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“Look again at that dot. That’s here. That’s
home. That’s us.”

— Carl Sagan



Visual Summary

Figure 1: Visual summary of the methodology used for arsenic risk prediction in abandoned river bends in
Bangladesh. 1) The study area is located within the Ganges-Brahmaputra Basin. 2) Oxbow lakes are detected
from satellite imagery using the YOLO object detection algorithm. 3) Input features, including population density,
are extracted for the detected oxbow lake region. 4) A Gaussian Mixture Model is applied to predict arsenic con-
tamination risk zones, with results visualized as spatial risk categories. Red areas indicate high-risk zones, while
potential and low-risk zones are omitted from this image for clarity. This figure presents a simplified overview of
all major stages in the current proof-of-concept workflow.

i



Abstract

Arsenic contamination in groundwater is a major public health concern in the Ganges-Brahmaputra Basin, where
millions rely on shallow aquifers for drinking water. Naturally occurring arsenic is mobilised under specific sedi-
mentological and geochemical conditions, particularly in Holocene alluvial deposits. Although extensively studied,
arsenic distribution remains highly variable and difficult to predict. This study investigates how geomorphological
features, specifically oxbow lakes and point bars, can be used to improve arsenic risk prediction andmapping using
machine learning. The approach offers a targeted and scalable method for identifying high-risk zones, particularly
in data-scarce environments. The divergence between theoretical assumptions and dataset trends illustrates the
challenges of generalising risk models without high-precision, ground-validated input data.

As a proof of concept, a two-stage workflow was implemented. In the first stage, a You Only Look Once object
detection model was trained to locate oxbow lakes and point bars using satellite imagery. These landforms are key
indicators of arsenic-prone zones due to their depositional history. The model performed well on well-isolated
oxbow lakes and their associated point bars but struggled with hydrologically connected oxbow lakes and heav-
ily vegetated areas, highlighting the need for more diverse training data and the potential value of false-colour
imagery.

A case study was conducted using historical arsenic well measurements to evaluate model assumptions. A super-
vised classification with the eXtreme Gradient Boosting algorithm confirmed the predictive value of geomorpho-
logical variables, with sand content, elevation, and soil organic carbon emerging as dominant predictors. Vegeta-
tion and precipitation data were excluded due to low relevance and poor temporal alignment.

In the second stage, a Gaussian Mixture Model was applied to classify arsenic risk using the same geospatial vari-
ables. The model produced spatially coherent and interpretable risk zones, with high probability in most predic-
tions. Areas of low probability were primarily located at transition zones between risk classes, indicating regions
where higher-resolution or more precise input data may be necessary to reduce uncertainty and improve model
reliability.

This study provides a practical and semi-automated framework for geospatial arsenic risk assessment. While the
risk classification is relative, future work should incorporate population-weighted exposure metrics to better guide
mitigation. The method developed here supports more efficient fieldwork planning and decision-making in com-
plex fluvial environments.
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oxbow lake After the river abandons a major meander, it frequently remains behind as a crescent-shaped lake
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gradual accumulation of clastic materials transported by the river [1].
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1. Introduction

1.1 Research Context

Bangladesh is the most affected country worldwide by arsenic poisoning, with approximately 50 million people
at risk due to chronic arsenic exposure through groundwater and food. Shallow aquifers, which serve as the pri-
mary source of drinking and cooking water for the majority of the population, are heavily contaminated [2], [3].
These individuals are chronically exposed to arsenic levels that exceed the World Health Organisation (WHO) rec-
ommended limit of 10 µg/L, raising serious public health concerns [2], [4]. In numerous cases, arsenic exposure
exceeds 50 µg/L, which is the regulatory limit defined by the Government of Bangladesh [5]. Prolonged exposure
to arsenic is associated with an increased incidence of cancers, cardiovascular diseases, and premature mortality
in young adults, among others [6]. Alongside the physical impacts of arsenic poisoning, those with arsenicosis also
endure social and economic hardships, including discrimination in both social and workplace environments [7].
Bangladesh’s government started the Arsenic Risk Reduction Project in 2020 to actively tackle the widespread ar-
senic poisoning by raising awareness among the public and providing safe drinking water using technologies such
as deep tube wells and rainwater harvesting [8]. Given the widespread threat of arsenicosis across Bangladesh,
accurately identifying high-risk regions in urgent need of intervention remains a persistent challenge.

1.2 Related Work and Problem Statement

Conventional methods for measuring arsenic concentrations to identify areas of high risk, such as soil and ground-
water sampling, often require costly and time-consuming fieldwork, which is further hindered by the Monsoon
period. Consequently, no large, detailed, and up-to-date arsenic distribution information at a high sampling res-
olution is available for Bangladesh. For the available datasets, numerous studies have tried to predict arsenic
hotspots using geospatial interpolation methods such as Kriging, Inverse-Weighting Distance, or using Random
Forest (RF) estimators incorporating various features, including different soil types, to interpolate measured ar-
senic concentrations and risks [9]–[14]. A key limitation of Kriging and Inverse-Weighting Distance method is that
it often produces an imprecise representation of high arsenic concentrations and risks, and generates artificial
peaks, i.e. misleading ’bull’s eye’ patterns around data points. While RF models provide a more refined view of ar-
senic concentration and risk patterns, incorporating a large number of variables, such as different soil types, often
relies on incomplete, coarse-resolution datasets or demands extensive fieldwork to obtain detailed data. A shared
limitation of these approaches is their failure to account for the geomorphological features, such as point bars
and oxbow lakes, that underpin the spatial distribution of arsenic. Integrating these geomorphological features
provides a more robust and physically grounded framework for hotspot identification.

1.3 Research Significance and Methods

The key underlying factor among these studies and datasets is the geographical location of the groundwater and/or
soil samples. Within the Ganges-Brahmaputra Basin, Bangladesh is characterised by sampling sites that frequently
derive from Holocene alluvial basins. Recent research suggests that sand-rich point bars within abandoned mean-
dering river bends, which are common features in Holocene alluvial basins, are potential hotspots for high arsenic
concentrations in groundwater and soils [15], [16]. These abandoned meandering river bends, known as oxbow
lakes, are characterised by their crescent shape. As suggested by Donselaar et al. [17], oxbow lakes can be dis-
tinguished by their shape, their size relative to other geomorphological features, and their contrast with the sur-
rounding landscape, making them suitable candidates for automatic detection using machine- or deep-learning
methods. Once the oxbow lakes (i.e. areas with high arsenic concentrations) and their associated point bars are
identified, the urgency of community-level intervention remains uncertain. Each identified area is assigned a risk
level based on a set of predictor variables, combined with a machine learning method and a study-specific defi-
nition of risk. In this way, a more precise predictive arsenic-risk map can be constructed, focusing on regions that
require immediate action from local government authorities to mitigate arsenic poisoning.
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Introduction

1.4 Research Questions

The main objective of this research is to develop a machine-learning model that accurately identifies high-risk
zones for arsenic contamination in Bangladesh, without the need for extensive fieldwork or direct in-situ arsenic
measurements, by leveraging geomorphological features such as point bars and oxbow lakes, in line with the
methodology proposed by Donselaar et al. [17]. The scope of this study is two-fold: first, to detect oxbow lakes
and point bars across the landscape using satellite-based remote sensing, second, to conduct a targeted arsenic
risk analysis focused on these geomorphological settings. Rather than predicting exact arsenic concentrations, this
research aims to classify areas as either at risk or not at risk, enabling spatial prioritisation for intervention. Based
on this objective and its components, the main research question of this project can be defined as:

How can geomorphological features, specifically oxbow lakes and point bars, be used to optimise machine-
learning models for accurate arsenic risk prediction and mapping in the Ganges-Brahmaputra Basin?

The following sub-questions will support the main question:

1. How are the environmental conditions and geological characteristics in the Ganges-Brahmaputra Basin re-
lated to groundwater arsenic contamination?

Because environmental and geological conditions substantially impact arsenic levels and related risks, it
is necessary to understand their interactions and site-specific roles clearly. This sub-question will further
deepen and investigate the complex interplay between the variables of interest in the Ganges-Brahmaputra
Basin.

2. Which method is effective for detecting geomorphological features such as oxbow lakes and point bars?

A machine-or deep-learning method can be used to pinpoint the point bars and oxbow lakes from satellite
imagery. An essential condition the method should satisfy is that it must be able to generalise to other areas
with similar geomorphological features. This sub-question aims to identify a method that is both easy to
implement (i.e. with minimal effort, time, and resources) and efficient for detecting oxbow lakes and point
bars.

3. To what extent do auxiliary environmental and geomorphological variables explain the spatial and temporal
distribution of arsenic contamination risk?

Donselaar et al. [17] identify geomorphological features, population density, and vegetation indices as key
variables associated with high arsenic concentrations. For this sub-question, a dataset containing repeated
measurements of arsenic concentrations from tube wells in Bangladesh, collected over a three-year period
in a geomorphological setting characterised by oxbow lakes and point bars, will be used as a case study to ex-
amine the spatial and temporal distribution of arsenic contamination risk, with a focus on the contribution
of key predictor variables.

4. How should arsenic contamination risk be defined to align with both model outputs and the practical impli-
cations for public health and groundwater management?

Arsenic levels in groundwater that exceed the WHO’s recommended limit of 10 µg/L are classified as high
risk for human health. However, in order to implement effective mitigation strategies against arsenic poi-
soning on a community level, the population density also needs to be considered. A definition of arsenic
contamination risk for this study will be established based on the combination of population density and
other influential variables identified in Sub-question 3 as strongly correlated with elevated arsenic levels.

5. What machine-learning method is suited for classifying arsenic risk?

The objective of the sub-questions is to identify what machine-learning method can classify different lev-
els of risk, as defined in Sub-question 4, based on notable features such as a Digital Terrain Model (DTM),
population density, and other influential variables found in Sub-question 3 that strongly correlate with high
arsenic concentrations. Risk is categorised into clusters, with each classification associated with a probabil-
ity. The method aims for pixel-level classification of arsenic risk, prioritising high-confidence probabilistic
outputs.
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Introduction

1.5 Thesis Outline

This report is structured as follows. The Geospatial and Environmental Context chapter reviews arsenic con-
tamination, relevant geomorphological processes, existing detection methods, risk theory, and object detection
and clustering techniques. TheMethodology and Data chapter outlines the proposed framework, describing the
object detection and risk classification approaches and how available (auxiliary) data are processed and can be
integrated. The Case Study chapter presents a specific case in which the auxiliary data sources are tested and
the hypotheses outlined in Geospatial and Environmental Context are evaluated. The Model Implementation and
Results chapter details the implementation and testing of the framework, and presents the outcomes of the ex-
periments. Finally, the Discussion and Conclusion chapters interpret the results, answer the research questions,
and offer recommendations for future work.

3



2. Geospatial and Environmental Context

This chapter outlines the environmental and geomorphological context of arsenic contamination, with a focus on
Bangladesh. It examines natural processes, human activities, and climate impacts. The chapter also introduces a
data-driven method for detecting oxbow lakes and point bars using remote sensing, and presents an unsupervised
machine learning approach for classifying arsenic risk based on geomorphology and population exposure.

2.1 Arsenic Contamination in Bangladesh: Environmental and Geological Context

Essential to this research is the environmental and geological context in which arsenic contamination occurs in
Bangladesh, where both natural processes and anthropogenic activities contribute to elevated arsenic levels in
groundwater. The following sections explore arsenic’s geogenic origin, the role of geomorphological features in
its accumulation, and the interaction between human activity and arsenic-contaminated groundwater, including
associated health risks.

2.1.1 Geological, Hydrological, and Environmental Setting of Bangladesh

Inorganic arsenic, a toxic metalloid, is a natural occurring component of the Earth’s crust. In Bangladesh, arsenic
primarily originates from geological sources, with the mineral arsenopyrite, an iron hydroxide bound to arsenic,
identified as the main source [18], [19]. Since the last Ice Age, approximately 12,000 years ago, arsenic-bearing
minerals eroded from the Himalaya-Arakan-Yoma mountain range have been transported downstream via the
Ganges-Brahmaputra-Meghna river system [20]. As these minerals were deposited, the Holocene alluvial basin
of the Bengal Delta gradually formed, with fluvial processes continuously reworking and sorting the sediments,
leading to the accumulation of arsenic-rich layers with large lateral and vertical variability, driven by lithofacies
heterogeneity and permeability contrasts that control groundwater flow within the aquifer [16], [20]–[23]. Biogeo-
chemical processes then mobilise arsenic from sediments into groundwater through microbial redox transforma-
tions of iron phases, leading to arsenite [As(III)] presence in the groundwater [24]. Shallow aquifers, often with
organic matter-rich peat layers at depths of less than 100 meters, are primarily affected by arsenic contamination
[3], [16], [20], [22].

A recurring natural phenomenon in Bangladesh is the monsoon, which runs from early June to mid-October. The
average rainfall varies from 1200 mm in the West to 3000 mm in the Northeast and Southeast [25]. In addition to
recharging aquifers, monsoon-driven changes in hydraulic head also regulate themobilisation of dissolved organic
carbon (DOC) from surrounding clay–peat layers. The hydraulic head refers to the pressure and elevation that
drive groundwater flow, influencing how water and dissolved substances move through the subsurface. During
the dry season, declining groundwater levels promote the release of DOC into adjacent aquifers, while the onset
of the monsoon and subsequent recharge suppress DOC release and induce aquifer flushing [26]. Climate change
is projected to intensify these processes by altering monsoon patterns and increasing the frequency of extreme
weather events. Such changes can exacerbate the mobilisation of arsenic into groundwater [27], [28].

