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Introduction
The research presented in this report is situated in the strategic crew planning field. Crew costs are
the second biggest expense for airlines, hence a small improvement in workforce planning can lead to
significant savings. Within the long and complex process of crew planning, the strategic phase focuses
on forecasting future crew demand and supply, and on defining strategies to close the gap between
them, approximately one and a half year in advance.

Crew demand is mainly determined by the flight schedule, but is naturally increased to account for
holidays, compulsory rest time, training days, crew absence, etc. Crew supply on the other hand is
dictated by the current workforce, but also fluctuates due to e.g. retirements, illness and the economic
situation. Once crew demand and supply are determined, the aim is to match them by means of
transitions, hiring new crew, or in the worst case dismissing employees. In the strategic planning
phase, the flight schedule is often still unknown and thus in practice airlines tend to not look more than
one year ahead when it comes to crew planning.

Because of this uncertainty, most research seems to take crew demand as a given, determinis
tic, input and then investigates the best strategy of closing the gap between supply and demand, or
focuses on the more urgent shortterm operational planning phase. The research presented in this
report focuses on developing a flexible, costoptimal strategic crew plan for airlines, and assumes the
crew demand is of a stochastic nature.

The research has been carried out at the Air Transport & Operations department at the Delft University
of Technology, and in cooperation with TUI fly Western Region, under the supervision of Dr.ir. Bruno
F. Santos (TU Delft) and Michael de Haas (TUI fly).

This thesis report is split into three parts. Part I contains the central part of the thesis project, the
research article. Part II contains the literature study written before the start of the research. It includes
relevant literature, identifies a research gap and introduces the the research question. Finally, Part III
contains all the appendices. Here, supporting work related to the research article of Part I can be found.
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A Two-Stage Stochastic Optimisation Approach for Strategic
Airline Cockpit Crew Sizing

S. Hofman∗

Delft University of Technology, Delft, The Netherlands

Abstract

This paper introduces a new two-stage stochastic optimisation approach for the strategic airline crew
planning problem with uncertain demand. The developed model provides the airline with a cockpit
crew composition plan per crew position before the flight schedule and crew demand are known.
This is done by estimating future crew demand and by treating it as a stochastic variable. Historical
crew demand is analysed and is assumed to follow a Beta probability distribution. Since demand
at different crew positions is correlated, demand scenarios are generated from these distributions
by using Latin hypercube sampling (LHS) for correlated variables. The generated scenarios are
multiplied with a trend value to account for a predicted demand increase or decrease. In the
first stage, the model determines the number of permanent employees, while in the second stage
we consider hiring temporary crew members, the transition of crew members between compatible
positions and the option to fire permanent crew members. This second stage comes with a recourse
cost. Three case studies are performed for a holiday airline with both scheduled and charter flights
to validate the model and test its possibilities. Results show that the model provides a cost reduction
of 2.1% with respect to the airline’s current practice and a further 4.5% when affluent crew members
can be fired. Results also show that the model is adjustable to assist the airline with its strategic
crew plan in the post-Covid-19 recovery phase. Furthermore, it is concluded that the model is
flexible and that it can handle demand fluctuations.

Keywords: Two-stage Stochastic Optimisation · Strategic Airline Planning · Scenario Generation ·
Latin Hypercube Sampling · Uncertain Crew Demand

1 Introduction
Crew costs are the second biggest expense for airlines, hence a small improvement in workforce planning
can lead to significant savings (Belobaba et al., 2009). Airline workforce planning can start as soon as
five years before the day of operation and lasts until the very day itself. Within this long and complex
process, strategic workforce planning focuses on forecasting future crew demand and supply, and on
defining strategies to close the gap between them, approximately one and a half year in advance.

Crew demand is mainly determined by the flight schedule, but is naturally increased to account for
holidays, compulsory rest time, training days, crew absence, etc. Crew supply on the other hand is
dictated by the current workforce, but also fluctuates due to e.g. retirements, illness and the economic
situation. Once crew demand and supply are determined, the aim is to match them by means of
transitions, hiring new crew, or in the worst case dismissing employees. However, forecasting crew
demand already in the strategic planning phase has been called the hardest part of the crew planning
problem because of the high uncertainty (Holm, 2008). In this phase, the flight schedule is often still
unknown and thus in practice airlines tend to not look more than one year ahead when it comes to
crew planning (Hofman, 2020).

Not only the lack of a flight schedule makes forecasting crew demand so difficult, also external factors
can profoundly affect air travel and thus crew demand. In recent years, the airline industry has seen
among others economic crises, the grounding of the Boeing 737 MAX and a global pandemic. All these
events heavily weigh on airlines and are often impossible to foresee.

∗MSc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
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Because of this high uncertainty, most research seems to take crew demand as a given, deterministic,
input and then investigates the best strategy of closing the gap between supply and demand, or focuses
on the more urgent short-term operational planning phase. Overall, little research has been performed
that investigates the optimisation of long-term, strategic crew planning for airlines.

Next to this, there has been a growing interest in planning robustness from the airlines over the
years. A robust plan can deal with the realisation of uncertainties without having a significant negative
impact on the solution (Laumanns, 2011). In other words, taking into account possible disruptions
already in the (strategic) planning phase can result in higher planned costs, but lower operational costs
(Ehrgott and Ryan, 2002). In spite of that, research focuses on improving robustness in the operational
rather than in the strategic planning phase.

Following from these identified gaps and needs, the main research objective of this paper is “to
contribute to solving the long-term, strategic workforce planning problem for the cockpit crew of an
airline with uncertain flight schedules while considering planning robustness and flexibility by creating
an optimisation model to analyse different demand realisations.” The model should provide the airline
with a cost-optimal crew plan already in the strategic planning phase, so before the flight schedule is
known. Furthermore, the tool should give the airline an overview of possible future scenarios in terms
of crew supply and demand and guide the planning department in anticipating these possible outcomes.

In this paper, we propose such a strategic crew planning tool by creating a two-stage stochastic linear
programming model with recourse. In two-stage stochastic optimisation, uncertainty is represented by
random variables of which the distribution is known or can be estimated. The general idea is that
decisions that need to be taken now (first stage), should be based on data that is available now, while
taking into account unknown future observations (second stage) (Ahuja et al., 2009). Decisions are
thus optimised while considering possible scenarios and their probability, but without knowing which
scenario will eventually occur. In this case, crew demand will be treated as a stochastic input and this is
made possible by analysing the airline’s historical demand data and finding the best fitting probability
distribution. From these distributions, correlated demand scenarios are constructed by using a Latin
hypercube sampling approach based on Magini et al. (2019). Lastly, in order to allow the model to
react to fluctuating demand, temporary employees can be hired, transitions between some positions are
allowed, and firing permanent crew members can be made possible.

Paper Contribution

This paper is the first to use a stochastic programming approach for the strategic airline crew planning
problem. Where previous research considered crew demand as a fixed, deterministic input, this paper
acknowledges the high level of uncertainty that goes hand in hand with long-term planning by treating
crew demand as a stochastic input. Hence, the model makes crew planning possible before the flight
schedule is known. On top of this, it is the first time the Latin hypercube sampling (LHS) approach,
as used by Magini et al. (2019), is used in an airline planning problem. Since demand at different crew
positions is found to be correlated, the LHS approach allows to take this correlation into account when
generating different crew demand scenarios.

While the model is developed and tested for a charter and holiday airline, the formulation is delib-
erately kept as generic as possible so that it can also serve as a useful strategic planning tool for more
traditional airlines. All costs can easily be adapted and most constraints can be switched on or off, or
can be modified, to adjust the model to the user’s needs.

Paper Structure

This paper is structured as follows. Section 2 gives an overview of the relevant literature. Section 3
presents the used methodology and model formulation in a detailed way. Section 4 elaborates on the
case studies, used to validate the model and show its possibilities, and discusses the results per case.
Finally, Section 5 draws conclusions from the obtained results and provides recommendations for further
research.
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2 Relevant Literature
The overall objective of the workforce planning process is to have the right number of people with the
right skills at the right time. This is done by making forecasts of supply and demand, taking decisions
that will close the gap between these two and by making optimal work schedules (Altenstedt et al.,
2017). Sohoni et al. (2004) call the workforce planning problem one of the most important ones in
the airline industry. However, most articles focus on the actual construction and optimisation of crew
schedules, and not on the steps that precede this phase: how many employees will be needed, how
many will retire, how many need to be hired, at what position are they needed, etc. Below, the relevant
literature with respect to strategic workforce planning is given, both for airlines as for other industries.
Next, an overview is given of the literature concerning forecasting methods and two-stage stochastic
programming, the solution approach used in this paper.

2.1 Strategic Workforce Planning
As stated before, very little research has been done in strategic workforce planning for airlines. Safar-
ishahrbijari (2018) analyses 275 papers on workforce forecasting models and concludes that since 1980,
only two percent of research in this field is done in the marine and airlines industry.

In articles that do investigate the strategic workforce planning for airlines, the objective always
is to minimise costs and for this mixed-integer linear programming (MILP) models are mostly used
(Verbeek, 1991; Holm, 2008; Morén, 2012). Differently, Hooijen (2019) uses a heuristic planning model.
All of these articles also use the transitioning of crew from one position to another to close the gap
between supply and demand. In addition, Morén (2012) allows for pilots to fly below rank and to fly on
multiple aircraft types. However, all of the aforementioned articles consider crew demand as a given,
deterministic input and therefore the implication of different demand realisations are not considered
in the solution. On the other hand, the approach presented in this paper treats crew demand as a
stochastic input by generating multiple demand scenarios based on historical data. This also means the
optimal crew size is determined using stochastic optimisation, rather than deterministic optimisation.

Also in other industries, such as the healthcare sector and the army, strategic workforce planning
is very important. In most articles, multiple objectives are identified and thus other methods are used
next to MILP models to determine the optimal staff size: goal programming (Trivedi, 1981; Horn et al.,
2016), using a multiple objective linear programming (MOLP) model (Li et al., 2007), using chance
constraints (Ganguly et al., 2014) or using a combination of techniques (Weigel and Wilcox, 1993). Here
too, staff demand is always used as an input and either based on historical data, or just a parameter
without more details given.

2.2 Forecasting Methods and Two-Stage Stochastic Programming
Airlines usually do not like to disclose their workforce forecasting methods and therefore not a lot of
literature has been written on this topic. Ciriani et al. (2013) identify two possibilities to determine
crew demand: the airline’s long-term fleet plan when looking more than a year ahead, and the flight
schedules as soon as they are known (usually a year before the day of operation). Holm (2008) also
identifies the possibility of estimating demand based on crew utilisation. In this case, an aircraft type’s
expected number of block hours, based on either the (preliminary) flight schedule or on historical data,
is divided by the expected crew utilisation to come to a rough crew demand estimate (Ciriani et al.,
2013; Yu et al., 2003).

Dealing with the high demand uncertainty that comes naturally with strategic planning is often
done by using two-stage stochastic programming. Ng et al. (2008) compared six different approaches
for human resource planning and concluded that two-stage stochastic programming provided the best
results to find optimal staffing levels before the employees’ attendance rates are known. Zhu and
Sherali (2009) present a two-stage stochastic mixed-integer programming model to tackle fluctuating and
uncertain workforce demand for service centres in a 12 month horizon. They conclude that compared to
the deterministic model, the stochastic model proposes significantly fewer alterations to the prescribed
workforce plan. Stochastic programming is also used to increase solution robustness. Yen and Birge
(2006) use this approach to realise a more robust airline crew schedule in the operational planning phase
that can better withstand disruptions. Bard et al. (2007) on the other hand use it to deal with wide
workforce demand fluctuations in a distribution centre.
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3 Methodology
The goal of the model is to provide a cost-optimised crew composition plan for the cockpit crew of
a multi-fleet airline. This plan needs to be provided already in the strategic planning phase. At this
point in time, the flight schedule is unknown and thus the crew demand is still uncertain. However, the
airline already wants to know how many permanent crew they will need to have on each crew position,
so that the long process of recruiting, hiring and training permanent crew members can already be
started. At a later point in time, when the destinations and flight schedules are determined, the crew
demand becomes known. If at this point it is observed that crew supply and demand do not match,
it can be decided to hire temporary crew, or to transition crew from one position to another. In the
ultimate case, the airline can consider firing permanent crew members to match supply and demand.

