the
angular momentum through motion control. Nevertheless, the
above in-air strategies focus on posture adjustment, ignoring
the importance of in-air LMM in reaching desired landing
positions [10].

Aside from preimpact motion modulation, postimpact LR
motion regulations have also caught a lot of attention. For
example, Bingham et al. [45] controlled the robot into a “soft
roll” configuration, i.e., a pose that maximizes rolling while also
allowing the robot to behave as a damped spring-mass system,
during landing. Jeon et al. [15] proposed a novel framework
that determines optimal touchdown postures and reaction force
profiles for recovering from various falling configurations. Nev-
ertheless, the approaches in [15] and [45] are only applied to
vertical falling. Recently, Ye and Karydis [16] evaluated the
leg-recovery capability considering body rotation and height
variation without reducing the horizontal velocity at the first
step. Roscia et al. [17] solved the problem of landing control
with aggressive horizontal velocities, which, however, is limited
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Fig. 1. E-Go robot, i.e., the enhanced Unitree Go1 robot with parallel springs
attached on actuated joints, accomplishes multiple jumping tasks: (a) diagonal
jumping, i.e., forward 50 cm and leftward 30 cm, in the rigid configuration
without spring engaged, (b) jumping off of an unknown pad (5 cm in height) in
the compliant configuration with springs engaged, (c) jumping onto a 15 cm-high
box in the compliant configuration with springs engaged.

by the assumption of landing on flat ground. Rudin et al. [19] and
Qi et al. [46] realized soft landing on uneven terrains using RL.
To the best of the authors’ knowledge, they only test performance
in low-gravity scenarios that enable a long flight phase, and it is
still unclear how the performance is in the on-Earth scenario.

In this work, to compensate for the state errors at the take-off
moment, we modulate the leg motion in the air, with the aim of
reaching the desired landing position. To achieve a stable landing
with a quick recovery, we propose a postimpact LR scheme to
generate the landing motion online based on the real touch-down
status.

III. METHODOLOGY OVERVIEW

The SLIP-based motion planning and the implementation are
illustrated in Fig. 2.

In the motion planning stage, we optimize the jumping motion
and landing motion in a unified manner. Particularly, an offline
TO is formulated to optimize 3-D jumping motion, considering
KD constraints. Based on a novel actuated SLIP model, parallel
compliance can be explicitly exploited. After takeoff, a preim-
pact QP is employed to regulate the leg motion in the air and an
online TO is triggered for LR after touchdown.

To realize quadrupedal jumping, we first map the SLIP to
the quadrupedal robot. Then, we adopt a hybrid torque (τ r)
control strategy including feedback impedance control (τ fb)
and feedforward torque (τ ff) compensation for motion tracking.
Notably, during the stance and landing phases, a convex MPC
strategy is adopted to compute ground reaction forces (GRFs),
which are balanced by joint torques (τGRF). In addition, when
PEA add-ons are engaged, a feedforward compensation for the
spring torque (τs) is activated.

Notations: In the remaining, matrices and vectors are noted
in bold fonts. The superscript (·)T represents the transpose oper-
ation. For the matrix with multiple rows and columns (noted in
the bold normal font), the subscript (·)(k) means the kth column
and the subscript (·)(j,k) notes the element at the jth row and
kth column. In contrast, for the vector (with the size n× 1 or
1× n that is noted in the bold italic font), (·)(k) refers to the
kth element. In is the identity matrix with the size of n× n.
Variables accompanied with (·)r and (·)e separately denote
the reference and estimated values. Besides, variables with the
superscript (·)max and (·)min separately denote the upper and
lower boundaries. In the following, we index the four legs using

the pair: front left → FL: 1, front right → FR: 2, rear left → RL:
3, rear right → RR: 4.

IV. SLIP-BASED 3-D JUMPING MOTION GENERATION

A. Dynamics of the Actuated SLIP

The canonical SLIP [29] assumes a lumped mass attached to
a mass-less prismatic spring, as illustrated in Fig. 3(a). Conse-
quently, the CoM motion is fully determined by gravity in flight
and is regulated by the spring force when the leg touches down.
That is, the CoM acceleration is as follows:

In contact: c̈ =
ks|l0 − l|̂l

m
+ g

In flight: c̈ = g (1)

where l = c− pf (c ∈ R3 and pf ∈ R3 separately denote the
3-D CoM and leg position) is the leg vector and l̂ is the unit vector
along the leg retraction direction, c̈ ∈ R3 and g = [0, 0,−g]T

separately denote the 3-D CoM acceleration and gravitational
acceleration, with g being the vertical gravitational constant.

Equation (1) tells that, given the initial state, the SLIP motion
is totally determined by the spring constant ks and rest length
|l0|, limiting its application to versatile tasks. For example, the
initial state should be carefully tuned to accomplish jumps at dif-
ferent speeds. Besides, it is nontrivial to identify the equivalent
spring constant ks of a robotic system.

To alleviate the above limitations, we consider the actuation
inputs, which generate an additional driving force when in
contact with the ground [see Fig. 3(b)]. As a consequence, we
have the actuated SLIP dynamics determined as follows:

In contact: c̈ =
ks|l0 − l|̂l

m
+ g + u

In flight: c̈ = g (2)

where u ∈ R3 is the acceleration generated by the actuator.
In this enhanced model, u can be interpreted as the actuation

input, which can also be used to capture the variation of the
spring constant, rest leg length, or force rules. A detailed expla-
nation from the perspective of Lagrange mechanics is attached
in Appendix A. By directly representing it as a virtual actuator
we can then gain a more intuitive insight into how it affects
the behavior of the system. In (2), ks is then interpreted as the
passive elasticity contributed by the mechanical add-ons, e.g.,
parallel springs in our E-Go robot. In this sense, ks is zero if no
parallel spring is engaged, which is, however, not allowed in the
other SLIP variants.

To apply the novel actuated SLIP model to a quadrupedal
system, we should first match the reduced-order model with
the full-body model of the E-Go with parallel elasticity. We do
this by putting the quadrupedal robot in a homing pose. Using
the definition in Fig. 4, the rest leg length equates to the homing
height, i.e., |l0| = z0. Then, we can derive the spring constant ks
for SLIP by considering the PEA design choice, see Appendix B.
More details about motion mapping from SLIP to the quadruped
are given in Section VI-A.

B. KD-Type TO for 3-D Jumping Motion Generation

We now focus on the jumping motion during the stance
phase and the flight phase by assuming that all feet lift off
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Fig. 2. Motion planning and control approach for 3-D quadrupedal jumping, with the capability of exploiting parallel elasticity. In the “Motion planning” panel,
the red arrows mark the movement directions.

Fig. 3. (a) 3-D canonical SLIP and 3-D actuated SLIP (b). In (b), the input
from the actuator (depicted by the dashed cylinder attached to the leg link) is
explicitly considered, expressed as mu.

Fig. 4. PEA-driven quadrupedal robot and its SLIP representation. (a) and
(b) separately plot the side view and front view when putting the robot in the
homing configuration. During the whole jumping process, we assume xf =
xr = lf = lr and yl = yr = wl = wr . q1(q4), q2(q5), and q3(q6) separately
denote the joint angle of the calf, thigh, and hip joint.

simultaneously and no body rotation occurs during the stance
phase, as depicted in Fig. 5. Assuming Ns knots for the
stance phase (the timestep of each knot is ts) and Nf knots for
the flight phase (each knot lasts tf ), we define a TO as follows:

arg min
X,u,q,t,ξ

Jcost (3a)

s.t. Kinematics constraints :

X(1) = X0 (3b)

Ẋ(1) = Ẋ0 (3c)

Fig. 5. Example jumping trajectory generated by the KD-type optimization.
The red dashed curve represents the CoM trajectory.

q(1) = q0 (3d)

(1−ξ)zt≤Xz(Ns)≤(1+ξ)zt (3e)

(1−ξ)λr≤Xλ(Ns+Nf )≤(1+ξ)λr, λ∈{x, y}
(3f)

Xz(Ns+Nf ) = zr (3g)

0 < ξ < ξmax (3h)

tmin ≤ t ≤ tmax (3i)

∀k ∈ [1, 2, . . . , Ns+Nf − 1] :

X(k+1) = Taylor(X(k), Ẋ(k), Ẍ(k), t) (3j)

Ẋ(k+1) = Taylor(Ẋ(k), Ẍ(k), t) (3k)

qmin ≤ q(k) ≤ qmax (3l)

∀k ∈ [1, 2, . . . , Ns] :

l(X(k)) ∈ conv[leg] (3m)

FK(X(k),q
j
(k)) = pj

f , j ∈ {1, …, 4}. (3n)

Dynamics constraints :

∀k ∈ [1, 2, . . . , Ns] :

τmin ≤ τ (X(k), Ẍ(k),q(k)) ≤ τmax (3o)
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Ẍ(k) = Fs(X(k))/m+ g + u(k) (3p)

uz(k) + F s,z(X(k))/m ≥ 0 (3q)

−μ ≤ Ẍλ(k)/(Ẍz(k)+g) ≤ μ, λ ∈ {x, y}
(3r)

∀k ∈ [Ns + 1, . . . , Ns+Nf − 1] :

Ẍ(k) = g (3s)

where decision variables contain X, u, q, t, and ξ. X ∈
R3×(Ns+Nf ) comprises the optimized sagittal (Xx ∈ RNs+Nf ),
lateral (Xy ∈ RNs+Nf ), and vertical (Xz ∈ RNs+Nf ) positions
at all knots, u ∈ R3×Ns denotes the optimized sagittal (ux ∈
RNs), lateral (uy ∈ RNs), and vertical (uz ∈ RNs ) accelera-
tions (i.e., control inputs) during the stance phase, q ∈ R12×Ns

consists of optimized joint angles of four legs (qFL,qFR,qRL, and
qRR ∈ R3×Ns), t = [ts, tf ]

T ∈ R2 contains the step sizes for
stance and flight phases, ξ ∈ R is the slack variable. Taylor(·)
denotes the Taylor expansion.

