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Abstract

The Racah polynomial Rn(λ(x)) is a polynomial of degree n and is variable in λ(x). In this thesis two
properties of this polynomial will be studied. One is the orthogonal property of the Racah polynomial.
And the other is that the Racah polynomial can also be described as a polynomial of degree x and
variable over λ(n).

The Racah polynomials will be studied with the use of a representation of the Lie algebra of
sl(2,C) and hypergeometric series. To do this, this Lie algebra will first be defined and then we will
work towards defining the tensor product of three representations of the Lie algebra sl(2,C).

From the tensor product, a series representation for the Racah polynomials will be found, which
can be rewritten to a hypergeometric series.

Then, the orthogonal property of sl(2,C) will be used to study the orthogonal property of the
Racah polynomials. And the polynomial will be rewritten as a polynomial of degree x with the use of
some identities of the hypergeometric series.

Het Racah polynoom Rn(λ(x)) is een polynoom van graad n en heeft als variabele λ(x). In dit ver-
slag zullen twee eigenschappen van het Racah polynoom worden bekeken. Dit zijn de orthogonaliteits
eigenschap van het Racah polynoom, en de eigenschap dat het polynoom te schrijven is als een x−de
graads polynoom variabel in λ(n).

De Racah polynomen zullen worden bestudeerd met behulp van een representatie van de Lie al-
gebra sl(2,C) en de hypergeometrische functies. Om dit te doen, zal eerst de definie van een Lie
algebra worden gegeven. Dat zal worden uitgebreid tot een definitie van een tensorproduct van drie
representaties van de Lie algebra sl(2,C).

Dit tensorproduct levert uiteindelijk een reeks op waarmee de Racah polynoom gedefinieerd kan
worden. Deze reeks kan dan worden herschreven tot een hypergeometrische functie.

De orthogonliteits eigenschap van het Racah polynoom zal worden bewezen met behulp van de
eigenschappen van de Lie algebra sl(2,C). En het herschrijven van het Racah polynoom naar een
polynoom van graad x, zal worden gedaan met behulp van eigenschappen van de hypergeometrische
functies.
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1. INTRODUCTION

1 Introduction

Note, this thesis uses a lot from the work of Joris Van de Jeugt, [1]. Most of the given
proofs, theorems and definitions come from this book. And this thesis follows the same
guidelines to show the properties of the Racah polynomials as in the work of Joris Van
de Jeugt, [1].

The Racah polynomials are polynomials with a few special properties. The properties of the Racah
polynomials have been studied before, see [1], so the properties that we will look at are already well
known.

The Racah polynomials Rn(λ(x)) are polynomials of degree n and variable in λ(x). The two
properties that we will look at in this thesis are the orthogonality property of the Racah polynomials,
and that we can rewrite Rn(λ(x)) to a polynomial of degree x and variable over n.

When one would start with the definition of the Racah polynomial, it isn’t immediately clear if the
polynomial has the described properties. But, one can construct the polynomials with the use of the
tensor product of three representations of sl(2,C).

When we describe the Racah polynomials with the use of representations of the Lie algebra sl(2,C).
It becomes clear that we can use the orthonormality of the basis of this representation, to check the
orthogonality property of the Racah polynomials.

For the other property we need to use hypergeometric series. Because the definition of the Racah
polynomials that will be constructed, can be written as one of these series. And there are several
identities for the hypergeometric series, which we can use to rewrite the Racah polynomial.

To do all of this, we will start by defining what a Lie algebra is, and what a Lie algebra representation
is. In Chapter 2 we will take a brief look at the hypergeometric series, and some of their identities. And
then we will only need to look at the tensor product of representations, and construct the definition
of the Racah polynomial.

In this thesis, we will define the Lie algebra and Lie algebra representations over a field K. This
field will be either the field of real numbers, R, or the field of complex number, C.
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2. LIE ALGEBRA AND REPRESENTATIONS

2 Lie algebra and representations

In this chapter we will give the definition of a Lie algebra. With the help of some examples, the
definition of sl(2,C) will be given. After that we will define a g−module and a representation and look
at some properties.

After that we will define a special g−module, the Verma module of sl(2,C). From this g−module
we can construct the representation that we will use to study the Racah polynomials. This is the
?−representation of Dj .

At the end of this chapter some extra details on the Verma module will be given. This is a more
abstract approach and won’t be used later on.

2.1 Lie algebra

Definition 2.1. Let g be a vector space over a field K endowed with a bilinear operation [ · , · ] :
g × g → g. Then, g is called a Lie algebra over K if the following properties are satisfied for
x, y, z ∈ g:

i. [x, y] = −[y, x] (anti-symmetry)

ii. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi-identity),

The operation [ · , · ] is also referred to as the bracket, the Lie bracket or the commutator of g.
That the operation [ · , · ] is sometimes called the commutator is quite obvious. We only have to look
at how we can turn an algebra g over a field K into a Lie algebra. Note, an algebra g is just a vector
space endowed with a bilinear operation, which is called the multiplication of g.

Theorem 2.2. Let g be an algebra over a field K, with the product of g denoted as x ·y ≡ xy, x, y ∈ g.
Then, g can be turned into a Lie algebra by defining the commutator as,

[x , y ] = xy − yx.

Proof. Take x, y, z ∈ g arbitrary. And define the commutator [x , y ] = xy − yx as above. Now it is
easy to see that the commutator is bilinear, because the product of g is bilinear.
We also have xy − yx = −(yx− xy), so the commutator is also anti-symmetric.
And we see that,

i. [x , [ y , z ] ] = xyz − xzy − yzx+ zyx,

ii. [ y , [ z , x ] ] = yzx− yxz − zxy + xzy,

iii. [ z , [x , y ] ] = zxy − zyx− xyz + yxz.

So, the commutator also satisfies the Jacobi-identity. Which shows that g is indeed a Lie algebra over
the field K.

Now, note that a Lie algebra is only a vector space endowed with a bilinear operation. And because
we know when a subset of a vector space is a subspace, it is also interesting to know when a subset of
a Lie algebra g is a subalgebra of g.

Definition 2.3. Let g be a Lie algebra over a field K and let h ⊆ g be a subspace of g. Then, h is a
subalgebra of g if,

[x , y ] ∈ h ∀x, y ∈ h.

As with subspaces, a subalgebra is also a Lie algebra on its own. Because a subalgebra is a vector
space, and the properties for the Lie bracket are also satisfied when we look at [x , y ], for x, y ∈ h.
Now, a subspace I of a Lie algebra g could also satisfy a stronger property than the one given above.[2]
Which leads to the definition of an ideal I of g.
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Definition 2.4. Let g be a Lie algebra over a field K, and let I ⊆ g be a subspace of g. Then, I is an
ideal of g if,

[x , y ] ∈ I ∀x ∈ g and ∀y ∈ I.

Notice that this means that an ideal of g is also a Lie algebra on its own. This follows from letting
x ∈ I in the above definition. Also, a Lie algebra g always has {0} and g as its ideals. Which is why
these are called the trivial ideals.[2]

There are several easy and well known examples of Lie algebras. So, to get more familiar with Lie
algebras and the bracket, some examples will be given. Some are well known examples, such as R3

endowed with the cross product. And one example will be given, because it will be used further on.

Example 2.5. Let’s start with the well known example, R3 endowed with the cross product ·×· : R3×
R3 → R3. For a, b ∈ R3, with a = (a1, a2, a3), b = (b1, b2, b3), we have,

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Note that this is a bilinear operation and that a× b = −b× a. Because, for a, b ∈ R3 we have that,

i. a2b3 − a3b2 = −(a3b2 − a2b3)

ii. a3b1 − a1b3 = −(a1b3 − a3b1)

iii. a1b2 − a2b1 = −(a2b1 − a1b2).

So we only have to check the Jacobi-identity. This is not really difficult, but it does take more time to
check than the other properties. Now, take x, y, z ∈ R3 and x× y ≡ [a, b], then we have,

[x , [y , z]] = [x , (y2z3 − y3z2 , y3z1 − y1z3 , y1z2 − y2z1)]
= (x2(y1z2 − y2z1)− x3(y3z1 − y1z3) , x3(y2z3 − y3z2)− x1(y1z2 − y2z1)
, x1(y3z1 − y1z3)− x2(y2z3 − y3z2)).

So, for a vector p = (p1, p2, p3) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] ∈ R3 we have,

p1 = x2y1z2 − x2y2z1 − x3y3z1 + x3y1z3 + y2z1x2 − y2z2x1 − y3z3x1 + y3z1x3 + z2x1y2 − z2x2y1
− z3x3y1 + z3x1y3 = 0

p2 = x3y2z3 − x3y3z2 − x1y1z2 + x1y2z1 + y3z2x3 − y3z3x2 − y1z1x2 + y1z2x1 + z3x2y3 − z3x3y2
− z1x1y2 + z1x2y1 = 0

p3 = x1y3z1 − x1y1z3 − x2y2z3 + x2y3z2 + y1z3x1 − y1z1x3 − y2z2x3 + y2z3x2 + z1x3y1 − z1x1y3
− z2x2y3 + z2x3y2 = 0.

Which shows that R3 endowed with the cross product satisfies both properties of the Lie algebra. So,
R3 endowed with the cross product is indeed a Lie algebra.
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Example 2.6. A more general and abstract example is the ring End(V), the set of linear transforma-
tions from V to V. To show that End(V) is indeed a Lie algebra, let’s start with an arbitrary vector
space V over a field K.
Then, the ring End(V) can be constructed with the use of all the endomorphisms f : V → V. This is
done by using the addition of V, which is commutative. Also, we will define an addition on End(V),
such that End(V) will be a group under addition. So, we define,

f(x+ y) = f(x) + f(y) = f(y) + f(x) = f(y + x), for x, y ∈ V, f ∈ End(V),

(f + g)(x) = f(x) + g(x) for x ∈ V, f, g ∈ End(V),

where the first equation is the definition of an endomorphism.[3]
Because the addition of V is commutative, End(V) is a group under addition. This is easily provable,
because we only need to check that f + g, f, g ∈End(V), is indeed an endomorphism. Because the
identity is trivial, idV(v) = 0,∀v ∈ V, and the inverse of f ∈End(V) is f−1(v) = −f(v),∀v ∈ V. Now,
take f, g ∈End(V) and x, y ∈ V arbitrary. Then we have,

(f + g)(x+ y) = (f + g)(v) = f(v) + g(v) = f(x) + f(y) + g(x) + g(y) v = x+ y ∈ V,

because of f and g are endomorphisms, and if f + g ∈End(V) we must satisfy,

(f + g)(x+ y) = (f + g)(x) + (f + g)(y) = f(x) + g(x) + f(y) + g(y).

Which shows that the addition of V has to be commutative to satisfy both equations. In other words,
if the addition of V is not commutative, End(V) can’t be a group under addition, because f + g won’t
be an endomorphism.
And, the multiplication of End(V) will be the composition of two endomorphisms, which is a bilinear
operation. So,

(f · g)(x) = f(g(x)), for two endomorphisms f, g ∈ End(V), and x ∈ V. [4]

Take f, g, h ∈End(V), a, b ∈ K and x ∈ V. Then, the bilinear property of the multiplication can be
proven with,

(f ◦ (g + h))(x) = f(g(x) + h(x)) = f(g(x)) + f(h(x)),

((g + h) ◦ f)(x) = (g + h)(f(x)) = g(f(x)) + h(f(x)),

(a · f) ◦ (b · g)(x) = a · f(b · g(x)) = a · f(g(x)) + · · ·+ f(g(x))︸ ︷︷ ︸
b times

= a · b · f(g(x)).

So, End(V) is indeed a ring. With this definition of End(V), we can use Theorem 2.2 to turn End(V)
into a Lie algebra. This theorem can be used, because this ring is actually an algebra. This statement
follows from the fact that, End(V) is a well-defined vector space under addition, and the multiplication
of End(V) is bilinear.
So, from this we see that End(V), with the bracket defined as in Theorem 2.2, is a Lie algebra. And
this Lie algebra is often denoted as gl(V).
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Example 2.7. The Lie algebra that will be used more often, is the Lie algebra sl(2,C). As a vector
space, sl(2,C) consists of all the complex traceless (2 × 2)−matrices. And one can turn sl(2,C) into
a Lie algebra with the use of Theorem 2.2, because sl(2,C) is an algebra over C.
Before looking at sl(2,C), we will first look at a more general example. Namely, gl(n,C), the vector
space that consists of all the complex (n × n)−matrices. So, take g = gl(n,C). Now, a basis for g is
the set containing the n2 unit matrices eij , (i, j = 1, . . . , n). In other words, the set that contains the
n2 matrices, which have only 0’s as its values except for one 1. Where the place of this 1 is different
for all non-equal matrices in the basis.
Now, we can define the commutator of g as,

[ eij , ekl ] = δjkeil − δilekj .

And we see that, with the use of Theorem 2.2, that g is a Lie algebra with this commutator.
One property of (n × n)−matrices is that tr(xy) = tr(yx), for x, y ∈ g. So, for x, y ∈ g we have that
tr([x , y ]) = 0. So, for all traceless matrices x, y ∈ g, we see that [x , y ] is again a traceless matrix.
Which shows that sl(n,C) is a subalgebra of g.
A basis for sl(n,C) can be made by first taking all the matrices from the basis of g with only zeros
on the diagonal, which are n2 − n matrices. And then by taking all the matrices with a 1 in the first
diagonal entry and a -1 somewhere else on the diagonal, and everything else 0. Hence, the basis of
sl(n,C) consists of n2 − 1 elements.
Since sl(n,C) is a subalgebra of g, it is indeed a Lie algebra. And one could construct the following
basis for sl(2,C):

J0 =

(
1
2 0
0 −1

2

)
, J+ =

(
0 1
0 0

)
, J− =

(
0 0
1 0

)
. (2.8)

With respect to this basis, the Lie algebra sl(2,C) has the following commutator properties:

[ J0 , J± ] = ±J±, [ J+ , J− ] = 2J0.

Do remember that this Lie algebra will be used more often further on. And, this basis will be used as
the standard basis for sl(2,C).

2.2 Representations and modules

Eventually we want to use representations to study the properties of the Racah polynomials. But to
be able to do that, we need to know what a Lie algebra representation is.

A Lie algebra representation is nothing more than a special Lie algebra homomorphism. So let’s
start with the definition of a Lie algebra homomorphism.

Definition 2.9. Let g1 and g2 be Lie algebras over a fieldK. Then, a linear transformation ϕ : g1 → g2
is called a Lie algebra homomorphism, or homomorphism, if ϕ([x , y ]) = [ϕ(x) , ϕ(y) ].
Note, this implies that ϕ is a homomorphism between the vector spaces g1 and g2.

So a homomorphism between two Lie algebras is pretty much what we would expect. So, now that
we know what a homomorphism is, lets finally look at what a representation is.

Definition 2.10. Let g be a Lie algebra over a field K and let V be a vector space over a field K.
Define gl(V) as in Example 2.6.
Then, a homomorphism ϕ : g → gl(V) is called a representation of g in V. And V is called the
representation space.

When using representations it is often convenient to also use the language of modules. For the
reason that they are equivalent, but it is sometimes easier to refer to a module than it is to refer to a
representation, which is only a function.
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Definition 2.11. Let g be a Lie algebra and V be a vector space, both over a field K. Let V be
endowed with an operation g × V → V, denoted as (x, v) 7→ π(x)(v).
Then, V is called a g−module if the following conditions are satisfied:

i. π(ax+ by)(v) = aπ(x)(v) + bπ(y)(v),

ii. π(x)(av + bw) = aπ(x)(v) + bπ(x)(w),

iii. π([x , y ])(v) = π(x)(π(y)(v))− π(y)(π(x)(v)),

with x, y ∈ g, v, w ∈ V and a, b ∈ K.

The reason why the language of modules and representations is equivalent, is because the relation
between modules and representations is a natural one. So, ϕ is a representation of g in the vector
space V if and only if, V is a g−module under the action π(x)(v) = ϕ(x)(v).
Now, the g−modules that will be studied won’t be irreducible g−modules. In other words, the
g−modules that will be studied have subsets, that are again g−modules. That does sound incon-
venient, but we will be lucky enough that the g−modules are also completely reducible. Which means
that they will be fully decomposable into smaller g−modules. So, the larger g−modules that will be
studied, can be studied with the use of the smaller g−submodules.

Let’s first write these terms down properly. So that we can actually use them and also be able to
properly check if a g−module is irreducible.

Definition 2.12. Let V be a g−module. Then, a subset W ⊆ V is a g−submodule if, π(x)(w) ∈ W
∀x ∈ g and ∀w ∈ W.

Definition 2.13. Let V be a g−module over a field K. Then, V is irreducible if it only has trivial
g−submodules. The trivial g−submodules are V and the empty set. If V is irreducible, it is often
referred to as simple.

Definition 2.14. Let V be a g−module over a field K. Then, V is called completely reducible if,
V is a direct sum of g−submodules. In other words, V is completely reducible if every g−submodule
W of V, has a compliment W ′, which is also a g−submodule of V. So, V =W ⊕W ′, with W and W ′
g−submodules of V.

2.3 The Verma module and ?−representation of sl(2,C)

Now we know what a g−module is, and when a g−module is irreducible. We can now look at a special
g−module, the Verma module. For this part we will define the Verma module in a concrete way. Later
on, we will look at it shortly in a more abstract way. To be more precise, we will first focus on the
Verma module of sl(2,C), because that is what we need later on. And later we can check if the given
definition is also coherent with a more abstract definition.
However, before we can introduce the Verma module, we need to know what the enveloping algebra
is. After defining those two, we will look at two new operations, a ?−operation and a Hermitian form.
And finally, all of the information will be used to form a special representation of sl(2,C), which will
have an inner product defined on it.

In short, the enveloping algebra is the associative algebra generated by the basis elements of a Lie
algebra g. Let’s look at this in a little bit more detail. Before we already saw that the Lie bracket is
an operation on a vector space g, which returns an element of g.
Since a Lie algebra g is still a vector space under addition, this gives us that [x , y ], for x, y ∈ g, has
to be a linear combination of the basis elements of g.

– 7 –
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Definition 2.15. Let g be a Lie algebra over a field K, with basis elements xi, i = 1, 2, 3, . . .. Then,
we have that

[xi , xj ] =
∑
k

ckijxk.

And the constants ckij are called the structure constants of g.

With this definition, we can find a way to create an associative algebra from a given Lie algebra g
over a field K.

Definition 2.16. For a given Lie algebra g with basis elements xi, i = 1, 2, . . .. The enveloping
algebra U(g) is the associative algebra with unit, generated by the elements xi, and subject to the
relations

xixj − xjxi =
∑
k

ckijxk.

This relation gives us the multiplication for the associative algebra U(g). Do note that, the multipli-
cation is not allowed to satisfy other relations.

This last statement is rather important. Because, if we look at the Lie algebra g = gl(n,C). Then,
g already has a certain multiplication, the standard matrix multiplication. But with that multiplica-
tion, certain elements satisfy more relations than just the one given in Definition 2.16. For example,

M =

(
0 1
0 0

)
, satisfies the relation M2 = 0. Which shows that we can’t just make the Lie algebra

gl(n,C) into an enveloping algebra, if we don’t change anything.
So, the multiplication for the enveloping algebra is a formal multiplication. For this reason, the en-
veloping algebra is sometimes also written with different elements or with the use of a linear map. But
we will come back to these details at a later point.

