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SUMMARY

Developed air cavities can be used on the bottom of a ship
for frictional drag reduction. An experimental study on the air
cavity was carried out in a water tunnel. The cavity was created
under a flat plate in the turbulent boundary layer (BL) behind a
vertical cavitator.

A parameter study was performed in order to characterize
the cavity under the flow conditions. Aspect ratio, pressure in the
cavity, air losses and relevant scaling parameters were
considered.

It was found that thin cavities become unstable due to
relatively strong distortions of the free surface of the cavity. As a
result, the maximum cavity length based on a Froude number
criterion could not be reached.

INTRODUCTION

The frictional resistance makes up to some 70% of the total
resistance of a cargo ship. It provides a great motivation to
develop a technology of frictional drag reduction applicable to
ships. It is known that the creation of artificially developed air
cavities on the bottom of a ship can significantly reduce its drag
[1, 2]. This is achieved by reducing the wetted surface on a
horizontal part of the ship. One of the ways to create an air
cavity under a horizontal surface is to inject air behind a
cavitator. A cavitator is an obstruction mounted to the plate (or
ship bottom) in span-wise direction that creates a suction
pressure immediately downstream of it.

Numerous theoretical and experimental works have been
done on drag reduction by air cavities. One of the first successful
applications of this technology was reported from the Krylov
Shipbuilding Research Institute in Russia in 1960™. Theoretical
investigations of an artificially cavitating flow behind a wedge
under a horizontal plate were supported by experiments.
Nowadays, potential flow models to predict the behavior of the
free surface are available [3]. However, there are still many
questions open that need an answer before a wide practical
application of this technology will be accepted. Real flow

R. Delfos
TU Delft, the Netherlands

J. Westerweel
TU Delft, the Netherlands

conditions, such as the presence of turbulence, require a deeper
understanding of the free surface problem.

The influence of the turbulent boundary layer on the
hydrodynamic characteristics of thin air cavities is one of the
open issues. Related problems such as the required air flow rate
for creation and maintaining of such a cavity, and the resulting
drag reduction and required power for air supply (compressor
power), are investigated experimentally and reported in this

paper.

EXPERIMENTAL SET UP
Tunnel

In order to study air cavities under a horizontal plate a
dedicated flow facility is required. The cavitation tunnel at Delft
University of Technology was used as a base for conducting
experiments for the current study (a description of the tunnel can
be found in Foeth 2008). This tunnel was originally constructed
to study cavitation on propellers and wings. For the purpose of
friction drag studies with air ventilation, the cavitation tunnel
was refurbished in order to house a new test section which
allows for tests with air cavities. The old test section and the
diffuser were redesigned and replaced for this purpose. The new
test section is significantly longer than the old one which could
be achieved by shortening the diffuser.

The new test section of the cavitation tunnel is a water
channel with the rectangular cross-section (Figure 1). The
length of the channel is 2130 mm. The parallel side walls and the
bottom are made of Plexiglas plates of 35 mm. The cross-section
at the entrance is 300*300 mm. The bottom of the test section is
inclined in such a way that the cross-section at the end is
300*315 mm. This increase in depth of the measuring section is
to compensate the boundary layer growth and to keep the center-
line velocity constant (at least for a single phase (water) flow
case). The maximum water velocity in the test section is 7 m/s.
However, the maximum velocity at which the air injected into
the measuring section does not recirculate is 3 to 3.5 m/s. The
top wall of the channel consists of a horizontal test plate.



Figure 1: The new “Friction Drag” test section of the Delft
Cavitation Tunnel with a traversing PIV set up underneath.

Plate and cavitator

The test plate is a replaceable 10 mm Plexiglas plate with
an area of 2000*298 mm, which allows to have optical access
also from the top. It is mounted to a frame of aluminum profiles.
The frame can be ether firmly fixed to the test section or
suspended by means of leaf-springs for the shear force
measurement. There is a gap of 1 mm around the plate which is
essential for the force measurement.

The air cavity was formed by injecting air behind a vertical
plate with a sharp edge - a cavitator, protruding out of the test
plate (Figure 2). The cavitator was located 50 mm from the
leading edge of the test plate. The height of the cavitator was
changed in the range of 0.5-2 mm. Two vertical plates of 30 mm
height along the two sides of the plate prevent air escape from
the cavity through the side gaps.

