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ABSTRACT Properly addressing uncertainties in reliability analysis is essential for realistic lifetime
predictions of power devices. This paper investigates parameter uncertainties on the lifetime estimation of
power devices using an empirical lifetime model and Monte Carlo simulations. Key parameters such as
junction temperature swings (1Tj), minimum junction temperature (Tj,min), and lifetime model constants
are analyzed for their impacts on lifetime outcomes. Sensitivity analysis reveals significant effects from
variations in parameters like β1 and 1Tj on the expected lifetime and its variability. Simultaneous variations
across all parameters further highlight the dominant influence of β1 on lifetime predictions. The analysis
suggests that a 5% uncertainty margin appears to offer a balanced trade-off between realistic lifetime
estimations and predictability. This Study underscores the importance of considering parameter uncertainties
for precise reliability evaluations. It addresses a critical gap by examining the rationale behind commonly
assumed 5%, and 10% uncertainty margins in lifetime modeling. By systematically evaluating these
margins’ impacts on key reliability parameters, the study provides a framework for selecting reasonable
assumptions based on physical insights and variability analysis, advancing the reliability modeling of power
devices.

INDEX TERMS Reliability, uncertainty analysis, lifetime models, power device, lifetime estimation.

I. INTRODUCTION
The reliability of power electronics systems is a critical
factor in ensuring the safe and efficient operation of modern
electrical infrastructure. Failure of these systems can lead to
significant costs and safety hazards, making reliability assess-
ment a vital aspect of the design and development process [1],
[2]. Power devices, such as IGBTs and MOSFETs, play a
crucial role in these systems by switching and regulating
power flow [3], [4]. Their reliability directly impacts the
performance of power converters, which are extensively
used in applications such as electric vehicles, renewable
energy systems, and industrial automation. Ensuring the
reliability of these power devices is therefore important
for minimizing failures, reducing maintenance costs, and
ensuring uninterrupted service.

The associate editor coordinating the review of this manuscript and

approving it for publication was Riccardo Mandrioli .

Power converters, which utilize power devices to control
energy flow, are especially vulnerable to operational failures,
significantly influencing the overall system’s reliability [3].
Studies show that power switches and capacitors are the
components most susceptible to failures in power electronic
interfaces [4], [5], [6]. Thermo-mechanical stresses, resulting
mainly from temperature variations, are a major cause
of these failures and greatly increase the likelihood of
wear-out mechanisms such as bond-wire fatigue and solder
degradation in power devices [7], [8]. These stresses are
induced by thermal cycles caused by load changes, switching
behavior, and environmental factors, which lead to repeated
heating and cooling of power devices. This cycling creates
thermo-mechanical stress due to the varied thermal expansion
coefficients of different materials in power devices, leading
to degradation over time [8]. The thermal cycles impacting
power devices can be categorized into fundamental, long-
term, and short-term cycles. Fundamental thermal cycles
are associated with load variations, transient temperature

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 100479

https://orcid.org/0000-0002-2567-5544
https://orcid.org/0000-0002-4179-8747
https://orcid.org/0000-0002-1171-9972
https://orcid.org/0000-0003-3015-4150


F. Kardan et al.: Impact of Parameter Uncertainties on Power Electronic Device Lifetime Predictions

differences are influenced by switching frequency, and
long-term cycles are primarily affected by environmental
factors [7], [8]. Power cycling experiments have demon-
strated that long-term thermal cycles lead to fatigue in the
thermal interface material and DBC-attach solder, while
short-term cycles are responsible for wear in bond wires and
die-attach solder [7], [9], [10]. These wear-out mechanisms
significantly contribute to the degradation of power devices
and thus shorten their lifetimes.

Conventional reliability data, like those in standard
handbooks, frequently make the assumption that failure
rates are constant and may not take into consideration the
wear-out mechanisms that are common in power semi-
conductors. It is essential to take into account the effects
of numerous stressors, such as temperature and humidity,
which might hasten the failure processes, for a more precise
reliability prediction [11]. Although generic reliability data,
such as those included in the FIDES guide, might offer
valuable insight, they frequently lack the detail required for
individual components and technologies. Because of this,
it is still difficult to estimate the reliability of the system
realistically without conducting an in-depth component-level
analysis [11], [12].

