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Dynamic Toll Pricing using Dynamic
Traffic Assignment System with Online
Calibration

Yundi Zhang', Bilge Atasoy?, Arun Akkinepally', and Moshe Ben-Akiva'

Abstract

The paper presents a toll pricing methodology using a dynamic traffic assignment (DTA) system. This methodology relies on
the DTA system’s capability to understand and predict traffic conditions, thus enhanced online calibration methodologies are
applied to the DTA system, featuring a heuristic technique to calibrate supply parameters online. Improved offline calibration
techniques are developed to apply toll pricing in a real network consisting of managed lanes and general purpose lanes. The
online calibration methodologies are tested using real data from this network, and the results find the DTA system able to
estimate and predict traffic flow and speed with satisfactory accuracy under congestion. Toll pricing is formulated as an opti-
mization problem to maximize toll revenue, subject to network conditions and tolling regulations. Travelers are assumed to
make route choice based on offline calibrated discrete choice models. Toll optimization is applied in a closed-loop evaluation
framework where a microscopic simulator is used to mimic the real network. Online calibration of the DTA system is
enabled to ensure good optimization performance. Toll optimization is tested under multiple experimental scenarios, and the
methodology is found able to increase toll revenue compared with the condition when online calibration is not available. It
should be noted that the toll rates and revenues presented in this paper are obtained in a simulation environment based on
the calibration and optimization algorithms, and as the work is ongoing these results are far from being a recommendation to

operators of managed lanes.

Congestion management aims to improve transportation
system performance and reduce traffic congestion by
either altering traffic demand or changing transportation
supply. Among congestion management schemes, road
pricing (i.e., tolling) is a commonly used strategy, which
may aim to generate revenue to recover road construc-
tion and maintenance costs and thus incentivize improve-
ment to transportation supply, as well as managing
congestion by altering temporal and spatial dimensions
of travel behaviors, and travelers’ decisions on mode
choice or whether to travel (/).

Among road pricing strategies, dynamic pricing has
been extensively studied in recent years (2). Applications
of dynamic pricing arise in many cities. The authors
advocate two criteria for an effective dynamic pricing
scheme: real-time efficiency and proactive decision mak-
ing. The computation time of any algorithm should be
short enough to support real-time decision making, and
decisions should be made based on predicted traffic con-
ditions instead of observed ones.

This research implements and tests a dynamic toll
pricing framework where decisions on toll are made in

real time (every 5 min) based on predicted traffic condi-
tions. The framework is applied in the context of man-
aged lanes and from the viewpoint of the operator with
an objective to maximize revenue while offering premium
level of service. State estimation and prediction are pro-
vided by a DTA system, DynaMIT. Travelers’ route
choice behaviors are predicted by discrete choice models
based on travel time savings and toll rates. Toll optimi-
zation is fully integrated with DynaMIT to maximize
revenue subject to network conditions given tolling regu-
lations. The impact of toll optimization is evaluated
through a closed-loop evaluation framework so the plat-
form optimizing the tolls is different from where the tolls
are implemented and evaluated. A microscopic simula-
tor, MITSIM (3), is used as the second simulation
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platform for evaluating the tolls, and it serves as the real
world in this closed-loop framework.

Effective toll optimization is only possible when the
DTA system is capable of understanding and predicting
current and future traffic conditions. The authors pro-
pose and apply a heuristic online calibration method to
calibrate supply parameters and reduce discrepancies in
sensor speed between simulation and actual data, and
also apply generalized least squares to calibrate origin-
destination (OD) demand. Performance of the online cali-
bration methodology is tested by calibrating DynaMIT
toward real data available for the case study of managed
lanes in Texas. DynaMIT is then deployed in the closed-
loop setting to test toll optimization, and the online cali-
bration module calibrates DynaMIT toward simulated
sensor measurements provided by MITSIM.

The effectiveness of the toll optimization can only be
confirmed when the demand and travel behaviors are
represented accurately in the simulation platforms. In
this paper offline calibration of the microscopic simula-
tor is also briefly discussed. It is calibrated to the real
data before deployment of the closed-loop framework.

The contributions of this study include the design,
implementation, and testing of a heuristic online calibra-
tion method for supply parameters with complexity of
O(n), where n represents the number of segments in the
network. Note that the algorithm is parallelizable, and it
works simultaneously with the existing generalized least
squares (GLS) algorithm for OD calibration. Secondly,
the enhanced dynamic toll pricing framework is imple-
mented and tested under multiple scenarios in a closed-
loop testing framework. These tests show added benefit
to toll optimization because of online calibration.

The subsequent sections of this paper include a litera-
ture review on offline and online calibration of traffic
simulators, as well as congestion pricing strategies and
applications. The optimization framework, calibration
methodologies, and closed-loop evaluation framework
are then presented. Finally, the results of the online cali-
bration and toll optimization are shown in a case study
with data from a real network, followed by conclusions
and future research directions.