In order to solve this problem, a two-stage stochastic modelling approach is used. This approach
allows to take into account the uncertain stochastic nature of the crew demand, and to make decisions
at two moments in time (stages). In two-stage stochastic models, the uncertainty is represented by
random variables of which the distribution is known or can be estimated. The general idea is then that
decisions that need to be taken now (first stage), should be based on data that is available now, while
taking into account unknown future observations (second stage) (Ahuja et al., 2009). Decisions are
thus optimised while considering possible scenarios and their probability, but without knowing which
scenario will eventually occur. Decision variables are split up in first-stage variables and second-stage
variables.

In this case, in the first-stage it is decided how many permanent crew there should be per crew
position and per time step. The model also has the option to hire new permanent crew members in the
first stage. In the second stage the model has the possibility to transition crew to other positions, or
hire temporary crew; both these possibilities come with a recourse cost. The model’s second stage is
also extended to allow the possibility of firing crew members. This option also comes with a cost. The
main assumptions are listed below:

• The output is provided in full-time equivalents (FTE). This gives the airline the possibility to
work with part-time crew.

• The time step of the model is one month. Hence, the model’s output provides an overview of the
optimal number of crew per month and per position, and gives insight into what decisions to take
each month in different demand scenarios.

• The fleet size is constant throughout the simulation period. A changing fleet size would influence
the crew demand.

• There is a new hire capacity. New hires need to be trained and this requires resources (money,
staff, simulators, classrooms, etc.). Since these resources are limited, the number of new hires is
limited accordingly.

• There is a natural outflow rate of staff. This rate accounts for crew retiring or leaving the airline
for other reasons.

In Figure 1 the high-level flowchart for the solution process is given. The different steps are explained
in detail in the subsections below. Subsection 3.1 explains the first two blocks of Figure 1: reading and
preparing all input parameters and data. Next, Subsection 3.2 presents the analysis of the different
factors contributing to crew demand. Subsection 3.3 explains how the demand scenarios are generated
that are used in the model. Then, in Subsection 3.4 the mathematical model formulation can be found,
used to construct the stochastic model. Finally, Subsection 3.5 explains how the solution is obtained
and how the results need to be interpreted.

3.1 Reading and Preparing Input Data
The first step in the model is to load and prepare all the needed input parameters and data. The
input parameters, such as the number of aircraft types and crew positions, salary costs, training costs,
initial crew pool size, etc. are defined by the user and can easily be changed. These parameters will be
discussed in detail in Subsection 3.4. The historical crew data and block hour data on the other hand are

6
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Figure 1: Flowchart of the proposed model.

provided by the airline. The former gives a historical overview of each crew member’s daily scheduled
activity and their type rating, i.e. which aircraft type(s) they are qualified to fly on. This is needed
to later analyse the contributions of each of these activities to the total crew demand (Subsection 3.2).
Lastly, the block hour data contains the number of block hours flown for each day and each crew
member, together with the aircraft type on which the block hours were flown. This data is needed in
order to generate demand scenarios (Subsection 3.3).

Preparing the data consists of removing empty or incomplete entries, removing irrelevant data (e.g.
crew age and name), converting all dates to the same notation and filtering the data to the desired time
period. This way the data is ready to be used further on in the model.

3.2 Analysing Demand Contributions
The demand for crew comes primarily from the need to operate flights. Besides this, there are many
other factors that increase the number of needed crew. In Figure 2 an overview is given of these factors
for the airline in question; they are not to scale. Here it can be seen that crew can be scheduled to
many other duties besides flights, such as standby, positioning (i.e. deadheading), ground duties or
training courses. Besides this, crew can be absent or be scheduled to have a holiday or legally required
weekend days. These contributions to total crew demand are approximated by analysing historical data
from the airline. For each day, it is calculated what percentage of the crew is assigned to each category
mentioned in the bottom bar of Figure 2. This results in values indicating relatively how much crew is
assigned to each category each day. The values can then be averaged per month. It is found that the
values are rather constant over the years. For this reason it is assumed that the values observed in the
past for a respective month are also representative for the future. However, one category in Figure 2
is not considered here: the crew demand for flights is treated as a stochastic variable and is generated
using the method explained in the next subsection.

Figure 2: Overview of the different factors contributing to crew demand. Not to scale.

3.3 Generating Demand Scenarios
As can be seen in Figure 1, generating crew demand scenarios is done independently from the demand
contribution analysis. This is because the generated scenarios contain the crew demand for flights.
However, the demand contribution analysis is done for all other categories mentioned in Figure 2.
Multiple crew demand scenarios are generated to serve as an input to the two-stage stochastic model.
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This is done by following five steps:

1. Analyse the daily historical block hours, per month and per crew position and find the best fitting
probability distribution.

2. Convolute the daily block hour distributions to come to a monthly distribution per crew position.

3. Analyse the correlation between block hour demand at the different crew positions.

4. Apply Latin hypercube sampling to generate demand scenarios with correlated variables.

5. Multiply the demand scenarios with a trend forecast to account for future demand increase or
decrease.

Step 1: Block Hour Analysis Block hours are the time between an aircraft leaving the departure
gate and arriving at the destination gate. The number of block hours a pilot may fly every year is
bounded by regulations (EU, 2014). Knowing this, it is assumed that the demand for pilots can be
computed by estimating the total block hours needed in the future.

The airline’s historical daily block hours are analysed per crew position (6) and per month (12),
resulting in 72 histograms. An example can be seen in Figure 3a. Next, the best fitting mathematical
probability distribution is selected out of nine possible options: the Normal, Gamma, Beta, Chi, Chi-
squared, Cauchy, Exponential and Weibull distributions. These distributions are chosen since they are
well-researched and hence well-understood. Furthermore, together they can take a wide range of shapes
and this increases the chance of finding a fitting distribution. The best fitting distribution is assumed
to be the one with with the smallest residual sum of squares (RSS). This is calculated using Equation 1,
where yi is the variable to be predicted, and f(xi) the predicted value of yi (Draper and Smith, 1998).

RSS =
n∑

i=1

(yi − f (xi))
2 (1)

It is found that the Beta probability distribution is the most frequent best fitting distribution. The
Beta distribution can take many shapes, is supported on a fixed range and its location and range can
be altered by means of two extra parameters (Johnson et al., 1995). For this reason, the daily block
hours are assumed to be Beta distributed (Figure 3b) and its characteristics are estimated for each of
the 72 distributions. Furthermore, by assuming the Beta distribution for all cases, the implementation
of the next step is made easier, since the convolution needs to be programmed for only one type of
probability distribution.

(a) Original histogram of the data. (b) Beta probability distribution fit-
ted to the data.

(c) Convoluted Beta distributions
and theoretical normal distribution.

Figure 3: Example process of going from an empirical block hour distribution to a convoluted one,
approximating a Gaussian distribution. Data comes from the airline between October 2016 and February
2020. This example shows data for the CP SH crew position in an arbitrary month.
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Step 2: Convolution of Daily Block Hour Distributions Since the model works with a time step
of one month, these daily block hour distributions need to be transformed into a monthly distribution.
This is done by taking the convolution of the obtained Beta distributions for each day of the respective
month, because the sum of random variables is the convolution of their individual distributions (Holmes,
1998). As can be seen in the example of Figure 3c, the convoluted Beta probability density function
approximates a normal distribution. This can be expected from the central limit theorem (Montgomery
and Runger, 2010). For this reason, it is safe to assume the monthly block hour distributions are
normally distributed. For every of the 72 distributions, the mean and standard deviation are determined.
The mean µ is equal to the block hour value (x) where the probability density (y) is the highest (ymax).
The standard deviation σ can then be derived from the probability density function (pdf) for a normal
distribution (Johnson et al., 1995):

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

(2a)

At mean µ, we have: x = µ, and f(x) = ymax, so that:

ymax =
1

σ
√
2π

⇔ σ =
1

ymax

√
2π

Since ymax is known, both the mean and standard deviation can easily be calculated. These are used
in Step 4.

Step 3: Correlation Analysis It is important to analyse the correlation between the block hour
distributions. If the block hour distributions are correlated, it is necessary to generate correlated demand
scenarios too. For this, the Pearson correlation coefficient is calculated between every crew position for
every month. This coefficient measures the linear correlation between two data sets and takes values
between -1 and 1 to indicate a negative or positive correlation respectively. The pearson correlation
is calculated by using Equation 3, with rxy the Pearson correlation coefficient, n the sample size, xi

and yi the individual sample points of the two sets under investigation, and x̄ and ȳ the sample means
(Ross, 2014).

rxy =

n∑
i=1

(xi − x̄) (yi − ȳ)√
n∑

i=1

(xi − x̄)
2

√
n∑

i=1

(yi − ȳ)
2

(3)

By calculating rxy for every combination of crew positions, a correlation matrix is obtained for each
month. An example can be found in Figure 4 for the month of April.

Figure 4: Example of a Pearson correlation matrix for block hour values for different crew positions.
Data comes from the airline between October 2016 and February 2020. This example shows data for
April.
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It is clear that the block hour distributions are indeed correlated, both positively and negatively, between
the different crew positions. As expected, the highest correlations can be found between FO and CP
on the same aircraft type.

Step 4: Applying Latin Hypercube Sampling Using the monthly block hour distributions ob-
tained in Step 2 and the correlation matrices obtained in Step 3, we can now generate the demand
scenarios needed for the model. This is done by using Latin hypercube sampling (LHS), an approach
first described by McKay et al. (1979). LHS generates samples from multi-dimensional distributions
by dividing them into k intervals with the same probability. k sample points are then put into a
Latin hypercube, i.e. one sample for each dimension. When dealing with correlated variables however,
some extra steps are needed. Here, we use the approach explained by Golub and Van Loan (1996)
and Ross (2014), and used in Magini et al. (2019) to come to correlated samples. This approach uses
lower triangular Cholesky decomposition to impose the desired correlation on the samples. The inverse
transformation method is applied to ensure that the generated samples have the same distribution as
the original distributions (Ross, 2014). The detailed steps are explained below (Magini et al., 2019):

1. Create a random (k × n) matrix Z∗, with k the number of scenarios and n the number of crew
positions. This matrix contains k Latin hypercube samples of size n from a standardised normal
distribution. The correlation matrix I∗ of the samples and the identity matrix I do not coincide,
hence they are not independent. To induce the desired correlation, the the (k × n) matrix Z is
created by using lower triangular Cholesky decomposition (Golub and Van Loan, 1996):

I = C ·CT (4)

I∗ = E ·ET (5)

Z = Z∗ ·C ·E−1 (6)

Z contains k independent samples of size n from a standardised normal distribution.

2. Create a random (k × n) matrix G. This matrix contains k samples from a standardised normal
distribution with the previously obtained correlation matrix B containing the correlation between
crew positions. In other words, B contains the desired correlation. By applying lower triangular
Cholesky decomposition, this desired correlation is induced in Z:

B = P ·PT ·G = Z ·P ·C−1 (7)

3. Apply the inverse transformation method to G to create (k×n) matrix D. The matrix D complies
with the desired marginal distributions at each crew position. The inverse transformation method
states that applying the inverse cumulative distribution function of any distribution F to a random
variable with U(0, 1) distribution results in a random variable whose distribution is exactly F
(Ross, 2014). In this case, F is always a normal distribution, since we know that the monthly
block hours are normally distributed. The correlation matrix of the generated samples is now
equal to the desired correlation matrix B.

