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Abstract

Recently, with the switch to the new generation adaptive optics systems like the VLT and
ELT an important identification problem emerged. These telescopes are so-called integrated
systems, which means that open-loop calibration of the interaction matrix is not possible any-
more. The first and foremost reason for this is that the new generation of integrated adaptive
optics (AO) systems are much more sensitive to external factors like gravity causing misreg-
istrations and system parameter changes. This sensitivity is due to the integrated design,
because each time that the telescope will change from operation setup, such misregistrations
will be created. Unfortunately, this can lead to performance loss or closed-loop instability very
fast. Even misregistrations as big as 10% of a subaperture of the Shack-Hartmann wavefront
sensor lead to significant performance loss.

For this reason, the identification and thereby correction for parameter changes in the de-
formable mirror (DM) have to be done during operation. Since the identification needs to
be done during operation, it becomes much more important to have an identification method
that does not disturb the closed-loop operation of the plant. Therefore, in this thesis, we will
focus on a least cost method, preferably even a costless method for identification purposes.

Since the concept of integrated AO systems with a deformable secondary mirror (DSM) is
still relatively new, there has been only one serious proposal for the solution of the problem
by Béchet and Kolb. They falsely claim to have developed a non-parametric costless method,
i.e. a method without excitation, for the calibration of the IM and achieved ”reasonable”
results.

In our work, we will first of all prove why their method is fundamentally wrong. Furthermore,
we will also prove that their approach will result in the identification of the inverse controller
instead of the plant. This is probably also the reason why they falsely suppose to have achieved
”reasonable” results, because the dc gain of the inverse controller resembles the plant itself,
which we will show as well.

After explanation and comparison of several methods, we will propose the recently developed
least cost identification paradigm as the best solution. This paradigm is a framework for
parametric prediction error identification and is meant to minimize the impact of the experi-
ment on the underlying system in terms of experiment duration, distortion of the closed-loop
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operation, power of the input signal or a combination of these, while at the same time guar-
anteeing a predefined level of accuracy. Different bottlenecks that need to be overcome to
apply this method will be taken into account in order to adapt the least cost identification
paradigm for the calibration of the interaction matrix (IM).

Using the expression for the information matrix we will first of all derive and proof that,
theoretically, and if the experiment duration time allows, unlimited accuracy is achievable
with zero cost in closed-loop using the excitation coming from the disturbance.

Furthermore, we will prove in our study that, when the cost is solely defined as the impact of
the excitation signal on the normal closed-loop operation, the information-to-cost ratio per
frequency is inversely proportional with the squared magnitude of the disturbance H(ω), i.e.
proportional with 1/|H(ω)|2. Therefore, this means that in our specific case, in which we try
to find the static gain matrix for an underdamped second order resonance system with a low
frequency disturbance originating from atmospheric turbulence, the Nyquist frequency will
always be the optimal excitation frequency.
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Chapter 1

Main introduction

In imaging systems, the diffraction limit is the fundamental limit that determines the pos-
sible quality [1]. However, in practice usually aberrations of the wavefront can also have a
significant deteriorating effect on the reachable image quality [2].

In the case of Adaptive Optics (AO) with applications in astronomy, turbulence in the earthś
atmosphere deteriorates the image quality of ground-based telescopes severely. The flat wave-
fronts that have originally traveled untouched for many light years get disturbed after reaching
the earthś atmosphere. Through this, bright spots, so called speckles, occur on the image.
Since these evolve very rapidly the image becomes blurry and smeared. Also, the earth’s
atmosphere causes the signal-to-noise ratio to drop.

Without atmospheric disturbance of the wavefront, the image quality limited by the diffraction
limit improves linearly with an increase in the diameter of the telescope. Therefore, without
a solution for this problem even the image quality of big telescopes like the ELT, which have
a diameter of 39 m, would drop to the image quality of a telescope that has a diameter less
than half a meter.

The simplest solution would be to build a satellite telescope and observe space by basically
bypassing the source of the problem, which is the earth’s atmosphere like it was the case
with the Hubble telescope [3]. This also avoids the problem of limited transparency of the
atmosphere, both temporal by clouds and in certain wavelength regions.

However, this method is not only very rigorous and complex, but also very expensive. Fortu-
nately, the great advances in adaptive optics outperformed the quality of satellite telescopes
when it was applied to ground-based telescopes [4].

Currently, there is an AO system in operation at almost every telescope larger than 4 m, but
the developments have been so fast that there are numerous other applications as well. In
Extreme Ultraviolet Lithography (EUVL) AO is suggested to correct for the heat deformations
of the mirrors and lenses [5] [6]. For confocal and multi-photon microscopes the resolution of
the images is severely affected by the changes in the refractive index of the observed object.
In retinal imaging, the same problem occurs due to the fact that the eye is inhomogeneous
which causes the refractive index to change based on location and time. The use of AO can
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2 Main introduction

improve the imaging quality drastically by correcting for these type of aberrations [7] [8] [9]
[10].

By now, it should be clear to the reader that AO plays a crucial role in numerous applications.
For this thesis, we will focus on a problem that emerged recently with the switch to the
new generation adaptive optics systems like the VLT and ELT. These telescopes are so-called
integrated systems, which means that open-loop identification of the interaction matrix, which
is also called calibration, is not possible anymore. Therefore, closed-loop identification has to
be done while the telescope is under operation.

The basic idea behind AO is that the phase differences in the wavefront created through
the atmospheric turbulence get corrected by a deformable mirror (DM). In this process, the
Interaction Matrix (IM) plays a crucial role, because it relates the commands sent to the
mirror with the shape that the DM obtains.

The identification of the IM, which is also called the calibration of the IM in the field of AO,
is therefore an important task. Not only are the new generation of integrated AO systems like
the VLT and ELT much more sensitive to misregistrations of the IM, but also the identification
must be done in closed-loop while the telescope is active, because open-loop identification is
simply not possible anymore.

For identification, some form of excitation is needed. However, excitation also means degra-
dation of the imaging performance. ESO would like to be able to perform imaging without
any interruption or disturbance. For this to be possible, it is needed to calibrate the IM when
the setup of the telescope changes.

Therefore, the identification method should guarantee low disturbance of the imaging perfor-
mance while at the same time being sufficiently rich to identify a correct IM. Defining the
imaging performance in terms of the imaging quality and experiment duration will be another
part of the research.

1-1 Problem definition

With the emergence of the new generation AO systems which utilize a Deformable Secondary
Mirror (DSM), such as the ELT and the VLT of ESO, closed-loop calibration has become
necessary. Therefore, the identification experiment will be during operation. This is also the
reason why a low cost or preferably even a no cost identification method for calibrating the
Deformable Mirror of the telescope.

In the following subsection, we will explain more elaborately, why it is necessary to calibrate
the DM in closed-loop and why this creates the need for a low cost method.

1-2 Why is a least cost closed-loop identification approach neces-
sary?

Let us first address the question of why we have to identify the DM of the new generation AO
systems with a DSM in closed-loop during operation. For the older generation of telescopes
with conjugate-plane DM, an open-loop identification is already sufficient. This is due to the
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1-2 Why is a least cost closed-loop identification approach necessary? 3

separation of the DM from the actual AO system. The dynamics do not change drastically
during operation and identification during operation is redundant. So the identification can
be done as shown in Figure 1-1a.

Figure 1-1: a: Open-loop setup for identification b: Closed-loop setup for identification

The need for identification during operation emerged quite recently with the switch to the
new generation AO systems with a Deformable Secondary Mirror, which is integrated into the
system. For the reason that these systems are integrated, open-loop identification as shown
in Figure 1-1a is physically not possible anymore. Therefore, we have to identify these type
of telescopes according to the setup as shown in Figure 1-1b.
One might, now, still raise the question: ”So what is the problem? Why is simply performing
a closed-loop calibration not enough?”.
The first and foremost reason is that the new generation of integrated AO systems are much
more sensitive to external factors like gravity causing misregistrations and system parameter
changes. This sensitivity is due to the integrated design, because each time that the telescope
will change from operation setup, such misregistrations will be created. Unfortunately, this
can lead to performance loss or closed-loop instability very fast [11] [12]. Even misregistrations
as big as 10% of a subaperture of the Shack-Hartmann wavefront sensor lead to significant
performance loss [11]. This is the reason why identification a priori is not of much use, because
we want to correct for parameter changes in the DM by updating the IM during operation.
The answer to our first question, also partially answers the second question; the identification
has to be done during operation. Obviously, scientists will not want their observations to
be distorted by excitation needed for identification. On the other hand, the identification is
needed to be able to produce observations in the first place. This is also where a difficult trade-
off comes into picture. The accuracy of the identification will be larger when the excitation
signal is larger, but this also holds for the degradation of the imaging quality due to the same
excitation signal. Therefore, we want to design an identification experiment that guarantees
a predetermined accuracy while doing this at the lowest possible cost.
The challenge lies also in defining the cost for different types of observations. One can imagine
that, depending on the type of observation, the cost will be defined differently. The method
might give weights to certain frequencies according to how much they would degrade the
performance of the system. It might also be a trade-off between experiment duration and
accuracy. One might choose for low-impact combined with a long duration or vice versa.
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4 Main introduction

1-3 Research objectives

The main research objective for the Thesis is to provide control theoretically supported meth-
ods for least cost identification of the DM of integrated AO systems. In our case, the
Deformable Secondary Mirror (DSM) of the AOF will be considered especially. The main
research question can be formulated as follows:

"How can we perform least cost identification of the DM of the new generation integrated AO
systems where the cost can be defined as the experiment duration and deterioration of the
image quality due to the experiment?"

This main research question can be divided into sub-questions as follows

• How does atmospheric turbulence effect the imaging quality and how do AO systems
try to counteract this?

• How can we simulate the sensor and control signals of an AO system in a closed-loop
setting for realistic representation of the performance of proposed methods?

• What type of least cost identification methods can be applied to the AO system in
question

– Is it possible to identify the DSM in closed-loop without explicit external excitation
by only using the excitation coming from the atmospheric turbulence?

– If we consider that the measurement noise is negligible in practice, or mathemati-
cally even zero, how can we apply least cost identification without considering the
deterioration of image quality?

– How can we translate the requirements on the imaging quality to requirements
that can be used when optimizing the identification experiment.

– When the deterioration of the imaging performance in terms of imaging quality
and experiment duration are taken into account, how can we apply least cost
identification.

1-4 Thesis outline

The theoretical background of this research is contained in Chapters 2 and 3, which can be
read independently. In Chapter 2, a brief introduction to and a summary of atmospheric
turbulence and adaptive optics will be presented. Finally, the separate elements that make
up an AO system will be discussed and a control-theoretical model of such an AO system will
be discussed. In Chapter 3, an overview will be given of the state of the art methods to solve
our method. In this Chapter, we will discuss the single proposed solution to our problem by
Béchet and Kolb and proof why it is fundamentally wrong. Furthermore, the fundamentals
of parametric prediction error identification and a recently developed least cost identification
paradigm will be discussed. Mainly this Chapter will provide the theoretical support to the
results presented afterwards.
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1-4 Thesis outline 5

In Chapter 4, we will form a research proposal based on our study of the state of the art.
We will shortly mention that we cannot use the method proposed by Béchet and Kolb simply
because it is fundamentally wrong. A proof of principle will be given for costless identification,
i.e. identification without explicit external excitation, and for the cases in which explicit
external excitation is necessary, we will formulate how we would like adapt the least cost
identification paradigm to our problem at hand.

Chapters 5 and 6 are devoted to our research and the corresponding results. In Chapter 5, we
will mainly focus on how to apply least cost identification. We will mention the roadblocks
that need to be overcome and several important considerations during our research are men-
tioned. One of the most important considerations is the parametrization of the excitation
signal. We have for example applied a sinusoidal parametrization of the excitation signal
instead of an FIR parametrization as applied in the literature of the least cost identification
paradigm. Furthermore, in the same Chapter, we will dwell on the capabilities of costless
identification, and we will prove that the disturbanceH does not affect the amount of informa-
tion in any way, but instead, solely depends on the controller C and the plant G. In Chapter
6, the resulting least cost excitation spectra for three different representative models of AO
systems will be presented. At the end of the Chapter, we will derive mathematically that
the single frequency information-to-cost ratio for second order resonance systems in general
is proportional with the inverse squared magnitude of the disturbance. This means for our
system at hand, in which we are dealing with atmospheric turbulence, that has the character
of low pass filtered disturbance, the Nyquist frequency will always be the optimal frequency.

The prefinal Chapter 7 will contain a discussion and evaluation of our applied method. In
this context we will also give recommendations for further research based on our discussion.

Finally, our conclusion will be presented in Chapter 8.
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Chapter 2

Atmospheric turbulence and adaptive
optics systems

This chapter will provide an introduction to the concepts of atmospheric turbulence and
adaptive optics. We will start by describing and modeling atmospheric turbulence after which
we will discuss how AO systems counteract this phenomenon. The last part will especially
discuss how a wavefront is measured and reconstructed.

2-1 Atmospheric turbulence

In the atmosphere small temperature variations occur which in turn cause local changes in
wind velocity, so called eddies. This is viewed as turbulence in the atmosphere. Since the
rise in temperature also changes the atmospheric density, the refraction index is also changed.
These local changes accumulate and can cause significant inhomogeneities in the refraction
index at different locations in space and time. These small changes in the refraction index
disturb incoming wavefronts [13]. In this section we will describe how physical models for
atmospheric turbulence are obtained and how this affects the wavefront.

2-1-1 Physical model of atmospheric turbulence

Based on the work of [14], [15] and [16], the refraction index in atmosphere can be assumed
to consist of two parts 〈n(r)〉, which is the mean refraction index and 〈n1(r)〉, which can be
seen as the fluctuating part of the refraction index. The covariance Covatm of the refractive
index then becomes [13]:

Covatm = 〈n1(r + r1)n1(r1)〉 (2-1)

The power spectral density (PSD) can be calculated by taking the Fourier transform of the
above described covariance:
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8 Atmospheric turbulence and adaptive optics systems

Φn(K) = 1
8π3

∫
d3rCovatm(r)e−iK·r, (2-2)

where K is the three-dimensional spatial wave number. Changing to spherical coordinates
with K = (k, θ, φ) and rearranging gives:

Φn(k) = 5
18πC

2
nk
−3
∫ L0

l0
drsin(kr)r−1/3, (2-3)

where C2
n is the structure constant which represents the turbulence at each position in the

propagation. The large eddy, the so called outer scale, is L0, which is the size above which
isotropic behavior is violated. The small eddy l0, the so called outer scale is the size below
which viscous effects are important and energy is dissipated into heat [13].

Kolmogorov proposed to let the limits of the integral diverge for simplified integration, l0 → 0
and L0 →∞ [15]:

Φn(k) = 0.033C2
nk
−11/3 (2-4)

A spectrum with finite outer scales is given by Von Karman expressed in frequency instead
of wave number [17]:

Φ(f, z) = 0.033C2
n(z)(f2 + f2

0 )−11/6e−f
2/f2

i , (2-5)

2-2 Disturbance of the wavefront due to turbulence and adaptive
optics

As we have seen in the previous Section, the atmosphere causes the flat wavefront to be
disturbed. This can be corrected by using an AO system which is depicted schematically
in Figure 2-1. Flat wavefronts from space come into the atmosphere of the earth and are
distorted. The light is captured by a telescope and analyzed by a wavefront sensor. How this
works is described in the following Subsection. After reconstructing the wavefront through the
local slopes at different locations of the incoming wavefront, the idea is to use a Deformable
Mirror (DM) to produce the exact opposite of the distortion. Actuators are used to deform
the DM and in that sense it can be viewed as a membrane.