2.1.2 Geomorphological Traps: Oxbow Lakes, Clay Plugs, and Point Bars

A review by Donselaar et al. [16], a preliminary study, identified that arsenic hotspots are often located within
Holocene fluvial and deltaic flood basins and predominantly include geomorphological features such as oxbow
lakes, clay plugs, and point bars. This study focuses exclusively on oxbow lakes. The formation process of oxbow
lakes is illustrated in Figure 2. Sand-rich fluvial point bars form within shallow meandering river bends, which
either remain water-filled as oxbow lakes or become infilled with fine-grained, low-permeable sediments to form
clay plugs [16]. The fine-grained sediments and the stagnant bottomwaters of oxbow lakes are both rich in organic
carbon, creating oxygen-poor (anoxic) conditions that promote microbial activity. This microbial activity drives
the reductive dissolution of iron oxyhydroxides, releasing arsenic into the groundwater [16]. Organic carbon, con-
sumed by microbial communities, originates primarily from lake vegetation (macrophytes), such as Eichhornia
crassipes sp. and Hydrilla verticillata sp., as well as suspended clay and silt [29]. Flooding during the monsoon
season drowns the macrophytes, whose biomass deposits onto the lakebed, providing a carbon source that fuels
microbial activity. Oxbow lakes are susceptible to extreme weather events; during droughts they may dry up, while
monsoonal rains can cause them to overflow or reconnect temporarily with the main river.
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(a) September 2001 (b) December 2006 (c) January 2015 (d) January 2025

Figure 2: Stages in oxbow lake formation: (a) early meander with outer bend erosion and inner bend deposition,
(b) narrowing neck, (c) neck cut-off during high flow, and (d) complete isolation forming an oxbow lake. Red and
yellow overlays indicate erosion and deposition, respectively. The fully developed oxbow lake has a maximum
diameter of approximately 4 km. Madhumati River, Dhaka Division, Bangladesh. 23◦14′26.97′′N, 89◦41′27.49′′E.
Map Data: Google, © 2025 Maxar Technologies. Image dates: see sub-figures.

In a later studies by Ghosh et al. [24], [29], the concept of geomorphological features such as oxbow lakes and point
bars acting as arsenic hotspots was further developed. Differential compaction in sandy point bars leads to topo-
graphically elevated ridges, which are part of the lateral accretion patterns typical of point bar formation, where
arsenic accumulates within the aquifer [16], [29]. Normally, aquifers are flushed, and their recharge efficiency is
high due to groundwater flow following a gravity-driven gradient. In contrast, the stratigraphic confinement of
point bars by surrounding oxbow lakes or clay plugs, both characterised by low permeability and low porosity,
restricts horizontal groundwater flow and reduces recharge efficiency, resulting in the persistent accumulation of
arsenic within the aquifer.

2.1.3 Human Interaction: Groundwater Usage and Exposure Risks

Point bars act as population nuclei for three main reasons: their elevated ridges protect against annual monsoon
floods, the surrounding floodplain areas are highly fertile, supporting agriculture, and the sandy point bars serve
as accessible aquifers, providing groundwater for drinking and irrigation. As a result, these areas attract dense
settlements where groundwater is primarily accessed through shallow hand-pump tube wells, the most common
form of water supply in rural Bangladesh [3]. These wells, typically 10 to 70 meters deep, are widespread due to
their low installation costs and the absence of government regulation on well construction [20]. Once arsenic is
mobilised within a nearby clay plug or oxbow lake, it migrates into the adjacent porous and permeable point bars
[15]. Extensive groundwater extraction by local populations induces a pressure gradient, enhancing advective flow
and drawing arsenic-contaminated water toward the tube wells, thereby exacerbating the health risk [15], [16],
[24]. Ghosh and Donselaar [15] further suggest that this over-extraction in densely populated areas leads to more
wells exceeding accepted arsenic safety limits.

Another important reason for the prompt identification of densely populated arsenic hotspots is the increasing
impact of climate change on the release of arsenic into the environment. Rising sea levels, floods, and extreme
weather events, driven by the warming climate, contribute to the release of increased amounts of arsenic from
sediments into groundwater [30], [31]. The root causes of the elevated arsenic concentration levels are the salini-
sation of aquifers and increased reduction rates [30], [31]. Due to rising arsenic levels in the environment, arsenic
concentrations in rice may also increase [32]. Bangladesh is the world’s third-largest producer, with almost 7 % of
the world’s total production [33].
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2.2 Foundations for a Data-Driven Detection Framework

Data-driven approaches are increasingly used in environmental risk modelling because these methods rely on
patterns learned directly from the data, without predefined rules or assumptions. For arsenic risk mapping, this
enables the identification of relationships between environmental variables and the likelihood of contamination.
Machine learning models are well suited to this task due to the ability to handle complex, multi-dimensional input
data and account for uncertainty. Donselaar et al. [17] show how remote sensing data combined with machine
learning techniques can be applied to model arsenic contamination risk across large areas. The study presents a
pipeline that incorporates geomorphological features alongside auxiliary datasets such as elevation and popula-
tion density to identify potential hotspots. Feature selection in this context depends on factors like data availability,
spatial resolution, and relevance to the target variable. Model selection often reflects a trade-off between predic-
tive accuracy, interpretability, and computational efficiency. These methodological considerations form the basis
for applying machine learning to geospatial arsenic risk analysis.

2.3 Geomorphological Features Detection from Remote Sensing Data

The Ganges-Brahmaputra Delta is the largest delta system in the world, with approximately two-thirds of it lo-
cated in Bangladesh [34], [35]. Within this deltaic region, oxbow lakes are widespread, yet to the best of the au-
thor’s knowledge, no existing literature systematically records or quantifies them in Bangladesh. Oxbow lakes are
crescent-shaped water bodies formed when a river meander is cut off from the main channel. These lakes are typ-
ically hydrologically disconnected from the river but can become temporarily reconnected during seasonal flood-
ing or high-flow events. During the wet season (June–October), monsoonal flooding brings nutrient-rich inflow
that deposits organic matter into the lakes. However, high water levels and flushing often submerge or remove
aquatic vegetation. In contrast, during the dry season (November–April), water levels recede, light penetration
increases, and the previously deposited nutrients support the growth of aquatic vegetation, such as macrophytes.
This seasonal cycle results in visible changes in oxbow lake characteristics, with vegetation cover peaking in the
dry season and declining during the wet season. These dynamics influence the spectral and visual appearance of
oxbow lakes in satellite imagery, affecting how distinctly they contrast with the surrounding landscape throughout
the year.

2.3.1 Object Detection Methods

Empirical studies show that oxbow lakes can vary significantly in size, ranging from a few hundred meters to sev-
eral kilometres. As a result, satellite imagery, which is widely available online, often open-access, and offering high
spatial and temporal resolution, is the most suitable option for capturing both oxbow lakes and the point bars
within them. Object detection in geoscience using satellite imagery is widely adopted [36]. Convolutional Neural
Networks (CNNs) [37], particularly the Mask Region-based CNN (Mask R-CNN) [38], are among the most popu-
lar architectures due to their ability to detect objects of varying shapes and sizes, localise them within complex
backgrounds, and delineate their exact boundaries. Mask R-CNN is a two-stage deep learning framework that first
generates region proposals and then performs classification and pixel-level segmentation. One example that high-
lights the effectiveness of a Mask R-CNN deep learning model is a study in which a Mask R-CNN was trained for
surface water mapping in the boreal forest-tundra [39]. Training Mask R-CNN models requires annotated images
with one ormultiple bounding boxes and segmented objects. Segmenting objects is themost time-consuming part
of creating a training dataset, but this process can be accelerated using tools such as Segment Anything Model by
Meta AI [40]. Another popular model for object detection is the You Only Look Once (YOLO) model, which pre-
dicts real-time bounding boxes and class probabilities directly from full images in one evaluation [41]. A feature
that YOLO offers is oriented bounding boxes (OBB), which allow for a better fit for rotated or elongated objects
and, therefore, achieve an improved detection performance. Furthermore, Ultralytics provides pre-trained YOLO
models, with the largest model having 58.8 million parameters [42]. This enables training on a custom dataset by
leveraging transfer learning and allows for fewer custom training samples compared to training from scratch. The
Ultralytics package requires users to use only a few lines of code to train a YOLO model using a custom dataset,
perform validation, and run predictions on images. Due to its single-stage design, the YOLOmodel generally has a
lower localisation precision than Mask R-CNN. On the other hand, the YOLOmodel is more efficient than Mask R-
CNN, which is computationally intensive and requires complex implementation [43]. With YOLO’s high accuracy,
swift implementation, and low computational resources required, it is the favoured model for this study.
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2.4 Risk-Based Arsenic Mapping Using Machine Learning

2.4.1 Conceptual Framework for Arsenic Risk

Figure 3: Conceptual framework for arsenic risk
mapping based on hazard and exposure. The di-
agram illustrates how geomorphological features
such as point bars and sandy ridges (hazard layer)
and population presence (exposure layer) combine
to define arsenic risk. Risk levels are classified as
High Risk for areas with both high elevation and
high population density, Potential Risk for areas
with high elevation and low population density,
and Low Risk for areas with low elevation regard-
less of exposure.

In this project, risk is defined analogously to concepts used
in fields such as flood risk analysis, where risk is expressed
as the product of hazard, exposure, and vulnerability [44].
Here, hazard refers to the natural tendency for arsenic occur-
rence, primarily controlled by geomorphology and topogra-
phy. Exposure is defined as the number of people present
at a given location, typically quantified through population
density. Vulnerability reflects the degree to which popula-
tions are affected upon exposure, representing the lack of re-
sistance to harmful impacts.

It is assumed that high-elevation areas that are densely pop-
ulated are likely arsenic hotspots. Vulnerability is consid-
ered relatively constant across the study area. This is a
simplification, as variations exist: some households rely on
deep tube wells, which are generally safer and less arsenic-
contaminated than shallow tube wells, as deep aquifers are
more frequently flushed [45]. However, since groundwa-
ter forms the primary drinking water source for nearly all
households, it is assumed that, on average, the population
has a similar vulnerability to arsenic exposure. Therefore,
the risk model in this study primarily focuses on the inter-
action between hazard and exposure (see Figure 3).

The risk is then preliminarily defined based on the geomor-
phology and the human exposure. Risk is classified into
three levels: High Risk (high elevation and high population
density), Potential Risk (high elevation and low population
density), and Low Risk (low elevation, independent of popu-
lation density). This classification is used as an initial frame-
work and may be adjusted based on the case study. Auxiliary
data, such as vegetation indices, organic carbon contents,
and land use and cover, will be tested to refine the model at
a pixel level. Depending on the results of the case study and
the performance of each auxiliary data source, the risk def-
inition may be updated to represent local arsenic dynamics
and exposure.

2.4.2 Predictive Risk Mapping Approach

After detecting the oxbow lakes, the next step is to conduct a risk analysis to develop a predictive arsenic-risk map,
based on the definition and structure outlined in Section 2.4.1. As described by Donselaar et al. [17], arsenic risk
must be predicted specifically for areas where people live on elevated point bars with access to groundwater. One
option for a predictive arsenic-risk map is for each localised oxbow lake and associated point bar to assess its risk
based on the available population per square kilometre and Digital Terrain Model (DTM). However, this method
provides at best a global overview of risk per point bar but misses an accurate view of risk versus non-risk areas
on the point bar itself.

Another option would be to perform pixel-based arsenic-risk prediction for each located point bar. This approach
requires multiple data sources to preferably align in spatial and temporal resolution to achieve the best predic-
tive efficiency. A clustering algorithm that can handle multivariate input, is unsupervised, provides probabilities,
and can do pattern discovery, is preferred for the pixel-based approach. Unsupervised learning is the method
of choice, as the goal is to avoid thresholding or reliance on predefined class boundaries. For example, eleva-
tion varies across a point bar, with ridges forming topographic high grounds, and also differs between point bars.
Probabilities complement each prediction by providing a measure of certainty regarding the type of risk per pixel.
Clustering algorithms are inherently designed for pattern discovery. Hence, in the case of predictive arsenic-risk
mapping, the model’s expected output is high risk prediction for highly populated point bar ridges and low risk
for low topographic areas with barely any population.
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2.4.3 Risk Classification Method

Based on all the requirements outlined at the beginning of this subsection, the Gaussian Mixture Model (GMM)
[46]–[48] is the most suitable clustering algorithm as it satisfies all the conditions. An unsupervised clustering
method such as GMM has been successfully applied in environmental and remote sensing studies [49], [50]. GMM
is a probabilistic model that assumes data points are generated from a mixture of several Gaussian distributions,
each representing a different cluster. For multivariate input data, each point is assigned to one or more clusters
with a probability, with the assignments optimised to maximise the likelihood of the data under a mixture of Gaus-
sian distributions. The number of clusters corresponds to the number of defined risk levels.
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3. Methodology and Data

This chapter of the report outlines the methodology for the proof of concept and discusses each method in detail.
For each method, the data sources are listed together with the (pre)-processing steps.

3.1 General Workflow Overview

This section outlines the methods introduced in the Chapter 2 and describes how they are integrated within the
overall processing pipeline. Figure 4 presents a schematic overview of the three-stage workflow. The schematic
will guide the implementation of the methods throughout the project, including the development of the initial
proof of concept. The auxiliary data sources will be assessed in the Chapter 4. The following sections detail each
method, including data sources and retrieval, how they handle data, their output, and evaluation strategies.

Population Density

Auxiliary Data Sources

Digital Terrain ModelSelect Region of 
Interest

2

Make Pixel-Based 
Arsenic-Risk 
Predictions

Gaussian Mixture Model

4

Identify Oxbow Lakes 
in ROI

YOLOv11-OBB

1

3

Risk Classification

Object Detection

Data Retrieval for ROI

Figure 4: Workflow for predictive arsenic-risk mapping. (1) A region of interest (ROI) containing oxbow lakes is
manually selected in Bangladesh. (2) Oxbow lakes are automatically detected within the ROI using a YOLOv11x-
OBB object detection model. (3) Population density and DTM, along with other auxiliary data sources, are re-
trieved for the ROI. (4) A GMM is used to perform unsupervised risk classification based on all data sources.

