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Introduction

What is going on in the world and in our country is primarily brought to us via news media. What

we want to investigate is what the differences are between certain Dutch news papers such as ‘NRC

Handelsblad’ and ‘de Volkskrant’ in how they portray the news. To investigate this, we use the

l1-regularized logistic regression method as described in the article ‘Discovering word associations

in news media via feature selection and sparse classification’ [3].

The l1-regularized logistic regression method generates a list of words which are strongly associated

with the given query in the given dataset. The dataset can be a set of headlines, full articles or even

only the first paragraph of an article. The program works as follows: Based on a given query, the

dataset is separated into two classes consisting of items who do contain the query and those that

do not. Applying the l1-regularized logistic regression method gives a weight (positive or negative)

to each word appearing in any of those two classes. A large positive weight means that that word

has strong association with the query and a large negative weight means that there is not any

association with the query. The weight vector is a sparse vector, which is a vector where most of the

elements are equal to zero. An example of a result can be seen in Figure 1. The fontsize represents

the extent to which the word is associated with the query, the colors of the words have no meaning.

Figure 1: Wordcloud Dataset1, query china

The thesis can be divided in two parts: A theoretical part (chapters one to four) and a practical part

(chapter five). The first chapter introduces the basic theory of convex sets and functions. Also the

norm function will be described which is an important part of the l1-regularized logistic regression
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method. In chapter two the logistic regression model is introduced. Logistic regression is used to

make a prediction of the probability of the occurence of an event by fitting data to a logistic curve.

This function is a non-linear function which makes it difficult to estimate the parameters. One way

to solve this problem is to solve the corresponding convex optimization problem. For these problems

Newton’s method can be used to approximate an optimal solution, which is described in chapter

three. In chapter four, the l1-regularized logistic regression is introduced. This method is more

general than the logistic regression method because one has the extra possibility to choose weights.

Despite the benefits of introducing the extra term, the l1-regularized logistic regression method is

not able to use Newton’s method due to the fact that the function to be optimized is no longer

differentiable. However, there are methods in modern convex optimization (beyond the scope of

this project) which can be applied here and which heavily rely on Newton’s method. In chapter five

a description is given of how data can be transformed into the right format for the software to use

it and how the parameter λ is found. For this part of the project I have written two Matlab codes,

which can be found in appendix B.

The theory is largely based on the book ‘Convex Optimization’, written by Stephen Boyd and Lieven

Vandenberghe [1]. Stephen Boyd is also one of the designers of the software used.

There are four datasets used for this project. The first three datasets are based on headlines from the

section ‘buitenland’ from two different newspapers. Two datasets are from NRC Handelsblad and

the other dataset is from de Volkskrant. The fourth dataset is a list of most common Dutch words

which are substracted from the dataset. The datasets are stored online, they can be downloaded

via the following links.

Dataset1 (NRC Handelsblad): http://db.tt/qS0PHua,

Dataset2 (NRC Handelsblad): http://db.tt/O6QxG2B,

Dataset3 (de Volkskrant): http://db.tt/IluVjOU,

Dataset4 (Most common words): http://db.tt/eyRoAKP.
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Chapter1
Convex Sets and Functions

In this chapter the basic theory of convex sets and convex function is given. In the last part of this

chapter the norm function and several properties are described. This chapter forms the theoretical

basis for chapters two and three.

1.1 Convex sets and functions

A set V ⊆ Rn is convex if the line segment between any two points in V lies in V . So, for any

x , y ∈ V and any θ with 0≤ θ ≤ 1 the following must hold

θ x + (1− θ)y ∈ V.

This means that the line segment connecting two arbitrary points of the set should stay in the

set. For instance, cubes, circles or ellipsoids are convex sets where a star-shaped object is not. An

example of a convex and a non-convex set in R2 can be seen in Figure 1.1.

Figure 1.1: A convex set (left) and a non-convex set (right)

A function f : D( f ) → R is convex if the domain of f , D( f ) ⊆ Rn, is a convex set and if for all

x , y ∈ D( f ) and 0≤ θ ≤ 1

f (θ x + (1− θ)y)≤ θ f (x) + (1− θ) f (y). (1.1)

The function is strictly convex if strict inequality holds in expression (1.1) whenever x 6= y and

0< θ < 1. The function is concave if − f is convex, and strictly concave if − f is strictly convex.

Convex sets and a convex functions are related to each other, namely through the epigraph.
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Definition 1.1. The epigraph of a function f : D( f )→ R is defined as

epi( f ) = {(x , y)|x ∈ D( f ), f (x)≤ y}.

Theorem 1.2. A function f : D( f )→ R is a convex function if and only if epi( f ) is a convex set.

Proof. Given any (x1, y1), (x2, y2) ∈ epi( f ) and 0≤ θ ≤ 1.

⇒: Now by the definition of a convex function

f (θ x1+ (1− θ)x2)≤ θ f (x1) + (1− θ) f (x2),

≤ θ y1+ (1− θ)y2.

This last inequality follows from the definition of the epigraph and thereby the epigraph is a convex

set.

⇐: Assume that epi( f ) is a convex set. Then,

θ(x1, f (x1)) + (1− θ)(x2, f (x2)) = (θ x1+ (1− θ)x2,θ f (x1) + (1− θ) f (x2)) ∈ epi( f ).

Then by the definition of the epigraph

f (θ x1+ (1− θ)x2)≤ θ f (x1) + (1− θ) f (x2),

thus f is a convex function.