To predict the expected lifetime of power devices, a com-
prehensive reliability assessment framework is required. This
framework often involves empirical lifetime models that
account for failure mechanisms, including bond-wire fatigue
and solder degradation [13], [14]. Initially, the reliability
of power devices was determined through deterministic
calculations of time-to-failure based on specific loading pro-
files [15]. Although these methods provided a foundational
understanding, they were limited by their inability to account
for the inherent uncertainties and variabilities present in
real-world applications, such as those arising from material
inconsistencies and operational stresses. To overcome these
limitations, researchers have increasingly turned to proba-
bilistic approaches that incorporate statistical evaluations,
such as Monte Carlo simulations. Monte Carlo simulations
have become a popular technique for evaluating power
electronics reliability. By modeling stress parameters such as
thermal cycles and lifetime model parameters with particular
distributions, this technique enables the use of different
samples in multiple simulations [16], [17]. The lifetime
distribution can be determined by computing the cumulative
damage in each sample; this distribution frequently resembles
a Weibull distribution with a non-constant failure rate [18].
With this approach, component lifetimes under real-life
situations are represented with more accuracy.

Several empirical lifetime models, such as the LESIT,
CIPS 2008 (Bayerer), corrected CIPS 2008, and Skim
models, have been developed for predicting the lifetime
of power devices, each based on wear-out failure mecha-
nisms [19], [20]. These models, detailed in studies [13],
[14], [20], [21], [22], vary in their approach and accuracy.
These models, which depend on accelerated power cycle

studies, include several factors that affect power component
reliability. During these tests, these critical factors are
carefully considered.

Uncertainties in real-world scenarios originate from vari-
ations in lifetime model parameters and inconsistencies in
the component manufacturing procedure. These uncertainties
must be taken into account when assessing the reliability of
the components [11]. A popular statistical technique called
the Monte Carlo method is used to address these uncer-
tainties. With this approach, the reliability of a component
can be carefully and realistically assessed in a variety of
scenarios [23]. The choice of key variables influenced by real-
world conditions, along with the extent of their variability,
can significantly affect the lifetime estimates for power
devices. However, many studies assume fixed uncertainty
margins, such as 5% or 10%, for parameter variations
without providing a rationale for these choices [11], [24],
[25], [26], [27]. This can lead to overly conservative or
overly optimistic reliability predictions, which may not
reflect real-world conditions. To address this gap, this study
systematically investigates the impact of different margins
on lifetime model parameters, particularly the Weibull
parameters α (scale factor) and β (shape factor), to derive
reasonable assumptions for parameter uncertainties based on
physical and operational insights [46].
This paper explores the influence of these parameters

and their associated uncertainties on the lifetime model,
with a focus on identifying the most significant sources of
uncertainty. To carry out this investigation, we perform a
load-based reliability assessment of power devices tailored
to a specific application. In this case, the application is an EV
fast charger, for which the reliability of a full-bridge power
converter has been previously investigated in [28] and [29].
However, the primary objective of this study is to assess the
impact of parameter variations on lifetime estimation. This
methodology is broadly applicable to any application that
utilizes similar lifetime models for assessing the reliability
of power devices.

The following sections represent the framework of this
paper. In Section II, firstly, the power device number of
cycles to failure based on the different junction temperature
cycles is predicted by utilizing an empirical lifetime model
without considering uncertainties, and also information about
the reliability function was provided. Then in subsection II-B,
we delve further into the Monte Carlo study of param-
eter uncertainties in power device reliability, examining
the impact of varying both single and all parameters on
lifetime estimations of power components, respectively. The
conclusions from the data are presented in Section III.

II. RELIABILITY OF POWER DEVICES BY CONSIDERING
UNCERTAINTIES
A. LIFETIME ESTIMATION FRAMEWORK
In recent years, the strategy of predicting device lifetime
based on mission or load profiles has gained popularity for
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reliability analysis. Despite extensive research on mission
profile-based reliability assessments across various appli-
cations such as PV, wind energy, drivetrain technologies,
aerospace, and onboard chargers, a significant research gap
remains in studying reliability under specific battery load
conditions in DC fast chargers [5], [7], [8], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41]. Within the
scope of EV fast-charging systems, the converters endure
short spikes of high-current loads to expedite the charging
process [42]. This rapid charging is followed by a cooling
phase, which subjects the power electronic components to
thermal cycling. This thermal cycling, resulting from rapid
heating and cooling, can accelerate wear and lead to degrada-
tion through mechanisms such as thermo-mechanical fatigue.
Consequently, these stresses may shorten the components’
lifetime and perhaps result in wear-out failures [28], [29],
[43], [44]. So, analyzing the reliability of power devices in
these applications is of importance [28]. For this reason, [28]
investigated the reliability of power devices and finally, the
reliability of power converters in EV fast chargers.