For now, we will focus on some details of the enveloping algebra U(sl(2,C)). The following prop-
erties will be used to find some properties of the Verma module of sl(2,C).

Proposition 2.17. Take g = sl(2,C). Then, for U(g) we have the following properties:

i. J0Jn± = Jn±(J0 ± n)

ii. [ J− , J
n
+ ] = −n(n− 1)Jn−1+ − 2nJn−1+ J0

iii. [C , x ] = 0 ∀x ∈ U(sl(2,C)), with

C = J+J− + J2
0 − J0 = J−J+ + J2

0 + J0 , the Casmir operator.

With Xn = X · · ·X︸ ︷︷ ︸
n−times

, for some X ∈ sl(2,C).

Note that [X , Y ] = XY − Y X, for X,Y ∈ U(g). So, one should see the bracket as this operation.
Because the enveloping algebra is an algebra, hence it has no Lie bracket.
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2. LIE ALGEBRA AND REPRESENTATIONS

Proof. The first property will be proven with the use of full induction to n. For n = 1,

[ J0 , J± ] = ±J±,

so we get J0J± = ±J± + J±J0 = J±(J0 ± 1). By the induction hypothesis we get, for n ∈ N,

J0J
n
± = Jn±(J0 ± n).

And for n = n+ 1 we have,

J0J
n+1
± = (J0J

n
±)J± = (Jn±(J0 ± n))J± = Jn±J0J± ± nJn±J± = Jn±(J±(J0 + 1)) + nJn+1

±

= Jn+1
± J0 ± (n+ 1)Jn+1

± .

Now, for the second property we will also use full induction. When n = 1, we have

[ J− , J+ ] = −2J0,

which satisfies the commutator identity. By the induction hypothesis we get, for n ∈ N,

[ J− , J
n
+ ] = −n(n− 1)Jn−1+ − 2nJn−1+ J0.

For this part we will use the general commutator identity [x , yz ] = y[x , z ] + [x , y ]z. Then we get,

[ J− , J
n+1
+ ] = Jn+[ J− , J+ ] + [ J− , J

n
+ ]J+ = Jn+(−2J0) + (−n(n− 1)Jn−1+ − 2nJn−1+ J0)J+

= −2Jn+J0 + (−n(n− 1)Jn−1+ − 2nJn−1+ J0J+) = −2Jn+J0 + (−n(n− 1)Jn+ − 2nJn+(J0 + 1))

= −2(n+ 1)Jn+J0 − (n2 − n+ 2n)Jn+ = −2(n+ 1)Jn+J0 − n(n+ 1)Jn+.

For the third property it is sufficient to prove it for x = J0, J+, J−, because of the bilinear property
of the Lie bracket and the previously given commutator identity. We will show the proof for x = J+
only, because the proofs for the other cases are basically identical. So,

[C , J+ ] = [J+J− + J2
0 − J0 , J+ ] = J+[ J− , J+ ] + J0[ J0 , J+ ] + [ J0 , J+ ]J0 − [ J0 , J+ ]

= −2J+J0 + J0J+ + J+J0 − J+ = −J+J0 + J+J0 + J+ − J+ = 0.

As the name already suggests, a Verma module is a g−module. But to be able to use to previous
properties, we need to have a U(g)−module. However, with the given definitions of the enveloping
algebra, we find the following result.

Corollary 2.18. Let g be a Lie algebra and let V be a vector space, both over the same field K. Let
π : g→ End(V) be a representation of g in V. Then π : U(g)→ End(V) defined as,

π(X) = π(X), for X ∈ g,

is a representation of U(g). The converse is also true. So given a representation of U(g), one can define
a representation of g, in the same manner.
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Proof. So for X ∈ g, we have π(X) = π(X). Now, we have to show that π is a representation, when
defined like this. Note, for a homomorphism f we have the following properties:

f(x+ y) = f(x) + f(y),

f(x · y) = f(x) · f(y),

where the operations on the left- and right-hand side are allowed to be different.
Now, take X1, . . . , Xn, Y1, . . . , Ym ∈ g, arbitrary basis elements of g. Then,

π(X1 + · · ·+Xn) = π(X1) + · · ·+ π(Xn) = π(X1) + · · ·+ π(Xn),

which shows that π is properly defined as a homomorphism under addition. Because,

π(X1 + · · ·+Xn) = π(X1) + · · ·+ π(Xn) = π(X1 + · · ·Xn)

is precisely what followed from how we defined π.
Now, because π and π are endomorphisms of V. We have,

π(X1) · π(X2) · · · · · π(Xn) = π(X1) ◦ π(X2) ◦ · · · ◦ π(Xn) = π(X1) ◦ · · · ◦ π(Xn),

which shows that π is also a properly defined homomorphism under multiplication. Because,

π(X1X2 · · ·Xn) = π(X1) ◦ · · · ◦ π(Xn) = π(X1) ◦ π(X2) ◦ · · · ◦ π(Xn)

is also exactly what followed from the definition of π, with X1X2 · · ·Xn ∈ U(g).
Now, the only thing left to do, is to show that the commutator property of π is also well defined.

So we want to show that π([X1, X2]) = [π(X1), π(X2)] holds. But, U(g) has no Lie bracket, because
it was an algebra. However, it does satisfy,

[X1, X2] =
∑
k

ckijxk = X1X2 −X2X1,

where
∑

k c
k
ijxk is defined as in Definition 2.15. From this we get that,

π([X1, X2]) = [π(X1), π(X2)] = π(X1)π(X2)−π(X2)π(X1) = π(X1)π(X2)−π(X2)π(X1) = π(X1X2−X2X1),

is properly defined. Because the first and last part of the equation are π and π applied to the same
sum, which is an element of g. And the third equality follows from the definition of the commutator
of gl(V). So, π at least satisfies the commutator property when we only use elements of g. Let’s see if
it is also true when we try to use elements of U(g).

For this part, denote xy − yx ≡ [x, y], for x, y ∈ U(g). Now, for x, y, z, q ∈ g, arbitrary basis
elements, we have

[x, yz] = xyz − yzx = yxz − yzx+ xyz − yxz = y[x, z] + [x, y]z,

[xy, z] = xyz − xzy + xzy − zxy = x[y, z] + [x, z]y.

From this we get,

[xy, zq] = z[xy, q]+[xy, z]q = z(x[y, q]+[x, q]y)+(x[y, z]+[x, z]y)q = zx[y, q]+z[x, q]y+x[y, z]q+[x, z]yq.

So, [X1 · · ·Xn, Y1 · · ·Ym] can be rewritten to a sum consisting of products of Xi and a Lie bracket
[Xj , Yk]. Now, if we start with [π(X1 · · ·Xn), π(Y1 · · ·Ym)], the commutator of gl(V), we can use the
same property to rewrite it to a sum consisting of π applied to products of U(g) elements and a
commutator of Xj and Yk. This will look like π applied to a longer version of the above equation. This
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can be rewritten into terms of π applied to basis elements of g and π applied to the Lie bracket of two
basis elements of g, because π was a homomorphism under multiplication and addition. Which shows
that it is properly defined in terms of π.

Now, because π was also properly defined for the commutator of x and y, for x, y ∈ g. The
described sum could also be rewritten, such that π is applied once to the full sum, and then we get
π([X1 · · ·Xn, Y1 · · ·Ym]) = [π(X1 · · ·Xn), π(Y1 · · ·Ym)], with the second term the commutator of gl(V).
Which shows that π satisfies the commutator property when defined in terms of π.

Now, because π is a homomorphism, this is enough to proof that π is a representation. Because
every element of g can be written as a linear combination of basis elements. But π applied to such a
sum, is nothing more than then sum of π applied to the basis elements. Hence, π is a representation
of U(g).

The converse proof is almost the same, except that the Lie bracket only needs to be checked for
elements of g. Because the addition,multiplication and the described Lie bracket are shown to be equal
in both directions, the converse is also true.

Now we will define the Verma module. More specifically, we will define the Verma module of
sl(2,C). There are several ways to get the definition of the Verma module. One way is to start with an
easy example, the Verma module of sl(2,C), and then expend that to a general definition. The other
is to start with the general definition and then construct concrete examples. Because we only need to
Verma module of sl(2,C), the first option will be used. So we will start with a definition of the Verma
module of sl(2,C). Later, a slightly more general definition will be given, but that won’t be necessary
for the further results.

Now, the Verma module of sl(2,C), will be a g−module that is generated by a single vector v ∈ V.
Such that v has a π(X) eigenvalue for one X ∈ sl(2,C), and such that v gets annihilated by some
other π(Y ) for Y ∈ sl(2,C).

Definition 2.19. Let g be the Lie algebra sl(2,C) and V be a vector space. Let V be the g−module
generated by a single vector v ∈ V. Then, we call V the Verma module of sl(2,C).
In particular, the vector v satisfies

π(J0)(v) = λv,

π(J−)(v) = 0,

with J0 and J− defined as in Example 2.8. And we say that π(J−) annihilates v.

If we define a Verma module V of sl(2,C) as above, it is clear that v and π(J+)(v) are elements
of V . Because of Corollary 2.18 we know that we can construct an equivalent U(g)−module. In other
words, a representation of g has the same properties as a representation of U(g). So, we will be able to
use the properties of U(sl(2,C)), from Proposition 2.17, to find some properties of the Verma module.
Because of this, the following part will have many products of functions. So, for some convince, denote,

π(X) ◦ π(X) ◦ · · · ◦ π(X)︸ ︷︷ ︸
n−times

= π(X)n.

– 11 –



2. LIE ALGEBRA AND REPRESENTATIONS

Proposition 2.20. Let V = Vλ be the Verma module of sl(2,C) defined as in Definition 2.19 with
v = vλ , and π(J0)(v) = λv. Then, a basis for V can be given by vλ, π(J+)(vλ), π(J+)2(vλ), . . ., and
define π(J+)n(vλ) = vλ+n, for n ∈ N

⋃
{0}. Then the actions of π(J0), π(J+) and π(J−) on vλ+n are

given by,

π(J0)(vλ+n) = (λ+ n)vλ+n,

π(J+)(vλ+n) = vλ+n+1,

π(J−)(vλ+n) = −n(2λ+ n− 1)vλ+n−1.

And,
π(C)(vλ+n) = π(C)π(Jn+)(vλ) = π(Jn+)π(C)(vλ) = (λ2 − λ)vλ+n.

Proof. First, the properties of the Verma module following from Proposition 2.17 and by using the
definition of a homomorphism. Now, we’ll show that the vectors vλ, vλ+1, vλ+2, . . . form a basis for Vλ,
and that the properties are correct. Note,

π(J0)(vλ+n) = π(J0J
n
+)(vλ) = π(Jn+)(π(J0 + n)(vλ)) = π(J+)n(π(J0)(vλ) + π(n)(vλ))

= (λ+ n)π(J+)n(vλ) = (λ+ n)(vλ+n),

π(J+)(vλ+n) = vλ+n+1,

π(J−)(vλ+n) = π(J−J
n
+)(vλ) = π(Jn+J− − n(n− 1)Jn−1+ − 2nJn−1+ J0)(vλ)

= π(Jn+)(π(J−)(vλ))− n(n− 1)π(Jn−1+ )(vλ)− 2nπ(Jn−1+ )(π(J0)(vλ))

= −n(n− 1)vλ+n−1 − 2nπ(Jn−1+ )(λvλ) = −n(n− 1)vλ+n−1 − 2nπ(Jn−1+ )(λvλ)

= −n(2λ+ n− 1)vλ+n−1 (n > 0).

So, we see that the vectors vλ+n are non-equal, because their π(J0) eigenvalues are non-equal. It is
also clear that the vectors vλ+n are linear independent. Because if they aren’t, you could write vλ+n
as a sum of vλ+i, with i < n, and use π(J−) to conclude that some vλ+i = 0 with i ∈ N

⋃
{0}. The

elements of Vλ are per definition of the form π(X)(vλ) with X ∈ U(g), and from the definition of
a homomorphism, it follows that π(X) is nothing more than applying π(J0), π(J+) or π(J−) several
times in a specific order on vλ. Which shows, that all vectors of Vλ are linear combinations of the
vectors vλ+n, for n ∈ N

⋃
{0}.

And the shown equations are also the properties that we needed to proof.

Because of the actions of π(J0), π(J+) and π(J−), we can easily see that Vλ is irreducible if
π(J−)(vλ+n) 6= 0 ∀n ∈ N. In this case, we can get all the basis vectors vλ+n by letting π(J+) and
π(J−) act on an arbitrary vector vλ+i, i ∈ N

⋃
{0}.

Now, if −2λ ∈ N
⋃
{0}, then we have that −2λ+ 1 ∈ N, so ∃n ∈ N such that 2λ− 1 + n = 0. So, we

have that if λ ∈ −1
2N
⋃
{0}, then

π(J−)(vλ+n) = −n(2λ− 1 + n)vλ+n−1 = 0, for some n ∈ N.

Which shows that Vλ is not always an irreducible g−module.

Corollary 2.21. Let Vλ be the Verma module of sl(2,C) defined in Definition 2.19. If λ = −j, with
j ∈ 1

2N
⋃
{0}, then Vλ has a submodule Mλ.

This submodule consists of all the vectors of the form vj+n, for n ∈ N.

Proof. Denote vλ ≡ v−j . Before we already saw that

π(J−)(vj+1) = π(J−)(v−j+1+2j) = (2j + 1)(−2j + 2j + 1− 1)vj = 0.

So, if we start with vj+1 then this vector is an element of Mλ. And letting π(J0), π(J+) or π(J−) act
on this vector an arbitrary number of times, only gives 0 or vj+n+1, n ∈ N, except for some scalar
multiplication. And all of those vectors are elements of Mλ, hence Mλ is a submodule of Vλ.
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So, now that we know that Vλ is reducible for some values for λ, we can finally construct the
g−module that we want to use. Namely, the quotient module Lλ ≡ Vλ/Mλ.

Corollary 2.22. Let Vλ be the Verma module of sl(2,C) and Mλ the submodule of Vλ from Corol-
lary 2.21, such that λ ≡ −j ∈ 1

2N
⋃
{0}. Then, the quotient module Lλ ≡ Vλ/Mλ is a finite

dimensional vector space, and is spanned by [vm], the representatives of the (2j + 1) vectors vm, with
m = −j,−j + 1, . . . , j. And the actions of J0, J+ and J− are given by,

π(J0)([vm]) = m[vm], m = −j,−j + 1, . . . , j

π(J+)([vm]) = [vm+1], m = −j,−j + 1 . . .− j − 1, π(J+)([vj ]) = 0

π(J−)([vm]) = (j +m)(j −m+ 1)[vm−1], m = −j,−j + 1, . . . , j.

Proof. For vm, vn ∈ Vλ, recall that [vm] = {vm+v : v ∈Mλ}. This shows that two representatives [vm]
and [vn] are equal if,

{vm + v : v ∈Mλ} = {vn + v : v ∈Mλ} ⇐⇒ vm − vn ∈Mλ.

Let’s now construct a basis for Vλ. First, define λ ≡ −j ∈ 1
2N
⋃
{0}. Then, a basis for Vλ is given by

v−j , v−j+1, v−j+2, . . . , with v−j+n = π(J+)n(v−j), n ∈ N
⋃
{0}.

It is obvious that [0] = [vj+1] = [vj+2] = . . . , because Mλ contains all of those vectors, so we see that
π(J+)([vj ]) = 0. For two different basis vectors v, w of Vλ, such that v, w /∈Mλ, we have

[v] = {v +m : m ∈Mλ} 6= {w +m : m ∈Mλ} = [w],

because v − w /∈ Mλ. Because v and w are linearly independent, and v − w would only be contained
in Mλ if both v and w were elements of Mλ.
That gives (2j + 1) different representatives of the vectors v−j , v−j+1, . . . , vj . Now, note that all
elements of Vλ are either contained in one representative [vm], m = −j,−j + 1, . . . , j, or contained in
a sum of different representatives. Which shows that the representatives [v−j+i], i = 0, . . . , 2j, form a
basis for Lλ.
Now that we have a basis, the actions of J0 and J+ can easily be deduced from their actions on the
basis vectors of Vλ. Just use −λ = j, and λ+ n = m with m ∈ {−j,−j + 1, . . . , j}. Where m is only
defined this way to have the actions of J0, J+ and J− on vm, be the same action as on [vm].

This g−module is often denoted as Dj , with j ∈ 1
2N
⋃
{0}. With the use of Dj , it is possible to

define a representation of sl(2,C) with an extra operation and an inner product. To do this, we will
first define a new type of algebra, the ?−algebra.

Definition 2.23. Let g be a Lie algebra over a field K. Then we call g a ?−algebra if

∃? : g→ g, an operation denoted as x 7→ x∗,

with ? a conjugate-linear anti-automorphic involution. Which means that the operation ? has to satisfy
the following properties:

i. (x∗)∗ = x,

ii. (ax+ by)∗ = ax∗ + by∗,

iii. [x, y]∗ = [y∗, x∗],

with x, y ∈ g and a, b ∈ K. So, if K = R, then ? is a linear anti-automorphic involution.
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There exist two non-equivalent ?−operations of sl(2,C). These are given by,

J∗0 = J0, J∗± = J∓, (2.24)

and
J∗0 = J0, J∗± = −J∓. (2.25)

We will only need the first ?−operation. This ?−operation is associated with su(2). The reason for
this, and a description of su(2), will be explained later on, because the details aren’t needed for the
later parts, but may be useful to know.

We will eventually use ?−representations to study the Racah polynomials. So, we also need to
define an inner product for them. Because one of the properties we will look at is the orhtonormality
of the Racah polynomials. To define this inner product, we will first define a Hermitian form.

Definition 2.26. Let g be a Lie algebra and V a g−module, both over the same field K. Then the
operation 〈 , 〉 : V × V → C, with

〈u, v〉 = 〈v, u〉,

〈u, av + bw〉 = a〈u, v〉+ b〈u, w〉,

for u, v, w ∈ V and a, b ∈ C, is called a Hermitian form.

Now that we know what a Hermitian form is and what a ?−algebra is, we can finally define a
?−representation.

Definition 2.27. Let g be a Lie algebra and V a g−module. Induce g with a ?−operation, and let
〈 , 〉 : V × V → C be a Hermitian form on V. Then, V is a ?−representation if,

〈π(x)(v), w〉 = 〈v, π(x∗)(w)〉, ∀x ∈ g, and ∀v, w ∈ V.

We would love to extend the definition of the ?−representation, to a ?−representation with an inner
product. For that, the Hermitian form needs to be an inner product. Luckily enough, the definition
of a Hermitian form is basically the definition of an inner product, except for the positive definite
property

〈v, v〉 > 0, for v ∈ V, v 6= 0; with 〈 ·, · 〉 : V × V → C.

So, to define an inner product on a ?−representation, we only need to make sure the above property
also holds. Next, we will look at the Verma module Vλ, from Definition 2.19, and the quotient module
Dj , from Corollary 2.22, and check if one of them can have an inner product defined on them. This
will be done by using the ?−operation associated with su(2), equation 2.24, and a positive definite
Hermitian form.