1) Cost Function: The cost function in (3a) is defined as
follows:

Jcost = Jstance + Jtakeoff+Jflight+Jland+Jt+Jq+Jξ (4a)

with

Jstance =

Ns∑
k=1

wu‖u(k)‖2+
Ns−1∑
k=1

wa‖Ẍ(k+1)−Ẍ(k)‖2 (4b)

Jtakeoff= −wvx‖Ẋx(Ns)‖2−wvy‖Ẋy(Ns)‖2−wvz‖Ẋz(Ns)‖2
(4c)

Jflight =

Ns+Nf∑
k=Ns+1

wf‖Xz(k) − zt‖2 (4d)

Jland = wx‖Xx(Ns+Nf) − xr‖2+wy‖Xy(Ns+Nf) − yr‖2
(4e)

Jt = wt‖t− tr‖2 (4f)

Jq =

Ns∑
k=1

wq‖q(k) − q0‖2 (4g)

Jξ = ws‖ξ‖2 (4h)

where Jstance penalizes control inputs and the acceleration incre-
ments to achieve smooth behavior, Jtakeoff rewards high shooting
velocities to reach desired landing positions, Jflight penalizes
deviations from the nominal takeoff height zt during the flight
phase to avoid unrealistic height, Jland minimizes the tracking
error of the desired landing position, i.e., [xr, yr], Jt penalizes
the deviation from the reference time steps (tr = [trs, t

r
f ]

T ∈ R2

are tuned by hand), Jq penalizes the joint angle variations from
the initial angles (q0 ∈ R12 is the initial joint angles in the
homing state), wu, wa, wvx, wvy , wvz , wf , wx, wy , wt, wq ,
and ws are the positive weights.

2) KD Constraints: The following kinematic constraints
(3b)–(3n) and dynamic constraints (3o)–(3s) are taken into
consideration in jump motion generation.

Kinematics constraints: Equations (3b)–(3d) define the initial
jumping state, i.e., the homing pose, where q0 is the initial joint

angle computed by inverse kinematics. As plotted in Fig. 4(a),
we have the initial state with zero velocity

X0 = [0, 0, z0 ]
T
, Ẋ0=[0, 0, 0 ]

T (5)

with z0 being the homing height.
Equation (3e) limits the shooting height at the take-off mo-

ment. By using inequality constraints, we do not need to tune the
shooting height by hand for different jumping tasks. In practice,
we found that in order to jump longer and higher, the robot should
shoot at a big height with a large shooting velocity as much
as possible. Thus, we can give an initial guess of the nominal
shooting height as follows:

zt =
√

(lthigh + lcalf)2 − l2f (6)

where lthigh, lcalf, and lf separately denote the thigh-link length,
calf-link length, and front thigh offset, as depicted in Fig. 4(a).

Equations (3f) and (3g) define the terminal conditions at the
end of the flight phase (i.e., the touch-down moment), with λr

in (3f) (λ∈{x, y}) being the target jumping distance. As plotted
by Fig. 5, given a desired landing height (hd), zr in (3g) is
determined as follows:

zr= z0 + hd. (7)

To enhance the solvability, we use soft constraints in (3e)
and (3f) by introducing a slack variable ξ, which is clamped
by an inequality constraint expressed in (3h). In (3h), the upper
boundary ξmax is computed to obey the height limits, e.g.,

ξmax =
√

(lthigh + lcalf)2/zt − 1. (8)

The soft constraints in (3f) allow in a minor error between
the generated landing position (at the (Ns+Nf )th node) and the
desired position, which can be compensated by modulating leg
motions in the flight phase. Note that we do not introduce ξ in
(3g) because we expect the robot to land in the homing pose at
the end of the flight phase.

Equation (3i) limits the step size, with tmin ∈ R2 and tmax ∈
R2 being the minimal and maximal values, respectively.

Equations (3j) and (3k) describe the state transition between
neighboring knots. In this work, we adopt the Euler integration
to guarantee the continuity, using the respective step size t,
i.e., ts (t(1)) for the stance phase and tf (t(2)) for the flight
phase, and the corresponding acceleration (computed using (3p)
during the stance phase and by (3s) during the flight phase).
Equations (3j) and (3k) are specialized by Taylor expansion as
follows:

X(k+1) = X(k) + Ẋ(k)t+ 0.5Ẍ(k)t
2

Ẋ(k+1) = Ẋ(k) + Ẍ(k)t. (9)

Equation (3m) limits the leg extension and retraction to obey
the kinematic reachability. To be specific, we have the following:

lmin ≤ l(X(k)) =
√

X2
x(k) +X2

y(k) +X2
z(k) ≤ lmax (10)

where lmin and lmax separately denote the minimal and maximal
leg length, determined by the joint limits.

Equation (3l) restricts the joint angles, where the upper bound-
ary (qmax ∈ R12) and the lower boundary (qmin ∈ R12) are
determined by the hardware design.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 16,2024 at 09:50:53 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: AROBUST QUADRUPEDAL JUMPING WITH IMPACT-AWARE LANDING: EXPLOITING PARALLEL ELASTICITY 3217

Fig. 6. Impact-aware LMR (taking the sagittal motion for an example). (a) LMM in the air. The red dashed curve plots the CoM trajectory. The green dashed
and solid curves separately plot the estimated leg trajectory before LMM and the modulated leg trajectory after LMM. (b) SLIP-based LR after touchdown.

Equation (3n) restricts the leg movements during the stance
phase to avoid the slippage of support feet. That is, the con-
straints in (3n) are given as follows:

FK(X(k),q
j
(k)) = pj

f (11)

where pj
f is the jth leg position during the stance phase (i.e.,

[xf , yl, 0]
T, [xf ,−yl, 0]

T, [−xr, yl, 0]
T, and [−xr,−yl, 0]

T, as
illustrated in Fig. 4). FK(·) denotes the forward kinematics
operation [47].

Dynamics constraints: Equation (3o) restrict the joint torques,
where τ (·) in (3o) denotes the operation for computing the
commanded torque, see Appendix C. Since all the legs are
presumed to be massless, we do not limit the torque during the
flight phase.

Equation (3p) computes the CoM acceleration during the
stance phase, where the spring forces (Fs(X) ∈ R3×Ns) are
computed by the first row in (2). Specifically

Fs(X(k))=

⎡
⎣F s,x(X(k))
F s,y(X(k))
F s,z(X(k))

⎤
⎦=ks(l(X(k))− z0)

l(X(k))

⎡
⎣Xx(k)

Xy(k)

Xz(k)

⎤
⎦ (12)

where l(X(k)) is computed by (10), F s,x(X) ∈ R1×Ns ,
F s,y(X) ∈ R1×Ns , andF s,z(X) ∈ R1×Ns separately represent
the sagittal, lateral, and vertical components of the spring forces
during the stance phase.

Equation (3q) restricts the vertical acceleration to avoid a fall.
Equation (3r) prevents slippages where μ is the friction

coefficient.
Equation (3s) computes the CoM acceleration in flight.
Using the above formulation, we can generate the 3-D op-

timal jumping motion for a given jumping task. One example
trajectory is plotted by Fig. 5.

Remark 1: Differing from the jumping motion planners in [9],
[10], [11], [12], [22], and[23], our TO formulation does not
need a reference joint trajectory for the whole jumping mo-
tion. Furthermore, unlike many SLIP-based motion planners,
e.g., [35], [48], and [49], we do not optimize the touchdown
motion, which can be characterized by the touch-down angle
[see “θpt” in Fig. 6(a)], in this TO formulation. Instead, we resort
to an impact-aware LMR strategy to achieve a stable landing
pose.

V. IMPACT-AWARE LMR

Triggered by the landing event, LMR is decomposed into a
preimpact LMM and a postimpact LR. Particularly, the LMM

adjusts the leg motion in the air according to the real take-off
state. Then, based on the landing state, the LR generates the
recovery motion for a stable landing with compliance.

A. Preimpact LMM

Due to dynamic disturbances, e.g., modeling mismatch, the
reference shooting state at the take-off moment may not be
well tracked, resulting in an undesired landing location. To
correct this, we modulate the leg configuration before touch-
down, assuming that the leg movement does not change the
body orientation due to the lumped mass assumption.

Before clarifying our design choice, we define three landing
states, which are illustrated in Fig. 6(a). That is

Desired landing state (D-land): It consists of the desired CoM
([xr, yr, zr]T) and leg ([xr, yr, hd]

T) position when landing.
Estimated landing state (E-land): It consists of the estimated

leg and CoM position when landing, assuming that the robot
touches down in the homing pose at the desired landing height.
Here the estimated flight time (δet ) and flight distance ([lex, l

e
y]

T),
which are computed based on the real shooting states [consisting
of shooting position ([xe, ye, ze]T) and velocity ([ẋe, ẏe, że]T)],
are used to characterize the E-land state.