Literature Review

Earlier literature on toll pricing often relied on a simpli-
fied representation of supply, demand, or both. Pricing
strategies were mostly reactive instead of proactive, with-
out explicitly predicting traveler behaviors in reaction to
pricing strategies. Yin et al. (4) proposed dynamic toll
pricing approaches in the context of managed lanes with
the objective of maximizing throughput. A feedback con-
trol approach was applied, such that toll decisions would
be reactive to traffic conditions.

More recent literature on toll pricing includes studies
applying proactive pricing strategies. Jang et al. (5) pro-
posed a closed-form model to predict certain system per-
formance measures with tolling decisions based on the
predicted performance. Dong et al. (6) studied the bene-
fits of a proactive control strategy where predictions play
a role when adjusting tolls based on the deviation from
the desired network conditions, and their optimization
was integrated into a DTA system DYNASMART. With
an attempt to simplify optimization, Chen et al. (7) devel-
oped a family of surrogate-based models for optimization
of dynamic tolls, with optimization of a peak and off-
peak toll. They used a DTA system, DynusT, to con-
struct various surrogate models, and applied them to a
corridor in Maryland with a composite objective function
of travel time, throughput, and revenue.

For a simulation-based proactive toll pricing system,
online calibration of the simulator is important to ensure
the simulation accurately mimics the real network and
toll pricing decisions are based on accurate prediction of
traffic conditions. Online calibration of a DTA system
usually includes calibration of OD demand parameters,
behavior parameters, and supply parameters. GLS is
widely used for OD calibration. An iterative calibration
framework to calibrate OD, behavioral and supply para-
meters jointly in a mesoscopic DTA model was studied
by Yin and Lou (4). The OD demand is calibrated by the
GLS method, while behavior and supply parameters are
estimated with specific empirical methods.

Hashemi and Abdelghany (8) proposed online calibra-
tion methods in a traffic management context, using
GLS for OD and an empirical method for supply para-
meters. They then applied these online calibration meth-
ods to support traffic management strategy generation
(9). Hashemi and Abdelghany used a DTA system and a
meta-heuristic search algorithm to generate control stra-
tegies, and applied their model to a corridor in Dallas,
with an objective to reduce total travel time. Their opti-
mization system predicts significant time savings with the
optimal strategies generated by it, but the actual impacts
of such strategies were not tested in the real network or
in a simulation environment that is different from the
DTA system itself.

Yang et al. (3) developed a microscopic traffic simula-
tor, MITSIM, and proposed a closed-loop testing frame-
work in which traffic management strategies were
implemented in the simulator and the performance of
such strategies were then evaluated. Lu et al. (10) pro-
posed a weighted-SPSA algorithm to calibrate a micro-
scopic traffic simulator to ensure it is a good
representation of the real world.

Recent advances in online calibration methods include
simultaneous calibration of all parameters with a unified
model, of which the extended Kalman filter (EKF) is an
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Figure I. Toll optimization framework.

example. Antoniou et al. (/1) proposed EKF for online
calibration of DynaMIT. By linearizing the relation
between all measurements, including speed, and all para-
meters, including supply parameters, the EKF algorithm
can be used to calibrate simultaneously all parameters
toward all measurements.

More recently there has been research on large-scale
problems. Gupta et al. (/2) developed a toll optimization
method with a generic algorithm based on traffic predic-
tions from DynaMIT, and applied the model to the
expressway network in Singapore, where 13 tolls were opti-
mized. Zhang et al. (13) developed a metamodel embed-
ding an analytical model of how calibration parameter is
related to the objective function. The methodology
addresses calibration of OD demand and is demonstrated
with a case study of the Berlin metropolitan area network.
Prakash et al. (/4) applied a principal components
approach to conduct online calibration using the GLS
algorithm. By calibrating the principal components of
parameters instead of original parameters, this method
greatly scales down the computation effort of large-scale
online calibration problems. It slightly worsens estimation
accuracy but reaches better prediction accuracy, since prin-
cipal components capture inherent correlations of the
parameters while removing noise. Prakash et al. (15) also
applied this approach to online calibration using the EKF
algorithm and obtained similar results, which implies a
potential of reducing dimensionality in large-scale
demand-supply simultaneous online calibration problems.

The toll pricing framework in this paper is a real-time
proactive system where toll rates are optimized every 5
min based on predicted traffic conditions in the next 15
min. The proof-of-concept has already been demon-
strated on a toy network in Wang et al. (/6), and this
paper enhances the methodology by integrating online

calibration into the framework to achieve better toll opti-
mization performance in a case study of managed lanes
in Texas.