Mathematically, we can use the following notation for the wavefront in phasor notation ϕ:

ϕ(r, t) = eφ(rt), (2-6)

where r ∈ R2 denotes the spatial position in the telescope and t denotes the time. For a flat
wavefront, it should hold that ϕ(r, t) = 0. The goal of the AO system is to correct for the
distortion by bringing ϕ(r, t) as close as possible to zero.
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2-2 Disturbance of the wavefront due to turbulence and adaptive optics 9

Figure 2-1: Principle of Adaptive Optics adapted from [18]

2-2-1 Wavefront sensing

An adaptive optics system needs to be able to determine and reconstruct the wavefront in
order to correct for aberrations. There are multiple methods available for wavefront sensing
such as the Shack-Hartmann sensor [19], the curvature sensor [20] and pyramid sensor [21].
For this thesis, only the Shack-Hartmann sensor will be relevant due to the fact that the
systems involved all use a Shack-Hartmann sensor. In this Section, we will describe the
development and working principle of the Shack-Hartmann sensor.

Hartmann sensor

In 1900 Johannes Franz Hartmann developed a test for lenses or mirrors [22] [23]. The idea
is to put an opaque mask with uniformly distributed holes behind the lens or mirror. Since
all the holes act as an aperture, an image of spots will be produced. Thereby the wavefront

Master of Science Thesis Fatih Han Çağlayan



10 Atmospheric turbulence and adaptive optics systems

is actually sampled and locally estimated by a first order approximation. In the case of a
plane wave, the spots will be uniformly distributed over the image plane, while in the case
of another shape wavefront, the spots will diverge accordingly. The working principle of the
Hartmann test is depicted in Figure 2-2

Figure 2-2: Working principle of the Hartmann Test adapted from [24]

Shack-Hartmann sensor

Although, the idea of the Hartmann sensor was very good, it still had some major problems.
The images were of low intensity and thereby more noise problems occurred. Furthermore,
the holes caused disturbing diffraction effects. In 1971, Roland Shack and Ben Platt replaced
the aperture array by a lenslet array [19]. This would solve both of the important problems
that the Hartmann sensor had. The working principle is basically the same as the Hartmann
sensor and is depicted in Figure 2-3.

Figure 2-3: Working principle of the Shack-Hartmann wavefront sensor adapted from [2]

The array of lenslets samples the wavefront, after which the local sample is approximated by
a first order estimate. The local slope is found from the spot deviation. This will be explained
in the next part.

Spot deviation and local wavefront slope
In this part, we will explain how the spot deviation in the image plane, most probably a CCD
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2-2 Disturbance of the wavefront due to turbulence and adaptive optics 11

sensor, relates to the local slope of the wavefront. For this explanation, Figure 2-4 will be
used as a reference.

Figure 2-4: How a disturbance in the wavefront translates into deviation of the spot

The derivation will be done for a one dimensional representation, the x-coordinate. The
derivation for the two-dimensional case is similar.

First of all we will need to determine the spot center. In the case of a CCD sensor this can
be done by means of the center of gravity method:

xc =
∑
i,j x(i, j)I(i, j)∑

i,j I(i, j) , (2-7)

where x(i,j) denotes the x-coordinate of the corresponding pixel on the CCD. The spot devi-
ation can then be found by subtraction ∆x = xc − x0. The angle of arrival αx, in Figure 2-4
depicted as α, can be found as follows:

αx = ∆x
F
, (2-8)

where F is the focal distance the lens. In the case of the Hartmann sensor, the angle of arrival
would directly represent the local slope sx:

sx = ∂φ(x, y)
∂x

= αx (2-9)

However, in the case of the Shack-Hartmann sensor, we have to keep in mind the lens which
changes the angle of arrival. Therefore, the local slope in the case of a Shack-Hartman sensor
can be found as follows:

sx = ∂φ(x, y)
∂x

= 2πdαx
λ

(2-10)
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12 Atmospheric turbulence and adaptive optics systems

2-2-2 Wavefront reconstruction

After obtaining the local slopes from the Shack-Hartmann sensor, now rests the determination
of the phase. This is called wavefront reconstruction and is one of the fundamental problems
in adaptive optics [25]. The problem can be summarized by the following Equation:

s = Bφ(x, y), (2-11)

where B is called the geometry matrix. This matrix depends on chosen the method. Note
that noise from the Shack-Hartmann sensor has not been taken into consideration yet.

The easiest method for this is based on direct least-squares methods [26] [25] which transform
the problem basically into a finite difference method. These are called zonal reconstruction
methods. For the Fried method, the slopes from the Shack-Hartmann sensor are related as
follows to the phase:

sx(i, j) = (φ(i+ 1, j) + φ(i+ 1, j + 1))/2− (φ(i, j) + φ(i, j + 1))/2
w

, (2-12)

sy(i, j) = (φ(i, j + 1) + φ(i+ 1, j + 1))/2− (φ(i, j) + φ(i+ 1, j))/2
w

, (2-13)

where w represents the distance between the center of the lenslets in the arranged array in
the sensor. These equations can be written in matrix form as follows:

s = Bφ(x, y) + η, (2-14)

where η represents the noise from the Shack-Hartmann sensor. The phase φ(x, y) can be
found by solving the equation above.

Zonal methods basically sample the continuous plane of the wavefront after which they use
a locally first order approximation. The whole plane is then represented by the sum of these
first order representations. This is a proven method and for the purpose of this thesis we will
use this for wavefront reconstruction

Alternative methods have been proposed for wavefront reconstruction such as the method of
Southwell, which represent the continuous plane of the wavefront by a polynomial expansion
[27]:

φ(x, y) =
K∑
k=1

akZk(x, y) (2-15)

More recent methods such as [28] [29] [30] [31] have been developed as well. These focus
mainly on reducing the needed computational effort by means of simplifying the algorithm or
by means of parallelization.

Fatih Han Çağlayan Master of Science Thesis



2-3 Control-theoretical model of an adaptive optics system 13

2-3 Control-theoretical model of an adaptive optics system

It is important to make the necessary abstractions to the system shown in Figure 2-1. There-
fore, we will define the AO system that we are dealing with in a control-theoretical context.
We will start by a block diagram representation of our system followed by a discussion of the
separate elements.

In Figure 2-5, the block diagram representation of a closed-loop AO system can be found.
The different parts in Figure 2-1 have been abstracted to control blocks.

Figure 2-5: Block diagram representation of an AO system

A representation in equation form is also important from an analysis point of view. The
closed-loop AO system can be modeled by the following set of equations:

s(k) = S(watm(k))−GIM · ucmd(k) + e(k) (2-16)
ucmd(k + τ) = ucmd(k − 1 + τ) + γG+

IM · s(k) (2-17)

The control blocks and signals in Figure 2-5 and the equation above will be discussed below:

Atmospheric turbulence: watm The telescope has a disturbance input that is coming from
the atmosphere as discussed earlier. This is named watm(k) and it is a continuous represen-
tation of the turbulence in the atmosphere at the time of sample k. The spectrum of the
disturbance is important from a control-theoretical perspective and both the Kolmogovorov
and Von Karman atmospheric turbulence spectra can be found in Figure 2-6.

The function S The continuous turbulence representation watm is transformed into a dis-
crete set of data by the function S. The size of S(watm) depends on the number of lenslets
of the Shack-Hartmann sensor and is the same as the size of s(k).

Deformable Mirror: DM The Deformable Mirror DM is in this case the part that is of most
interest for us, the part that we eventually want to identify. In literature, the DM is usually
modeled as a simple MIMO gain [11] [12] [13] [32]. The reason why this is possible can be
understood by comparing Figure 2-7 with Figure 2-6. In the active range of the spectrum of
atmospheric turbulence the DM can indeed be viewed as a MIMO gain and therefore all the
dynamics can be left out in the modeling. This is then called the Interaction Matrix (IM). The
spectrum in Figure 2-7 is the transfer function from actuator 1 to slope 1 for the Deformable
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14 Atmospheric turbulence and adaptive optics systems

Figure 2-6: A 1-D cross-cut of the spatial spectrum of atmospheric turbulence adapted from
[18]

Secondary Mirror (DSM), an integrated type of deformable mirror. Although the transfer
function will look different for other actuators and/or slopes, in general we can assume that
the transfer function from the actuator to the slope of any DM for any type of telescope will
have a similar shape. In that sense, it is very comparable to that of a mass-spring-damper
system.

Controller: Ccontrol(z) The controller Ccontrol(z) is a combination of a pure integrator and
the so called Command Matrix, which is the pseudoinverse of GIM . It can be described by
the following equation:

Ccontrol(z) = γ

1− z−1G
+
IM , (2-18)

where G+
IM is the pseudoinverse of GIM .

Actuator input commands: ucmd(k) The DM command vector applied at time k is called
ucmd(k). The length of this vector depends on the number of actuators that the DM in
question has.

Shack-Hartmann sensor: WFS-SH The Shack-Hartmann wavefront sensor basically sam-
ples the incoming continuous wavefront and has as outputs the slopes of the wavefront. The
sensor should be sensitive enough in order to be able to observe all modes of the system. Oth-
erwise, it is possible that additive noise will destabilize the system without actually noticing
it.
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2-4 Simulation of an adaptive optics systems 15

Figure 2-7: The transfer function from actuator 1 to the 492nd slope in x for the DM of the
VLT

Shack-Hartmann output slopes: s(k) The vector s(k) contains the x- and y-slopes coming
from the wavefront sensor at time k. The continuous wavefront is then represented by a set
of slopes. The Shack-Hartman sensor should have more apertures than actuators in the DM.

Measurement noise: e(k) The output measurement noise at time k is represented by the
vector e(k). This is added to the output y(k). So the final output s(k) that comes from the
sensor is as follows:

s(k) = y(k) + e(k) (2-19)

AO system delay: τ It takes a finite amount of time for the sensor to capture photons and
for the system to process the incoming data. Therefore, each system has a certain delay. This
is called the AO delay τ and is represented in the number frames.

2-4 Simulation of an adaptive optics systems

Since we do not have an actual system at our disposal, AO research is best done by means
of simulation. This will give us the opportunity to analyze the performance of the existing
identification schemes and algorithms and compare it to the performance of the identification
schemes that we will develop for closed-loop identification. The overall simulation system will
be designed in Matlab. This Section will describe how different parts of the system have been
modeled in our simulation system.
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16 Atmospheric turbulence and adaptive optics systems

2-4-1 System parameters of the simulated adaptive optics telescope

For the purpose of simulating an AO system, we chose a square DM that has size 0.99 m
by 0.99 m. The DM will have 11 by 11 actuators making a total of 121 actuators. The
Shack-Hartmann sensor will have 32 by 32 lenses, thereby resulting in a total 2048 slopes.

Turbulent atmosphere watm(k) will move over the telescope. This ”turbulence carpet” that is
0.99 m by 655.36 m will move with a wind speed of v = 10 m/s over the square aperture of
the telescope. It has more samples than needed by the Shack-Hartmann to replicate the effect
of going from a continuous representation of a distorted wavefront to a sampled output by
the Shack-Hartmann sensor. The ”turbulence carpet” is a cutout of a square field turbulence
that was originally 655.36 m by 655.36 m. How this was modeled can be read in the following
Section.

A sampling frequency of fs = 1 kHz will be applied for our simulated AO system. The system
delay τ equals 2 samples, and the noise e(k) can be chosen with an arbitrary mean according
to the simulation that is needed. A gain of γ = 0.8 was chosen for the integrator. The whole
system can, therefore, be modeled according to Equation 2-16 as follows:

s(k) = S(watm(k))−GIM · ucmd(k) + e(k) (2-20)
ucmd(k + 2) = ucmd(k + 1) + γ ·G+

IM · s(k) (2-21)

where s(k) ∈ R2048×1, S(watm) ∈ R2048×1, GIM ∈ R2048×121,

ucmd(k) ∈ R121×1, e(k) ∈ R2048×1, G+
IM ∈ R121×2048

2-4-2 Modeling atmospheric turbulence for simulation

The exact modeling of atmospheric turbulence for the simulation can be found in Appendix
A.
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Chapter 3

System identification: state of the art

This Chapter will present an overview of the existing system identification methods that can
be applied to our system in question and discuss their properties. The goal is to provide the
reader with the necessary instruments and theoretical knowledge for identification purposes.

We will first discuss a novel and supposedly costless method for identification proposed by
Kolb and Béchet in [11] and [12]. A proof will be given why this method is fundamentally
incorrect, and we will show that actually the inverse controller is identified instead of the plant
itself. After this, we will continue with the explanation of parametric identification. For all
cases, we will start from the open-loop case and then extend the method to closed-loop. Each
time, we will refer to Figure 3-1a or Figure 3-1b respectively. Finally, we will present the
concept of least cost identification, which is recently developed by Michel Gevers.

3-1 Supposedly costless closed-loop identification proposed by Kolb
and Béchet

Kolb and Béchet proposed a supposedly no-cost closed-loop identification method in [11] and
[12]. In the following Section, it will be shown that costless identification is only possible
for parametric methods when certain requirements are met. It is a well-known fact that
using direct spectral identification, i.e. using the plant input u(k) and the output y(k), will
lead to identification of the inverse controller [33]. Since the method proposed by Kolb and
Béchet is nonparametric [11] [12], it cannot possibly work. Furthermore, also no model for
the disturbance coming from the atmospheric turbulence is taken into account in [11] and
[12]. Therefore, even for a parametric method it would have been impossible to work.

However, Kolb still claims to have achieved ”promising results” [11]:

”Measurements and commands with apparently no other structure than the one of the turbu-
lence actually lead to a reconstructed IM very similar to one measured on a fiber, but with a
lower SNR”

In the follow-up, however, he continues [11]:
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18 System identification: state of the art

Figure 3-1: General configurations for (a) open-loop and (b) closed-loop identification purposes

”Although the quality of this IM is too poor to be used in order to efficiently close the loop, it
is enough to retrieve a few misregistration parameters.”

3-1-1 Explanation of the method of Kolb and Béchet

For explanation of their method we will use Figure 3-2 as a reference. It is clear that the plant
input u(k) is correlated with the disturbance watm(k). The very first, incorrect, assumption
in [11] and [12] is that we can get rid of this correlation by taking increments of the inputs
and outputs:

Figure 3-2: Configuration for closed-loop identification as explained by [11] and [12]
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3-1 Supposedly costless closed-loop identification proposed by Kolb and Béchet 19

δu(k) = u(k)− u(k −∆k), (3-1)
δs(k) = s(k)− s(k −∆k), (3-2)

where ∆k is a predetermined number of samples. They claim that selecting several sets of
incremental measurements separated by a certain number of frames ∆k can get rid of the
correlation if ∆k is chosen large enough. First, let us address the correlation issue; it is
impossible to get rid of the correlation by means of filtering. The single source of
excitation in the system as shown in Figure 3-2 is the atmospheric disturbance. Therefore, the
very existence of the input u(k) depends on the existence of s(k), which on its turn depends
on the existence of the disturbance watm(k). The correlation of the input with the disturbance
will be explained mathematically in the following Subsection. Clearly, taking differences of
any sort will not get rid of this correlation, because the very same argument also holds for the
incremental differences: if there would be no incremental differences in s(k), there would be
no incremental differences in u(k) and vice versa. This clearly shows the correlation between
the input and the output. Also, let us analyze the so called incremental differences actually
mean. This is basically nothing more than filtering the input and output data by the following
filter, which is nothing more than a high-pass filter:

L(q−1) = 1
1− q−∆k (3-3)

Applying this filter can at most get rid of some noise, but will not change the final result.
Therefore, in a situation without noise, it is possible to apply the algorithm with the unfiltered
input-output data.

G∗IM = −s · u+
cmd (3-4)

3-1-2 Fundamental problem in the method of Kolb and Béchet

Qualitatively, it is already clear that the mentioned assumption is incorrect. Let us now ana-
lyze this more mathematically to understand what is fundamentally wrong with the approach
as mentioned in [11] and [12]. For Gaussian noise n, we know that the following holds true:

Rnn(τ) =
{
σ2δ(τ), if τ = 0
0, otherwise

(3-5)

For systems in which a pure Gaussian white noise sequence n is the single source of excitation.
The assumption of Kolb and Béchet holds true, because in that case clearly E[u(k)n(k)] = 0.