Modulated landing state (M-land): It consists of the mod-
ulated leg position and CoM position for landing. Specifically,
the horizontal distance offsets between the leg and CoM position
that are denoted as δx, δy (by default, δx = δy = 0), and landing
height δz (by default, δz = z0) are used to describe the modu-
lated landing configuration. [δx, δy, δz]T are computed online so
as to reach the desired landing position.

Considering the modulated landing height δz can be computed
using the modulated flight time (denoted as δt), we here choose
δt, δx, and δy as decision variables. We then modulate the leg
motion by solving the following QP

arg min
δt,δx,δy

J = αt(δt−δrt )
2+βx(δx)

2+γx(xland−xr)2

+βy(δy)
2+γy(yland−yr)2 (13a)

s.t. δmin
ζ ≤ δζ ≤ δmax

ζ , ζ ∈ {t, x, y} (13b)

λland = λ̇eδt + λe + δλ, λ ∈ {x, y} (13c)

where δrt is the reference flight time, xland and yland are the
modulated sagittal and lateral landing position, [δmin

t , δmax
t ]T,

[δmin
x , δmax

x ]T, and [δmin
y , δmax

y ]T separately denote the boundary
values of δt, δx, and δy .αt,βx,βy ,γx, andγy are positive penalty
coefficients.
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1) Objective Function: The objective function defined in
(13a) enables the robot tracking δrt , xr, and yr. In particular,
δrt is chosen in such a way that the robot would jump onto the
desired distance, i.e.,

δrt = max{δxet , δyet , δzet } (14)

with [δxet , δyet , δzet ]T being the online-estimated flight time for
reaching the desired 3-D landing position, which are determined
by solving the following:

δxet ẋe + xe = xr

δyet ẏe + xe = yr

−g

2
(δzet )2 + żeδzet + ze = hd + z0. (15)

In the third row of (15), δzet is chosen to be the larger value
between the two solutions of the second-order equation.

2) Feasibility Constraints: Equation (13b) limits the vari-
ation of δt, δx, and δy . Specifically, δmin

t is achieved when
the robot lands with the leg fully stretched (i.e., with zmax =
lthigh + lcalf) and δmax

t is achieved when the robot lands in the
minimal height (i.e., with zmin in height). That is, we compute
δmin
t and δmax

t by solving the following:

−g

2
(δmin

t )2 + żeδmin
t + ze = hd + zmax

−g

2
(δmax

t )2 + żeδmax
t + ze = hd + zmin (16)

where zmin is tuned by hand obeying the kinematics limits.
The hyperparameters, i.e., δmin

x , δmax
x , δmin

y , and δmax
y in (13b)

are determined by the task. For example, when jumping forward,
we have δmax

x > δmin
x = 0 such that the robot would stop in the

landing position without falling forward.
Equation (13c) computes the modulated sagittal jumping

distance xland and lateral jumping distance yland by the fact that
there is no horizontal force imposed on the robot in flight.

Since the above QP is solved very fast, the preimpact LMM
can be accomplished in real-time. After solving δt, the modu-
lated height δz is determined as follows:

δz=max
{
min{−g

2
(δt)

2+żeδt+ze−hd,
√
z20−δ2x−δ2y},zmin

}
.

(17)
Remark 2: Using LMM, the robot would touch down follow-

ing the M-land configuration. Considering that the real shooting
state is prone to deviating from the reference one, M-land usually
does not coincide with D-land. That is, the SLIP would land
with a nonzero touch-down angle. Stopping the robot in M-land
configuration could stabilize the robot but may result in an
undesired pose. For example, when jumping forward at a long
distance, the robot would stop with its body leaning backward,
resulting in a negative pitch angle. We will discuss it in detail in
Section VII-C1.

B. Postimpact LR

To reduce the landing impact and quickly return to the homing
state (i.e., D-land configuration), we propose a postimpact LR
scheme after detecting the landing event. Currently, we assume
that the robot can stop without making further steps after touch-
down. Besides, differing from the previous work, e.g., [17], we
do not assume that the robot lands on flat ground.

Given the touch-down state, i.e., postimpact CoM position
([δex, δ

e
y, δ

e
z ]

T) and velocity ([δ̇ex, δ̇
e
y, δ̇

e
z ]

T) relative to the landing
position [see Fig. 6(b)], we solve a light-weighed TO for real-
time LR.

Assuming Nl knots during the landing phase with each knot
lasting time tl, we define the following TO problem:

arg min
Xl,ul,tl

J l
cost (18a)

s.t. Kinematics constraints : (18b)

Xl
(1) = Xe

0 (18c)

Ẋl
(1) = Ẋ

e

0 (18d)

λmin
l ≤ X l

λ(Nl)
≤ λmax

l , λ ∈ {x, y, z} (18e)

tmin
l ≤ tl ≤ tmax

l (18f)

∀k ∈ [1, 2, . . . , Nl − 1] :

State transition in (9) (18g)

lmin ≤ l(X(k)) ≤ lmax (18h)

Dynamics constraints : (18i)

∀k ∈ [1, 2, . . . , Nl] : SLIP dynamics in (3p)
(18j)

where Xl ∈ R3×Nl comprises the optimized sagittal (X l
x ∈

RNl), lateral (X l
y ∈ RNl), and vertical (X l

z ∈ RNl) positions at
all knots,ul ∈ R3×Nl comprises the sagittal (ul

x ∈ RNl), lateral
(ul

y ∈ RNl ), and vertical (ul
z ∈ RNl ) component of control

inputs.
1) Cost Function: The cost function in (18a) is defined as

follows:

J l
cost=J l

land+J l
track+J l

stop+J l
t (19a)

with

J l
land=

Nl∑
k=1

wl
u‖ul

(k)‖2+
Nl−1∑
k=1

wl
a‖Ẍl

(k+1)−Ẍl
(k)‖2 (19b)

J l
track = wl

p‖X(Nl) −Xr
(Nl)

‖2 (19c)

J l
stop = wl

v‖Ẋ(Nl)‖2 (19d)

J l
t = w l

t‖tl − trl ‖2 (19e)

where J l
cost penalizes control inputs and the acceleration varia-

tions, J l
track penalizes the tracking error of the homing position

(Xr
(Nl)

= [0, 0, z0]
T) at the end of the landing phase, J l

stop pe-

nalizes the final CoM velocity, J l
t penalizes the deviation of step

size, wl
u, wl

a, wl
p, wl

v , and wl
t are positive penalty weights.

2) Feasibility Constraints: Equations (18c) and (18d) define
the initial conditions for recovery motion, which are given by
the estimated touch-down state, i.e.,

Xe
0=

[
δex, δ

e
y, δ

e
z

]T
, Ẋ

e

0=
[
δ̇ex, δ̇

e
y, δ̇

e
z

]T
. (20)

Equation (18e) defines the terminal conditions at the end of
the landing phase. To improve the solvability, we allow the final
CoM to move within a small range, clamped by the boundaries
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Fig. 7. Motion mapping from the SLIP model to the quadrupedal robot, taking
the sagittal motion as an example.

λmin
l and λmax

l (λ∈{x, y, z}).2 Besides, we do not impose strict
constraints on the final CoM velocity.

Equation (18f) guarantees a feasible step size, with tmin
l and

tmax
l being the minimal and maximal values, respectively.

Equation (18g) describes the state transition between neigh-
boring knots, following the rules defined in (9).

Equation (18h) constrains the leg length to obey the kinematic
limit, using the same rule in (10).

Equation (18j) describes the SLIP dynamics, sharing the same
dynamic property with the stance phase.

Remark 3: Unlike the KD-type TO defined in Section IV-B, we
do not optimize the joint-level motion, allowing an aggressive
recovery motion. Besides, friction constraints are not obeyed
anymore. This simplification makes it possible to achieve a time-
efficient solution. The usage of the online LR scheme would help
to maintain balance in uncertain environments and achieve a
quick recovery behavior with compliance. Note that the recovery
trajectory is computed in the local support coordinate, alleviating
the need for an accurate estimation of the global landing position.

If not differently specified, LMR in the following parts in-
cludes LMM (in Section V-A) and LR (in Section V-B).

VI. MOTION IMPLEMENTATION

This section clarifies implementation details for executing
the jumping and landing motions. First, we present the motion
mapping strategy to achieve executable quadrupedal motions.
Then, we briefly introduce the low-level control strategy to
complete the system.

A. Motion Mapping: From SLIP to Quadruped

Assuming massless legs, the CoM coincides with the trunk
center. Considering the optimal CoM trajectory is generated at a
low frequency, we use linear interpolation to generate a reference
trajectory for high-frequency low-level control.