In subfigures (a) and (b) of Figure 1.2 two graphs with their epigraphs are shown. It can be easily

calculated that f (x) = x2 is a convex function on R and f (x) = x3 is not. This can also be seen

from the epigraphs of those functions. For each two points (x1, y1) and (x2, y2) from the epigraph

of f (x) = x2, the line segment connecting those points stays in the set. This is not the case for

f (x) = x3, take for example (x1, y1) = (−1,−1) and (x2, y2) = (0, 0).

(a) f = x2 (b) f = x3

Figure 1.2: Epigraphs of a convex and a non-convex function

If a function f has a continuous second derivative and D( f ) ⊆ R, you can instead of using the

definition also use the following theorem to see if a function is a convex function or not.

Theorem 1.3. A twice differentiable function f : D( f )→ R with a continuous second derivative and

D( f )⊆ R, is convex on the convex set D( f ) if and only if f ′′(x)≥ 0 for all x ∈ D( f ).
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Proof. Suppose x , y ∈ D( f ), then by the mean value theorem there exists a z with x < z < y such

that
f (y)− f (x)

y − x
= f ′(z). (1.2)

Because f ′′(x) ≥ 0, the function f ′(x) is monotonically increasing and hence f ′(x) ≤ f ′(z) ≤
f ′(y). Rewriting (1.2) gives

f (y) = f (x) + f ′(z)(y − x)

≥ f (x) + f ′(x)(y − x).

In the same way one has

f (x) = f (y) + f ′(z)(x − y)

≥ f (y) + f ′(y)(x − y).

Take x ≤ u≤ y with u= θ x + (1− θ)y and 0≤ θ ≤ 1, then

f (x)≥ f (u) + f ′(u)(x − u) (1.3)

f (y)≥ f (u) + f ′(u)(y − u). (1.4)

If (1.3) is multiplied by θ and (1.4) by (1− θ) and adding up gives

θ f (x) + (1− θ) f (y)≥ θ f (u) + θ f ′(u)(y − u) + (1− θ) f (u) + (1− θ) f ′(u)(y − u)

= f (u) + (θ x + (1− θ)y − u) f ′(u)

= f (u) + (u− u) f ′(u)

= f (u)

= f (θ x + (1− θ)y).

Theorem 1.4. If f , g : D( f ) → R are convex functions, then the sum of f and g is also a convex

function.

Proof. Suppose h : D( f )→ R with h= f + g and f , g are convex functions. Then, for x , y ∈ D( f )
and 0≤ θ ≤ 1,

h(θ x + (1− θ)y) = f (θ x + (1− θ)y) + g(θ x + (1− θ)y)
≤ θ f (x) + (1− θ) f (y) + θ g(x) + (1− θ)g(y)
= θ( f (x) + g(x)) + (1− θ)( f (y) + g(y))

= θh(x) + (1− θ)h(y).
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1.2 Norm functions

A norm is a function that assigns a strictly positive length or size to all vectors in a vector space,

other than the zero vector.

Definition 1.5. A function ‖·‖ : Rn→ R is called a norm if

1. ‖·‖ is nonnegative: ‖x‖ ≥ 0 for all x ∈ Rn,

2. ‖·‖ is definite: ‖x‖= 0 only if x = 0,

3. ‖·‖ is homogeneous: ‖λx‖= |λ|‖x‖ for all x ∈ Rn and λ ∈ R,

4. ‖·‖ satisfies the triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x , y ∈ Rn.

The most common norm is the l2-norm. This norm gives the length of a vector x = (x1, . . . , xn) by

‖x‖2 =
Æ

x2
1 + x2

2 + · · ·+ x2
n.

The l1-norm is given by

‖x‖1 =
n∑

i=1

|x i|.

This norm is also called the taxicab norm. The name relates to the distance a taxi has to drive in

a rectangular street grid to get from the origin to point x . This norm plays a significant role in the

l1-regularized logistic regression method.

The two given norms come from the general form of the p-norm. That is, let p ≥ 1 be a real number,

then the lp-norm is given by

‖x‖p =

 
n∑

i=1

|x i|p
! 1

p

.

An important property of the norm is that every norm is a convex function.

Theorem 1.6. Every norm ‖·‖ is a convex function.

Proof. Suppose x , y ∈ Rn and 0≤ θ ≤ 1 then, by the properties of the norm,

‖θ x + (1− θ)y‖ ≤ ‖θ x‖+ ‖(1− θ)y‖ by property 4

= |θ |‖x‖+ |(1− θ)|‖y‖ by property 3

= θ‖x‖+ (1− θ)‖y‖,

and the result follows.
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Chapter2
Logistic Regression

Logistic regression is a type of a predictive model that can be used when the response variable is a

categorical variable with only two categories, for example failure and success. One of the questions

one can ask is what the probability is that a person dies from a heart disease within a specified time

period given some factors like gender, age and body mass index.

First, the logistic regression model is explained with only one explanatory variable and shall later

on be extended to a multiple regression model with several explanatory variables. Secondly, given

a datamatrix of explanatory variables with known outcomes, the coefficients βi can be found via

maximum likelikehood estimates. The theory follows the book ‘Applied Regression analysis and

generalized linear models’ from John Fox [2].