However, not only is it impossible to realize pure Gaussian white noise in practice, but most
importantly, in this case, we are dealing with atmospheric turbulence and not with pure
Gaussian white noise. For disturbance coming from atmospheric turbulence it simply does
not hold that Rwatmwatm(τ) = 0 when τ 6= 0. Therefore, the expectation of the input and
disturbance will be nonzero, i.e., E[u(k)n(k)] 6= 0, which in turn means that the input is
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correlated with the disturbance. For this reason, the very first assumption of Kolb and
Béchet breaks down and the remaining method, thus, does not hold.

So let us understand what will be the result of the method of Kolb and Béchet instead. For
this purpose, we will look back at Figure 3-2 and derive the equations for the output s(k)
and the input u(k), the arguments will be left out for brevity:

s = GWFSHatme1 +Hne2
1 +GWFSGDMC

(3-6)

u = CGWFSHatme1 + CHne2
1 +GWFSGDMC

(3-7)

From the above equations the following spectral densities follow:

Φsu = C|GWFS |2|Hatm|2Φe1 + C|Hn|2Φe2

|1 +GWFSGDMC|2
(3-8)

Φuu = |C|
2|GWFS |2|Hatm|2Φe1 + |C|2|Hn|2Φe2

|1 +GWFSGDMC|2
(3-9)

Therefore, the following result is obtained for the method of Béchet and Kolb:

Φsu

Φuu
= C|GWFS |2|Hatm|2Φe1 + C|Hn|2Φe2

|C|2|GWFS |2|Hatm|2Φe1 + |C|2|Hn|2Φe2
= C

|C|2
= C

CC∗
= 1
C∗

(3-10)

3-1-3 Conclusion for the method of Kolb and Béchet

Unfortunately, the clear conclusion is that Kolb and Béchet applied the spectral analysis
method without realizing. As shown and proven above, this will lead to identification of
the inverse controller. Since a good performing controller should look like the inverse of
the plant, it is not surprising to think that the identified system is actually the plant itself.
For comparison, the reader is referred to Figure 3-3. Indeed, the shape of the reconstructed
estimate of the inverse controller looks, as should be expected, similar to the plant itself. This
simulation was done with our own simulation system as explained in Appendix A without
measurement noise to obtain the best possible result.

3-2 Parametric prediction error identification

Another approach for identifying the system in Figure 3-1 is the parametric prediction er-
ror identification method. The idea is that the true system S can be represented by a
parametrized model structure M = {G(q−1, θ), H(q−1, θ) |θ ∈ Rk}. When enough infor-
mation about the characteristics of the plant and noise/disturbance v(k) are available, it
is possible to apply the parametric identification method. One should take notice that the
information about the characteristics should be to the point that we are able to accurately
parametrize the transfer function H(q). So the true system S can be represented as follows:
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Figure 3-3: Reconstruction of the inverse controller obtained with the method described in [11]
and [12]

y(k) = G(q−1)u(k) + v(k) (3-11)
= G(q−1)u(k) +H(q−1)e(k) (3-12)
= G(q−1, θ0)u(k) +H(q−1, θ0)e(k) (3-13)

for some yet to be determined parameter θ0. Mathematically this can be stated as S ∈ M.
Now, we collect input-output data ZN = y(1), u(1), y(2), u(2), ..., y(N), u(N) from the true
system. The idea is to determine for which parameter θ the input-output data of the model
[G(θ), H(θ)] ∈M matches best with the measured input-output data from the true system.

Before diving into the technical details of parametric identification in open-loop and closed-
loop, we shall first define two important notions, namely identifiability and informativity.
This will be followed by two sections devoted to parametric identification in open-loop and
closed-loop respectively. After this, we shall discuss the necessary and sufficient requirements
for informativity of an experiment. This Section, will be finalized by a discussion of the
properties of parametric identification.

3-2-1 Open-loop parametric prediction error identification

As we have already explained the parametric method assumes that the true system S can be
represented by a parametrized model structure M = {G(q−1, θ), H(q−1, θ) |θ ∈ Rk}. So we
can write the true system as follows:

y(k) = G(q−1)u(k) +H(q−1)e(k) = G(q−1, θ0)u(k) +H(q−1, θ0)e(k), (3-14)
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for some yet to be determined parameter vector θ0.

After collection of data from the true system ZN = y(1), u(1), y(2), u(2), ..., y(N), u(N) from
the true system, we will have to find for which parameter the data produced by the system
matches best with the measured data from the true system. For this purpose, we first have
to define the so called one-step ahead predictor. Let us start by manipulating the equation
for the true system:

y(k) = G(q−1)u(k) +H(q−1)e(k) (3-15)
= G(q−1)u(k) + [H(q−1)− 1]e(k) + e(k) (3-16)

substituting e(k) = H(q−1)−1[y(k)−G(q−1)u(k)] gives

y(k) = G(q−1)u(k) + [H(q−1)− 1]H−1(q−1)[y(k)−G(q−1)u(k)] + e(k) (3-17)
= H−1(q−1)G(q−1)u(k) + [1−H−1(q−1)]y(k) + e(k) (3-18)

We should now notice that the expression H(q−1)−1G(q−1)u(k) + [1−H(q−1)−1]y(k) is fully
determined by G(q−1), H(q−1) and by past observations y(k − 1) and u(k − 1) and differs
only by e(k) from y(k). This expression is the so called one-step-ahead predictor of the given
model [34]:

ŷ(k|k − 1) = H−1(q−1)G(q−1)u(k) + [1−H−1(q−1)]y(k) (3-19)

Such a predictor can also be defined for the model setM, which will be dependent on θ:

ŷ(k|k − 1, θ) = H−1(q−1, θ)G(q−1, θ)u(k) + [1−H−1(q−1, θ)]y(k) (3-20)

The one-step-ahead prediction error is defined as:

ε(k, θ) = y(k)− ŷ(k|k − 1, θ) = H−1(q−1, θ)[y(k)−G(q−1, θ)u(k)] (3-21)

Now using the collected input-output data set ZN , the true parameter θ0 can be estimated
using a quadratic criterion function on ε(k, θ) by:

θ̂ = arg min
θ∈Rk

VN (θ, ZN ) = arg min
θ∈Rk

1
N

N∑
k=1

ε(k, θ)2 (3-22)

If indeed S ∈ M, G(q−1) strictly proper, H(q−1) monic, stable and stably invertible then as
N → ∞, θ̂ → θ0 [34]. The properties of the covariance of θ̂ and ˆG(jω) will be discussed in
depth in Section 3-2-4.

The quadratic criterion function VN = ε(k, θ)2 is the most frequently used. However, different
generalizations are possible:
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VN (θ, ZN ) = arg min
θ∈Rk

1
N

N∑
k=1

ε(k, θ)2`(L(q)ε(k, θ)), (3-23)

where `(·) is a specific norm and L(q) is some stable and linear filter. For more in depth
information on the choice of `(·) and the effect of the filter L(q) the reader is referred to
Chapter 7 of [34]

3-2-2 Closed-loop parametric prediction error identification

Now, the theory for parametric identification in open-loop will be extended to closed-loop.
For this, the setup in Figure 3-1b will be used.

If we define again the system S = [G(q−1), H(q−1)] and define again a set of models that is
able to represent the true systemM = {G(q−1, θ), H(q−1, θ) |θ ∈ Rk} then an estimate can
be obtained using the quadratic criterion function on ε(k, θ):

θ̂ = arg min
θ∈Rk

VN (θ, ZN ) = arg min
θ∈Rk

1
N

N∑
k=1

ε(k, θ)2, (3-24)

where ε is again given by:

ε(k, θ) = y(k)− ŷ(k|k − 1, θ) = H−1(q−1, θ)[y(k)−G(q−1, θ)u(k)] (3-25)

The application of the parametric identification approach on closed-loop systems has some
important properties. Most notably, if the controller C is ”sufficiently high order” in com-
parison with the complexity of the plant or if the controller C is nonlinear or time-variant,
no explicit external excitation is needed for this method to work, i.e. the excitation coming
from the noise or disturbance source can already be enough. More on this will be presented
in Section 3-4.

3-2-3 Consistency problems when mismodeling the disturbance in closed-loop

In the previous Subsection, we have shown and proven that consistent estimates will be
obtained for open-loop identification even if the disturbance is modeled incorrectly. The
same path can be followed for closed-loop identification, this is shown and proven in Chapter
13.4 of [35].

When we follow the same road of derivation as shown above and after we fix the disturbance
model to some H∗(ejω) 6= H0(ejω), we arrive at the following final expression:

θ̂ = argmin
θ

∫ +π

−π

|G0(ejω) +B(ejω) +G(ejω, θ)|2Φu(ω)
|H∗(ejω)|2 dω, (3-26)

where B(ejω) is given as:
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B(ejω) = C0(ejω)H0(ejω)
1 + C0(ejω)G0(ejω)(H0(ejω)−H∗(ejω)) σ

2
e

Φu
(3-27)

.

We can already see that the estimate converges to the value of θ̂ for which Ĝ(ejω, θ̂) =
G0(ejω) + B(ejω), which means that as long as there is a mismatch in the modeling of the
disturbance H, i.e. H /∈ H, there will be a bias in the estimate Ĝ(ejω, θ̂) in the form as
described above.

In literature, there are several possibilities to lower or even to completely get rid of the bias
[36].

3-2-4 Stochastic properties parametric identification

The parametric prediction error identification method is asymptotically unbiased. One can
also understand that the parametric method will have lower variance in comparison with the
spectral method, simply because it takes more information about the system into account.

Let θ̂N be the identified parameter vector for θ0. It will be a stochastic variable that is
asymptotically normally distributed as [35]:

θ̂N ∼ N (θ0, Pθ), (3-28)

where Pθ is the so called covariance matrix, which is defined as [35]:

Pθ = σe
N

(E(φ(t, θ0)φ(t, θ0)T ))−1, (3-29)

where σe is the variance of the gaussian white noise and φ is defined as:

φ(t, θ) = −∂ε(t, θ)
∂θ

= ∂ŷ(t, θ)
∂θ

(3-30)

The inverse of the covariance matrix is the so called information matrix, which needs to be
positive definite for a successful identification. More on necessary and sufficient conditions to
achieve a successful prediction error identification will be explained in Sections 3-3 and 3-4.

Also the estimated plant Ĝ is an asymptotically normally distributed random variable. A
common method to go from the covariance matrix Pθ, which represents the covariance of
the parameters, to the covariance of the transfer function is to use a first order Taylor series
expansion [37]. Then the transfer function covariance is defined as follows:

cov(Ĝ(jω, θ̂N )) = E[(G(ejω, θ̂N )−G(ejω, θ0))2] (3-31)
= T (ejω, θ0)PθT (ejω, θ0)T (3-32)

with T (z, θ) given as:
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T (z, θ) ,
[
Re(∇TG(z, θ)
Re(∇TG(z, θ)

]
(3-33)

∇G(z, θ) = ∂G(z, θ)
∂θ

(3-34)

The following first order approximation was used in obtaining this estimate:

G(z, θ0) ≈ G(z, θ̂N ) +∇TG(z, θ0)(θ0 − θ̂N ) (3-35)

An important advantage of parametric prediction error identification over the spectral method
is that it can ”turn” part of the disturbance and/or noise into useful information in closed-
loop.

3-3 Notions of identifiability and informativity for prediction error
identification

The notions of identifiability and informativity and therewith input signal design are an
important aspect in system identification. In Appendix B, we shall introduce and formally
define the notions of identifiability and informativity.

3-4 Necessary and sufficient conditions for a unique minimum of
the prediction error criterion

Earlier, we have defined the notions of identifiability and informativity. These are the two
ingredients necessary to achieve a successful prediction error identification experiment. Only
when the combination of these two requirements are met, the quadratic criterion function
as defined in Equation 3-22 will have a unique minimum. This is equivalent to saying that
the information matrix, the inverse of the covariance matrix as defined in Equation 3-29, is
positive definite.

We will first start by discussing the necessary and sufficient conditions for the open-loop case,
because in order to understand the requirements for closed-loop, we shall first analyze the
requirements for informativity in open-loop. After this, we will continue with closed-loop.

3-4-1 Conditions in open-loop

Assume that the true system S ∈ M, where M = {G(q−1, θ), H(q−1, θ)}, θ ∈ Rk, such that
G(q−1, θ) are rational functions:

G(q−1, θ) = B(q−1, θ)
F (q−1, θ) = −q

−nk(b1 + b2q
−1 + ...+ bnb

q−nb+1)
1 + f1q−1 + ...+ fnf

q−nf
(3-36)
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Then an input sequence that is persistently exciting of order nb+nf is sufficiently informative
with respect to M. If furthermore, the conditions for identifiability are met, i.e. the model
structure is chosen such that the true system is represented by a single unique model, the
information matrix will be positive definite [34].

3-4-2 Conditions in closed-loop

The presence of the feedback in the structure of the problem make the conditions for identifia-
bility in closed-loop more involved. This is for the reason that, not only there are requirements
on the model set now, but also requirements on the structure of the problem. Let us now try
to understand this problem better by means of the following autonomous first order system
with a proportional controller:

y(k) + ay(k − 1) = bu(k − 1) + e(k)
u(k) = fy(k)

(3-37)

Rewriting results in the following autonomous system:

y(k) + (a− bf)y(k − 1) = e(k) (3-38)

Although all the conditions as mentioned in the previous Subsection for open-loop are met
and although the input u(k) is persistently exciting since it consists of filtered white noise,
we can see in this example that it is impossible to identify the parameters a and b even if we
know f , because all â, b̂ with â = a+γf and b̂ = b+γ, where γ is any arbitrary scalar, satisfy
the same system description.

Notice that the above described problem would not have appeared if the controller was time-
variant or nonlinear. In that case, the requirements for identifiability are met and, thus,
identification is possible as soon as the command u(k) is persistently exciting. To obtain
better insight into this problem and how it arises, we will have to look back at Equation B-8:

E[∆Wu(q)u(k) + ∆Wy(q)y(k)]2 = 0 (3-39)

Now, suppose that there are two different models W1 and W2 in the model set for which
this equation holds without implying that W1 = W2 as shown in the example above. So
the expression above can indeed be zero while ∆Wu(q) 6= 0 ∆Wu(q) 6= 0. Let us ask which
precondition is required for such an equality to hold. One can understand by some insight
that this is only possible if there exist some linear and time-invariant relationship between
the input u(k) and output y(k)

∆Wu(q)u(k) ∼ −∆Wy(q)y(k) (3-40)

From this, we can already understand why identifiability is guaranteed for the cases where
the controller C is time-variant or nonlinear if u(k) is persistently exciting. It should be
mentioned that time-variance of the controller can also be reached by switching between
different settings for the controller during the experiment.
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So, for the situation in which such a linear and time-invariant relationship holds, the conditions
for identifiability and informativity become more involved. In those cases, if the controller
is ”more complex” than the plant then identifiability is guaranteed and thus
informativity is guaranteed when the noise or disturbance signal is sufficiently
exciting.

