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a b s t r a c t

This article introduces the Tensor Network B-spline (TNBS) model for the regularized identification
of nonlinear systems using a nonlinear autoregressive exogenous (NARX) approach. Tensor network
theory is used to alleviate the curse of dimensionality of multivariate B-splines by representing
the high-dimensional weight tensor as a low-rank approximation. An iterative algorithm based
on the alternating linear scheme is developed to directly estimate the low-rank tensor network
approximation, removing the need to ever explicitly construct the exponentially large weight tensor.
This reduces the computational and storage complexity significantly, allowing the identification of
NARX systems with a large number of inputs and lags. The proposed algorithm is numerically stable,
robust to noise, guaranteed to monotonically converge, and allows the straightforward incorporation of
regularization. The TNBS-NARX model is validated through the identification of the cascaded watertank
benchmark nonlinear system, on which it achieves state-of-the-art performance while identifying a
16-dimensional B-spline surface in 4 s on a standard desktop computer. An open-source MATLAB
implementation is available on GitHub.

© 2020 Published by Elsevier Ltd.
1. Introduction

B-splines are basis functions for the spline function space
De Boor, 1976), making them an attractive choice for approxi-
ating smooth continuous functions. B-spline curves offer great
ontrol of their flexibility and smoothness and are, compared
o polynomials, numerically stable. Moreover, they evidence ad-
antages w.r.t. neural networks in tuning the weights thanks
o the linearity in the parameters: this allows to apply fast of-
line and online algorithms such as recursive least squares. For
hese reasons and more, B-splines have had numerous appli-
ations in system identification (Csurcsia, Schoukens, Kollár, &
ataire, 2014; Folgheraiter, 2016; Lightbody, O’Reilly, Irwin, Mc-
ormick, et al., 1997; Lin, Reay, Williams, & He, 2007; Mirea,
014; dos Santos Coelho & Pessôa, 2009; Yiu, Wang, Teo, & Tsoi,
001) and control (Cong & Song, 2000; Hong & Chen, 2012;
eay, 2003; Zhang, Zhao, Guo, Li, & Deng, 2017). The gener-
lization of B-splines to multiple dimensions is done through
ensor products of their univariate basis functions. The number
f basis functions and weights that define a multivariate B-spline
urface, therefore, increase exponentially with the number of

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Antonio
Vicino under the direction of Editor Torsten Söderström.
∗ Corresponding author.

E-mail address: K.Batselier@tudelft.nl (K. Batselier).
ttps://doi.org/10.1016/j.automatica.2020.109300
005-1098/© 2020 Published by Elsevier Ltd.
dimensions, i.e. B-splines suffer from the curse of dimensional-
ity. Previous attempts to avoid this limitation include strategies
such as dimensionality reduction, ANOVA decompositions and
hierarchical structures (Brown, Bossley, Mills, & Harris, 1995).
The most effective method, i.e. hierarchical B-splines, relies on
sparse grids (Zenger, 1991) and reduces the storage complexity
from O(kd) to O(k log(k)d−1) (Garcke et al., 2006). This is still
exponential in the number of dimensions d. A recently emerg-
ing way to alleviate the curse of dimensionality is through the
concept of tensor networks. Originally developed in the context
of quantum physics, tensor networks efficiently represent high-
dimensional tensors as a set of sparsely interconnected low-order
tensors (Cichocki et al., 2016). Combined with tensor algebra,
tensor network structures can greatly decrease the computational
complexity in nonlinear system identification (Batselier, Chen,
& Wong, 2017a, 2017b; Batselier, Ko, & Wong, 2018). Due to
their multilinear nature, multivariate B-splines easily admit a
tensor network representation, which we call the Tensor Network
B-splines (TNBS) model. Algorithms for optimization in the ten-
sor network format make it possible to fit multivariate B-spline
surfaces onto high-dimensional data by directly finding a low-
rank tensor network approximation of the weight tensor, thereby
overcoming the curse of dimensionality. This broadens the appli-
cability of multivariate B-splines to high-dimensional problems
that often occur in system identification and control. One par-
ticularly well-suited application of Tensor Network B-splines is

https://doi.org/10.1016/j.automatica.2020.109300
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2020.109300&domain=pdf
mailto:K.Batselier@tudelft.nl
https://doi.org/10.1016/j.automatica.2020.109300
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lack-box nonlinear system identification. The Nonlinear Autore-
ressive eXogenous (NARX) model (Leontaritis & Billings, 1985)
s able to represent a wide range of nonlinear systems and is
seful when knowledge about the model structure of the sys-
em is limited. For the single-input single-output (SISO) case,
he discrete-time NARX model is expressed by the following
onlinear difference equation:

n = f (yn−1, yn−2, . . . , un, un−1, un−2, . . .)+ εn. (1)

he function f is an unknown nonlinear mapping and un and
n are the input and output samples at time step n. The er-
or εn is assumed to be Gaussian white noise. The most com-
on models used in approximating f are polynomials or neural
etworks (Billings, 2013). The applicability of polynomial NARX
s, however, often limited to weakly nonlinear systems due to
omputational complexity. Neural networks, on the other hand,
equire a lot of data to generalize well and can be time consuming
o train. Under the reasonable assumption that f is sufficiently
mooth, the Tensor Network B-splines model is a suitable candi-
ate to approximate the function from observed input and output
ata. The contributions of this paper are:

• Lift the curse of dimensionality of B-splines with Tensor
Network theory.
• Present a regularized TNBS-NARX system identification al-

gorithm.

he paper is structured as follows. Section 2 introduces rele-
ant tensor and B-spline theory. Section 3 presents the TNBS
odel, the regularization technique and the NARX identification
lgorithm. Section 4 validates the TNBS-NARX approach through
umerical experiments on synthetic and benchmark datasets.
ection 5 concludes this paper and lists some possible extensions.

. Preliminaries

This section provides the basic terminology and definitions for
ensors and tensor decompositions, followed by an introduction
o B-splines. Most of the introduced tensor network definitions
re based on (Cichocki, 2014; Kolda & Bader, 2009; Oseledets,
011; Penrose, 1971). A comprehensive treatment of B-splines is
iven in the book by de Boor (1978).

.1. Tensor basics

A tensor is a multidimensional array of real numerical values,
.g. A ∈ Rk1×k2×···×kd . Tensors can thus be considered gener-
lizations of vectors and matrices. The order d of the tensor is
he number of dimensions of the array. Unless stated otherwise,
ubscript indices indicate a single element of a tensor, e.g. a =
i1,i2,...,id . The size of each dimension is indicated by kp, p ∈
1, 2, . . . , d}, such that ip ∈ {1, 2, . . . , kp}. In this paper, scalars
re denoted by lowercase letters (a), vectors are denoted by bold
owercase letters (a), matrices are denoted by bold uppercase
etters (A) and higher-order tensors are denoted by calligraphic
etters (A).

A convenient way of expressing tensors and their operations
s using the graphical notation introduced by Roger Penrose in
972 (Penrose, 1971). Fig. 1 shows the representation of a scalar,
ector, matrix and third-order tensor using this notation. Every
ode represents a tensor, the edges represent the indices and
he number of edges, therefore, corresponds to its order. The
ectorization of a tensor A ∈ Rk1×k2×···×kd is the reordering of
ts elements into a column vector, denoted by vec(A) = a ∈
k1k2···kd . The elements of a are denoted as:
i1+(i2−1)k1+···+(id−1)k1k2...kd−1 = Ai1,i2,...,id .

2

Fig. 1. Graphical notation of a (a) scalar, (b) vector, (c) matrix and (d) third-order
tensor.

Fig. 2. Tensor contraction in graphical notation.

A tensor T ∈ Rk1×k2×···×kd is of rank one if it can be decomposed
into the outer product of d vectors b(p)

∈ Rkp , e.g:

T = b(1)
◦ b(2)

◦ · · · ◦ b(d),

where ◦ denotes the outer product operation. The most essential
operation in tensor algebra is contraction, which is the summing
of elements over equal-sized indices. Given the tensors A ∈

Rk1×k2×k3 and B ∈ Rk3×k4×k5 , contracting the index i3 results in
a tensor A ×1

3 B = C ∈ Rk1×k2×k4×k5 whose elements are given
by:

Ci1,i2,i4,i5 =
∑
i3

Ai1,i2,i3 Bi3,i4,i5 . (2)

Contraction is indicated by the left-associative ×m
n operator (Ci-

chocki et al., 2016), where n and m indicate the position of the
indices of the first and second tensor respectively. In the graphical
notation, contraction is indicated by connecting corresponding
edges, as illustrated for (2) in Fig. 2. A useful equation (Batselier
et al., 2017a) that relates contraction of a d-dimensional tensor
with d matrices to a linear operation is the following:

vec
(
A×2

1 C (1)
×

2
2 · · · ×

2
d C (d))

=
(
C (d)
⊗ · · · ⊗ C (1)) vec(A), (3)

where⊗ denotes the Kronecker product. The outer product oper-
ation is a special case of contraction where the contracted indices
have singleton dimensions. The outer product is depicted in the
graphical notation by a dashed line connecting two nodes. The
inner product between two equal-sized tensors is the sum of
their entry-wise products, equivalent to contraction of the tensors
over all pairs of indices. Given two tensors A ∈ Rk1×k2×k3 and
B ∈ Rk1×k2×k3 , their inner product is given by:

⟨A,B⟩ =
∑

i1,i2,i3

Ai1,i2,i3Bi1,i2,i3 = vec(A)Tvec(B).