2.1 Single regression

Suppose you want to know what the probability is of dying from a heart disease within the next ten

years depending on the age you are. The response variable Y can be seen as follows

Y =





1 you die from a heart disease within the next ten years,

−1 you will not die from a heart disease within the next ten years,

and X is your age in years. A scatter plot of this example is depicted in Figure 2.1. The points are

jittered horizontally and vertically to minimize overplotting. This dataset comes from the Evans

County study [9]. The study was a cohort study of men followed for seven years, there were 609

participiants in the study. The conditional probability πi is given by

πi ≡ Pr(Yi)≡ Pr(Y = 1|X = x i).

The other outcome has probability Pr(Y = −1|X = x i) = 1 − πi . The expectation can be easily

calculated:

E(Y |x i) = πi · (1) + (1−πi) · (−1) = 2πi − 1.

7



35 40 45 50 55 60 65 70 75 80
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0
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Figure 2.1: Jittered scatterplot of age X i versus outcome Yi

What we want to find is a relationship between the conditional probabilty and the variable X .

2.1.1 Transformation of π

The conditional probability cannot be modeled by a linear predictor η = β0 + β1X , because of the

possibility that η have values outside the unit interval. A positive, monotone function P(·) which

maps the linear predictor into the unit interval can resolve this problem. So the transformation

looks like

πi = P(ηi) = P(β0+ β1X i),

and β0 and β1 are the parameters to be estimated. The function P(·) should be both smooth and

symmetric and should approach π= 0 and π= 1 as asymptotes.

The logistic distribution function is defined as

Λ(z) =
1

1+ exp(−z)
,

and produces the linear logistic regression model:

πi = Λ(β0+ β1X i)

=
1

1+ exp[−(β0+ β1X i)]
.

The inverse of the logistic distribution function is also called the logit function and is equal to

Λ−1(πi) = ln
�

πi

1−πi

�
= β0+ β1X i .

The term πi

1−πi
is called the odds. Because the probabilities lie between 0 and 1, odds lie between

zero and infinity. The logit function is an odd function and has π= 0 and π= 1 as asymptotes. The

linear predictor η can take values from minus infinity to infinity. When the probability of the two

outcomes are equal, they have both probability 0.5, the logit function is equal to 0.
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2.2 Multiple regression

Generalizing the logistic distribution model to several explanatory variables is straightforward. The

only difference is that the linear predictor η is now a function of several explanatory variables. This

means that

πi = Λ(ηi) = Λ(β0+ β1X1,i + · · ·+ βkXk,i)

=
1

1+ exp[−(β0+ β1X1,i + · · ·+ βkXk,i)]
. (2.1)

Equation (2.1) can be rewritten to

ln
�

πi

1−πi

�
= β0+ β1X1,i + · · ·+ βkXk,i .

The relationship between the linear predictor η and the conditional probability π is depicted in

Figure 2.2.

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

η = β
0

 + β
1

X
1

 + ... + β
k
X

k

π

Figure 2.2: Relationship between linear predictor η and conditional probability π

Returning to the example used in the first part, what is the probability that you die from a heart

disease within the next ten years? In this model [7], there are six explanatory variables to predict

risk of death from heart disease in the next ten years:

X1 = Smoking, where 0 is for non-smoking and 1 is smoking,

X2 = Total Cholesterol Level (TCL - 200),

X3 = Body Mass Index (BMI - 25),

X4 = Gender, where 0 is female and 1 is male,

X5 = Age, (years - 50),

X6 = Hours of physical activity per week.

After fitting the data, the βi ’s are estimated, which results in the following equation for the linear

9



predictor:

ηi =−4.123+ 0.898X1,i + 0.166X2,i + 0.058X3,i + 0.028X4,i + 0.024X5,i − 1.013X6,i

A 55-year old woman, who smokes and has a TCL of 230 and a BMI of 32 and is physically inactive

has an 86% chance of dying of a heart disease within the next ten years:

η=−4.123+ 0.898 · 1+ 0.166 · 30+ 0.058 · 7+ 0.028 · 0+ 0.024 · 5− 1.013 · 0= 1.803546,

πi =
1

1+ exp(−1.803546)
= 0.859.

On the contrary, a health-conscience 65 year old man who does not smoke, has a TCL of 180, BMI

of 25 and sports 4 hours a week has almost zero chance of dying of a heart disease within the next

ten years.

η=−4.123+ 0.898 · 0+ 0.166 · −20+ 0.058 · 0+ 0.028 · 1+ 0.024 · 15− 1.013 · 4=−11.107,

πi =
1

1+ exp(11.107)
= 1.5 · 10−5.

2.3 Estimating βi

Until now the coefficients βi were given without any justification. Consider a sample of n independ-

ent obervations and k explanatory variables. Then there is an n× 1 outcome vector Y and an n× k

data matrix X. The coefficients βi can be found by the maximum likelihood estimator. Because the

observations are independent, the likelihood function looks like
∏n

i=1πi . When taking logarithms,

the log-likelihood function is found:

l(β0, . . . ,βk) = log

 
n∏

i=1

πi

!

=
n∑

i=1

log(πi)

=
n∑

i=1

log

�
1

1+ exp[−(β0+ β1X1,i + · · ·+ βkXk,i)]

�

=−
n∑

i=1

log
�

1+ exp[−(β0+ β1X1,i + · · ·+ βkXk,i)]
�

=−
n∑

i=1

f (β0+ β1X1,i + · · ·+ βkXk,i),

where f is the logistic loss function:

f (z) = log(1+ exp(−z)). (2.2)

Theorem 2.1. The logistic loss function f (z) = log(1+ exp(−z)) is a convex function.