In Figure 5 an example of the result of this process is shown for the block hour distributions of the FO
SH and CP SH crew positions in an arbitrary month. For each month, the correlation values of the
generated samples are verified to be the same as the correlation values from Step 3.

We apply this LHS process per month in n dimensions (with n the number of crew positions) and
this results in a set of k correlated samples (i.e. scenarios) per month, each with the same probability
pk. Each scenario specifies the expected block hour demand per crew position. The block hour values
are then divided by the legal maximum of block hours per crew member per month, to come to crew
demand values in FTE.
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(a) LHS without correlation between the random vari-
ables.

(b) LHS with correlation between the random vari-
ables.

Figure 5: Example of two-dimensional LHS with 50 samples, illustrating the difference between LHS
without and with (positive) correlation respectively.

Step 5: Applying Trend Forecast The last step is to apply a trend forecast to the generated crew
demand scenarios. Since the scenarios are generated using historical data, applying a trend forecast
accounts for the expected future demand increase or decrease. This is done by multiplying all the
generated demand values with a trend value. This trend value can come from the airline itself (e.g. by
decomposing the block hour data into trend and seasonality), or from professional forecasts available
on the market. In this paper, the demand trend forecasts of IATA and EUROCONTROL are used,
since no clear trend is visible when decomposing the airline’s block hour data. The forecasts of both
IATA and EUROCONTROL are widely used in the airline industry, and are also used by the airline in
question to forecast future crew demand.

3.4 Model Formulation
A two-stage stochastic linear programming model with recourse is used to determine the cost-optimal
crew composition for each time step. This is done by considering various crew demand scenarios and
factors influencing total demand, discussed in the previous subsections. The objective and constraints
of the model are discussed here. First, an overview is given of all the sets, variables and parameters and
their notation, followed by the mathematical model formulation. The explanation of the model can be
found at the end of this section.

Sets

T set of time steps, indexed by t, where T = {tstart, ..., tend}
H set of time steps in which temporary FTE can be hired, where H ⊆ T

K set of scenarios, indexed by k

P set of crew positions, indexed by p

Qp set of crew positions which can transition to crew position p, where Qp ⊆ P

R set of crew positions that allow temporary FTE, where R ⊆ P

First-stage decision variables

hl
tp number of permanent FTE newly hired at time step t at position p, t ∈ T , p ∈ P

xtp number of permanent FTE employed at time step t at position p, t ∈ T , p ∈ P

11



Second-stage decision variables

hs
tp number of temporary FTE newly hired at time step t at position p, t ∈ H, p ∈ R

rtp number of permanent FTE fired at time step t at position p, t ∈ T , p ∈ P

ytp number of temporary FTE employed at time step t at position p, t ∈ T , p ∈ P

ztpq number of permanent FTE transitioned at time step t from position p to position q,
t ∈ T , p ∈ P , q ∈ Qp, p ̸= q

Parameters

a fixed new hire capacity in FTE for one time step t

cfirep firing cost of one permanent FTE at position p, p ∈ P

csalary,lp salary cost of one permanent FTE at position p for one time step t, p ∈ P

csalary,sp salary cost of one temporary FTE at position p for one time step t, p ∈ P

ctraining,ip average initial crew training cost at position p for one time step t, p ∈ P

ctraining,rp average recurrent crew training cost at position p for one time step t, p ∈ P

ctransitionpq average cost of one permanent FTE transitioning from position p to position q, p ∈ P ,
q ∈ Qp

dtpk gross crew demand in FTE for position p at time t in scenario k, k ∈ K, t ∈ T , p ∈ P

fabsence average daily historical fraction of absent crew
funused average daily historical fraction of crew with an unused production day
fnon−regular
t average daily historical fraction of crew performing non-regular activities
f training
t average daily historical fraction of crew performing training, in time step t, t ∈ T

fvacation
t average daily historical fraction of crew on holiday, in time step t, t ∈ T

fweekend
t average daily historical fraction of crew with a rostered weekend day, in time step t,

t ∈ T

fposition
tp average daily historical fraction of crew at position p with a rostered hotel or positioning

day, in time step t, t ∈ T , p ∈ P

fstandby
tp average daily historical fraction of crew at position p with a rostered standby day, in

time step t, t ∈ T , p ∈ P

ll length of a permanent contract expressed in time steps t

lrpq length of a transition course in days from position p to q, p ∈ P , q ∈ Qp

ls length of a temporary contract expressed in time steps t

nt number of days in time step t, ∀t ∈ T

pk realisation probability of scenario k, k ∈ K

ul natural outflow rate of permanent crew members per time step t

xstart
p number of permanent FTE at position p at t = tstart, p ∈ P

Two-stage stochastic model

Minimise
∑
t∈T

∑
p∈P

(
csalary,lp +

ctraining,ip

ll
+ ctraining,rp

)
× xtp +

∑
k∈K

pk × fk(x) (8a)

where, for each scenario k ∈ K, we have

fk(x) = min
∑
t∈T

∑
p∈P

((
csalary,sp +

ctraining,ip

ls

)
× ytp + cfirep × rtp

)
+
∑
t∈T

∑
p∈P

∑
q∈Qp

ctransitionpq × ztpq

(8b)
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subject to

Crew balance: xtp =


(
1− ul

)
× xstart

p + hl
tp − rtp +

∑
q∈Qp

ztqp −
∑

q∈Qp

ztpq if t = tstart ∀p ∈ P(
1− ul

)
× xt−1,p + hl

tp − rtp +
∑

q∈Qp

ztqp −
∑

q∈Qp

ztpq if t ∈ T : t ̸= tstart,∀p ∈ P

(8c)

Demand: xtp + ytp − dtpk −
lrqp
nt

×
∑
q∈Qp

(ztqp)−
(

1

nt

(
fstandby
tp + fposition

tp + fnon−regular
t + f training

t

+ fvacation
t + fweekend

t + fabsence + funused
))

× (xtp + ytp) ≥ 0

∀k ∈ K, ∀t ∈ T, ∀p ∈ P, ∀q ∈ Qp (8d)

Temporary: ytp =


t∑

i=tstart

hs
ip if t ∈ [tstart, l

s − 1] ∀p ∈ P

t∑
i=t−ls+1

hs
ip if t ∈ [ls, tend] ∀p ∈ P

(8e)

Capacity:
∑
t∈T

∑
p∈P

(
hl
tp + hs

tp

)
−
∑
t∈T

a ≤ 0 (8f)

Variables: hl
tp, h

s
tp, rtp, xtp, ytp ∈ R2

+ ∀t ∈ T, ∀p ∈ P

ztpq ∈ R3
+ ∀t ∈ T, ∀p ∈ P, ∀q ∈ P (8g)

The objective function (8a) minimises the total crew costs over all the considered crew positions and
time steps. These costs consist of salary costs and initial and recurrent training costs, and they are
dependent on the crew position. The initial training costs are divided by the contract length (ll and
ls) to come to a cost per time step, while the recurrent training costs are calculated by taking into
account the duration, staffing costs, simulator costs, etc. The recurrent training costs disappear in the
cost calculation for the second stage (8b), since temporary employees do not need recurrent training.
On the other hand, a firing cost is added in the second stage and multiplied with the number of fired
FTE. The last term in the second stage accounts for the total costs of transitioned crew members. This
transition cost only occurs if a crew member is transitioned to a lower-paid position. In this case, the
transition cost is the difference in salary. In case a person is moved to a higher-paid position, the model
accounts for this in the calculation of the salary costs. Finally, the second-stage costs are multiplied
with the scenario probability.

The first constraint (8c) ensures that there is a crew balance for permanent employees. It does so by
respectively calculating the natural outflow from the previous time step, increasing it by the number of
FTE hired, decreasing it by the number of FTE fired, increasing it with the number of FTE transitioned
to that crew position, and decreasing it with the number of FTE transitioned from that crew position.
Constraint (8d) ensures that the demand is satisfied. The first two terms are the number of permanent
and temporary FTE, the third term is the gross crew demand in scenario k (so the number of crew
needed only for flights). The fourth term provides a demand penalty for a transition to a crew position,
since transitioned crew has to follow a training course and is not deployable for a period of time. The
length of this course depends on which transition is made. The entire fifth term increases the size of the
crew pool to account for all the different factors discussed in Subsection 3.2. Constraint (8e) defines the
total number of temporary FTE in terms of hired FTE and takes into account the temporary contract
length (ls). In fact, this constraint assures a crew balance for temporary employees similar to constraint
(8c), only now there are no natural outflow and transitions but only new hires. Constraint (8f) limits
the number of new hires for the entire planning period. This limit mainly depends on the availability of
training staff and is discussed with the airline. Finally, constraint (8g) states that all decision variables
are non-negative real numbers. They are not set to be integers, since they are expressed in FTE and
this way the airline has the liberty to work with part-time employees. Depending on the airline using
this tool, most of these constraints and parameters can easily be adjusted.
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3.5 Model Solution and Output
Once the model is fully defined and constructed, its solution is obtained by means of the primal simplex
method. This is a very common algorithm for solving linear optimisation problems, and used by many
commercial solvers (Saunders, 2019; Hillier and Lieberman, 2015). This results in an optimal objective
value, consisting of both first-stage and second-stage costs. This is calculated using Equation 9, where
OFtot, OF1 and OF2 are the total, first-stage and second-stage objective value respectively, and pk is
the scenario probability.

OFtot = OF1 +
∑
k∈K

OF2 × pk (9)

The output also provides the optimal values of the decision variables per time step for each scenario.
Since it is a two-stage optimisation problem, it naturally follows that the first-stage decision variables
values are the same for all scenarios, whereas the second-stage decision variables values depend on the
scenario. This output gives the user an overview of the optimal permanent crew composition plan for
each time step, and helps them with taking decisions once the crew demand becomes known.

4 Case Studies
Three case studies are used to validate the model and show its options and capabilities. First, a
historical real-world case is solved and compared to the airline’s solution if the same generated demand
is considered. By doing so, the developed model is validated and conclusions can be drawn with respect
to the model’s robustness, solution flexibility and cost. Next, the second case allows the model to
consider firing crew members to see if this can further improve solutions. This case also investigates if
the airline is overstaffed at certain crew positions. Finally, the model is used to solve a summer and
winter season combined in the recovery phase of the Covid-19 pandemic. This case is used to both test
its ability to deal with the transition from one season to another, and to explore if the model is useful
in the post-Covid-19 period.

For all three cases, real-world data is used from a European airline with both scheduled and chartered
flights. The airline uses three aircraft types: one type for short-haul (SH) and two for long-haul flights
(LH1 and LH2). There are two cockpit positions: First Officer (FO) and Captain (CP). The year is
divided in a summer season (from April to October) and a winter season (from November to March).
The airline allows to hire temporary employees only on the FO SH position in April, with a contract
length (ls) for the entire summer season. Transitions are only allowed between FO SH and CP SH, and
between FO SH and FO LH1. The time step for all three cases is one month. This means that all input
(salary costs, training costs, demand scenarios, etc.) is given per month and that the resulting values of
the decision variables are also provided per month. Hence, the model gives a monthly insight into the
optimal decisions to be taken by the airline regarding hiring new hires, transitions or dismissing crew.

Table 1 gives an overview of the permanent and temporary contract lengths, the natural outflow
rate, the monthly new hire capacity and the transition course length. These parameters are constant for
all positions and case studies and are taken from the airline’s records and interviews with the airline’s
crew planners. Table 2 gives an overview of all the costs: salary, training and transition costs. These
costs are averages and calculated using the airline’s labour agreement and interviews with the airline’s
crew training schedulers. These parameters are also constant for all three case studies, but depend on
the crew position. Parameters that are case-specific are discussed separately below.