Figure 2: A schematic of the test plate with the air cavity (side
view).

PIV

The water flow in the tunnel was characterized by planar
Particle Image Velocimetry (PIV) with the field of view of
150*150 mm. For the boundary layer measurement the field of
view was approximately 40*30 mm. Hollow glass spheres of 10
Um were used as tracer particles. A pulsed laser with optics were
installed underneath of the test section. The camera and the laser
with optics was placed on a traverse to be able to do
measurements at any location in the channel.

The test section has good optical access from all four sides.
It makes possible to visualize the air cavity from different
directions. The cavity length and thickness were measured

visually. Because the cavities were not completely 2-dimensional
the following assumptions were done:

- the cavity length was defined as the one at the middle of the
cavity;

- the cavity thickness was defined as the maximum thickness in
span-wise direction.

Air injection‘I' scale

Test plate
|

qéﬂ“’,_,/éz Eo

Figure 3: Principle of pressure difference measurement between
the mean pressure in the cavity and the ambient pressure.

|

One of the governing dimensionless parameters for cavitation
flows is the cavitation number:

- (pco— pcav)
1 2 1)
PV

In order to define it, the pressure difference between the mean
pressure in the cavity and hydrostatic pressure at the plate level
should be measured. A scheme of the measurement principle is
shown in Figure 3.

Air from a central air supply was injected in the cavity by
means of gas mass flow controllers. (Bronkhorst F-201CV and
F-202A range up to 1 Is).

RESULTS

The velocity profile at the leading edge of the test plate is
shown in Figure 4 (top). The stream-wise velocity for this
measurement was 2.68 m/s. As can be seen from the graph there
are two distinguished velocity regions. The boundary layer
region extends over 7.4 mm from the wall. The further velocity
profile is uniform. A more detailed view of the BL is shown in
Figure 4 (bottom). The distance from the wall (vertical axis) is
normalized by the BL thickness. The velocity is normalized by
the stream-wise velocity. The shape factor for the boundary layer
is 1.38 which is close to the typical value of 1.3 for a turbulent
BL [White 2006]. The profile of the BL is also in a good
agreement with the 1/7" power velocity profile in the BL . For
all three measured velocities (1.5, 2 and 2.5 m/s) the BL at the
beginning of the test plate was approximately 7mm.

A parameter study was performed in order to define the
main characteristics of the cavity such as dimensions, pressure
and air consumption. During these experiments the following
parameters were varied: cavitator height h (0.5, 1, 1.5 and 2
mm), flow velocity V (between 1 and 3 m/s) and air flow rate Q
(between 0.24 and 12 I/min). The cavity length L, the maximum
cavity thickness H, and the relative pressure in the cavity were
measured.

For each cavitator height the velocities varied in the
mentioned range. For each velocity all the parameters were



measured at different cavity length. The air flow rate was
adjusted to obtain a certain cavity length,
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Figure 4: The velocity profile at the beginning of the test plate

It was observed that the maximum stable cavity length
occurs at approximately a half of the gravity wave length A ,
where the phase velocity of this gravity wave is corrected for the
shallow water effect (Figure 5). And it does not depend on the
cavitator height. Due to the limited length of the test section the
maximum A - limited cavity length could only be achieved at
velocities lower than 1.7 m/s. The relation between a phase
velocity and the length of the gravity wave is given as following:

V=,I=2Lgtanh¥ 2

where D is a depth of the channel. For the deep water
2D _ 1

approximation the term tanh

For the case of relatively thin cavities another restriction
plays a role. Secondary waves on the free surface of the cavity

reach the surface of the plate and destroy the cavity. It leads to an
unstable cavity length and high air losses. As a result, the
maximum cavity length based on a half of the gravity wave
length cannot be reached. This situation was observed for the
smallest cavitator height of 0.5 mm.

The aspect ratio of the cavity H/L was defined for different
V, h and L. The scaled aspect ratio of the cavity, as a function of

Lg

dimensionless cavity length, 1/Fr = is shown in Figure 6.
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Figure 5: A phase velocity versus the length of a half
gravity wave for deep (in blue) and shallow (in green) water
approximations. Maximum cavity length for different V and h is
shown by curves with circles.
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Figure 6: Scaled aspect ratio of the cavity as a function of
1/Fr.