10



Proof. Use theorem 1.3: The first and second derivatives of equation (2.2) are

f ′(z) =
1

1+ exp(−z)
· (−exp(−z))

=− exp(−z)
1+ exp(−z)

f ′′(z) =−(1+ exp(−z)) · (−exp(−z))− exp(−z) · (−exp(−z))
(1+ exp(−z))2

=
exp(−z) + exp(−2z)− exp(−2z)

(1+ exp(−z))2

=
exp(−z)

(1+ exp(−z))2
.

The last equation is always greater or equal to zero because of the exponential function in the

numerator and the square in the denominator which are both always positive.

Because the logistic loss function is a convex function, the log-likelihood function is concave. The

negative of the log-likelihood function is called the (emperical) logistic loss. If the logistic loss

function is divided by n, the average logistic loss is found

L (β0, . . . ,βk) =
1

n

n∑
i=1

f (β0+ β1X1,i + · · ·+ βkXk,i).

Since L (β0, . . . ,βk) is a convex function of the parameters βi , the logistic regression problem can

be solved by solving the convex optimization problem

minimize L (β0, . . . ,βk), (2.3)

with parameters βi ∈ R, data matrix X and outcome vector Y. From theorem 3.2 it follows that

the maximum likelihood estimates for βi can be found by solving the system of k+ 1 simultaneous

equations
∂L
∂ βi
= 0 for i = 0, . . . , k.

With Newton’s method an approximation of the solution can be found. This method will be ex-

plained in the following chapter.
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Chapter3
Convex Optimization

In this chapter the theory of optimization is described. Starting with the standard form of an op-

timization problem, the basic terms and notations are described. Later on the convex optimization

problem is described, which is a special case of a standard optimization problem. In the last part

Newton’s method is described which can solve unconstrained convex optimization problems.

The standard form of a optimization problem looks like

minimize f0(x)

subject to fi(x)≤ 0 i = 1, . . . , m

h j(x) = 0 j = 1, . . . , p.

Solving this problem is finding an x which minimizes f0(x) and satisfies the conditions fi(x) ≤ 0

and h j(x) = 0. In this problem x ∈ Rn is the optimization variable and the function f0(x) : Rn→ R
is called the objective function. The inequalities fi(x) ≤ 0 are the inequality constraints and the

equations h j(x) = 0 are the equality constraints.

The set of points for which the objective function and the constraint functions are defined

V =
m⋂

i=0

D( fi)∩
p⋂

j=1

D(h j),

is called the domain of the optimization problem. A point x ∈ V is feasible if it satisfies all the

constraint functions. The optimal value p∗ of the problem is defined as

p∗ = inf
¦

f0(x) | fi(x)≤ 0, i = 1, . . . , m, h j(x) = 0, j = 1, . . . , p
©

.

An optimal point x∗ solves the problem if x∗ is feasible and f0(x∗) = p∗.

13



3.1 Convex optimization

The difference between a optimization problem and a convex optimization problem is that the

objective function and the inequality constraint functions must be convex functions. Also, the

equality constraint function h j(x) = aT
j x − b j must be affine (linear). The convex optimization

problem looks thus as follows

minimize f0(x)

subject to fi(x)≤ 0 i = 1, . . . , m

aT
j x = b j j = 1, . . . , p.

Because of the convexity of the objective function any locally optimal point is also (globally) op-

timal.

Theorem 3.1. If f0 : D( f0)→ R is a convex function, then every local optimum is a global optimum.

Proof. Suppose x ∈ D( f0) is a local optimum, x is feasible and

f0(x) = inf
�

f0(z) | z feasible, ‖z− x‖2 ≤ R
	

, (3.1)

for some R > 0. Now suppose that x is not a global optimum, that is, there is a y such that

f0(y)< f0(x). By equation (3.1), ‖y − x‖2 > R. Suppose the point z is given by

z = (1− θ)x + θ y, with θ =
R

2‖y − x‖2
. (3.2)

By defining θ in this way, 0< θ < 1
2
. Combining equation (3.2) with equation (3.1) gives

‖z− x‖2 = ‖(1− θ)x + θ y − x‖2
= ‖θ(y − x)‖2
= θ‖y − x‖2
=

R

2‖y − x‖2
‖y − x‖2 =

R

2
.

So z is a feasible point by (3.1). Because f0 is a convex function,

f0(z)≤ (1− θ) f0(x) + θ f0(y)

= f0(x) + θ( f0(y)− f0(x))

< f0(x) +
1

2
( f0(y)− f0(x)) by (3.2)

=
1

2
( f0(x) + f0(y))< f0(x).

The last expression follows by the definition of the global optimum y . This result contradicts with

(3.1), therefore there exists no feasible y with f0(y)< f0(x), so x is globally optimal.
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3.2 Newton’s method for unconstrained minimization

In this section Newton’s method is described which can solve the unconstrained convex optimization

problem

minimize f (x), (3.3)

with f differentiable. Because f is a convex function, the solution x∗ is found when

∇ f (x∗) = 0, (3.4)

where the gradient is given by

∇ f (x) =
�
∂

∂ x1
f (x), . . . ,

∂

∂ xn
f (x)

�T

.

Theorem 3.2. Suppose f is differentiable and convex, then x is optimal if and only if

∇ f (x) = 0.