Table 1: Input parameters constant for all crew positions and case studies.

ll ls ul a lr

[months] [months] [%/month] [FTE/month] [days]
420 7 0.83 2.7 3

For each case study the solution is obtained after 20 repetitions and each repetition 10 demand scenarios
are generated, hence k = 10 and pk = 0.1 for each k. These demand scenarios contain the crew demand
for each crew position and each month in the simulation period. In Table 3 this process is illustrated.
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Table 2: Input parameters depending on the crew position, but constant for all case studies. MU are
monetary units.

Position (p) csalary,lp csalary,sp ctraining,ip ctraining,rp ctransitionqp (∀q ∈ Q)
[MU/month] [MU/month] [MU] [MU/month] [MU]

FO SH 42.4 20.0 125.0 0.9 13.1
LH1 42.4 / 125.0 0.8 13.1
LH2 42.4 / 150.0 1.6 /

CP SH 55.5 / 125.0 0.9 0.0
LH1 55.5 / 125.0 0.8 /
LH2 55.5 / 150.0 1.6 /

There are 20 solution repetitions, and in each repetition 10 crew demand scenarios are generated. This
results in first-stage decision variables (DVs) that are the same for the 10 scenarios, and in second-stage
DVs that vary per scenario. The first-stage objective function OF1 is constant for all scenarios within a
repetition, while the second-stage objective function OF2 depends on the scenario. The total objective
function per repetition OFtot is then calculated with Equation 9. After 20 repetitions, the overall total
objective function is calculated by taking the average of the 20 obtained values. The same can be done
for the decision variables.

Table 3: Illustration of how the results are obtained

Repetition (m) Scenario (k) 1st-stage DVs 2nd-stage DVs OF1 OF2 OFtot,m

1 1 hs
tp,1,1; rtp,1,1; ytp,1,1; ztpq,1,1 OF2,(1,1)

... hl
tp,1;xtp,1

... OF1,(1)

... OF1,(1) +
10∑
k=1

OF2,(1,k) × 0.1

10 hs
tp,1,10; rtp,1,10; ytp,1,10; ztpq,1,10 OF2,(1,10)

... ... ... ... ... ... ...

20 1 hs
tp,20,1; rtp,20,1; ytp,20,1; ztpq,20,1 OF2,(20,1)

... hl
tp,20;xtp,20

... OF1,(20)

... OF1,(20) +
10∑
k=1

OF2,(20,k) × 0.1

10 hs
tp,20,10; rtp,20,10; ytp,20,10; ztpq,20,10 OF2,(20,10)

Total OF over all repetitions: 1
m

20∑
m=1

OFtot,m

It is chosen not to generate more than 10 scenarios since this would result in scenarios with extreme
demand values, sampled from the outer edges of the normal distributions. These extreme values act
as shock events and severely influence the solution. It is also found that running each case 20 times
provides a stable average solution. This can be seen in Figure 6, where the progression of the average
OF value is shown for all cases. It can be seen that after 20 solution repetitions, the average OF value
is very stable. For all three case studies, the model’s average solution time for one repetition is around
55 seconds.

All simulations are run on an Intel Core i7-4710MQ CPU with 8 GB RAM using Python 3.8 and
Pyomo’s PySP package, an open-source software package used for (two-stage) optimisation problems
(Watson et al., 2012). In PySP, the scenario structure is defined and the whole model is constructed.
The solution is obtained by means of the GLPK solver package. This is a linear programming kit that
uses the primal simplex method by default to solve linear programming problems 1.

The rest of this section is structured as follows. Subsection 4.1 first shows the results of the crew
demand contribution analysis, as explained earlier in Subsection 3.2. Next, Sections 4.2 and 4.3 show
the results for the summer 2019 cases, without and with the option to fire permanent crew members
respectively. Finally, Subsection 4.4 presents the results of Case 3, in which two consecutive seasons
are solved at once.

1https://www.gnu.org/software/glpk/
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Figure 6: Progression of average OF value for all cases with increasing solution repetitions.

4.1 Crew Demand Contributions

The analysis of the crew demand contributions, as explained in Subsection 3.2, can be found in Figure 7.
For this, four years of historical data is used. The graphs show the monthly average of the daily fraction
of total crew assigned to the categories shown in the bottom bar of Figure 2. The left graph shows
the results for two production related categories: standby and hotel/positioning. These results are split
up per fleet type. The right graph shows the results for the other regular activities and non-regular
activities. These results are analysed for all fleet types together, since it is found that these values do
not differ much per type. It can be seen that legal weekend days, i.e. compulsory days off, are the
biggest contributor to increased crew demand. This is because crew at the airline is entitled to 11 days
off per 28 days. The results obtained here are used in the model to increase the total number of crew
needed per position and per month. They are indicated by fabsence, funused, fnon−regular

t , f training
t ,

fvacation
t , fweekend

t , fposition
tp and fstandby

tp . For the sake of simplicity, it is assumed that the absence and
unused production day contributions are constant throughout the year.
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Figure 7: Average daily fraction of total crew assigned to different categories, per month. Both graphs
have the same scale. Data comes from the airline between October 2016 and February 2020.
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4.2 Case 1: Summer 2019 and Validation
To validate the model, the summer season of 2019 is solved and compared to the airline’s solution in case
the same generated demand scenarios are considered. To find the airline’s solution, the airline’s planned
permanent FTE at the start of the summer 2019 season are fixed as first-stage variables. Next, the
second stage is solved using the same demand scenarios as used in the model’s summer 2019 solution.
This way the model’s solution and the airline’s solution are compared in a fair way.

The summer 2019 season is used since this was the last full season before Covid-19 impacted airline
operations. For the block hour analysis and scenario generation, block hour data from summer season
2015 up to and including summer season 2017 is used. This is because the model is meant as a strategic
planning tool, hence the airline will use it three to four seasons in advance. For this case we do not
allow the model to fire FTE yet, i.e. rtp = 0,∀t ∈ T, ∀p ∈ P . This is because firing permanent crew
members is a very exceptional occasion at the airline.

4.2.1 Model Parameters

Since most parameters are already defined for all three cases, two case-specific parameters are left to
define: the starting conditions for each crew position (xstart

p ) and the trend value used in the demand
scenario generation. In Table 4, the former parameter can be found. These values are the airline’s
planned permanent FTE values at the end of March 2019, so at the start of our simulation. To account
for the future trend, the generated demand scenarios are multiplied with (1.025)2, since 2.5% was the
predicted European yearly increase in flight demand in 2016 (IATA, 2016). This value is squared since
it is assumed that the analysis is done in 2017, two years in advance.

Table 4: Starting conditions and case-specific parameters for Case 1.

Position xstart
p Position xstart

p

[FTE] [FTE]
FO SH 35.0 CP SH 32.0

LH1 18.9 LH1 10.5
LH2 45.1 LH2 26.1

4.2.2 Results

In Table 5, the model’s minimum, maximum and average objective value, and average stage solutions
of 20 solution repetitions can be found. These results suggest that the model’s average solution is 2.1%
cheaper than the airline’s solution when considering the same generated demand scenarios. This cost
difference comes both from the first-stage and the second-stage costs: in both cases the model provides
cheaper solutions than the airline. The second-stage cost is very low compared to the first-stage cost and
this indicates that the model does not use the second-stage options frequently. In fact, for the model’s
solution, all second-stage costs come from transitions, and none from hiring temporary employees. This
is shown in Table 6. In the airline solution on the other hand, 0.6 temporary FTE are hired, but here
too the main contribution to the second-stage cost are transitions. Transition costs are lower than
hiring temporary FTE, and that is why the second-stage costs are low compared to the first-stage costs.
This also indicates that there is enough crew in total to meet demand, but they are not stationed at
the optimal positions.

Table 5: Objective value results for Case 1 for both the model and the airline.

Case Objective value [MU] First-stage cost [MU] Second-stage cost [MU]
Min Max Average ∆(min,max) [%] Average Average

Model 56483 56804 56622 0.57 56532 90
Airline 57753 58087 57862 0.58 57710 152
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Table 6: Average number of temporary FTE hired in April on the FO SH position for the model’s and
airline’s solution.

Position Temporary FTE hired in April (avg)
Model solution Airline solution

FO SH 0.0 0.6

Figures 8 and 9 illustrate why the model provides a cheaper solution than the airline. The blue plots
show the model’s generated demand scenarios for each month, the red plots show its supply solution
and the green plots show the airline’s solution in case of the same generated demand. It can be seen
that for the CP positions (Figure 8), the model’s supply solution is lower than the airline’s for every
month. The CP positions are the biggest cost for the airline and this difference between the model’s
and airline’s solution is the main cause of the airline’s higher objective value in Table 5. For the CP
SH and FO SH positions (8a and 9a), the model manages the demand fluctuations very well. This is
not the case for the CP LH1 and CP LH2 positions (8b and 8c). At these positions, no transitions are
allowed and thus the model is limited to the natural outflow to lower the supply. Here, the difference
between demand and supply suggests that the starting conditions are too high and overestimate the
demand. Figures 9a and 9b show that the model indeed uses the allowed transitions between FO SH
and FO LH1. A clear decline in supply is visible in July for the FO LH1 position, while the supply
increases in the same month for the FO SH position. Figure 9c shows that the model also reacts to a
demand increase from one month to another in case no transitions or temporary employees are allowed,
as is the case for the FO LH2 position. In this case, new permanent employees are hired, as can be seen
in the graph for the months of July and August. It can also be seen that in all graphs, the range of
demand scenarios is far larger than the range of supply solutions. This is because the supply fluctuation
is restricted by natural outflow, a new hire capacity and the fact that temporary crew members can
only be hired on the FO SH position in April.

(a) CP SH. (b) CP LH1. (c) CP LH2.

Figure 8: Boxplots of demand generated by the model, its supply solution, and the airline’s (second-
stage) supply solution for the same demand scenarios, for CP positions for Case 1.

The airline’s higher supply also results in a more rigid solution. From Figures 8 and 9 it can be seen
that the airline often provides more crew than needed to respond to the generated crew demand. This
results in an expensive, rigid solution with almost no room for fluctuations.
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(a) FO SH. (b) FO LH1. (c) FO LH2.

Figure 9: Boxplots of demand generated by the model, its supply solution, and the airline’s (second-
stage) supply solution for the same demand scenarios, for FO positions for Case 1.

4.3 Case 2: Lay-off Possibility
Since there are indications that the airline is overstaffed, we now activate the model’s possibility to fire
crew members with a permanent contract to see if we can further optimise the crew composition and
reduce costs. Firing permanent crew members is almost never done at the airline under consideration
and is considered an expensive option. Similar to Case 1, the model’s solution is again compared to the
airline’s solution in case the same generated demand is considered.

4.3.1 Model Parameters

For this case, we will use the same settings, starting conditions and block hour data as in Case 1, with
the only difference that now the second-stage decision variable rtp does no longer have to be zero for all
time steps and crew positions. This also means the cost of firing one permanent FTE has to be defined
in the model. This firing cost cfirep is equal to 102.0 MU for all FO positions, and 130.8 MU for all
CP positions. These costs are averages and are calculated using the airline’s labour agreement and the
average contract length.

4.3.2 Results

In Table 7 the objective value results are found for Case 2. We see that by allowing the model to
dismiss crew, the cost has reduced a further 4.5% compared to the model’s solution in Case 1 (from
56622 to 54067). On the other hand, the average second-stage cost has increased from 90 to 2926. This
is no surprise, since the model now has more flexibility to deal with demand fluctuations in the second
stage. In Table 8 it can be seen that the model indeed uses this increased flexibility by firing LH1 and
LH2 FTE in the first two months of the simulation period. This confirms the idea that the airline is
overstaffed compared to the expected, generated demand, as can be seen for instance in Figure 8b.