3.2 Evaluating (Auxiliary) Predictors for Arsenic Risk Mapping with a XGBoost Model

In Chapter 4, a study will be performed to evaluate auxiliary data sources that can potentially contribute to pre-
dicting high-risk arsenic areas. The hypothesis, as outlined in Chapter 2, will be validated. Neither this section
nor the methods discussed here are part of the general workflow overview and can be considered independent.
For this purpose, a tree-based supervised machine learning model is used: eXtreme Gradient Boosting (XGBoost)
[51]. XGBoost is an ensemble learning method well-suited for tabular data, constructing decision trees sequen-
tially such that each new tree focuses on correcting the errors of the previous ones. Themodel can compute feature
importance scores, providing insights and interpretability into which (auxiliary) data sources are influential model
predictors, for example, identifying high-risk arsenic zones. Furthermore, the model can handle high-dimensional
non-linear relations between features in the data without explicit transformations or prior domain assumptions,
and includes regularisation to prevent overfitting. While it involves more hyperparameters than RF model, XG-
Boost offers greater flexibility for fine-tuning the model to better fit the data. This makes it a strong candidate for
exploratory studies where the relationships between variables are complex and not well understood. Since this
case study is not part of the core workflow, a full methodological breakdown is omitted.
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3.2.1 Auxiliary Data Sources

Donselaar et al. [17] proposed in their paper the following data sources: geomorphic elements, oxbow lake veg-
etation intensity, regional climate maps, DEM point bar elevation, and population density maps. Geomorphic
elements such as oxbow lakes and point bars, along with DEM (or DTM) and population density, have already
been thoroughly discussed in Chapter 2, relevance and necessity for this research, and underpin both the detec-
tion and risk assessment components of the proposed methodology. In the Section 2.1.1, the impact of the local
climate on arsenic contamination is highlighted. In Section 2.1.2, the interaction between macrophytes (oxbow
lake vegetation) acting as an organic carbon source for microbial activity is underlined. Since arsenic concentra-
tions cannot be directly measured using remote sensing and rely solely on in situ measurements, proxy variables
serve as the next best alternative. The interplay between factors such as hydrology, geology, and biogeochemical
processes makes it challenging to determine which proxy variables are effective predictors of elevated arsenic con-
centrations. Hence, various auxiliary data sources will be evaluated for their effectiveness in predicting elevated
arsenic concentrations. Previous studies that aimed to predict arsenic concentrations and associated risk [10],
[14], [30], [52] categorised their predictor variables into distinct groups, as detailed in Table 2 in AppendixA.1.

Soil-related variables are used only in Chapter 4 and are not included in the broader modelling pipeline, as their
key characteristics are already inherently captured by the geomorphological features being analysed, particularly
point bars. Distance to the river can be omitted, as the aim is to identify risk zones independently of in situ mea-
surements. This study does not consider aridity due to time constraints and the limited availability of consistent
data. All other listed variables will be considered as auxiliary data sources. Further details on each auxiliary data
source are provided in the Chapter 4, where it will also be clarified which additional datasets are used in the model
implementation for the final arsenic risk prediction.

3.3 YOLO-OBB for Object Detection

Once a region of interest is selected, the first stage of the workflow is to detect oxbow lakes from satellite imagery.
For this study, we define two types of satellite imagery based on their spatial coverage and level of detail: zoomed-
out (regional-scale) imagery refers to images captured at a high viewing altitude, covering large geographical ar-
eas where oxbow lakes appear as small features in the landscape; zoomed-in (local-scale) imagery refers to images
where individual oxbow lakes occupymost of the image frame, allowing for more fine-grained detail. The objective
is to use zoomed-out ([100, 150] km viewing altitude) optical satellite imagery as input to the YOLO model, allow-
ing most oxbow lakes to remain visually identifiable while enabling the processing of large areas in a single pass;
the model processes the imagery and outputs bounding boxes and associated detection probabilities for each de-
tected oxbow lake (see Figure 5). However, zoomed-out imagery is not suitable for training the model, as oxbow
lakes are typically much smaller than dominant landscape features and can be difficult to detect depending on
the season, with additional background noise further complicating the identification process. Furthermore, one
of YOLO’s known limitations its difficulty in detecting small objects in scenes [41].

Figure 5: Example detection of oxbow lakes in a regional-scale true-colour mosaic acquired in May 2025 from
Landsat/Copernicus sources, viewed at ∼150 km altitude. Oxbow lakes appear as small, curved water bodies within
the broader river landscape. The Madhumati River is visible on the right. The prominent meander with a point
bar, just before the river bifurcates, spans ∼10 km. Coordinates: 23◦23′12.72′′N, 89◦0′26.19′′E. Image exported via
Google Earth Pro. Map data: Google, © 2025 Maxar Technologies.
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YOLO is characterised by a single-shot architecture in which the input image is divided into a grid, and each grid
cell predicts bounding boxes along with their associated class probabilities. Centre coordinates, width, height, and
rotation parametrise the bounding boxes. Class probabilities are determined for each grid cell. For each predicted
bounding box, a class-specific score is calculated by multiplying the confidence score of the box with the prob-
ability that it contains a specific object class. The next section provides a detailed explanation of how the YOLO
model is trained in the context of this study.

3.3.1 Data Sources and Retrieval

Figure 6: Geographic distribution of oxbow lake
locations used for model training and validation.
Each point represents a site where satellite imagery
of oxbow lakes was collected.

The YOLO model was trained on zoomed-in (local-scale)
optical satellite imagery to learn the characteristic features
of oxbow lakes and their surrounding environments. The
Copernicus Dataspace Browser1 provided the optical satel-
lite imagery used for both the training and test datasets.
The images were primarily sourced from Sentinel-2 Level-
2A products with a spatial resolution of 10 meters, covering
acquisition dates between January 1st 2024 and December
31st 2024, to capture seasonal and inter-annual variability.
Figure 6 shows all sampling locations from which training
data were extracted, with each image captured under differ-
ent seasonal and environmental conditions. These images
contain one or multiple oxbow lakes, observed at zoomed-in
scales (corresponding to viewing altitudes of approximately
∼5 to 15 kilometres, depending on the scene and size of the
oxbow lake(s)), and may also include other geomorpholog-
ical features such as rivers or active river channels. Two ex-
ample samples are shown in Figure 7. The majority of sam-
ples were taken outside Bangladesh (with a few within the
country), in neighbouring regions that share a similar geo-
morphological and environmental setting.

(a) Example image used for ground-truth validation, captured
on 9 November 2024.

(b) Example image used for model prediction, acquired on 3
May 2024

Figure 7: Both images were obtained from Sentinel-2 Level-2A true-color imagery through the Copernicus Datas-
pace Browser. North arrow and flow direction are omitted as these image are for illustrative purposes.

1https://browser.dataspace.copernicus.eu/
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3.3.2 Training and Evaluation Strategy

In total, 104 samples were collected and subsequently augmented, resulting in a dataset of 208 images. Geometric
transformations were applied to the images, including rotations of 90°and 180°, and colour augmentations such
as RGB shifts, random gamma adjustments, and blurring. The images were then imported into Label Studio2 for
annotation. Only the class "oxbow" was labelled for this initial proof of concept, as each oxbow lake inherently
contains an associated point bar within its structure. Additionally, only inactive oxbow lakes were labelled; oxbow
lakes that were partially active or still connected to the main river on either side were excluded from annotation.
Additionally, clay plugs were excluded from labelling in this manner. The YOLOv11x-OBB model pre-trained by
Ultralytics was used as the base model and fine-tuned on the custom dataset [53], [54]. The input images do not
have a standardised resolution, but are resized and normalised by the model to a fixed 640×640 pixel tensor with
three colour channels. The dataset was split into 150 images for training, 15 for validation, and 15 for testing.

The YOLOmodel evaluates its performance using fourmetrics: precision, recall, IoU,mAP@0.5, andmAP@0.5:0.95.
Below each metric, a brief explanation is provided to guide its interpretation.

Metric Formula Description

Precision
TP

TP + FP How many of the model’s true positives were actu-
ally correct. Higher is better, meaning very few false
positives.

Recall
TP

TP + FN How many of the actual objects the model success-
fully detected. Higher is better; some objects may be
missed, but most are detected correctly.

Intersection over Union (IoU)
Area of Overlap
Area of Union

The intersection over union between the predicted
and ground-truth bounding boxes. Higher is better,
meaning the predicted bounding boxes align well
with the ground truth.

mAP@0.5 𝐴𝑃IoU=0.5 =

∫ 1

0
Precision(𝑟 ) 𝑑𝑟

mAP@0.5 =
1
𝑁

𝑁∑︁
𝑖=1

𝐴𝑃𝑖 Average precision (area under the precision-recall
curve), when IoU threshold = 0.5.

mAP@0.5:0.95 mAP@[0.5:0.95] =
1
10

0.95∑︁
𝑡=0.5

𝐴𝑃IoU=𝑡 Mean average precision across IoU thresholds from
0.5 to 0.95, in 0.05 increments. Again, higher is bet-
ter.

Table: Evaluation metrics used to assess YOLO model performance, including formula and interpretation.

The pre-trained YOLOv11x-OBB model was fine-tuned using the Ultralytics package (version 8.3.130) in Python
3.11.12 with PyTorch 2.6+cu124. Training was conducted on an NVIDIA A100 GPU (12 compute units, 83.5 GB
RAM) via Google Colab, for 200 epochs using the Adam optimiser, a batch size of 16, and a fixed random seed of 42.
To enhance generalisation, various data augmentation techniques were applied, including rotation, translation,
scaling, shearing, flipping, and adjustments in hue, saturation, and brightness, in order to mimic seasonal and
landscape changes. These augmentations were applied in addition to the already augmented training dataset, as
an extra measure to prevent overfitting given the limited number of available samples.

The fine-tuned model was evaluated on a validation set consisting of 15 images with 27 labelled oxbow lake in-
stances. The model achieved a high detection performance with a precision of 0.953, recall of 0.815, mAP@0.4 of
0.905, and mAP@0.5:0.95 of 0.683. The model performs very well in precision and general detection accuracy; it
can reliably identify oxbow lakes with few false positives. Recall is lower, meaning some oxbow lakes are missed
in the detection. Both mAP scores are relatively high, showing the model can localise oxbow lakes accurately. Fig-
ure 8 illustrates this comparison between the ground-truth labels (top) and the model’s predictions (bottom) on
the validation set.

2https://labelstud.io/
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(a) Ground-truth validation labels for oxbow lakes.

(b) Predicted bounding boxes for oxbow lakes by the trained YOLO model on the validation set.

Figure 8: Comparison between ground-truth validation labels (a) and model predictions (b) for oxbow lake detec-
tion.
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3.3.3 Post-Processing for High-Resolution Inference: SAHI

After fine-tuning the model for detecting oxbow lakes, it will be tested on regional-scale satellite imagery viewed
at an approximate altitude of 150 km to evaluate its performance in identifying previously unseen oxbow lakes
across a broader contextual area. In such imagery, oxbow lakes appear as small, curved water bodies embedded
within a complex riverine landscape, and are much smaller and surrounded by significantly more background
noise compared to the close-range images used for fine-tuning. Therefore, testing the model directly on this large
image without additional processing would likely result in poor performance, as oxbow lakes cannot be reliably
identified in the full-resolution scene alone. Slicing Aided Hyper Inference (SAHI) improves object detection in
large-scale and high-resolution imagery by dividing the image into smaller overlapping slices, performing detec-
tion on each, and reconstructing the results into the original image. This method enhances the model’s ability
to detect small features, improves scalability across varying resolutions and scene sizes, and preserves detection
accuracy[55], [56]. The application and outcomes of the corresponding SAHI model are presented and discussed
in detail in Chapter 5.

3.4 Gaussian Mixture Model for Risk Clustering

When oxbow lakes are identified, the next step in the pipeline is to predict the risk of arsenic in the associated point
bars. Pixel-level risk classification is performed using a GMM based on the selected predictor variables, which are
determined in the preliminary study conducted in Chapter 4, where auxiliary data sources are evaluated.

3.4.1 Data Sources and Retrieval

Elevation and population density are consistently used as core input variables in the GMM-based risk classifi-
cation, regardless of the presence or absence of additional auxiliary data, as they form the fundamental basis
for all model predictions. Instead of a DEM, a DTM is preferred as it excludes vegetation and built structures,
representing of the bare-earth surface and its structures, such as ridges, for geomorphological analysis. Open-
access, (semi-)high-resolution DTM data is limited or unavailable for many regions worldwide. One solution to
overcome this is to use GEDI and ICESat-2 data [57], [58]. However, these datasets are not well suited for appli-
cation in Bangladesh. GEDI is optimised for forested areas and often yields unreliable ground elevation estimates
in floodplains and cropland-dominated regions, where the waveform is ground-dominated and canopy cover is
sparse. ICESat-2 offers higher vertical accuracy, but its spatial coverage is sparse, and its track-based sampling
limits utility for high-resolution terrain modelling in low-relief and hydrologically complex landscapes like the
Ganges-Brahmaputra delta.

An independent researcher has developed and publicly released TessaDEM, a near-global DTM at 30 meter reso-
lution with tree height bias correction [59]. This was achieved by combining multiple elevation data from different
sources according to tree height, urbanisation, and water presence [60]–[64]. TessaDEM provides an Elevation API
to retrieve the elevation from latitude and longitude coordinates. To obtain the DTM data over Bangladesh, the
data was retrieved square by square within a bounding box encompassing the country’s full spatial extent. The
data was requested using a grid of rows and columns configured to achieve an effective spatial resolution of ap-
proximately 30 meters, based on the proportional subdivision of latitude and longitude ranges described in the
TessaDEM documentation. The almost 23,000 tiles were then clipped to Bangladesh’s country borders.