The Frobenius norm of a tensor is defined as the square root of
the sum of squares of its entries:

∥A∥2 =
√
⟨A,A⟩.

2.2. Tensor trains

The tensor train (TT) decomposition is a widely used tensor
network format, popular for its low parametric format and the
numerical stability of related optimization algorithms (Oseledets,
2011). A tensor train expresses a tensorW ∈ Rk1×k2×···×kd of order
d in terms of third-order tensors G(p)

∈ Rrp−1×kp×rp , also known
W
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Fig. 3. Graphical notation of the tensor train decomposition for a fourth-order
tensor.

as the TT-cores. Fig. 3 shows the TT-decomposition of a four-
dimensional tensor in graphical notation. The dimensions of the
contracted indices, rp, are called TT-ranks. The first and last TT-
anks, r0 and rd, are by definition equal to one. Keeping in mind
hat the ×m

n -mode product operator is left-associative, the tensor
rain in Fig. 3 can be expressed as:

= G(1)
W ×

1
2 G(2)

W ×
1
3 G(3)

W ×
1
4 G(4)

W . (4)

here exists a set of TT-ranks rp = Rp for which the decompo-
ition is exact. When rp < Rp, the tensor train represents an
pproximation of the original tensor. The lower the TT-ranks,
he less accurate the decomposition, but the better the com-
ression. When all rp and dimensions kp are equal, the storage
omplexity of the tensor train representation is O(kdr2). A TT-
ecomposition with low TT-ranks can thus significantly reduce
he memory footprint of high-dimensional data. For a prescribed
et of TT-ranks or a prescribed accuracy, the TT-decomposition
f a tensor can be computed with the TT-SVD (Oseledets, 2011)
r the TT-Cross (Oseledets & Tyrtyshnikov, 2010) algorithm. An
mportant notion for TT-cores is orthogonality. A TT-core G(p)

W is
left-orthogonal if it can be reshaped (Batselier et al., 2017a) into
a matrix G(p)

∈ Rrp−1kp×rp for which:

G(p)TG(p)
= I .

Likewise, G(p)
W is right-orthogonal if it can be reshaped into a

atrix G(p)
∈ Rrp−1×kprp for which:

(p)G(p)T
= I .

tensor train is in site-k-mixed-canonical form (Schollwöck,
011) when for its TT-cores the following applies:

(p)
W =

{
left-orthogonal, 1 ≤ p ≤ k− 1
right-orthogonal, k+ 1 ≤ p ≤ d. (5)

For a site-k-mixed-canonical tensor train holds that its norm is
contained in the kth TT-core, i.e.:

∥W∥2 = ∥G
(k)
W∥2.

2.3. B-splines

A univariate spline S is a piecewise polynomial function that
maps values from an interval [a, b] to the set of real numbers,
e.g. S : [a, b] ∈ R→ R. Any spline of degree ρ can be expressed
as a unique linear combination of B-splines of the same degree:

S(x) =
k∑

i=1

Bi(x)wi = bTw (6)

=
[
B1,ρ(x) B2,ρ(x) · · · Bk,ρ(x)

]⎡⎢⎢⎣
w1
w2
...

wk

⎤⎥⎥⎦ . (7)

The B-spline basis functions Bi,ρ(x) are defined by the knot se-
quence and degree ρ, and they are contained in the basis vector
3

b. A knot sequence t = {t0, t1, . . . , tm−1, tm} is defined as a non-
decreasing and finite sequence of real numbers that define the
partitioning of the domain [a,b], i.e. a = t0 ≤ t1 ≤ · · · ≤ tm−1 ≤
tm = b, such that S(x) is a polynomial on any interval [ti, ti+1].
-spline basis functions of arbitrary degree ρ can be recursively
onstructed by means of the Cox–de Boor formula (de Boor,
978):

Bi,0(x) =
{
1 if ti−1 ≤ x < ti
0 otherwise ,

Bi,ρ+1(x) =
x− ti−1

ti+ρ−1 − ti−1
Bi,ρ(x)+

ti+ρ − x
ti+ρ − ti

Bi+1,ρ(x).
(8)