In this paper, we assumed DC fast chargers as the
application context for our analysis, referencing prior work
in [28], which provides a foundation for assessing the
reliability of power converters in EV fast chargers. While our
contribution lies in systematically exploring how parameter
uncertainties influence lifetime predictions. Although the
focus of this study is not on specific applications or
load conditions, the methodology presented here is broadly
applicable to other applications that utilize similar lifetime
models for evaluating the reliability of power devices.

Since temperature data of components is an essential input
in the power device lifetime estimation process, this data is
used to calculate the power semiconductors’ number of cycles
to failure (Nf) employing empirical lifetime models [13],
[14]. Based on [13], [19], [28], [29], and [43], the LESIT
model tends to overpredict the number of cycles to failure
in situations involving long-term heating, as it does not
account for the duration of thermal cycles, which is a
critical factor for DBC solder joint fatigue. Conversely, the
CIPS model and its corrected version can provide more
accurate estimates in cases where DBC solder attach failure is
predominant, as they incorporate the effect of the temperature
swing duration [14], [28], [29], [43]. Thus, it is crucial to
select a lifetime model that aligns with the specific thermal
cycle characteristics or the application at hand, ensuring it
accurately reflects the relevant failure mechanisms [29], [43],
[44].

In EV fast chargers, the DBC-attached solder of power
semiconductors can be susceptible to thermal cycles due to
the longer temperature durations (ton) [28], [29], [43]. The
original CIPS model tends to overestimate the number of
cycles to failure when the heating time is longer [28], [43].
This overestimation occurs because the failure of the DBC
solder connection typically happens shortly after the heat
reaches the baseplate, signaling the device’s end of life [28],

[29], [43]. So the more appropriate model for EV charging
applications can be the corrected CIPS lifetime model,
which is employed to determine the number of cycles to
failure [28], [29], [43]. Therefore, this study uses this model
to investigate parameter uncertainties in this model [43]. The
CIPS and the corrected edition are presented in (1) and (2),
respectively [14], [20], [21]:

Nf = A1Tjβ1 tonβ3 Iβ4V β5Dβ6e
( β2
Tjmin+273 ) (1)

Nf (ton)
Nf (1.5)

=


2.25 if ton ≤ 0.1 s,(
ton
1.5

)−0.3

if 0.1 < ton < 60 s,

0.33 if ton ≥ 60 s.

(2)

In [14], the values of the variables A, and β1 − β6 are
displayed. In addition, it is assumed that the bond wire
diameter (D), current per bond wire (I ), and voltage range
(V /100) are 250µm, 20A and 9V . Moreover, ton is the
heating time of the device, which is related to the EV fast
charger’s load profile, in this study.

Since the lifetime estimation of devices in fast-charging
applications has been conducted in [28], [29], and [44], this
paper focuses specifically on the impact of uncertainties on
lifetime estimation. Therefore, without specifying a partic-
ular converter type in the application, this study assumes
that the assessment approach can be generalized across
applications using the same lifetime models. Therefore, it is
assumed in this study that the power devices used in the
converters of EV fast chargers experience different junction
temperature swings at a fixed minimum junction temperature
(Tj,min = 25◦C) based on the EV battery charging load, with
each charging session assumed to have a heating duration of
60minutes. Consequently, the number of cycles to failure (Nf)
for these power devices is estimated, as shown in Table 1.

TABLE 1. Number of cycles to failure at different junction temperature
differences.

These results provide a baseline reference for understand-
ing how different levels of junction temperature swings affect
device lifetime under nominal conditions. However, it should
be mentioned that the estimated Nf are not realistic on their
own due to the uncertainties in real life. Their function is to
demonstrate the deterministic output of the lifetime model
prior to incorporating variability. So, at this stage, the Monte
Carlo simulation should be taken into account for a suitable
reliability study by considering two main categories of
uncertainty: uncertainties arising from production variances
in devices and uncertainties in the parameters of the lifetime
model. For example, in the manufacturer’s datasheet, the
changes in IGBT parameters—such as the on-state voltage
(Vce,on)—are stated, along with typical maximum and lowest
values. Since variations in on-state voltage have a direct
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impact on the IGBT conduction losses, which in turn affect
Tj and 1Tj. Therefore, the reliability analysis should account
for the uncertainties in these parameters [11], [14].
To calculate the overall cumulative damage for power

components, Miner’s rule [45] is used. As a power device
experiences damage from the accumulated impacts of thermal
cycles, which is given by (3), [45]:

D =

n∑
i=1

ni
Nfi

(3)

where Nfi , the number of cycles to failure was computed
from the lifetime model, and ni, is the number of thermal
cycles in a year, which corresponds to the ith temperature
swing. It should be noted that the daily number of thermal
cycles, representing the daily charging sessions in EV charger
applications [28], is assumed to be 15 sessions in this study.