Since there is no leg movement when getting in contact with
the ground, the leg positions of the quadrupedal robot during
the stance and landing phases are directly determined by the
SLIP leg position, using the rules revealed in Fig. 4. Therefore,
we focus on the leg motions during the flight phase. To this
end, we split the leg movement in the air (in the body frame)
into two segments, following the principles revealed in Fig. 7.
Specifically, before reaching the peak height (the peak time
is estimated by tp = że/g), we drive the leg to move from

2In this case, the final state generated by the TO may not coincide with the
homing pose. In real applications, the robot is driven to the homing pose by
tracking a consecutive segment of the reference trajectory that is generated by a
polynomial interpretation. We will demonstrate it in Section VII-C1.

take-off position ([−xe,−ye,−ze]T) to the transitional position
([0, 0,−ztr]

T). Then, the leg moves toward E-land configuration,
i.e., [δx, δy,−δz]

T within a quarter of flight phase (the time
period was tuned by experience to make sure the E-landing
configuration could be reached before touchdown). Here, we use
the logistic function, i.e., 1/(1 + ea(t−b)), to achieve a smooth
motion passing through the above key points. After obtaining
the SLIP leg motion, we obtain the quadrupedal leg position by
assuming the rear leg, front leg, and SLIP leg coexist in a straight
line (marked by the blue dashed line Fig. 7), aligning with the
horizontal surface. In particular, we have xr = xf and yr = yl.

Remark 4: In Fig. 7, we set the transitional leg position to
fall below the body center with ztr in vertical height. By default,
ztr = z0. In real applications, ztr can be changed for versatile
tasks, e.g., jumping above an obstacle. More discussions can be
found in Section VII-C3.

Note that when integrating LMM, the measured body inclina-
tions in the air are incorporated in inverse kinematics. Particu-
larly, after reaching the peak height, the reference rotation angle
is generated using the logistics interpolation, starting from zeros
to the measured values. After landing, when LR is engaged, a
smooth rotation trajectory is generated by logistics interpolation
such that the robot returns to zero inclination. In this work, we
do not estimate the inclination of the contact surface. Thus, there
could still be body inclinations after LR when landing on uneven
surfaces.

B. Low-Level Torque Control

This section briefly introduces the torque control strategy.
1) MPC-Based GRF Compensation: We introduce the fol-

lowing MPC formulation for GRF generation:

argmin
Γ,F

Nh∑
k=1

‖S(k) − Sr
(k)‖2Q + ‖Γ(k)‖2R (21a)

s.t. S(k) = AS(k−1) +BΓ(k) (withS(0) = Se) (21b)

Γ(k) =

[
I3×3 · · · I3×3

[p1
(k)−c(k)]× · · · [p4

(k)−c(k)]×

]
F(k)

+

[
g

03×1

]
(21c)

d(pj
(k))F

j
(k)=0 (d(pj

(k))≥0), j∈ {1, . . ., 4} (21d)

0 ≤ Fj
(3,k) ≤ Fmax

z (21e)

−μFj
(3,k) ≤ Fj

(i,k) ≤ μFj
(3,k), , i ∈ {1, 2} (21f)

where state S=
[
cx, cy, cz,θr,θp,θy, ċx, ċy, ċz, θ̇r, θ̇p, θ̇y

]T∈
R12×Nh consists of 3-D CoM position, CoM velocity, body
angles, and angular velocity, Se ∈ R12 is the measured state,
control inputs include the linear and angular accelerations,

i.e.,Γ =
[
c̈x, c̈y, c̈z, θ̈r, θ̈p, θ̈y

]T ∈ R6×Nh , and GRFs, i.e.,F ∈
R12×Nh .Fj ∈ R3×Nh(j ∈ {1, . . ., 4}) denotes the GRF of each
leg. pj

(k) ∈ R3 and c(k) ∈ R3 separately denote the jth leg
position and the 3-D CoM position at the kth step.
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Objective function: The objective function in (21a) penalizes
the tracking error with minimal control efforts. The reference
CoM position and velocity in Sr are generated by the strategy
in Section IV-B and Section V. The reference body angles and
angular velocities are zeros during the stance phase. In contrast,
during the landing phase, the reference body angles are nonzeros,
as described in Section VI-A. Nh is the prediction horizon
length. Q ∈ R12×12 and R ∈ R12×12 are the diagonal weight
matrices.

Feasibility constraints: The state transition is processed in
(21b), whereA andB are computed offline following the Taylor
expansion.

Equation (21c) encapsulates the SRB dynamics where [·]×
denotes cross-product operation. For the first step k = 1, Γ(1)

is computed through the forward kinematics. For the remaining
steps within the prediction window, it is precomputed based on
the desired CoM position relative to the foot position.

The contact complementary conditions in (21d) ensure that
GRFs are only assigned to the feet that are in contact with
the surface, where Fj

(k) ∈ R3 is the 3-D GRF exerted on the

jth foot at the future kth step, and d(pj
(k)) is the non-negative

distance metric between the ground and the jth foot. Particularly,
d(pj

(k)) = 0 when the robot touches the ground.
Equations (21e) and (21f) ensure that the GRFs stay within

the friction cone. Besides, we also restrict the maximum normal
component. Fj

(1,k) ∈ R, Fj
(2,k) ∈ R, and Fj

(3,k) ∈ R separately
denote the sagittal, lateral, and vertical GRF components on the
jth foot. Fmax

z is the maximal vertical force tuned by hand.
After solving the GRF, the feedforward torques (τGRF) for

GRF compensation are computed, following (35).
2) Spring Force Compensation: The additional spring

torques in the 12 actuated joints introduced by parallel springs
need to be compensated. Given the reference joint angles (qr ∈
R12), we model the spring torques using the softplus function
to achieve a smoother behavior. That is

τ s =

{
log(112 + ekq(q

r−q0)) spring engaged
012 springs not engaged

(22)

where τ s ∈ R12, kq ∈ R12×12, qr ∈ R12, and q0 ∈ R12 sepa-
rately denote the spring torques, diagonal (joint-space) spring
constant matrix, reference joint angle, and the rest joint angles
on the actuated joints, 112 ∈ R12 and 012 ∈ R12 are the vectors
with the constant value 1 and 0, respectively.

Consequently, the feedforward torque (τ ff ∈ R12) is the sum
of GRF torque and spring torque, i.e.,

τ ff = τGRF + τ s. (23)

3) Joint-Level Feedback Tracking: A proportional–
derivative (PD) controller with low gains is adopted for
joint tracking as follows:

τ fb = Kp(q
r − qe) +Kd(012 − q̇e) (24)

whereτ fb ∈ R12,qe ∈ R12, and q̇e ∈ R12 separately denote the
feedback joint torques, real joint angles, and real joint velocities.
Kp ∈ R12×12 and Kd ∈ R12×12 are the diagonal gain matrices.

Finally, the commanded torque (τ r ∈ R12) is generated as
follows:

τ r = τ ff + τ fb. (25)

VII. SIMULATIONS VALIDATIONS

A. Experimental Setup

This part introduces the computing setup for both simulations
and hardware experiments.3

For jumping motion planning, z0 is 0.32 m, and the initial
joint angles for each leg are [0, 0.857, −1.509] rad. The TO
problems in Sections IV-B and V-B are solved using “CasADi”
[50] with Python wrapper, taking “IPOPT” [51] as the solver. For
jumping motion generation, Ns = Nf = 100. The computing
time of the offline TO ranges between 150–8000 ms on a laptop
with an i7 Intel CPU. For the postimpact LR, Nl = 10. It turns
out that the computing time is below 30 ms, meeting the real-time
requirements. Differing from the TO formulations, the online
QP for LMM (in Section V-A) and the MPC (in Section VI-B)
are solved in C++, using the open-source “OSQP” [52] solver.
The MPC considers seven steps further (i.e., Nh = 7) and the
average computation cost for each MPC loop is around 2–3 ms.
Thus, we set the low-level control frequency to be 333 Hz for
both simulations and experiments.

An extended Kalman filter was employed to estimate the
system state, including 3-D CoM position and velocity, together
with body inclination angles. The foot is considered in contact
with the ground when the measured GRF is above a threshold.
The contact phase, including the stance phase and landing phase,
is then detected when at least two feet come in contact with the
ground.

B. SLIP Jumping Performance

1) Jumping Motion Generation: Using the actuated SLIP
model in Section IV-A and the KD-type TO in Section IV-B,
we generate the optimal jumping trajectory. The resultant tra-
jectories for a diagonal jumping task, e.g., 0.5 m forward and
0.2 m leftward jumping, are plotted in Fig. 8.

Jumping trajectories corresponding to ks = 0 N/m are pre-
sented in the first row of Fig. 8, demonstrating that the proposed
actuated SLIP model in (2) can be used for a rigid robot without
parallel elasticity. In this case, horizontal acceleration inputs
(i.e., ux and uy) coincide with total accelerations (i.e., ẍ and ÿ),
see the plots in the second column. When the parallel elasticity is
engaged (taking ks = 1000 N/m for an example), the compliant
3-D jumping trajectories are also obtained, as plotted by the
second row of Fig. 8. The CoM trajectories in the first column
reveal that, in both cases, the final positions are quite close to
the targets. Comparison between the vertical CoM trajectories
(see the red curves in the first column of Fig. 8) demonstrates
that a larger compression during the stance phase with a greater
peak height during the flight phase is accomplished when
ks = 1000 N/m. That is, parallel compliance is utilized for
dynamic jumping.

In addition to the CoM motion, the joint angles and torques of
the FL leg are separately plotted in the third and fourth column.4

As can be seen from the blue curves in the fourth column, the
usage of parallel compliance reduces the peak torque on the calf
joint.