The number of B-spline basis functions k, therefore, relates to the
degree ρ and number of knots m+ 1 by k = m− ρ. If the knots
are equidistantly distributed over the domain of the spline, the
spline is called uniform. If the uniform knot sequence is also a
subset of Z, i.e. a sequence of integers, the spline is referred to
as a cardinal spline (Schoenberg, 1973). In this article, all knot
sequences will be considered uniform, as they allow for efficient
evaluation of b using a matrix expression (Qin, 2000) instead of
(8). Fig. 4 illustrates B-splines of degree 1 to 3 on the cardinal knot
sequence t = {0, 1, 2, 3, 4, 5}. The dashed purple lines represent
the sum of the basis functions. The shape of a B-spline curve S(x)
is only fully adjustable within its natural domain Dn = [tρ, tm−ρ],
because the sum of the B-spline basis functions at any point
within this domain equals one. It is desirable to have full control
over the shape of the B-spline curve over the whole range of data
samples. The knot sequences in this article will be chosen such
that Dn coincides with the unit interval [0, 1].

2.4. Multivariate B-splines

B-splines generalize to multiple input dimensions through
tensor products of univariate basis functions. One can construct
a d-dimensional spline S as a linear combination of multivariate
B-splines:

S(x1, x2, . . . , xd)

=

k1∑
i1=1

k2∑
i2=1

· · ·

kd∑
id=1

Bi1 (x1)Bi2 (x2) · · · Bid (xd)Wi1 i2···id

= ⟨B,W⟩ . (9)

For notational convenience, we omitted the degrees ρ. The B-
spline tensor B contains the multivariate basis functions and is
defined as:

B = b(1)
◦ b(2)

◦ · · · ◦ b(d),

where b(p) is the univariate basis vector of the pth input variable,
i.e.

b(p)
=

[
B1,ρ(xp) B2,ρ(xp) · · · Bkp,ρ(xp)

]T
. (10)

We will assume equal knots and degree for each dimension,
hence kp = k, ∀p. The representation of B-spline surfaces in (9)
is severely limited by the exponential increase in the number of
basis functions and weights, O(kd).

3. Tensor Network B-splines

For our purposes, the input variables xp are the lagged inputs
and outputs of (1). For a large number of lags or inputs, it can
therefore quickly become computationally infeasible to store or
operate on the tensors B and W . Using tensor network theory,
the multivariate B-spline surface can be represented in a low-
parametric format. In this section, we derive the TNBS model and
use it to approximate the function f in (1) from observed input
and output data.
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Fig. 4. Cardinal B-splines of degrees 1 to 3. The dashed purple lines represent the sum of the B-splines.
Fig. 5. Derivation of the Tensor Network B-splines model of order 3.

.1. Model structure

We illustrate the model structure using a three-dimensional
ensor Network B-spline surface as an example, which is derived
s follows:

(x1, x2, x3)

= ⟨B,W⟩ (11)

= W ×1
1 b(1)

×
1
2 b(2)

×
1
3 b(3) (12)

= (G(1)
W ×

1
2 b(1))(G(1)

W ×
1
2 b(2))(G(1)

W ×
1
2 b(3)). (13)

Fig. 5 will be used as a visual reference to walk through these
equations. Given the weight tensor W ∈ Rk1×k2×k3 and B-spline
tensor B ∈ Rk1×k2×k3 in (11), their inner product is equal to the
contraction over all pairs of indices, as seen in Fig. 5a. As B is a
rank one tensor, it can be decomposed into the outer product of
4

three B-spline vectors b(p) (Fig. 5b). The outer product operation
is a special case of contraction where the contracted indices have
singleton dimensions. Singleton contractions that close a loop in
a tensor network are redundant, and hence omitted in Fig. 5c.
Now S(x1, x2, x3) in (12) is simply the contraction of W with the
B-spline basis vectors. Finally, W is decomposed into a tensor
train in Fig. 5d. A point (x1, x2, x3) on the TNBS surface in (13)
is evaluated by constructing the B-spline vectors b(p), contracting
them with the corresponding tensor train cores and finally multi-
plying the sequence of resulting matrices. Due to the constraints,
r0 = rd = 1, and this results in a scalar output. Extending the
TNBS model to l outputs can be realized by removing one of these
constraints, e.g. r0 = l. In general, a d-dimensional TNBS surface
is represented by:

S(x1, x2, . . . , xd) =
d∏

p=1

(G(p)
W ×

1
2 b(p)). (14)