Now we will formalize these conditions regarding complexity for the Box-Jenkins model struc-
ture, which we will be using in the application of our research. Let us consider the class of
model structuresM = {G(z, θ), H(z, θ) |θ ∈ Rk} where G(z, θ) and H(z, θ) are given accord-
ing to the Box-Jenkins parametrization structure:

G(z, θ) = z−nkB(z, θ)
F (z, θ) , (3-41)

H(z, θ) = L(z, θ)
D(z, θ) , (3-42)

with B(z, θ), L(z, θ), D(z, θ) and F (z, θ) are polynomials of degree nb, nl, nd, nf respectively.
The controller is given by Ccntrl(z) = X(z)

Y (z) , with X(z) and Y (z) polynomials of degree nx
and ny respectively.
Furthermore, we will make multiple assumptions regarding the system. First of all, there
are no terms that cancel out in the polynomial set B(z, θ) and L(z, θ). The polynomial set
D(z, θ) and L(z, θ) are assumed to be coprime and the same will hold for the polynomial set
X(z) and Y (z) as well. The closed-loop denominator polynomial does not cancel out any root
in L(z, θ). Finally, the degrees nk, nb, nl, nf and nd are assumed to be known in advance.
Then only if and only if either nx + nk > nd + nf or ny > nb + nd the information matrix is
positive definite or, in other words, the quadratic criterion function V = ε2(t, θ) as defined in
equation 3-22 has a unique global minimum at θ0 [38] [39].

3-5 Novel least cost experiment design paradigm for parametric
identification by Gevers and Bombois

Classically, optimal experiment design was all about maximizing the accuracy of the identified
system by optimizing the power spectrum of the input signal, possibly under certain predefined
constraints on time and/or on the input signal. This is very useful for systems that need
identification once and afterwards can continue their operation. In those cases, it makes
sense to focus on obtaining an accurate model since it will be done once only.
This is, however, not of much use for our application in which we will need to calibrate
the IM of the telescope regularly. As explained in Section 1-2, we need a method that
disturbs the closed-loop operation of the telescope as low as possible while guaranteeing a
certain identification accuracy. So in our case, there will be an important trade-off between
achievable accuracy for the experiment and the impact of it on the closed-loop operation of
the telescope. Therefore, it makes more sense to apply a method which takes into account
the cost of an experiment in terms of perturbation of the closed-loop operation and duration
or a combination of both. Such a paradigm was proposed for the first time in [40].
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To explain how the method works, we have to go back to the variance of the identified plant
as derived in the previous Section in Equation 3-31. Since the variance of the identified plant
measures how far the identified plants will be spread out from the true plant, we need to
define boundaries on the modeling error in terms of requirements on the expression for the
variance:

ru(ω) = α
√
cov(Ĝ(jω, θ̂0)) (3-43)

= α
√
λ1(T (ejω, θ0)PθT (ejω, θ0)T ) (3-44)

Clearly, it is not possible to guarantee with 100% certainty that the modeling error of the iden-
tified plant will be within a certain boundary. This is only possible with a certain probability
level and that is where the constant α comes into picture. If we would want Pr(|Ĝ−G0| <
ru) > 0.95%, the constant α is chosen in such a way that Pr(χ2(n) < α2) > 0.95, where n is
the number of unknown variables in the parametrized model of G(z, θ).

As mentioned earlier, an important aspect of the paradigm in [40] is the definition of the cost
for identification. Different costs were defined for open-loop and closed-loop. In open-loop, it
is possible to limit yourself just to the power content of the external excitation signal r(t) which
is used for identification. In closed-loop, however, this is not such an obvious choice anymore.
Therefore, an alternative definition for the cost of an identification experiment was chosen,
which is more appropriate for the nature of the actual cost. To understand this, we have to
look back at Figure 3-1b and try to understand the difference between normal operation of the
closed-loop setup and operation of the closed-loop setup while being identified. In this case,
we will make a derivation only for the signal r2. A similar derivation for r1 is straightforward
and will thus not be covered. The plant input u and the output y under normal operation
are given as:

u = −C
1 +GC

v (3-45)

y = 1
1 +GC

v (3-46)

Clearly, the disturbance signal v is the single source of excitation under normal operation.
During an identification experiment, however, we will use the signal r2 to excite the system
to obtain information about the plant. Thereby, we are also interrupting normal operation,
since we are now introducing another output term due to our excitation signal r2:

u = 1
1 +GC

r2 + −C
1 +GC

v = ur2 + −C
1 +GC

v (3-47)

y = G

1 +GC
r2 + 1

1 +GC
v = yr2 + 1

1 +GC
v (3-48)

Above, we have introduced the terms ur2 and yr2 , which should be interpreted as plant input
due to r2 and output due to r2 respectively. These two terms are the ”interruptions”, or in
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other words ”the cost”, that we introduced for the purpose of identification, because due to
these terms the imaging quality of the telescope will deteriorate. Now, it is also possible to
measure the cost in terms of the spectra corresponding to ur2 and yr2 :

Jr2 = βu

( 1
2π

∫ +π

−π
Φur2

(ω)dω
)

+ βy

( 1
2π

∫ +π

−π
Φyr2

(ω)dω
)
, (3-49)

where βu and βy are weights that can be adjusted according to what is important for the
closed-loop operation.

The cost Jr2 can also be expressed in terms of the spectrum of r2:

Jr2 = βu

( 1
2π

∫ +π

−π

1
|1 +GC|2

Φr2(ω)dω
)

+ βy

(
1

2π

∫ +π

−π

|G|2

|1 +GC|2
Φr2(ω)dω

)
(3-50)

The derivation of the expression for the cost function for an excitation signal at r1 is straight-
forward and follows the same procedure as above.

For our research purposes, in order to obtain insight in the workings of the least cost identi-
fication method applied to AO systems, we will initially define the cost purely as the input
cost, which is the usual way to define the cost in open-loop:

Jr1,2 = 1
2π

∫ +π

−π
Φr1,2(ω)dω (3-51)

The idea is now that we will choose the optimal trade-off between experiment duration and
spectrum richness on the one hand and obtained accuracy on the other hand. Prior to
the experiment the maximum allowed error radm will be known already depending on the
identification objective. If we also fix the experiment duration N , we can obtain an affine
optimization problem in the spectrum Φr:

min
Φr

Jr s.t. α
√
cov(Ĝ(jω, θ0) < radm (3-52)

min
Φr

Jr s.t. α
√
λ1(T (ejω, θ0)PθT (ejω, θ0)T ) < radm (3-53)

For our application both the experiment duration and spectrum are of importance. Therefore,
it is not possible to fix either one of the parameters in order to obtain an affine problem.
Instead, we will determine the optimal spectra Φr for a number of experiment durations.
Thereby, we can create a ”trade-off graph” where the cost is depicted versus the duration of
the experiment. Clearly, for increasing experiment duration N the cost function Jr decreases.
This allows us to find the ”optimal” combination for the duration of the identification and
the induced interruption Jr.
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3-5-1 Important drawback of the least-cost identification paradigm

A key problem in the least-cost identification paradigm is that the covariance matrix in
the optimization problem shown in Equation 3-52 not only depends on the spectrum of
the excitation signal and admissible error. The depends on the true system G(z, θ0), and
therewith also on the true parameter vector θ0, but also on the true disturbance or noise
variance σ2

e . This is basically a chicken-and-egg problem, because the optimal experiment
basically depends on what it should actually estimate [41].

This is, however, inherent to every optimal experiment design method. A standard method
to solve for this issue is to replace the true parameter vector θ0 by an initial estimate θ̂init
and σ2

init:

min
Φr

Jr s.t. α
√
λ1(T (ejω, θ̂init)PθT (ejω, θ̂init)T ) < radm (3-54)

These estimates can be obtained by means of a simple spectral identification experiment.

For classic optimal experiment design, where the objective was to obtain maximal accuracy
without considering the cost, this solution served very well, because the objective of maximal
accuracy practically ensured robustness of the identification experiment. However, in this
case, we are dealing with a least-cost paradigm, where we would only want to guarantee
the necessary accuracy instead of the maximum accuracy. This can cause problems with
convergence. Therefore, in the following, we either have to provide a solution for this problem
or make certain assumptions regarding our knowledge of the plant.
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Chapter 4

Research proposal for least cost
closed-loop identification of the

interaction matrix of an AO system

This Chapter will focus on different types of approaches to identify the IM in closed-loop
with as low as possible additional interruptions caused by the excitation signal. The different
candidate methods from the previous Chapter will be discussed one by one. While doing this
we will refer to Figure 4-1 regularly.

Figure 4-1: Closed-loop identification setup for the telescope

Our initial discussion will regard the supposedly costless method proposed by Kolb and
Béchet in [11] and [12] and explain why this idea is fundamentally wrong. While doing
this, we will frequently refer back to our derivations and proves in Section 3-1.

From here, we will make the switch to parametric prediction error identification and explain
how it can be applied to our system. The model set selection is an important task for
parametric prediction error identification, so we will devote a separate subsection on this.

This will be followed by a separate Section dedicated to how we might apply costless para-
metric prediction error identification to our problem. In Section 3-4-2, we have already seen
that in some cases the excitation coming from the disturbance or noise, which is fed back into
the system by the controller can be sufficient for identification purposes. It would be very
interesting for our situation if we could identify the IM using the disturbance coming from
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the atmospheric turbulence. We will show that costless identification works perfectly on a
SISO AO system when accurate information about the noise or disturbance characteristics
are present and the requirements as explained in Section 3-4-2 are met. In our example, we
will assume perfect knowledge about the disturbance characteristics. Therefore, this will be
a demonstration of the principle by showing how to apply true costless identification on a
SISO AO system.

Finally, we will discuss on how the paradigm proposed by Michel Gevers can aid us in designing
the optimal input for our application when we decide to apply parametric prediction error
identification. We will discuss what kind of bottlenecks we can expect and in what way we
will try to deal with these.

The chapter will be closed by a final consideration and conclusion which will contain our
research proposal for least cost closed-loop identification. We will discuss which method we
foresee as the best option and why. This discussion will of course include a deliberation on
the positive sides and possible bottlenecks of the method.

4-1 Supposedly costless closed-loop identification proposed by Kolb
and Béchet

The method proposed by Kolb and Béchet has been extensively discussed in Section 3-1. We
have clearly shown and proven that they are actually simply applying the open-loop spectral
identification method after prefiltering, without any explicit external excitation. We have
also shown and proven that this results in the identification of the static gain of the inverse
controller. Furthermore, we have also tackled the fundamental assumption of Kolb and Béchet
in [11] and [12], which is that the correlation between the disturbance and plant input can
disappear by prefiltering the data. This has been mathematically proven at the end of Section
3-1 in terms of the autocorrelation of the disturbance.

The confusion regarding the results are, however, understandable. In Figure 3-3, we have
shown that the reconstructed inverse controller resembles the true static IM matrix. There-
fore, although their very first assumption is fundamentally wrong, Kolb and Béchet were
probably not able to recognize their mistake from the results.

4-2 Parametric prediction error identification

By using an external excitation signal to either r1 or r2 it is possible to apply parametric
prediction error identification in closed-loop to the AO system as shown in Figure 4-1. The
theory on how to do this has been extensively explained in Section 3-2-2 and, therefore, we
will not devote a repetition of the existing knowledge in this Section. Instead, we will

4-2-1 Model set selection

The choice of our model set will be an important and fundamental decision in the process
of parametric prediction error identification. First of all, we need to choose an appropriate
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model structure. Followed by our choice for the model orders. The final task is on how to
parametrize the chosen models.

In our case, we are searching for a static representation of the IM, the open-loop plant.
Furthermore, we know that the disturbance that we are dealing with is highly complex and
thus it is advisory to model it separately from the open-loop plant, since we need all the
possible freedom. The choice for the model structure Box-Jenkins is in that case already a
straightforward choice. The model order for the open-loop plant GIM is also clear, which will
be model order 1 since it is static. In SISO GIM (q, θ) = θ. For a MIMO system this would
be a matrix representation of the same form.

The model order and model parametrization for the disturbance is not that straightforward.
As depicted in Figure 2-6, the Von Karman spectrum of atmospheric turbulence has a frac-
tional slope, which has to be represented by a polynomial, i.e. a rational function. Weierstrass
has proven that any continuous function, and thus also fractional function, can be estimated
by a polynomial [42]. The choice for the polynomial degree determines how close the estima-
tion will become. In our case, we need to beware not to give too much freedom in the model
for H, since this will allow for overfitting. Therefore, the modeling of the disturbance and
choosing an appropriate parametrization will be an important part of our research. Especially
because in closed-loop consistency is lost when H /∈ H. This will be explained in the following
Subsections.

There is a systematic method to choose an appropriate model order. The idea is to evaluate
and compare the value of the criterion function VN (θ̂N , ZN ) for different model orders. Until
we have reached the appropriate model order we should expect to see substantial decrease in
the final value of the criterion function VN (θ̂N , ZN ). Although it will continue to decrease little
by little, once the appropriate order is reached, we expect to see saturation in the decrease.
The continuation of the decrease does not mean that the model is a better representation
of the true system, because the extra freedom provided in our model will simply be used to
adjust better to our specific data set, which means that it will adjust itself according to the
noise sequence. This can also be understood when one validates the obtained estimate with
a separate data set, because, although in the first data set a higher model order delivered
a better fit, this will be untrue when applied to a validation with a separate data set. This
method is called cross-validation. Therefore, one should also realize that there is a drawback
in choosing a higher model order. Furthermore, the added complexity might also result
in optimization problems, because we might get stuck in a local minimum easier when the
complexity of the applied model increases.

4-3 Costless parametric prediction error identification: prove of
principle

After the Section regarding the erroneous method proposed by Kolb and Béchet, one might
ask whether costless closed-loop identification of the IM is possible without explicit external
excitation. The simple answer to the addressed question addressed is of course yes. The
theoretical background and prove on this has been discussed extensively in Section 3-2-2.
In this Section, we will demonstrate how to apply costless identification, i.e. identification

Master of Science Thesis Fatih Han Çağlayan



34 Research proposal for least cost closed-loop identification of the interaction matrix of an AO system

without explicit external excitation, on a SISO AO system in order to successfully identify
the static IM in closed-loop.

The more comprehensive answer to the addressed question is, of course, not this straightfor-
ward. For such a method to be successful, one should at least be able to parametrize the
disturbance accurately. Otherwise, this will lead to biases in the identification, which will
be characterized mathematically in Section 3-2-3. Additionally, the modeling of atmospheric
turbulence is highly complex and still an involved topic today. Turbulence is highly non-
linear and time-variant, which complicates the problem. Thus, one should also consider the
time-variant characteristics with respect to the identification duration. An important ques-
tion to address would be how long an identification experiment is allowed to take before the
time-variant characteristics become too dominant to obtain accurate identification.

We will now apply closed-loop identification on a simplified AO system without external
excitation following the theory described in Section 4-2. The setup is shown in Figure 4-
2. Instead of a MIMO gain, a SISO gain is chosen. The feedback controller is again a
pure integrator. The disturbance, which should represent the atmospheric turbulence, is also
simplified to a signal watm(k) which is obtained by filtering zero mean Gaussian white noise
with a variance of 1 with the following filter:

H(q−1) = 1
1− 0.5q−1 (4-1)

For this example, we assume that the disturbance model is exactly known as described above.
Therefore, the single parameter to be determined will be the SISO gain, which equals 9 in
this case. The noise e(k) is pure white noise with a variance that equals 1.0% of the variance
of the output without noise, which is a realistic value for true AO systems. We will regard
the measurement noise equal to zero, since it is negligible relative to the total signal.

Figure 4-2: Closed-loop setup of the SISO AO system for demonstration of costless identification

Now, we have to define the one-step-ahead prediction error:

ε(k, θ) = H−1(q−1, θ)[y(k)−G(q−1, θ)u(k)] (4-2)
= (1− 0.5q−1)[y(k)− θu(k)] (4-3)
= y(k)− θu(k)− 0.5y(k − 1) + 0.5θu(k) (4-4)

The quadratic criterion function is a function of the one-step-ahead predictor and will look
like:
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VN (θ) = 1
N

N∑
k=1

ε(k, θ)2 = 1
N

N∑
k=1

[y(k)− θu(k)− 0.5y(k − 1) + 0.5θu(k)]2 (4-5)

Application of the quadratic criterion function described as above leads to Figure 4-3. The
parameter θ has been successfully identified for our simplified AO system by being θ = 9.0.