Next, using Equation (4), the power component’s end-
of-life is determined, shown by Lc (in years). The variable
D shows the accumulated damage to the component.
An estimate of the IGBT module’s lifetime is obtained by
accumulating D until it reaches a value of 1.

Lc =
1
D

(4)

To estimate the reliability of the power device, probability
distribution functions are used. These functions describe
the likelihood of different failure times, enabling engineers
to predict and enhance system reliability. The Weibull
and normal (Gaussian) distributions are two often utilized
distributions in this subject. The Weibull distribution is espe-
cially versatile, capable of modeling increasing, constant,
or decreasing failure rates based on its shape parameter (β)
[46]. On the other hand, when failure times are symmetrically
distributed around a mean value, the normal (Gaussian)
distribution is employed. Therefore, when considering wear-
out failures, the Weibull distribution is the function that is
most recommended. The probability density function (PDF)
of the Weibull distribution is expressed as 5, [46]:

f (t) =
β

α

(
t
α

)β−1

e−(t/α)β (5)

In this equation, α is the scale parameter that represents the
characteristic life or mean life where 63.2% of the population
is expected to fail. A higher α value typically means a
longer expected lifetime, and β is the shape parameter, which
determines the behavior of the failure rate. If β < 1,
the failure rate decreases over time, indicating early-life
failures. If β = 1, the failure rate remains constant, which
corresponds to the exponential distribution. If β > 1, the
failure rate increases over time, indicating wear-out failures.
In the context of the lifetime distribution, β provides insight
into the variability of lifetimes. A higher β value suggests
less variability, meaning lifetimes are more tightly clustered
around themean, while a lower β indicates greater variability,
with a broader spread of lifetimes.

The cumulative distribution function (CDF) or unrelia-
bility function, which gives the probability that the time to
failure is less than or equal to t , is given by 6:

F(t) = 1 − e−(t/α)β (6)

From the CDF, the reliability function R(t) can be derived
by 7, representing the probability that a component will
operate without failure up to time t:

R(t) = e−(t/α)β (7)

So in this study, 10, 000 simulations are carried out via
the Monte Carlo method [23] to construct the end-of-life
probability distribution function. These findings indicate that
the lifetime of these sets is distributed according to the
Weibull distribution, which will be shown in the next section.
As well, the CDF of the devices will be extracted. The
assumptions and equations introduced in this section will
be applied in the subsequent analysis to incorporate both
individual and combined parameter uncertainties.

B. MONTE CARLO-BASED ANALYSIS OF PARAMETER
UNCERTAINTIES IN POWER DEVICE RELIABILITY
As mentioned in the previous part, in actual field operations,
the time to end-of-life of power devices can vary due
to tolerances in physical parameters and differences in
experienced stresses. So, in this section, uncertainties are
considered by usingMonte Carlo simulations and analyzed to
assess the reliability of the device and to evaluate their impact
on the lifetime estimation of power devices. This approach
involves plotting the distributions of temperature-related
lifetime constants β1 and β2, along with other parameters of
the lifetime model β3-β6. As well, different values of Vce,on
lead to different thermal stresses, impacting parameters such
as Tjmin and 1Tj.

To capture this inherent variability in the lifetime model
parameters, each parameter is modeled as a normally dis-
tributed variable. This choice is motivated by the assumption
that the deviations in parameters due to manufacturing tol-
erances, measurement errors, or environmental fluctuations
are symmetric and centered around a nominal value. Each
parameter’s nominal value (µ) is used as the mean of the
normal distribution, while the standard deviation (σ ) is
defined as a fixed fraction of the absolute value of the nominal
value. In this study, firstly, two uncertainty margins are
considered (5% and 10%). The probability density function
(PDF) for a normally distributed parameter x is given by (8):

f (x) =
1

σ
√
2π

exp
(

−
(x − µ)2

2σ 2

)
(8)

This function describes the likelihood of different parame-
ter values occurring. A larger σ results in a wider distribution,
indicating more variability and uncertainty in that parameter.

Figure 1 illustrates the PDFs for each parameter under
both uncertainty levels. As shown, increasing the uncertainty
margin leads to a broader spread in the distribution.
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FIGURE 1. Normal Probability Density Functions (PDFs) of Lifetime Model Parameters.

These distributions serve as the basis for the Monte Carlo
simulations, ensuring that parameter variability is statistically
incorporated into the reliability analysis.