3.2. Identification algorithm

We illustrate, without loss of generality, the proposed identi-
fication algorithm by means of the following example. Suppose
we have the following NARX system model:

yn = f (un, yn−1, un−1)+ εn. (15)

We want to identify this model from a set of observed input
and output data {(yn, un)}Nn=1. We approximate the function f
with the three-dimensional TNBS from Fig. 5d, by minimizing the
least-squared cost function:

min
W
∥y − s∥22 (16)

s.t. TT-rank(W) = (r1, r2),

where

y =

⎡⎢⎢⎣
y2
y3
...

yN

⎤⎥⎥⎦ , s =

⎡⎢⎢⎣
f (u2, y1, u1)
f (u3, y2, u2)

...

f (uN , yN−1, uN−1)

⎤⎥⎥⎦ .

To solve (16) directly for the TT-cores, we use the alternating
linear scheme (ALS) (Holtz, Rohwedder, & Schneider, 2012). The



R. Karagoz and K. Batselier Automatica 122 (2020) 109300

T
r
w
s
s
n
(
v

y

M
f

y

w

v

v

f
a
s

w

A

T

R
t
b
u
m
p
s
t
s
a
a
i
o
c
t
t
A
t
2
s

T-ranks are chosen beforehand and the TT-cores are initialized
andomly. ALS then iteratively optimizes one tensor core at a time
hile holding the others fixed. Optimizing one core is equal to
olving a small linear subsystem. Suppose we wish to update the
econd core from Fig. 5d. The idea is to contract everything in the
etwork up until the nodes adjacent to G(2)

W (Fig. 6a), whereupon
3) is used to rewrite the network as an inner product of two
ectors (Fig. 6b):

n = G(2)
W ×

1
1 v(2)

< ×
1
2 b(2)

×
2
3 v(2)

>

= G(2)
W ×

2
1 v(2)T

< ×
2
2 b(2)T

×
2
3 v(2)

>

=
(
v(2)T

> ⊗ b(2)T
⊗ v(2)

<

)
vec

(
G(2)
W

)
= a(2)Tg (2).

(17)

ore generally, rewriting (14) for the nth data sample as a linear
unction of the elements of the pth core gives:

n =
(
v(p)T

>,n ⊗ b(p)T
n ⊗ v(p)

<,n

)
vec

(
G(p)
W

)
, (18)

here

(p)
<,n =

p−1∏
j=1

(G(j)
W ×

1
2 b(j)

n ) ∈ R1×rp−1

(p)
>,n =

d∏
j=p+1

(G(j)
W ×

1
2 b(j)

n ) ∈ Rrp

or 2 ≤ p ≤ d − 1, and v
(1)
<,n = v

(d)
>,n = 1. Computing (18) for

ll N data samples results in a system of linear equations. The
ubproblem for updating the pth core thus becomes:

min
g (p)

y − A(p)g (p)
2
2 , (19)

here

(p)
=

⎡⎢⎢⎢⎣
v
(p)T
>,1 ⊗ b(p)T

1 ⊗ v
(p)
<,1

v
(p)T
>,2 ⊗ b(p)T

2 ⊗ v
(p)
<,2

...

v
(p)T
>,N ⊗ b(p)T

N ⊗ v
(p)
<,N

⎤⎥⎥⎥⎦ , g (p)
= vec

(
G(p)
W

)
. (20)

he optimum is found by solving the normal equation:(
A(p)TA(p)) g (p)

= A(p)Ty. (21)

eshaping (Batselier et al., 2017a) g (p) back into a third-order
ensor results in the updated core G(p)

W . The ALS algorithm sweeps
ack and forth, iterating from the first to the last core and back,
ntil convergence. At each iteration, (21) is solved for g (p). Nu-
erical stability is ensured by keeping the tensor train in site-
-mixed-canonical form through an additional orthogonalization
tep. To illustrate this, consider again the TNBS in Fig. 5d. Assume
hat we are iterating from left to right and the tensor train is in
ite-2-mixed-canonical form. After solving g (p) it is reshaped into
matrix G(p)

∈ Rrp−1kp×rp , which is then decomposed through
QR decomposition (Francis, 1961). The tensor network is now

n the form of Fig. 7. Finally, Q is reshaped back into a third-
rder left-orthogonal tensor G(2) and R is contracted with the next
ore. The tensor train is now in site-3-mixed-canonical form, and
he next iteration starts. More details about the orthogonaliza-
ion step are given in Holtz et al. (2012). The optimization with
LS exhibits local linear convergence under the assumption that
he TT-ranks are correctly estimated (Rohwedder & Uschmajew,
013). In practice, ALS convergences monotonically, so a possible
topping criterion is:J (1) − J (1)

 ≤ ϵ, (22)
h h+1 2

5

Fig. 6. The tensor network written as a vector inner product.