Methodology
Overview of the Dynamic Toll Pricing Framework

A toll optimization framework (/6) is deployed with
DynaMIT (17), a mesoscopic DTA system developed in
the ITS Laboratory of the Massachusetts Institute of
Technology (MIT). DynaMIT reads sensor data, cali-
brates its parameters to estimate traffic state, and gener-
ates control strategies (toll rates) based on predicted
traffic conditions (Figure 1). Toll optimization is based
on a rolling horizon framework, that is, for each rolling
period (e.g., 5 min), it receives new real-time information
from the network, runs the estimation and optimization
modules, and provides optimized toll rates for the pre-
diction interval (e.g., 15 min) to the network.

Optimization Formulation

The toll for each tolling location i is represented by 6; =
(6i1, ... , 0i7), where T is the number of tolling intervals
in the optimization horizon. The speed and flow for each
tolling location i and tolling interval ¢ are denoted by vy
and q;,, respectively.

The managed lane operator has to comply with tolling
regulations, which need to be taken into account by the
optimization model. There is a toll cap per mile and the
operator may decide to exceed this toll cap only under
certain conditions. Specifically, given average speed (v)
and volume (g) across all sensor locations and predefined
critical values of speed (v") and volume (¢<"), the follow-
ing rules are in effect:

e [f v=<v“, then toll rate is multiplied by a flexible
demand factor between a lower bound DFI" and
an upper bound DF}ltb, and the toll rate will
increase compared with the previous toll, that is,
DFP = 1.

o If g>¢“, then, depending on the level of g, there
is a set of rules to calculate a fixed demand factor
which may result in an increased, decreased, or
maintained toll rate.

When either rule is adopted, the managed lanes are oper-
ated in mandatory mode. Otherwise they are managed in
dynamic mode.

The optimization model therefore includes a binary
decision (8;) of switching or not to the mandatory mode
in addition to the decision on the toll vector (0). The
problem is formulated as follows:
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max Z Z g0 + aymin(vi — v, 0) + almin (qf" — Qs 0)

icl teT
(1)
s.t.(vit,qy) = DTA(Q)Viel,t €T (2)
du<m,VielteT (3)
81t =M (8;,_1) — 1) + (1/100)(8;,_1) — 657)
Viel,teT (4)

(DF},DF’,m;) = f(vinqi) Vi€ Lt € {2, ...,T} (5)

1

8it0i—1)DF < 0; < (1 — 8;)0*" + 8,0;,_1\DF’

Viel,teT (6)

Oi—1) — A = 8;M < 0; < 0;,_1) + A + ;M
Viel,teT (7)
d:€(0,1)Viel,teT (8)
0;=0Viel,teT 9)

The objective function (Equation 1) has three terms: one
is toll revenue and the other two are penalty terms to
account for critical speed and volume pre-specified by
the regulations. Namely, the second term is the penalty
for going below the critical speed and the third term is
the penalty for exceeding the critical volume on the man-
aged lane. The critical speed is the same across the net-
work, however, the critical flow changes based on the
number of lanes. In this study, it was decided to formu-
late these constraints through penalty terms since it is a
simulation-based setting. Namely, one cannot constrain
the simulator not to give certain speed and flow measure-
ments; instead the solution was evaluated through the
resulting measurements based on if and how much it vio-
lates the desired conditions. Furthermore, the penalty
coefficients ¥, and o, were set empirically.

Constraints (Equation 2) ensure that the predicted
speed and volume are provided by the traffic simulator
to evaluate the objective function and also for the deci-
sions in future intervals. Constraints (Equation 3) main-
tain that the system cannot enter mandatory mode (6
cannot be 1) if it is not allowed by measurements (for the
next interval) or predictions (for future intervals).
Constraints (Equation 4) enable a gradual decrease in
the toll when exiting the mandatory mode. If the system
is in mandatory mode in -1 and the toll is above the toll
cap, then the system needs to stay in mandatory mode in
interval ¢. If the conditions are improving, the demand
factors from the regulations will go down and the toll
will gradually decrease.

Constraints (Equation 5) maintain matching between
the predicted traffic conditions and demand factors and
the allowance to enter mandatory mode for the future
intervals through predetermined functions. Note that m;
is input for the next interval based on field measurements

and a variable to be optimized for the subsequent inter-
vals based on predicted traffic conditions. Similarly,
DF® and DF" are inputs for the next interval and vari-
ables for future intervals. DFIY and DF* will be the same
in mandatory mode so that the toll will be equal to the
demand factor times the previous toll. On the other hand,
when in dynamic mode, DF!? will be zero and DF will
be the toll cap. Constraints (Equation 6) regulate these
bounds on the toll such that if the decision is to stay in
dynamic mode (6 =0), then the toll is optimized between
0 and the toll cap, otherwise (6§ =1) toll rates follow the
regulations for mandatory mode.