Table 7: Objective value results for Case 2.

Case Objective value [MU] First-stage Second-stage
cost [MU] cost [MU]

Min Max Average ∆(min,max) [%] Average Average
Model Case 1 56483 56804 56622 0.58 56532 90
Model Case 2 53828 54253 54067 0.78 51131 2926
Airline Case 2 54243 54633 54360 0.72 51253 3107

The result graphs in Figures 10 and 11 show that the model’s supply solution can now catch the
generated demand way better than in Case 1 for all crew positions (Figures 8 and 9). Especially
for both the LH1 and LH2 positions the gap between generated demand and proposed supply has
significantly decreased compared to Case 1. Once again, the model’s limitation to only hire temporary
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Table 8: Average number of FTE fired per month in the model’s second-stage solution for Case 2.

Position (p) Average Ftp per month (t) [FTE]
Apr May Jun Jul Aug Sep Oct

FO SH
LH1 8.7
LH2 3.7

CP SH
LH1 3.1 2.8
LH2 5.2

FO SH FTE in April is visible in Figure 11a, where it can be seen that temporary FTE are hired at
the start of the season, even though they are only needed later on.

It can also be seen that when dismissing crew members is an option, the airline’s solution follows
demand fluctuations way better (the green plots in Figures 10 and 11). Even though we know that the
airline plans to have more crew members than needed in the first stage, the firing option in the second
stage now enables a less rigid solution than in Case 1, resulting in more flexibility.

(a) CP SH. (b) CP LH1. (c) CP LH2.

Figure 10: Boxplots of demand generated by the model, its supply solution, and the airline’s (second-
stage) supply solution for the same demand scenarios, for CP positions for Case 2.

(a) FO SH. (b) FO LH1. (c) FO LH2.

Figure 11: Boxplots of demand generated by the model, its supply solution, and the airline’s (second-
stage) supply solution for the same demand scenarios, for FO positions for Case 2.
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4.4 Case 3: Two Consecutive Seasons
To see how the model reacts to a transition from one season to another, we now analyse a summer and
winter season combined. On top of this, the case investigates the model’s usefulness for strategic crew
planning in the recovery phase after the Covid-19 pandemic. For this case study, the summer season
and consecutive winter season of 2022 are analysed (i.e. April 2022 to March 2023).

4.4.1 Model Parameters

For this case the option to fire permanent crew members is again disabled, since it is not a common
practice at the airline. This means that again rtp = 0,∀t ∈ T, ∀p ∈ P .

New starting conditions and trend values need to be defined. In Table 9 the input starting conditions
can be found. These values are provided by the airline and are the planned FTE at the end of the winter
2021 season, so at the start of our simulation.

The trend values for this case are provided by EUROCONTROL’s Covid-19 recovery forecast and
give a demand variation compared to 2019 (EUROCONTROL, 2021). This forecast assumes a flight
demand of 84% in 2022 compared to 2019 for the Visiting Friends and Relatives (VFR) market, a
part of the tourism market. Hence, block hour data from 2019 is used for the scenario generation and
multiplied with 0.84.

Table 9: Starting conditions for Case 3 in terms of permanent crew on the different positions.

Position xstart
p Position xstart

p

[FTE] [FTE]
FO SH 32.0 CP SH 32.0

LH1 12.0 LH1 12.0
LH2 50.0 LH2 26.0

4.4.2 Results

In Table 10 the model’s minimum, maximum and average objective value, and average stage solutions
for Case 3 can be found. Once again, the average values are calculated over 20 solution repetitions.
Since the number of time steps has gone up from 7 to 12 months compared to Case 1 and 2, the average
objective value has increased significantly. In this case, the high second-stage cost stands out. This
means that the model makes good use of the second-stage decision variables (transitions and temporary
FO SH contracts).

In fact, the model proposes to hire 13.2 temporary FTE on average for the FO SH position. These
temporary FTE have to be hired in April, but are mainly used in the summer holiday months when
the expected demand is highest, as can be seen in Figure 12a. Hence, the big difference between supply
and demand for April to June does not necessarily mean that the starting conditions are too high,
but mainly results from the fact that new hires are already hired in April. For the CP SH position
(Figure 12b) the model is very well able to follow the expected demand fluctuations. This can be done
because at this position transitions are allowed. The change in demand from the summer season to the
winter season is also clearly visible in November. This change in demand is managed by transitioning
CPs back to the FO position, where in November the temporary FTE hired in April are no longer
employed.

However, this flexibility does not exist for all positions. Figure 12c shows the model’s solution for the
FO LH2 position. Here, no transitions are allowed and the model can only lower the supply by means
of natural outflow. It can be seen that the starting conditions (xstart

p ) are too high for the expected,
generated demand for both the summer and the winter season.
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Table 10: Objective value results for Case 3.

Case Objective value [MU] First-stage cost [MU] Second-stage cost [MU]
Min Max Average ∆(min,max) [%] Average Average

Model 95905 96248 96077 0.36 92416 3661

(a) FO SH. (b) CP SH. (c) FO LH2.

Figure 12: Boxplots of generated demand and the supply solutions for some crew positions for Case 3.

5 Conclusions
This paper proposes a new approach for the strategic airline crew planning problem. This problem
is faced by airlines before the flight schedule and crew demand are known and thus involves a lot of
uncertainty. The methodology uses a two-stage stochastic linear programming model to consider this
uncertainty. Crew demand was assumed to be directly related to block hour demand, since the annual
number of block hours per crew member is limited. For this reason, the airline’s historical block hours
were analysed to find the daily distributions, which were assumed to follow a Beta probability distri-
bution. These distributions were then convoluted into Gaussian monthly crew demand distributions.
In order to generate the crew demand scenarios that are revealed in the second stage, Latin hypercube
sampling was used. This approach allows to take into account the demand correlations between different
crew positions. This resulted in correlated crew demand scenarios per crew position and per month of
the simulation period. Next to this, it was investigated which other factors besides flights contribute
to the total crew demand and by how much. It was found that, among others, absence, holidays and
standby shifts cause the airline to need more crew than just for the flights.

Three case studies of real-world situations demonstrated that the adapted approach can support
the airline with their strategic crew plan, in both normal years and in the post-Covid-19 recovery
phase. The resulting crew composition plan is more flexible than the airline’s current practice and is
well able to follow crew demand fluctuations. This flexibility is caused by efficiently transitioning crew
members between different crew positions and by hiring permanent or temporary crew members in case
no transitions are available. It was also shown that the airline’s crew supply is too high compared to
the estimated future demand. For this reason, the model was allowed to consider firing permanent crew
members to further optimise the crew plan. The proposed solution results in cost reductions ranging
from 2.1 to 4.5%. These cost reductions mainly come from a lower proposed crew supply. In the final
case, it was demonstrated that the developed model is able to solve two consecutive seasons at once
and provide a flexible solution. The model dealt well with change in demand from the summer to the
winter season. This case also proved that the model can help the airline in the post-Covid-19 recovery
phase.

These case studies have shown that the model can already serve as a helpful decision support
system for composing an airline’s strategic crew plan. However, this paper also enables further research
on various topics. For instance, it can be investigated how future crew demand can be modelled more
precisely. This can be done by finding the best fitting distribution for each crew position and month
instead of assuming the Beta distribution for all cases. As a consequence, the convoluted distribution
will not necessarily follow a normal distribution and thus the Latin hypercube sampling will become
more complex. It can also be investigated how the trend forecast can consider the specific airline
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situation. Now the quality of the forecasted demand scenarios depends partially on the quality of the
commercial trend forecast. Including airline-specific insights will improve the trend forecast. The model
in futures studies can also be extended to account for a better cost calculation. This can be done by
looking into the airline’s current crew composition with more detail. When crew is considered at an
individual level, salary costs, firing costs and transition possibilities will be more exact. Finally, it would
be interesting to see how easily the model can be converted to provide a strategic crew plan for cabin
crew. Although there are many different rules for cabin crew, an integrated model for both cockpit and
cabin crew will help the crew planner even further.
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1
Introduction

Crew costs are the second biggest expense for airlines, hence a small improvement in manpower
planning can lead to significant savings (Belobaba et al., 2009). Airline manpower planning can start
as soon as five years before the day of operation and lasts until the very day itself. Within this long
and complex process, strategic manpower planning focusses on forecasting future crew demand and
supply, and on defining strategies to close the gap between them.

Crew demand is mainly determined by the flight schedule, but has to be increased to account for
holidays, compulsory rest time, training days, crew absence, etc. Crew supply on the other hand is
dictated by the current workforce, but also fluctuates due to e.g. retirements or illness. Once crew
demand and supply are determined, the aim is to close the gap between them by means of transitions,
hiring new crew, or in the worst case dismissing employees.

Since forecasting crew demand has been called the hardest part of the manpower planning problem
(Holm, 2008), most research focusses on crew scheduling in the more urgent shortterm, operational
planning phase. Research that does focus on the strategic phase, mostly looks at the supply side
of cockpit crew and tries to answer the question of which pilots to transition where in order to meet
demand.

Nonetheless, forecasting crew demand, preferably with a high goodness of fit, is a crucial step in
manpower planning. The closer a crew demand forecast is to the real demand on the day of operation,
the less extra costs an airline incurs due to crew shortage or crew surplus. However, there are many
factors that complicate crew demand forecasting in the strategic planning phase: the uncertainty is
high, the flight schedule might not be available yet, the demand for reserve crew is unknown, etc.
Therefore, most research tends to take crew demand as a given input and then investigates the best
strategy of closing the gap.

In this report, an overview of the literature regarding manpower planning is given, both within as
beyond the airline industry. The focus will mainly be on strategic manpower planning, since this was
found to be a little researched area and thus one with still many opportunities. The goal of the report is
first to analyse past research: which models and solution methods exist and what is the current state
within (strategic) manpower planning? Based on these findings, the second goal is to formulate a re
search gap and formulate a proposed research question.

This literature study is structured as follows. Part II presents an elaborate overview of the manpower
planning problem, both in the airline industry as well as in other industries. Models and approaches
will be discussed that can be applicable to the strategic manpower planning problem at an airline.
Section 2.3 will then present different forecasting methods which can be used to predict for instance
crew demand or crew absence. Next, in Section 3.3 solution methods to the manpower planning
problem are given. Again, articles dealing with manpower planning in other industries than the airline
industry will be discussed as well. Finally, based on all these previous chapters, a research gap will
be defined in Section 4.5. This research gap ultimately leads to a proposed research question and
solution approach.
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2
The Manpower Planning Problem

The objective of the manpower planning process is to have the right number of people with the right
skills at the right time. This is done by making forecasts of supply and demand, taking decision that will
close the gap between these two and by making optimal work schedules (Altenstedt et al., 2017).

In this chapter an overview is given of the literature on the manpower planning problem, with a focus
on strategic (longterm) planning. Two main sections can be distinguished: Section 2.1 will discuss the
manpower planning problem in the airline industry with regard to cockpit and cabin crew, and Section 2.2
will discuss the same problem in other fields, such as hospitals, the army and postal services.

2.1. The Airline Manpower Planning Process
Belobaba et al. (2009) state that labour is the second biggest expense for airlines, right behind fuel
expenses. This means that even a small improvement in crew manpower planning can result in large
amounts of money being saved, and this makes the manpower planning problem one of the most
important ones in the airline industry (Sohoni et al., 2004).