Proof. Because f is a differentiable and convex function, it follows from the definition of a convex

function that for all x , y ∈ D( f )

f (y)≥ f (x) +∇ f (x)T (y − x). (3.5)

Proof of this statement can be found on page 70 of [1]. The point x is optimal if for all feasible y

the following inequality holds

∇ f (x)T (y − x)≥ 0. (3.6)

⇒: Suppose x is optimal. Since f is differentiable, its domain is open, so all y sufficiently close to

x are feasible. Let y = x − t∇ f (x), with t > 0. If t is chosen small, y is feasible and

∇ f (x)T (y − x) =∇ f (x)T (x − t∇ f (x)− x)

=∇ f (x)T (−t∇ f (x))

=−t‖∇ f (x)‖22 ≥ 0.

The last equation only holds if ∇ f (x) = 0.

⇐: Suppose ∇ f (x) = 0 and x satisfies (3.6), then by (3.5) x is optimal.

Solving equation (3.4) for x∗ is the same as solving the system of n equations obtained by setting

the n partial derivatives equal to zero. In most of the cases these equations can not be solved

analytically, but with Newton’s method a solution can be approximated.

Netwon’s method is an iterative algorithm which produces a minimizing sequence x (k), with k =

1,2, . . . where

x (k+1) = x (k)+ t(k)∆x (k),
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where t(k) > 0 unless x (k) is optimal. The vector ∆x is called the search direction and the scalar

t(k) ≥ 0 is called the stepsize at iteration k. The method is a descent method, that is f (x (k+1)) <

f (x (k)), except when x (k) is optimal. The search direction must satisfy

∇ f (x (k))T∆x (k) < 0. (3.7)

The second-order Taylor approximation T of f around the point a is

T (x + a) = f (a) +∇ f (a)T x +
1

2
x T∇2 f (a)x ,

where the Hessian matrix of f at a is given by

�
∇2 f (a)

�
i j
=

∂ 2

∂ x i∂ x j
f (a).

This approximation of f is a strictly convex quadratic function of x , so it has a unique minimizer

x∗ ∈ Rn. This minimizer can be found by setting the gradient of T equal to zero:

0=∇T (x∗)

=
�
∂

∂ x1
T (x∗), . . . ,

∂

∂ xn
T (x∗)

�T

=∇ f (a) +∇2 f (a)x∗.

Solving for x∗ gives the Newton step for f at x:

x∗ =−(∇2 f (a))−1∇ f (a) = ∆xnt .

Because f is a convex function, ∇2 f (x) is positive semidefinite. This can be proven like in theorem

1.3 which is the one-dimensional case of this statement. Equation (3.7) can be rewritten as

∇ f (x)T∆xnt =−∇ f (x)T∇2 f (x)−1∇ f (x)< 0,

unless∇ f (x) = 0, so the Newton step is a descent direction (unless x is optimal). Newton’s method

can now be stated

x (k+1) = x (k)+ t(k)∆x (k)nt .

Algorithm 2 represents the scheme to be followed. At each iteration k, the stepsize t should be

chosen such that x (k+1) ∈ D( f ), this can be done with backtracking line search (Algorithm 1). This

algorithm starts with t = 1 and checks if the point x (k+1) is in the domain or not. If it is not, it sets

t = t
2

and checks again and repeats this method until the first time that x (k+1) ∈ D( f ).
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Algorithm 1 Backtracking line search

- Given a descent direction ∆xnt for f at x ∈ D( f )
- Set t := 1
while x + t∆xnt /∈ D( f ) do

- Set t := 1
2

t
end while

Algorithm 2 Newton’s method

Given a starting point x ∈ D( f ) and tolerance ε > 0
repeat

- Compute the Newton step
∆xnt :=−∇2 f (x)−1∇ f (x)

- Choose stepsize t by backtracking line search such that

x + t∆xnt ∈ D( f )

- Set
x := x + t∆xnt

until ‖∇ f (x)‖2 ≤ ε

17



18



Chapter4
l1-Regularized Logistic Regression

This chapter describes the theory used in the l1_logreg software [6]. The article ‘An interior point

method for large-scale l1-regularized logistic regression’ [5] is the basis of the theory this chapter.

When m is much smaller than n, logistic regression leads to over-fit. A technique to prevent over-

fitting is regularization which is adding an extra term, the l1-norm, which encourages the sum of

the absolute values of the parameters to be small. The l1-regularized logistic regression problem

looks like

minimize L (β0, . . . ,βk) +λ‖(β1, . . . ,βk)‖1
Or, equivalently

minimize
1

n

n∑
i=1

f (β0+ β1X1,i + · · ·+ βkXk,i) +λ
k∑

i=1

|βi| (4.1)

where λ > 0 is the regularization parameter. This method is called the l1-regularized logistic re-

gression problem because of the introduction of the l1-norm in the objective function. The objective

function is a convex function but is not differentiable because of that norm. The convexity follows

from combining theorems 1.3, 1.4 and 1.6.

The major advantage to use this method is that l1-regularized logistic regression typically yields

a sparse vector (β1, . . . ,βk). This means that most of the elements βi are equal to zero. The

problem can be solved if the problem is transformed into one which has differentiable objective and

constraint functions. So the l1-regularized logistic regression problem can be solved by solving

minimize L (β0, . . . ,βk) +λ1T u

subject to − ui ≤ βi ≤ ui ,

where 1 denotes the vector with all components equal to one and u ∈ Rn. This new formulated

problem is a convex optimization problem, with a smooth objective and constraint functions, so it

can be solved by standard convex optimization methods such as the interior point algorithm which

heavily rely on Newton’s method. This theory is for instance explained in chapter 11 of [1] and in

chapter 2 of [5], but goes beyond the scope of the project.
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Chapter5
Application

In this chapter the theory of the previous chapters is put into practice. Newspapers store all their

publications online and that was a good place to start. I have chosen two newpapers who are

opposite in the political spectrum in the Netherlands. The first newspaper I have chosen is NRC

Handelsblad, which is a right-wing newspaper. The other newspaper I used is de Volkskrant, a

left-wing newspaper. It will be interesting to see if this difference will be reflected in the results.