Finally, constraints (Equation 7) control the maxi-
mum change in the toll. This constraint is active only in
dynamic mode (6=0), and not in mandatory mode
(6=1). Constraints (Equations 8 and 9) define the deci-
sion variables as binary and nonnegative continuous,
respectively. Currently this problem is solved with simple
search heuristics and future work involves other solution
algorithms.

Calibration and Prediction in the DTA System

Effective control strategies rely on the DTA system’s
capability to predict traffic conditions under candidate
toll rates. Prediction accuracy depends on state estima-
tion performance. Offline and online calibrations are
essential to ensure accurate estimation of the current net-
work state.

A state is a vector consisting of demand and supply
parameters. State estimation is the real-time process of
incorporating an initial state, historical data, and real-
time surveillance data to achieve a more reliable estima-
tion of the current state.

Offline calibration provides a priori values of the para-
meters which are then calibrated online. This research
relies on iterative proportional fitting (IPF) to obtain a
historical time-dependent OD demand table based on
historical sensor flow measurements. The choice para-
meters are calibrated empirically so that simulated choice
ratios match actual data. For supply parameters, a
closed-form model is used, which is described in next sec-
tion, so it is possible to estimate the model parameters
with actual sensor data.

To perform online calibration, the GLS algorithm is
used to estimate OD demand from real-time sensor flow
measurements. For supply parameters, a heuristic online
calibration framework is proposed, to adjust supply
parameters in real time, and the simulation results were
found to match sensor data with satisfactory accuracy in
relation to speed measurements, including when conges-
tion is present.

The state prediction module predicts future states
based on the current state, taking into consideration any
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historical information, strategies (e.g., future toll rates) to
be deployed and travelers’ responses to guidance infor-
mation. The prediction model is formulated as an autore-
gressive process (11):

n
pred hist _ est hist
X X T E :fl (xt—i - xr—i) (10)
i=1
where
d - .
X% is the predicted parameter value for the current
interval;

xhist s the historical parameter value for the current
interval;

n is the autoregressive degree;

f; is the autoregressive coefficient for degree i;

x$ is the estimated parameter value for the i-th inter-
val ahead;

xMist s the historical parameter value for the i-th inter-
val ahead.

For demand, » and f; were estimated using offline cali-
brated time-dependent OD parameters. For supply, since
time-dependent supply parameters are not obtained off-
line, the above autoregressive model is simplified as

x?red _ xhist :f(x?itl _ xhisl) (1 1)
and the coefficient /" is empirically determined. The pre-
dicted parameters x™™ were then used as input to simu-
late traffic for the prediction interval (e.g., 15 min) and to
obtain predicted sensor measurements.

To evaluate the calibration and prediction accuracies,
RMSN (Root Mean Square error, Normalized) was used
to quantify the difference between actual and simulated
measurements (//). RMSN is defined by the following
equation:

M

1 N
RMSN = M Z (y?st _yll'rue)2 y}rue (12)
i=1

where
M is the number of measurements;
5t is the estimated value of the i-th measurement;
i€ is the true value of the i-th measurement.

Algorithm for Online Calibration of Supply Parameters

The optimization module of this study relies heavily on
accurate prediction of drivers’ choices between managed
lanes and general purpose lanes, and travel time (or
travel speed) would be an important factor for their deci-
sions. Therefore, it is essential to make sure the state esti-
mation module can accurately reveal the supply
parameters and thus simulated travel speed can match
actual sensor speed measurements.

| Traffic Network |

(for each road segment)
sensor speed & flow

sensor flow

| [a] Online Calibration of OD (GLS) | [b] calculate density from speed and flow |

¢ sensor speed & density

[c] adjust kuia online to shift speed-density
curve to match incoming data

if sudden drop of speed
not captured by simulator

if sudden dissipation of congestion
not captured by simulator

[d] temporarily reduce Segment
Capacity to increase simulated density

[e] increase Vi to dissipate
congestion in simulator

estimated OD stimated supply parameters

| DynaMIT State Prediction |

Figure 2. Proposed online calibration process.

In the DynaMIT traffic simulation module, a road
segment consists of a queuing part (downstream) and a
moving part (upstream) (/7). A queue will form only if
flow on the segment exceeds segment capacity, or if a
queue on the downstream segment spills out. Traffic
speed on the queuing part is subject to a queuing model.
If a queuing part does not exist, or it does not occupy
the full segment, then traffic speed on the moving part is
described by the following relationships:

v = max(Vimin, Vs)

Vs = Vimax when k < kpin

AN A
Vs = Vinax (1 — <m> ) when k > knyin
kjam

where k is density, v is speed, v, is an intermediate vari-
able, and the other six parameters (Vmin, Vmaxs
kmin, kjam, v, B) as well as Segment Capacity are referred
to as supply parameters.