Fig. 7. QR decomposition of the second core during a left to right sweep.

where J (1)h is the cost of the objective function in (19) during
the first core update of the hth sweep. A modified version of
ALS method, MALS (Holtz et al., 2012), updates two cores si-
multaneously and is computationally more expensive, but is able
to adaptively determine the optimal TT-ranks for a specified
accuracy. Another adaptive method is the tensor network Kalman
filter (Batselier et al., 2017b), which can be used for online opti-
mization of the cores.

3.3. Regularization

In addition to decreasing computational burden, the TT-rank
constraints serve as a regularization mechanism. This regulariza-
tion is however insufficient for high-dimensional B-splines, as the
volume of the domain of the TNBS increases exponentially. The
available estimation data becomes sparse and scattered, which
can lead to an ill-posed optimization problem. B-spline curves
inherently possess the ability to regularize by adjustment of
their degree or knot placement. The choice of knots has been
a subject of much research (Eubank, 1999), but due to lack of
an attractive all-purpose scheme, we opt for a non-parametric
approach known as P-splines (Eilers & Marx, 1996). P-splines in-
duce smoothness by combining uniform B-splines with a discrete
penalty placed on the α-th difference between adjacent weights.
For univariate splines, the following penalty function is added to
the cost function:

R(w) = ∥Dαw∥22. (23)

The matrix Dα ∈ R(k+1−α)×(k+1) is the α-th order difference matrix
such that Dαw = ∆αw results in a vector of α-th order differences
of w. This matrix can be constructed by using the difference
operator α times consecutively on the identity matrix. For α = 0
this is equal to Tikhonov regularization and for α = 1 we get Total
Variation regularization. For example, given are a weight vector
and the first-order difference matrix:

w =

[
w1
w2
w3

]
, D1 =

[
1 −1 0
0 1 −1

]
.

The penalty term then equals:

∥D1w∥
2
2 = (D1w)T (D1w)

=
[
(w1 − w2) (w2 − w3)

] [
(w1 − w2)
(w2 − w3)

]
2 2
= (w1 − w2) + (w2 − w3) .
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Fig. 8. Derivation of the Tensor Network P-spline penalty.

e wish to extend the penalty in (23) to the TNBS format.
ithout loss of generality, Fig. 8 visualizes the necessary steps

n graphical notation for a three-dimensional B-spline surface.
n the multivariate case, the differences in adjacent weights in
he weight tensor W have to be penalized along each dimension
ndividually. This is done by contracting the second index of the
ifference matrix Dα with the dimension of the weight tensor W
long which the penalty is applied, then taking the norm of the
esult. For a B-spline curve with d inputs, the penalty on the α-th
rder differences along the jth dimension is given by:

(W) = ∥W ×2
j Dα∥

2
2

=
⟨
(W ×2

j Dα) , (W ×2
j Dα)

⟩
. (24)

his is illustrated in 8a, where the penalty is applied along the
irst dimension, e.g. j = 1. Decomposing W into a tensor train
esults in the network depicted in 8b. To write this penalty again
s a linear function of the pth core, we contract everything in the
etwork except these cores (Fig. 8c). In this example, C (2)

>,1 and
(2)
−,1 are simply identity matrices. Then, using (3), the penalty
unction can be rewritten in the form of Fig. 8d:(

G(p)
W

)
= g (p)TΩ (p)

j g (p), (25)

here
(p)
j =

(
C (p)

>,j ⊗ C (p)
−,j ⊗ C (p)

<,j

)
. (26)

he matrix Ω (p)
j in (26) is constructed for every dimension j. Due

o the site-p-mixed-canonical form of the tensor train, the con-
raction of two out of the three matrices C (p)

>,j, C
(p)
−,j and C (p)

<,j result
n identity matrices. This knowledge can be utilized for efficient
mplementation. Adding the penalties to the cost function results
6

able 1
omputational complexities of significant operations.
Operation Complexity

Construct
{
b(p)
n

}
N
n=1 O

(
Nn2

)
Construct

{
Ω

(p)
j

}
d
j=1 O

(
(d+ (m− ρ)4)r4

)
Construct A(p) O

(
N(m− ρ)r2

)
Solve g (p) O

(
N(m− ρ)2r4 + (m− ρ)3r6

)
Evaluate f O

(
(ρ2
+ (m− ρ)r2)d

)

in the following regularized optimization problem:

min
W
∥y − s∥22 +

d∑
j=1

λj ∥W ×2
j Dα∥

2
2 (27)

s.t. TT-rank(W) = (r1, r2, . . . , rd−1).