The data is downloaded from the LexisNexis* website [8]. This website gathers all kind of publi-

cations including newspapers from the Netherlands. All datasets consists of headlines from section

‘buitenland’. In this case I have used headlines, but is also possible to use the whole text of the

article or just the first paragraph. Dataset1 contains all the headlines from October 13th, 2009 until

June 23rd, 2011 from NRC Handelsblad. Dataset2 is also from NRC Handelsblad but is only from

January 1st, 2011 until June 23rd, 2011. The last dataset I have used is Dataset3, which comes

from de Volkskrant and is also from January 1st, 2011 until June 23rd, 2011.

When the data is downloaded from the internet, the dataset is just a large file with a lot of words

in it and is not yet usable. The input for the l1_logreg_train method [6] should be a matrix,

so a transformation of the data is needed. How to do this is described in the first section. After the

data is in the right format, the actual application can begin. Choosing a query, we need to find a λ

which fits the data best. When the right λ is found, two datasets are compared to each other to see

if there is a difference between the two newspapers.

5.1 Transforming data

To show how the transformation of the data works, I have chosen to use a simple example of only

four items. These items are based on headlines from the newspaper NRC Handelsblad.

`Kluizenaar' die wilde inbreken in de website van de CIA

Obama botst met Congres over legitimiteit missie Libië

Republikeinen willen zorgwet Obama afschaffen

VN: uitstel van `genocide'-rapport
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In appendix B.1, the Matlab code can be found that will transform the raw data into a suitable

format. What this program basically does is the following:

1. Set each item on a separate line,

2. Convert all letters to lowercase,

3. Remove punctuation,

4. Remove diacritics. That is, for example, replacing ë by e.

After the transformation the data looks as follows:

kluizenaar die wilde inbreken in de website van de cia

obama botst met congres over legitimiteit missie libie

republikeinen willen zorgwet obama afschaffen

vn uitstel van genociderapport

In the text there are a lot of words such as adverbs and articles which occur frequently, but have

almost no relation to the query, so they should be removed from the dataset. The ‘Instituut voor

Nederlandse Lexicologie’ [4] has analyzed all the papers of the NRC Handelsblad in the years 1994

and 1995 and made a frequency list of all the words which appeared on one of the papers. A

selection of the top 300 of these words is used which are discarded from the dataset.

The data is now almost in the right format. It need only be transformed into a matrix M . The size

of matrix M is m× n, where m is the number of items and n the number of distinct features in the

dataset. The elements of the matrix represents how many times a feature is in an item. The Matlab

code for this part can be found in the second cell of the code in appendix B.2.

Continuing with the same example as before, this results in the following matrix:

After:

The ‘Instituut voor Nederlandse Lexicologie’ [4] has analyzed all the words appearing in the paper

NRC Handelsblad in the years 1994 and 1995 and made a frequency list of all those words. On the

top of that list there are words such as adverbs and articles which are insignificant for the purpose

of the program. By removing these words from the dataset, the results are unaffected.

Appendix A.2 shows the Matlab code which transforms the data into a m× n matrix M where m

is the number of items and n the number of distinct features in the dataset. The elements of the

matrix represents how many times a feature is in an item.

Continuing with the same example as before, this results in the following matrix:

M =




0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0

0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0




.

As expected, m= 4 and in this case there are n= 20 distinct words.

5.1.1 Query

A query is the word that you want to investigate. The query must be one of the features. After

the query is chosen, the corresponding column is removed from matrix M and a m× 1 vector N is

made. This vector has only two different elements, namely -1 and 1. If the queryword appears in

item i, it is equal to 1, if it does not, it is equal to -1. So, by example, if the queryword is ,

then the vector N equals

N =




1

−1

−1

1




.

With the matrix M and the vector N the data is now ready for use of . Result:

A word image; A small set of words describing/distinguishing the queryword.

5.2 Variation of parameter λ

Aantal voorbeelden met vaste dataset en zoekwoord, maar met verschillende lambda’s. Gebruik

maken van wordclouds en kijken vanaf wanneer de lambda’s niet veel meer toevoegen. Stel neem

lambda = 0.1, 0.01, 0.001, 0.0001. Verwachting: grote lambda, kleiner resultaat.
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As expected, m= 4 and in this case there are n= 16 features.

5.2 Query

A query is the word that we want to investigate. The query must be one of the features. After the

query is chosen, the corresponding column is removed from matrix M and a m×1 vector N is made.
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This vector has only two different elements, namely -1 and 1. If the queryword appears in item i,

then N(i) is equal to 1, if it does not, it is equal to -1. So, by example, if the queryword is obama,

then the vector N equals

N =




−1

1

1

−1




.

With the transformed matrix M and the vector N the data is now ready for use for the l1_logreg_train

method.

5.3 Variation of parameter λ

The parameter λ, as introduced in equation (4.1), roughly controls the number of nonzero compon-

ents. For each dataset I have varied λ from 1 to 0.000001 for the query obama, the results of these

simulations can be found in appendix A. The tables consist of four columns. The first two columns

speak for themselves, the third and fourth column represent the number of features in the positive

or negative cloud. If a feature has a positive weight, and is therefore in the positive cloud, there

is a strong association with the given query. If the feature is in the negative cloud, there is strong

evidence that there is no association with the query.