3Videos of all the results are available at https://youtu.be/YMKgi1ro-bM
4In this diagonal jumping task, we found the FL leg suffers the biggest GRF

and the largest torque among the four support legs.
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Fig. 8. Jumping data when ks = 0 (the first row) and ks = 1000 (the second row). In the first column, the CoM positions before and after the black lines
separately denote the stance and flight trajectories, where the black circles mark the desired landing positions. ux, uy , and uz in the second column separately
denote the acceleration input along the x, y, and z axis. [qfl

1, q
fl
2, q

fl
3] and [τfl

1 , τ
fl
2 , τ

fl
3 ] separately denote the joint angles and torques of the calf, thigh, and hip joint

on the FL leg.

Fig. 9. CoM trajectories corresponding to different spring constants, where the
top panel and bottom panel separately plot the sagittal and lateral trajectories.
Colorful markers are added to the take-off positions, and black circles mark the
desired landing positions.

TABLE I
ENERGETIC PERFORMANCE W.R.T VARIABLE SPRING CONSTANTS

2) Energetic Performance With Respect to (w.r.t) Parallel
Compliance: For the diagonal jumping task, 3-D CoM trajec-
tories with different spring constants are plotted in Fig. 9. As
can be seen from the z curves between the start points and the
colorful markers, when using parallel compliance, i.e., ks > 0,
the robot can actively compress the springs to store energy and
then release it to jump onto the desired location.

Table I evaluates the energetic performance (during the stance
phase).5 As can be seen from the second row, the peak calf torque
(τmax

1 ) is reduced when the parallel springs are engaged. When
ks = 2000 N/m, the peak τfl

1 is reduced by 57.9% (8.2 versus
19.5). Besides, the energy cost during the stance phase drops.
Note that the energy cost needed by the forward jumping, i.e.,
xr=0.5 m andyr =0 m, is also computed. In the second column,
the total energy cost of the forward jumping is lower than that

5The energy cost is computed by E =
∑N

i=1

∑12

j=1
τ ij q̇

i
jΔt with τ ij and

q̇ij separately denoting the joint torque and angular velocity of the j-th joint
(j ∈ {1, . . . , 12}) at the i-th step, Δt is the time interval for low-level control.

of the diagonal jumping. Again, smaller Es are achieved when
ks > 0. The interesting point is that when the parallel springs
are too stiff, the energy cost will increase (comparing E at
ks = 5000 N/m and E at ks = 4000 N/m). From the partially
enlarged drawing on the x−−z curve in Fig. 9, we found that
due to the large spring force, the robot increases the height before
squatting down. As a result, the robot spends extra energy in
accomplishing the jumping task.

C. Quadrupedal Jumping Simulation

This section validates the jumping performance of the com-
pliant E-Go robot that enhances the Unitree Go1 [20] with
parallel springs. In particular, we highlight the effectiveness
of the impact-aware LMR strategy. The full-body motions are
simulated in PyBullet [53], where the spring force on each
joint is emulated by a proportional law, i.e., τsj = kj(q

r
j − qej )

(j ∈ {1, . . . , 12}) with kj denoting the spring constant of the
jth parallel spring. Without extra specification, we set δmax

x =
0.1 m (for forward jumping), δmax

y = 0.1 m (for leftward jump-
ing), zmin = 0.2 m, and zmax = 0.42 m for the preimpact
LMM. For postimpact LR, we set xmax

l = −xmin
l = ymax

l =
−ymin

l = 0.05 m, zmin
l = 0.15 m, and zmax

l = z0 = 0.32 m.
When generating the quadrupedal leg trajectory, ztr in Fig. 7 is
0.2 m by default. Notably, low-level control gains are unchanged
in the following.

1) Tracking Performance: To start, we analyze the jumping
performance in executing sagittal jumping tasks.

Jumping with impact-aware LMR: The reference trajectory
for 0.7 m forward jumping is generated using the KD-type TO,
with ks = 1500 N/m (In PyBullet, the spring constants of the
hip, thigh, and calf joint are 6, 15, and 6 to match the hardware
design, and the equivalent ks is then computed by the approach
in Appendix B). Results with/without the impact-aware LMR
(including preimpact LMM and postimpact LR) are plotted in
Figs. 10–12.6

6When LMR is disengaged, the robot returns to the homing pose by lock-
ing joints immediately after detecting landing. Consequently, the actual CoM
reference during the landing phase is determined by both the contact center
and the homing configuration. However, to emphasize that no landing motion
is planned online in this case [noted by “(no LMR)” in Figs. 10–12], we here
still use the offline-generated jumping trajectory as the reference for the “(no
LMR)” jumping. In contrast, when the LMR is engaged, the reference landing
motion will be modulated in real-time and then be updated in the plots.
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Fig. 10. Quadrupedal robot jumps on a flat ground, where the red curve plots the reference trajectory generated by the offline TO. The first row shows the jumping
motion without LMR (i.e., without LMM+LR), whereas the second row shows the jumping motion using LMR (i.e., with LMM+LR).

Fig. 11. Quadrupedal robot jumps forward on the flat ground. “(LMR)” and “(no LMR)” separately denote the results with and without the impact-aware LMR.
The shallow red, green, and blue stripe zones separately cover the real stance, flight, and recovery motions when using LMR. The robot motions around the real
landing moments are detailed in the partially enlarged drawings. The yellow line marks the reference take-off time.

Fig. 12. Verical GRF profiles for the forward jumping on the flat ground.
“F r

z ” and “F e
z ” separately denote the reference and measured vertical GRF.

The yellow line marks the reference take-off time.

The reference trajectories (the green curves) in Fig. 11 reveal
that the robot would takeoff at 0.399 s (marked by the yellow
line) and land at 0.804 s. Due to the modeling errors, the robot
tracked the reference during the stance phase with errors. As
a result, the robot took off later, considering that the measured
vertical GRFs (“F e

z ” curves) in Fig. 12 become zeros at 0.408 s.
When the LMR strategy was not integrated [see “(no LMR)”
curves], the tracking errors at the take-off moment led to an
undesired landing status. Specifically, the smaller forward posi-
tion [see “xe(no LMR)” versus “xr(no LMR)” at 0.408 s] with
a smaller forward velocity [see “ẋe(no LMR)” versus “ẋr(no
LMR)” at 0.408 s] led to a shorter landing position. It turns out

that the robot landed at 0.647 m [check the “xe(no LMR)” plot
after 0.9 s in Fig. 11].

In contrast, when the preimpact LMM was incorporated, the
robot moved the leg forward (optimized δx is 0.035 m) with
retraction (optimized δz is 0.2 m) in the air, as demonstrated in
the fourth and fifth snapshots in the second row of Fig. 10. As a
consequence, the robot landed later at 0.852 s, as evidenced by
the “F e

z (LMR)” curve in the bottom panel of Fig. 12. And the
robot stopped at 0.695 m, which is close to the desired location.
After touchdown, the robot followed the updated reference
trajectories that are generated by the postimpact LR, i.e., the
online TO in Section V-B, see the blue-solid and red-dashed
curves in Fig. 11 after 0.852 s. Note that the final CoM height
generated by the online LR is 0.247 m, see the “zr(LMR)”
at 1.287 s. Thanks to the polynomial interpolation, the robot
eventually returned to the homing height. Since the estimated
support height when landing is 0.02 m, the final body height is
0.34 m.

Vertical GRFs on the FR and RR legs are plotted in Fig. 12.
When LMR was not engaged, the robot touched down with
a sudden brake, resulting in larger peak GRFs, as plotted by
“F e

z (no LMR)” curves. In the “(no LMR)” case, since the robot
tried to decrease the velocity to zero without any reconciling
motion, the front leg encountered a larger GRF than the rear
leg. In contrast, with LMR, a compliant landing with smaller
peak GRFs is realized, and the body weight is finally uniformly
distributed into the front and rear legs.

Furthermore, Fig. 13 highlights the effect of the postimpact
LR by comparing the pitch angle and torque profiles (in the
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Fig. 13. Body pitch (top) and right leg knee torque (bottom) for the forward
jumping on the flat ground. Particularly, the jumping using LMM but without
LR scheme is also detailed, denoted by “(no LR).”

knee joint) between “(LMR)” and “(no LR).” When LR was not
integrated, the robot locked its joint to maintain M-land config-
uration. In this case, the robot leaned backward after landing,
considering that the legs were driven forward in the air to reach
the desired landing position. Also, as mentioned in Section VI-A,
the body pitch is not forced to return back to zero when LR is not
used. As a result, there is a negative body pitch after landing, see
“Pitch(no LR)” curve after 1.287 s in Fig. 13. In addition, since
no reconciling motion was imposed in the “(no LR)” case, the
knee suffered larger torques right after touchdown, as evidenced
by the partially enlarged drawing. Then, the rear legs supported
most of the body weight by providing a larger torque, see the
“RR(no LR)” curve after 2 s. In contrast, in the “(LMR)” case,
the weight was uniformly distributed into the rear and front
legs.

Aside from forward jumping, the robot could accomplish
other versatile jumping tasks, e.g., backward 50 cm jumping
and 3-D jumping onto the 20 cm high table. All the tests
reveal that the LMR scheme helps to realize a stable land-
ing with quick recovery. To save space, we put the com-
parison results into the attached video of the Supplementary
Material.