For population density, the most important requirement is that the data is up to date, as the goal is to produce an
accurate arsenic risk prediction and to assist as many people as possible. There are several data sources available
for estimating population distribution. One option considered was the WorldPop database, which provides grid-
ded population estimates at a resolution of 100 meters [65], but this was not used in the final analysis. Instead,
this study used the GHS-POP R2023A dataset from the Global Human Settlement Layer (GHSL), produced by the
Human Settlement Emergency initiative under the European Union Copernicus program. This open-access spa-
tial raster dataset represents residential population as the number of people per cell. It spans from 1975 to 2020 in
five-year intervals, with projections for 2025 and 2030, and is provided at a ∼90 meter resolution [66]. Population
estimates are derived by disaggregating census and administrative data from GPWv4.11 [67], guided by the built-
up area classifications from the GHSL-BUILT layer. For this study, the projected 2025 population density data was
retrieved and clipped to the borders of Bangladesh. The original ∼90 meter resolution cells were resampled to a
30 meter resolution by dividing each cell into a 3 by 3 arrangement using nearest neighbour resampling in ArcGIS
Pro, ensuring alignment with the DTM resolution. For the population dataset used in Chapter 4, data from the
year 2020 was selected and resampled in the same manner to closely match the temporal context of the arsenic
dataset and to assess how population density correlates with other variables in the analysis.
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3.4.2 Cluster Assignment and Risk Level Mapping

The GMM clustering algorithm is used to identify arsenic-risk patterns governed by topographic high grounds
and densely populated areas on point bars. Since ground-truth arsenic concentrations are not always available or
scarce across Bangladesh, an unsupervised learning approach is preferred to uncover inherent groupings in avail-
able proxy data that could reflect potential risk zones. Although Donselaar et al. [17] proposed using an RF model
for predictive arsenic-risk mapping, this approach may not be suitable when applied to a DTM dataset. Despite
the interpretability of RF models, particularly their ability to reveal decision thresholds, these thresholds become
less meaningful across broad spatial scales, even when feature normalisation is applied. This limits the model’s
explanatory nature and the geographic generalisation of its outputs. While RF models offer limited and non-trivial
means of estimating uncertainty, GMMs provide a probabilistic framework that enables soft classification and in-
terpretable measures of probability based on the underlying Gaussian distributions. For this reason, GMMs were
selected as the model of choice.

GMMs assume that the data is generated from a mixture of several Gaussian distributions and, as universal ap-
proximators, can effectively model complex data distributions given a sufficient number of Gaussian components
(mixture). In a mixture model, each data point is assumed to be generated by one of several components, but the
identity of the generating component is unknown and treated as a latent variable. The latent variable is the hid-
den link between the different data sources and helps model this hidden structure in the data. As a result, several
simpler Gaussian models are fitted to different parts of the data. Each point receives a soft assignment after clus-
tering, which is associated with a probability of belonging to each cluster rather than being assigned a single hard
label. The model estimates the parameters of these distributions. The probability of an observation 𝑥 is modelled
as:

𝑝 (𝑥) =
𝐾∑︁
𝑘=1

𝜋𝑘 N(𝑥 | 𝜇𝑘 , Σ𝑘 ) (1)

Where 𝜋𝑘 are the mixing coefficients (weights), 𝜇𝑘 and Σ𝑘 are the mean and covariance of the 𝑘 -th Gaussian com-
ponent, and 𝐾 is the number of clusters. Bayesian Information Criterion (BIC) can be used to compare GMMs
trained with different values of 𝐾 . BIC evaluates the model fit while penalising model complexity, helping to avoid
overfitting. Lower BIC values indicate better models. Further details on the final choice of 𝐾 and the methodol-
ogy for assigning clusters to risk classes are provided in Section 5.3. The Expectation-Maximisation (EM) algorithm
treats latent variables as missing data. The EM algorithm optimises model parameters accordingly by approximat-
ing the latent variable by taking the posterior distribution’s expected value (mean). During the E-step (Eq 2), the
Gaussian components are frozen to update their parameters and the posteriors are updated (i.e. which Gaussian
generated each data point?). A soft number of points is assigned to each of the components.

𝛾𝑛𝑘 = 𝔼[𝑧𝑛𝑘 ] = 𝑝 (𝑧𝑘 = 1 | x𝑛) =
𝜋𝑘 N(x𝑛 | 𝜇𝑘 , Σ𝑘 )∑𝐾
𝑗=1 𝜋𝑗 N(x𝑛 | 𝜇𝑗 , Σ𝑗 )

, 𝑁𝑘 =

𝑁∑︁
𝑛=1

𝛾𝑛𝑘 (2)

In the M-step (Eq. 3), the posteriors are frozen, and the model parameters (such as means, variances, and mixing
coefficients) are re-estimated based on the expectations computed in the E-step (i.e. the newly assigned points
or updated soft assignments), under the assumption that the data was indeed generated in this way and that the
components were responsible for generating it. GMM clustering involves finding themaximum likelihood solution
for assigning data points to components. Although the EM algorithm converges to an optimal clustering assign-
ment once stabilised, it is sensitive to initialisation and may converge to a local optimum, potentially resulting in
suboptimal or unstable clustering outcomes if poorly initialised.

For this study, the covariance_type parameter was set to full, which allows each component to have its own
general covariance matrix, providing the greatest flexibility in capturing elliptical and rotated cluster shapes. The
init_params setting was initialised with kmeans, which uses the standard K-Means initialization strategy to esti-
mate initial responsibilities or cluster means. Other initialisationmethods such as random and random_from_data
were not considered promising in this context, as they tend to produce less stable or poorly fitted models.

𝜋new𝑘 =
𝑁𝑘

𝑁
, 𝜇new𝑘 =

1
𝑁𝑘

𝑁∑︁
𝑛=1

𝛾𝑛𝑘x𝑛 , Σnew𝑘 =
1
𝑁𝑘

𝑁∑︁
𝑛=1

𝛾𝑛𝑘 (x𝑛 − 𝜇new𝑘 ) (x𝑛 − 𝜇new𝑘 )⊤ (3)
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The input features tend to correlate with each other, for example, high population densities on topographic high
grounds. The GMM assigns higher responsibilities to one particular component in regions where the joint dis-
tribution of these input features has a distinctive peak. The GMM then tries to model the co-occurrence in the
multidimensional feature space as an elliptical region. This is also one of GMM’s limitations, as it struggles to
model non-Gaussian, skewed, or irregularly shaped data.
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4. Case Study

This case study evaluates the predictive value of various (auxiliary) data sources for arsenic risk by analysing a
dataset with arsenic concentrations from 20 wells in Bangladesh, collected over a 3-year time window, from 2001 to
2003 [68]. Consecutive measurements for all wells were taken at intervals of approximately 20 to 30 days. The aim
is to assess which predictors support the hypotheses proposed by Donselaar et al. [17], which additional variables
emerge as potentially relevant despite not being previously considered, and which of the hypothesised predictors
show limited or no predictive power in practice. The case study begins with a brief overview of the arsenic dataset,
followed by a discussion of the (auxiliary) data sources used as predictors. Subsequently, the XGBoost method and
the corresponding dataset are introduced, and the model results are interpreted. Based on the results, a final set
of predictor variables is assembled, which will be used in Chapter 5, where these variables of interest are also
examined in further detail.

4.1 Historical Arsenic Data from Wells in Araihazar, Bangladesh

From a 3-year survey of 6,500 households in the Araihazar Upazila, Cheng et al. [68] selected 20 wells for moni-
toring to demonstrate the integrity of the data (see Table 3 in Appendix A.2). The wells cover an area of 25 km2.
The wells are divided into two groups: shallow tube wells that draw water from late Holocene aquifers with grey
sediments at depths of 8 to 20 meters, and deeper tube wells that tap into older, presumed Pleistocene aquifers at
depths ranging from 30 to 142 meters [68]. Some of the wells are privately owned and used by a dozen or so peo-
ple, while other wells serve a few hundred villagers. Furthermore, wells 4110, 4101, and 4071 were surrounded by
a mix of high- and low-arsenic shallow tube wells in close proximity, while high-arsenic tube wells predominantly
surround wells 84, 816, 825, and 1651. The exact locations of the wells are shown in Figure 9. Some of the wells
are located on abandoned point bars, others at old levees, or on the bank of the river.

Figure 9: Spatial distribution of tube wells sampled for arsenic concentration in Araihazar Upazila, Bangladesh,
overlaid on georeferenced Google Earth Pro imagery from April 2002. Each coloured marker represents a tube well
[68]. Coordinates: 23◦46′48.00′′N, 90◦38′26.00′′E. Image exported via Google Earth Pro. Map data: Google, © 2025
Maxar Technologies.
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As seen in Figure 10, the temporal variability of the arsenic concentrations in the tube wells remains stable over
time with a few exceptions. This provides partly supportive evidence for the hypothesis by Donselaar et al. [17]
that geomorphological features such as point bars act as persistent arsenic sinks and serve as arsenic hotspots
where concentrations remain consistently high due to the local geological setting. Moreover, the available data
suggest a tendency for higher arsenic concentrations in shallow aquifers compared to deeper ones. However, this
observation should be interpreted with caution due to the limited sample size. In response to Cheng et al. [68]
research, Ravenscroft et al. [69] rebut Cheng et al.’s assertion that arsenic concentrations in wells remain stable
over time, arguing that the limited monitoring time is insufficient for drawing such definite conclusions, and that
it may give well users a false sense of security ("safe" wells remain safe). Ravenscroft et al. [69] referenced stud-
ies where arsenic concentrations in tube wells increased over time. Detailed information about some of these
sampling locations in these studies is unknown. Therefore, it is challenging to assess how Ravenscroft et al. [69]
rebut is substantiated, given the lack of detailed contextual information about the sampling locations and con-
ditions. However, Ravenscroft et al. [69] statement regarding increasing arsenic concentrations over time aligns
with Donselaar et al. [17] findings. Since the rate of reductive dissolution and the subsequent release of arsenic
into groundwater is controlled by organic carbon availability, McArthur and Cheng may be correct within their
respective spatial contexts. Without detailed spatial and sedimentological information about the monitored wells,
whether the observed stability or increase in arsenic concentrations reflects local biogeochemical conditions re-
mains uncertain. This ambiguity highlights the importance of considering geomorphological features, such as
point bars, which act as arsenic hotspots where reductive conditions may persist over time.
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Figure 10: Temporal variability of arsenic concentrations in 20 monitored wells in Araihazar Upazila, Bangladesh,
from 2001 to 2003 [68].

4.2 (Auxiliary) Data Sources as Indicators of Arsenic Risk

Donselaar et al. [17] outline in their study 4 predictor variables for arsenic risk prediction: local climate variables,
more specifically precipitation, topographic elevation, population density, and oxbow lake vegetation indices. To-
pographic elevation and population density have already been addressed in Chapter 3. The other two variables,
precipitation and oxbow lake vegetation indices, are less straightforward.

According to Donselaar et al. [17], precipitation drives lateral groundwater flow, flushing arsenic-rich water from
non-confined sedimentary units with high permeability, and floods oxbow lake vegetation. Given that monsoonal
precipitation is a recurring annual event and that high-temporal-resolution arsenic datasets are limited, the relia-
bility of precipitation as a predictive variable is uncertain. While climate change may lead to more extreme rainfall
events, the general consistency of monsoon patterns and the persistence of elevated arsenic concentrations in cer-
tain areas make it difficult to justify precipitation as a strong explanatory factor for temporal variability in arsenic
levels.
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As discussed in Chapter 2, there are cases where increased precipitation can enhance arsenic mobilisation, sug-
gesting that precipitation is indeed an important contributing factor. Therefore, it will be included as a predictor
in the XGBoost model; however, due to the complexity of the underlying processes and limited temporal data,
its precise impact remains difficult to quantify. Total precipitation (tp) data can be obtained from the ERA5-Land
Monthly Averaged Reanalysis dataset in the climate datastore, openly available online, by the European Union
Copernicus program and ECMWF [70]. The data’s spatial resolution is 9 km. Total precipitation accounts for the
accumulated liquid and frozen water over a particular period.

Oxbow lake vegetation indices, proposed by Donselaar et al. [17] as proxies for organic carbon density, can be
derived using various variables. The Normalised Difference Vegetation Index (NDVI) is widely used in remote
sensing to monitor and assess vegetation presence, biomass [71], [72], and health from satellite imagery. NDVI is
simple to compute and strongly correlates with photosynthetically active biomass. NDVI is calculated using the
red and near-infrared (NIR) bands of the EM-spectrum, as such:

NDVI =
(NIR − Red)
(NIR + Red) (4)

NIR reflects strongly from healthy vegetation due to internal leaf structure, and red is absorbed by chlorophyll dur-
ing photosynthesis. High NDVI values over oxbow lakes may suggest the presence of macrophytes. Accurate mea-
surement of NDVI within oxbow lakes before and after the monsoon period requires precise delineation; however,
in this study, oxbow lakes are identified but not explicitly delineated. Additionally, the XGBoost model requires
tabular input, with each row representing a single arsenic measurement. Unlike variables such as DTM, assigning
an appropriate NDVI value to each data point is not straightforward. NDVI’s temporal variability and the lack of
exact sampling dates for many arsenic measurements make it difficult to ensure meaningful correspondence. Yet,
NDVI will be used as a predictor variable in the XGBoost model. Instead of measuring the NDVI for the oxbow
lake, the NDVI is measured for the entire oxbow lake and the point bar within. NDVI can be computed from every
optical satellite imagery with the red and NIR bands. Key considerations include cloud-free conditions, as clouds
and shadows can distort imagery, temporal alignment with the period of interest, and the frequency of revisiting
the satellite. The Landsat 7 satellite is the only satellite with the correct temporal alignment and has a revisit time
of 16 days. Google Earth Engine provides the cloud-reduced Landsat Collection 2 Tier 1 Level 2 NDVI composites,
which are created from all the scenes in each 32-day period beginning from the first day of the year and continuing
to the 352nd day of the year3. However, these 32-day intervals do not align precisely with calendar months, which
may limit temporal comparability with monthly datasets or field measurements. Additionally, Landsat 7 experi-
enced a scan line corrector failure in late May 2003, resulting in gaps in the imagery. Despite these limitations, this
dataset is used in the present study due to its ease of access, time efficiency, and suitability for a proof-of-concept
analysis.