Keep in mind, that the ?−operation that will be used in this part is the ?−operation from equa-
tion 2.24. Let’s start with the ?−representation of the Verma module Vλ. And, because we want to
study the orthogonality of the Racah polynomials, define a Hermitian form on Vλ such that,

〈vλ, vλ〉 = 1, and 〈π(x)(v), w〉 = 〈v, π(x∗)(w)〉, for v, w, vλ ∈ Vλ, x ∈ sl(2,C).

We are looking at a ?−representation, so we only need to define our Hermitian form to just satisfy
the first statement. Because all elements in the ?−representation of Vλ are linear combinations of
π(J+)n(vλ), n ∈ N

⋃
{0}. The second statement follows from the definition of a ?−representation of

Vλ.
From the action of J0, we get,

λ〈vλ, vλ〉 = 〈π(J0)(vλ), vλ〉 = 〈vλ, π(J0)(vλ)〉 = λ〈vλ, vλ〉,
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which implies that λ has to be real, else we won’t have λ = λ. The actions of J+ and J− gives us,

〈vλ+n, vλ+n〉 = 〈π(J+)(vλ+n−1), vλ+n〉 = 〈vλ+n−1, π(J−)(vλ+n)〉 = −n(2λ+ n− 1)〈vλ+n−1, vλ+n−1〉
= −n(2λ+ n− 1)〈π(J+)(vλ+n−2), vλ+n−1〉 = · · · = (−1)nn!(2λ+ n− 1)(2λ+ n− 2) · · · (2λ)

= n!(−2λ)(−2λ− 1) · · · (−2λ− n+ 1),

for n ∈ N
⋃
{0}. From this, it follows that if λ > 0, then 〈vλ+n, vλ+n〉 is negative if n is odd and positive

if n is even. Which means that it certainly isn’t an inner product. If λ is negative we get two cases. One
is −λ ∈ 1

2N
⋃
{0}, when Vλ is reducible, the other is when −λ /∈ 1

2N
⋃
{0}, when Vλ is irreducible. If Vλ

is irreducible we have, for n ∈ N
⋃
{0}, −2λ > n or −2λ < n, so we have 2λ+ n < 0 or −2λ− n < 0.

For a fixed λ, we have for some n that −2λ− n > 0. So, we have that 〈vλ+n, vλ+n〉 > 0. But when n
gets large enough, we have −2λ − n < 0, and terms of the form −2λ − n + i, i = 1, 2, . . . , n − 1, will
be negative for some i. Which shows that the Hermitian form is also no inner product in this case,
because 〈vλ+n, vλ+n〉 is negative for some n.

So we are left with the case that −λ ∈ 1
2N
⋃
{0}. Let’s denote λ ≡ −j with j ∈ 1

2N
⋃
{0}, as we did

before. If we would try to make the Hermitian form an inner product on Vλ, we get the same problem
as before. Because for some n ∈ N

⋃
{0}, we have −2λ = n. So, for large enough n, 〈vλ+n, vλ+n〉 is

either positive or negative. But, on Dj we don’t have that problem, with Dj the quotient module from
Corollary 2.22. Let m ∈ {−j,−j + 1, . . . , j}, then we have

〈[vm], [vm]〉 = (j +m)!(2j)(2j − 1) · · · (2j −m+ 1)〈[v−j ], [v−j ]〉
= (j +m)!(2j)(2j − 1) · · · (j −m+ 1)〈[v−j ], [v−j ]〉

=
(j +m)!(2j)!

(j −m)!
,

because [vm] = [vλ+n], hence n = j + m in the previous formula for this Hermitian form. And we
see that, for all m ∈ {−j,−j + 1, . . . , j}, 〈vm, vm〉 > 0, so we can define an inner product on the
?−representation of Dj .

With this inner product, we can change our old basis to an orthonormal basis. This gives us the
following theorem.

Theorem 2.28. Let j ∈ 1
2N
⋃
{0} and define Dj as in Corollary 2.22. Let ? be the ?−operation

associated with su(2). Then Dj is an irreducible ?−representation of sl(2,C) with an inner product

〈e(j)m , e
(j)
m′ 〉 = δm,m′, and orthonormal basis spanned by the elements e(j)m =

√
(j−m)!

(j+m)!(2j)! · [vm] of Dj,
m ∈ {−j,−j + 1, . . . , j}. And the actions of J0, J+ and J− are given by,

π(J0)(e
(j)
m ) = me(j)m ,

π(J+)(e(j)m ) =
√

(j −m)(j +m+ 1)e
(j)
m+1,

π(J−)(e
(j)
M ) =

√
(j +m)(j −m+ 1)e

(j)
m−1.

And for the Casmir operator we have C∗ = C, and π(C)e
(j)
m = j(j + 1)e

(j)
m .

Proof. If we define 〈vm, vm〉, for m ∈ {−j,−j+ 1, . . . , j} as before, it is trivial that the vectors e(j)m are
the normalised form of vm. The actions follow directly from Corollary 2.22, and the Casmir operator
follows from the fact that J∗0 = J0 and J∗± = J∓. That it is an orthonormal basis follows from,

〈e(j)m , e
(j)
m′ 〉 = 〈π(J+)(e

(j)
m−1), e

(j)
m′ 〉 = 〈e(j)m−1, π(J−)(e

(j)
m′ )〉 =

√
(j +m′)(j −m+ 1)〈e(j)m−1, e

(j)
m′−1〉 = · · ·

=
√

(j +m′)!(j −m′ + 1)(j −m′ + 2) · · · (j −m′ +m′ + j)〈e(j)m−m′−j , em′−m′−j〉

=
√

(j +m′)!(j −m′ + 1) · · · (−2j)〈e(j)m−m′−j−1, π(J−)e−j〉

=
√

(j +m′)!(j −m′ + 1) · · · (−2j) · ((j − j)(j − (−j − 1)))〈em−m′−j−1, e−j−1〉 = 0,
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with m′ < m. If m > m′, then we can use 〈e(j)m , e
(j)
m′ 〉 = 〈e(j)m′ , e

(j)
m 〉, which shows that it is still 0, if

m 6= m′.

The value m is called the weight of the vector, which will return in the extra details. Now, if we
look at the actions of J+ and J−, we see that we can get all the vectors e(j)m , multiplied with some
scalar, by letting J+ act on e(j)−j or by letting J− act on e(j)j . This leads to the following formula,

e(j)m =

√
(j +m)!

(2j)!(j −m)!
π(J−)j−m(e

(j)
j ) =

√
(j −m)!

(2j)!(j +m)!
π(J+)j+m(e

(j)
−j).

Now that we have a ?−representation with an orthonormal basis, we finally have something that
we can use to study the Racah polynomials. But before we do that, we will first look at hypergeomtric
series, and the Clebsch-Gordan coefficients, because those will also be used when we look at some
properties of the Racah polynomials.
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2.4 Extra details on the Verma module of sl(2,C)

This section will be about the Verma module of sl(2,C). But, this time we will look at it in a more
abstract way. Everything that was done before is defined correctly, but one could say that some minor
details were not given. However, these details aren’t needed for the later parts, but are given to show
that the Verma module is correctly defined.

The goal is to give a more abstract definition of the Verma module that will be sufficient enough
to define the Verma module of sl(2,C) that was given before. To do this, we will need some more
definitions. So we will first start with a Lie algebra g, and then try to extend that to another definition
for the Verma module.

To be more precise. We start with some extra definitions of a real Lie algebra. Then extend that to
a complex Lie algebra. After that we will define a special subalgebra and look back at the ?−operation
from equation 2.24. After that we will be able to define an inner product that satisfies some extra
properties. And with the use of that inner product and special subalgebra, the roots of a Lie algebra
and the weight of a representation can be defined. At that point we have everything that we need, to
be able to define a so called highest weight cyclic representation. And we’ll show that, that satisfies
the definition of a Verma module for sl(2,C).

We will start with the definition of a commutative, a simple and semisimple Lie algebra.

Definition 2.29. Let g be a Lie algebra over the field K. Then g is a commutative Lie algebra if,

[x , y ] = 0, ∀x, y ∈ g.

If g is commutative it is often referred to as an abelian Lie algebra

Definition 2.30. Let g be a Lie algebra over the field K. Then we call g simple, if the dimension of
g is more than 1, and the only ideals of g are {0} and g itself.
We call g semisimple if {0} is the only abelian ideal of g.[5]

First, notice that this shows that sl(2,C) is an example of a complex semisimple Lie algebra.
Because from the commutator properties,

[ J0 , J± ] = ±J±, [ J+ , J− ] = 2J0,

it follows that if an ideal of sl(2,C) contains at least 1 basis vector, it contains all three basis vectors.
Hence, it would be equal to sl(2,C).

For the next part we will be looking at a complexification of a Lie algebra. Which can be described
as starting with a real Lie algebra, and then extending it to a complex Lie algebra. Let’s first give an
example for this in term of sl(2,C) and su(2).

Example 2.31. The real Lie algebra su(2) is the vector space over R, containing all 2× 2−matrices
X such that the X∗ = −X. Where X∗ is the conjugate transpose of X. So, X∗ = XT . Because this
is a vector space of 2 × 2−matrices, it is an algebra. So, we can define the Lie bracket on su(2) as
[x , y ] = xy − yx, x, y ∈ su(2). Which is the same Lie bracket as sl(2,C), but defined on a different
domain.

A basis for su(2) can be given by the elements[2],

X1 =
1

2

(
i 0
0 −i

)
, X2 =

1

2

(
0 i
i 0

)
, X3 =

1

2

(
0 −1
1 0

)
.

For these matrices it is obvious thatX∗ = −X. And this basis has the following commutator properties:

[X1 , X2 ] = X3, [X3 , X1 ] = X2, [X2 , X3 ] = X1.
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Which are different commutator properties than that of sl(2,C). But with the help of this basis, we
can define sl(2,C) in terms of su(2). For the basis elements of sl(2,C) we have,

J0 = iX1, J+ = 2(−X3 − iX2), J− = 2(X3 − iX2).

And this shows that we can write all the elements of sl(2,C) as aX + (b · i)Y , for X,Y ∈ sl(2). Note,
this only works for sl(2,C) and su(2) as Lie algebras over R. Because the bracket of su(2) isn’t defined
for complex scalars. However, there does exists an extension of the Lie bracket of su(2) to a Lie bracket
of sl(2,C) over C, so the Lie algebra sl(2,C) as we know it from example 2.7. We will show this in the
following proposition.

Definition 2.32. Let V be a vector space over the field R. The complexification of V is the vector
space consisting of the linear combinations

a · v1 + b · i · v2, v1, v2 ∈ V, and a, b ∈ R,

which is denoted by VC. And VC becomes a complex vector space if we define,

i · (a · v1 + b · i · v2) = a · i · v1 − b · v2.

We will assume that a complexification of a vector space is a complex vector space unless it is
said to be a real vector space. That will make some things a little more convenient, because most
complexifiactions that will be used in this section are complex vector spaces.

Proposition 2.33. Let g be a real Lie algebra, and gC the complexification of g. Then, there exists
an extension of the Lie bracket of g to gC such that gC becomes a complex Lie algebra.

Proof. Let X1, X2, Y1, Y2 ∈ g and a, b ∈ R. If a Lie brackets exists for gC, then it has to be bilinear.
So, the existence of the Lie bracket, as an extension of the Lie bracket of g, is shown by taking,

[X1+iY1 , X2+iY2 ] = [X1 , X2+iY2 ]+i[Y1 , X2+iY2 ] = ([X1 , X2 ]−[Y1 , Y2 ])+i([X1 , Y2 ]+[Y1 , X2 ]),

and proving that this bracket is bilinear over C, skew-symmetric and also satisfies the Jacobi identity.
Because the bracket is defined in terms of the bracket of g, it is clear that it is at least bilinear

over R. So, we only have to check that it is also bilinear when multiplied with i. Before we do that,
we will first show that the given bracket is skew-symmetric. Because then we only need to proof that
it is linear in one argument, and it will follow that it is bilinear.

Note that,

[X2 + iY2 , X1 + iY1 ] = ([X2 , X1 ]− [Y2 , Y1 ]) + i([Y2 , X1 ] + [X2 , Y1 ])

= −([X1 , X2 ]− [Y1 , Y2 ])− i([X1 , Y2 ] + [Y1 , X2 ]).

So the given bracket is indeed skew-symmetric. So, we only need to show that [ i(X1 + iY1) , X2 + iY2 ]
is linear, to proof that it is bilinear over C.

[ i(X1 + iY1) , X2 + iY2 ] = [−Y1 + iX1 , X2 + iY2 ] = ([−Y1 , X2 ]− [X1 , Y2 ]) + i([−Y1 , Y2 ] + [X1 , X2 ])

= i[X1 , X2 ]− i[Y1 , Y2 ]− [X1 , Y2 ]− [Y1 , X2 ]

= i

(
([X1 , X2 ]− [Y1 , Y2 ]) + i([X1 , Y2 ] + [Y1 , X2 ])

)
= i[ (X1 + iY1) , X2 + iY2 ].

So the only thing left to do is showing that the given bracket also satisfies the Jacobi identity. But,
the Jacobi identity,

[X , [Y , Z ] ] + [Y , [Z , X ] ] + [Z , [X , Y ] ] = 0,

holds when X,Y, Z ∈ g. And if we take X ∈ gC and Y,Z ∈ g. Then we see that it sill hold, because
the bracket was also bilinear over C. For the same reasoning, we find that it also holds when X,Y ∈ gC
and also when X,Y, Z ∈ gC.
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If we now apply this proposition to extend the Lie bracket of su(2), we see that the basis of su(2) is
also a basis for sl(2,C). This follows from applying the theorem on the Lie bracket from Example 2.31.
With this we can construct a special subalgebra of a semi simple Lie algebra gC.

Definition 2.34. Let gC be a complex semisimple Lie algebra. Let h ⊂ gC be a subspace of gC such
that,

i. For all H1, H2 ∈ h, [H1 , H2 ] = 0,

ii. If X ∈ gC, such that [H,X] = 0 for all H ∈ h, then X ∈ h,

iii. For all H ∈ h, adH is diagonalizable, where adH(X) = [H ,X ].

Then we call h the Cartan subalgebra of gC.

Normally, it should first be proven that a Cartan subalgebra exists. But we will be focusing on the
Verma module of sl(2,C), so we won’t be bothered with those details, the same for the third property.
The first two properties give us that the Cartan subalgebra is a maximum abelian subalgebra of gC.
So, there is no other abelian subalgebra of gC, such that the Cartan subalgebra is a subalgebra of that
abelian subalgebra. Where this other subalgebra is not equal to the Cartan subalgebra. Also, we will
only need those two properties to be able to define a Cartan subalgebra of sl(2,C).[2]

Example 2.35. One example of a Cartan subalgebra of sl(2,C) is the subalgebra containing all
traceless diagonal matrices. First, notice that none of the commutator properties are zero, and that
sl(2,C) is a semisimple Lie algebra.

So, we can never have two basis elements of sl(2,C) in the Cartan subalgebra. Because two basis

elements of sl(2,C) don’t commute. Now, J0 =

(
1 0
0 −1

)
so a basis for the subalgebra that contains

all traceless diagonal matrices is given by J0. And because we have,

[ aJ0 , bJ0 ] = 0, for a, b ∈ C,

it shows that this is indeed an abelian subalgebra of sl(2,C). And we can’t add any other basis element
or linear combination of other basis elements of sl(2,C), because those don’t commute. Hence, this
subalgebra is a Cartan subalgebra of sl(2,C).

When we look at this example, it is obvious that we can create other Cartan subalgebras of sl(2,C),
by just taking the subalgebra generated by exactly 1 basis element of sl(2,C).

Next we will be looking at a special inner product, but that definition will make use of an extra
operation. Which will also be denoted by a ?. The reason for this, will be that in the case of the Lie
algebra sl(2,C), the ? will be a ?−operation of Definition 2.23.

Now that we know this, we could first look at why the ?−operation 2.24, from Definition 2.23, is
associated with su(2). The reason for this, follows from the earlier defined ?−operation of su(2).

Let g = su(2) and gC = sl(2,C). Earlier we defined X∗ = −X, for X ∈ su(2). Now, this
?−operation is only defined on g, but can also be extended to gC, just like the Lie bracket. First,
notice that the complex conjugate satisfies the definition of the ?−operation from Definition 2.23.
Because, for X,Y ∈ g, a, b ∈ R,

(X∗)∗ = −(−X) = X,

(aX + bY )∗ = aX∗ + bY ∗ = −aX − bY,
[X , Y ]∗ = −[X , Y ] = [Y , X ] = [−Y , −X ] = [Y ∗ , X∗ ].

Where the second equation follows from the fact that the complex conjugate is a linear operation
for real scalars. And the last equation follows form the fact that [X , Y ] ∈ g. So it is indeed a

– 19 –



2. LIE ALGEBRA AND REPRESENTATIONS

?−operation. If we take Z ∈ gC, then we can write Z = aX + biY , for some X,Y ∈ g and a, b ∈ R.
Then we see that an extension for this ?−operation can be given by,

(aX + biY )∗ = −aX + biY = aX∗ + biY ∗.

Then it is at least a ?−operation over R. Because it is basically written as the second property, so the
first is also satisfied, and the third one follows from the bilinearity of the bracket.

Now, if we take a, b ∈ C, then we still have

((aX + biY )∗)∗ = (aX∗ + biY ∗)∗aX + biY = aX + biY.

The second property follows from the definition of our extended ?−operation. And the third property
still follows from the bilinearity of the bracket. Because the bracket was a bilinear for scalars in C.

So we see that if we first start with the ?−operation of su(2), defined as taking the complex
conjugate, then we can extend that to a ?−operation for sl(2,C). And for that ?−operation we have,

J∗0 = (iX1)
∗ = (−i)(−X1) = iX1 = J0,

J∗+ = (−X3 − iX2)
∗ = −(−X3)− iX2 = X3 − iX2 = J−, so, J∗− = (J∗+)∗ = J+.

(2.36)

Which is the ?−operation of sl(2,C) given by equation 2.24, which was the ?−operation associated with
su(2). So the reason why it is associated with su(2), is because the ?−operation from equation 2.24 is
the ?−operation of su(2) extended to be defined on sl(2,C).

Next we will look at a special inner product and subalgebra of a Lie algebra. Before we didn’t
need an inner product to define a Verma module, but this time we do. It will be used to determine
the weight of a vector, and then we can use that to define the Verma module as a highest weight
representation.

Theorem 2.37. Let gC be a semi simple Lie algebra. Then there exists an inner product on gC that
is real valued on g and,

〈[X , Y ], Z〉 = −〈Y, [X , Z ]〉,

for all X ∈ g and Y, Z ∈ gC. If we define an operation ? : gC → gC,

(X1 + iX2)
∗ = −X1 + iX2, for X1, X2 ∈ g.

Then, the inner product also satisfies

〈[X , Y ], Z〉 = 〈Y, [X∗ , Z ]〉,

for all X,Y, Z ∈ gC.[2]

So, if we would have gC = sl(2,C), then the operation ? would be the same ?−operation from
Definition 2.23. In other words, the ?−operation that we just extended from su(2) to sl(2,C).