Comparison studies with an SRB TO: We here compare the
proposed KD-type TO with a standard KD TO [15], where
the SRB model is used. In the baseline (noted as “SRB TO”),
in addition to body movement and joint movement, the leg
movement and GRF are also optimized.7 In each simulation, we
added random noise in the sensory feedback (including CoM
position, CoM velocity, body angle, and angular velocity) and
calculated the tracking errors in different channels, including
the mean square error (mse) of forward movement before the
landing phase and the absolute tracking error of forward landing
position. Statistical results of 20 trials under each jumping
distance are reported in Fig. 14.

Fig. 14 reveals that “SRB TO” results in smaller tracking
errors than our KD-type TO (noted as “A-SLIP TO”) in some
cases but larger errors in other cases. That is, our TO obtained a
comparable result with the standard KD optimizer. Note that the
online LMM is not integrated here for a fair comparison. The
result in Fig. 11 has demonstrated that LMM would achieve a
more accurate tracking of the landing position.

7Without lifting off the front legs during the stance phase, the “SRB TO”
hardly generates motions for longer jumps than 0.6 m.

Fig. 14. Comparison study of tracking errors. From top to bottom, the mse of
the forward movement and the absolute error of the forward landing position
are separately displayed.

2) Robustness Against Uncertain Landing Surfaces: This
section validates the landing robustness against external dis-
turbance, e.g., surface uncertainties. In this test, the reference
trajectories for 1 m forward jumping are generated by the offline
KD-type TO. Then, the robot jumps toward an unknown ramp
(inclination angle is 18◦), which is placed at 0.75 m in front.
Comparative results are presented in Figs. 15–17.

The reference jumping trajectories expect the robot to land
at 0.826 s. When the LMM was disengaged, the robot landed
earlier at 0.807 s (see the pink dot curves in the partially enlarged
drawings in Fig. 15), with front legs touching the ground [see
“F e

z (no LMR)” in the top panel of Fig. 16]. After touchdown,
the robot tracked the homing configuration without exploring
a reconciling recovery motion. As a result, the robot suffered
from a larger peak force in the front and rear legs, which can
be found when comparing “F e

z (no LMR)” with “F e
z (LMR)” in

Fig. 16. Besides, due to the surface inclination, the CoM would
lean behind the center of the support feet during the landing
phase. Consequently, after bouncing, the robot tipped over. The
falling robot is shown in the seventh picture in the first row of
Fig. 17.

On the contrary, when LMM was engaged, the robot moved
the leg forward (δx is 0.1 m) in the air with a retraction motion
(δz is 0.2 m), as can be seen from the fourth and fifth pictures at
the bottom of Fig. 17. Consequently, although there is a convex
surface, the later landing still happened (landed at 0.831 s in
this scenario). When the LR was not activated, the robot landed
stably but ended with a lower height and large body inclination.
In contrast, with LR, the robot generated reconciling recovery
motions after landing (see blue curves covered by shallow-blue
stripe in Fig. 15), resulting in lower peak GRFs [plotted by
“F e

z (LMR)” in Fig. 16]. When detecting landing, the robot
squatted down rapidly. After reaching the lowest height, the rear
leg pushed the robot forward and later drove the robot upward.
As a result, the rear leg suffered a larger GRF than the front leg,
as demonstrated by checking “F e

z (LMR)” for the RR and the FR
legs. Note that due to the landing impact and the reducing body
height (needed by the recovery motion) right after touchdown,
the legs lifted off for a short period, see “F e

z (LMR)” from
1–1.1 s. Nevertheless, the robot with retracted legs stabilized
itself using the hybrid torque control scheme. Finally, the robot
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Fig. 15. Quadruped jumps onto an unknown slope. “(LMR)” and “(no LMR)” separately denote the results with and without the impact-aware LMR. The robot
motions around the real landing moments are detailed in the partially enlarged drawings. The yellow line marks the reference takeoff time.

Fig. 16. Vertical GRFs for quadrupedal jumping onto an unknown slope. The
yellow line marks the reference takeoff time.

regulated its CoM to lie above the support center, resulting in a
stable recovery (see the second row in Fig. 17).

Aside from this, the robot also managed to jump on a rough
surface with a random height profile. Taking the 0.7 m forward
jumping as an example, comparison studies (in the attached
video in Supplementary Material) demonstrate that when jump-
ing across an uneven surface with random height (Gaussian
height map with ±1.5 cm in height variation), the robot landed
at 0.67 m by using LMR, longer than 0.61 m when not using
LMR.

3) Jumping With Unknown Obstacles: Adaptable jumping
in scenarios with unknown convex obstacles is also validated
in simulations. To avoid collisions with these convex objects,
the robot should jump as high as possible while retracting
the leg. To increase the peak height in the air, we can use a
smaller wf or set a larger zt in (4d). In addition, a smaller
ztr in Fig. 6(a) and a smaller height boundary zmin in (16)
could be chosen to enable a larger retraction. In this section,
1 m forward jumps under two scenarios are tested, including
jumping onto a box with an unknown height and jumping above
an obstacle. The resultant jumping motions are visualized in
Fig. 18.

In the first scenario (the top of Fig. 18), the jumping trajectory
was generated through setting a smaller wf in (4d). Meanwhile,
we dropped ztr from 0.2 m to 0.1 m. As a result, the peak height
of the reference trajectory increased from 0.56 m to 0.59 m. By
retracting the leg, the robot could land on a 0.3 m high table
placed at 0.5 m in front.

In the second case, we validate adaptable jumping above a
convex obstacle. To encourage a higher jumping, we increased
zt [in (4d)] from 0.39 m to 0.5 m. Besides, the transition height
ztr was reduced to 0.05 m (within the kinematic limit), and zmin

was dropped to 0.15 m. As a result, the robot successfully jumped
above a 23 cm high board, see the bottom of Fig. 18.

In contrast, without LMR, the robot failed in the above two
tasks. Without LR, the robot landed with an undesired ending
pose. Please check the video for detailed comparisons in Sup-
plementary Material.

VIII. HARDWARE EXPERIMENTS

This section presents the hardware experiments on the E-Go
robot, which enhances the rigid robot with parallel compliance.
To start, we briefly introduce the design of elasticity add-ons.
Then, we extensively validate the proposed approach with a
rigid robot. Afterward, we highlight the enhanced jumping per-
formance by exploiting parallel compliance. Without different
specifications, the open parameters for offline TO, online LMM,
and LR used in hardware tests are the same as those used in sim-
ulations, except that zmin and zmin

l are increased to 0.25 m and
0.2 m separately to avoid collisions with the ground. In addition,
the following jumping tasks share the control gains. Inspired
by [9], we reduced the PD gains for (24) after touchdown to
enable a compliant landing.

A. E-Go Design

Delft E-Go is an articulated soft quadruped robot, which
is made by enhancing the commercially available robot Go1
from Unitree [20] with a set of mechanical add-ons. In E-
Go, a dedicated parallel spring strengthens each actuated
joint. As illustrated in Fig. 19(a), the thigh joint is strength-
ened by cable-driven PEA (visualized in the left column
of Fig. 20) and the calf joint is strengthened by a mono-
articulated PEA (see the right column of Fig. 20). Particularly,
the locking mechanism (see Fig. 20) in Delft E-Go encour-
ages easy engagement/disengagement of the parallel springs,
enabling a switch between a rigid and soft configuration.
Also, users can replace the spring with different constants.
These properties support extensive hardware studies with this
platform.
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Fig. 17. Quadruped jumps onto an unknown slope. The first row shows the jumping motion without LMR (i.e., without LMM+LR), whereas the second row
shows the jumping motion using LMR (i.e., with LMM+LR).

Fig. 18. Jumping with unknown convex obstacles. (Top) Jumping onto a table. (Bottom) Jumping above a board. At the top, one 1 m×1 m×0.3 m table was
placed at 0.5 m in front. At the bottom, the 2 cm thin board was placed 0.15 m ahead.

Fig. 19. (a) PEA design of E-Go. (b) Hardware platform.

Fig. 20. Visualizations of spring configuration for thigh joint (left column)
and the PEA for the calf joint (right column).

B. Jumping With Impact-Aware Landing

In this section, we focus on the jumping control of a rigid
quadruped when the parallel springs are disengaged.

1) Controlled Jumping on Flat Ground: First, jumping per-
formance is compared when incorporating the impact-aware
LMR scheme or not. Fig. 21 captures the forward jumping
motions (jumping for 0.5 m on the flat ground) under different
conditions8 and Figs. 22 and 23 plot the resultant trajectories.