4.2.1 Auxiliary Data Sources

Chapter 3 identified four categories of variables commonly used in previous studies to predict arsenic concentra-
tions and associated risk. A subset of these variables is selected for inclusion in this case study. Some variables,
such as soil type, are inherently represented by geomorphological features like point bars. Nonetheless, this case
study incorporates soil-related variables to examine their contribution to arsenic risk prediction. Using machine
learning practices and national and local geographical databases, SoilGrids mapped the globe’s soil properties at
a 250 m spatial resolution [73]. The soil maps are not tied to a specific year but result from integrating soil profiles
collected over multiple years; therefore, they provide a comprehensive, up-to-date representation of global soil
properties rather than a snapshot from a particular year. The SoilGrids 250 m v2.0 dataset is available through the
GEE Community Catalogue [74]. In this case study, the following variables will be used: sand, silt, organic carbon
density (OCD), soil organic carbon content in the fine earth fraction (SOC), and organic carbon stocks (OCS). To
align with the 30 meter resolution of the DTM, the original 250 meter cells were resampled by dividing each cell
into smaller units using a nearest neighbour approach in ArcGIS Pro, resulting in a uniform spatial resolution of
30 meters across all datasets.

3https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NDVI
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The three recurring variables in prior research are Topographic Position Index (TPI), Topographic Wetness Index
(TWI), and Land Use and Land Cover (LULC). Examples of how TPI and TWI relate to the elevation profile are
visualised in Figure 12, with their spatial context shown in Figure 11. The TPI can conveniently be calculated from
the DTM, as it is geomorphometric and quantifies a location’s relative position on a landscape (e.g. whether a
point is in a valley, on a slope, or on a ridge). TPI is calculated by comparing the elevation of a focal pixel to the
mean elevation of surrounding pixels within a defined window, as such:

TPI(𝑥, 𝑦 ) = 𝑧𝑥,𝑦 − 𝑧𝑛𝑒𝑖 𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (5)

With 𝑧𝑥,𝑦 the elevation at the focal point, and 𝑧𝑛𝑒𝑖 𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 the average elevation in a surrounding area. If TPI > 0,
the location is higher than its surroundings and typically indicates a ridge or hilltop. If TPI < 0, the location is lower
than its surroundings, such as a valley or channel. A TPI value close to 0 suggests a flat area or a uniform slope.
TPI can help identify catchment areas and water routing and often strongly correlates with geomorphological fea-
tures; for example, low TPI areas correspond to floodplains, riverbeds, and alluvial plains. From a sedimentology
perspective, low TPI areas, such as point bars, are characterised by sediment deposition.

The TWI is a hydrological terrain index that quantifies how likely water will accumulate at a specific location. TWI
uses the landscape’s topographic features such as slope and upstream contributing area for modelling how water
flows and accumulates over terrain, as such:

TWI = ln( 𝛼

tan 𝛽
) (6)

The formula reflects the balance between the flow accumulation (𝛼) and the drainage capacity (steepness of slope,
𝛽). Steeper slopes have faster water run-off. The natural logarithm is used to normalise the index. High TWI
values indicate wet areas prone to water accumulation, whereas low TWI values are usually dry and well-drained
areas such as ridges and steep slopes. Primary use cases of TWI are mapping soil moisture and saturated zones,
identifying wetlands and drainage networks, and predicting surface run-off and flood risk areas. High TWI values
often correspond with low-energy zones where fine sediments settle, and the soil moisture is high.

Figure 11: Aerial image of a meander belt in Bangladesh showing the location of the elevation transect (A–B) across
a point bar, analysed in Figure 12. Image taken from Google Earth Pro, dated 1 September 2025. Coordinates:
23◦08′27.10′′N, 89◦42′42.29′′E. Map data: Google, © 2025 Maxar Technologies.
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Figure 12: Elevation profile across a point bar, highlighting variations in TPI and TWI. Labels A and B correspond
to the endpoints of the transect shown in white in Figure 11

Land use and land cover (LULC) is included as an explanatory variable due to its strong correlation with population
density, as well as its influence on land management, water use, and environmental risk exposure. The Global
Land Analysis & Discovery (GLAD) project provides a global LULC change dataset that quantifies transitions across
various land cover classes, such as urban areas, agricultural land, forests, and wetlands, from 2000 to 2020, at a
30 meter spatial resolution [75]. For this case study, the LULC data from the year 2000 is used and retrieved from
GEE. For each data point, the LULC value that is most represented within a radius of three cells is considered.

4.3 Testing (Auxiliary) Data Sources for Arsenic Risk Prediction

The subsection aims to test and verify the contributions of each of the (auxiliary) data sources, as described in
previous sections, to arsenic risk prediction. First, a brief overview of the complete dataset, including variables, is
provided. Second, the XGBoost model and the testing setup are explained. And lastly, results from the XGBoost
model are interpreted and compared to the hypothesis posed by Donselaar et al. [17].

The dataset Cheng et al. [68] provided contains 681 entries from 20 wells sampled over a 3-year period. For each
point in the dataset, the associated topographic elevation, TPI, TWI, OCD, OCS, SOC, sand, silt, LULC, tp, NDVI,
and population density value were assigned. For population density, the sum within a 30 meter radius around
each well was used. Different radii (30, 90, 150, and 210 meters) were tested, with the 30 meter radius yielding
the best model performance. Since the objective is to predict arsenic risk rather than actual concentrations, each
arsenic measurement is converted into a binary risk level. A value of 0 indicates no risk for concentrations below
10 µg/L, while 1 indicates risk for concentrations equal to or above 10 µg/L. Before training the XGBoost model,
the dataset is preprocessed by splitting it into training and testing subsets based on Well ID, ensuring that all
measurements from a given well are assigned exclusively to either the training or the testing set. To reduce the
risk of spatial data leakage, a minimum distance of 300 meters between wells in different subsets is maintained.
The data is randomly split into 70% training and 30% testing, with measurements from 14 wells assigned to the
training set and those from 6 wells to the test set. This resulted in a training set of 479 samples and a test set
of 202 samples. Of these, 288 training samples and 153 test samples were classified as high-risk, highlighting the
overall class imbalance, with 441 out of 681 total samples labelled as high-risk. Stratified K-Fold splitting with five
folds is applied to the training data to maintain a similar distribution of the binary target variable in each fold
and reduce class imbalance during cross-validation. Additionally, the SAND, SILT, OCD, and SOC variables each
consist of six bands representing depths of 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm.
The OCS variable includes a single band covering the 0–30 cm depth range. All combinations of the soil variables,
together with the other predictors, were considered and tested during the development of the XGBoost model
(combinations labeled as sets 1 to 6, with set 1 depth 0-5 cm).

To optimise the performance of the XGBoost classifier, a randomised search was conducted over a predefined grid
of hyperparameters. The search space included the following: n_estimators [195, 200], learning_rate [0.0475,
0.05], max_depth [3], min_child_weight [4], subsample [0.5], colsample_bytree [0.5], reg_alpha [0.1, 0.2, 0.4],
and reg_lambda [0.1, 0.5, 1]. Cross-validation was carried out using the previously defined stratified training folds.
The model was trained with a fixed random_state of 42 to ensure reproducibility, and all implementations were
carried out using the Scikit-learn API with the XGBoost library in Python environment version 3.10.
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The best-performing model was selected based on the highest balanced accuracy, which accounts for class im-
balance by averaging the recall across all classes. The optimal hyperparameters found were: subsample = 0.5,
reg_lambda = 0.1, reg_alpha = 0.2, n_estimators = 200, min_child_weight = 4, max_depth = 3, learning_rate
= 0.05, and colsample_bytree = 0.5. This model, trained using soil depth features from 0–5 cm, achieved a train-
ing accuracy of 0.979 and a test accuracy of 0.812, resulting in an accuracy gap of 0.167. The precision was 1.000,
recall was 0.752, and the F1 score was 0.858. As shown in Figure 13, the training and validation log loss curves
are plotted for each feature set corresponding to different soil depths, using the hyperparameters specified above.
The feature set based on the 0–5 cm soil depth consistently achieved the lowest validation loss, indicating better
generalisation performance. In contrast, models using deeper soil features showed higher validation loss and signs
of overfitting, as reflected by the increasing gap between training and validation losses.
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Figure 13: Training and validation log loss over 100 epochs for different soil depth feature sets. Each line repre-
sents a distinct soil depth range (Set 1 through Set 6), with solid lines indicating validation loss and dashed lines
indicating training loss. Set 1 (0–5 cm) shows the lowest validation loss and smallest train-validation gap. Deeper
soil sets exhibit progressively higher validation losses and larger gaps, suggesting increased overfitting.

These results indicate that the model generalised well to unseen data, as demonstrated by a test accuracy of 0.812
and a strong F1 score of 0.858. The perfect precision score (1.000) suggests that all locations predicted as high-risk
were indeed high-risk in the test set. However, the recall score of 0.752 indicates that the model failed to identify
a number of high-risk locations. This is reflected in the confusion matrix (Figure 15), where 38 out of 191 high-
risk cases were misclassified as no-risk. No false positives are present, confirming that the model is highly reliable
in predicting high-risk areas. This also suggests a conservative prediction tendency that prioritises precision over
recall. While this reduces the likelihood of triggering unnecessary mitigation efforts in low-risk areas, it increases
the risk of overlooking actual high-risk cases, which is not desirable in real-world scenarios due to potential public
health consequences. The model correctly classified all low-risk cases. The accuracy gap of 0.167 between training
and testing performance suggests some level of overfitting, but the model still performs robustly overall, given the
imbalanced class distribution and the complexity of the input features.
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Figure 14: Feature importance analysis for the best-performing XGBoost model using Set 1 variables (0–5 cm soil
depth). Left: Model-derived feature importance. Right: SHAP-based feature importance.
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The feature importance plot on the left in Figure 14, highlights which variables contributed most to the model’s
decision-making process, offering insights into which predictors were most influential in identifying high-risk ar-
eas. SOC, sand, and elevation were the top three most effective variables for the model’s performance in reduc-
ing classification error during training. NDVI, tp, and LULC contributed little to nothing in the model’s decision-
making. The correlation plot on the right in Figure 15 illustrates the linear relationship between the variables, cal-
culated over the entire dataset used in the case study. The features tp and NDVI show little to no correlation with
other variables, either because they are inherently uncorrelated or because their relationships with other features
are non-linear and therefore not captured by the correlation matrix. LULC is omitted because it is a categorically
encoded variable represented with numerical values, which makes correlation analysis inappropriate. Population
density has virtually no correlation with silt content, which aligns with geomorphological expectations, as set-
tlements are typically located on sandy ridges rather than in fine-grained floodplain environments. Additionally,
organic carbon density (OCD_0_5) is strongly negatively correlated with sand content, further supporting the in-
terpretation that sandy areas, where people tend to reside, have lower organic matter accumulation. This spatial
pattern of habitation and sediment characteristics is consistent with the observations described by Donselaar et
al. [17]. Sand content does not show any meaningful correlation with elevation and exhibits only a very weak neg-
ative correlation with population density. According to the conceptual model described by Donselaar et al. [17],
stronger positive correlations between sand, elevation, and population density would be expected, assuming lin-
ear relationships. However, the dataset used in this study is compiled from various sources spanning a broad time
range, from 1905 to 2016, which may not accurately reflect the present-day geomorphological and settlement pat-
terns of the region. In particular, the data may not align well with the spatial distribution of sandy ridges that have
formed and evolved over time. Additionally, no correlation is observed between elevation and population density,
although this too would be anticipated based on the theoretical framework. One possible explanation for this dis-
crepancy is the method used to assign population values: the sum within a fixed-radius buffer was used rather
than the mean, and the chosen radius may have been either too small or too large to capture meaningful spatial
associations. Arsenic (As) exhibits small negative correlations with both population density and elevation, which
contradicts the conceptual model proposed by Donselaar et al. [17]. Their model suggests that arsenic hotspots
are more likely to occur on elevated sandy ridges where people tend to settle. The observed negative correlation
with population density may reflect limitations in how the variable was derived, as the use of summed population
values within a fixed-radius buffer might not accurately capture the spatial distribution of settlements around the
wells. Additionally, these results indicate that the relationship between arsenic concentration and these variables
is likely non-linear or more complex than what can be captured by simple correlation measures.
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Figure 15: Model evaluation and feature correlation analysis for the best-performing XGBoost model using Set 1
variables (0–5 cm soil depth). Left: Confusion matrix. Right: Pearson correlation matrix of the entire dataset.
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SHAP (SHapely Additive exPlanations) values are computed using the best-performing classifier to interpret the
trained XGBoost model. SHAP quantifies the predictive impact of each variable within the trained model. SHAP
values capture both linear and non-linear interactions between features. The SHAP feature importance plot (on
the left of Figure 14) shows that elevation, SILT_0_5, SOC_0_5, and SAND_0_5 are the most influential predictors in
the model. These findings are partially reflected in the correlation matrix (Figure 15), where some of these features
exhibit moderate to strong correlations with each other. These global importance rankings are further illustrated in
the SHAP waterfall plot (Figure 16), which shows how individual features contribute to specific model predictions.
In this case, elevation, SOC_0_5, and population density contribute positively, pushing the prediction above the
risk threshold.
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Figure 16: SHAP waterfall plot for the best-performing XGBoost model using Set 1 variables (0–5 cm soil depth).
The plot shows how individual features contribute to a single high-risk prediction, with SOC_0_5, SAND_0_5, and
elevation having the strongest positive influence.