For the seven supply parameters of each road seg-
ment, this study estimated their a priori values from
speed and flow measurement data offline. When deploy-
ing real-time toll optimization, a selection of supply
parameters was adjusted online in reaction to real-time
sensor measurements. Figure 2 illustrates these opera-
tions. Steps [b] to [e] constitute the heuristic online cali-
bration method for supply parameters. Note that steps
[d], [e], or both, are only used in rare cases to correct
simulation errors.

(13)

Closed-Loop Evaluation Framework

Before the toll optimization framework is implemented
in the real world, the validity and performance of the
developed models and algorithms need to be tested in a
simulation environment. Therefore, a closed-loop eva-
luation framework is applied by using a microscopic
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Figure 3. Closed-loop evaluation framework.

simulator as a representation of the actual traffic net-
work (Figure 3).

In this study MITSIM was used as the testbed.
MITSIM is a microscopic traffic simulator developed in
the ITS Laboratory of MIT (3). It incorporates road
topography, time-dependent OD demand, driving beha-
vior (car following, lane changing, etc.) models and route
choice models, simulates individual vehicle’s movements,
and generates simulated sensor measurements.

Route choice is modeled as a path-size logit model,
which takes into account the similarities between paths
that are overlapping. Drivers make route choice deci-
sions based on information on toll rates and travel times.
To mimic real-world conditions, drivers are assumed to
have access to real-time traffic information, for instance,
through mobile navigation applications, so they are
aware of current traffic conditions (i.e., travel time) on
downstream links. As for toll rates, it is assumed they
know real-time toll rates only when they are close to the
decision point. Otherwise, the drivers rely on historical
toll rates (at that time of day) to make decisions.

The optimized toll rates are implemented in MITSIM.
DynaMIT is provided with data from MITSIM sensors
rather than a real-world traffic surveillance system. The
closed-loop testing framework requires that the micro-
scopic traffic simulator represents the real-world accu-
rately, that is, drivers in MITSIM behave similarly to
those in the real world, and demand—supply interactions
occur in the same way. This is achieved by calibrating
MITSIM toward real data.

Calibration of the microscopic traffic simulator relies
on an enhanced weighted-SPSA algorithm (/8). Demand
parameters and selected behavior parameters are cali-
brated simultaneously to minimize the discrepancies
between simulated and actual sensor measurements.

Case Study

The methodology was applied to the NTE TEXpress net-
work, a 13-mile corridor on U.S. Interstate Highway I-
820 and Texas State Highway TX-183, which consists of
managed lanes (ML) and general purpose lanes (GPL)
(Figure 4). The network is equipped with sensors which
provide traffic flow and speed measurements, and toll
gantries for non-stop tolling.

The private operator of this corridor provided the
authors with samples of data collected on nine Fridays
in summer 2017, which included sensor flow and speed
measurements, toll rates, and automatic vehicle identifi-
cation (AVI) data.

The tolls are applied on two tolling segments. Segment
1 is highlighted darker in Figure 4, and segment 2 has
lighter color. Toll gantries are located at the beginning of
each tolling segment, and at entry ramps to ML. A driver
pays a toll when entering ML. The toll rate is determined
with respect to the entry point but not the exit point. If
the driver continues from tolling segment 2 to segment 1
on westbound, he/she pays a second toll.

In this case study the focus is on the westbound (WB)
corridor of the network. For ease of analysis, the WB
corridor is divided into nine parts based on locations of
entry and exit ramps on ML, as shown on Figure 4. Parts
1 to 4 belong to tolling segment 2, and parts 5 to 9 belong
to tolling segment 1.

Offline Calibration

The AVI data give an insight into the OD pattern but
they include just a fraction of the vehicles. The data are
used as seed OD for better offline calibration. The IPF
algorithm was used to scale up the AVI-based OD,
according to flow at origin and destination nodes. Flow
data are available at most origin and destination nodes,
either obtained from sensors on corresponding origin
and destination links, or calculated from sensor flow on
nearby links according to the flow conservation law. The
IPF algorithm converges with no more than 0.1% error
in fitting origin or destination flow.

The route choice model in DynaMIT is a path-size
logit model, where probability of choosing path i is speci-
fied as

eVi + InPS;

P(i) = S eV TS,
je

(14)
where C is the set of all possible paths, and PS; is the
path-size variable for path i, specifying the path’s degree

of overlapping with other paths. V; is the systematic util-
ity of path i, given by the following equation:
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Figure 4. NTE TEXpress network.

tOlli
iT = i_—OT+ i 1
Vi = M(ll v c> (15)

where  is the scaling factor, 77; and toll; are travel time
and toll cost on path i, VOT is the specific driver’s value
of time, and ¢; is a constant. It is assumed that different
drivers have different VOT which is subject to a log-
normal distribution. The choice model was estimated
empirically to make sure simulated choice ratios match
actual data. For successful calibration, the constant
term is introduced to capture some network-specific phe-
nomena. The model parameters are also allowed to be
different in different periods, which includes morning
(05:30 to 09:00), midday (09:00 to 14:00), afternoon
(14:00 to 18:00) and evening (18:00 to 21:00). These peri-
ods are determined based on historical toll rates on the
network.