he smoothing parameter λj ≥ 0 controls the penalization of the
oughness along dimension j. The subproblem for updating the
th core becomes:

min
g (p)
∥y − A(p)g (p)

∥
2
2 +

d∑
j=1

λj g (p)TΩ (p)
j g (p). (28)

The normal equation is then:⎛⎝A(p)TA(p)
+

d∑
j=1

λj Ω
(p)
j

⎞⎠ g (p)
= A(p)Ty. (29)

The whole procedure of identifying a TNBS model from measured
data is summarized as pseudo-code in Algorithm 1.

Algorithm 1 TNBS-NARX identification

Input: Data {(yn, un)}Nn=1, TT-ranks {rp}
d
p=1, number of knots

m, degree ρ, regularization
parameters {λj}

d
j=1

Output: TT-cores
{
G(p)
W

}
d
p=1

1: Initialize random TT-cores
2: Construct

{{
b(p)
n

}
N
n=1

}
d
p=1 from data

3: while stopping criteria (22) not satisfied do
4: for p = 1, 2, . . . , d− 1 do
5: Construct A(p) (20) and

{
Ω (p)

j

}
d
j=1 Eq. (26)

6: g (p)
← Solve (29)

7: G(p)
W ← Orthogonalize and reshape g (p)

8: end for
9: for p = d, d− 1, . . . , 2 do

10: Repeat lines 5-7
11: end for
12: end while

Table 1 summarizes relevant computational complexities con-
cerning the TNBS-NARX method. While the complexities scale
only linearly in the dimensions, it is important to realize that
high TT-ranks easily degrade the performance of optimization of
the cores. There is, therefore, a tradeoff between accuracy and
speed. The number of data samples N also appears linearly in the
complexities but may become a bottleneck for large datasets. A
modification for this scenario is to use a small random batch of
the data when updating g (p). This can speed up estimation time

without significant loss of accuracy.
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. Experiments

In this section, we demonstrate the proposed system identi-
ication method. The algorithm is implemented in MATLAB and
xecuted on a personal computer with a 4.2 GHz Intel Core i5-
600K processor and 16 GB of random access memory (RAM).
n open-source MATLAB implementation can be found at https:
/github.com/Ridvanz/Tensor-Network-B-splines, which includes
emos on three additional benchmark datasets.

.1. Synthetic dataset

First, we validate the proposed methods through the identifi-
ation of an artificial nonlinear dynamical system that is exactly
epresentable in the TNBS-NARX format. The lagged inputs and
utputs are chosen as un−µ and yn−µ respectively, where µ ∈

(1, 2, 3, 4), such that the system equation is of the following form:

yn = f (yn−1, yn−2, yn−3, yn−4, un−1, un−2, un−3, un−4) (30)

The nonlinear mapping f is modeled as an 8-dimensional TNBS.
We choose the degree of the B-splines ρ = 2 and the number of
knots per dimension m = 6. A random weight tensor W of size
(m− ρ)d = 48 is generated of which the elements equal either
wmin = −4 or wmax = 5 with equal probability. The generated
tensor is decomposed using the TT-SVD algorithm, truncating the
TT-ranks to a value of 5 uniformly. The resulting tensor train
represents the true weights of our nonlinear system. For the input
signal u we generate a random sequence of length 3000, with
values uniformly distributed in the range [0, 1]. This sequence is
smoothed with a Gaussian window of size 5 to dampen higher
frequencies. We initialize the output signal y with 4 zeros and
recursively evaluate the next output with (30), until we have a
signal of length 3000. The signals are split in an identification set
of 2000 samples and a test set of 1000 samples.

We test the performance of our TNBS-NARX identification
algorithm with different levels of Gaussian white noise on the
estimation data. Noise is only added to the output signal. The
variances for the white noise signals are chosen based on the
desired signal to noise ratios SNR. The signal powers are deter-
mined after subtracting their means. For simplicity, we penalize
the second difference (α = 2) of the weights equally for each
dimension, e.g. λp = λ, ∀p. The experiment is run using three
different values for lambda. All other model parameters are set to
the true values of the synthetic model. The TT-cores are estimated
using Algorithm 1. For consistency, we simply choose a max num-
ber (16) of sweeps as stopping criteria. The root mean squared
error (RMSE) is used as the performance metric to evaluate the
accuracy on the test set for both prediction and simulation.

eRMSE =

√ 1
N

N∑
i=1

(yi − ŷi)2

ig. 9 plots the RMSE of the different experiments as a function of
he SNR in dB. The prediction errors are consistently lower than
he simulation errors. The effect of the regularization is in line
ith expectations, i.e. for increasing SNR values, more regular-

zation is needed to avoid overfitting to noise, so larger penalties
ive better performance. Overall, the TNBS is able to identify the
ystem accurately, even for relatively noisy estimation data.