Each curve represents measurements with constant h and V
but various L by varying air flow rate. The curves show a similar
linear relation between the normalized thickness-length ratio
(H/L) for the cavity and the reciprocal value of the non-
dimensional water velocity (1/Fr). The applied normalization of
H/L appears to collapse all data into one linear relation. A
physical rationale for this relation is however yet lacking.
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The dependence of the scaled cavitation number 0 on 1/Fr
is shown in Figure 7. All the curves roughly collapse onto one
curve.

As can be seen from the graph in Figure 6, all the cavities
have a zero cavitation number at 1/Fr approximately 1.55.
Longer cavities have a negative cavitation number implying that
the pressure in the cavity is higher than the hydrostatic pressure
at plate level. On the contrary, the cavity with a positive
cavitation number has a lower pressure.

One of the important parameters for ventilated cavities is the
air consumption by the cavity. It is known that air flux for
creating the cavity is normally higher that the one to maintain it
[6], [7]. The local air flux through the cavity closure region was
defined for different cavity lengths. A typical measurement result
of such a measurement is shown in Figure 8. The vertical axis
shows the air flux and the horizontal axis the cavity length. The
cavitator height was 1.5 mm and the velocity was 1.7 m/s. From
the graph we can see that, indeed, the maximum air consumption
is when the cavity is short. Then it goes down with the cavity
length increasing and reaches it's minimum at maximum stable
cavity length. The irregular behaviour of the air consumption at
the intermediate part is most likely related to the wave pattern on
the cavity surface. As was observed, two main factors cause air
leakage from the cavity closure region: the first one is the re-
entrant jet which is a typical phenomenon for developed sheet
cavitation; the second is the wave pattern at the free surface.
Each of these mechanisms contributes differently depending on
flow conditions and geometry of the cavity. For the present study
the contribution of the re-entrant jet was the biggest for
relatively short cavities, whereas waves on the free surface cause
significant air losses for long cavities.

1 Il i |

0 1 1 1 1
0 02 04 06 08 1 12 14 16
L (m]
Figure 8: Local air loses from the tail of the cavity as a function

of it's length.

A typical air cavity surface can be seen in Figure 9. In this
case the free surface waves are relatively small compared to the
cavity thickness. Two types of waves on the free surface can be
distinguished. The first one is caused by turbulent fluctuations in
the water at the interface. The second one is caused by
reflections of diverging waves from the side walls. Capillary
waves are also present on the interface but don't play a
significant role either on the cavity geometry or air consumption
because of their small size.

Figure 9: Air cavity under the plate. a) — instantaneous wave
profile (short exposure time) b) — averaged wave profile (long
exposure time). Flow from right to left. h=1Imm, V=1.5m/s.

The minimum air flux required to form the cavity was found
for four cavitator heights at different velocities. The results of
these measurements are presented in Figure 10. The air flux on
the vertical axis is made non-dimensional with the velocity,
cavitator height and width b. The velocity on the horizontal axis
is the velocity at the cavitator edge height. It was found by
assuming the 1/7" power velocity profile in the BL. Again, all
the data collapse on a straight line. From the experimental data,
it can be seen that thin cavities consume less air if they are
stable.
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Figure 10: Dependence of the dimensionless air flux on the
velocity at the cavitator edge.

CONCLUSION

A developed air cavity originating from a cavitator mounted
underneath a horizontal flat plate was studied experimentally in a
water tunnel. The cavity was created by injecting air behind a
cavitator. The experimental data allowed us to make a correlation
between the main parameters of the flow. A dependence of the
scaled aspect ratio of the cavity and the cavitation number on the
dimensionless length of the cavity was shown. All the tested
cavities had a zero cavitation number at 1/Fr = 1.55. The longer
cavities had a negative cavitation number, hence a positive
pressure in the cavity.

Two mechanisms which cause the air losses from the cavity
were defined. The first mechanism is governed by the presence
of the re-entrant jet, continuously shedding bits of the air cavity
in the closure region. The second mechanism is caused by waves
on the free surface. The contribution of each of these
mechanisms depends on the flow conditions (flow velocity,
turbulence intensity) and geometry of the cavity.

Furthermore, if the roughness of the free surface is high
compared to the cavity thickness, the cavity break up. In that
case, the maximum cavity length based on the transverse wave
length cannot be reached.
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