The proof of this theorem won’t be given, because we need some extra definitions and other prop-
erties to proof it properly. And those would only be needed to proof this theorem. So, we won’t be
focusing on those details.

Now that we know what a Cartan subalgebra is and that we have this inner product we can define
what a root is.

Definition 2.38. Let gC be a semisimple Lie algebra and h a Cartan subalgebra of gC. Define an
inner product as in Theorem 2.37. Then we call α ∈ h a root for gC relative to h, or a root, if
∃X ∈ gC, with X 6= 0, such that

[H , X ] = 〈α,H〉X,

for all H ∈ h. The sets of all roots is denoted by R.
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Notice that if α ∈ h is a root, then −α is also a root. Because

[H , −X ] = −[H , X ] = −〈α,H〉X = 〈−α,H〉X.

The same holds for scalar multiples of α.

Definition 2.39. Let R be the set of all roots for a semisimple Lie algebra gC. Then we can construct
a base ∆ for R. Then we denote the set of positive roots, with respect to ∆, by R+. And we denote
the set of negative roots, with respect to ∆, by R−.

Here we split up R into two sets, the positive and negative roots. And ∆ is needed to know which
are positive and which aren’t. So, if ∆ contains α and then we say that α is a positive root, and
positive scalar multiples of α will be positive. This works, because the roots α are pure imaginary.[2]

Definition 2.40. Let gC be semisimple Lie algebra and h a Cartan subalgebra of gC. And define an
inner product on gC defined as in Theorem 2.37. And let α be a root. Then the space of all X in gC
such that, [H , X ] = 〈α,H〉X for all H ∈ h, is called the root space. This is denoted by gα.

Now we have basically everything that we need to construct another definition for the Verma
module, if we only want to define it for gC = sl(2,C). So for this part, let gC be a complex
semisimple Lie algebra, let h ⊂ gC be a fixed Cartan subalgebra of gC. Then define an inner
product on gC defined as in Theorem 2.37, and let R be the set of roots of gC relative to h with a
base ∆.

Definition 2.41. Let π : gC → End(V ) be a representation of gC. Then, λ ∈ h is called a weight of
π if

∃v ∈ V : π(H)(v) = 〈λ,H〉v, ∀H ∈ h and v 6= 0.

The set of all v ∈ V satisfying the above equation, is called theweight space of λ and themultiplicity
of λ is the dimension of the weight space.

This definition of a weight of π is actually the same as the one we saw in the proof of Theorem 2.28.
There we called it the weight of the vector, and here the weight of the representation. But that difference
doesn’t really matter, because in both cases, the weight described the same thing. Only this time, it
is more abstractly defined.

This now leads to the following definition.

Definition 2.42. A representation π : gC → End(V ) of g is highest weight cyclic with highest
weight µ ∈ h if there exists a non-zero vector v ∈ V such that,

i. π(H)(v) = 〈µ,H〉v for all H ∈ h,

ii. π(X)(v) = 0 for all X ∈ gα, with α ∈ R+,

iii. the smallest invariant subspace containing v is V .

And we can define a Verma module as a "maximal" highest weight cyclic representation, with
a specific weight.[2]

Now, if we look at the earlier given definition of the Verma module, Definition 2.19, then we see
that it also corresponds to a highest weight cyclic representation. First, do note that we won’t be able
to give a concrete inner product on sl(2,C), but that won’t be a problem. Because we only need to
check the values of the inner product for the basis values of sl(2,C), because of the linearity in the
second variable. See the definition of a Hermitian form, Definition 2.26.

First, notice that we defined the Verma module Vλ as the vector space generated by v. So, Vλ is per
definition the smallest invariant subspace that contains v. Next, define h as the submodule generated
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by J0. In other words, the Cartan subalgebra h, is the Lie algebra with basis J−0 =

(
1 0
0 −1

)
, which

is the same Cartan subalgebra as the one that was given in Example 2.35. Then we see that,

π(J0)(vλ) = λvλ = 〈µ, J0〉vλ, for some µ ∈ gC.

Where µ ∈ h is the highest weight of π.
Now, note that we have H ∈ h arbitrary, then H = aJ0 for some a ∈ C. So,

[H , J− ] = a[ J0 , J− ] = −aJ− = 〈α,H〉J−, for some α ∈ h.

And then we have that 〈α, J0〉 = −1, so 〈−α, J0〉 = 1. Which gives us that,

[H , J+ ] = 〈−α,H〉J+.

So, we have that J− ∈ gα for α ∈ R+. And we also have found all our roots. So we will have
π(J−)(vλ) = 0. Which is exactly what we wanted. So, we saw that,

π(J0)(vλ) = λvλ = 〈µ, J0〉vλ,
π(J−)(vλ) = 0,

and that Vλ was generated by vλ. And the given Verma module of sl(2,C), is indeed a Verma module
according to both definitions.
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3 Hypergeometric series and transformation formulas

In this chapter the hypergeometric series and the Pochhammer symbols will be discussed. First, the
Pochhammer symbols will be defined, followed by some identities. Then, the definition of the hyperge-
ometric series will be given followed by some properties of some special cases. Also, some formulas will
be discussed. These formulas will show how to get another hypergeometric series with more parameters
from one with less parameters.
The purpose of this chapter is to get the reader accustomed to the notation and some properties of
the hypergeometric series, as well as some properties of combinatorial operations and the Pochhammer
symbol.

3.1 Pochhammer symbols and 2F1eries

Let’s start with the definition of the Pochhammer symbol.

Definition 3.1. Let n ∈ N and α ∈ K, with K a field. Then the Pochhammer symbol is given by,

(α)n = α(α+ 1)(α+ 2) · · · (α+ n− 1)

The Pochhammer symbol gives rise to some simple, yet useful equations such as:

(α)n−k =
(α)n

(−1)k(1− α− n)k
, (3.2)

(n+ k)! = n!(n+ 1)k, (3.3)

(−n)k
n!

=
(−1)k

(n− k)!
, (3.4)(

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
= (−1)k

(−n)k
k!

, (3.5)

(α− β − n+ 1)n = (−1)n(β − α)n, (3.6)

(a− k)! =
a!

(−1)k(−a)k
. (3.7)

These kinds of equations will be used to rewrite hypergeometric series and later on to rewrite equations
that contain hypergeometric series.

Definition 3.8. The hypergeometric series is defined as,

F (a, b; c z) =2 F1(a, b; c; z) = 2F1

(
a, b

c
; z

)
=
∞∑
k=0

(a)k(b)k
k!(c)k

zk.

For the hypergeometric series it is known that it converges absolutely when |z| < 1. Also, when
one of the numerators a or b is a negative integer −n, the series terminates and consists of only n+ 1
terms. This is something what will be used in this chapter, and almost all the given series will be
terminating series. Now, in case of a terminating series, c is allowed to be a negative integer, but it
must be smaller than the numerator that causes the termination.
The given hypergeometric series are also a solution of a second order differential equation. This second
order differential equation is given by,

z(1− z)d
2y

dz2
+ [c− (a+ b+ z)z]

dy

dz
− aby = 0.
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The most general solution to the above equation, for |z| < 1, is given by,

y = A2F1

(
a, b

c
; z

)
+Bz1−c2F1

(
a+ 1− c, b+ 1− c

2− c
; z

)
. (3.9)

Another solution for this second order differential equation, for |z| < 1, is given by,

(1− z)c−a−b2F1

(
c− a, c− b

c
; z

)
(3.10)

So, equation 3.10 can be written in terms of equation 3.9. This can be done with the use of Euler’s
transformation formula. Now, we will assume the next equality to be correct without proof. By
comparing coefficients, one can get the following equality:

2F1

(
a, b

c
; z

)
= (1− z)c−a−b2F1

(
c− a, c− b

c
; z

)
. [1] (3.11)

The first thing we want to do is to rewrite the terminating hypergeometric series into terms of the
Pochhammer symbol. So, because the hypergeometric series that we will be looking at is terminating,
we can write it as,

2F1

(
a, b

c
; z

)
=

n∑
k=0

(a)k(b)k
k!(c)k

zk.

So this will be the series that we want to write in terms of the Pochhammer symbol. To do this, we
will look at some sums and binomial coefficients that may look random at first, but they will help
rewriting the hypergeometric series.

First, let u and v be two positive integers. Then, we can get the number of combinations of n
elements from a set of u + v elements in two different ways. The first would be by using

(
u+v
n

)
, the

second option is by first taking k elements from the set of u elements and combining those with n− k
elements of the set of v elements, so we also have v ≥ n. Which gives us,

n∑
k=0

(
u

k

)(
v

n− k

)
=

(
u+ v

n

)
.

This is a polynomial expression in u and v, so this is true in general, if n ≤ u+ v and v ≥ n or u ≥ n.
And with the use of equation 3.5, this can be rewritten to

n∑
k=0

(
u

k

)(
v

n− k

)
=

n∑
k=0

(−1)k
(−u)k
k!

(−1)n−k
(−v)n−k
(n− k)!

= (−1)n
n∑
k=0

(−u)k(−v)n−k
k!(n− k)!

= (−1)n
(−u− v)n

n!
=

(
u+ v

n

)
,

which gives us the following equation:
n∑
k=0

n!(−u)k(−v)n−k
k!(n− k)!

=
n∑
k=0

(
n

k

)
(−u)k(−v)n−k = (−u− v)n. (3.12)

And this gives us:
n∑
k=0

(
n

k

)
(−u)k(−v)n−k

(3.5)
=

n∑
k=0

(−1)k
(−n)k(−u)k(−v)n−k

k!

(3.2)
=

n∑
k=0

(−1)k
(−n)k(−u)k

k!

(−v)n
(−1)k(1 + v − n)k

=

n∑
k=0

(−n)k(−u)k(−v)n
k!(1 + v − n)k

(3.8)
= 2F1

(
−n, − u
1 + v − n

; 1

)
· (−v)n

(3.12)
= (−u− v)n.

(3.13)

And the last part of the above equation gives us the following theorem.
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Theorem 3.14. Let n be a non-negative integer and c > 0 or c ≤ n, then

2F1

(
−n, b
c

; 1

)
=

(c− b)n
(c)n

. (3.15)

And this equation is known as Vandermonde’s summation formula for a terminating 2F1 of unit argu-
ment.

Proof. If we take b = −u, 1 + v − n = c in Equation 3.13, we get

2F1

(
−n, b
c

; 1

)
=

(b− c− n+ 1)n
(−c− n+ 1)n

(3.6)
=

(−1)n

(−1)n
(c− b)n

(c)n

3.2 General hypergeometric series

Until now, the hypergeometric series, 2F1, that we have seen has two numerator parameters, and one
denominator parameter. But, a more general hypergeometric series can also be defined.

Definition 3.16. The generalised hypergeometric series is

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

.

We will only be interested in the case when p = q+ 1. For this case it is also known that the series
converges absolutely for |z| < 1, but that won’t really concern us. Because, the series we will study
will, again, be terminating series.
To construct a formula for the 3F2 series of unit argument, Euler’s transformation formula 3.11 will
be used. This can be done by taking the expansion of (1− z)c−a−b. This gives us,

(1− z)c−a−b2F1

(
c− a, c− b

c
; z

)
=
∑
k

(
c− a− b

k

)
(−1)kzk

∑
l

c− a)l(c− b)l
l!(c)l

zl,

because we had that |z| < 1. Do note that this series representation of (1 − z)c−a−b also works when
z = 1.

If we now compare the coefficients of zn, we get the following equation:∑
l

(c− a)l(c− b)l(−n)l(a+ b− c)n
l!(c)l(1− a− b+ c− n)ln!

=
(a)n(b)n
(c)nn!

.

Which can be rewritten to,

3F2

(
c− a, c− b, − n
c, 1− a− b+ c− n

; 1

)
=

(a)n(b)n
(c)n(a+ b− c)n

(3.17)

gives us the following theorem.

Theorem 3.18. Let n be a non-negative integer, and a+ b− n+ 1 = c+ d. Then,

3F2

(
a, b, − n
c, d

; 1

)
=

(c− a)n(c− b)n
(c)n(c− a− b)n

and this equation is known as the Pfaff-Saalschütz summation formula.
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Notice that the proof of this theorem was already done before it was given. By just rewriting
equation 3.17, the equation of the theorem can easily be made.

For the general 4F3 hypergeometric series a same kind of formula can be given.

Theorem 3.19. Let n be a non-negative integer, and a+ b+ c−n+1 = d+e+f , which is the balance
condition. Then,

4F3

(
−n, a, b, c
d, e, f

; 1

)
=

(e− c)n(f − c)n
(e)n(f)n

4F3

(
−n, d− a, d− b, c

d, d+ e− a− b, d+ f − a− b
; 1

)

Proof. Let a, b, c, d, e, f be arbitrary parameters. The coefficient of zn in,

2F1

(
a, b

c
; z

)
2F1

(
d, e

f
; z

)
is given by,

∑
k

(a)k(b)k
k!(c)k

(d)n−k(e)n−k
(n− k)!(f)n−k

(3.2)
=
∑
k

(a)k(b)k
k!(c)k

(d)n
(1− d− n)k

(e)n
(1− e− n)k

(1− f − n)k
(f)n

(−n)k
n!

=
(d)n(e)n
n!(f)n

4F3

(
a, b, 1− f − n, − n
c, 1− d− n, 1− e− n

; 1

) (3.20)

If we use Euler’s transformation formula 3.11 on both 2F1 series, we get

(1− z)c−a−b+f−d−e2F1

(
c− a, c− b

c
; z

)
2F1

(
f − d, f − e

f
; z

)
.

Now, to satisfy the balance condition we take c− a− b+ f − d− e = 0. This works, because we have
a+ b+ 1− f − n− n+ 1 = c+ 1− d− n+ 1− e− n as our balance condition in equation 3.20. So the
coefficient of zn in the above equation becomes:

(f − d)n(f − e)n
n!(f)n

4F3

(
c− a, c− b, 1− f − n, − n

c, 1− f + d− n, 1− f + e− n
; 1

)
. (3.21)

To finish the proof, we only need to write

(d)n(e)n
n!(f)n

4F3

(
a, b, 1− f − n, − n
c, 1− d− n, 1− e− n

; 1

)
=

(f − d)n(f − e)n
n!(f)n

4F3

(
c− a, c− b, 1− f − n, − n

c, 1− f + d− n, 1− f + e− n
; 1

)
.

And then use, a = a, b = b, 1− f −n = c,−n = −n, c = d, 1− d−n = e, 1− e−n = f and the balance
condition. Then we see that f − d = e− c and f − e = f − c. So we already get,

4F3

(
a, b, 1− f − n, − n
c, 1− d− n, 1− e− n

; 1

)
= 4F3

(
a, b, c, − n
d, e, f

; 1

)
= 4F3

(
−n, a, b, c
d, e, f

; 1

)
And because we have have (a− b− n+ 1)n = (−1)n(b− a), we can rewrite the last two denominator
terms in the left hand side of the last equation.
So, that gives use that the last terms, 1−f+d−n and 1−f+e−n, become f−d and f−e respectively.
Which are then rewritten to e − c and f − c respectively, and can be rewritten to d + f − a − b and
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d+ e− a− b respectively, with the use of the balance condition given in the theorem. So,

(f − d)n(f − e)n
(d)n(e)n

4F3

(
c− a, c− b, 1− f − n, − n

c, 1− f + d− n, 1− f + e− n
; 1

)
=

(f − d)n(f − e)n
(1− d− n)n(1− e− n)n

4F3

(
c− a, c− b, 1− f − n, − n

c, f − d, f − e
; 1

)
=

(e− c)n(f − c)n
(e)n(f)n

4F3

(
d− a, d− b, c, − n
d, e− c, f − c

; 1

)
=

(e− c)n(f − c)n
(e)n(f)n

4F3

(
d− a, d− b, c, − n

d, d+ f − a− b, d+ e− a− b
; 1

)
=

(e− c)n(f − c)n
(e)n(f)n

4F3

(
−n, d− a, d− b, c

d, d+ e− a− b, d+ f − a− b
; 1

)
And because we can swap those two terms without changing the 4F3 series, we get the equation as
given in the theorem.

With this transformation formula of 4F3 another transformation formula for the 3F2 series can be
made.

Corollary 3.22. Let n be a non-negative integer. Then we have,

3F2

(
−n, b, c
d, e

; 1

)
=

(e− c)n
(e)n

3F2

(
−n, d− b, c

d, 1 + c− e− n
; 1

)
.

Proof. In Theorem 3.19 replace a by f − a. Then, the left hand side will be equal to

4F3

(
−n, f − a, b, c

d, e, f
; 1

)
.

Now, by taking the limit f →∞, we get,

3F2

(
−n, b, c
d, e

; 1

)
.

The right hand side becomes,

(e− c)n(f − c)n
(e)n(f)n

4F3

(
−n, d− f + a, d− b, c

d, 1 + c− f − n, 1 + c− e− n
; 1

)
.

Again, taking the same limit f →∞ yields,

(e− c)n
(e)n

3F2

(
−n, d− b, c

d, 1 + c− e− n
; 1

)
.

There are more transformation functions, and one could even study them in more detail. But,
only the transformation formulas and Pochhammer symbol identities given in this chapter will be used
further on.
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4 The Clebsch-Gordan coefficients of su(2)

In this following chapter, the ?−representation of Dj will be studied. More specifically, a realisation of
the ?−representation of Dj , from Theorem 2.28, will be given. This realisation will be studied shortly.
The study of the realisation will consist of the correctness of it, and to give some concrete values to
the elements of the representation. The given values of the realisation will be really useful in the later
parts of the chapter, compared to using the abstract definition.
After that, a tensor product of two Dj ?−representations will be defined and then decomposed into a
direct sum of irreducible ?−representations of Dj . After decomposing them, and forming orthonormal
bases for these representations, a formula for the Clebsch-Gordan coefficients can be constructed. These
coefficients will then be studied, and some relations, symmetries and recurrence relations for them will
be given. The study of these coefficients is rather important, because they will be used to construct
the Racah polynomials.

4.1 A realisation of the Dj ?−representation

In this part, we will give a realisation of the irreducible Dj ?−representation of Theorem 2.28 and the
Lie algebra su(2). A realisation of su(2) will be given to be able to use the same methods and values
as in the work of Joris Van der Jeugt ([1]), but to stay consistent, we will define our realisation as a
vector field over C. So, let j ∈ 1

2N
⋃
{0} and let our representation and Lie algebra be defined over the

field C. Then we can define a realisation of Dj , by defining the vectors e(j)m , m ∈ {−j,−j + 1, . . . , j},
as homogeneous polynomials of degree 2j in the variables x and y. So define,

e(j)m =
xj+myj−m√

(j +m)!(j −m)!
, for m ∈ {−j,−j + 1, . . . , j}.

By defining the vectors as these polynomials, the basis of the ?−representation will still be orthonormal.
This can be achieved by defining the Hermitian form as,

〈xayb, xa′yb′〉 = a!b!δa,a′δb,b′ .