For almost all the simulations the number of features in the result increases or remains on the same

level as λ decreases. For all three datasets, there is no result for λ > 0.01. The results of Dataset2

and Dataset3 are what you would expect: Decreasing λ increases the number of features found,

until some value of λ from where the number of features stays the same. Dataset1 on the other

hand, has a sudden decrease of features in the set at λ= 0.00001. Also, from that λ on the number

of features in the negative cloud increases very fast. By trial and error the desired result can be

found.

5.4 Comparison of two datasets

Dataset2 and Dataset3 both consists of headlines from January 1st 2011 until June 23rd 2011

from section ‘buitenland’, so it make sense to compare these two with each other. For a graphical

presentation of the result, I have made wordclouds with Wordle1. In this way it can be easily seen

which words have a strong association with the query: The colors of the words have no meaning,

only the size of the font matters. The wordclouds used are positive clouds: So only the features

with a positive weight coefficient are used.

In Figures 5.1 and 5.2 two wordclouds are shown of Dataset2 and Dataset3 respectively. The first

thing you notice is that Dataset2 has relatively many words with the same large font, so their ‘top’ of

words is a relatively large group where the features have almost the same weight. Dataset3 has only

a few words with a large font. Another thing what stands out is that the result of Dataset2 contains

a lot of words especially about the politics and economy of America such as bezuinigingsplan,

1http://www.wordle.net/
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Figure 5.1: Wordcloud Dataset2 (NRC Handelsblad), query obama, λ= 10−4

republikein, begroting and klimaatbeleid. Dataset3 on the other hand has more news

from outside of America such as (moosten (’midden oosten’), latijnsamerika, netanyahu and

wereldmacht. There are also more humanitarian words on personal level and on social issues such

as liefst, nare, gevoelige, zelfbeschikking, amicale, emotionele and zorgplan. It is

also notable that barack only appears in the result of Dataset3 and not in Dataset2.

Figure 5.2: Wordcloud Dataset3 (de Volkskrant), query obama, λ= 10−4

5.5 Conclusions and Recommendations

From the figures you can conclude that Dataset2 (NRC Handelsblad) has a more right conservative

character and Dataset3 (de Volkskrant) tends more to the people. This is also what I expected.

For further research the following things can be considered: The datasets used are relatively small,

a similiar research can be done with a much larger dataset, for example a datasets which contains

all the headlines of the past ten years. For this project only headlines are used, but is also possible

to extend it to text of the whole article. A flaw in the program is that the plural of nouns and verbs

are seen as different words, as well as words like den haag are seen as two different words.
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AppendixA
Datasets

Dataset1

Paper: NRC Handelsblad

Section: ’buitenland’

Type: headlines

Start date: October 13th, 2009

End date: June 23rd, 2011

Number of items: 5344

Number of features: 10943

Total calculation time: 733.92 sec

URL: http://db.tt/qS0PHua

λ time (sec) positive cloud negative cloud

1 1.72 0 0
0.5 1.65 0 0
0.1 1.70 0 0
0.05 1.71 0 0
0.01 2.26 144 0

0.005 1.76 179 0
0.001 2.31 208 79
0.0005 2.44 212 129
0.0001 3.31 212 197

0.00005 3.63 204 245
0.00001 2.09 44 54
0.000005 2.48 92 67
0.000001 5.09 194 2939

Table A.1: Dataset1, query obama. Positive/negative cloud: number of features with a positive/ne-
gative weight
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Dataset2

Paper: NRC Handelsblad

Section: ’buitenland’

Type: headlines

Start date: January 1st, 2011

End date: June 23rd, 2011

Number of items: 1407

Number of features: 4326

Total calculation time: 76.08 sec

URL: http://db.tt/O6QxG2B

λ time (sec) positive cloud negative cloud

1 0.42 0 0
0.5 0.38 0 0
0.1 0.37 0 0
0.05 0.79 0 0
0.01 0.54 60 0

0.005 0.53 61 0
0.001 0.54 62 8
0.0005 0.55 62 8
0.0001 0.59 62 8

0.00005 0.65 62 8
0.00001 0.53 62 8
0.000005 0.59 62 8
0.000001 0.54 57 8

Table A.2: Dataset2, query obama. Positive/negative cloud: number of features with a positive/ne-
gative weight
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Dataset3

Paper: de Volkskrant

Section: ’buitenland’

Type: headlines

Start date: January 1st, 2011

End date: June 23rd, 2011

Number of items: 1713

Number of features: 4517

Total calculation time: 95.80 sec

URL: http://db.tt/IluVjOU

λ time (sec) positive cloud negative cloud

1 0.45 0 0
0.5 0.40 0 0
0.1 0.40 0 0
0.05 0.41 0 0
0.01 0.59 69 0

0.005 0.56 71 1
0.001 0.57 71 6
0.0005 0.58 71 6
0.0001 0.57 71 20

0.00005 0.55 71 20
0.00001 0.56 71 20
0.000005 0.56 71 20
0.000001 0.53 71 20

Table A.3: Dataset3, query obama. Positive/negative cloud: number of features with a positive/ne-
gative weight
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AppendixB
Matlab code

B.1 source2input.m

clc; clear all

% Open source file

f1 = fopen('DATA/vbverslag.txt','r');

str = char(fread(f1)');

fclose(f1);