The yellow line in Fig. 22 marks the reference take-off time.
As can be seen from Fig. 22, large tracking errors occurred in
the vertical (z) movement, resulting in a later takeoff. When
not regulating the landing motion [“(no LMR)” case], the robot
landed earlier due to the poor shooting states, e.g., a lower verti-
cal height at 0.477 s that is plotted at the bottom of Fig. 22. In this
case, the real flight duration is 0.306 s, and the estimated landing

8In real tests, the sensory noise could result in large estimation errors in
the global landing position. To provide an alternative solution, we put white
markers on the ground. The distance between the sparse markers is 20 cm while
the distance between dense markers is 10 cm.

position is 0.42 m (see the partial drawing in Fig. 22 and the fifth
picture in the first row of Fig. 21). In contrast, when modulating
the leg motion in the air, i.e., using the preimpact LMM, E-Go
moved the leg ahead with a retraction motion (comparing the
fourth with the fifth picture in the second and third rows of
Fig. 21). As a result, the flight period increased, resulting in
a longer flight distance. Specifically, in the “(LMR)” case, the
flight phase increased to 0.33 s (see the green zone in Fig. 22),
and the robot landed at 0.495 m (see the final “xe(LMR)” in
Fig. 22).9

In the first row of Fig. 21, the postimpact LR was not integrated
either. That is, the robot aimed for the D-land configuration right
after touchdown. As a result, the robot hit the ground heavily,
with a large body rotation (see fifth picture in the first row of
Fig. 21 and the pink dotted curve after 0.8 s in Fig. 23). Due to the
large impact, the robot bounced upward. Meanwhile, the robot
continued moving forward, resulting in a second “jumping,”
which can be seen when comparing the landing positions in the
fifth and sixth pictures in the first row of Fig. 21. In contrast,
when only integrated LMM, the robot landed at the desired
position in the M-land configuration [see the fifth picture in
the “(No LR)” case]. Under the compliant torque control, the
robot then reduced the height to dissipate the kinetic energy
[see the sixth picture in the “(No LR)” case]. Similar to the
forward jumping test in Section VII-C1, there is also a negative
body pitch. When using LR “(LMR)”, the robot first squatted
down after detecting landing, followed by a reconciling recovery
motion, as plotted by the x and z motions after 0.807 s in
Fig. 22. Finally, the robot returned to the homing state, i.e.,
D-land configuration, as evidenced by the sixth picture in the
third row of Fig. 21. Aside from this, the robot almost returned
to zero pitch when LR is used, as plotted in Fig. 23.

More tests revealed that, without LMR, the landing error
would increase as the desired jumping distance rises. Instead,
with LMR, a longer jumping distance could be reached. The

9Fig. 21 tells that the robot in the “(no LR)” and “(LMR)” cases both landed
on the desired positions, demonstrating our LMM scheme could achieve reliable
tracking performance in repetitive tests.
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Fig. 21. Jumping motions on flat ground, using the rigid quadruped without springs engaged. The first, second and third rows separately demonstrate the jumping
motion without LMR (i.e., without “LMM+LR”), without LR (i.e., only use “LMM”) and with LMR (i.e., with “LMM+LR”).

Fig. 22. CoM trajectories for 0.5 m forward jumping. The yellow line marks
the reference take-off time. We omit the trajectories in the “(no LR)” case to
keep this figure clean. At the beginning of LR, the “zr(LMR)” was clamped by
the lower boundary.

Fig. 23. Pitch angles for 0.5 m forward jumping. The yellow line marks the
reference take-off time, and the bold black line marks the real landing time
without LMR.

0.6 m forward jumping with/without LMR can be found in the
attached video in Supplementary Material.

We noticed that the front legs bounced after touchdown when
using the LR scheme, which can be explained as follows. First,
the reduced PD gains for (24) resulted in softer legs after landing.
Considering that the reference CoM (from M-land to D-land) fell
behind the support center, the robot was prone to lean backward
during the recovery process. Then, as the body height increased,
the tilting momentum rose, and the front legs lost contact with
the ground. Nevertheless, the low-level controller managed to
stabilize the robot.

2) 3-D Jumping: With the LMR scheme, the rigid robot
can achieve versatile jumping tasks, such as 50 cm backward,
leftward, and rightward jumping. Here, we present leftward
jumping in Fig. 24(a). As plotted by Fig. 24(a), there is a large
rotational movement in the air when jumping left. Nevertheless,
with LMR, the robot recovered to the D-land configuration with
small inclinations.

By changing the desired landing height, i.e.,hd in (7), jumping
onto a high box is also realized. In Fig. 24(b), we demonstrate
60 cm forward jumping with a stable landing onto a 7 cm high
pad. Furthermore, in the limit test, the robot could jump onto the
10 cm pad. However, in this case, the robot landed with a large
touch-down angle, where the contact of the rear legs was not
measured. As a result, the landing event was not detected, and
the postimpact LR was not activated. The detailed motion can
be found in the attached video in the Supplementary Material.

Diagonal jumps are also achieved using the proposed ap-
proach, one of which is demonstrated in Fig. 1(a).

C. Robust Jumping

The above results have demonstrated that our approach is
robust against system uncertainties such as modeling errors
caused by model simplifications. In this section, we further
validate the robustness against external disturbances.

1) Robust Jumping Against CoM and Angular Offsets: In the
offline TO formulation, we assume the robot starts in the homing
configuration where the CoM lies above the support center
with zero inclinations angles (see Fig. 4). However, the above
assumption is usually violated in real scenarios. To demonstrate
robustness against the initial state deviation, we make the robot
jump off of the unknown object, i.e., starting with CoM and
angular offsets. It turns out that, using the proposed approach, the
robot could still accomplish jumping tasks with stable landing
and quick recovery. In Fig. 25(a), the robot jumped off of a 4 cm-
high pad and landed 40 cm ahead on the slippery paper board. In
addition, the robot could jump off of a 7 cm-high pad and land
45 cm behind, see the attached video in Supplementary Material.
Note that a similar test has been found in [13], where, however, a
RL strategy was additionally required to train the control policy
by mimicking the reference. In that work, backward jumping
was not shown either.

2) Robust Jumping Against External Forces: Stable jumping
under external pushes/pulls is a challenging task where the robot
needs to overcome huge deviations in the linear and angular
velocity. In this section, external forces are imposed after the
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Fig. 24. E-Go (without springs engaged) jumps with impact-aware LMR for different 3-D tasks. The pictures separately illustrate (a) 0.5 m leftward jumping
and (b) 0.6 m forward jumping onto a 7 cm high pad.

Fig. 25. E-Go (without springs engaged) jumps against external disturbances with the LMR scheme. (a) Robot jumps off of the 4 cm pad in the forward direction.
(b) Robot jumps against external forces. (c) Robot jumps onto an uneven surface. In (b), the green arrows mark the force directions.

Fig. 26. E-Go jumps for 0.6 m. (Top) Rigid robot jumps without springs engaged. (Bottom) Compliant robot jumps with springs engaged. Note that the LMR
scheme is not activated in both cases.

robot takes off, see the green arrows in Fig. 25(b). It turns out that
the E-Go robot could still land stably with quick recovery since
the postimpact LR modulates the landing motion in real-time
based on real landing status. And, the low-level torque control
strategy realized a compliant tracking. As can be seen in the
fourth and fifth pictures of Fig. 25(b), the robot recovered from
a large inclination angle when landing on an uneven surface. In
addition, leftward jumping under external pushes was achieved,
as shown in the attached video in Supplementary Material.
Notably, a similar test was found in [54] where external pushes
were imposed when the biped jumps in place. However, in [54],
the robot landed on a flat surface. In addition, no side jumping
against external forces was reported there.

3) Robust Landing on Uneven Surfaces: Differing from the
landing controller in [17], our impact-aware LMR scheme did
not assume that the robot lands on flat ground. As a result, our
robot can jump onto uneven surfaces with variant height. One of
the tests is already shown in Fig. 25(b), where the robot landed
backward on the unexpected 3 cm soft pad. In Fig. 25(c), the

quadruped landed stably on the uneven surface with rigid pads
placed at random heights.

D. Jumping With Parallel Springs

1) Explosive Jumping: When engaging the parallel springs,
explosive jumping achieving a greater forward distance and
landing height could be realized. In the current test, we found
that, without LMR, at least 0.6 m forward jumping could be
realized, resulting in a 20% increase in jumping distance, con-
sidering that the rigid robot can only jump to 0.5 m without
parallel springs. Fig. 26 captures the 0.6 m forward jumping
motions, where the first and second rows separately demonstrate
the motions without/with spring engaged. As shown in the first
row, the rigid robot without springs landed at about 45 cm (see
the fourth picture) and then bounced forward. In contrast, the
compliant robot landed exactly at 60 cm. The second picture at
the bottom of Fig. (26) reveals the rear legs slipped during the
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TABLE II
ENERGY COST W.R.T SPRING CONSTANT VARIATION

stance phase. Nevertheless, our controller is robust enough to
achieve a stable landing.

Furthermore, by exploiting parallel elasticity, the robot suc-
cessfully jumped onto a 15 cm stair with a recovery motion [see
Fig. 1(c)], resulting in a 50% increase in landing height consid-
ering that the rigid robot could only jump onto a 10 cm stair.
Comparison studies can be found in the video in Supplementary
Material.

2) Energetic Benefits: By changing the springs on the calf
joints, the energy cost of the jumping motion w.r.t parallel
compliance is reported. Table II evaluates the energy perfor-
mance for two tasks, i.e., 50 cm forward jumping and 50 cm
forward plus 20 cm leftward jumping. Taking diagonal jumping
for an example, by choosing the proper parallel springs, e.g.,
ks = 1500 N/m, the peak calf torque is reduced by 18.2%
whereas total energy cost drops by 8.3%.

3) Robust Jumping: Like the rigid case, the compliant
quadruped with parallel springs is also robust to external distur-
bances, including ground unevenness, external force, and CoM
and angular offsets. Please check the video in Supplementary
Material.

Notably, Fig. 1(b) demonstrates that the robot could jump
from a 5 cm block, which is higher than that of the rigid case, i.e.,
4 cm in Fig. 25(a). This is because the parallel springs enhance
the knee joints on the rear legs by providing additional torques.
In that case, all the support legs can keep in touch with the surface
during the stance phase.