This is a well defined Hermitian form and can be defined as,

〈P (x, y), Q(x, y)〉 = P (∂x, ∂y) ·Q(x, y)|x=y=0,

for two arbitrary polynomials P (x, y) and Q(x, y) of Dj . This means that we change the polyno-
mial P (x, y) to a polynomial consisting of differential operators for x and y, and the inner product
will be the constant part of P (∂x, ∂y) · Q(x, y). This is a well defined Hermitian form on Dj . Let’s
check this for three arbitrary homogeneous polynomials of degree n. So for P (x, y) =

∑n
k=0 akx

kyn−k,
Q(x, y) =

∑n
k=0 bkx

kyn−k and W (x, y) =
∑n

k=0 ckx
kyn−k, u, v, ak, bk, ck ∈ C, we have,
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〈P (x, y), Q(x, y)〉 = P (∂x, ∂y)Q(x, y)|x=y=0 = (
n∑
k=0

ak∂kx∂
n−k
y )(

n∑
k=0

bkx
kyn−k)|x=y=0

=
n∑

k′=0

n∑
k=0

(akbk′∂
k
x∂

n−k
y xk

′
yn−k

′
)|x=y=0 =

n∑
k′=0

n∑
k=0

(akbk′k
′!(n− k′)!δk,k′δk,k′)

=

n∑
k=0

akbkk!(n− k)!,

〈Q(x, y), P (x, y)〉 = Q(∂x, ∂y)P (x, y)|x=y=0 = (

n∑
k=0

bk∂kx∂
n−k
y )(

n∑
k=0

akx
kyn−k)|x=y=0

=
n∑
k=0

akbkk!(n− k)! = 〈P (x, y), Q(x, y)〉,

〈P (x, y), u ·Q(x, y) + v ·W (x, y)〉 = P (∂x, ∂y)(u ·Q(x, y) + v ·W (x, y))|x=y=0

= (
n∑
k=0

ak∂kx∂
n−k
y )(u ·

n∑
k=0

bkx
kyn−k + v ·

n∑
k=0

ckx
kyn−k)|x=y=0

= u ·
n∑

k′=0

n∑
k=0

(akbk′∂
k
x∂

n−k
y xk

′
yn−k

′
)|x=y=0

+ v ·
n∑

k′=0

n∑
k=0

(akck′∂
k
x∂

n−k
y xk

′
yn−k

′
)|x=y=0

= u ·
n∑
k=0

akbkk!(n− k)! + v ·
n∑
k=0

akckk!(n− k)!

= u · 〈P (x, y), Q(x, y)〉+ v · 〈P (x, y),W (x, y)〉.

The complex conjugate can easily be rewritten, because of the fact that it is linear in multiplication
and addition. And the three equations show that this is indeed a Hermitian form. It is even an inner
product, because of the earlier given property. Now, this proof can easily be extended to arbitrary
polynomials, but that won’t be needed for this realisation.

Now, one can represent the actions of the basis elements of su(2) on the ?−representation Dj in
the following way,

π(J0) =
1

2
(x∂x − y∂y), π(J+) = x∂y, π(J−) = y∂x.

These actions are well defined, because when they act on a vector e(j)m , we get the same equations as
in Theorem 2.28.

For these elements, we have the following commutator relations,

[π(J0), π(J+)] = π(J+), [π(J0), π(J−)] = π(J−), [π(J+), π(J−)] = 2π(J0),

which are coherent with the commutator relations of su(2). Do note that these are other relations
than the ones of the basis elements of sl(2,C), but this won’t be an issue for the later parts. These
elements also form a basis for sl(2,C), as was seen in Example 2.31.

Now that we have some concrete vectors for Dj and differential operators for the actions of the
basis elements of su(2), we can look at the tensor product of two Dj representations. We will do this
with these concrete vectors and operators to keep it easier and to get faster results.
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4.2 Tensor product of Dj and the Clebsch-Gordan coefficients

Now, we will use the concrete values of the ?−representation Dj to decompose the tensor product
of two ?−representations Dj , into irreducible ?−representations. We will use the decomposition to
construct an orthonormal basis for these irreducible ?−representations. And at the same time, we will
find a definition for the Clebsch-Gordan coefficients.

First we need to define how the tensor product of two g−modules, becomes a g−module on its
own. First, for two vector spaces V andW, with respective bases v1, v2, . . . and w1, w2, . . . . The tensor
product V

⊗
W has a basis consisting of the vectors vi ⊗ vj .

Definition 4.1. Let g be a Lie algebra and let V and W be two g−modules all over the same field
K. Then, V

⊗
W is a g−module on its own when we define,

π(x)(v ⊗ w) = πV(x)(v)⊗ w + v ⊗ πW(x)(w), for x ∈ g, v ∈ V, w ∈ W and v ⊗ w ∈ V
⊗
W,

with πV and πW the representations of g in V and W respectively.
This is well defined. Because when we define the operation π(x) in this way, we get,

π(ax+ by)(v ⊗ w) = πV(ax+ by)(v)⊗ w + v ⊗ πW(ax+ by)(w)

= (a · πV(x)(v) + b · πV(y)(v))⊗ w + v ⊗ (a · πW(y)(w) + b · πW(x)(w))

= a · (πV(x)(v)⊗ w + v ⊗ πW(x)(w)) + b · (πV(y)(v)⊗ w + v ⊗ πW(y)(y))

= a · π(x)(v ⊗ w) + b · π(y)(v ⊗ w)

π(x)(a(v ⊗ w) + b(v′ ⊗ w′)) = π(x)((av + bv′)⊗ (aw + bw′))

= πV(x)(av + bv′)⊗ (aw + bw′) + (av + bv′)⊗ πW(x)(aw + bw′)

= (a · πV(x)(v) + b · πV(x)(v′))⊗ (aw + bw′)

+ (av + bv′)⊗ (a · πW(x)(w) + b · πW(x)(w′))

= a(πV(x)(v)⊗ w) + b(πV(x)(v′)⊗ w′) + a(v ⊗ πW(x)(w)) + b(v′ ⊗ πW(x)(w′))

= a · π(x)(v ⊗ w) + b · π(x)(v′ ⊗ w′)
π[x , y ](v ⊗ w) = πV [x , y ](v)⊗ w + v ⊗ πW [x , y ](w)

= (πV(x)(πV(y)(v))− πV(y)(πV(x)(v)))⊗ w + v ⊗ (πW(x)(πW(y)(w))

− πW(y)(πW(x)(w)))

= πV(x)(πV(y)(v))⊗ w − πV(y)(πV(x)(v))⊗ w + v ⊗ πW(x)(πW(y)(w))

− v ⊗ πW(y)(πW(x)(w))

= πV(x)(πV(y)(v))⊗ w + πV(y)(v)⊗ πW(x)(w) + πV(x)(v)⊗ πW(y)(w)

+ v ⊗ πW(x)(πW(y)(w))− (πV(y)(πV(x)(v))⊗ w + πV(x)(v)⊗ πW(y)(w))

− (πV(y)(v)⊗ πW(x)(w) + v ⊗ πW(y)(πW(x)(w))

= π(x)(πV(y)(v)⊗ w + v ⊗ πW(y)(w))− π(y)(πV(x)(v)⊗ w + v ⊗ πW(x)(w))

= π(x)(π(y)(v ⊗ w))− π(y)(π(x)(v ⊗ w)),

for x, y ∈ g; v ⊗ w, v′ ⊗ w′ ∈ V
⊗
W; a, b ∈ K.

This shows that V
⊗
W is g−module. Because the operation π satisfies the 3 conditions of Defini-

tion 2.11.

Let’s now construct the tensor product of two ?−representations of Dj . So, let j1, j2 ∈ 1
2N
⋃
{0}

and consider the tensor product Dj1

⊗
Dj2 . As we saw before, a basis for Dj1

⊗
Dj2 consists of the

vectors e(j1)m1 ⊗e
(j2)
m2 , m1 ∈ {−j1,−j1+1, . . . , j1},m2 ∈ {−j2,−j2+1, . . . , j2}. This shows that Dj1⊗Dj2

is a (2j1 + 1)(2j2 + 1) dimensional vector space. Now, we can define an inner product on this vector
space by defining,

〈v ⊗ w, v′ ⊗ w′〉 = 〈v, v′〉〈w,w′〉, forv, v′ ∈ Dj1 , w, w
′ ∈ Dj2 .
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And with the use of the realisation and the previous definition, Definition 4.1, we get,

π(J0)(e
(j1)
m1
⊗ e(j2)m2

) = πDj1
(J0)(e

(j1)
m1

)⊗ e(j2)m2
+ e(j1)m1

⊗ πDj2
(J0)(e

(j2)
m2

) = (m1 +m2)e
(j1)
m1
⊗ e(j2)m2

.

This shows that the maximal π(J0) eigenvalue of e(j1)m1 ⊗ e
(j2)
m2 is j1 + j2, with e

(j1)
j1
⊗ e

(j2)
j2

as the
corresponding eigenvector.

With this vector, we can construct a submodule of Dj1

⊗
Dj2 . This can be done by acting with

π(J−) on e(j1)j1
⊗e(j2)j2

until we get 0⊗0, then we get 2(j1+j2)+1 vectors. And all of those are contained,
and form a basis for a submodule of Dj1

⊗
Dj2 . Because, letting π(J0) act on one of those vectors just

gives the same vector multiplied with a scalar, and letting π(J+) act on one of those vectors gives a
vector that is in the set, but multiplied with a scalar. The last thing follows from that fact we started
with the vector with the highest weight and π(J+)(e

(j1)
j1
⊗ e(j2)j2

) = 0, and if we let π(J+) act on a

vector e(j1)m1 ⊗ e
(j2)
m2 , on which we first applied π(J−), we get the old vector, on which we applied π(J−),

multiplied with a scalar.
To give an example of such a set, let j1 = j2 = 1 then,

π(J−)(e
(1)
1 ⊗ e

(1)
1 ) = e

(1)
0 ⊗ e

(1)
1 + e

(1)
1 ⊗ e

(1)
0 ,

π(J−)(e
(1)
0 ⊗ e

(1)
1 + e

(1)
1 ⊗ e

(1)
0 ) = e

(1)
−1 ⊗ e

(1)
1 + e

(1)
0 ⊗ e

(1)
0 + e

(1)
1 ⊗ e

(1)
−1,

π(J−)(e
(1)
−1 ⊗ e

(1)
1 + e

(1)
0 ⊗ e

(1)
0 + e

(1)
1 ⊗ e

(1)
−1) = e

(1)
−1 ⊗ e

(1)
0 + e

(1)
0 ⊗ e

(1)
−1

π(J−)(e
(1)
−1 ⊗ e

(1)
0 + e

(1)
0 ⊗ e

(1)
−1) = e

(1)
−1 ⊗ e

(1)
−1.

In this example we let all scalar multiples be 1, which can always be achieved by multiplying the
constructed vectors with a specific scalar. Also, duplicates were removed. So in the cases were two
vectors would have the same subscript, they were turned into 1 vector.

This shows that Dj1

⊗
Dj2 isn’t irreducible, because the submodule that we constructed earlier is

not equal to Dj1

⊗
Dj2 itself. In fact, it is only equal to Dj1

⊗
Dj2 when j1 = j2 = 0. Because only

in that case, we have that the dimension of Dj1

⊗
Dj2 is equal to 2(j1 + j2) + 1.

Let’s now decompose Dj1

⊗
Dj2 into irreducible submodules. First, note that the π(J0) eigenvalues

of all the basis vectors are in the set {|j1−j2|, |j1−j2+1|, . . . , j1+j2}. Then we see that one possibility
could be

Dj1

⊗
Dj2 =

j1+j2∑
j=|j1−j2|

Dj ,

but this could only work if the irreducible components are again ?−representations of sl(2,C), with
the usual ?−operation. To check this, we will give a realisation of Dj1

⊗
Dj2 , for this we will use the

realisation of the ?−representation Dj that was given before. So, we define the actions of J0, J+ and
J− as,

π(J0) =
1

2
(x1∂x1 − y1∂y1) +

1

2
(x2∂x2 − y2∂y2), π(J+) = x1∂y1 + x2∂y2 , π(J−) = y1∂x1 + y2∂x2 ,

which is well defined according to Definition 4.1. And define,

e(j1)m1
⊗ e(j2)m2

=
xj1+m1
1 yj1−m1

1√
(j1 +m1)!(j1 −m1)!

xj2+m2
2 yj2−m2

2√
(j2 +m2)!(j2 −m2)!

.

Then, the inner product will be given by,

〈xu11 y
v1
1 x

u2
2 y

v2
2 , x

u′1
1 y

v′1
1 x

u′2
2 y

v′2
2 〉 = u1!v1!u2!v2!δu1,u′1δv1,v′1δu2,u′2δv2,v′2 .

Now we want to find vectors of Dj1

⊗
Dj2 that get annihilated by π(J+). Because if we find such

a vector, and it isn’t e(j1)j1
⊗ e

(j2)
j2

, we could construct a submodule of Dj1

⊗
Dj2 , which will be a
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?−representation. We also want to get all the π(J0) eigenvalues of Dj1

⊗
Dj2 , by letting π(J0) act on

the basis vectors of the decomposed irreducible submodules. For the reason that, if the given possible
decomposition is indeed a decomposition. The submodules will be Dj ?−representations, hence we
will then be able to get all the basis vectors of a submodule by letting π(J−) act on the highest weight
vector of Dj . And the highest weight should be j, which is an eigenvalue of Dj1

⊗
Dj2 .

Let’s start with finding vectors that get annihilated by π(J+). Note that for the vectors,

x2j1−k1 x2j2−k2 (x1y2 − x2y1)k,

it is easy to see that they get annihilated by π(J+), because

π(J+)((x1y2 − x2y1)k) = k(x2x1 − x1x2)(x1y2 − x2y1)k−1 = 0.

And, the given vector is also an element of Dj1

⊗
Dj2 , for k ∈ {0, 1, . . . ,min(2j1, 2j2)}, because it is a

homogeneous polynomial of degree 2(j1 + j2), for these values of k. However, this is easier to see after
we rewrite the vector.

Now, we eventually want to construct an orthonormal basis for the Dj submodules. So we want to
normalise the vector that was given earlier. Define,

e
(j1j2)j
j = c

k∑
l=0

(−1)l
(
k

l

)
x2j1−l1 yl1x

2j2−k+l
2 yk−l2 = c(x2j1−k1 x2j2−k2 (x1y2 − x2y1)k),

the normalised version of the constructed vector in Dj1

⊗
Dj2 , with j = j1 + j2 − k and j ∈ {j1 +

j2, j1 + j2 − 1, . . . , |j1 − j2|}. Now it is obvious that this is indeed a vector of Dj1

⊗
Dj2 , and it has a

π(J0) eigenvalue of j1 + j2 − k = j.
Now, the c in e

(j1j2)j
j is some constant that we have to determine. Because the coefficient c will

make sure that e(j1j2)jj will be an orthonormal vector in Dj1

⊗
Dj2 .

Hence, we want those vectors to have norm 1. So, we need to solve the following equation,

1 = 〈e(j1j2)jj , e
(j1j2)j
j 〉 = c2

k∑
l=0

(
k

l

)2

(2j1 − l)!l!(2j)2− k + l)!(k − l)!.

Now, we will solve this with the use of the identities 3.7 and 3.3, and some other previously given
identities and theorems.

k∑
l=0

(
k

l

)2

(2j1 − l)!l!(2j)2− k + l)!(k − l)! =

k∑
l=0

k!2
(2j1 − l)!l!(2j)2− k + l)!(k − l)!

l!(k − l)!

(3.7),(3.3)
= k!2

k∑
l=0

(2j1)!(−k)l(2j2 − k)!(2j2 − k + 1)l
l!(−2j1)lk!

= k!(2j1)!(2j2 − k)!2F1

(
−k, 2j2 − k + 1

−2j1
; 1

)
(3.15)

= k!(2j1)!(2j2 − k)!
(−2j1 − 2j2 + k − 1)k

(−2j1)k
(3.4)
=

k!(2j1 − k)!(2j2 − k)!(2j1 + 2j2 − k + 1)!

(2j1 + 2j2 − 2k + 1)!
.

So this gives us a formula for c up to a sign, because the given equation was equal to 1
c2
. Now, c is

usually chosen to be positive, so we will also do that. That gives us,

c =

√
(2j1 + 2j2 − 2k + 1)!

k!(2j1 − k)!(2j2 − k)!(2j1 + 2j2 − k + 1)!
, with k = j1 + j2 − j. (4.2)
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Now we saw that the vectors e(j1j2)jj , j = j1 + j2−k, give us all the π(J0) eigenvalues of Dj1

⊗
Dj2

and they were annihilated by π(J+).
If we let π(J−) act on e(j1j2)jj several times, with j = j1 + j2−k ∈ {j1 + j2, j1 + j2−1 . . . , |j1− j2|},

then we know from Theorem 2.28 that,

e(j1j2)jm =

√
(j +m)!

(2j)!(j −m)!
π(J−)j−me

(j1j2)j
j . (4.3)

This is true, because the vector e(j1j2)jj will always be the highest weight vector of a submodule Dj of
Dj1

⊗
Dj2 . Later we will also check if the vectors are also independent. Now, the given expression

can be explicitly written as,

e(j1j2)jm = c′(y1∂x1 + y2∂x2)j−mx2j1−k1 x2j2−k2 (x1y2 − x2y1)k,

with,

c′ =

√
(j +m)!

(2j)!(j −m)!
· c

=

√
(j +m)!

(2j)!(j −m)!
·

√
(2j + 1)!

(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!(j1 + j2 + j + 1)!
.

By working this out, we will be able to give the definition of the Clebsch-Gordan coefficients.

e(j1j2)jm = c′(y1∂x1 + y2∂x2)j−mx2j1−k1 x2j2−k2 (x1y2 − x2y1)k

= c′
j−m∑
i=0

(
j −m
i

)
(y1∂x1)i(y2∂x2)j−m−i ×

j1+j2−j∑
l=0

(−1)l
(
j1 + j2 − j

l

)
x2j1−l1 yl1x

j2−j1+j+l
2 yj1+j2−j−l2

= c′
∑
i,l

(−1)l
(
j −m
i

)(
j1 + j2 − j

l

)
(2j1 − l)!

(2j1 − l − i)!
(j2j1 + j + l)!

(j2 − j1 + l +m+ i)!

× x2j1−l−i1 yl+i1 xj2−j1+l+m+i
2 yj1+j2−l−i2 ,

or, by taking r = l + i, one could rewrite the last equality to,

e(j1j2)jm = c′(j −m)!
∑
r

(∑
l

(−1)l
(

2j1 − l
r − l

)(
j2 − j1 + j + l

j + l −m− r

)(
j1 + j2 − j

l

))
x2j1−r1 yr1x

j2−j1+m+r
2 yj1+j2−m−r2

= c′(j −m)!
∑
r

(∑
l

(−1)l
(

2j1 − l
r − l

)(
j2 − j1 + j + l

j + l −m− r

)(
j1 + j2 − j

l

))
×
√

(2j1 − r)!r!(j2 − j1 +m+ r)!(j1 + j2 −m− r)!e(j1)j1−r ⊗ e
(j2)
m+r−j1 .