Figure 4-3: Plot of the quadratic criterion function for the simplified AO system

Now, we have demonstrated the principle of costless identification using an example of a sim-
plified AO system which was identified using just the excitation coming from the disturbance.
So it is possible to identify the AO system without explicit external excitation, but we do
need to be able to capture the dynamics of the disturbance into a parametrized model. As
soon as we fail to do this, consistency problems as described in Section 3-2-3 will occur.

In Section 5-5, we will discuss more in depth in which cases costless closed-loop identification
is possible, this time specifically for our AO system. In the same Section, we will discuss that
in those cases where identifiability is given, theoretically, unlimited accuracy is possible as
experiment duration tends to infinity. Finally, also in Section 5-5, we will prove that H has
completely no influence on the amount of information provided in closed-loop.

4-4 Least cost experiment design paradigm proposed by Gevers
and Bombois

As explained earlier, it is important for us to identify the IM with a predetermined accuracy
while keeping the deterioration of the closed-loop process as low as possible. In closed-loop,
we have multiple possibilities for excitation locations and in closed-loop the excitation signal
might also get rejected by the controller partially or completely. This makes it much more
involved to determine a ”good” excitation signal for identification purposes. Therefore, it is
necessary to have a systematic approach to this problem in which we can exactly quantify
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our desires in terms of experiment cost and accuracy. Therefore, the choice for the paradigm
of Gevers and Bombois seems straightforward. There are, however, a few issues needed to
overcome before being able to apply this method for our research purposes.

There is first of all an important drawback of the least cost paradigm, which is the paradox
as we have explained earlier in Section 3-5-1: the optimal experiment depends on the system
which is to be estimated by the optimal experiment. A proposed solution is to design the
optimal experiment based on an estimate obtained from a short and simple initial experiment
[43]. Let us now imagine that this experiment is either too short or too simple in the sense
that we obtain a bad estimate which causes the designed ”optimal experiment” not to be
optimal at all. This means that we cannot possibly achieve the desired accuracy. In Section
3.1 [43], this issue is shortly touched upon, but no further solutions are provided.

As for our current research purposes, we will in first instance assume ”perfect” knowledge
of the plant. Later on, in Chapter 7, specifically in Section 7-1, we will have an in depth
discussion on the shortcomings of this assumption and provide a solution to robustify our
least cost experiment design procedure.

We can also notice two important issues with the constraints as formulated in Equation 3-52.
First of all, there are an infinite number of constraints, which means that the optimization
problem as it currently stands is practically impossible to solve. The last important issue is
that in the current form of Equation 3-52, we will not be able to apply LMI solvers, since the
constraints are not affine in the decision variable Φr(ω). In Section, 5-4, we will see that we
can easily sample the constraints in order to obtain a finite dimensional problem. Also, a more
elaborate solution, using the KYP lemma will be explained. Finally, the Schur complements
will be used to linearize the constraints as given in Equation 3-52.

Lastly, there is a problem with the decision variable Φr(ω) itself, which is its infinite dimen-
sionality. This problem can be solved by parametrizing Φr(ω). In Section 5-3, we will discuss
different methods to parametrize our decision variable and show that a multisine parametriza-
tion is better than the FIR parametrization applied in [43]. Later on, in our evaluation in
Section 7-2, we will revisit this consideration, this time taking criteria for robustness and
MIMO into mind as well.

4-5 Final choice identification methods

Let us address our conclusion regarding the different methods in the same sequence as we
have ordered them in this Chapter.

It should be clear by now that spectral identification can indeed estimate the open-loop plant
at any desired accuracy. However, since no model for the disturbance is taken into account,
the cost for arriving at a desired accuracy will always be higher in comparison with other
more advanced identification techniques. For this reason, the spectral identification method
can solely serve as a tool for identification to obtain an initial estimate of the design to serve
as a basis for the experiment that we have to design.

Clearly, the method of Béchet and Kolb identifies the inverse controller and is, thus, next to
being fundamentally wrong, of no use at all. We can be short about this.
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We have shown that as long as H ∈ H, the parametric prediction error identification works
well in closed-loop. Therefore, accurate and correct modeling of the disturbance H is of extra
importance. In closed-loop, a bias will emerge as soon as H /∈ H. These consistency problems
that will emerge were discussed and explained in Section 3-2-3. In the following, each time
we will assume, ”perfect” knowledge of the disturbance characteristics H.

In Section 4-3, we have shown that costless identification is possible by providing a simplified
example, which assumed ”perfect” knowledge of the disturbance characteristics H. Practi-
cally, we already know that ”perfect” modeling is impossible and even good modeling might
be cumbersome since atmospheric turbulence is highly complex, nonlinear, and time-variant.

Although there are certain question marks regarding costless identification, in the following
Chapter, we will dive deeper into costless identification, because it does have great potential
if we are able to accurately model and capture the disturbance characteristics.

Finally, we have discussed how the paradigm as proposed by Gevers and Bombois can aid us in
our optimal experiment design. We are looking for an experiment that achieves a prespecified
accuracy at the lowest possible cost and this is exactly what the novel paradigm is about.

Therefore, in the following Chapter, we shall focus our attention on the open-loop and closed-
loop identification of three different AO systems with the least cost identification paradigm.
The three different systems taken into consideration will be a unit-delay gain, a second order
system with only the gain as a variable, and finally a second order system with full freedom,
i.e. three free variables.

Both in open-loop and closed-loop, the cost will be defined as the total energy of the excitation
spectrum. Thus, initially, when only the total energy of the excitation spectrum is considered,
the imposed optimization problem for the reference signals r1 or r2 will become as follows:

min
Φr1,2

1
2π

∫ +π

−π
Φr1,2(ω)dω s.t. α

√
λ1(T (ejω, θ)PθT (ejω, θ)T ) < radm (4-6)

Finally, we will consider the deterioration of the ordinary closed-loop operation as being the
cost, which is clearly more interesting for our research purposes. While the constraints of
the optimization problem stay exactly the same the costs for the two imposed optimization
problems related to the reference signals r1 and r2 will respectively become:

Jr1 = 1
2π

∫ +π

−π

|GC|2

|1 +GC|2
Φr1(ω)dω

Jr2 = 1
2π

∫ +π

−π

|G|2

|1 +GC|2
Φr2(ω)dω

(4-7)

There are, however, just like with every method some issues that we need to be overcome
to apply the method to our problem. First of all, we can notice that in the above equations
the optimal experiment is naturally based on knowledge of the true system. Since this is not
available yet, designing the true optimal experiment is impossible and, therefore, we have to
rely on initial estimates for designing the optimal experiment. Although this brings along
robustness issues on its turn, we will assume our knowledge of the different plants to be
perfect.
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Later on, we will also look into possible robustness issues when we consider the stochastic
character of these estimates. For example, what happens when the initial estimate is too poor
to result in a good experiment. Naturally, you cannot achieve a good identification of the
underlying system without a ”good” experiment, and we also cannot reach a good experiment
without a good initial estimate. However, the question is now of course how good does the
initial estimate have to be to guarantee a certain accuracy in the experiment design or how
can we cope with the uncertainty present in the initial estimate. In Section 7-1, we will deal
with this issue and formulate a solution to robustify the experiment design procedure.

We also mentioned two problems regarding the constraints. First of all, the constraints are
currently not expressed in terms of the optimization variable. Most importantly, however,
we need to ensure that we arrive at a description which is affine in terms of the optimization
variables. This will be discussed and solved in Section 5-4.

Finally, we also need to use a finite dimensional parametrization for the infinite dimensional
Φr(ω). This will be considered in depth in Section 5-3.
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Chapter 5

Application of least cost identification

In the previous Chapter, we ended with the conclusion that it is best to apply the newly
developed least cost identification paradigm to our problem at hand. In this Chapter, we will
present the issues that we came across. The applied solutions and results will be presented
for each issue.

Our first Section will be devoted to the initial assumptions that we made in our research.

Consequently, in Section 5-2 we will discuss which excitation location is best to use for the
purpose of closed-loop identification and which one would be more efficient in terms of cost.
This has not been considered in [43] or earlier literature.

In succession, we will look into different methods of parametrizing our infinite dimensional
input power spectrum in Section 5-3. An FIR parametrization was proposed and applied in
[43]. However, we suggest that a sinusoidal parametrization is more efficient both in terms of
cost and computational load.

This will be followed by a short summary of the literature on how to obtain a convex formu-
lation of the optimization in Section 5-4.

From there on, we will dwell deeper into costless closed-loop identification in Section 5-5. In
the previous Chapter, we had already shortly touched upon this topic. In this Section, we
will continue this discussion by explaining when exactly costless identification is applicable
specifically in the case of a Box-Jenkins model. After this, we will derive exact expressions
for the information matrix in case of costless identification. Also, by further working out the
expressions for the information matrix, we will prove that neither the shape nor the total
energy of the disturbance spectrum effects the accuracy of the experiment.

An important part of our research we have spent on overcoming numerical issues. Therefore,
finally, in Section 5-6, we will discuss these issues and provide solutions for them.
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5-1 Initial assumptions

Before starting to apply the least cost identification paradigm developed by Bombois and
Gevers, we will first make initial assumptions in advance. In Figure 4-1, we can still see the
measurement noise is depicted as being n. Since the measurement noise is already engineered
to be very small, i.e. negligible in AO systems [13], we have decided to assume n = 0.
Hereby, with negligible loss of accuracy, we will have significantly reduced the complexity of
our problem by making this assumption.

A second important assumption is that we will assume the systems that we will look into to be
exact. So each time, we will try to find the least cost excitation spectrum for a hypothetically
perfectly known system. This means that, in first instance, we will not take into account
issues such as estimate accuracy and robustness of the least cost identification procedure.

The same will also hold for the modeling of the disturbance H.

Finally, our analyses will be restricted to the SISO case only.

Later, in Chapter 7, we will get back to the assumption of ”perfect” knowledge, and we will
also provide a method to robustify our least cost experiment design procedure. We will also
revisit the assumption on the accuracy of the modeling of H and provide several suggestions
for future work. Finally, although MIMO considerations have been left out in our research,
we will spend time to also evaluate how we might extend our method to this situation which
require different criteria.

5-2 Which excitation location to use for closed-loop systems

In the previous Chapter, we still kept open the question for the excitation location. As we can
see in Figure 4-1, there are still two possibilities r1 and r2 for excitation and in this Section we
will derive based on the related sensitivity functions which input location r1 or r2 is better.

We will first start by deriving the transfer function from r2 to s first, i.e. Tr2−>s, because this
excitation location is more common in practice more common. Afterwards we will compare
this to Tr1−>s by doing the same derivation. Let us now start by writing down the relationship
between the signals ucmd and s, applying the assumptions mentioned in the previous Section,
we obtain:

s = GWFSwatm +GWFSGDMu (5-1)

Since we are only looking into the relationship between r2 and s, we will assume watm = 0.
Substituting for u with u = Cs+ r2 gives us:

s = GWFSGDM (Cs+ r2) (5-2)
s = GWFSGDMCs+GWFSGDMr2 (5-3)

Substituting GIM = GWFSGDM and rewriting results in:

Fatih Han Çağlayan Master of Science Thesis



5-3 Finite dimensional parametrization of the input power spectrum Φr 41

(1−GIMC)s = GIMr2 (5-4)

s = GIM
1−GIMC

r2 (5-5)

Now, we shall do the same derivation for Tr1−>s as well and finally compare both transfer
functions to see which excitation location is a more rational and logic choice. Again we start
off by writing down the relationship between ucmd and s under the same assumptions:

s = GWFSGDMu (5-6)

Substituting for u with u = Cs+ Cr1 gives us:

s = GWFSGDM (Cs+ Cr1) (5-7)
s = GWFSGDMCs+GWFSGDMCr1 (5-8)

Substituting GIM = GWFSGDM and rewriting results in:

(1−GIMC)s = GIMCr1 (5-9)

s = GIMC

1−GIMC
r1 (5-10)

So when we write down the two transfer functions Tr1−>s Tr2−>s next to each other, we can
clearly notice that Tr1−>s is nothing more than a low-pass filtered version of Tr2−>s. This is
due to therm C which represents an integrator:

Tr1−>s = GIMC

1−GIMC
Tr2−>s = GIM

1−GIMC
(5-11)

This will have its effect on both the input and the output as well, because especially at higher
frequencies we would have to use higher excitation to reach the same level of excitation at the
output. Therefore, it is a clear choice to pick r2 as our standard excitation location from now
on. This is depicted in Figure 5-1 where also the assumptions as mentioned in the previous
Section have been taken into account.

5-3 Finite dimensional parametrization of the input power spec-
trum Φr

An important part of our research is to determine a good parametrization for the infinite
dimensional input power spectrum Φr, which is basically the decision variable of our opti-
mization problem as described in Equation 4-6. In order to be able to solve this optimization
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Figure 5-1: Final closed-loop identification setup for the telescope after assumptions and decision
excitation location

problem using LMI optimization [44], we need to adapt a finite dimensional linear parametriza-
tion for our decision variable Φr.

In the papers published by Bombois and Gevers an FIR parametrization has been chosen
[38] [43] [45]. We will show that for our application purposes this is not the best option.
Therefore, we will explain why we specifically prefer a sinusoidal parametrization over an
FIR parametrization.

In the following Subsections, we will explain both methods and sum the pros and cons.
Subsequently, we will draw the final conclusion for our research purposes.

5-3-1 FIR parametrization

An FIR parametrization is represented by the following equation:

Φr(ω) =
+m∑

k=−m
Rke

jωk = R0 + 2
m∑
k=1

Rkcos(kω) � 0 ∀ω, (5-12)

where R−k = Rk are the decision variables and these variables can be interpreted as the
autocorrelation coefficients of an FIR filtered Gaussian white noise signal. The scalar m is
a user defined choice. Naturally, if we choose m large enough, the spectrum will have more
freedom and flexibility to attain different excitation spectra. Also note that for the choice
m = 0, we are simply defining a Gaussian white noise spectrum.

To guarantee the positivity of the spectrum we need to restrict the possible choices for the
decision variables Rk by adding another LMI constraint [37]. For this purpose, the positive
real lemma is applied. The existence of a symmetric Q satisfying the following constraints
ensures that the spectrum Φr is indeed positive definite:

[
Q−ATQA CT −ATQB
C −BTQA D +DT −BTQB

]
� 0, (5-13)

where the matrices A, B, C and D are given as:
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A =
[
O1×(m−1) 0
Im−1 O(m−1)×1

]
, B =

[
1 0 ... 0

]T
(5-14)

C =
[
R1 R2 ... Rm

]
, D = R0/2 (5-15)

An important advantage of this parametrization is the high numerical stability. However, this
is at the cost of a very high computational load. This is because there is an additional LMI
that needs to be solved. Especially for higher scales it becomes undesirable. Furthermore,
since we are dealing with a sum of exponentials, this parametrization will not allow us to
pinpoint the optimal frequency, which is basically one of the most important aspects of our
research. This difference in pinpointing the optimal frequency between the two different
parametrization methods has been depicted in Figure 5-2.

The smoothing nature of this method is an important drawback for our purpose of research
in that it becomes more difficult to pinpoint the optimal frequency. It is possible to increase
the value chosen for m, but combined with the high computational, it is not an option to
increase the value of m too much. This causes not only difficulties with pinpointing the
optimal frequency, but this also leads to less optimal solution. To understand this, one can
simply try to look at the extreme case of m = 0, which equals Gaussian white noise. For this
case, it can be easily understood that a big part of the excitation spectrum is unnecessary
additional cost.

5-3-2 Multisine parametrization

A multisine parametrization is represented by the following equation:

Φr(ω) =
m∑
k=1

Rk (δ(ω − ωk) + δ(ω + ωk)) � 0 ∀ω, (5-16)

For the computational load criterion, clearly, the multisine method is much faster than the
FIR method. This is simply because for the FIR method another extra LMI problem has to
be solved in order to guarantee positive definiteness of the spectrum, while in the case of the
multisine, it is simply a matter of constraining all amplitudes of the sinusoidals to be positive.