So the sensitivity of the end of life of the device to β1-β6,
Tjmin, and 1Tj can be evaluated individually or collectively
in this section. Finally, the distribution of the end-of-life of
IGBT can be determined, enabling a comprehensive lifetime
analysis with a given degree of confidence.

1) SINGLE PARAMETER CHANGES
In this part, single parameters of the lifetime model are
changed while keeping the other parameters at their constant
values to conduct a sensitivity analysis. The parameters
considered include the minimum junction temperature
(Tjmin), the junction temperature swings (1Tj), and the fixed
coefficients of the CIPS lifetime model (β1-β6). Thus, this
analysis investigates the effect of parameter variations on the
lifetime of power devices by incrementally adding margins to
each parameter. Each case’s lifetime distributions are derived
using the Weibull function, which was shown in (5). Most
studies commonly consider 5% or 10% parameter margins
as a standard for accounting for uncertainties, often without
further investigation into these margins [11], [24], [25], [26],
[27]. Therefore, this study first examines both 5% and 10%
margins, then extends the analysis to margins from 1%
to 13% to evaluate their specific impact on the lifetime

model to identify and select reasonable margins for lifetime
estimation. The lifetime distributions were extracted under
conditions when the 1Tj and Tj,min are set to 60◦ C, and
25◦ C, respectively, based on the studied application, using
assumptions and equations (2), (3), (4) and (5) in section II.
(A). The results are presented in Figure. 2.
Figure. 2 illustrates Weibull distributions of IGBT lifetime

under two different margin scenarios (5% and 10%) for
lifetime model parameters (β1, β2, β3, β4, β5, β6, Tamb,
and 1Tj). The behavior of the Weibull parameters α (scale
parameter) and β (shape factor) varies across parameters as
the margins increase, reflecting the sensitivity of lifetime
predictions to uncertainties in these parameters. As shown
in this Figure, by increasing the margin from 5% to 10%
for β1, the characteristic lifetime (α) greatly increases
(16.3%), indicating a longer mean or characteristic life.
However, such a substantial increase appears undesirable,
as it reflects an excessive influence of β1 uncertainty on
the outcome. Also β, drops from 3.29 to 1.68, implying
a great increase in variability and reduced predictability,
which is problematic for reliability. For β2, the increase in
α is marginal (3.6%), suggesting a reasonable response to
increased margins and β, drops from 13.65 to 6.93. So,
while α is stable, the β values vary visibly. Changes in
β3 result in relatively stable α values, while β decreases
considerably, pointing to increased variability without much
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FIGURE 2. Weibull distributions and Montecarlo simulations with parameter variation.

change in the expected lifetime. However, both β values are
unusually high, indicating extreme clustering of failure times.
Similarly, increases in margins for β4, β5, and β6 show slight
increases in α, reflecting reasonable sensitivity to parameter
variations. However, the noticeable drop in β suggests that the
model is overestimating its sensitivity to the variability in that
parameter. It shows that while the changes in α remain within
acceptable bounds, the large drop in β raises concerns about
an amplified response to parameter uncertainty. The changes
in α for Tamb remain relatively stable, which is acceptable,
while β visibly decreasing, pointing to an increased spread
or more variability in lifetimes due to the uncertainty in
Tamb which raises concerns regarding the robustness of the
lifetime predictions. This indicates a possible overestimation
of the impact of Tamb uncertainty by the model. On the
other hand, the β values at both margins are extremely high,
which is not practically reasonable. Such values indicate very
sharp failure points or suggest that failures occur almost
simultaneously. The α values increase slightly as the 1Tj

margins grow, while β decreases, indicating greater vari-
ability in the lifetime distribution. This broadening reflects
increased uncertainty, as wider junction temperature swings
directly contribute to thermo-mechanical stresses, which are
critical in lifetime prediction models. Therefore, a reduction
in β is, to some extent, justifiable. However, in systems
with effective thermal management and stable operating
conditions, a drop of this magnitude in β raises concerns
about a potential overestimation of the impact of 1Tj
variability.

So in summary:
• β1 and1Tj are highly sensitive parameters, as variations
in both significantly affect α (scale parameter) and β

(shape factor), highlighting their dominant influence
on lifetime predictions. This is also physically relevant
because1Tj is a key factor in wear-out mechanisms, and
β1 relates to the impact of 1Tj on lifetime. Therefore,
these parameters require careful control and precise
estimation to avoid unrealistic predictions.
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• Changes in α are reasonable for most parameters, except
for the increases observed for β1 when the margin shifts
from 5% to 10%. However, the pronounced increases
in α for β1 point to an over-sensitivity to parameter
variations, potentially reducing the reliability of the
model’s lifetime predictions.