Supply parameters are estimated with Day 1 data.
Firstly, a set of supply parameters was estimated for each
type of road segment (ML, GPL, ramp). Using the
results as starting values, supply parameters are esti-
mated for each road segment. The statistics of estimated
supply parameters are presented in Table 1. Figure 5
shows the data points and estimated supply curve for
selected road segments.

After the offline calibration process, a set of para-
meters is obtained for Day 1, and the simulation results
have an error of 19% in RMSN for flow measurements
and 15% for speed measurements.

Online Calibration and Prediction

DynaMIT is calibrated offline to Day 1 data and a set of
parameters obtained. Using Day 1 parameters as a priori
values, DynaMIT is then calibrated online for the other
eight days.

For each 5-min time interval, firstly, one simulation
is run with predicted parameters from last interval,
simulated measurements obtained, and then demand
and supply calibration is applied to obtain calibrated
demand and supply parameters. Finally DynaMIT
simulates traffic with calibrated parameters. The GLS
algorithm works well for calibrating OD demand para-
meters, as long as the error of simulated speed is not
large. The heuristic is effective to replicate real-world
congestion in the simulator. The results of online cali-
bration are shown in Table 2 as OC demandd&supply.
The No OC case is a base case where historical OD and
supply parameters are used in the simulation. The OC
demand only case has OD calibrated by GLS algorithm,
but historical supply parameters are used in the
simulation.
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Table I. Statistics of Offline Estimated Supply Parameters

Segment Viin Vimin
type (mph) (mph)
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Kenin kjam capacity
(veh/mile) (veh/mile) a B (vehls)
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GPL
Ramp 64

maximum ML 0 76
GPL 31 69
Ramp 8 72

A 00 00 00 0O 0O 0O
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|
|
|
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|
|
|
|
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Figure 5. Examples of calibrated supply models.

Taking Day 1 offline calibration results as the base-
line, simulations of other days have much larger error
for flow if online calibration is not performed, because
those days have different demand from Day 1. The error
for speed is about the same, because supply parameters
were static in these cases and they are similar in different
days. Online calibration of demand greatly improves
flow accuracy. Addition of supply online calibration then

improves speed accuracy, because of its capability to
calibrate supply parameters dynamically. In all cases,
prediction RMSNs are slightly larger than estimation,
which is as expected and acceptable, because the predic-
tion model incorporated additional errors.

More detailed results for Day 6 are presented in
Figure 6. It shows the simulated flow and speed after
online calibration of demand and supply compared with
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Table 2. Calibration and Prediction Accuracies

Estimation Prediction (0~15 min later)
0-5 min 5-10 min 10—15 min
RMSN(%) Flow Speed Flow Speed Flow Speed Flow Speed
Day | Offline calibration results 19 15
Day 2 No OC 22 16 22 15 22 I5 22 15
OC demand only 12 16 16 I5 19 I5 19 I5
OC demand&supply 12 13 17 Il 19 12 22 12
Day 3 No OC 23 12 23 14 23 14 22 14
OC demand only 12 12 16 14 18 14 19 14
OC demand&supply 12 10 16 10 19 I 21 I
Day 4 No OC 23 13 23 I5 23 I5 23 I5
OC demand only 12 13 16 I5 I8 I5 19 I5
OC demand&supply 13 I 17 I 19 12 22 12
Day 5 No OC 38 22 38 23 38 24 38 23
OC demand only 16 23 23 24 25 24 26 24
OC demand&supply 18 19 24 17 26 I8 29 18
Day 6 No OC 33 17 33 14 33 14 33 14
OC demand only 13 17 19 14 22 14 23 14
OC demand&supply 15 15 21 10 23 I 25 12
Day 7 No OC 23 14 23 14 23 14 23 14
OC demand only 12 14 16 14 I8 14 19 14
OC demand&supply 12 12 16 10 19 10 22 I
Day 8 No OC 23 12 24 13 24 13 24 13
OC demand only 14 12 18 13 20 13 21 13
OC demand&supply 14 10 19 10 21 10 23 10
Day 9 No OC 22 12 22 13 23 13 23 13
OC demand only I 12 16 13 18 13 19 13
OC demand&supply 14 9 19 9 21 10 22 10
Average (Day2-9) No OC 26 15 26 15 26 I5 26 15
OC demand only 13 15 18 15 20 I5 21 15
OC demand&supply 14 12 19 Il 21 12 23 12

Note: RMSN = root mean square error, normalized; OC = online calibration.

true measurements. Each small plot shows average flow
or speed on one of the nine parts of the GPL.