As for numeric stability, it appears that the multisine parametrization becomes less stable for
higher sampling rates. This is because the solvers cannot distinguish the difference between
two very close sinusoidals in terms of the information matrix. Therefore, in case of finer
sampling, the difference is numerically too small to be taken into consideration by the solvers,
which means that the problem has basically turned into a non-convex problem and, logically,
this causes all the difficulties with the LMI solvers. For this reason, the FIR parametrization
performs slightly better in terms of stability. However, since the multisine parametrization
still performs perfectly fine for sample rates that are more than needed for our purpose, it is
not necessary to rule out this method based on its numeric stability properties.

An important extra advantage of this method is that it is strong in pinpointing the optimal
frequency as opposed to the FIR parametrization which is basically nothing more than a
smoothed spectrum, especially for low m.
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5-3-3 Final parametrization choice for our purpose

In this section we will summarize the advantages and disadvantages of both parametrization
methods and make a final choice while keeping in mind the needs for our research purpose.
Therefore, we will have to carefully select the criteria to choose the best method for our
purposes.

In any case, it is important to have numerical stability and an FIR parametrization is better
in terms of numerical stability than a multisine method. However, this problem only appears
for extreme fine sampling and, thus, a multisine parametrization is still applicable to our
problem as long as the sampling is not taken much higher than necessary.

Another important criterion to asses our parametrization method is the computational load.
It is undesirable to have high computational load for our purpose. This is first of all because
different scenarios will be investigated and, thus, calculation time to obtain results is impor-
tant. There is also the aspect of available computational power at ESO. For the method to be
applicable for ESO, it must not have high computational load, due to the limited resources.

The ability to pinpoint the optimal frequency is for our purpose also an option that we cannot
miss out on. It is clear that the FIR method leads to smoothed spectra while the multisine
method picks out a single frequency or a set of single frequencies. This also leads us to our
last criterion which is the cost itself. A smoothed spectrum, as is the case for the FIR method,
leads naturally to higher cost.

Figure 5-2: The differene in pinpointing the optimal frequency between an FIR parametrization
and a multisine parametrization

Table 5-1: Summary and comparison of the advantages and disadvantages of both FIR and
multisine parametrization methods

FIR low m FIR high m multisine
numerical stability ++ ++ +-,+
low computational load - - - ++
pinpointing strength - - - ++
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5-4 Convex formulation of the accuracy constraint

In the previous Section, we have taken a first step to apply least cost optimization in prac-
tice. There are, however, still some other important issues if we look back at the constraints
as formulated in the optimization problem in Equation 4-6. We can see that the accuracy
constraint α

√
λ1(T (ejω, θ)PθT (ejω, θ)T ) < radm is first of all not a function of the decision

variable Φr(ω). Another essential requirement that has to be met is that the accuracy con-
straint becomes an affine function of the decision variable Φr(ω). Furthermore, we can also
still see that there are an infinite number of constraints.

In the following subsections, we shall first discuss how we can turn the current accuracy con-
straint into an affine function of the decision variable using the expression for the information
matrix [34] [35] and the Schur complements [44]. After this, we will formulate our final convex
optimization problem, which will be followed by a discussion on how to solve the issue of still
having an infinite number of constraints.

5-4-1 Reformulating accuracy constraint as an affine function in Φr

A function in terms of the decision variable can be obtained by substituting the following
expression for the information matrix, the inverse of Pθ [35]:

P−1
θ = N

σ2
e

1
2π

∫ +π

−π
Fr(ejω, θ0)F ∗r (ejω, θ0)Φr(ω)dω

+ N

σ2
e

1
2π

∫ +π

−π
Fn(ejω, θ0)F ∗n(ejω, θ0)σ2

edω,

(5-17)

where Fr(z, θ0) = ∇G(z,θ0)
(1+CG0)H0

and Fn(z, θ0) = − C
(1+CG0)∇G(z, θ0). Of course, in open-loop,

due to the absence of feedback, i.e. C = 0, these expressions simplify into Fr(z, θ0) = ∇G(z,θ0)
H0

and Fn(z, θ0) = 0.

In the expression for the information matrix above, for our research purposes, without loss
of generality, information on possible parameters of H(θ) have been discarded and, thus, we
solely considered the part of the information matrix related to the plant parameters.

Now remains the rewriting of the accuracy constraint α
√
λ1(T (ejω, θ)PθT (ejω, θ)T ) < radm

into an affine function of Φr, which can be done using the Schur complements [44] [43]:

P−1
θ � Radm(ω)

� α2

r2
adm

T (ejω, θ)TT (ejω, θ) > 0 ∀ω
(5-18)

Therefore, the final formulation of the convex least cost optimization problem becomes:

min
Φr

1
2π

∫ +π

−π
Φr(ω)dω s.t. Φr � 0 and s.t. P−1

θ � Radm(ω) ∀ω, (5-19)

where P−1
θ and Radm are given in Equation 5-17 and 5-18 respectively.
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If we define the cost to be the deterioration of the normal closed-loop operation, the cost part
of the final formulation becomes different:

min
Φr

1
2π

∫ +π

−π

|G|2

|1 +GC|2
Φr(ω)dω s.t. Φr � 0 and s.t. P−1

θ � Radm(ω) ∀ω, (5-20)

5-4-2 infinite number of constraints

The optimization problem as formulated in Equations 5-19 5-20 is still not numerically solv-
able, because there are an infinite number of constraints. This for the reason that the accuracy
constraint must hold for all possible ω. The simplest solution to overcome this problem is
simply by sampling the frequency ω [43].

This approach does require, however, among other things, numerical integration of the in-
formation matrix, which brings along numerical problems of its own. These issues will be
discussed and solved for in Section 5-6-1.

5-5 Costless closed-loop identification in depth

In this Section, we will have an in depth study of costless identification. We will start off
with deriving necessary and sufficient conditions for costless identification to be possible for
our AO system in question, which we have modeled using a Box-Jenkins model structure.
After that, we will derive the accuracy capabilities of costless identification based on the
information matrix as defined earlier in Equation 5-17. Finally, we will analyze whether more
disturbance has a positive or negative effect on the accuracy of the experiment.

5-5-1 Conditions for costless identification for AO systems specifically

Earlier in Section 3-4-2, we have explained in which cases costless identification is possible for
the Box-Jenkins model structure. It was explained that if and only if either nx+nk > nd+nf
or ny > nb + nd the information matrix is positive definite.

This means that in our case, since AO systems usually use a simple integrator as controller
and since AO systems are usually modeled as a simple gain, costless identification is applicable
to the system as long as we try to identify a scalar Interaction Matrix, which represents the
dc gain of our plant.

5-5-2 Information content and accuracy capabilities of costless closed-loop iden-
tification

In the previous subsection, we looked into the necessary and sufficient conditions for costless
identification to be possible. Now we will look into the amount of information that costless
identification can provide us. To do this, we will look again into the expression for the infor-
mation matrix in Equation 5-17. Since there is no explicit external excitation, i.e. Φr(ω) = 0,
the expression for the information matrix simplifies to:
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P−1
θ = N

σ2
e

1
2π

∫ +π

−π
Fn(ejω, θ0)Fn(ejω, θ0)∗σ2

edω (5-21)

Since we have already established the requirements for costless identification we know that
the matrix resulting from the integral

∫+π
−π Fn(ejω, θ0)Fn(ejω, θ0)∗dω will be positive definite.

The duration of the experiment can be scaled up unlimitedly, this means that, theoretically,
costless identification is able to provide unlimited accuracy, because it should be clear that
as N → ∞ also P−1

θ → ∞. Thus, if more accuracy is needed, we can simply scale up the
experiment duration N , which represents the number of samples.

So we have established that costless identification can provide unlimited accuracy. However,
what is needed to extract this information? This can be understood by looking back at
Equation 3-21:

ε(k, θ) = y(k)− ŷ(k|k − 1, θ) = H−1(q−1, θ)[y(k)−G(q−1, θ)u(k)] (5-22)

In the very definition of the prediction error, accurate information regarding the disturbance
H is needed. As explained in Section 3-2-3, consistency problems occur as soon H /∈ H.
Thus, although costless identification can provide us with sufficient information, whether
we are able to extract this information depends on how good we are able to capture the
dynamics of atmospheric turbulence in an accurate model. Further analysis on this topic will
be in Section 7-3.

5-5-3 Does more disturbance power lead to more or less information content?

There is an interesting and peculiar paradox with costless identification, which is the role of
the disturbance or the noise. In regular open-loop identification, less disturbance or noise
is always better, because this aids the accuracy of the experiment. However, with costless
identification the disturbance does not solely play a ”bad” role, because at the same time it
is our single source of excitation, and thus also our single source of information.

Naturally this leads to the following interesting question. Does more power in the spectrum
of the disturbance lead to better or worse accuracy in costless identification experiments? Or
what happens when we the disturbance has a different spectrum.

First of all, more disturbance seems to be a ”bad” thing. No one desires disturbance or noise
to corrupt their experiment. However, at the same time, this leads to more information,
which is ”good”. The same line of reasoning can be followed for less disturbance. The true
answer on this question is: It does not matter!.

To understand how this works exactly, we will look back to the information matrix as defined
for costless identification experiments in Equation 5-21 and work out the expression:
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P−1
θ = N

σ2
e

1
2π

∫ +π

−π
Fn(ejω, θ0)Fn(ejω, θ0)∗σ2

edω

= N
1

2π

∫ +π

−π
Fn(ejω, θ0)Fn(ejω, θ0)∗dω

= N
1

2π

∫ +π

−π

(
C

(1 + CG0)∇G(z, θ0)
)(

C

(1 + CG0)∇G(z, θ0)
)∗
dω

= N
1

2π

∫ +π

−π

∣∣∣∣ C

(1 + CG0)∇G(z, θ0)
∣∣∣∣ dω

(5-23)

From the second line, it already becomes clear that the disturbance itself plays no role what-
soever in the achievable accuracy. When working out this expression even further, we see
that only the plant G and the controller C are decisive elements that influence the achievable
accuracy.

5-6 Overcoming numerical issues

An important part of the research was invested into solving numerous numerical issues. In this
Section, two important factors needed for the stability of LMI solvers such that convergence
is possible. In the last Subsection, since different solvers have different performance, we
will review three different LMI solvers which have been applied during our research namely
SeDuMi, SDPT3 and MOSEK.

5-6-1 Numeric integration of the information matrix

To understand what kind of problems might occur when numeric integration is applied to
obtain the information matrix, we need to look back at the definition of the information
matrix in Equation 5-17. For simplicity’s sake and without the loss of generality, we shall
only look at an open-loop case, i.e. Fr(z, θ0) = ∇G(z,θ0)

H0
and Fn(z, θ0) = 0:

P−1
θ = N

σ2
e

1
2π

∫ +π

−π
Fr(ejω, θ0)Fr(ejω, θ0)∗Φr(ω)dω (5-24)

Now, let us zoom in more into the term Fr(ejω, θ0)Fr(ejω, θ0)∗, which we shall assume to be
a 3× 3 matrix, because for our research purposes we will eventually switch to a second order
system with three free variables:

Fr(1)Fr(1)∗ Fr(1)Fr(2)∗ Fr(1)Fr(3)∗
Fr(2)Fr(1)∗ Fr(2)Fr(2)∗ Fr(2)Fr(3)∗
Fr(3)Fr(1)∗ Fr(3)Fr(2)∗ Fr(3)Fr(3)∗

 (5-25)

In the matrix above the blue diagonal entries are actual real entries, because we are multi-
plying a complex expression with its complex conjugate. However, if we start off in Matlab
numerically from the very start, even these diagonal entries that should be real end up com-
plex. This error continues of course in the integration and finally the LMI becomes unsolvable,
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because we are trying to ”compare” complex numbers with each other, which is clearly im-
possible.

One might be tricked into thinking that taking the real part or the absolute value of the
final result will solve this problem. Unfortunately, the opposite is true. It appears that if we
start off with unsimplified expressions in this matrix, we create an error that deteriorates the
accuracy at each iteration, thereby making the error bigger with each step.

For this reason, it is essential to utilize the Matlab Symbolic Toolbox to arrive at real and
maximally simplified expressions for the entries. It is important to explicitly enforce a real
expression in the Toolbox and also give explicit commands about the type of expression we
need to arrive at. For the diagonal entries for example, we had to explicitly specify the
expression we need to arrive at as follows:

Fr(i)Fr(i)∗ = Re(Fr(i))2 + Im(Fr(i))2, (5-26)

which needed to be calculated in three separate steps, first by calculating the real part, then
the imaginary part, then finally by summing the squares of these expressions.

An even more interesting issue is with the non-diagonal entries of the matrix above. These are
complex expressions and this calls for problems with numeric integration. It can be proven,
however, that the non-diagonal entries are real symmetric and complex anti-symmetric. Once
knowing this fact, since the interval of the integral [−π,+π] is also symmetric, we can already
conclude that the complex part of the integral will disappear eventually anyway. Therefore,
instead of taking Fr(i)Fr(j)∗, with i 6= j, we took the real part of this expression. This has
been explicitly enforced in the Matlab Symbolic Toolbox as follows:

Re(Fr(i)Fr(j)∗) = Re(Fr(i))Re(Fr(j)) + Im(Fr(i))Im(Fr(j)) (5-27)

5-6-2 Data scaling for the numeric stability of the solvers

For numeric stability purposes, data scaling is important. In the online Google Groups of
Yalmip, Johan Löfberg, the creator of YALMIP, spent numerous topics on the importance of
data scaling for stability.

To understand this, we will provide a simple example. Suppose we are dealing with the
following simple optimization:

min
x

x s.t. 109x ≥ 105 (5-28)

By simple observation, we can already conclude that the solution is given by x = 10−4. In
practice, however, numerical problems are to be expected, because the order of x is too small in
comparison with the other constraint values. This creates high numerical sensitivity, because
small rounding errors can now have a magnified effect on the solution. Due to this reason, it
is difficult, sometimes even impossible, for the solver to converge to a correct solution.

For this purpose, in our Matlab code, a scaling parameter is included in order to lessen the
difference in order of magnitude.
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5-6-3 Review LMI solvers

In our research, three different LMI solvers have been used: SeDuMi, SDPT3 and MOSEK.
Our experience with the three packages has been quite different and, therefore, we want
to include a small summary of what we have experienced in terms of speed, stability and
accuracy, cost, and error feedback.

SeDuMi is in our opinion the best among the three packages. Due to its strict solver policy, it
is the most stable solver. SeDuMi gives an error even if something might go wrong. SDPT3
is in some cases for example able to solve an LMI with unscaled data. In the same case,
SeDuMi would directly throw an error. However, there are also cases in which SDPT3 tries
to solve the problem and comes up with a completely wrong solution and even gives the
message ”successfully solved”, while SeDuMi throws an error. Therefore, when SDPT3 is
compared with SeDuMi in terms of stability and accuracy, we can clearly say that SeDuMI
is the winner. In terms of speed both SDPT3 and SeDuMi are the big winners, although
SDPT3 is slightly faster each time. Since both, SeDuMi and SDPT3 are free packages this is
also good. Finally, there is the issue of error feedback. Although SeDuMi is the one throwing
an error easily, in comparison with SDPT3 it does not give helpful feedback.

We have kept MOSEK for the last, because we want to be quite short about it. Although
MOSEK is a commercial package, it looses on all fronts. In most cases, MOSEK either
produces a result that is complete rubbish or throws an error with very vague error feedback
while both the other solvers are able to successfully solve the problem.
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Chapter 6

Results and interpretation least cost
identification AO system

In this Chapter, we will present and explain the resulting least cost excitation spectra for
different systems that represent our AO System. In all Sections, the resulting spectra have
been normalized in order to fit into one plot together with the other responses.