• While α remains stable for β3 and Tamb, the high
β values are unlikely to be physically meaningful
for reliability modeling. As they fail to represent
realistic variability in practical systems. Additionally,
the considerable reductions in β observed for parameters
such as β2, β3, β4, β5, β6, Tamb, and 1Tj suggest an
overestimation of the impact of parameter uncertainties
on lifetime predictions. Moderate drops in β are
reasonable for parameters with expected variability.
However, large reductions in β can exaggerate the
influence of these uncertainties, particularly in well-
controlled environments.

This analysis emphasizes how crucial it is to understand
and regulate uncertainty in these crucial elements in order
to obtain precise power device lifetime estimates. The CDF
(Cumulative Distribution Function) of the devices for each
parameter variation of 5% and 10% is shown in Figure. 3 to
validate the results presented in Figure. 2. Additionally, the
B10 lifetime of the device, which indicates the time at which
10% of devices will fail, is analyzed. Notably, according
to this figure, when the parameter β1 varies from 5% to
10%, the B10 life reduces noticeably from 40 to 23.5 years.
Despite α being smaller at the 5% margin compared to
the 10% margin case, its B10 life is higher because its β

is larger, meaning failures are more concentrated later, and
failures during the initial years are less common. Similarly,
for variations in 1Tj, the B10 life shows a considerable
reduction from 59.6 to 51.8 years. So, these show the
dominant influence of these two parameters in lifetime
estimation. In contrast, variations in other parameters result
in only minor changes in the B10 life. Therefore, the impact
of these parameter uncertainties on lifetime appears to be
negligible. Also, the B10 lifetime of the device under different
uncertainties for various parameters was relatively similar or
close, except for β1, where it was lower, ranging between
23 and 40 years. This highlights the remarkable impact of
β1 on the device’s lifetime. These findings corroborate the
results and discussions presented in Figure. 2.
To gain clear insights into how parameter variations impact

lifetime estimation and to analyze the sensitivity of these
parameters, the correlation between parameter changes and
their corresponding Weibull parameters was investigated
across different junction temperature swings (1Tj). This
sensitivity analysis considered variations ranging from 1%
to 13% for each single parameter. The results of these
investigations provide a detailed examination of parameter
uncertainties on the lifetime estimation. This analysis is
shown in Figure. 4, provides several important insights into
the sensitivity of each parameter to uncertainty and their
impact on lifetime predictions.

Firstly, variations in the Weibull distribution parameters, α
and β, as a function of margin, are largely independent of the
junction temperature fluctuations (1Tj). This suggests that
changes inmargins affect the lifetime parameters consistently
across different temperatures, providing similar results that
are largely invariant to thermal conditions.

Secondly, for all parameters examined, the variation in
the shape parameter (β) is more pronounced than that of
the scale parameter (α) at lower margins. This indicates that
the spread in lifetime, represented by β, is more sensitive to
small changes in margin than the average or characteristic
lifetime (α). However, as the margin increases beyond about
5%, the changes in β become smaller compared to those at
lower margins. This behavior highlights that margins below
5% can noticeably impact variability, which challenges their
applicability in practical scenarios.

Moreover, according to these results, the parameters β1 and
1Tj emerge as highly sensitive, with changes observed
in both α and β. For β1, α increases continuously with
increasing margins. At higher margins, the increase becomes
significant, which questions the practicality of such scenar-
ios. Additionally, β experiences a steep decline, particularly
for margins below about 5%, further emphasizing the
sensitivity of this parameter. Similarly, margins in 1Tj
shows a slight but consistent increase in α with increasing
margins, reflecting its contribution to lifetime predictions
in a reasonable manner. However, a sharp decrease in
β, particularly for margins below about 5%, highlights
its dominant role in introducing variability. These results
underscore the importance of precise margin assumptions for
these parameters to avoid overestimating variability and to
ensure reliable predictions. For the parameters β2, β3, β4,
β5, β6, and Tamb variations, similar trends are observed. The
scale parameter α remains relatively stable or shows slight
changes, while β exhibits noticeable declines, especially at
smaller margins. These declines suggest that the model is
overly sensitive to variations in these parameters. On the
other hand, the β values at lower margins are very high
for these parameters, suggesting extremely narrow lifetime
distributions or nearly deterministic failures, which are
unrealistic in practical applications.