It can be seen that the proposed online calibration
methods are successful in replicating flow and speed fluc-
tuations in each part of the WB GPL, although in some
cases simulated congestion is still not as severe as in
actual measurements. ML has less congestion overall
and the plots for ML are omitted.

The results below demonstrate that it is possible to
understand and predict traffic conditions when
congestion occurs. The predictions used for toll
optimization in the DTA system are accurate, thus
evaluation of the objective function is accurate.
Therefore the system is able to make informed deci-
sions on toll rates.

Toll Optimization

The toll optimization framework was further evaluated
in a closed loop. First, MITSIM was calibrated toward
the sensor measurements of Day 6. RMSN of the

calibration result was 19% for flow and 17% for speed.
The toll optimization framework was then applied and
the optimized toll rates implemented in MITSIM.

These toll rates are compared with a base toll, which is
obtained with the same toll optimization methodology,
except that online calibration is not enabled. In this situa-
tion, DynaMIT is fed with parameters calibrated offline
toward Day 1 data. Comparing optimized toll with this
base toll highlights the added benefit of online calibration
in the prediction-based dynamic tolling.

Higher toll revenue is observed when evaluating opti-
mized toll rates in closed loop, compared with base toll
rates. The toll optimization framework was also evalu-
ated under certain experimental scenarios, and these
experiments generated improved revenue in the simula-
tion environment.

There are five gantries on the WB lanes of the net-
work. The toll optimization model generates toll rates
for the two gantries located at the beginning of each tol-
ling segment. The toll rate at each of the other three gan-
tries is a fraction of the gantry at the beginning of the
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Figure 6. Comparison of actual and simulated flow and speed in GPL of WB corridor of the network: (a) flow, and (b) speed.

corresponding tolling segment. According to the tolling  was added that toll rates on the two tolling segments
regulations, the toll rates may change dynamically every cannot be different by more than $1.00, both for practi-
S min, and the amount of change cannot exceed *§ cal considerations and for consistency with historical toll

0.50. Toll rates on tolling segments 1 and 2 are subject to rate data.

an upper bound of $5.30 and $5.70, respectively, except For this study, a search algorithm was used which
when the ML become congested. A further constraint searches three toll values for each tolling segment, that
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Figure 8. Flow on ML under base and optimized toll rates.

is, reduce by $ 0.20, stay the same, or increase by $ 0.20.
The algorithm then evaluates objective function by cal-
culating toll revenue in the next 15 min. Figure 7 shows
the optimized toll rates for each tolling segment com-
pared with base toll, and per-5-min revenue under these
two tolls. Note that the revenues shown are calculated
from simulation results by MITSIM, the testbed for

evaluating the toll optimization framework in this study.
Figures 8 and 9 show flow on ML and speed on GPL,
comparing the simulation results under optimized toll
rates and under base toll rates.

The optimization results suggest, in general, higher
toll rates compared with the base toll except during eve-
ning peak hours, when they both reach the upper bound,
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Figure 9. Speed on GPL under base and optimized toll rates.

because online calibration successfully captures most
congestion, and the travelers’ route choice model in this
system shows room for increase in toll when congestion
occurs. According to the simulation of the 05:30 to 21:00
period in the closed-loop framework, revenue is 8.1%
higher under optimized toll rates. Under optimized toll,
flow on ML is generally lower since toll rates are higher,
and thus flow on GPL increases and speed on GPL
decreases. However, on tolling segment 2 (parts 1~4)
GPL becomes so congested after 17:00 that optimized
toll rates remain at high levels even after the evening
peak period. Meanwhile, there is still higher flow on ML
at part 1, which leads to much higher revenue during
that period. Note that this framework does not address
congestion on GPL. Based on the present evaluation in
the closed-loop framework, the above results demon-
strate that the dynamic toll pricing framework with
online calibration is promising for improved revenue.

Flow on GPL is not shown because it is complemen-
tary to flow on ML. Speed on ML is not shown because
ML are generally not congested. With optimized toll
rates, speed on ML is maintained at a high level. Since
different model parameter values are use in four periods
of the day, there may be sudden changes of simulated
flow between periods.

Limitations include a narrow search range for the toll
rates. If the algorithm allows toll rates to change by a

higher value in each interval, then the revenue under opti-
mized toll rates might be even higher.

Toll Optimization under Different Scenarios

Toll optimization was further evaluated under some
experimental scenarios:

1. Toll rates are not subject to an upper bound.

2. Demand is 20% lower.

3. Drivers’ braking behaviors are more conservative
so that deceleration rates are 50% lower.

Optimized toll rates under these scenarios are presented
in Figure 10. These experiments are conducted for the
period 05:30 to 18:00.