First, in Section 6-1, we will derive representative plant and disturbance models to apply our
method to. We will have a separate plant model for our AO system in question which is the
VLT of ESO, which will be based on the measurements we received from ESO. However, since
we want our results to be applicable for other AO systems as well, we will derive in total three
systems that are representative for an AO system.

For each system in both open-loop and closed-loop, a separate Section will be devoted in
which the resulting least cost excitation spectrum will be explained and linked to response(s)
of the system. This can thus be linked to the response of the plant G1,2,3, the disturbance H
or in closed-loop to the closed-loop response of the system Gcl = G

1+CG .

Initially, in order to build intuition for the least cost identification method, we shall define
the cost as the total energy of the excitation spectrum as defined in Equation 5-19, i.e.
J = 1

2π
∫+π
−π Φr(ω)dω.

Although, this will provide us with important insights, it is still not our final goal. We
are interested in the spectrum that deteriorates the closed-loop operation of the system as
low as possible. In order to take this into consideration we have to change the cost into
Jcl = 1

2π
∫+π
−π

|G|2
|1+GC|2 Φr(ω)dω, which represents the part of the of the output signal that is

caused by the extra presence of the signal r(k).

Therefore, in our final section 6-7, we shall look into the optimization problem as defined in
Equation 5-20 for the underdamped second order resonance systemM2 in closed loop, which
is the most representative for AO systems.

In the same final Section 6-7, we will prove mathematically that the information-to-cost ratio
solely depends on the disturbance H(jω). Therefore, in our specific case, with a low frequency
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disturbance coming from atmospheric turbulence, it is always best to excite the system at the
highest possible frequency, which is in our case the Nyquist frequency.

6-1 Plant and disturbance modeling

In the following of this Chapter, we will need a model for the plant we want to research, but
also a model for the temporal response of the disturbance.

The spectrum of the temporal response of atmospheric turbulence is given as follows in [46]:

Wφ(f) = 0.033C2
nk̄

2Lv5/3
(
f2 + k2

0v
2

4π2

)−4/3

(6-1)

This means that the spectrum has the following form:

|H(jω)|2 = a2

(−( jω2π )2 + b2)4/3
(6-2)

The exponent 4/3 can be approximated by 1:

|H(jω)|2 ≈ a2

(−( jω2π )2 + b2)
(6-3)

and since |H(jω)|2 = H(jω)H(−jω) this gives:

H(jω) = a
jω
2π + b

(6-4)

Therefore, H(s) = γs0
s+s0

. The measurements from the data coming from ESO show that
s0 ≈ 2π and γ ≈ 0.01. For computational load purposes s0 has been downscaled to 0.2π in
our derivations.

As for the plant itself, we will consider three different systems. In Figure 2-7, we can clearly see
that up to 180 Hz the gain of the plant is mainly straight. Therefore, the first approximation
we will make is a simple unit delay gain system:

M1 = G1(z, θ) = gz−1 H(z) = γs0
s+ s0

|s= z−1
T sz

θ = g (6-5)

This representation is together with the representation below in Equation 6-6 the most com-
mon, because the interaction matrix of the DM is assumed to be static and thus contains no
dynamics. These representation are also used by ESO for the controller of the VLT and also
very commonly used by the AO community [11] [12] [13].

For frequencies above 180 Hz, we have no further measurement information, because our
excitation signal was low-pass filtered. However, it is safe to assume that the DSM of the
VLT is an underdamped second order resonance system just as other DMs, see for example
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Figure 7 in [32]. Also from [47], we understand that the resonance frequency for the DSM of
the VLT is above 500 Hz, which essentially approves the usage of both M1 and M2. The
representationM2 is defined as below:

M2 = G2(z, θ) = g
ω2

0
s2 + 2ζω0s+ ω2

0

∣∣∣
s= z−1

T sz

H(z) = γs0
s+ s0

∣∣∣
s= z−1

T sz

θ = g, (6-6)

Finally, since we want an even more general representation we will also consider the following
in which not only the gain of the system is considered but other dynamics as well:

M3 = G3(z, θ) = g
ω2

0
s2 + 2ζω0s+ ω2

0

∣∣∣
s= z−1

T sz

H(z) = γs0
s+ s0

∣∣∣
s= z−1

T sz

θ =
[
g ζ ω0

]T
,

(6-7)

where 0.1 < ζ < 1 and to prevent numerical issues and high computational load ω0 is chosen
1 < ω0 < 5. The choice for ω0 to be low ensures that there are not too many samples.
Therefore, without loss of generality we have down-scaled our problem.

The controller in closed-loop experiments C(z) is a pure integrator:

C(z) = κ

1− z−1 , (6-8)

where κ is the gain of the controller.

6-2 Open-loop unit delay AO system

In Figure 6-1, the least cost excitation spectrum for the unit-delay plant G1 in open-loop is
presented.

We can notice that the optimal frequency ωopt is at the Nyquist frequency. The reason for
this should be quite clear, because the amount of information that the plant provides at each
frequency is the same, but the disturbance is the lowest at the Nyquist frequency. Thus, it
has clearly chosen for the location of the best SNR.

It should also not be a surprise that a single frequency is used because there is only 1 variable
that needs to be identified. Each sinusoidal input provides information about the phase delay
and amplitude gain at that specific frequency, which means that it gives 2 equations.

6-3 Open-loop second order AO system dc gain

In Figure 6-2, the least cost excitation spectrum for the underdamped second order resonance
system G2 in open-loop is presented.

We can observe that the optimal spectrum concentrates its power at the peak response of the
plant G2, which makes sense, because this is the location of the best SNR. The disturbance
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Figure 6-1: Least cost spectrum for G1 in open-loop

H rolls off with a slope of −1 while the plant rolls off with a slope of −2. It was the other
way around, the optimal frequency would still have been at the Nyquist frequency.
Furthermore, we can also notice that there is still one peak, which also still makes sense,
because we are still trying to identify one variable.

6-4 Closed-loop second order AO system dc gain

In Figure 6-3, the least cost excitation spectrum for the underdamped second order resonance
system G2 in closed-loop is presented.
We can observe that the optimal spectrum now moves along with the magnitude peak of the
closed-loop response Gcl. When the controller gain is zero, the response is and should be equal
to the open-loop case. As we increase the gain, we notice the closed-loop response changing
and the peak of the optimal excitation spectrum moves along with the peak magnitude of
the closed-loop response. Again, it is clear that the optimal SNR is chosen for excitation.
Furthermore, can still see one peak. It makes sense that the closed-loop structure does not
change the number of peaks.

6-5 Open-loop full second order AO system

In Figure 6-4, the least cost excitation spectrum for the underdamped second order resonance
system G3 in open-loop is presented.
We can notice that there are now 2 peaks instead of one. This is because a single sinusoidal
would provide 2 equations and thus we are only able to solve for 2 variables at most. Since
we have three free variables in this case, we do need to have at least two peaks.
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Figure 6-2: Least cost spectrum for G2 in open-loop, ζ = 0.1, ω0 = 2.4 rad/s

The location of the sinusoidals is also an interesting point of discussion. They are placed
at the locations where the second derivative the bode magnitude curve are zero. We would
expect them to be as close as possible to the peak magnitude ω0. However, on the other hand,
the closer the sinusoidals will be to each other in terms of frequency, the more difficult it will
be to distinguish them. Apparently, these two locations are the perfect balance of both.

It is important to note that the shape of the optimal excitation spectrum is independent of
N .

In Figure 6-5, the least cost excitation spectrum for a critically damped second order resonance
system G3 in open-loop is presented. We can again notice two peaks, but the locations are now
further apart. Apparently, when there is no obvious peak, it makes sense for the frequencies of
the sinusoidals to be further apart. From this, we can conclude that the damping coeffecient
ζ determines the distance between the sinusoidals mainly.

6-6 Closed-loop full second order AO system

In Figure 6-6, the least cost excitation spectrum for the underdamped second order resonance
system G3 in closed-loop is presented.

We can again notice that there are 2 peaks. This is to be expected, because closing the loop
should not effect the minimum necessary sinusoidals to solve this problem. We can see that
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Figure 6-3: Least cost spectrum for G2 in closed-loop, ζ = 0.1, ω0 = 1.9 rad/s, κ = 0.09

for closed-loop, the peak response of the open-loop and the peak response of the closed-loop
are chosen as optimal locations.

6-7 Deterioration cost closed-loop second order AO system dc gain

In this Section, we will consider the deterioration of the normal closed-loop operation. The
final and total convex optimization problem was given in Equation 5-20 and is given again
below

min
Φr

1
2π

∫ +π

−π

|G|2

|1 +GC|2
Φr(ω)dω s.t. Φr � 0 and s.t. P−1

θ � Radm(ω) ∀ω, (6-9)

The resulting excitation spectrum for the closed-loop system G2 is given in Figure 6-7. It is
clear that the Nyquist frequency is chosen as the optimal one.
This selection is actually not surprising. In the following we will derive the information-to-cost
ratio and show that it depends on H(jω) solely. For this, we have to start from the expression
of the information matrix as given in Equation 5-17. In our derivation, for simplicity’s sake
and without the loss of generality, we shall consider the continuous version:

P−1
θ = N

σ2
e

1
2π

∫ +∞

−∞
Fr(ω, θ0)F ∗r (ω, θ0)Φr(ω)dω

+ N

σ2
e

1
2π

∫ +∞

−∞
Fn(ω, θ0)F ∗n(jω, θ0)σ2

edω,

(6-10)
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Figure 6-4: Least cost spectrum for underdamped second order system G3 in open-loop, ζ = 0.2,
ω0 = 3.1 rad/s

We know for a fact that in closed-loop identification of our AO when an external excitation
signal is used and when short experiment durations are applied, the contribution coming from
the disturbance is negligible. Therefore, the information matrix simplifies to the following
expression:

P−1
θ ≈ N

σ2
e

1
2π

∫ +∞

−∞
Fr(ω, θ0)F ∗r (jω, θ0)Φr(ω)dω (6-11)

The expression Fr(ω, θ0) for the system G2 with the parameter vector θ = g becomes:

Fr(ω) = 1
(1 +G2C)H∇G2(ω)

= 1
(1 +G2C)H

δG2
δg

(6-12)

and since δG2
δg = G2

g , this gives:

Fr(ω) = 1
g

G2
(1 +G2C)H (6-13)

Thus the expression for FrF ∗r becomes:

FrF
∗
r = 1

g2
1

|H(ω|2
|G2(ω)|2

|1 +G2(ω)C(ω)|2 (6-14)

Substituting the expression for FrF ∗r in the information matrix gives:

Master of Science Thesis Fatih Han Çağlayan



58 Results and interpretation least cost identification AO system

Figure 6-5: Least cost spectrum for critically damped second order system G3 in open-loop,
ζ = 1, ω0 = 3.1 rad/s

P−1
θ = 1

g2
N

σ2
e

1
2π

∫ +∞

−∞

1
|H(ω)|2

|G2(ω)|2

|1 +G2(ω)C(ω)|2 Φr(ω)dω (6-15)

Above we have the final expression for the information matrix, whereas the cost Jcl was
defined as:

Jcl = 1
2π

∫ +∞

−∞

|G2(ω)|2

|1 +G2(ω)C(ω)|2 Φr(ω)dω (6-16)

From these expressions, we are able to derive the expressions for the information matrix and
the cost in case of a single sinusoidal excitation signal at frequency ωsf . These will be referred
to as single frequency information matrix P−1

θ,sf (ωsf ) and the single frequency cost Jcl,sf (ωsf ):

P−1
θ,sf (ωsf ) = 1

g2
N

σ2
e

1
|H(ωsf )|2

1
2π

|G2(ωsf )|2

|1 +G2(ωsf )C(ωsf )|2 Φr,sf (ωsf ),

Jcl,sf (ωsf ) = 1
2π

|G2(ωsf )|2

|1 +G2(ωsf )C(ωsf )|2 Φr,sf (ωsf ),
(6-17)

where Φr,sf (ωsf ) is the spectrum of a single sinusoidal signal at frequency ωsf .

Now, we can derive the information-to-cost ratio (ICR) when a single sinusoidal excitation
signal is applied to the system G2(ω):
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Figure 6-6: Least cost spectrum for underdamped second order system G3 in closed-loop, ζ =
0.1, ω0 = 1.2, κ = 0.09

ICRsf (ω) =
P−1
θ,sf

Jcl,sf

= 1
g2
N

σ2
e

1
|H(ω)|2

(6-18)

From the expression, we can observe that the single frequency information-to-cost ratio at a
specific frequency is inversely proportional with the squared magnitude of the disturbance, i.e.
proportional with 1

|H(ω)|2 . Furthermore, we can note that the expression for the information-
to-cost ratio would be a scalar if H(ω) were to be a flat frequency independent transfer
function.

For our specific case, in which we are dealing with low frequency disturbance coming from
atmospheric turbulence, we are able to deduce that the Nyquist frequency is the optimal
frequency for the single frequency information-to-cost ratio. This means that the result as
shown in Figure 6-7 is a general result for second order systems with low frequency disturbance
and, thus, for the new generation AO systems with a DSM such as the ELT and VLT of ESO,
the best possible excitation frequency will always be the Nyquist frequency as long as they
consider solely the deterioration of the output as the definition of their cost.

In practice it might be necessary to implement a simple additional constraint into the opti-
mization problem due to saturation limits of the input, because it is possible that the mag-
nitude of the system has become so small at the Nyquist frequency that the input reaches its
saturation limit. The additional constraint will simply lower the excitation frequency up to a
point where the magnitude of the system is large enough to prevent saturation of the input.
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Figure 6-7: Least deterioration cost spectrum for G2 in closed-loop, ζ = 0.1, ω0 = 1.9,
κ = 0.09

6-8 Final conclusion

For the identification of the static gain of closed-loop second order resonance systems in gen-
eral, we have proven that the per frequency information-to-cost ratio is inversely proportional
with the squared magnitude of the disturbance H(ω), i.e. proportional with 1/|H(ω)|2.

In our specific case, in which are trying to calibrate the IM of an AO system and in which we
are dealing with atmospheric turbulence, that has a low pass filtered character, the Nyquist
frequency is the optimal frequency for excitation in terms of least disturbing the closed-loop
operation.
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Chapter 7

Discussion and evaluation

Up to now, we have presented and interpreted the meaning of the results in the light of
our current research. However, scientifically it is important to present a critical attitude
even towards your own results. In this Chapter, we will highlight our method from different
perspectives, which were not highlighted before or were not considered because of the utilized
assumptions. This will also lead to a number of suggestions and recommendations for future
research, which will be explained in the related Sections.

As such, we shall first start off our discussion with robustness issues. Up to now, we have
assumed ”perfect” knowledge of our plant, and we have designed our excitation spectra ac-
cordingly. However, in practice it is never possible to perfectly know the system. Therefore,
in the following Section, we shall discuss different methods on how to robustify the least cost
experiment design method.

After this, we will continue our discussion by reconsidering our choice for the parametrization
method, this time in view of a MIMO identification.

7-1 How to robustify the optimal experiment design procedure?

There is an important bottleneck inherent to all experiment design methods used in system
identification, which is that the optimal experiment is naturally based on knowledge of the
true system [35]. Since this is not available yet, designing the true optimal experiment is
impossible. Therefore, as described in the previous Chapter initial estimates are taken to
serve as a basis for the experiment design. When doing this, one should take care of doing
this in the robust sense, because the initial estimate also has an uncertainty which affects, of
course, the experiment design. The more information we have about the true plant, the closer
we can get to the true optimal experiment. As long as perfect knowledge is not present, we
have to ensure our experiment deals with the worst-case scenario by taking this into account.

There are currently two different methods available in literature to deal with robustness. First
of all, there is so called adaptive design, which basically suggests taking the road of iterative
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experiment design. As soon as new information about the system is available, this will be
taken into account in the excitation signal, so that the spectrum of the excitation signal is
basically optimized on-the-go [48] [49] [50].