4.4 Model Interpretation and Feature Relevance

The case study supports the hypothesis proposed by Donselaar et al. [17] that geomorphological features, partic-
ularly sandy and elevated point bars, serve as persistent arsenic hotspots. This interpretation is reinforced by the
high importance of sand, elevation, and SOC in both the XGBoost feature importance and SHAP analyses. These
findings align with the notion that topographically elevated, sandy ridges within point bars are preferred locations
for human settlement and are strongly associated with an elevated risk of arsenic exposure. In contrast, variables
such as NDVI and precipitation (tp) contributed minimally across all feature importance metrics. This may indi-
cate limited predictive value in the context of this dataset or reflect limitations in the spatial or temporal resolution
of these variables. As a result, NDVI and tp will not be included in the subsequent model implementation. While
this case study is not without limitations, with known limitations in sampling, temporal coverage, and the con-
struction of certain features, the overall results are consistent and sufficiently robust to inform further modelling.
The agreement between model outputs, theoretical expectations, and the geomorphological context provides suf-
ficient support to proceed with the selected variables. The next chapter will focus on elevation and population
density, as these variables demonstrated theoretical relevance, consistent model contribution, and practical inter-
pretability for arsenic risk prediction.
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5. Model Implementation and Results

This chapter presents the practical implementation of themachine learning approaches, as discussed in Chapter 3,
to predict arsenic-risk. Building on the conceptual frameworks introduced in earlier chapters, the implementa-
tion focuses on the two main components: 1) the detection of geomorphological features using the YOLO model
applied to satellite imagery, and 2) the prediction and classification of arsenic-risk based on an GMM trained
on geospatial and environmental features. For both parts, the results of the models are evaluated using domain
knowledge (e.g. are the results geologically meaningful). Before testing the model implementations, a new histor-
ical arsenic dataset is introduced. This dataset will be used throughout the chapter.

5.1 Historic Arsenic Dataset for Model Implementation Testing

A new historic arsenic dataset, consisting of almost 20,000 unique records (sampling locations), provided by Don-
selaar [76], will be used to implement both parts of the machine learning pipeline. The historical arsenic dataset
samples were taken in the Upazilas of Kalia and Lohagara at the end of 2013 and the start of 2014. Figures 17 illus-
trates the spatial distribution of the historic arsenic sampling locations across the Upazilas of Kalia and Lohagara.
Compared to the dataset used in the Chapter 4, this dataset covers a broader geographic area within a similar
geomorphological setting and includes an order of magnitude more data samples; however, it does not include
repeated measurements from the same wells over time. Figure 22 shows the relationship between well depth and
measured arsenic concentrations, and their distribution, with the mean and standard deviation for both variables
indicated.

5.2 Testing Oxbow Lake Detection Using a Trained YOLOv11x-OBB

In this section, the trained YOLO model, from Section 3.3, will be used for inference on a regional-scale satellite
image in the area defined by the new dataset, using YOLO SAHI. The objective of this section is to evaluate the
performance of the trained model on large geospatial areas that include oxbow lakes. Specifically, the assessment
focuses on the model’s ability to accurately detect oxbow lakes within their broader landscape context. Section 3.3
introduced the use of regional-scale imagery and specified the image scales used for training. In this section,
satellite images acquired under varying spatial scales, landscape settings, and seasonal conditions are evaluated
to assess the generalisation performance of the trained YOLO model across different environmental settings. Im-
ages for the YOLO inference testing are taken from Google Earth Pro in HD resolution (1920x1080). The eight test
cases used in this evaluation are summarised in Table 1, for different scales and geomorphological settings. The
model inference results across all eight test cases are visualized in Figure 18 and 19. Since the model is tested on
previously unseen scenes for which no ground-truth annotations are available, evaluation using standard quanti-
tative metrics is not feasible. Therefore, visual inspection of inference results is provided, for example, by a domain
expert evaluating detection accuracy under different environmental settings.

Date Scale Obs. Altitude (km) Season / Setting Test Case

May 2025 Regional 114.77 Wet season (isolated oxbow lakes, side-channel river) 1
114.77 Wet season (dominant river system, few oxbow lakes) 2
87.47 Wet season (isolated oxbow lakes, side-channel river) 3
87.47 Wet season (dominant river system, few oxbow lakes) 4

Dec 2016 Regional 111.10 Dry season (isolated oxbow lakes, side-channel river) 5
111.10 Dry season (dominant river system, few oxbow lakes) 6
87.47 Dry season (isolated oxbow lakes, side-channel river) 7
87.47 Dry season (dominant river system, few oxbow lakes) 8

Table 1: Overview of test images used for evaluating YOLO model performance across different observation alti-
tudes and geomorphological settings.
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(a) Northern section

(b) Central section

(c) Southern section

Figure 17: Spatial distribution of historic arsenic sampling locations across the Upazilas of Kalia and Lohagara. The three panels rep-
resent a north-to-south segmentation of the study area. The satellite imagery was obtained from Google Earth Pro and georeferenced,
captured in May, 2025. Map data: Google, © 2025 Maxar Technologies.
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(a) Test case 1: Wet season, isolated oxbows (b) Test case 2: Wet season, dominant river

(c) Test case 3: Wet season, isolated oxbows (d) Test case 4: Wet season, dominant river

Figure 18: YOLO test cases (1–4). The satellite imagery was obtained from Google Earth Pro, captured in May 2025, and December 2026. Map data: Google, © 2025 Maxar Technologies.



(a) Test case 5: Dry season, isolated oxbows (b) Test case 6: Dry season, dominant river

(c) Test case 7: Dry season, isolated oxbows (d) Test case 8: Dry season, dominant river

Figure 19: YOLO test cases (5–8). The satellite imagery was obtained from Google Earth Pro, captured in May 2025, and December 2026. Map data: Google, © 2025 Maxar Technologies.



Model Implementation and Results

Through empirical testing, the following parameters were found to perform optimally across the various test cases:
a slice height and width of 200 pixels, and an overlap height and width ratio of 0.60 for the sliding window. The
confidence threshold was set to 40%. There are no formal guidelines for selecting optimal slicing parameters, as
these often depend on the specific characteristics of the dataset and the objects being detected. In this case, the
trade-off involves balancing generalisation performance against spatial precision, particularly since oxbow lakes
vary significantly in size and shape. The YOLO inference was conducted using the Ultralytics package (version
8.3.130) in Python 3.11.12 with PyTorch 2.6+cu124, running on an NVIDIA A100 GPU (12 compute units, 83.5 GB
RAM) via Google Colab.

The most notable difference between the test cases is the seasonal variation. Test cases 5 and 6, which correspond
to the dry season, show a higher number of (false positive) oxbow lake detections for similar scenes compared
to test cases 1 and 2 in the wet season. This suggests that seasonal conditions may influence the model’s abil-
ity to distinguish oxbow lakes, potentially due to differences in water visibility, vegetation cover, or lighting. In
the dry season cases, many of the false positives appear as elongated shapes with dense vegetation, such as tree
lines alongside canals or riverbanks, which contrast strongly with the surrounding landscape and visually resem-
ble oxbow lakes. Additionally, a consistent pattern across the results is the reduced number of detections in scenes
dominated by large river channels. This occurs even when the imagery contains prominent meander-like geomor-
phological features, indicating that the presence of a dominant river system may hinder the model’s sensitivity to
isolated oxbow lakes in such settings. However, the effect of these false positives is significantly reduced when
moving from the regional scale in test case 5 to the more focused, local scale in test case 7, suggesting that scene
context and spatial resolution play a role in moderating detection errors.

5.3 Testing Arsenic Risk Classification using GMM

The definition of risk used in this study was introduced in Chapter 2, while the GMM approach was described in
Chapter 3. Chapter 4 validated and tested a set of predictor variables for use with the GMM. This section integrates
these three components to generate an arsenic-risk prediction based on the variables identified in the case study.
This section evaluates the performance of the GMM using topographic elevation and population density as pre-
dictor variables. At this stage, pixel-wise arsenic-risk predictions are computed across the entire area of interest,
without distinguishing between the presence or absence of oxbow lakes and their associated point bars. Both the
population density and elevation data are derived from the most recent available sources. Accurate knowledge of
current population density on point bar ridges is important for precise risk prediction. The population density
data for 2025 are based on projections from the GHSL database. Topographical elevation data are not associated
with a specific year, given that elevation generally changes slowly over time. One of the elevation data sources
used in this study is the ALOS World 3D 30m dataset, with the most recent version released in 2016. Figure 23 in
Appendix B.2 illustrates the original distributions of elevation and population density. Elevation follows an approx-
imately Gaussian distribution with sharp peaks, while population density is heavily skewed. This non-Gaussian
nature complicates clustering with the GMM. To address this, a log-transformation is applied to the population
data to reduce the long tail, and a quantile-based transformation is used for elevation to better approximate a
normal distribution. The resulting distributions, shown in Figure 24, are better suited for multivariate clustering,
although population density remains somewhat skewed and continues to pose challenges for the GMM.

First, the two data sources are spatially aligned and clipped to the defined area of interest. Subsequently, only the
data points containing valid (non-NaN) values are retained for analysis. The topographical elevation and popula-
tion density are not normalised. In GMMs, the assumption that all clusters have the same variance is relaxed, for
example, compared to K-means clustering. The clustering by GMM is entirely data-driven and free of manually
defined thresholding; post hoc interpretation of the resulting cluster centroids was performed. This allowed for a
qualitative labelling of risk classes (e.g. ’High Risk’, ’Potential Risk’, ’Low Risk’) based on a centroid-based approach
using the relative position of each cluster centroid. The sum of the elevation and population values is used as a risk
score for each centroid. These scores are then ranked, and the cluster labels are assigned based on their relative
scores. The lowest score is assigned to the Low Risk category, and the highest score to the High Risk category. This
method ensures stable, data-driven classification that adapts to varying distributions and avoids arbitrary deci-
sion boundaries. The GMMwas trained for three components with a fixed random seed of 42, covariance_type:
full, and initialisation method kmeans. To evaluate the optimal number of components for the GMM, both the
Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC) were computed across a range
of component values. The analysis revealed that 𝑘 = 3 components yielded the lowest BIC and AIC scores, indi-
cating the best balance between model fit and complexity. Notably, both criteria began to converge after 𝑘 = 2,
and the log-likelihood also showed minimal improvement beyond this point, suggesting diminishing returns with
additional components.
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Figure 20: Geospatial layers supporting arsenic risk assessment in the area of interest, classified using Gaussian
Mixture Model (initialized with kmeans). A): GMM-based arsenic risk classification based on elevation and popu-
lation density. B): Population density map (for visualisation histogram-equalised), emphasizing spatial patterns
of human settlement. C):Maximum prediction probability derived from the GMM model, representing the prob-
ability of the assigned risk class. D): DTM showing topographic variation across the study region.
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(a) Optical satellite image of an oxbow lake and the associated
point bar in the area of interest.

(b) Measured arsenic concentrations from groundwater wells
within the study area, overlaid on satellite imagery.

(c) GMM-based arsenic risk classification derived from topo-
graphic elevation and population density features

(d) Prediction certainty visualised as the maximum GMM class
probability per pixel.

(e) DTM highlighting topographic variation across the oxbow lake
and surrounding floodplain.

(f) Population density across the area of interest, displayed with
histogram equalization applied solely for visualization purposes
to enhance contrast and reveal settlement concentration patterns.

Figure 21: Spatial overview of the arsenic risk classification alongside relevant geospatial predictor variables. These layers
provide spatial context for interpreting the risk distribution and support the understanding of relationships between
predictor variables and model outcomes.



Model Implementation and Results

As shown in Figure 20, the top left plot displays the GMM’s arsenic risk prediction results. When comparing the
GMM-based arsenic risk predictions with the geospatial predictor variables (DTM, population density), all exhibit
spatial patterns that almost completely correspond to those observed in the predicted risk, especially around point
bars within oxbow lakes. Inspecting the model probability plot, the model is overall, for the area of interest, mostly
certain in its clustering. This suggests the model is decisive in its classification. Lower probability zones surround
the boundary between classes. Additionally, regions with lower model probability (approximately 0.5) are typically
found where there is a mismatch between the predictor variables, such as areas with high population density and
low elevation, or the opposite. One such example is located between longitudes 89.55 and 89.60 and latitudes
23.20 and 23.75. An additional noteworthy observation is found in the area between longitudes 89.75 and 89.80
and latitudes 23.20 and 23.25, where the model predicts a Potential Risk with a probability level between 0.6 and
0.8. In this region, the DTM indicates low-lying terrain within a populated area. A more detailed analysis of the
arsenic risk prediction is presented in the following section, focusing on a single oxbow lake and its associated
point bar in the area of interest.