% Get headlines from source file

data = regexprep(str,'\s','xyz');

data = regexprep(data,'xyz', ' ');

data2 = regexp(data, 'HEADLINE:', 'split');

data3 = regexp(data2, '\s\s\s','once');

[x y] = size(data3);

dataset = cell(y−1,1);
for i=2:y

dataset{i−1,1} = data2{i}(1:data3{i});

end

% Set all letters into lowercase. Remove punctuation, accents and double ...

whitespace

dataset = lower(dataset);

blacklist = {'\.' ',' '?' '!' ':' ';' '−' '\' '/' '@' ')' '(' '_' '[' ']' ...

char(34) char(39) char(145) char(146) char(147) char(148) char(8216) ...

char(8217) char(8220) char(8221) char(8222)};

dataset = regexprep(dataset, blacklist, '');

blacklist_a = {char(224) char(225) char(226) char(227) char(228) char(229)};

dataset = regexprep(dataset,blacklist_a,'a');

blacklist_c = {char(230)};

dataset = regexprep(dataset,blacklist_c,'c');

blacklist_e = {char(232) char(233) char(234) char(235)};
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dataset = regexprep(dataset,blacklist_e,'e');

blacklist_i = {char(236) char(237) char(238) char(239)};

dataset = regexprep(dataset,blacklist_i,'i');

blacklist_o = {char(242) char(243) char(244) char(245) char(246)};

dataset = regexprep(dataset,blacklist_o,'o');

blacklist_u = {char(249) char(250) char(251) char(252)};

dataset = regexprep(dataset,blacklist_u,'u');

blacklist_y = {char(253) char(255)};

dataset = regexprep(dataset,blacklist_y,'y');

dataset = regexprep(dataset,'\s\s',' ');

dataset = strtrim(dataset);

% Save formatted data in text file

f2 = fopen('DATA/verslag.txt','a');

if f2 < 0, error('Cannot open file'); end

fprintf(f2,'%s\n',dataset{:});

fclose(f2);

B.2 application.m

This code consists of three cells. The first cell is to load the dataset into Matlab and transform the

data into a matrix. In the second cell the query can be entered. The corresponding column in matrix

M is then removed and the class vector N is made. At the third cell the l1_logreg_train method

is applied. A detailed description of how the l1_logreg_train method works can be found on

the website of the designers [6].

% Code to rewrite data to suitable format and analyse the data with the

% l1_logreg method (Steven Boyd)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Cell 1: Inlezen databestand %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; close all; clc;

tic

% Read data file

f1 = fopen('DATA/vk_buitenland.txt','r');

if f1 < 0, error('Cannot open datafile'); end

data = textscan(f1,'%s','headerlines',0,'delimiter','\n','bufsize',10^6);

fclose(f1);

dataset = data{1};

totalexample = sprintf('%s ', dataset{:});

features = textscan(totalexample, '%s', 'delimiter', ' ');

features = features{1};

features = unique(features);
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% Read top100 most common words and substract from dataset

f2 = fopen('STOP/stoplijstX.txt','r');

if f2 < 0, error('Cannot open common words file'); end

top = textscan(f2,'%s','headerlines',0,'delimiter',' ');

fclose(f2);

top = top{1};

top = unique(lower(top));

features = setdiff(features,top);

% Remove empty entries

features(cellfun(@(features) isempty(features),features)) = [];

dataset(cellfun(@(dataset) isempty(dataset),dataset)) = [];

m = length(dataset); % number of examples

n = length(features); % number of features

% Save features in text file

f3 = fopen('features.txt','wt');

if f3 < 0, error('Cannot open file'); end

fprintf(f3,'%s\n',features{:});

fclose(f3);

% Count the number of occurences, line by line

M = zeros(m,n);

for i = 1:m

data = textscan(dataset{i}, '%s', 'Delimiter', ' ');

example_regel = data{1};

M(i,:) = cellfun(@(x) sum(strcmp(x, example_regel)), features);

end

toc

clear data dataset empty example_regel top totalexample;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Cell 2: Invoeren zoekwoord, verwijderen van zoekwoord uit dataset %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

M = sparse(M);

tic

% Search for a string and remove from dataset

str = 'obama';

loc_str = find(ismember(features,str) == 1);

if isempty(loc_str) == 1

error('Word not found in dataset, try again')

end

% Make Class file

N2 = M(:,loc_str);

N = −1*ones(m,1);
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N(N2>0) = 1;

features2 = features;

features2(loc_str) = [];

M2 = M;

M2(:,loc_str) = [];

toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Cell 3: Toepassen methode %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tic

% Calling sequence for training

display('Training:')

mmwrite('x_data',M2);

mmwrite('b_data',N);

system('/home/ajacobs/Desktop/l1_logreg/l1_logreg_train −s −q x_data ...

b_data 0.01 model');

model = mmread('model');

model2 = model(2:end);

loc_model = find(model2);

features3 = features2(loc_model);

waardes = nonzeros(model2);

% Save result in text file

f4 = fopen('RESULTAAT/res_features_china_vk.txt','wt');

if f4 < 0, error('Cannot open file'); end

fprintf(f4,'%s\n',features3{:});

fclose(f4);

f5 = fopen('RESULTAAT/res_waardes_china_vk.txt','wt');

if f5 < 0, error('Cannot open file'); end

fprintf(f5,'%s\n',waardes(:));

fclose(f5);

toc
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