This also means that a lot of research has been conducted on this problem, however, most arti
cles focus on the actual construction and optimisation of crew schedules, and not on the steps that
precede this phase: how many employees will be needed, how many employees will retire, how many
employees need to be hired, at what position are they needed, etc. This whole process of workforce
forecasting, planning and scheduling will be called the airline manpower planning problem through
out this report. As with the overall airline planning process, this problem can be divided into three
chronological phases: a strategic, a tactical and an operational phase.

These three phases will be explained in detail in Section 2.1.3, 2.1.4 and 2.1.5 respectively. First
some context about the overall airline planning process is given in Section 2.1.1 after which the goal
and obstacles of the airline manpower planning problem are described in more detail in Section 2.1.2.
Solution methods will be discussed separately in Chapter 3.3, and therefore the focus in this section
will be on model assumptions and formulations.

2.1.1. The Overall Airline Planning Process
The overall objective of an airline’s planning process is to maximise its profitability by making the right
decisions at the right time. This objective can be reached by making strategic decisions (e.g. which
aircraft types to buy), tactical decisions (e.g. prices of the tickets) and operational decisions (e.g. how
many crew members to schedule on standby) (Santos, 2018a).

This full planning process is long and complex: it spans a period of approximately ten years, involves
a lot of uncertainty at the beginning and is governed by an ample amount of factors. The economic
situation, labour agreements, slots, curfews, available aircraft types, maintenance, legal requirements,
etc. make the airline planning problem impossible to solve, or even formulate, in one go (Barnhart
et al., 2003). Therefore, the whole problem is divided into multiple subproblems that are then solved
subsequentially. The output of one problem often is the input for the next problem (Clarke and Smith,
2004).

These different subproblems are defined differently in literature, although not drastically. Belobaba
et al. (2009) divide the overall planning process in three different categories: fleet planning, route plan
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ning and schedule development. Barnhart et al. (2003) further divide the schedule development phase
into four categories: schedule design, fleet assignment, aircraft maintenance routing and crew schedul
ing. Finally, Clarke and Smith (2004) add airport resource management and revenue management to
these four steps.

Even though there is no clear consensus about the definition and order of the different steps, it
is easy to see a certain pattern in the numerous subproblems. First a network and fleet plan are
established. Then, the scheduling phase starts: a flight timetable is constructed, aircraft are assigned,
major maintenance is planned, and finally a crew schedule is made.

Manpower planning does not come into play only at the crew scheduling phase, but is a part of the
entire airline planning process, as will be explained in the next sections.

2.1.2. Goal and Obstacles of the Airline Manpower Planning Problem
The basic goal of the manpower planning process given at the beginning of this chapter, can be adapted
to apply for an airline: to have the right number of people with the right skills at the right time at the
lowest cost. This makes the problem consist of four elements: people, jobs, time and money (Grinold
and Marshall, 1977). As simple as this may sound, there are some obstacles that complicate this
objective:

• Uncertainty: uncertainty is the main difficulty in manpower planning since it generates inaccura
cies in the forecasts. Crew’s ambitions, future destinations, the economic situation, future supply
and demand, crew absence, operational disruptions, etc. are all uncertain at some point or an
other and this needs to be taken into account in the manpower planning process. Not doing so
may result in a shortage (or excess) on the day of operation, both resulting in unnecessary costs.
The closer to the day of operation, the lower the uncertainty (Santos, 2018a).

• Complexity: airline crew is very heterogeneous when it comes to qualifications and employability.
Most airlines have several aircraft types, and not all crew members have the same qualifications
(type ratings). For instance, a crew member can be allowed to fly as a captain on the Boeing
737, and as a First Officer on the Boeing 787. In addition, large airlines usually have multiple hub
airports. This makes that manpower planning is mostly done per aircraft type, per position and
per hub.

• Regulations and labour agreements: an airline, just like anyone else, has to obey the law. For
instance crew is entitled to rest and days off between their flights. On top of this, airlines mostly
have different agreements with cockpit and cabin crew, and this further complicates the problem.
Crew also requires training, which can be initial, transition or recurrent. Not taking this into account
during the manpower planning may result in uncertified, and thus not employable, crewmembers.

As stated before, manpower planning is a long and complex process and therefore it is split up in
different stages. One can easily understand that it would be impossible and absurd to make crew work
schedules five years in advance. On the other hand, recruiting new crew needs to be done well on
time. The different stages and respective research are explained in the next sections.

2.1.3. Strategic Manpower Planning
Strategic planning is the first phase in the manpower planning problem and its main goal is to forecast
future crew supply and demand and to determine a strategy to close the gap between them. The pro
cess takes place from three or even five years until approximately one year before the day of operation
(Holm, 2008; Hooijen, 2018). In practice however, most airlines do not look much more than one to
one and a half year ahead when it comes to manpower planning.

Very little research has been done in strategic manpower planning for airlines. Safarishahrbijari
(2018) analysed 275 papers on workforce forecasting models and concluded that since 1980, only two
percent of research in this field is done in the marine and airlines industry, while over 50 percent of the
research has been performed in the health care industry. Figure 2.1 shows the proportion of articles
on this subject in other fields.

Already in 1991, Verbeek developed a strategic decision support system (DSS) for cockpit crew at KLM
(Verbeek, 1991). The model had a planning horizon of ten years and was used to evaluate different
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Figure 2.1: Percentage of articles on manpower forecasting models since 1980 related to different areas (Safarishahrbijari,
2018). The total number of articles is 275.

manpower scenarios, hence to help the planner in making faster and more efficient decisions. Among
other things, a longterm fleet plan and forecasted demand were used as input. The article did not
specify how this demand was determined. Flexible demand was used to account for vacations. In order
to deal with the uncertainty in the longterm, Verbeek simulated pilot’s behaviour, but again no details
were given about this simulation. Longterm supply was simply determined by taking into account the
workforce and expected retirements.

The model then determined the cockpit crew supply and demand, and the gap between them, for
the entire planning horizon, per month and per position. The model was also capable of presenting
a plan to solve possible imbalances between supply and demand at certain positions. This was done
by proposing crew transitions, a method used by most airlines to close the gap between crew supply
and demand, often called transition planning. Transition planning aims to solve the question of when
to transition crew (mostly cockpit crew), and to which function. To illustrate this concept, a typical,
hierarchical career path is shown in Figure 2.2, where the arrows indicate transitions.

Figure 2.2: A typical, hierarchical career path for an airline pilot, with the arrows indicating a transition (Ives, 1992).

In order to come up with this transition plan, Verbeek’s model made use of mathematical formu
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lations in the form of a mixedinteger (MIP) model with the objective of minimising costs. Since the
problem at hand was large, with 19 cockpit positions and over 900 pilots, it could not be solved with
commercial software. Instead, heuristics were used to reach a nearoptimal solution, but no further
details were given.

Although Verbeek’s DSS forms a good starting point to understand the working principles and factors
behind strategic manpower planning, the article leaves out important information about the simulation,
forecasting and heuristic solution methods. No other articles were found that investigate the strategic
manpower planning in airlines with such a long planning horizon as in the article of Verbeek (1991).

In 2008, Holm tackled the same problem and developed mixedinteger linear programming (MILP)
formulations for both the transition problem as for allocating training and vacation. Her model had a
planning horizon of 70 weeks. Holm (2008) modelled the pilot transitioning problem assuming that a
pilot’s career path is not fixed and investigated how pilot’s choices could be influenced by changing
the salary distribution over different positions. This way the optimal, cheapest career ladders could be
found. For instance, by placing career ladders in parallel, transition and training costs can be reduced
drastically. This principle is illustrated in Figure 2.3.

Figure 2.3: An example of how changing a career ladder structure influences the number of transitions needed for a certain
aircraft type, and thus changes the costs associated with it (Holm, 2008).

The objective for both models was to minimise costs. For the transition model this was the sum of
employee costs and transition costs. Constraints were set up that made sure demand was satisfied
and the transition rules were followed. The model’s output was the pilot supply for each position during
a certain period, and the number of pilots trained from one position to another during that period.

For the training and vacation model, the costs were the sum of transition costs, course costs, short
age costs and payprotection costs (a cost paid to a senior pilot if he did not get a transition but a less
senior pilot did). Constraints put a limit on the number of course participants, made sure all labour
agreements were complied with and tracked the shortage of block hours per position. The output here
was the number of pilots assigned to a course, the number of pilots with vacation, the number of pi
lots under payprotection and the block hour shortage per position, all calculated per period (e.g. one
month).

Morén (2012) also developed a MILP formulation for the staffing and transitioning of pilots. The goal
was to minimise costs while satisfying demand. The formulation and model output resembled these in
Holm (2008), but Morén (2012) also allowed for pilots to fly below rank in case of a supply shortage. In
this case, a captain can be used as a first officer or on a smaller aircraft type during a planning period,
although this is seen as an expensive form of manpower. The model could also take into account pilots
certified to fly on multiple aircraft types. The other models mentioned here before did not take this into
account.

Both Holm (2008) and Morén (2012) used branch and bound as a solution method for their MILP
formulation. This method, together with other solution methods for the manpower planning problem,
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will be discussed in Chapter 3.3.

More recently, Hooijen (2019) developed a DSS to help KLM with the strategic cockpit crew transition
planning problem up to two years in advance, although the author states that cockpit crew transition
planning is usually done three to five years in advance.

Hooijen (2019) developed both a heuristic planning model and an optimisation model. The goal of
the heuristic planning model was to determine an optimal crew plan by planning such transitions. It
uses supply and demand data, transition rules and some other parameters such as training capacity
and transition characteristics as input.

The model consists of a local search algorithm that evaluates possible solutions in the neighbour
hood of the current solution and iterates until a stopping criterion is met. The size of the problem was
decreased by setting up a rulebased system to omit options that do not comply with certain rules and
a tabu search method to avoid getting stuck in a local optimum. The best transition option in the neigh
bourhood was then picked by a selection algorithm using a tree search, combined with either a naive
selection algorithm, a greedy algorithm or Dijkstra’s shortest path algorithm to decrease search space
and computation time. On the other hand, the optimisation model’s goal was to minimise the cost of
the gap between pilot supply and demand, be it negative or positive, for each position. The cost of
this gap varied per position (different salaries) and increased if a crew shortage persisted for a longer
period, since this has a negative effect on the operations.

As stated before, the uncertainty about the future during the strategic planning phase is very high
and that makes designing an accurate strategic manpower plan quite hard. Airlines rarely have a
flight schedule ready more than one and a half year in advance and thus it is hard to predict crew
demand in the strategic phase. Morén (2012) and Verbeek (1991) used crew demand as a parameter
in their models, but did not mention how that number was determined. Hooijen (2019) determined crew
demand based on the flight schedule and then increased it to account for holidays, absence, training,
etc. Finally, Holm (2008) determined crew demand based on expected crew utilisation, although she
also stated that having a preliminary timetable would result in better estimates. No research was found
that investigates the effect of different demand calculations or forecasting methods on the strategic
manpower plan.

Next to determining crew demand, also determining crew supply is hard in this phase, since the
crew’s ambition is mostly unknown. In some airlines, pilots and cabin crew will have the opportunity
once or twice a year to bid for a promotion (transition). For instance, a First Officer on the Boeing 737
may indicate that he wants to become a Captain on that aircraft type. If his bid is accepted, he will
be trained and tested for that position. Since these bids only have to be made known approximately
one year in advance, it is mostly not possible to include them with certainty in the strategic manpower
planning phase (Hooijen, 2018). On top of this, crew absence (e.g. because of illness, holidays, etc.)
is unknown at this point. In conclusion, when designing a longterm manpower plan, it is important to
take the uncertainties in supply and demand into consideration (Holm, 2008).