The first equality is achieved by rewriting the divisions, in the previous equation, to binomial coeffi-
cients. Now, by taking m1 = j1 − r, this can be rewritten to,

e(j1j2)jm =
∑
m1

Cj1,j2,jm1,m−m1,me
(j2)
m1
⊗ e(j2)m−m1

,

where
Cj1,j2,jm1,m−m1,m

=
√

(j +m)!(j −m)!(j1 +m1)!(j1 −m1)!(j2 −m1 +m)!(j2 +m1 −m)!

×

√
2j + 1

(−j1 + j2 + j)!(j1 − j2 + j)!(j1 + j2 − j)!(j1 + j2 + j + 1)!

×
∑
l

(−1)l
(

2j1 − l
j1 −m1 − l

)(
j2 − j1 + j + l

j − j1 −m+m1 + l

)(
j1 + j2 − j

l

)
,

(4.4)
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are the so calledClebsch-Gordan coefficients of su(2). Notice that these coefficients are real-valued.
This follows from the fact that j1, j2 ∈ 1

2N
⋃
{0}.

Now that we have constructed some highest weight vectors of a submodule Dj of Dj1

⊗
Dj2 . We

get the following theorem.

Theorem 4.5. Let j1, j2 ∈ 1
2N
⋃
{0}. Then the tensor product Dj1

⊗
Dj2 decomposes into irreducible

?−representations Dj of sl(2,C),

Dj1

⊗
Dj2 =

j1+j2⊕
j=|j1−j2|

Dj .

An orthonormal basis of Dj1

⊗
Dj2 is given by the vectors,

e(j1j2)jm =
∑
m1

Cj1,j2,jm1,m−m1,me
(j2)
m1
⊗ e(j2)m−m1

,

where the coefficients Cj1,j2,jm1,m−m1,m are given by equation 4.4. The action of J0, J+ and J− on the basis
vectors e(j1j2)jm is the standard action of the representation Dj defined in Theorem 2.28.

Proof. We constructed the vectors e(j1j2)jj to have norm 1. Then, by using equation 4.3, it follows that

e
(j1j2)j
m has norm 1 too. We already saw that if the different Dj submodules are disjoint, and if the
sum of the dimensions is equal to (2j1 + 1)(2j2 + 1), that the decomposition is indeed correct.

First, we will show that the decompositions are indeed disjoint. Using the action of J0,

〈π(J0)(e
(j1j2)j
m ), e

(j1j2)j′

m′ 〉 = 〈e(j1j2)jm , π(J0)(e
(j1j2)j′

m′ )〉,

we see that if m 6= m′, then the vectors e(j1j2)jm and e(j1j2)j
′

m′ are orthogonal. If m = m′, and assume
j′ > j, then

〈e(j1j2)jm , e(j1j2)j
′

m 〉 ∼ 〈e(j1j2)jj , π(J−)j
′−j(e

(j1j2)j′)
j′ 〉 ∼ 〈π(J+)j

′−je
(j1j2)j
j , e

(j1j2)j′

j′ 〉 = 0.

So all vectors e(j1j2)jm are orthonormal vectors. Hence, they are all independent of each other. Which
shows that all the Dj submodules are disjoint.

And the number of such vectors is,

j1+j2∑
j=|j1−j2|

(2j + 1) = (j1 + j2 − |j1 − j2|+ 1)(j1 + j2 + |j1 − j2|+ 1) = (2j1 + 1)(2j2 + 1).

So the vectors also form an orthonormal basis for Dj1

⊗
Dj2 .

Now that we have decomposed our tensor product Dj1

⊗
Dj2 and defined the Clebsch-Gordan

coefficients, we can look at some identities of these coefficients.

4.3 Identities of the Clebsch-Gordan coefficients

In this part the Clebsch-Gordan coefficients will be studied. Some of the identities that will be found
will also be used to find identities for the Racah polynomials. Not all of the identities will be shown,
but for some identities it will be explained how to find it. And with that information, one could find
more identities and use those to get extra results.

To find these identities, we will first extend the definition of the Clebsch-Gordan coefficients. If we
look at equation 4.4, note that the Clebsch-Gordan coefficients could be seen as a real function of six
arguments. So let’s redefine our definition.
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Definition 4.6. The real function Cj1,j2,jm1,m2,m, with the arguments j1, j2, j,m1,m2,m ∈ 1
2N
⋃
{0}, is

defined as in equation 4.4 if the arguments satisfy the following conditions,

i. (j1, j2, j) forms a triad, so −j1 + j2 + j, j1 − j2 + j and j1 + j2 − j are non-negative integers,

ii. m1 is a projection of j1, so m1 ∈ {−j1,−j1 + 1, . . . , j1}; m2 is a projection of j2, and m is a
projection of j,

iii. m = m1 +m2,

else we have Cj1,j2,jm1,m2,m = 0.

With this definition, we can now write,

e(j1j2)jm =
∑
m1

Cj1,j2,jm1,m−m1,me
(j2)
m1
⊗ e(j2)m−m1

=
∑
m1,m2

Cj1,j2,jm1,m2,me
(j1)
m1

e(j2)m2

and,

Cj1,j2,jm1,m2,m = C ′
∑
l

(−1)l
(

2j1 − l
j1 −m1 − l

)(
j2 − j1 + j + l

j − j1 −m2 + l

)(
j1 + j2 − j

l

)
, (4.7)

where the summation is over all integers l for which the binomial coefficients aren’t zero. So max(0, j1+
m2 − j) ≤ l ≤ min(j1 −m1, j1 + j2 − j). So, if j1 + m2 − j < 0, equation 4.7 can be rewritten into
terms of a 3F2 series. For this, we will use some identities from Chapter 3, to rewrite factorials to
Pochhammer symbols.

Cj1,j2,jm1,m2,m = C ′
∑
l

(−1)l
(

2j1 − l
j1 −m1 − l

)(
j2 − j1 + j + l

j − j1 −m2 + l

)(
j1 + j2 − j

l

)
3.5
= C ′

∑
l

(−1)l
(2j1 − l)!(j2 − j + j + l)!

(j1 −m1 − l)!(j1 +m1)!(j − j1 −m2 + l)!(j2 +m2)!
· (−1)l

(−j1 − j2 + j)l
l!

3.7
= C ′

∑
l

(j2 − j + j + l)!

(j1 +m1)!(j − j1 −m2 + l)!(j2 +m2)!
· (−j1 − j2 + j)l

l!
· (2j1)!

(−2j1)l
· (m1 − j1)l

(j1 −m1)!

3.3
= C ′

∑
l

(2j1)!

(j1 +m1)!(j2 +m2)!(j1 −m1)!
· (−j1 − j2 + j)l(m1 − j1)l

l!(−2j1)l
· (j2 − j1 + j)!(j2 − j1 + j + 1)l

(j − j1 −m2)!(j − j1 −m2 + 1)l

= C ′
(2j1)!(j2 − j1 + j)!

(j1 +m1)!(j2 +m2)!(j1 −m1)!(j − j1 −m2)!
· 3F2

(
−j1 +m1, − j1 − j2 + j, − j1 + j2 + j + 1

−2j1, j − j1 −m2 + 1
; 1

)
.

(4.8)

But this is off course not the only way to rewrite equation 4.7. One could also replace l with j1−m1− l
in equation 4.7, which leads to,

Cj1,j2,jm1,m2,m = C ′
∑
l

(−1)j1−m1−l
(
j1 +m1 + l

l

)(
j2 + j −m1 − l
j −m− l

)(
j1 + j2 − j
j1 −m1 − l

)
, (4.9)

and this can be rewritten to a 3F2 expression in the same way as we did in equation 4.8. Now, with
the use of transformation formulas for 3F2 series, one could find other formulas. For example, by using
Corollary 3.22 on equation 4.8, assuming that j − j2 +m1 ≥ 0, one finds,

Cj1,j2,jm1,m2,m = C ′
(−j1 + j2 + j)!(j1 − j2 + j)!

(j2 +m2)!(j1 −m1)!(j − j1 −m2)!(j − j2 +m1)!
3F2

(
−j1 +m1, j1 − j2 + j, − j2 −m2

j − j2 +m1 + 1, j − j1 −m2 + 1
; 1

)
.

(4.10)
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By rewriting the 3F2 series, we can get a new explicit form of Cj1,j2,jm1,m2,m. So, equation 4.10 becomes,

Cj1,j2,jm1,m2,m = ∆(j1, j2, j)
√

(2j + 1)

×
√

(j −m)!(j +m)!(j1 −m1)!(j1 +m1)!(j2 −m2)!(j2 +m2)!

×
∑
l

(−1)l

l!(j1 −m1 − l)!(j1 + j2 − j − l)!(j2 +m2 − l)!(j − j2 +m1 + l)!(j − j1 −m2 + l)!
,

(4.11)

with

∆(j1, j2, j) =

√
(−j1 + j2 + j)!(j1 − j2 + j)!(j1 + j2 − j)!

(j1 + j2 + j + 1)!
. (4.12)

The given expression has a rather symmetrical form due to Van der Waerden and Racah, and it is
valid for all arguments as long as the conditions from Definition 4.6 are satisfied. Which means that
the sum in equation 4.10 is over all integer values l, such that the factorials in the denominator aren’t
0.

For some special cases, the sum in equation 4.11 becomes a single term. For example, if m = j and
we look at the sum over l. Then second term in the denominator is (j1 −m1 − l)! and the last factor
is (j− j1−m2 + l)! = (m1− j1 + l)! = (−(j1−m1− l))!. So the only value valid value for l is j1−m1,
and in this case we get,

Cj1,j2,jm1,j−m1,j
= (−1)j1−m1

√
(2j + 1)!(j1 + j2 − j)!(j1 +m1)!(j2 + j −m1)!

(j1 −m1)!(j2 − j +m1)!(−j1 + j2 + j)!(j1 − j2 + j)!(j1 + j2 + j + 1)!
,

(4.13)
which is a closed form expression for the Clebsch-Gordan coefficient.

One could off course express the Clebsch-Gordan coefficients in many other ways. Those can than
also be used to study the Racah polynomials, but we will only be using the expressions given here.

But there are some identities of the Clebsch-Gordan coefficients that we still want to look at. These
are the symmetry and orthogonality relations of the Clebsch-Gordan coefficients. We will first look at
some symmetries of the coefficients.

Symmetries of the Clebsch-Gordan coefficients

Do note that not all of the possible symmetries will be shown in this part. Only some will be shown,
and those will be used later on. But one could find other symmetries with the same methods.

With the use of equation 4.11 we can quickly find a symmetry relation for the Clebsch-Gordan
coefficients. By simply replacing j1 = j2,m1 = −m2,m = −m, we get

Cj1,j2,jm1,m2,m = Cj2,j1,j−m2,−m1,−m. (4.14)

By replacing l, in the summation of equation 4.11, by j1 + j2 − j − l one finds,

Cj1,j2,jm1,m2,m = (−1)j1+j2−jCj1,j2,j−m1,−m2,−m. (4.15)

This equation follows from comparing the coefficients of both Clebsch-Gordan coefficients. Now, by
combining the previous two symmetries, we get,

Cj1,j2,jm1,m2,m = (−1)j1+j2−jCj2,j1,jm2,m1,m. (4.16)

And, when one would replace l by j − j2 + m1 + l in the summation of equation 4.11, one would get
the following symmetry,

Cj1,j2,jm1,m2,m = (−1)m1−j2+j

√
2j + 1

2j2 + 1
Cj1,j,j2−m1,m,m2

. (4.17)
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More symmetries could be found, by just changing arguments of Cj1,j2,jm1,m2,m and then comparing the
two expressions. There are other methods, but we aren’t really interested in those. Mostly, because
the symmetries that we want to use can easily be found by the described methods above.

Orthogonality relations of the Clebsch-Gordan coefficients

To construct the Clebsch-Gordan coefficients, we started with an orthonormal basis for Dj1

⊗
Dj2 and

constructed an orthonormal basis for
∑j1+j2

j=|j1−j2|Dj . These bases consisted of the elements e(j1)m1 ⊗ e
(j2)
m2 ,

m1 ∈ {−j1,−j1+1, . . . , j1},m2 ∈ {−j2,−j2+1, . . . , j2} and e(j1j2)jm , j ∈ {j1+j2, j1+j2−1, . . . , |j2−j2|},
m ∈ {−j,−j + 1, . . . , j}, respectively. And, we defined

e(j1j2)jm =
∑
m1,m2

Cj1,j2,jm1,m2,me
(j1)
m1
⊗ e(j2)m2

. (4.18)

Both of the bases can be ordered. Say,

B1 = {e(j1)−j1 ⊗ e
(j2)
−j2 , e

(j1)
−j1 ⊗ e

(j2)
−j2+1, . . . , e

(j1)
j1
⊗ e(j2)j2

},

so first going over all the values of j2 before changing the value of m1, and

B2 = {e(j1j2)j1+j2−(j1+j2) , e
(j1j2)j1+j2
−(j1+j2)+1, . . . , e

(j1j2)|j1−j2|
|j1−j2| },

so first going over all values of m before changing the value of j.
Because B1 and B2 are both orthonormal bases of Dj1

⊗
Dj2 . We know that the relation between

them is defined by a transition matrix, say C. Because the bases are orthonormal, C is also an
orthogonal matrix. With equation 4.18, we can easily define C as the transition matrix from B2 to
B1. So, the ith column of C will be given by,

(Cj1,j2,j−j1,−j2,m, C
j1,j2,j
−j1,−j2+1,m, . . . , C

j1,j2,j
j1,j2,m

),

where e(j1j2)jm is the ith basis vector of B1. So, the values of m1 and m2 in the column first change in
the m2 direction, before changing in the m1 direction. Which is the same order as in the basis B2.
Now, notice that equation 4.18 is nothing more than this column multiplied with B1

T . Where B1 is
the row vector with its ith value equal to the ith basis element of B1.

Now, C is actually orthonormal, so we have C−1 = CT . This will be shown in the following
corollary. Which gives us the relation,

e(j1)m1
⊗ e(j2)m2

=
∑
j,m

Cj1,j2,jm1,m2,me
(j1j2)j
m . (4.19)

This leads to the following.

Corollary 4.20. The Clebsch-Gordan coefficients satisfy the following orthogonality relations:∑
m1,m2

Cj1,j2,jm1,m2,mC
j1,j2,j′

m1,m2,m′ = δj,j′δm,m′ , (4.21)∑
m,j

Cj1,j2,jm1,m2,mC
j1,j2,j
m′

1,m
′
2,m

= δm1,m′
1
δm2,m′

2
. (4.22)
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Proof. The first equation follows from,

〈e(j1j2)jm , e
(j1j2)j′

m′ 〉 = δm,m′δj,j′ ,

where we use equation 4.18 to replace e(j1j2)jm , and use the orthonormality property of the basis elements
e
(j1)
m1 ⊗ e

(j2)
m2 . And one should think of j1, j2, j, j′,m and m′ as fixed parameters. Then, the double sum

can be seen as a single sum. And use the linearity of the Hermitian form, with the fact that the
Clebsch-Gordan coefficients are real-valued.
The second equation can be proven in a similar manner. But, then we need to use equation 4.19 and

〈e(j1)m1
⊗ e(j2)m2

, e
(j1)
m′

1
⊗ e(j2)

m′
2
〉 = δm1,m′

1
δm2,m′

2
,

follows from the orthonormality of the basis elements e(j1j2)jm .

So there are several ways how one can denote the Clebsch-Gordan coefficients. While some ex-
pressions do require some extra assumptions, they can sometimes be useful. We have also seen that
one can construct several other expressions for the Clebsch-Gordan coefficients with the use of some
symmetries. Which also showed that some coefficients are exactly the same, even if they have different
arguments. Lastly, we saw that the Clebsch-Gordan coefficients satisfy two orthogonality relations.
Which is helpful later on. Because we will look at a sum of a product of several Clebsch-Gordan
coefficients. Which can be reduced with these relations.
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5 Racah coefficients and the Racah polynomials

In this chapter we will first look at the tensor product of three ?−representations of Dj , with the same
?−operation as before. The tensor product will be decomposed into irreducible submodules. And from
that decomposition, follows an expression for the Racah coefficients. Some symmetries and orthogonal
properties for these Racah coefficients will be deduced. As well as some expressions. In other words,
we will look at some different ways to denote these coefficients.

Eventually the Racah polynomials will be defined with the use of the Racah coefficients. After we
define these polynomials, the previous expressions and symmetries will be used to look at some special
properties of the Racah polynomials.

5.1 Tensor product decomposition of three ?−representations

We have seen how we can decompose the tensor product of two ?−representations of Dj , so let’s do the
same but this time for three. We will be using the same realisation as in Chapter 4, but we will extend
it to three representations. So we will represent Dj1

⊗
Dj2

⊗
Dj3 as the vector space consisting of

homogeneous polynomials of degree (2ji) in xi and yi, i ∈ {1, 2, 3}. It is obvious that this is possible.
Because, if we look at Definition 4.1 we could easily let V or W be a tensor product on its own. So,
the definition is easy to extend to a tensor product of more representations.

So, let j1, j2, j3 ∈ 1
2N
⋃
{0} and consider the tensor product Dj1

⊗
Dj2

⊗
Dj3 . Then we see that

the vectors e(j1)m1 ⊗ e
(j2)
m2 ⊗ e

(j3)
m3 , m1 ∈ {−j1,−j1 + 1, . . . , j1},m2 ∈ {−j2,−j2 + 1, . . . , j2} and m3 ∈

{−j3,−j3 + 1, . . . , j3} form a basis for Dj1

⊗
Dj2

⊗
Dj3 . Because that follows from the definition. So,

this shows that we have a (2j1 + 1)(2j2 + 1)(2j3 + 1) dimensional vector space. Also, letting one Dji

be a tensor product in Chapter 4, shows that we can define the inner product of Dj1

⊗
Dj2

⊗
Dj3 as,

〈u⊗ v ⊗ w, u′ ⊗ v′ ⊗ w′〉 = 〈u, u′〉〈v, v′〉〈w,w′〉, for u⊗ v ⊗ w, u′ ⊗ v′ ⊗ w′ ∈ Dj1

⊗
Dj2

⊗
Dj3 .

And we can realise the actions of J0, J+ and J− by,

π(J0) =
1

2
(x1∂x1 − y1∂y1) +

1

2
(x2∂x2 − y2∂y2) +

1

2
(x3∂x3 − y3∂y3),

π(J+) = x1∂x1 + x2∂y2 + x3∂y3 , π(J−) = y1∂x1 + y2∂x2 + y3∂x3 ,

and

e(j1)m1
⊗ e(j2)m2

⊗ e(j3)m3
=

xj1+m1
1 yj1−m1

1√
(j1 +m1)!(j1 −m1)!

xj2+m2
2 yj2−m2

2√
(j2 +m2)!(j2 −m2)!

xj3+m3
3 yj3−m3

3√
(j3 +m3)!(j3 −m3)!

.