Based on these findings, a 5% uncertainty margin is
recommended for highly sensitive parameters as a balanced
trade-off—it captures the essential parameter variability and
avoids unrealistic lifetime predictions.

Moreover, uncertainties in other parameters (β2 to β6 and
Tamb) can be considered negligible for lifetime estimation,
as their associated β values remain high even at lower
margins, and their B10 lifetime shows minimal variation
according to the results presented in Figure 3.

To quantitatively justify the choice of a 5% uncertainty
margin, the coefficient of variation (CV) was calculated
for the predicted lifetime distribution at each margin.
CV measures the relative variability of lifetime estimates by
normalizing the standard deviation to the mean, providing
an indication of how prediction uncertainty increases with
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FIGURE 3. CDF or unreliability function of the devices, considering each parameter variation.

parameter uncertainty. The CV was calculated as 9:

CV =
σ

µ
× 100 (9)

where σ is the standard deviation and µ is the mean of
the predicted lifetime distribution. In reliability analysis,
a higher CV indicates greater unpredictability in lifetime
estimation, which may compromise design robustness. The
CV of lifetime was calculated for each parameter across
uncertainty margins in Fig. 5. As shown in this Figure,
β1 exhibits the highest sensitivity to parameter uncertainty,
with CV increasing from approximately 6% at 1% margin
to 30% at 5% margin, and continuing to rise beyond this
point while other parameters remain in lower CV even
at 13% margin. Therefore, selecting a 5% uncertainty
margin represents a reasonable balance: it accounts for
parameter variability while maintaining an acceptable level of
predictive confidence, before prediction uncertainty becomes
excessively large.

In addition to the coefficient of variation analysis, the α-
β plots for each parameter’s uncertainty were investigated
to further justify the suggesting of a 5% margin which are
shown in Figure. 6. Three key observations were made from
the plots:

• Stabilization of β beyond 5%: Across all parameters,
the shape parameter β exhibits a sharp decline as the
uncertainty margin increases up to about 5%. However,
beyond this point, the β values tend to flatten. This
indicates that further increases in uncertainty margin
result in only marginal changes in β, implying a reduced
effect on predictability.

• High β values below 5%: As seen in subplots
(b) through (h), the β values are excessively high,
especially at margins below 5%—often exceeding 10.
In practical reliability assessments, such high β values
correspond to unrealistically low variability, which may
lead to overconfident and potentiallymisleading lifetime
predictions.
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FIGURE 4. Correlation of each parameter with the margin percentage on the Weibull parameters (α and β).

FIGURE 5. Coefficient of variation (CV) of the predicted lifetime versus
uncertainty margin for each model parameter.

• Growth in α for β1 uncertainty: In the case of
β1 uncertainty (subplot (a)), the scale parameter (α)
increases sharply beyond the 5%margin. These changes

are disproportionately large and not physically justifi-
able within a realistic reliability estimation framework.
In contrast, by increasing margins for other parameters,
the increase in α remains below 10%, suggesting more
acceptable lifetime shifts.

In conclusion, a 5% margin suggests achieving the most
reasonable lifetime estimates, as it effectively balances the
spread (β) without significantly altering the mean lifetime
(α). This analysis underscores that β1 is a dominant factor
in reliability modeling and must be carefully considered
to maintain realistic predictions, as uncertainties in it
significantly influence both the expected lifetime and its
variability.

2) VARIATIONS ACROSS ALL PARAMETERS
The second part of this study delves into the analysis of
the combined effects arising from simultaneous variations
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FIGURE 6. Weibull scale (α) versus shape (β) parameter plots for different model parameters under varying uncertainty margins (1 %-13 %).

FIGURE 7. Weibull distributions and Montecarlo simulations by
considering all parameters variations together.

in all parameters. Specifically, it examines concurrently the
impact of introducing 5% and 10% variations across all
parameters. The results of this approach are then compared
to the previous section, where only individual parameters
were varied. By contrasting these two scenarios, we gain
deeper insights into how uncertainties collectively influence
the lifetime estimation of power devices. To quantify these
effects, the lifetime distributions are derived using Weibull
distributions and Monte Carlo simulations for each margin
under the same conditions as in the previous section (1Tj and
Tj,min are set to 60◦ C, and 25◦ C, respectively). The results of
this analysis are presented in Figure. 7.

According to Figure. 7, the following observations is
extracted when all parameters are varied simultaneously:

• 5% Margin: The values of α = 79.77 and β =

3.12 indicate a longer expected lifetime. The β value

suggests that the lifetime distribution is at an acceptable
level.