One of the only aspects that can be predicted fairly accurately in the strategic planning phase,
is the retirement rate in the oncoming years. Retirements are a determining factor in crew supply
and are rather easy to predict, since pilots have a mandatory retirement age of 65 (EASA, 2019). Of
course, retirement age can vary between companies, but in general an airline has a good overview
of retirements in the coming years, assuming that elder pilots will stay at the company (Holm, 2008).
Hooijen (2019) used the composition of the current workforce and forecasted retirements to calculate
crew supply in the future and used that as an initial input to his model. Airlines usually also make a
forecast of future crew absence based on historical data. The forecast is then used to estimate future
crew supply.

The high level of uncertainty in crew supply and demand however, does not render the strategic
manpower planning problem unimportant nor impossible. For an airline, it is still desirable to have an
idea of manpower levels in the coming years. Not only will this determine the strategies to close the gap
between supply and demand, this way the airline can also make sure to have sufficient training capacity,
and it knows what is needed, both financially and logistically, to continue operations as planned.
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2.1.4. Tactical Manpower Planning
Tactical planning comes after the strategic planning phase and takes place from approximately one
year until six months before the day of operation. The main goal during this phase is to close the gap
between forecasted supply and demand (Santos, 2018a). During this phase the uncertainty about the
future is lower, and thus more concrete plans can be made about crew’s vacation and training days.

Tactical manpower planning has been researched more than strategic manpower planning, espe
cially transition planning in the tactical planning phase. As stated already in Section 2.1.3, in some
airlines crew has the opportunity to bid for a promotion once or twice a year. This means that during
the tactical phase, crew’s ambitions are then known and this makes predicting crew supply easier.

Most research, however, considers the transition of a pilot as a given, and thus does not ques
tion if or whereto the pilot or crew member should optimally transition (Hooijen, 2018). Thalén (2010)
integrated both the staffing problem (i.e. whether to hire pilots and which ones to promote) and the
transition problem by designing a tabu search based algorithm that was 30 times faster than solving it
with mixedinteger programming (MIP) software. The objective was to supply the right quantity of pilots
with the right qualifications at the right time and at minimum cost. Thalén’s model sometimes omitted
the airline’s seniority rules in order to find a more optimal transition solution. This was done by either
using payprotection (similar to Holm (2008)) or by prematurely moving pilots with a higher seniority to
different positions.

Over several years, a tactical manpower planning DSS was developed for Continental Airlines by Gang
Yu (Yu et al. (1998), Yu et al. (2003) and Yu et al. (2004)). In 1998 they first developed a mathematical
framework to solve the pilot training assignment problem. Here, they only looked to optimise the training
schedule, i.e. assigning pilots to training in time so that they can cover their assigned block hours
in the future. Different possible objective functions were formulated: (1) maximise compliance with
the business plan, (2) minimise pilot unavailability by minimising training cycles, and (3) minimise the
total cost. They then designed a heuristic method to solve the problem. It is initialised by a manual
solution and then looks at the entire planning horizon (discretised into time periods of one week) to
make possible schedules for pilots that need training during that planning horizon. The main working
principle of the heuristic is that, for each week, it assigns pilots to training if certain conditions are met,
and then updates the list of unassigned pilots to prepare the heuristic for the next iteration (Yu et al.,
1998). The model was run for a planning horizon of 52 weeks and resulted in a list of course dates, pilot
course assignments and capability in terms of block hours. The model also had the option to determine
how many new hires would be needed to satisfy the business plan.

In Yu et al. (2003) and Yu et al. (2004) a whole new model was presented that aimed to integrate
various aspects of the manpower planning problem, such as demand forecasting, transition planning
and absence management, for both cockpit and cabin crew, although they only present a mathematical
formulation for the pilot transitioning and training problem. This time, the solution method used was
optimisationbased and albeit stating that the goal of the paper is presenting an integrated manpower
management DSS, the transitioning and training problem were solved separately.

2.1.5. Operational Manpower Planning
Operational manpower planning is the last step in the process and takes place from approximately six
months before the day of operation until the very day itself. The objective during this phase is mostly
to minimise costs (Santos, 2018a). Operational manpower planning is often called crew scheduling
and is the most researched phase of the manpower planning problem. In most literature, the crew
scheduling problem is split into two stages: the crew pairing problem and the crew rostering problem
(Belobaba et al., 2009; Medard and Sawhney, 2007; Barnhart et al., 2003). In case of disruptions, also
crew recovery needs to take place. Although this can be seen as a step that comes after operational
planning, it will also be discussed in this section.

The crew pairing problem generates work schedules of one to five days. The goal is to construct
crew itineraries (or pairings) so that all flights are covered at minimum cost. It starts by constructing a
sequence of flights, which is called a duty period, and is generally made for one day. Then, by putting
multiple duty periods after each other, a pairing is formed. On the other hand, the crew rostering
problem combines multiple pairings, training days, standby duties and holidays into a crew roster of
approximately 30 days that is then assigned to individual crew members (Santos, 2018b).
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Of course, during these two steps, regulations and labour agreements have to be considered: there
has to be enough rest time between flights, there is a maximum of work hours per day, the pairing has
to start and end at the crew base, etc. Planners also have to make sure that there is legally sufficient
cockpit and cabin crew assigned to each flight (Barnhart et al., 2003; Medard and Sawhney, 2007).

Over the last decades however, research on this topic has shifted from focusing solely on cost min
imisation to focusing on both costs and schedule robustness. In a more robust schedule, disruptions
(such as delays and cancellations) in the operations will propagate less into the future. This way a more
robust schedule might result in higher planned costs but lower actual costs than the costminimised
schedule (Ehrgott and Ryan, 2002).

For this reason, Ehrgott and Ryan (2002) developed a bicriteria optimisation model to develop a crew
schedule for a domestic airline. Two objectives were needed since maximising robustness conflicts
with minimising the costs. An objective function was developed that penalised duty periods that were
not robust, i.e. if the expected delay of the incoming flight was larger than the crew’s scheduled ground
time minus possible ground duty time. The expected delay was taken from historical data of over
46,000 flights and showed a clear linear increase throughout the day. The schedule robustness was
then measured by calculating the cumulative expected delay. Ehrgott and Ryan (2002) concluded that
a significant increase in schedule robustness is possible with only a small increase in planned operating
costs.

Yen and Birge (2006) on the other hand developed a twostage stochastic integer formulation and
used a random variable to introduce random disruptions in the schedule to account for shortterm
changes in the longterm crew planning, but did not consider labour agreements, standby crews and
flight cancellations. This was because the article aimed to identify the delays that were caused because
of the crew schedule, and to use this info to make the crew schedule more robust. They concluded
that serious cost savings could be made when considering disruption effects on the operations already
during the planning phase.

In case of schedule disruptions, due to delays, absent crew, severe weather, etc. airlines want to
resume normal operations as soon, but also as cheap as possible. This can be done by swapping
crew or aircraft to new flights and by the use of reserve crew. Over the last years, research on the use
of reserve crew has increased (Sohoni et al., 2006; HomaieShandizi et al., 2016; Bayliss et al., 2012,
2019). Determining how many reserve crew are optimally needed requires a model that can deal with
future uncertainty and in one way or another predicts the probability of crew absence.

2.2. Manpower Planning in NonAviation Industries
In this section manpower planning models from other industries will be discussed. Section 2.2.1 will
focus on hospital manpower planning, while Section 2.2.2 focuses on manpower planning in armies.
In Section 2.2.3 some articles are discussed that could not be classified into one of these industries.

In the grey text boxes throughout this section, it will be discussed how the model(s) can be adapted
to address the the airline manpower planning problem. Solution methods will be discussed separately
in Chapter 3.3, and therefore the focus in this section will be on model assumptions and formulations.

2.2.1. Hospital Manpower Planning
As stated in Section 2.1.3 and Figure 2.1, Safarishahrbijari (2018) found that since 1980, 52 percent of
articles on strategic manpower planning are related to the health care sector. Fortunately, the problem
is in many ways similar to the airline manpower planning problem. Nurses and physicians have differ
ent skill levels, just like cabin and cockpit crew. Also uncertainty in staff demand plays a role in both
industries. Moreover, hospital manpower planners also need to adhere to the law and agreements with
unions when it comes to holidays, overtime and training (Trivedi, 1981).

Already in 1981, Trivedi made a mixedinteger goal programming model to determine the number of
nurses needed in a hospital on each position for each shift. Goal programming uses target values
for each objective and deviations from these values are minimised. In the model, staff is divided into
different skill levels, there are constraints on time off and holidays, the amount of substitution among
different skill levels is limited, etc. The model also takes the law and labour agreements into account.
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Furthermore, Trivedi (1981) allows for parttime staff and implements a constraint that makes sure
enough replacement staff is available to cover for absent staff.

Demand was derived from historical data to form a projected number of expected patients divided
into four categories, for weekdays and weekend days, that was then converted into nursing hours. In
the numerical example, this projected demand was assumed to be the same throughout the entire year
and thus the model could be run for an entire year. The output then was the number of nurses needed
per skill level, per shift (day, evening, night) per week day or per weekend day, for the entire year.
Since the demand was the same throughout the year, the number of nurses needed each week for
each position and shift was the same.

Five goals were defined: minimise the budget deficit (if the expenses are larger than the budget),
the understaffing and the number of parttime employees, and maximise the budget surplus (if the
expenses are smaller than the budget) and the number of fulltime nurses.

Application to the airline manpower planning problem:
The constraints used by Trivedi (1981) to formulate holiday policies and limits on working hours
could be used in the airline manpower planning problem. Also the implementation of parttime
employees is a good addition, since not all airline crew members work fulltime. A shortcoming
however is that demand is assumed to be the same throughout the entire year and thus the
output provides the same numbers throughout the year. It is uncertain how the model would
deal with fluctuating staff demand per season, per week and even per day as is the case for
airlines.

Li et al. (2007) developed an integrated staffsizing approach that shows a lot of similarities with the
airline manpower planning problem. The model they developed is meant for any service organisation
although they use nurse manpower planning for their numerical example, and shows many similarities
with the model of Trivedi (1981). Their planning horizon consisted of six planning periods of four weeks
(so half a year). They described three stages in an integrated staffing decision model: forecasting,
planning and scheduling, which they call stage I, stage II and stage III respectively. In Figure 2.4 a
schematic overview of their integrated staffing decision model can be found.

Figure 2.4: Overview of the integrated staffing decision model presented by Li et al. (2007).

In stage I the demand is determined. They distinguish between known demand (patients that have
made an appointment) and unknown demand (patients that come in without an appointment). They
do not specify further how this demand is determined, and simply use the sum of known and unknown
demand as one demand parameter later in stage II and III. The output of stage I then is a monthly
demand prediction and is the input for stage II.

In stage II these forecasts are used together with the staffing requirements to determine the desir
able workforce size for each position. These requirements specify the maximum labour hours, overtime
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policies, required training, etc. The model also determines how many people to hire and dismiss, how
many overtime hours will be performed and how many people will have to work on a lowerlevel posi
tion. This was done by developing a multiobjective staff planning model with linear objectives and six
linear constraints to limit the overtime, training, etc.

Five separate objectives were identified to guarantee a certain service quality without neglecting
cost issues, all minimisation objectives.An analytic hierarchy process (AHP) was used to convert the
multiobjective model into a single objective model. This method is normally used for multicriteria
analysis but is here used in a multiobjective context. It calculates weights for the different objectives
by determining their relative importance with respect to each other measured on an integer scale from
1 to 9. These values are then placed in a square matrix which is then normalised, resulting in the
objective weights (Li et al., 2007; Winston and Goldberg, 2004).

Finally, in stage III the outputs from stage II are used together with scheduling requirements to
generate a schedule. They stress that the success of the integrated system depends on an effective
coordination between all stages, however they admit that the demand input is fixed and thus there
is no interaction between stage I and the other two stages. Here again, a multiobjective model was
developed.