To decompose Dj1

⊗
Dj2

⊗
Dj3 into irreducible submodules, we can off course decompose it

one for one. In other words, because we already know how to decompose a tensor product of two
?−representations, we will first decompose a tensor product of two representations. And then we will
construct a decomposition of the new tensor product of two ?−representations. So, we can choose to
either decompose Dj1

⊗
Dj2 or Dj2

⊗
Dj3 first. Both will lead to a decomposition that we already

know, namely the decomposition of Chapter 4. So from Theorem 4.5, it follows that,

Dj1

⊗
Dj2 =

j1+j2∑
j12=|j1−j2|

Dj12 ,

Dj2

⊗
Dj3 =

j2+j3∑
j23=|j2−j3|

Dj23 .
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And both decompositions will lead to a decomposition of the tensor product of three representations.
Which we get by applying Theorem 4.5 to Dj12

⊗
Dj3 and Dj23

⊗
Dj1 . So, we get

Dj1

⊗
Dj2

⊗
Dj3 =

( j1+j2∑
j12=|j1−j2|

Dj12

)⊗
Dj3 =

j1+j2∑
j12=|j1−j2|

j12+j3∑
j=|j12−j3|

Dj , (5.1)

Dj1

⊗
Dj2

⊗
Dj3 = Dj1

⊗( j2+j3∑
j23=|j2−j3|

Dj23

)
=

j2+j3∑
j23=|j2−j3|

j1+j23∑
j=|j1−j23|

Dj . (5.2)

And both are well defined decompositions, but they are not always the same decomposition. Another
thing that is important is that these decompositions have some Dj several times. For example, if
j1 = 1, j2 = 2, j3 = 2, then,

3∑
j12=1

j12+2∑
j=|j12−2|

Dj = (D1 +D2 +D3) + (D0 +D1 +D2 +D3 +D4) + (D1 +D2 +D3 +D4 +D5)

= D0 + 3D1 + 3D2 + 3D3 + 2D4 +D5 =

4∑
j23=0

1+j23∑
j=|1−j23|

Dj .

So both decomposition lead to the same sum of representations, but we do need to do something to
deal with the multiple submodules with the same label. Because we won’t be able to construct an
orthonormal basis like this. If we wouldn’t do anything, it would become difficult to see if the given
vectors are indeed linear independent. So to resolve the multiples, we add an extra label. These will be
j12 or j23, depending on the order in which the tensor product was decomposed. So we can construct
two bases for the decomposition of the tensor product. These are build up by the following vectors
respectively,

e((j1j2)j12j3)jm =
∑

m12,m3

Cj12,j3,jm12,m3,me
(j1j2)j12
m12

⊗ e(j3)m3

=
∑

m1,m2,m3
m1+m2+m3=m

Cj1,j2,j12m1,m2,m12
Cj12,j3,jm12,m3,me

(j1)
m1
⊗ e(j2)m2

⊗ e(j3)m3
,

(5.3)

and

e(j1(j2j3)j23)jm =
∑

m1,m23

Cj1,j23,jm1,m23,me
(j1)
m1
⊗ e(j2j3)j23m23

=
∑

m1,m2,m3
m1+m2+m3=m

Cj2,j3,j23m2,m3,m23
Cj1,j23,jm1,m23,me

(j1)
m1
⊗ e(j2)m2

⊗ e(j3)m3
.

(5.4)

And we see that only j1, j2 and j3 are fixed. And, from Definition 4.6 we see that, in equation 5.3,
(j12, j3, j) forms a triad, m12,m3 and m are a projection of j12, j3 and j respectively. And m12 +m3 =
m. And, in equation 5.4, (j1, j23, j) forms a triad, m1,m23 and m are a projection of j1, j23 and j
respectively. And m1 +m23 = m.

We know that the transition between two bases of the same vector space yields a matrix. And by
constructing this matrix, we will find the Racah coefficients. So, we want to construct the transition
matrix U between the basis that contains the vectors from equation 5.3, and the basis that contains the
vectors from equation 5.4. First note that both bases are orthonormal bases, hence U is an orthogonal
matrix.
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Now, the elements of U are given by,

〈e(j1(j2j3)j23)jm , e
((j1j2)j12j3)j′

m′ 〉,

and by using the general action of the Casmir operator and the action of J0, from Theorem 2.28, we
will find that it is easy to simplify the matrix. Because,

〈π(C)(e(j1(j2j3)j23)jm ), e
((j1j2)j12j3)j′

m′ 〉 = 〈e(j1(j2j3)j23)jm , π(C)(e
((j1j2)j12j3)j′

m′ )〉,

and j(j + 1) = j(j + 1) = j′(j′ + 1) ⇐⇒ j = j′. So, if j 6= j′, then the element of U is equal to zero.
And with the action of J0, we get

〈π(J0)(e
(j1(j2j3)j23)j
m ), e

((j1j2)j12j3)j′

m′ 〉 = 〈e(j1(j2j3)j23)jm , π(J0)(e
((j1j2)j12j3)j′

m′ )〉.

And m = m = m′ ⇐⇒ m = m′, so the elements of U are also zero if m′ 6= m. Which gives us that
the only non-zero elements of U are the elements where j = j′ and m = m′.

Now we will use the action of J+ to show that the elements of U are also independent of m. So,

〈e(j1(j2j3)j23)jm , e((j1j2)j12j3)jm 〉 = 〈π(J+)(e
j1(j2j3)j23)j
m−1 , e((j1j2)j12j3)jm 〉

=
√

(j −m+ 1)(j +m)〈e(j1(j2j3)j23)jm−1 , e((j1j2)j12j3)jm 〉

= 〈e(j1(j2j3)j23)jm−1 , π(J−)(e((j1j2)j12j3)jm )〉

=
√

(j +m)(j −m+ 1)〈e(j1(j2j3)j23)jm−1 , e
((j1j2)j12j3)j
m−1 〉,

shows that the values of U are not dependent on m. Because it shows that,

〈e(j1(j2j3)j23)jm , e((j1j2)j12j3)jm 〉 = 〈e(j1(j2j3)j23)jm−1 , e
((j1j2)j12j3)j
m−1 〉,

so we can define the elements of U as either 0 or dependent on j, j12 and j23. Now, let’s denote

〈e(j1(j2j3)j23)jm , e
((j1j2)j12j3)j′

m′ 〉 = δj,j′δm,m′U j1,j2,j12j3,j,j23
, (5.5)

where U j1,j2,j12j3,j,j23
are the Racah coefficients. And from this, it follows that,

e((j1j2)j12j3)jm =
∑
j23

U j1,j2,j12j3,j,j23
e(j1(j2j2)j23)jm , (5.6)

and
e(j1(j2j2)j23)jm =

∑
j12

U j1,j2,j12j3,j,j23
e((j1j2)j12j3)jm . (5.7)

Where the second equation follows from the fact that U was an orthogonal matrix. And the first
equation can be constructed by ordering the bases. And then using the fact that,

ai =
∑
k

Ukibk,

where ai and bk are the ith and kth vector of the basis build up by the vectors from equation 5.4 and
equation 5.3 respectively. And Uki is the value of U , in the kth row and ith column. So, the matrix
can be constructed in the same way as we did in Chapter 4, with the matrix C.

From this, we get another equation for the orthogonality of U . Namely,∑
j12

U j1,j2,j12j3,j,j23
U j1,j2,j12
j3,j,j′23

= δj23,j′23 , (5.8)

∑
j23

U j1,j2,j12j3,j,j23
U
j1,j2,j12′
j3,j,j23

= δj12,j′12 . (5.9)

Which we get by using equation 5.6, equation 5.7 and the norm of two vectors from the same basis.
Later we will define the Racah polynomials, and we will be able to define them with the help of

the Racah coefficients. But before we will do that, we will first give a proper definition for them and
look at some properties.
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5.2 Symmetries of the Racah coefficient

One way to define the Racah coefficients follows from equations 5.3 and 5.5,

U j1,j2,j12j3,j,j23
=
∑

m1,m2,m3
m1+m2+m3=m

Cj1,j2,j12m1,m2,m12
Cj12,j3,jm12,m3,mC

j2,j3,j23
m2,m3,m23

Cj1,j23,jm1,m23,m. (5.10)

In this equation, the sum is over m1,m2 and m3, such that m1 + m2 + m3 = m with m a fixed and
arbitrary projection of j, so m ∈ {−j,−j + 1, . . . , j}. And m12 stands for m1 + m2, and m23 stands
for m2 + m3. Which shows that this is a double sum over the values of m12 and m3 or over m1 and
m23. All of this follows from the definition of the Clebsch-Gordan coefficients given in Definition 4.6.
Also, we are able to let j be an arbitrary but fixed projection of m, because

〈e(j1(j2j3)j23)jm , e
((j1j2)j12j3)j′

m′ 〉

was independent of m. And equal to U j1,j2,j12j3,j,j23
if we take m = m′ and j = j′.

Now, a double sum of a product of 4 Clebsch-Gordan coefficients is rather complicated. So we will
try to simply the given definition. But, this form is rather helpful to get some symmetries. So, before
simplifying the summation, we will first look at some symmetries.

First, we know that the value of the Racah coefficient is independent of the choice of m. In other
words, the sum in equation 5.10 is the same no matter how we choose m, as long as the value is valid.
This gives us,

(2j + 1)U j1,j2,j12j3,j,j23
=
∑

m,m1,m2,m3
m1+m2+m3=m

Cj1,j2,j12m1,m2,m12
Cj12,j3,jm12,m3,mC

j2,j3,j23
m2,m3,m23

Cj1,j23,jm1,m23,m, (5.11)

when we also sum over all values ofm. And if we know replace j with j23, so j ↔ j23, then equation 5.11
becomes

(2j23 + 1)U j1,j12,j2j3,j23,j
=
∑

m,m1,m2,m3
m1+m2+m3=m

Cj1,j12,j2m1,m12,m2
Cj2,j3,j23m2,m3,m23

Cj12,j3,jm12,m3,mC
j1,j,j23
m1,m,m23

. (5.12)

We can now use equation 4.17 to change the first and last Clebsch-Gordan coefficient in the last
equation. That leads to,

(2j23+1)U j1,j12,j2j3,j23,j
=

√
(2j2 + 1)(2j23 + 1)

(2j12 + 1)(2j + 1)
(−1)j2−j12+j−j23

∑
m,m1,m2,m3

m1+m2+m3=m

Cj1,j2,j12m1,m2,m12
Cj2,j3,j23m2,m3,m23

Cj12,j3,jm12,m3,mC
j1,j23,j
m1,m23,m,

(5.13)
where we make use of the fact that we sum over all values of m1. So, instead of changing it to −m1,
we can replace it again with m1. And this equation gives us the following symmetry,

U j1,j12,j2j3,j23,j
= (−1)j2−j12+j−j23

√
(2j2 + 1)(2j23 + 1)

(2j12 + 1)(2j + 1)
U j1,j2,j12j3,j,j23

. (5.14)

This is off course only one of many symmetries. Because with the use of the symmetries of the
Clebsch-Gordan coefficients and equation 5.11, several other symmetries can be found.

Something that is often introduced when speaking about the symmetries of the Racah coefficients,
is the 6j−coefficient. This is given by,{

a b c
d e f

}
= (−1)a+b+d+e

Ua,b,cd,e,f√
(2c+ 1)(2f + 1)

, (5.15)

with (a, b, c), (d, e, c), (d, b, f) and (a, e, f) triads. The 6j−coefficient is invariant under permutation of
columns and also when swapping the upper and lower value in each of any two columns.[1] This isn’t
different then what we found earlier in equation 5.14, but it could be easier to some symmetries with
the use of the 6j−coefficient.
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5.3 Expressions for the Racah coefficient

Earlier it was already noted that the given expression for the Racah coefficient was complicated. So
in this section we will try to simplify the expression given in equation 5.10.

The first person to simplify the expression for U j1,j2,j12j3,j,j23
, given in equation 5.10, was Racah [1]. This

lead to a single sum expression for the Racah coefficient. And that expression can even be written as
a general hypergeometric series, which is something that looks a lot less complex than the expression
we have now.

We will start equation 5.7 and use equation 5.4 and equation 5.3 to replace the ej1(j2j3)j23)jm term
and the e((j1j2)j12j3)jm term respectively. That gives us,

Cj2,j3,j23m2,m3,m2+m3
Cj1,j23,jm1,m2+m3,m1+m2+m3

=
∑
j12

U j1,j2,j12j3,j,j23
Cj1,j2,j12m1,m2,m12

Cj12,j3,jm12,m3,m12+m3
, (5.16)

for fixed values of m1,m2 and m3, and m12 = m1 +m2. Now, keep m12 fixed and multiply both sided
with Cj1,j2,j

′
12

m1,m2,m12 , with j′12 fixed, and sum over m1 and m2. Then we get,∑
m1,m2

Cj2,j3,j23m2,m3,m2+m3
Cj1,j23,jm1,m2+m3,m1+m2+m3

C
j1,j2,j′12
m1,m2,m12 =

∑
m1,m2

∑
j12

U j1,j2,j12j3,j,j23
Cj1,j2,j12m1,m2,m12

Cj12,j3,jm12,m3,m12+m3
C
j1,j2,j′12
m1,m2,m12

(4.21)
=

∑
j12

U j1,j2,j12j3,j,j23
δj12,j′12C

j12,j3,j
m12,m3,m12+m3

= U j1,j2,j12j3,j,j23
Cj12,j3,jm12,m3,m12+m3

(5.17)

So, if we let j′12 be equal to j12, we still get the same. Using the same variable for j12 and j′12 at the
start of the previous equation would be confusing. Because we would have one j12 that is fixed and
one that isn’t. But, by doing this now, we get the following expression:∑

m1,m2

Cj2,j3,j23m2,m3,m2+m3
Cj1,j23,jm1,m2+m3,m1+m2+m3

Cj1,j2,j12m1,m2,m12
= U j1,j2,j12j3,j,j23

Cj12,j3,jm12,m3,m12+m3
. (5.18)

And this gives us a new expression for the Racah coefficients, namely

U j1,j2,j12j3,j,j23
=
∑
m1,m2

m1+m2=m12

Cj2,j3,j23m2,m3,m2+m3
Cj1,j23,jm1,m2+m3,m1+m2+m3

Cj1,j2,j12m1,m2,m12
/Cj12,j3,jm12,m3,m12+m3

. (5.19)

And in this equation we have m12 and m3 fixed, and the sum is over all the values of m1 and m2 such
that m1 + m2 = m12. Do note that m12 and m3 are arbitrary values, but still projections of j12 and
j3.

Now, let m12 = j12 and m3 = j − j12. Then we have, m2 = j12 −m1, and equation 5.19 becomes,

U j1,j2,j12j3,j,j23
=
∑
m1

Cj2,j3,j23j12−m1,j−j12,j−m1
Cj1,j23,jm1,j−m1,j

Cj1,j2,j12m1,j12−m1,j12
/Cj12,j3,jj12,j−j12,j ,

which can be rewritten to,

Ua,b,cd,e,f =
∑
α

Cb,d,fx−α,e−c,e−αC
a,f,e
a,e−α,eC

a,b,c
α,c−α,c/C

c,d,e
c,e−c,e. (5.20)

Now, note that three of the Clebsch-Gordan coefficients are of the form Ca,b,cd,e,c . So for those, we can use
the closed form expression of the Clebsch-Gordan coefficient, equation 4.13. With this, equation 5.20
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becomes,

Ua,b,cd,e,f =

√
(2c+ 1)(a+ b− c)!(a+ f − e)!(c− d− e)!(c+ d+ e+ 1)!

(−a+ b+ c)!(a− b+ c)!(a+ b+ c+ 1)!(−a+ f + e)!(a− f + e)!(a+ f + e+ 1)!

×
∑
α

√
(b+ c− α)!(f + e− α)!

(b− c+ α)!(f − e+ α)!

(a+ α)!

(a− α)!
Cb,d,fc−α,e−c,e−α

(5.21)

For the last Clebsch-Gordan coefficient we can use equation 4.9. Then we get the following expression
for the Racah coefficient,

Ua,b,cd,e,f =

√
(2c+ 1)(a+ b− c)!(a+ f − e)!(c− d− e)!(c+ d+ e+ 1)!

(−a+ b+ c)!(a− b+ c)!(a+ b+ c+ 1)!(−a+ f + e)!(a− f + e)!(a+ f + e+ 1)!

×
∑
α

[√
(b+ c− α)!(f + e− α)!

(b− c+ α)!(f − e+ α)!

(a+ α)!

(a− α)!

×

√
(2f + 1)(f + e− α)!(f − e+ α)!(b+ c− α)!(b− c+ α)!(d+ e− c)!(d− e+ c)!

(−b+ d+ f)!(b− d+ f)!(b+ d− f)!(b+ d+ f + 1)!

×
∑
l

(−1)b−c+α−l
(
b+ c− α+ l

l

)(
d+ f − c+ α− l
f − e+ α− l

)(
b+ d− f

b− c+ α− l

)]

=

√
(2c+ 1)(2f + 1)(a+ b− c)!(a+ f − e)!

(−a+ b+ c)!(a− b+ c)!(a+ b+ c+ 1)!(−a+ f + e)!(a− f + e)!

×

√
(c− d− e)!(c+ d+ e+ 1)!(d+ e− c)!(d− e+ c)!

(a+ f + e+ 1)!(−b+ d+ f)!(b− d+ f)!(b+ d− f)!(b+ d+ f + 1)!

×
∑
α

[√
(b+ c− α)!(f + e− α)!

(b− c+ α)!(f − e+ α)!

(a+ α)!

(a− α)!

√
(f + e− α)!(f − e+ α)!(b+ c− α)!(b− c+ α)!

×
∑
l

(−1)b−c+α−l
(b+ c− α+ l)!(d+ f − c+ α− l)!(b+ d− f)!

l!(b+ c− α)!(f − e+ α− l)!(d+ e− c)!(b− c+ α− l)!(d+ c− f − α+ l)!

]

=

√
(2c+ 1)(2f + 1)(a+ b− c)!(a+ f − e)!

(−a+ b+ c)!(a− b+ c)!(a+ b+ c+ 1)!(−a+ f + e)!(a− f + e)!

×

√
(c− d− e)!(c+ d+ e+ 1)!(d− e+ c)!(b+ d− f)!

(a+ f + e+ 1)!(−b+ d+ f)!(b− d+ f)!(b+ d+ f + 1)!(d+ e− c)!

×
∑
α,l

(−1)b−c+α−l(a+ α)!(f + e− α)!(b+ c− α+ l)!(d+ f − c+ α− l)!
l!(f − e+ α− l)!(b− c+ α− l)!(d+ c− f − α+ l)!(a− α)!

(5.22)

If we now rewrite α − l to k in the summation over α and l, in the last equation. That summation
becomes, ∑

α,k

(−1)b−c+k(a+ α)!(f + e− α)!(b+ c− k)!(d+ f − c+ k)!

(α− k)!(f − e+ k)!(b− c+ k)!(d+ c− f − k)!(a− α)!
.

And from equation 3.15, it follows that,∑
α

(a+ α)!(f + e− α)!

(α− k)!(a− α)!
=

(a+ k)!(f + e+ a+ 1)!(f + e− a)!

(a− k)!(f + e+ k + 1)!
,
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so the previously given summation is equal to

∑
k

(−1)b−c+k(b+ c− k)!(d+ f − c+ k)!(a+ k)!(f + e+ a+ 1)!(f + e− a)!