Another method is a two-step procedure in which the uncertainty in the first step is taken into
account 7-1 [51], [52], [53]. In this method, we adapt our already existing design procedure
to encompass for the uncertainty of the initial parameter estimates, which are in actuality
stochastic values. In the adapted design procedure, the stochastic nature of the parameter is
taken into account by considering a domain of possible values instead of just one point. This
has been shown in Figure 7-1 for a hypothetical two-dimensional estimate θ̂N .

Figure 7-1: The estimate θ̂N (blue cross) along with its 95% uncertainty region, the ellipsoid U
and true value (red circle) in the parameter space

The idea is that the initial estimate θ̂init is contained inside a set Θ, in practice this will
be with a certain probability as shown with the 95% uncertainty region in Figure. Now,
instead of designing the experiment solely based on the inaccurate θ̂init, we choose to design
the optimal experiment to account for the worst-case scenario inside the whole set Θ. So we
choose a design criterion f(P−1(θ), θ) and optimize for the excitation spectrum such that it
can account for all possible parameters within the set, thus f(P−1(θ), θ) over Θ.

After we adapt our original optimization problem with the method above, we will need to
include the worst-case θ ∈ Θ into our optimization. After this is included as well, the imposed
optimization problem for the input r(k) becomes:

min
Φr

max
θ∈Θ

1
2π

∫ +π

−π
Φr(ω)dω s.t. α

√
∇G(ejω, θ)Pθ∇TG(ejω, θ) < radm (7-1)
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7-2 MIMO considerations for the parametrization method

Up to now we have considered four different criteria which are computational load, numeric
stability, pinpointing capability of the optimal frequency and, related to the pinpointing capa-
bility, the final cost. These were the most important criteria for our current research purposes.
However, for further future research, it might also be interesting to consider the parametriza-
tion method in the light of MIMO systems, because there is an important difference compared
with the SISO case, which is that it is not possible to excite interacting channels at the same
instance with the exact same signal.

To understand this more properly, six different channels of a hypothetical AO system have
been depicted in Figure 7-2. We can notice that, except for actuator 1 and actuator 6, all
actuators influence each others channel. Therefore, identification is not possible when e.g.
actuator 1 and actuator 2 are excited with the same signal at the same time, because it is
impossible to differentiate the signals from each other.

This directly causes difficulties for the applicability of the current parametrization methods
in MIMO closed-loop, because for the SISO case we are presented with a set of single optimal
frequencies without any further phase information.

Figure 7-2: Effect of parallel excitation of interacting channels

For future work, it might be necessary to extend the basis with more information such as
phase information for the multisine method. In that case, we can produce two sinusoidals
at the same frequency with a phase shift of 90◦, such that it becomes possible to excite
neighbouring actuators without possible interference.

Also, it is interesting to notice that AO systems are locally coupled, but globally decoupled
systems. This is depicted in Figure 7-3. This gives opportunities for sequential excitation of
the actuators without any chance of interfering channels.
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Figure 7-3: Sequential excitation of non-interacting channels

7-3 Modeling the disturbance characteristics

Theoretically, in closed-loop the disturbance can provide sufficient accuracy in case identi-
fiability is given. However, although the information is present, in order to extract that
information we do need accurate information on the disturbance characteristics. In our re-
search, we did not investigate how accurately the applied model captures the true disturbance
characteristics. Neither did we spent time on more accurate, i.e. higher order, modeling pos-
sibilities of the disturbance.

For future work, it is interesting to further research the potential use of costless identification.
For this purpose, we would need to investigate how well we are able to capture the dynamics
of atmospheric turbulence, and how well the available information allows itself to be extracted
with this approximate model.

Is it possible to correct for certain mis-registration parameters by means of an approximate
model? As explained earlier, in case of a too big modeling error consistency problems as
described in Section 3-2-3, will arise. If it appears that, in any case, sufficiently accurate
modeling is not possible due to the complex characteristics of atmospheric turbulence, it is
advisory not to choose for costless identification. So unless sufficiently accurate information
about the characteristics of the atmospheric turbulence at the specific location and time are
present, it is not the road map to choose for, because without this information we are not
able to extract the information that is present.
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Chapter 8

Conclusion

This final Chapter will discuss the main conclusions that can be drawn from our study. For
this purpose, we will of course keep in mind the boundaries of our research, which were
highlighted in the previous Chapter, and make sure not to draw any expeditious conclusions.

The motivation for this research was the development of the new generation integrated AO
systems with a Deformable Secondary Mirror (DSM) such as the VLT and the ELT. These new
AO systems are much more sensitive to external factors and therefore need regular calibration
as opposed to the older systems. Due to this, ESO wants to do the identification experiment
necessary for the calibration in closed-loop and in a manner that minimally disturbs the
observations coming from the telescope. In control-theoretical terms this means that the
normal closed-loop operation of the telescope should be disturbed as low as possible for the
identification experiment.

Up to now, only one serious proposal was made to solve for this problem by Béchet and Kolb.
In our study, we have first of all proven that their approach is fundamentally wrong and that
it will lead to the identification of the static gain of the inverse controller.

Furthermore, the research conducted at TNO for this thesis led to the proposal of a new
calibration strategy. This strategy, which is a paradigm for parametric prediction error iden-
tification recently developed by the system identification community, designs the excitation
signal in such a way that the corresponding experiment is the least cost, i.e. least intrusive,
for the underlying system while guaranteeing a predefined level of accuracy. The cost can
be defined in several ways depending on the application. In open-loop, a straightforward
definition for the cost is the total energy of the input signal, which is a combination of the
total power of the input and the experiment duration. For our purpose however, since we are
not specifically interested in limiting the power of the input signal, this cost has been defined
as the total power of the perturbations at the output of the system induced by the excitation
signal. Minimizing this cost will ensure that the normal closed-loop operation, and thus the
observations coming from the telescope, are minimally distorted.

For the identification of the static gain of closed-loop second order resonance systems in gen-
eral, we have proven that the per frequency information-to-cost ratio is inversely proportional
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with the squared magnitude of the disturbance H(ω), i.e. proportional with 1/|H(ω)|2. In
our specific case, in which are dealing with atmospheric turbulence, the disturbance has a low
pass filtered character. This means for the new generation AO systems such as the VLT and
ELT of ESO, that the Nyquist frequency is the optimal frequency for excitation in terms of
least disturbing the closed-loop.

Finally, we have also shown that, in theory, if accurate information on the disturbance char-
acteristics is available and if time allows, it is possible to achieve unlimited accuracy using
the excitation originating from the disturbance signal if we want to identify the static gain of
closed-loop second order resonance systems.
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Appendix A

Modeling Atmospheric Turbulence for
Simulation

There are multiple methods available in literature for modelling atmospheric turbulence in
order to simulate an AO system. These can be roughly divided into two main methods. The
first is based on using the spectral power spectrum of atmospheric turbulence, while the others
are called covariance methods [54]. The spectral power spectrum based methods rely on the
fact that the information from the frequency domain can be translated back into the spatial
domain. The covariance methods are directly in the spatial domain. Here, the covariance
matrix of atmospheric turbulence is used to generate realizations [55].

The method based on filtering white Gaussian noise in the spectral domain in order to obtain
spatial information by means of Fourier transformation was first proposed by McGlamery [56]
and improved on by several researchers. Although several other methods were created, by far
this stayed the most popular method [57].

In [56], [57] and others, the Kolmogorov model for atmospheric turbulence is used which has
a non-integrable pole at zero. Our method is based on their theory but improves the method
by using the Von Karman model for atmospheric turbulence.

We start with the Von Karman spectrum for atmospheric turbulence:

Φ(f, z) = 0.033C2
n(z)(f2 + f2

0 )−11/6e−f
2/f2

i , (A-1)

where C2
n(z) is the structure constant which represents of the turbulence at each position z

in the propagation. This model takes into account the inner and outer scale by incorporating
fi = 1/l0 and f0 = 1/L0 in the equation, where l0 and L0 are called the the inner and outer
scale. Since we will do a numerical implementation it is not necessary to incorporate the
inner scale in the equation, because the dynamic range of the spectrum is so large that the
effect of the roll-off due to the exponential term containing the inner scale will be negligible.
Hence we can simplify our equation to:
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Φ(f, z) = 0.033C2
n(z)(f2 + f2

0 )−11/6 (A-2)

Using Fried’s coherence length:

r0 =
[

0.423f2

cos(γ)

∫
C2
n(z)dz

]−3/5

(A-3)

Now we can switch to a notation using Fried’s coherence for the power spectral density of the
atmospheric turbulence.

Φ(f) = 0.023r−5/3
0 (f2 + f2

0 )−11/6 (A-4)

From here on we will discuss how exactly we can produce a phase screen using the equation
above. For random processes, we can create a realization by filtering Gaussian white noise
using the amplitude spectrum as a filter, which is the square root of the power spectral density.
Using the inverse Fourier transform we will obtain the phase screen. Expressed in equation
form this looks like:

φ(r) =
∫∫ ∞
−∞

n(f)
√

Φ(f)eir·fdf, (A-5)

where n(f) is complex Gaussian white noise with zero mean and standard deviation of one.
Our first step towards using a FFT algorithm will be to discretize this expression:

φ(r) =
∑
fx

∑
fy

n(fx, fy)
√

Φ(fx, fy)ei2π(fxx+fyy)∆fx∆fy (A-6)

Since it is not possible to take an infinite number of samples we will have to limit our support
width and number of samples.

φ(r) =
Nx/2−1∑
fx=−Nx/2

Ny/2−1∑
fy=−Ny/2

n(fx, fy)
√

Φ(fx, fy)
1

GxGy
ei2π(fxx/Nx+fyy/Ny) (A-7)

This can be implemented easily with an FFT algorithm to obtain a phase screen.

A-1 Important properties of the spectral power spectrum method

The first important problem is that the Fourier transform will result in a periodic realization.
This will not be a problem as long as we take into account that a limited amount of data
from the history should be considered for identification and control.

The second problem is somewhat more important and restricting. It is an inherent limitation
of the chosen method that the minimum and maximum frequencies are settled. As such, the
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minimum frequency is fmin = 1/L, where L is the screen-size. Therefore, if no cautions are
made, low spatial frequencies might be inadequately captured with this method.
This can be understood better from Figure A-1 where we have picked a numerical example of
the amplitude spectrum. As can be seen there is a lot of energy stored in the low frequency
part with a finite outer scale of 100 m. When we assume our telescope to have a diameter of
1 m and we choose to produce only for this support width, the first sample will start from
f = 1m−1. Even if we try to generate a phase screen of 10 by 10 m, the first covered frequency
would be f = 0.1 m−1, which is still inadequate sampling of the low frequency content.

Figure A-1: A 1-D slice of the amplitude spectrum with r0 = 0.15m and L0 = 100m.

Unfortunately, choosing to dismiss the low-frequency information is not an option, because in
the simulation we would miss important turbulence characteristics such as tip and tilt, which
are encoded in the low-frequency part. The easiest solution to overcome this problem is to
produce a large enough screen and extract a small portion from it. This will contain also the
subharmonics for that small part of the screen, because we have ensured that we sample the
chosen outer scale correctly, which determines the low-frequency characteristics. In [58] a rule
of thumb is used for the chosen screen size. In order to adequately sample the low-frequency
content, the screen should be five times larger than the outer scale.
There are also several different methods are available to overcome this problem [58] [59] [57].
These methods basically use irregular sampling to overcome the problem of not being able
to sample the low-frequency content correctly. As one can imagine, it would already suffice
to use a finer sampling in the low-frequency zone while using a rougher sampling in the
high-frequency zone where almost no energy is stored.

A-1-1 Evaluation of the obtained phase screen

After obtaining the phase screen, we have to evaluate and compare which one is better. This
is done by calculating the average spectral power density of the realization and comparing
it to the theoretical version. For this purpose, we will use the WienerâĂŞKhinchin theorem.
This allows to compute the auto-correlation and therewith the power spectral density from
the raw data:
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FR(fx, fy) = FFT2(φ(x, y)) (A-8)
PSD(fx, fy) = FR(fx, fy)FR ∗ (fx, fy) (A-9)

First we will compare the method of taking a larger screen without decreasing the sample
rate. This means a significant increase in calculation time. For the purpose of evaluation
of the method, we took a 1-D cross-section of the screen of 655.36 m and 65536 samples
in both dimensions, we took the average power spectral density of realization that are 10
by 10 m. The size of 10 m is chosen, because of the fact that a smaller screen size would
produce a power spectral density with insufficient number of samples to make any important
conclusions. The result of theory versus realization can be found in Figure A-2.

Figure A-2: Spectrum of atmospheric turbulence: theory versus simulation of 655.36 m.

Although the result of A-2 shows good results, the first roll-off point is not so good visible due
to the limited size of the screen. Therefore, since we are evaluating in a single dimension, we
produced a 1-D phase screen using the same method, but with a much larger screen length
of 335 km. This shows us clearly that the low-frequency behavior of the phase screen used in
our simulation has the correct characteristics.
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Figure A-3: Spectrum of atmospheric turbulence: theory versus simulation of 335 km.
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Appendix B

Notions of identifiability and
informativity for prediction error

identification

B-1 Notion of identifiability

Let us assume a system that is defined by a model structure which is parametrized by a vector
θ ∈ Rd:

y(t) = G(q−1, θ)u(t) +H(q−1, θ)e(t) (B-1)

A certain θ ∈ Rd gives a model M(θ) = [G(q−1, θ), H(q−1, θ)]. We will also define a model
structure M as being a differentiable mapping from a connected open subset Dθ ∈ Rd to a
model setM∗ [60]:

M : θ ∈ Dθ →M(θ) = [G(q−1, θ), H(q−1, θ)] ∈M∗ (B-2)

If a model structure M(θ) is identifiable at some value θ0 then it means that the model
[G(θ0), H(θ0))] cannot be represented by any other [G(θ), H(θ))] ∈M.

For a more mathematical definition of identifiability, we shall first introduce some new nota-
tions for the earlier defined expressions of the one-step-ahead predictor:

ŷ(k|k − 1, θ) = H−1(θ)G(θ)u(k) + [I −H−1(θ)]y(k) (B-3)
ŷ(k|k − 1, θ) = Wu(θ)u(k) +Wy(θ)y(k), (B-4)

where Wu(θ) = H−1(θ)G(θ) and Wy(θ) = [I−H−1(θ)]. We shall also introduce the following
notations:
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W (θ)=̂[Wu(θ) Wy(θ)], z(k)=̂
[
u(k)
y(k)

]
(B-5)

A parametric model structure M(θ) is locally identifiable at a value θ0 if there exists a δ > 0
such that for all θ in ||θ − θ0|| ≤ δ:

W (ejω, θ) = W (ejω, θ0) ∀ω ⇒ θ = θ0 (B-6)

The model structure is globally identifiable at the given value θ0 if the equation above holds
for δ → ∞. When the equation above holds for any given θ0 ∈ Rd, the model structure is
said to be globally identifiable.

B-2 Notion of informativity

Not all experiments ZN will allow to distinguish the model [G(θ0), H(θ0))] from all other
possibilities in the model setM. Therefore, the notion of informativity is introduced. A data
set ZN is defined to be informative with respect to the model set M if for any two models
W1(q) and W2(q) within the setM if the following equation

E[(W1(θ1)−W2(θ2))z(k)]2 = 0, (B-7)

holds if and only if W1 = W2 [34]. This is basically telling us that a data set is informative
with respect to a model if and only if it can uniquely distinguish each member of the model
set. If we define the following notation W1(θ1)−W2(θ2) = [∆Wu(θ1, θ2) ∆Wy(θ1, θ2)] then
the equation above can be rewritten as:

E[∆Wu(θ1, θ2)u(k) + ∆Wy(θ1, θ2)y(k)]2 = 0 (B-8)
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