• 10% Margin: With α = 94.07 and β = 1.54, there
is a noticeable increase in the characteristic lifetime.
However, the significant decrease in β indicates much
greater variability, leading to a broader distribution
of lifetimes. This suggests that while the average
lifetime can be longer, there is less predictability,
and some devices could have significantly shorter or
longer lifetimes than expected. Such broad variability
in lifetimes is undesirable for critical applications
like EV chargers, where consistent performance is
crucial.

Overall, a 5% margin is suggested as ideal for achieving a
balanced trade-off between expected lifetime and variability,
based on the above observations. Moreover, this section
provides further support for the recommendation of the 5%
margin given in the previous section.

By comparing the results of this part (Figure. 7) and the
previous section (Figure. 2), it is evident that the changes in α

and β for the combined parameter variation closely resemble
those observed for the β1 parameter variation in Figure. 2,
indicating that β1 has a more significant impact on lifetime
predictions compared to other parameters. Specifically,
varying only β1 and increasing the margin from 5% to 10%
leads to a substantial rise in α and a marked decrease in β,
(α = 78.54 to α = 91.35 and β = 3.29 to β = 1.68).
This trend is mirrored in the combined parameter variation,
where α increases from 79.77 to 94.7 and β decreases
from 3.12 to 1.54. This similarity suggests that β1 exerts
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a dominant influence on the overall lifetime predictions
whenmargins are varied. Consequently, selecting appropriate
β1 should be prioritized in lifetime models for more realistic
predictions.

The CDF function of the devices, considering all parameter
variations with margins of 5% and 10%, is shown in Figure.
8 to validate the results presented in Figure. 7. Additionally,
the B10 lifetime of the device is illustrated.

FIGURE 8. CDF or unreliability function of the devices, considering all
parameter variation.

According to Figure. 8, when the parameter variations
increase from 5% to 10%, the B10 lifetime experiences a
substantial reduction, from 40 to 22 years. This result closely
aligns with those presented in the Figure. 3(a), where the vari-
ation of only the β1 parameter was considered. This strong
correlation underscores the critical influence that β1 exerts on
the overall lifetime estimation, highlighting its importance in
reasonably predicting the device’s reliability under varying
conditions. In conclusion, based on investigations in the
previous section and this section, it is reasonable to suggest
uncertainties in β1 and 1Tj while potentially ignoring other
parameters, provided that the contribution of those parame-
ters is negligible or predictable. These two parameters have
demonstrated a dominant influence on lifetime predictions,
particularly affecting both the characteristic lifetime (α) and
variability (β). By focusing on these critical parameters, the
reliability estimation can be simplified, ensuring practical and
realistic lifetime estimations, which is expected physically as
β1 is the factor of 1Tj, impacting the lifetime of the device
under wear-out failures. Similar to the previous part, the
5% margin suggests a trade-off between predictability and
expected lifetime and supports the prior recommendation.

III. CONCLUSION
This study provides a comprehensive analysis of the impact
of parameter uncertainties on the lifetime prediction of power
devices. By employing an empirical corrected CIPS lifetime
model alongside Monte Carlo simulations, the research
examined both individual and combined effects of parameter
variations on the predicted lifetime.

The single parameter changes analysis showed that the
Weibull distribution parameters are highly dependent on
changes in parameters like minimum junction temperature,
junction temperature swings, and lifetime model constants
like (β1 to β6), especially β1. These variations have a

significant impact on the shape parameter (β) and scale
parameter (α) of theWeibull distribution, which in turn affect
the expected lifetime and its variability.

This study uniquely contributes to the field by addressing
the lack of justification for commonly assumed parameter
uncertainty margins in existing research. By systematically
analyzing the impact of these margins on lifetime predictions.
The study suggests a balanced and physically reasonable
assumption of a 5% margin for key parameters. This
approach not only provides a rationale for margin selection,
but also enhances the robustness and reliability of lifetime
modeling, offering valuable insights for the design and
assessment of power devices. It was clear from the analysis of
simultaneous parameter variations that the changes in α and
β for the combined parameter variation closely resembled
those observed for the β1 single parameter variation.
It highlights the dominant influence of the β1 parameter
on overall lifetime predictions. In summary, the findings
suggest that it is reasonable to focus on uncertainties in β1,
while disregarding other parameters whose contributions are
negligible. Concentrating on this critical parameter enables
a simplified reliability model that contributes to practical
lifetime predictions.

The study’s findings emphasize how important it is
to consider parameter uncertainties when analyzing the
reliability of power devices. It is essential to select these
uncertainties carefully, especially in parameter like β1.
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