(f − e+ k)!(b− c+ k)!(d− f + c− k)!(a− k)!(f + e+ k + 1)!
.

With this, we can now rewrite equation 5.22 to only contain a single sum. So we get, when also
replacing k with a− k,

Ua,b,cd,e,f = (−1)a+b−c
√

(2c+ 1)(2f + 1)
∇(a, e, f)∇(d, e, c)

∇(a, b, c)∇(b, d, f)

×
∑
k

(−1)k(b+ c− a+ k)!(d+ f − c+ a− k)!(2a− k)!

k!(f − e+ a− k)!(b− c+ a− k)!(d− f + c− a+ k)!(1 + f + e+ a− k)!
,

(5.23)

with,

∇(a, b, c) =

√
(−a+ b+ c)!(a− b+ c)!(a+ b+ c+ 1)!

(a+ b− c)!
.

The summation given in the last equation is over all values of k, such that the factorials in the
denominator aren’t 0. So, the summation is from max(0, a− d+ f − c)), to min(a+ b− c, a+ f − e).

With the help of the last equation it is much easier to understand what the Racah coefficients are.

Corollary 5.24. Let a, b, c, d, e, f ∈ 1
2N
⋃
{0}. Then, Ua,b,cd,e,f is a function of the 6 arguments a, b, c, d, e, f .

If (a, b, c), (d, e, c), (d, b, f) and (a, e, f) are all triads, then Ua,b,cd,e,f is given by equation 5.23. Else,
Ua,b,cd,e,f = 0.

And this expression is less complicated then the one given earlier, the expression given in equa-
tion 5.10. And we can even write it as an expression of the hypergeometric series 4F3. But, to be able
to do that, we need to make one extra assumption. We need to assume that −a+d+ c− f ≥ 0. If this
isn’t the case, it will still work. But, we need to take k′ = −a+d+ c− f +k and rewrite equation 5.23
as a sum over k′. We can then use the Pochhammer identities 3.3 and 3.7 to rewrite the factorials in
the summation to Pochhammer symbols of the form (a)k. We can then rewrite it to a 4F3 series, with
the definition of a hypergeometric series. This gives us the following corollary.

Corollary 5.25. Let a, b, c, d, e, f ∈ 1
2N
⋃
{0}. Such that (a, b, c), (d, e, c), (d, b, f) and (a, e, f) are

triads, and −a+ d+ c− f ≥ 0. Then,

Ua,b,cd,e,f = (−1)a+b−c
√

(2c+ 1)(2f + 1)
∇(a, e, f)∇(d, e, c)

∇(a, b, c)∇(b, d, f)

(b+ c− a)!(d+ f − c+ a)!(2a)!

(f − e+ a)!(b− c+ a)!(d− f + c− a)!(1 + f + e+ a)!

× 4F3

(
1− a+ b+ c, − a+ e− f, − a− b+ c, − 1− a− e− f

−a+ c− d− f, 2a, 1 + d− f + c− a
; 1

)
.

Just like the Clebsch-Gordan coefficients, there are also more expressions for the Racah-coefficients
that we won’t be looking at. But, one could find them in the same manner as we found the previous
corollary. It is also possible to find expression with the use of this corollary. Because then one could
change the 4F3 series to find a different expression, for example.

5.4 Racah polynomials

We will now describe the Racah polynomials with the help of the Racah coefficients. In other words, we
will give a relation between the Racah polynomials and the ?−representation Dj . After the definition
is given, we will look at two special properties of the Racah polynomials.
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To describe the Racah polynomials, we will be using Corollary 5.25. To do this, we need to introduce
some new arguments. Take

n = a− e+ f, x = a+ b− c, α ≡ −N − 1 = −a+ c− d− f − 1,

β = −a+ d− c− f − 1, γ = −2a− 1, δ = 2c+ 1.

Then, let a, c, d, f be fixed in Ua,b,cd,e,f such that

c− a ≥ |d− f |, and c− d ≥ |a− f |.

So, we have b and e as variables, such that b is a value varying from c− a to d+ f , and is e is a value
varying from c− d to a+ f . Note, that this gives as extra condition that c− a ≤ d+ f . But, with the
use of equation 5.14, or the 6j−coefficient, it can be shown that, that condition can always be given
by interchanging the arguments. Also, from these conditions, it follows that (a, b, c), (d, e, f), (d, b, f)
and (a, e, f) are triads. Hence, we can use equation 5.25.

For the new arguments, this means that N is a fixed non-negative integer argument, and x and
n are non-negative integer variables. Where 0 ≤ x ≤ N and 0 ≤ n ≤ N . And the 4F3 series of
equation 5.25 becomes,

4F3

(
x+ γ + δ + 1, − n, − x, n+ α+ β + 1

α+ 1, γ + 1, 1 + β + δ
; 1

)
= 4F3

(
−n, n+ α+ β + 1, − x, x+ γ + δ + 1

α+ 1, 1 + β + δ, γ + 1
; 1

)
= Rn(λ(x);α, β, γ, δ) ≡ Rn(λ(x)).

(5.26)

And in the case of the given variables, we find that 1 + β + δ is the only non-negative value in the
denominator. Because α+ 1 = N and γ + 1 ≤ −N . And λ(x) = x(x+ γ + δ + 1).

Corollary 5.27. Let α, β, γ, δ be any parameters and n any integer, then we have that the 4F3 series
of equation 5.26 is a polynomial of degree n in the variable λ(x) = x(x+ γ + δ + 1).

And when one of the denominator parameters α+1, β+ δ+1 or γ+1 is equal to a negative integer
−N , then we call this the Racah polynomial. Do note that, the other two denominator parameters
shouldn’t belong to {0,−1,−2, . . . ,−N + 1}, for 0 ≤ n ≤ N .

The remark in the Corollary is there to make sure that equation 5.26 is well defined for all integers
n, given that 0 ≤ n ≤ N . Which is due to Theorem 3.19. Because the balance condition is satisfied,
and if two or more denominator arguments belong to that set. Then (e)N = 0, where e is one of the
denominator arguments. Which would lead to division by zero, which won’t happen when only one
argument is equal to −N .

Now that we know what the Racah polynomial is, we can look at two special properties of it.
Namely, its orthogonality property and the fact that you can actually swap n and x. Let’s first look
at the orthogonality property.

Orthogonality relation of the Racah polynomials

With the previously introduced variables, equation from Corollary 5.25 was still valid. And it becomes,

Ua,b,cd,e,f = (−1)x
N !(−γ − 1)!

(β + δ)!

√
(N + γ − β − n)!(−β − n− 1)!

n!(−γ − n− 1)!(N − β − n)!(N − n)!

×

√
δ(N + 1 + γ − β)(β + δ + n)!(N + δ − n)!(γ + δ + x)!(β + δ + x)!

x!(−γ − x− 1)!(δ + x)!(N − x)!(γ − β + x)!(N + 1 + γ + δ + x)!
Rn(λ(x), α, β, γ, δ),

(5.28)
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which can be found by just changing the variables. From equations 5.14 and 5.8, we get the following
orthogonality relation,

∑
c

Ua,b,cd,e,fU
a,b,c
d,e,f ′ =

∑
c

(−1)f+f
′ (2c+ 1)

√
(2f + 1)(2f ′ + 1)

(2b+ 1)(2e+ 1)
Ua,c,bd,f,eU

a,c,b
d,f ′,e = δf,f ′ . (5.29)

In this equation we can take b = c, f = e, f ′ = e′, and we can change (−1)f+f
′ with (−1)f−f

′ . So we
get, ∑

b

(−1)e−e
′ (2b+ 1)

√
(2e+ 1)(2e′ + 1)

(2c+ 1)(2f + 1)
Ua,b,cd,e,fU

a,b,c
d,e′,f = δe,e′ . (5.30)

With the use of equation 5.25, we see that we can remove the (2c + 1) and (2f + 1) terms from the
denominator. And this equation becomes,

N∑
x=0

(−1)n−n
′
(2x+ γ + δ + 1)

√
(2n+ β + α+ 1)(2n′ + β + α+ 1)

(N !)2((−γ − 1)!)2

((β − δ)!)2

×

√
(N + γ − β − n)!(N + γ − β − n′)!(−β − n− 1)!(−β − n′ − 1)!

n!n′!(−γ − n− 1)!(−γ − n′ − 1)!(N − β − n)!(N − β − n′)!(N − n)!(N − n′)!

×
(γ + δ + x)!(β + δ + x)!

√
(β + δ + n)!(β + δ + n′)!(N + δ − n)!(N + δ − n′)!

x!(−γ − x− 1)!(δ + x)!(N − x)!(γ − β + x)!(N + 1 + γ + δ + x)!

×Rn(λ(x))Rn′(λ(x)) = δn,n′

So,
N∑
x=0

(2x+ γ + δ + 1)(γ + δ + x)!(β + δ + x)!(N !)2((−γ − 1)!)2

x!(−γ − x− 1)!(δ + x)!(N − x)!(γ − β + x)!(N + 1 + γ + δ + x)!((β + δ)!)2

=
n!(−γ − n− 1)!(N − β − n)!(N − n)!

(N + γ − β − n)!(−β − n− 1)!(β + δ + n)!(N + δ − n)!(2n+ β + α+ 1)
δn,n′ .

(5.31)

Then, after rewriting the factorials to Pochhammer symbols, we get

N∑
x=0

(γ + δ + 1 + 2x)(γ + δ + 1, α+ 1, β + δ + 1, γ + 1)x
(γ + δ + 1)x!(γ + δ − α+ 1, γ − β + 1, δ + 1)x

Rn(λ(x))Rn′(λ(x))

=
(γ + δ + 2,−β)N

(γ − β + 1, δ + 1)N

n!(n+ α+ β + 1, β + 1, α− δ + 1, α+ β − γ + 1)n
(α+ β + 2)2n(α+ 1, β + δ + 1, γ + 1)n

δn,n′ ,

(5.32)

where (a1, a2, . . . , an)x =
∏n
i=1(ai)x.

This is the orthogonality relation for the Racah polynomials when N = −α − 1. Since the left and
right hand side of equation 5.31 are both rational functions, this is well defined for all values of α, β, δ
and γ as long as both sides are well defined for the given values of α, β, δ and γ.
It is possible to check if a weight function is positive or negative when the 4 arguments are given. It
is also possible to define a condition for when a weight function is positive and when it is negative,
but we won’t be doing that. Because defining the full condition is tedious[1], and doesn’t really add
anything to this property of the Racah polynomials.

– 47 –



5. RACAH COEFFICIENTS AND THE RACAH POLYNOMIALS

For the general case, when one of the denominators is equal to −N and the other two don’t belong
to the set {0,−1, . . . ,−N + 2,−N + 1, we have

N∑
x=0

(γ + δ + 1 + 2x)(γ + δ + 1, α+ 1, β + δ + 1, γ + 1)x
(γ + δ + 1)x!(γ + δ − α+ 1, γ − β + 1, δ + 1)x

Rn(λ(x))Rn′(λ(x))

= M
n!(n+ α+ β + 1, β + 1, α− δ + 1, α+ β − γ + 1)n

(α+ β + 2)2n(α+ 1, β + δ + 1, γ + 1)n
δn,n′

, with,

M =



(γ + δ + 2)N (−β)N
(γ − β + 1)N (δ + 1)N

, if α+ 1 = −N,

(γ + δ + 2)N (δ − α)N
(γ + δ − α+ 1)N (δ + 1)N

, if β + δ + 1 = −N,

(−δ)N (α+ β + 2)N
(α− δ + 1)N (β + 1)N

, if γ + 1 = −N.

Where the other weight functions can be found in the same way as the one was found for the case
α+ 1 = −N .

As a polynomial of degree x

Another property of the Racah polynomial is that we can at interchange the x and n. In other words,
we can represent the Racah polynomial as a polynomial variable in λ(n), and with its degree equal to
x. Which is a special property for a polynomial.

To show this, we will be using the 6j−coefficient and Theorem 3.19. Because we first described
the Racah polynomials as the 4F3 series of the equation in Corollary 5.25, when exactly one of the
denominator parameters was equal to −N . And, from the 6j−coefficient and equation 5.14 we get,

Ua,b,cd,e,f = Ua,e,fd,b,c = (−1)f−e+c−b

√
(2f + 1)(2c+ 1)

(2e+ 1)(2b+ 1)
Ua,f,ed,c,b .

For this part we will be using the same values for the arguments of the Racah polynomial as before.
So,

n = a− e+ f, x = a+ b− c, α = −a+ c− d− f − 1,

β = −a+ d− c− f − 1, γ = −2a− 1, δ = 2c+ 1.

That gives us the following equality,

(−1)f−e+c−b

√
(2e+ 1)(2b+ 1)

(2f + 1)(2c+ 1)
Ua,b,cd,e,f

= (−1)a+f−e
√

(2e+ 1)(2b+ 1)
∇(a, e, f)∇(d, e, c)

∇(a, b, c)∇(b, d, f)

(b+ c− a)!(d+ f − c+ a)!(2a)!

(f − e+ a)!(b− c+ a)!(d− f + c− a)!(1 + f + e+ a)!

× 4F3

(
1− a+ b+ c, − a+ e− f, − a− b+ c, − 1− a− e− f

−a+ c− d− f, − 2a, 1 + d− f + c− a
; 1

)
= (−1)a+f−e

√
(2b+ 1)(2e+ 1)

∇(a, c, b)∇(d, c, e)

∇(a, f, e)∇(f, d, b)

(f + e− a)!(d+ b− e+ a)!(2a)!

(b− c+ a)!(f − e+ a)!(d− b+ e− a)!(1 + b+ c+ a)!

× 4F3

(
1− a+ f + e, − a+ c− b, − a− f + e, − 1− a− c− b

−a+ e− d− b, − 2a, 1 + d− b+ e− a
; 1

)
= Ua,f,ed,c,b .

(5.33)

– 48 –



5. RACAH COEFFICIENTS AND THE RACAH POLYNOMIALS

Note that we have to assume that |f − c| ≥ 0, to use the previous equation. Else we had to rewrite
the sum in equation 5.23 which could lead to a different equality. But we will only use this equation
to verify that the following hypergeometric series is the Racah polynomial, where we swapped n and
x. Note that, when we take b ↔ f, c ↔ e, then we see that x ↔ n. Which is the exact change of
variables we used in the Racah coefficients above. Now, we have

1 + 1− a+ b+ c+−a+ e− f +−a− b+ c+−1− a− e− f = −a+ c− d− f + 2a+ 1 + d− f + c− a,

which is the balance condition of Theorem 3.19. So the given 4F3 series, which was used to define the
Racah polynomial, satisfies the balance condition. Hence, we can use this theorem to rewrite our 4F3

series. Now, if we take,

− n = −n, c = −x, a = n+ α+ β + 1, b = x+ γ + δ + 1,

d = γ + 1, e = α+ 1, f = 1 + β + δ,

for the arguments of the hypergeometric series in Theorem 3.19. Then it follows that,

4F3

(
1− a+ b+ c, − a+ e− f, − a− b+ c, − 1− a− e− f

−a+ c− d− f, 2a, 1 + d− f + c− a
; 1

)
= 4F3

(
−n, n+ α+ β + 1, − x, x+ γ + δ + 1

α+ 1, 1 + β + δ, γ + 1
; 1

)
=

(α+ x+ 1)n(1 + β + δ + x)n
(α+ 1)n(1 + β + δ)n

4F3

(
−x, − n+ γ − α− β, − n, − x− δ
−n− x− β − δ, − n− α− x, γ + 1

; 1

)
,

(5.34)

where the last 4F3 series is the last 4F3 series of equation 5.33. Because the condition for the theorem
is satisfied, we see that we can always use the replacements b ↔ f and c ↔ e in this hypergeometric
series, given that we started with a Racah polynomial. This gives us a relation between the two
different Racah polynomials. Because we have,

Rn(λ(x);α, β, γ, δ) = 4F3

(
−n, n+ α+ β + 1, − x, x+ γ + δ + 1

α+ 1, 1 + β + δ, γ + 1
; 1

)
=

(α+ x+ 1)n(1 + β + δ + x)n
(α+ 1)n(1 + β + δ)n

4F3

(
−x, − n+ γ − α− β, − n, − x− δ
−n− x− β − δ, − n− α− x, γ + 1

; 1

)
=

(α+ x+ 1)n(1 + β + δ + x)n
(α+ 1)n(1 + β + δ)n

Rn(λ(n);α, β, γ, δ).

Where Rn(λ(n);α, β, γ, δ) is a polynomial of degree x and variable in λ(n). And α = −a+e−d−b−1,
β = −a+ d− e− b− 1, δ = 2e+ 1 and λ(n) = n(n+ γ + δ + 1). So, the variables p are the same as
the variable p, but with the change e↔ c and b↔ f . With p ∈ {α, β, γ}.

Which shows that the Racah polynomial is a polynomial of degree n and variable over λ(x). And
it can also be written as a polynomial of degree x and variable over λ(n).
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6 Conclusion

So we saw that we could define the Racah polynomials with the use of the tensor product of three
?−representations of Dj . This tensor product gave us an orthogonality relation for the Racah coeffi-
cients, and different expressions for the Racah coefficients.

With the use of Corollary 5.25, we could define an expression for the Racah polynomials, in terms
of a 4F3 series. Namely,

Rn(λ(x);α, β, γ, δ) = 4F3

(
x+ γ + δ + 1, − n, − x, n+ α+ β + 1

α+ 1, γ + 1, 1 + β + δ
; 1

)
.

Then with the use of the orthonormality relation of the Racah coefficients we found a general
expression for the orthogonality relation of the Racah polynomials. This was given by,

N∑
x=0

(γ + δ + 1 + 2x)(γ + δ + 1, α+ 1, β + δ + 1, γ + 1)x
(γ + δ + 1)x!(γ + δ − α+ 1, γ − β + 1, δ + 1)x

Rn(λ(x))Rn′(λ(x))

= M
n!(n+ α+ β + 1, β + 1, α− δ + 1, α+ β − γ + 1)n

(α+ β + 2)2n(α+ 1, β + δ + 1, γ + 1)n
δn,n′

, with,

M =



(γ + δ + 2)N (−β)N
(γ − β + 1)N (δ + 1)N

, if α+ 1 = N,

(γ + δ + 2)N (δ − α)N
(γ + δ − α+ 1)N (δ + 1)N

, if β + δ + 1 = −N,

(−δ)N (α+ β + 2)N
(α− δ + 1)N (β + 1)N

, if γ + 1 = −N.

Where M was a weight function, that could either be positive or negative.
And with the use of Theorem 3.19, which gave us a way to rewrite a 4F3 series. And the fact that

our definition for the Racah polynomial satisfied the balance equation, we found a relation between
Rn(λ(x)) and Rx(λ(n)). Where Ri(j) is the Racah polynomial of degree i and variable in j. The
relation that we found was given by,

Rn(λ(x);α, β, γ, δ) =
(α+ x+ 1)n(1 + β + δ + x)n

(α+ 1)n(1 + β + δ)n
Rn(λ(n);α, β, γ, δ).

Where we defined p to be equal to p, when changing c↔ e and b↔ f for only p or p. And p ∈ {α, β, δ}.
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