.2. Cascaded tanks dataset

The cascaded tanks system is a benchmark dataset for nonlin-
ar system identification. A detailed description of the system and
he data is given in Schoukens, Mattson, Wigren, and Noël (2016).
7

Fig. 9. Prediction and simulation performance on synthetic test set.

The system consists of two tanks, a water reservoir and a pump.
The water in the reservoir is pumped in the upper tank, from
which it flows to the lower tank through a small opening and then
back into the reservoir. The system input un is the pump voltage
and the system output yn is the water level of the lower tank.
If too much water is pumped into the upper tank it overflows,
causing a hard saturation nonlinearity in the system dynamics.
The input signals are low-frequency multisine signals. Both the
estimation and test set have a length of N = 1024 samples.
The major challenges of this benchmark are the hard saturation
nonlinearity and the relatively small size of the estimation set.
The performance metric used is again RMSE.

The original data is first normalized to the interval [0,1]. Both
input and output lags are chosen as un−µ and yn−µ respectively,
where µ ∈ {1, 2, 3, 4, 8, 12, 16, 32}. The lags were chosen heuris-
tically, based on partial auto-correlations . The large lags are in-
cluded to capture the relevant slow system dynamics. We choose
the degree of the B-splines ρ = 3 and the number of knots
m = 7. We penalize the first-order difference only, i.e. α = 1,
and set the TT-ranks to 8 uniformly. We choose λ through 3-
fold cross-validation on the estimation set. A total of 12 sweeps
are performed in the optimization with Algorithm 1. After tuning
λ, the full identification set is used to identify the final model,
which takes about 2 seconds. Using TNBS, the number of weights
to represent the 16-dimensional B-spline surface is reduced from
approximately 4.3×109 to 3648. The performances on prediction
and simulation are listed and compared in Table 2. To the best
of our knowledge, the algorithm slightly outperforms the cur-
rent state-of-the-art results on both prediction and simulation.
Fig. 10 shows the true and simulated output on the test set. It
is apparent that the TNBS-NARX model was able to accurately
capture the nonlinear system dynamics with relatively sparse
estimation data. Significantly similar performances on this bench-
mark were obtained using different combinations of lags, as long
as the memory of the input was chosen sufficiently large. The
performance of our model is therefore quite robust to the choice
of lags, due to the regularization from both the TT-ranks and
P-spline penalties.

5. Conclusions

This article presents a new algorithm for nonlinear system
identification using a NARX model of which the nonlinear map-
ping is approximated using the introduced Tensor Network

https://github.com/Ridvanz/Tensor-Network-B-splines
https://github.com/Ridvanz/Tensor-Network-B-splines
https://github.com/Ridvanz/Tensor-Network-B-splines
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Fig. 10. Simulation on cascaded tanks dataset.

able 2
omparison of methods on Cascaded tanks benchmark.
Method Prediction Simulation

error (RMSE) error (RMSE)

LTI (Schoukens & Scheiwe, 2016) 0.056 0.588
Volterra FB (Schoukens & Scheiwe, 2016) 0.049 0.397
Flexible SS (Svensson & Schön, 2017) – 0.45
NOMAD (Brunot, Janot, & Carrillo, 2017) – 0.376
PWARX (Mattsson, Zachariah, & Stoica, 2018) – 0.350
Sparse Bay. DNN (Zhou, Ibrahim, & Pan, 2019) 0.0472 0.344

TNBS-NARX 0.0461 0.3018

B-splines. Tensor Network theory enables to work with B-spline
surfaces directly in a high-dimensional feature space, allowing
the identification of NARX systems with a large number of lags
and inputs. The identification algorithm is guaranteed to mono-
tonically converge and numerical stability is ensured through
orthogonality of the TT-cores. The efficiency and accuracy of the
algorithm is demonstrated through numerical experiments on
SISO nonlinear systems. Extension of TNBS-NARX to multiple
inputs is straightforward through the addition of input variables.
Multiple outputs can be realized efficiently by adding an index to
one of the TT-cores, as done in Batselier et al. (2017a). Future
work includes the implementation of an online optimization
scheme, as an alternative to ALS, and the development of control
strategies for identified TNBS-NARX systems.
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