IX. CONCLUSION

In this work, we address 3-D quadrupedal jumping exploiting
parallel compliance. To start, we introduce a novel actuated
SLIP model. Differing from previous SLIP and its variants, the
proposed model is able to explicitly characterize the passive
elasticity introduced by the parallel springs, enabling us to model
both rigid and soft articulated quadrupedal robots. Subsequently,
based on the reduced-order model, we formulate an offline tra-
jectory optimizer to generate 3-D jumping motions. In addition,
we propose an online impact-aware LMR strategy, including
preimpact leg motion regulation and postimpact LR, resulting
in a stable landing with compliant recovery.

Using the proposed approach, we realize robust 3-D jumping
for both rigid and compliant quadrupedal robots, with the capa-
bility of rejecting dynamic disturbances such as modeling errors,
ground unevenness, and push forces. Particularly, the hardware
experiments demonstrate explosive and energy-efficient jump-
ing by exploiting parallel elasticity.

The below discussions draw connections with related works.

A. Landing With Variable Stiffness

It has been demonstrated the postimpact LR scheme helps
to realize quick recovery with compliance. However, when
jumping at a long distance or landing on uneven terrain, the legs

could hop or lose contact with the ground during the recovery
process, as mentioned in Section VII-C2 and Section VIII-B1.
Although such landing behavior is evidenced in many studies,
such as [9] and [24], this kind of leg movement could be risky.

To mitigate the hopping motion, a more thorough analysis of
the system’s stiffness and damping property is needed. Ideally,
critically damping behavior during the landing phase is desired.
To this end, we can modulate the spring constant of the SLIP
model in the landing phase. Besides, we can modulate the
stiffness and damping in the low-level control scheme [55],
[56]. Our preliminary study reveals that the variable stiffness
and damping control approach in [56] helps to mitigate the leg’s
hopping after landing.10 In the future, it would be interesting to
investigate the problem fully.

B. Reactive Steps After Landing

In legged robotics, capturability analysis [57], [58], [59] pro-
vides a powerful tool to understand how many steps are needed
before coming to a stop. In the current work, we assume that
the quadruped could stop without making an extra step. That
is, the landing behavior obeys zero-step capturability. However,
with large landing velocities, the robot may need to take one or
several reactive steps before stopping.

Following this idea, the robot could make use of “consec-
utive” steps to balance aggressive landing velocities. For ex-
ample, when jumping above a convex obstacle (see the bot-
tom of Fig. 18), one consecutive jump of a short distance
could be performed after landing. Fortunately, this kind of
motion can be generated using our motion planner by chang-
ing the initial state in (5). One initial trial is attached in the
video in Supplementary Material. In the future, with a mo-
tion library, the robot could automatically pick consecutive
motions after a challenging jumping, obeying capturability
dynamics.

C. Momentum-Aware Optimization and Control

In the current motion planner, the actuated SLIP ignores the
body rotation and leg mass. When modulating the leg motion
in the air, we assume no change in the inertial or angular
momentum. So does the low-level controller. However, the large
leg movement could result in variation in momentum inertia due
to the mass distribution. As a result, the robot could suffer from
a large body rotation in the air. For example, Fig. 13 reveals that
leg movement in the air [in the “(no LR)” and “(LMR)” cases]
indeed changes the pitch angle.

Existing works, such as [24], [35], [43], and [44] demonstrate
angular momentum adaptation or “inertial shaping” plays a
crucial role in achieving dynamic locomotion or jumping tasks.
Particularly, the work in [16] argues that a rotating body helps
to land stably despite a large landing velocity. To enhance our
work, it would be interesting to integrate angular momentum
optimization in the motion planning stage. Besides, a full-body
controller accounting for leg dynamics can be integrated for
better tracking.

In addition, our work can be improved by optimizing PEA
parameters such as spring stiffness. We leave it as future work.

10Check the attached video for more details.
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APPENDIX A
LAGRANGIAN DYNAMICS FOR ACTUATED SLIP

Considering a legged robot with massless legs, the jumping
motion is parameterized by the generalized coordinates c. Then,
we have the following equation of motion (EoM):

1) Stance Dynamics: During the stance phase, the contact
wrench (F ∈ R3) resulted from torque inputs would drive the
robot. Considering the nonlinear compliance dynamics from
passive elasticity, the EoM is derived obeying Lagrangian me-
chanics, which is as follows:

M(c)c̈+G(c) +K(l(c))|l0(c)− l|̂l = F (26)

where K(l(c)) ∈ R3×3 is the time-varying spring stiffness ma-
trix and l0(c) is the time-varying rest length.

Here, the time-varying K(l(c)) and l0(c) are introduced to
capture the variation of the rest length [30], [31], [32], spring
constant [33], or spring force rules [34]. By linearizing the
K(l(c)) and l0(c) around the equilibrium point, we can decom-
pose the nonlinear term on spring force (K(l(c))|l0(c)− l|̂l)
into a linear component (Ks|l0 − l|̂l) and a general nonlinear
component (f(Ks, l)), resulting in the following:

M(c)c̈+G(c) +Ks|l0 − l|̂l+ f(Ks, l) = F (27)

where Ks is the constant stiffness matrix and l0 are the constant
rest leg length. By introducing the equivalent accelerationu such
that M(c)u = −f(Ks, l) +F , (27) can then be rearranged as
follows:

M(c)c̈ = −G(c)−Ks|l0 − l|̂l+M(c)u. (28)

Considering the lumped mass at the body center, M(c) and
G(c) are independent from c. That is, M(c) = M = mI3 and
G(c) = −mg. Then, we obtain the same stance dynamics with
the first row in (2).11 Note that spring constant Ks = −ksI3 and
rest length l0 can be identified with the robot in the equilibrium
state, i.e., the homing pose in this work.

2) Flight Dynamics: During the flight phase, the system fol-
lows a ballistic trajectory, whose EoM is determined as follows:

M(c)c̈+G(c) = 0. (29)

ConsideringM(c) = mI3 andG(c) = −mg, we then obtain
the flight dynamics expressed in the second row in (2).

APPENDIX B
MATCHING SPRING CONSTANT

Assuming a small variation in the actuated joint angles of
each leg, the potential energy (V spring

quad ) contributed by spring

11If we expressM(c)u in (28) in a specific form, such as the formula with the
time-varying rest length, the “actuated” SLIP in [31] and [60] is then obtained.
In this sense, we can think of the SLIP variants in other work, including [30],
[31], [32], [33], and[34], as the special cases of our model.

deformation is calculated as follows:

V spring
quad =

j=4∑
j=1

(
1

2
(δqj)Tkj(δqj)

)
(30)

where δqj ∈ R3 denotes the joint angle variations of the jth leg,
kj ∈ R3×3 is a diagonal matrix taking the spring constants of
the parallel springs installed on the hip, thigh, and calf joints as
the diagonal elements.

In the homing pose, the four legs of the quadrupedal robot
share the same joint variations and the same Jacobian matrix
due to symmetry. That is, δq = δqj and J0 = Jj

0 (Jj
0 represents

the contact Jacobian of the jth leg in the homing configuration).
In the current design, four legs also share the same parallel spring
combination, noted by k = kj , j ∈ {1, . . . , 4}. As a result, (30)
is simplified as follows:

V spring
quad = 4

(
1

2
(δq)Tk(δq)

)
. (31)

For a SLIP, given the small variation in the leg length
(δl = J0δq in the homing pose), the potential energy (V spring

slip )
contributed by the spring tension is computed as follows:

V spring
slip =

1

2
(δl)Tkequ(δl) =

1

2
(δq)T[JT

0kequJ0](δq) (32)

where kequ ∈ R3×3 is the equivalent spring constant matrix.
To match the SLIP model with the quadrupedal model, we

demand V spring
quad = V spring

slip . As a result, we have the following:

kequ = 4(J−1
0 )TkJ−1

0 . (33)

Then, the spring constants ks of the actuated SLIP is as
follows:

ks =
√

(kequ(0,0))2 + (kequ(1,1))2 + (kequ(2,2))2. (34)

APPENDIX C
FEEDFORWARD TORQUE OF ACTUATED SLIP MODEL

Equation (3o) constrains the joint torque within a feasible
range, where the operator τ (·) computes the commanded torque
at the kth knot. Specifically, for the jth leg, we have the
following:

τ j
(k) = −(Jj

(k))
TFj

(k) (35)

where Fj
(k) ∈ R3, τ j

(k) ∈ R3, and Jj
(k) ∈ R3×3 separately de-

note the GRF, joint torque, and contact Jacobian.
As discussed in many previous works, including [39], the

GRF should be carefully distributed to accomplish desired body
movements while obeying feasibility constraints. In this work,
to simplify the TO formulation, we propose a heuristic rule for
calculating the GRF. That is, the total force is balanced by the
GRFs on the four legs, considering the force arm of each leg
position w.r.t the body center. Following the definition in Fig. 4,
the Fj

(k) is computed as follows:

Fj
(k) = λ1λ2mu(k) (36)
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where λ1 and λ2 are introduced to distribute the force in the
sagittal and lateral plane, determined as follows:

λ1=

{Xx(k)+xr

xf+xr
front legs

xf−Xx(k)

xf+xr
rear legs

, λ2=

{
Xy(k)+yr

yl+yr
left legs

yl−Xy(k)

yl+yr
right legs

. (37)

Then, by substituting (36) and (37) into (35), the commanded
torques for quadrupedal jumping can be obtained.
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