5.4 Application of Oxbow Lake Detection in Risk Mapping

In this section, one of the oxbow lakes and its associated point bars, as detected by the YOLO model, is selected
for closer examination to evaluate the spatial relationship between geomorphological features and arsenic risk
predictions. Figure 21 shows a selected oxbow lake detected by the YOLO model. The top-left panel displays the
satellite imagery of the area, while the top-right panel shows the measured arsenic concentrations from nearby
wells. The middle-left panel presents the GMM-predicted arsenic risk classification, and the middle-right panel
shows the corresponding prediction probability. From the satellite image (21a), the ridges on the point bar are
visible, accentuated by the dense vegetation growing along them, supported by the DTM in Figure 21e. According
to the hypothesis by Donselaar et al., ridges on point bars are more likely to be populated. All available arsenic
measurements from the well dataset are located directly on these ridges, as shown in Figure 21b. According to
the safety standards of the WHO, all of these wells pose a high risk to the local population. To determine whether
the prediction in Figure 21c is reasonable, the results should be compared with the topographic elevation and
the area’s population density, which defines risk in this study. The predictions in Figure 21c align with underlying
geospatial patterns that appear to be governed by topography and population density variations, upon compar-
ison with the DTM in Figure 21e and the population density in Figure 21f. When the probability is inspected in
Figure 21d, the GMM model was the least certain in boundary cases, specifically in transitions from High Risk
to Potential Risk, or areas where only one of the two prediction variables is high. Another notable pattern in the
predictions by the GMM are the sharp boundaries and cut-offs between the High Risk class and the other classes.

5.5 Summary Results

A two-part machine learning pipeline for arsenic-risk prediction in Bangladesh was implemented, using: 1) YOLOv-
11x-OBB for oxbow lake detection in satellite imagery, and 2) a GMM for arsenic-risk classification. Testing the
YOLO model across eight scenarios with varying altitudes, seasons, and landscapes revealed better detection dur-
ing wet seasons and in areas with isolated oxbow lakes (hydrologically disconnected to the main river) compared
to those dominated by river systems. When limited to just elevation and population density, the GMM success-
fully classified areas into High, Potential, and Low Risk categories, with the highest probability away from class
boundaries. The case study analysis of a selected oxbow lake confirmed a spatial relationship between geomor-
phological features and arsenic risk, supporting the hypothesis that populated ridges on point bars are associated
with elevated arsenic risk. However, areas predicted to be at risk but lacking arsenic measurements from tube
wells remain uncertain, as they cannot be validated without in situ data.
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6. Discussion

6.1 Interpretation of Key Results and Findings

6.1.1 Arsenic-Risk Prediction by the Gaussian Mixture Model

The results of this study reveal distinct spatial patterns in arsenic risk, which appear to be influenced by underly-
ing geospatial features and demographic factors. In particular, areas predicted to be High Risk zones by the GMM
often coincide with zones of elevated topography and relatively high population density. This alignment supports
the underlying hypothesis by Donselaar et al. [17] that certain physical features, such as ridges on point bars, are
susceptible to a greater risk of arsenic exposure. The predicted arsenic risk maps revealed that High Risk areas
were typically surrounded by zones of Potential Risk, reflecting a gradual transition in both elevation and popula-
tion density. These transitional zones often occurred along the edges of geomorphological ridges, where elevation
decreased and fewer people were present.

A valuable aspect of using the GMM is the availability of probabilistic outputs, which allow for a pixel-level inter-
pretation of model certainty. Probability is defined here as the maximum posterior probability that a data point
belongs to any of the GMM components. Areas with high probability (e.g. >0.9) indicate strong separation be-
tween classes and well-supported predictions. In the visualisation, these regions appear in deep blue and were
frequently associated with High Risk zones, suggesting the model is highly decisive in identifying areas of great-
est concern. In contrast, regions with probabilities values around 0.5 suggest that the model assigns nearly equal
probabilities to two or more risk categories. These low-probability zones frequently occur along the boundaries
between High and Potential Risk areas, or in regions where geospatial predictors, such as elevation and popula-
tion density, provide conflicting signals. Visually, these areas often appear in grey and are commonly mapped as
Potential Risk zones or transitional zones that bleed into High Risk areas.

6.1.2 Data Quality Limitations

A further limitation affecting the GMM’s predictive capability was the inconsistent availability of high-resolution,
online-accessible, and temporally appropriate input data. Population density data were resampled from their orig-
inal 3 arcsecond (∼90 meter) resolution to 30 meter resolution using nearest neighbour assignment, where each
90 by 90 meter cell was divided into three 30 by 30 meter sub-cells with the original value uniformly assigned.
An alternative approach would have been linear interpolation. While nearest neighbour resampling preserves the
original values and avoids introducing artificial gradients, it can lead to abrupt transitions and sharp class bound-
aries in the resulting maps, potentially distorting the spatial continuity of arsenic risk zones. In contrast, linear
interpolation would have produced smoother transitions and reduced abrupt discontinuities in the data repre-
sentation, but at the cost of possibly blurring sharp spatial contrasts or introducing artificial gradients, which may
mask meaningful local variation. Furthermore, the DTM data had a spatial resolution of 30 meters, but its qual-
ity may be questionable due to its compilation from multiple sources. As no independent ground-truth elevation
data were available, the accuracy of the DTM could not be directly validated. Inconsistent spatial granularity across
features may have hindered the model’s ability to detect fine-scale spatial patterns relevant to arsenic risk.

Additionally, both the historical arsenic dataset used in Chapter 4 and the data employed in Chapter 5 were col-
lected exclusively from residential areas, which are typically situated on elevated ridges within point bars or other
geomorphological features with higher topographic elevation. As a result, the absence of sampling in lower-lying
clay-rich zones limits the ability to validate risk predictions across the full range of geomorphological contexts and
may introduce a sampling bias toward known higher risk settings.
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6.1.3 Oxbow Lake Detection by the YOLO Model

In order to perform arsenic risk classification at specific geomorphological features, it was first necessary to ac-
curately identify the location of oxbow lakes and their associated point bars. To this end, a YOLO-based object
detection model was employed to locate these features across the study area, as oxbow lakes and point bars are
geomorphological structures considered critical to understanding the spatial distribution of arsenic contamina-
tion. The observed variation in detection performance across test cases is largely attributable to seasonal changes
and landscape context. During the dry season, reduced water levels and clearer vegetation boundaries enhance
the visibility of oxbow lakes, improving model accuracy. Conversely, high water coverage and reduced contrast
between water and surrounding land in the wet season likely obscure key visual features, leading to detection
shortfalls and misclassification. Moreover, the limited success in detecting oxbow lake-like features near active
river channels suggests that the model was trained predominantly on isolated oxbow lakes and may not gener-
alise well to similar geomorphological features, such as partly hydrologically connected oxbow lakes that are still
connected to the river on one side. The lack of curated negative examples, such as features that are visually sim-
ilar to oxbow lakes but are not, likely limited the model’s ability to distinguish between true positives and false
positives, thereby reducing its robustness. Additionally, macrophytes within oxbow lakes may alter the visual ap-
pearance of oxbow lakes, further affecting the model’s ability to generalise across different environmental settings.
Lastly, oxbow lakes come in many different shapes and sizes, which challenges the model’s detection capabilities,
as these features can appear in highly variable and often complex patterns within the landscape, making con-
sistent identification more difficult. This underscores how landscape and seasonal variability critically influence
the reliability of remote sensing-based geomorphological detection, while also highlighting that the limited avail-
ability of diverse training samples constrained the YOLO model’s generalisation performance. In particular, the
occurrence of false positives suggests that the model was likely overfitted to specific visual characteristics present
in the limited training set, reducing its ability to generalise to unseen or more complex cases, with the effects of
this overfitting becoming evident during validation.

6.1.4 Other Approaches for Arsenic Risk Prediction

In addition to the GMM presented in this thesis, several supervised machine learning methods were also explored
as potential approaches for arsenic risk prediction. These included the Histogram Gradient Boosting Classifier and
XGBoost, applied both with a minimal feature set (elevation and population density) and with an extended set that
included terrain variables such as the TPI, TWI, and LULC. While some of these models appeared to capture spatial
patterns reasonably well, they were ultimately excluded from the final report. This decision was made because the
results did not align with the theoretical framework that guided this study.

Specifically, an inspection of the arsenic well dataset provided by Donselaar et al. [17] revealed that the average
elevation and population density were lower for wells classified as Low Risk. This observation contradicts the hy-
pothesis that higher elevation and higher population density increase the likelihood of arsenic contamination.
However, this does not suggest that the original hypothesis is incorrect. Rather, it highlights the complex interplay
between geospatial variables and measured arsenic concentrations. One possible explanation is that the digital
elevation model and the population density data used in this study may lack the spatial precision needed to rep-
resent these relationships accurately. Another explanation lies in the role of well depth, which strongly influences
arsenic exposure but cannot be transferred or easily modelled when making predictions in unseen areas. In fact,
the dataset indicated that High Risk wells were often shallow, which supports the underlying hypothesis. It is
also possible that low-lying points in the terrain function as drainage zones where arsenic-rich run-off accumu-
lates, leading to high concentrations despite lower elevation. Meanwhile, elevated ridges on point bars, although
theoretically at higher risk, may be sparsely inhabited and therefore under-represented in the training data. Addi-
tionally, more densely populated areas may have better access to alternative water sources, reducing their actual
exposure.

It is important to note that the differences in mean elevation and population density between the risk categories
were relatively small, with elevation differences often lower than a single meter. Therefore, the proposed super-
vised models should not be dismissed entirely, as they have demonstrated the ability to capture spatial patterns
effectively. However, their interpretability and alignment with existing theory remain limited without further data
analysis. These findings reinforce the need for more robust, high-resolution datasets and careful model validation
when investigating environmental health risks. They also suggest that probabilistic frameworks with integrated
uncertainty, such as the GMM used in this study, remain better suited for dealing with complex geospatial rela-
tionships in data-scarce settings, for this particular research.
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6.2 Context within Literature

This study builds upon and extends existing research on arsenic contamination by introducing a spatially explicit,
geomorphologically informed modelling approach that integrates machine and deep learning techniques. Direct
comparison with prior studies is challenging, as this work does not rely onmeasured arsenic concentrations to pre-
dict precise hotspot locations. Instead, it focuses on identifying geomorphological features, such as point bars and
oxbow lakes, to constrain areas of elevated risk spatially. Based on the findings of Donselaar et al. [17], these fea-
tures are assumed to be associated with persistently high arsenic concentrations, making them reliable proxies for
long-term contamination risk. By incorporating the YOLO model, geomorphological features such as oxbow lakes
can be rapidly detected. These detections can then be refined using topographic elevation (DTM) and popula-
tion density data to produce maps that precisely delineate potential arsenic hotspots. This methodology improves
upon previous efforts that tended to generalise risk over large regions and were prone to producing unrealistic
hotspot patterns due to spatial averaging.
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7. Conclusion and Recommendations

7.1 Conclusion

7.1.1 Research Questions Revisited

This chapter synthesises the thesis’s main findings, evaluates the effectiveness of the proposed methods, and re-
visits the research questions in light of the results. It also outlines the work’s broader practical implications and
proposes directions for future research. The main research question of this thesis was:

How can geomorphological features, specifically oxbow lakes and point bars, be used to optimise machine-
learning models for accurate arsenic risk prediction and mapping in the Ganges-Brahmaputra Basin?

To address this question, a series of sub-questions was formulated. The answers to these sub-questions together
provide a comprehensive evaluation of the proposed approach and demonstrate how the main research question
has been answered. Each sub-question will be revisited, summarising the findings and outlining how the sub-
question was answered, and how its findings contributed to resolving the main research question.

1. How are the environmental conditions and geological characteristics in the Ganges-Brahmaputra Basin re-
lated to groundwater arsenic contamination?

In Chapter 2, an extensive overview is provided detailing the region’s geomorphology, hydrology, and en-
vironmental settings. Particular emphasis is placed on geomorphological features such as point bars and
oxbow lakes, and the ways in which human interaction with groundwater contributes to exposure risk. Much
of the geoscientific basis for understanding arsenic mobilisation in this context has been established by [15]–
[17], [24], [29], whose work forms the conceptual foundation for this thesis. Their research provided the guid-
ing framework through which the literature was reviewed and the modelling strategy was developed. They
also provided clear constraints and guidelines, such as which (auxiliary) proxy variables were likely to be
informative.

2. Which method is effective for detecting geomorphological features such as oxbow lakes and point bars?

Donselaar et al. [17] proposed using a Mask R-CNN to detect and delineate oxbow lakes and point bars.
While a Mask R-CNN offers precise segmentation and is well-suited for delineating complex shapes, it re-
quires extensive annotated datasets and is computationally intensive. In contrast, this study employed the
YOLOmodel, which was ultimately chosen due to its efficient training process, suitability for smaller custom-
labelled datasets through transfer learning, and ability to generate results rapidly. These characteristics make
YOLO a practical and effective choice for a proof of concept, allowing for rapid development and initial val-
idation of geomorphological detection without the overhead of exhaustive data annotation or model com-
plexity.
The trained YOLO model showed potential in detecting oxbow lakes and associated point bars across varied
seasonal and landscape contexts. The model’s performance indicates a promising capacity for generalisa-
tion to other regions with oxbow lakes. While the surrounding vegetation and landscape settings may differ
from the study area, the geometric consistency of oxbow lakes enhances the model’s transferability. How-
ever, several limitations were observed during inference. The model performed well for well-isolated oxbow
lakes, shown for all test cases, but struggled with more ambiguous cases. Partly active oxbow lakes, which
remain hydrologically connected to the main river on one side, were rarely detected, likely due to their re-
duced visual separation from the river channel. Similarly, point bars embedded within active river meanders
were difficult to identify, as their boundaries were less distinct. These detection gaps show the need for fur-
ther training on a more diverse set of samples, covering a wider range of oxbow lake morphologies, seasonal
appearances, and hydrological states. The YOLO model used in this study proved to be an efficient and scal-
able detection tool and is a good fit for a proof-of-concept, but it must be expanded and refined to support
broader and more robust applications.
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3. To what extent do auxiliary environmental and geomorphological variables explain the spatial and temporal
distribution of arsenic contamination risk?