Under scenario 1, when no upper bound on toll is in
effect, toll rates during morning and evening peak peri-
ods would potentially increase to as much as twice the
original upper bound, generating a revenue gain of 5.3%
during the simulation period of 05:30 to 18:00, which is a
slightly larger gain compared with 4.0%, the case where
there is an upper bound. This indicates there is still room
for raising the toll rates above the upper bound, based on
travelers’ elasticity to toll rates as implied by the route
choice model in this study. Nevertheless, the rate of
increase reduces as the toll increases, since the response
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Figure 10. Optimized toll rates under base and experimental scenarios: (a) base scenario, (b) scenario |, (c) scenario 2, (d) scenario 3.

of travelers is eventually effective and the supply—demand
interaction is working properly under the proposed
framework.

Scenario 2 represents a day with 20% less demand.
Optimized toll rates become lower than the base scenario
because of less congestion on GPL, but still higher than
base toll during the midday period. Since midday is not
congested anyway, reducing demand does not affect opti-
mized toll rates. Toll revenue would be lower than base
scenario because of fewer trips, but applying toll optimi-
zation with online calibration still increases revenue by
1.7% compared with applying the base toll rates that are
not adjusted dynamically.

Scenario 3 simulates drivers driving in a more con-
servative way, potentially because of bad weather.
Because of slower deceleration rates, headway between
vehicles has to increase, thus the overall capacity of the
highway decreases. Because of more congestion, the
toll optimization algorithm chooses to maintain much

higher toll rates compared with base case, and similar
flow on ML is maintained, thus generating a revenue
gain of 9.8% compared with base toll rates. Under hea-
vier congestion, drivers choose ML even when toll rates
are much higher, because of greater savings in travel
time, and the proposed toll optimization framework
benefits from online calibration to estimate and predict
congestion.

The above tests under the simulation environment
demonstrate the important role of online calibration in
the prediction-based dynamic toll pricing framework.
When online calibration is enabled and it is possible to
estimate and predict traffic conditions with satisfactory
accuracy, decisions on toll rates made by the DTA-based
optimization are better than in the case where no online
calibration is available. The added benefit of online cali-
bration is especially large when there is significant con-
gestion on the network, and is less evident when no
congestion is present, which confirms that online
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calibration of supply parameters in an effort to match
estimated and actual traffic speed is key to the success of
the prediction-base tolling framework.

Conclusion

This paper presents calibration and optimization meth-
odologies for a dynamic toll pricing framework. This
framework is integrated with a DTA system to optimize
toll rates by evaluating toll revenues under predicted
traffic conditions. Thus online calibration is important
to ensure the DTA system accurately understands and
predicts traffic conditions. A heuristic online calibration
algorithm is proposed to adjust supply parameters in the
DTA system dynamically in response to real-time sur-
veillance data. This algorithm is tested with real sensor
data from a corridor consisting of ML and GPL, and the
calibration accuracy is impressive, even when significant
congestion is present. With online calibration enabled,
the toll optimization is tested in a closed-loop evaluation
framework. A microscopic simulator is calibrated oftline
toward real data, and integrated in the closed-loop eva-
luation framework as a representation of real network.
The DTA-based optimization framework generates opti-
mized toll rates, which are then implemented in the
microscopic simulator instead of in the real network.
The closed-loop toll optimization test is done under a
base scenario and three experimental scenarios. In each
scenario, optimized toll rates are consistent with the
authors’ expectations, and higher toll revenue is obtained
when optimized toll rates are implemented, compared
with the base toll rates generated in a system without
online calibration. It is also observed that the system is
maintained in real time, that is, the optimized tolls are
always obtained in less than 5 min.

It should be noted that this research is conducted in a
simulation environment relying on a discrete choice
model to predict travelers’ route choices under different
traffic conditions and toll rates, and parameters in that
model are known to the DTA system optimizing the toll.
Recent research by Burris and Brady (/9) suggests trave-
lers’ route choice behaviors may be more complex than a
route choice model which only considers travel time and
monetary cost. Further research is necessary before the
proposed methodology can claim to be valid in the real
world. Future research includes a comprehensive and
personalized model for travelers’ decisions to use ML, as
well as online calibration of the choice model parameters.

Future research on toll optimization algorithms may
potentially improve the effectiveness of toll optimization
and obtain larger revenue gain, or the algorithm may be
extended to incorporate other objectives. The current
algorithm is a simple search algorithm and should be
improved without sacrificing computational efficiency.

Robust toll optimization algorithms may be another
future direction to account for the situation in which the
DTA system may not have perfect knowledge of trave-
lers’ choice behaviors and future network conditions.
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