This sub-question was addressed in Chapter 4, where an XGBoost classifier was employed to evaluate the
predictive power of a range of auxiliary environmental and geomorphological variables using arsenic con-
centration data from 20 wells collected between 2001 and 2003. The analysis demonstrated that sand con-
tent, elevation, and SOC were the most influential predictors of arsenic risk. These findings support the
hypothesis by Donselaar et al. [17] that elevated, sandy point bars function as persistent arsenic hotspots.
While population density contributed less than expected, its inclusion still improved model performance
and aligned with broader geomorphological patterns.
Feature importance and SHAP analysis confirmed the relevance of geomorphologically derived features,
while variables such as NDVI and precipitation showed negligible contribution. Their limited impact is
attributed to temporal misalignment, coarse spatial resolution, and conceptual mismatch, in this specific
case and model, with the target variable. Consequently, these variables were excluded from the final model
implementation. Although LULC exhibited no predictive power within the XGBoost framework, its spatial
alignment with known arsenic-prone zones suggest that it remains a valuable proxy for human and envi-
ronmental factors influencing arsenic mobilisation. In Chapter 4, the most frequently occurring LULC class
within a three-cell radius was assigned to each data point, which may have oversimplified local land cover
heterogeneity and, in turn, influenced the computed feature importance, potentially giving a skewed im-
pression of its value.

4. How should arsenic contamination risk be defined to align with both model outputs and the practical impli-
cations for public health and groundwater management?

This study defined arsenic contamination risk using a conceptual framework inspired by flood risk analysis.
In practice, this framework was translated into a three-tier risk classification: High Risk for areas that are
both elevated and densely populated, Potential Risk for elevated regions with fewer people, and Low Risk
for low-lying areas, regardless of population. This categorisation closely matched the clustering results from
the GaussianMixtureModel and allowed for a straightforward interpretation that could be directly applied to
spatial risk maps. This approach is relevant for public health and groundwater management, as it provides
a practical means of identifying and prioritising high-risk zones for mitigation and monitoring. However,
this framework does not currently incorporate a quantitative measure of population exposure per square
kilometre, which limits its ability to assess the absolute human impact of each risk zone.

5. What machine-learning method is suited for classifying arsenic risk?

The GMMwas identified as a suitable method for arsenic risk classification due to its ability to uncover latent
structure in multivariate data without requiring labelled samples. Unlike supervised approaches such as a
RF model, which rely on ground-truth data and often produce geographically inconsistent thresholds when
extrapolated over large areas, the GMM offers a flexible probabilistic framework for unsupervised clustering.
In this study, the GMM was able to capture spatial arsenic-risk patterns that broadly aligned with known ge-
omorphological risk zones such as point bar ridges. Its capacity to provide soft clustering and interpretable
spatial risk maps supports its application in data-scarce, geospatially complex environments. However, the
model showed limitations in handling highly skewed input data, particularly population density. It is ex-
pected that this affected the model’s ability to form well-separated clusters and may have introduced un-
certainty in class boundaries. Additionally, the GMM occasionally assigned a Potential Risk classification to
low-elevation, populated areas, which does not align with the intended definition of Potential Risk as areas
that exhibit intermediate arsenic exposure and are geomorphologically distinct from both low- andHigh Risk
zones. While such misclassification is less critical than incorrectly assigning High Risk, since it avoids trig-
gering unnecessary mitigation measures, it still introduces ambiguity in the interpretation of risk categories
and highlights the need for careful validation of unsupervised classifications. Rather than disregarding these
ambiguous or low-probability areas, their uncertainty should be acknowledged as an informative layer that
can guide further investigation. In a decision-making context, low-probability zones could be prioritised for
field sampling or targeted monitoring, as they represent regions where model uncertainty may mask po-
tentially significant risk. These findings suggest that while GMM is mostly effective for certain aspects of
arsenic risk mapping, attention must be paid to feature scaling, class semantics, and the implications of soft
clustering in heterogeneous environments.
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7.1.2 Summary

This thesis has demonstrated that geomorphological features, specifically oxbow lakes and point bars, can effec-
tively guide and constrain machine-learning models for arsenic risk prediction in the Ganges-Brahmaputra Basin.
By focusing on spatial zones most susceptible to arsenic accumulation, as supported by geological theory and
prior research, the study narrowed the predictive modelling scope in a targeted way. The integration of geomor-
phological detection with probabilistic machine learning enabled a spatially explicit and data-efficient framework
for risk classification, even in the absence of extensive in-situ arsenic measurements, and reduces the reliance
on costly fieldwork while allowing the rapid identification of arsenic hotspots. This, in turn, can inform field
sampling strategies and assist local authorities in prioritising high-risk areas for intervention. As a proof of con-
cept, the study shows that incorporating geomorphological insight improvesmodel interpretability, scalability, and
practical relevance, (partly) successfully answering the main research question and laying the groundwork for fu-
ture applications. These findings underscore the importance of developing harmonised, high-resolution datasets
when applying to environmental health challenges. Future efforts should prioritise the development of integrated
geospatial datasets that are temporally aligned, semantically consistent, and capable of capturing both natural
and anthropogenic drivers of environmental risk.
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7.2 Recommendations

While this research presents a promising framework for geomorphologically informed arsenic risk prediction, sev-
eral paths remain for refining the methodology and expanding its application.

7.2.1 Geomorphological Feature Object Detection

Starting with the initial component of the pipeline, object detection of geomorphological features presents sev-
eral opportunities for further development. The YOLO model remains a practical choice, having shown effective-
ness even with a limited training set. Once oxbow lakes are identified, a next step could involve delineating their
boundaries. This can be accomplished by using SAR imagery, which is capable of distinguishing water from land
regardless of weather or lighting conditions. The resulting water mask can then be applied to optical imagery
to isolate vegetation within the oxbow lakes before and after the monsoon, enabling a rough estimate of organic
carbon content. Alternatively, preprocessed masks can be used directly to support this analysis.

Another option involves applying the Segment Anything Model (SAM) developed by Meta AI, which can automat-
ically delineate the boundaries of detected oxbow lakes. While its effectiveness in this specific application has yet
to be fully evaluated, it offers a promising direction for automating the delineation process. If greater computa-
tional resources are available, the Mask R-CNNmodel proposed by Donselaar et al. [17] could be considered. This
model may be fine-tuned using existing datasets or trained from scratch specifically on oxbow lakes, with SAM
potentially assisting in generating annotated training data more efficiently.

In future iterations, the detection scope could be broadened beyond well-isolated oxbow lakes and point bars to
include partly active oxbow lakes, meandering river bends, levees, and clay plugs. These features share similar
sedimentological and biogeochemical conditions that contribute to arsenic mobilisation and accumulation. Al-
though their visual appearance may differ, particularly in active fluvial environments, the underlying processes are
mostly comparable. Incorporating these additional landforms into the object detection framework would offer a
more comprehensive basis for identifying geomorphological arsenic hotspots across a wider range of fluvial set-
tings. raining data could also be expanded by including annotated imagery from other regions or countries with
comparable oxbow lake systems, which would improve model robustness and generalisability to a broader range
of fluvial morphologies. Moreover, using false-colour imagery for training YOLO or Mask R-CNN models could
help reduce the impact of seasonal visual variability by enhancing spectral contrast between water, vegetation,
and bare soil, thereby improving detection consistency across different environmental conditions.

7.2.2 Arsenic-risk Prediction

Building on the outputs of the geomorphological detection step, the next stage involves refining the arsenic-risk
prediction component to improve spatial accuracy, model robustness, and interpretability. The GMMwas selected
for its probabilistic framework, which enables soft classification and interpretable uncertainty estimates. However,
the model’s performance was sensitive to input data quality, especially the inconsistencies in spatial resolution,
interpolation methods, the derived nature of several variables, and skewed data. An alternative to GMM for future
work could be using supervised or unsupervised models capable of handling non-Gaussian clusters, capturing
complex geospatial patterns, and integrating diverse data types such as continuous population density and cate-
gorical land use and land cover data. Alternatively, population density may be approximated using proxy variables,
such as building density. Another important direction is examining temporal dependencies between auxiliary vari-
ables such as precipitation, NDVI, and land cover transitions. Understanding which predictors remain temporally
stable can help improve long-term risk assessments and inform the selection of more reliable features. This may
lead to more robust and context-aware classifications that reflect both spatial and seasonal variability.

Although LULC did not demonstrate predictive performance in the case study results, it remains a conceptually
relevant variable for arsenic risk prediction. For example, Donselaar et al. [17] hypothesised that tube wells po-
sitioned on ridges enhance both diffusive and advective groundwater flow toward local water sources, thereby
increasing the likelihood of arsenic contamination. The LULC data reveal that vegetated areas frequently coin-
cide with these elevated ridges on point bars. Vegetation, particularly dense or deep-rooted species, contributes
to groundwater drawdown through transpiration, reinforcing subsurface flow dynamics. Similarly, built-up ar-
eas, which often correlate with human activity and increased water extraction, exert a comparable influence on
groundwater movement. These patterns suggest that LULC encodes both ecological and anthropogenic signals
that are directly relevant to arsenic mobilisation processes. Its native 30-meter spatial resolution offers a finer-
grained, spatially explicit proxy for hydrogeologically meaningful land use patterns compared to interpolated data-
sets like population density. When properly preprocessed or used within models that can handle categorical data,
LULC has clear potential to improve spatial predictions of arsenic risk.
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7.2.3 Incorporating Population Exposure into Risk Assessment

While the current approach identifies areas of geogenic arsenic risk based on geomorphological and environmen-
tal indicators, it does not explicitly incorporate population density in terms of exposure per square kilometre.
As a result, the High Risk classification remains a relative measure, based primarily on geospatial features rather
than actual human vulnerability. To make mitigation strategies more effective and targeted, future work should
assess the number of people affected per unit area for each oxbow lake or geomorphological unit. Integrating
population exposure data into the risk framework would allow for prioritisation of interventions not only based
on contamination potential but also on actual public health impact. This would move the model toward a more
impact-aware arsenic risk assessment, better aligning risk classification with mitigation urgency. Implementing
this addition would be straightforward and quick, as the necessary population data and spatial delineations are
already in place within the current framework.
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A Supplementary Tables

A.1 Environmental Variable Categories for Arsenic Risk Modeling

Category Variables

Topographic & Geomorphological Elevation, Topographic Slope, Topographic Wetness Index (TWI), Topo-
graphic Position Index (TPI), Distance to the river, Geotectonic

Soil & Land Use Soil Drain, Soil Moisture Capacity, Soils, Organic Carbon, Land Use &
Land Cover (LULC)

Climate & Meteorological Temperature, Precipitation, Aridity, Potential Evapotranspiration, Evap-
otranspiration

Vegetation & Surface Indices Normalised Difference Vegetation Index (NDVI)

Table 2: Categorisation of environmental variables used for arsenic risk modelling.

A.2 Overview of Monitored Wells and Arsenic Levels

Well ID Longitude Latitude Depth (m) Year Installed No. of Samples Mean As
(µg L−1)

816 N90◦38.38′ E23◦47.08′ 8 1999 36 (63 ± 13)
4110 N90◦36.08′ E23◦47.06′ 10 1999 36 (48 ± 5)
4115 N90◦36.06′ E23◦47.05′ 10 1999 36 (50 ± 32)
808 N90◦38.41′ E23◦47.19′ 8 1995 35 (41 ± 1)
823 N90◦38.42′ E23◦47.06′ 10 1997 36 (40 ± 3)
4071 N90◦36.14′ E23◦47.06′ 10 1999 34 (63 ± 6)
4101 N90◦36.05′ E23◦47.05′ 12 1997 36 (17 ± 1)
825 N90◦38.41′ E23◦47.07′ 12 1997 34 (16 ± 1)
84 N90◦38.43′ E23◦47.04′ 20 1995 43 (42 ± 3)
1651 N90◦38.15′ E23◦47.20′ 20 1994 43 (44 ± 5)

4133 N90◦36.14′ E23◦47.07′ 30 2001 35 (2.2 ± 1.9)
4146 N90◦36.11′ E23◦47.06′ 30 2001 33 (3.2 ± 4.6)
CW-1 N90◦36.12′ E23◦47.04′ 40 2001 30 (0.4 ± 0.3)
CW-4 N90◦38.39′ E23◦47.00′ 60 2001 30 (30 ± 11)
CW-6 N90◦38.27′ E23◦46.50′ 60 2001 27 (1.4 ± 0.6)
CW-3 N90◦38.26′ E23◦46.48′ 60 2001 25 (1.8 ± 0.3)
1639 N90◦38.11′ E23◦46.47′ 70 2001 35 (1.3 ± 0.5)
CW-2 N90◦36.19′ E23◦46.49′ 75 2001 35 (0.8 ± 0.8)
CW-7 N90◦39.06′ E23◦47.17′ 123 2001 25 (3.9 ± 0.5)
CW-5 N90◦38.01′ E23◦46.23′ 142 2001 25 (1.4 ± 1.4)

Table 3: Well information including coordinates, depth, installation year, sampling count, and mean arsenic con-
centration, from [68].
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B Supplementary Figures

B.1 Relationship Between Arsenic Concentration and Well Depth
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Figure 22: Joint distribution of arsenic concentration (µg/L) and well depth (log-transformed, in meters) based on
the historic dataset from Kalia and Lohagara Upazilas.
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B.2 Supporting Analysis of Elevation and Population Density Distributions
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Figure 23: Distribution analysis of elevation and population density. The bottom row presents corresponding Q–Q
plots to assess normality. While elevation approximates a normal distribution, population density remains highly
skewed, indicating a non-Gaussian distribution structure.
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Figure 24: Distribution analysis of elevation and population density after transformation to approximate Gaussian
distributions. The bottom row presents corresponding Q–Q plots to assess normality. While the transformation ef-
fectively normalizes elevation, population density remains highly skewed, indicating residual non-Gaussian char-
acteristics.
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