Application to the airline manpower planning problem:

• Li et al. (2007) distinguish between known and unknown demand. Known demand could
be derived from the flight schedule and unknown demand could come from staff absence,
disruptions, etc.

• The staff is divided into different skill classes. This is also the case in an airline: captain
and first officer in the cockpit; purser, assistant purser and cabin attendant in the cabin.

• The staffing and scheduling requirements used in stage II and III respectively, that specify
themaximum amount of labour hours, training policies, holiday policies, etc. are with some
adjustments applicable to an airline.

In conclusion, the models of Li et al. (2007) show many similarities with the strategic airline
manpower planning problem. Especially the staff planning model seems like it could be applied
to an airline with some adjustments. Their planning horizon would however need to be adapted
in order to make it a strategic planning model.

More recently, Ganguly et al. (2014) developed a staff planning model for a medical emergency de
partment. They used a mixedinteger linear programming (MILP) formulation to investigate the optimal
number of staff. The objective was to minimise total staffing cost while still reaching a service level
target. In contrast to Li et al. (2007), demand was fully unknown, due to the nature of a hospital’s
emergency department.

To cope with this, they aggregated historical patient demand into discrete time buckets of one hour
and used this to model the stochastic distribution of demand within these buckets. Patients were divided
into different acuity levels and care providers were divided into different skill levels (cf. Li et al. (2007);
Trivedi (1981)). This way, they were able to formulate the distribution and density of work content,
i.e. the relative amount of time a patient with a certain acuity level requires attention from a qualified
provider.

Another interesting aspect is that Ganguly et al. (2014) made use of chance constraints as de
veloped by Charnes and Cooper (1959) to guarantee that a certain service level is met. A chance
constraint makes sure that the probability that a constraint will hold is higher than or equal to a set tar
get 𝑝, in this case the target service level. The basic principle of a chance constraint can be formulated
as follows:

If the inequality constraint is ℎ(𝑥, 𝜉) ≥ 0, then the chance constraint is 𝑃(ℎ(𝑥, 𝜉) ≥ 0) ≥ 𝑝

with 𝑝 ∈ [0, 1], 𝑥 the decision vector and 𝜉 the vector of uncertainty (Li, 2015). A chance constraint
can be rewritten as its deterministic equivalent if the probability distribution of the random variable (𝜉)
in the chance constraint is known (Hillier and Lieberman, 2015). Since the work content distribution
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was already developed (as explained above), it was possible to rewrite the chance constraints as their
deterministic equivalent (Ganguly et al., 2014).

Finally, they also allowed the model to form teams of care providers. In this case, lower skilled
providers are assisted by higher skilled staff to treat patients that could normally not be treated by
the lower skilled provider. This further increased the flexibility and utilisation and decreased the total
staffing cost.

In the numerical example, the planning horizon consisted of 24 planning periods of one hour (so
one day). However, they found that a planning horizon consisting of 164 planning periods of one hour
(so one week) resulted in two percent lower staffing costs.

Application to the airline manpower planning problem:
Ganguly et al. (2014) had to deal with a manpower planning problem in which all demand was
unknown. Mostly, this is not the case for the airline manpower planning problem, since crew
demand can be partially determined by either the flight schedule or future fleet size. Unknown
crew demand in airlines mostly comes from absence and disruptions, and therefore this method
could perhaps be used to model crew absence stochastically.

The use of chance constraints could be effective when planning for reserve crew. For in
stance: the probability that reserve crew can cover demand should be equal to or higher than
𝑝.

The planning horizon of one day, or even one week is not enough to make a longterm,
strategic manpower plan. However, by for instance changing the time buckets from one hour to
one week or one month, a longer planning horizon could be achieved with the same model.

2.2.2. Army Manpower Planning
Similar to hospital manpower planning, army manpower planning deals with getting the right people
with the right skill at the right time under partially uncertain demand. Since one of the main character
istics of an army is that it has a hierarchical structure, manpower planning models often make use of
promotions to transition staff. This is also the case in the airline manpower planning problem, as was
explained in Section 2.1.3.

Weigel and Wilcox (1993) designed a personnel decision support system (DSS) for the United States
Army. The goal was to model workforce supply by combining techniques of goal programming, network
models, linear programming and Markovtype inventory projection. In total, three models were made
and a hierarchy was used so that the bigger problem was represented as ”a sequence of linked models”
(Weigel and Wilcox, 1993), where each model provides constraints for the next model. The reason to
use such a hierarchical approach was that it was impossible to solve a problem of such size at once
considering computer technology at that time. The hierarchy also allowed to focus on a different set of
dimensions for each model: the top model performs the global optimisation, the lower models perform
local optimisation.

Horn et al. (2016) designed a mixedinteger linear programming (MILP) model to support the Australian
army in planning their workforce on a strategic level. A goal programming approach was used to
formulate different objectives.

They started by designing a basic model that was extended later to reflect realworld conditions. In
the basic model, army staff is divided into cohorts, trades and ranks, all characterised by a hierarchical
structure. The objective of the basic model was to minimise total weighted deviations from the target
personnel levels. These target levels were defined per trade, per rank and per year. The main output
was the number of personnel in each cohort, trade and rank, the number of entries and departures,
and promotion characteristics.

In the extended model more constraints were added to reflect the realworld situation. Real costs
of hiring, attrition and promotions were added to the original objective function. The model’s planning
horizon consisted of 17 planning periods of one year (so 17 years). This means that proposed changes
occurred at yearly intervals.



2.2. Manpower Planning in NonAviation Industries 39

Škraba et al. (2016) used the principle of system dynamics to model a hierarchical human resources
structure in organisations such as the army. A combination of genetic algorithms and stochastic local
search was then used as an optimisation tool. They too made use of recruitments and promotions to
attain the desired staffing levels for each rank, while also taking into account wastage.

They developed an iterative stochastic search algorithm that chose randomly between three actions
in each of the possible defined situations. This was done in order to alleviate the complexity of depen
dencies between the different nodes. The algorithm looped over all ranks (which they called classes)
and checked for each class if the staffing level was higher or lower than desired. If it was lower, the
algorithm chose randomly between (1) increasing the recruitment, (2) decreasing the outflow or (3) de
creasing the promotions. If it was higher, the algorithm chose randomly between the opposite of these
three options.

Škraba et al. (2016) stated that the algorithm had to be launched repeatedly until two resulting
iterations were equal. They further stated that the outcome of the algorithm depended on the initial
values. Nonetheless, feasible solutions could be found. A genetic algorithm was further used as an
optimisation technique to generate optimal values that were then used as initial values for the stochastic
search algorithm.

Application to the airline manpower planning problem:
The discussed models all use recruitment and promotions to reach target levels in the hierarchi
cal army structure. This is similar to what Holm (2008) and Hooijen (2019) did for the strategic
airline manpower planning problem.

Weigel and Wilcox (1993) have shown that it is possible to combine different models in a
hierarchical structure to solve a larger problem (which the airline manpower problem definitely
is). Horn et al. (2016) demonstrated that using different penalty weights for different positions
is a way to manually stress the importance of each position. Hooijen (2019) made use of this
technique to account for problematic cockpit crew positions. Finally, it is interesting to see that
Škraba et al. (2016) used an algorithm in which different options were chosen randomly at each
step, and by combining it with a genetic algorithm optimal solutions could still be found.

2.2.3. Manpower Planning in Other Industries
This section will discuss articles and methods that could not be categorised into one of the industries
mentioned above.

Cai et al. (2004) dealt with uncertain manpower demand by developing a multiperiod stochastic de
cision model for organisations dealing with fluctuating demand. Although they did not specify their
planning horizon, the developed model was meant for the longterm manpower problem, and it is up to
the user to define the length of the planning periods. Similar to other articles mentioned before, they
defined different skill levels so that highskilled employees could be assigned to perform lowerskilled
jobs.

They first formulated a stochastic manpower problem (SMP), where demand in the current period
is zero and demand in the future is described by a random component. This means that only for the
current period, demand was determined, and for the next periods they modelled demands as random
variables with a normal distribution. Then, they reformulated the SMP into a deterministic manpower
problem (DMP) by using a mean value model approach to reduce the complexity and to make it easier
to solve. They further added a feedback mechanism to make sure the staff size was not overestimated
in the far future.

Application to the airline manpower planning problem:
Cai et al. (2004) chose a stochastic integer programming approach to deal with uncertainty in
manpower demand and then reformulated it into a deterministic model to reduce complexity and
solution times. Manpower demand in airlines also has stochastic characteristics (e.g. because
of delays and absence) but since the problem is already quite large and complex, it might be
necessary to avoid stochastic formulations and shape them into deterministic ones.
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Qi and Bard (2006) used a simulation model that integrated two staffing decision support systems for
a large mail company. The first system, called ESO, was used to make optimal use of the automation
equipment. The second system, called SOS, was used to determine the optimal number of employees
while taking into account all labour requirements such as breaks and holidays. The latter system first
solves a largescale integer programme that determines the optimal number of shifts in a week. Post
processors then add lunch breaks and glue these shifts together into weekly schedules. It also takes
into account the difference between parttime and fulltime workers.

As can be seen in Figure 2.5, simulation was used twice to integrate both decision support systems.
To do this, the mail company was modelled as a timespace network; the mail handlers were modelled
using distance matrices and rules were imposed to govern their movement.

Figure 2.5: Overview of the integration of decision support systems and simulation as formulated by Qi and Bard (2006).

Application to the airline manpower planning problem:
Qi and Bard (2006) made use of simulation to integrate two models. The method of simulation
was already used by Verbeek (1991) to model pilot’s behaviour and can thus be used in an
airline manpower planning context. However, in the article of Qi and Bard (2006) simulation is
used in a very different way: rather than simulating people’s behaviour, it is here used to model
the flow and operations in a mail facility in order to come up with handler requirements, and in
a later stage to validate the results. This seems less useful for the strategic airline manpower
planning problem, since here the focus is on determining crew demand and supply, and not yet
on the operational (timespace) phase.

Bard (2004) developed a mixedinteger linear programming model to find the optimal number of em
ployees in a service organisation while taking the law and labour agreements into account. However,
the focus in his article was not on promoting staff to higher functions, but on temporarily downgrading
staff to satisfy demand in lower skill categories, similar to what Li et al. (2007) did for nurses. Bard
(2004) assumed not only fulltime and parttime workers, but also temporary employees to deal with
exceptionally high demand (together with overtime). The article further stated that assuming more than
two skill levels will likely make the model unmanageable.

Staff demand varied throughout the day and throughout the week and was defined per skill level.
Although they mentioned that planners often have to deal with unknown spikes in demand, they chose
to calculate average demand using historical data and to use that as an input to the model. The model’s
objective was to minimise the staffing cost and had a planning horizon of one week.

Since the problem took too long to solve using CPLEX, a sequential approach was chosen as
solution method, for which they made use of greedy heuristic algorithms and postprocessors.

In later similar research, Bard et al. (2007) took into account fluctuations in demand by developing a
stochastic integer programming model, consisting of two stages. The first stage determined the optimal
number of fulltime and parttime permanent workers under unknown demand. In the second stage, the
demand was known and shifts were formed. As in Bard (2004), temporary workers and overtime were
used if the permanent workforce was too small to cover the demand. Historical data was analysed to
find the demand distribution.
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Application to the airline manpower planning problem:
The model described in Bard (2004) took too long to solve in CPLEX and therefore they used
a sequential approach and postprocessors. They further warned that using more than two skill
levels might render the model unmanageable. Since the airline manpower problem is large and
complex, the combination of different solution methods might be needed in order to still solve
the problem.

In their later research the stochastic nature of crew demand is introduced, similar to Cai et al.
(2004). Bard et al. (2007) uses a twostage stochastic integer programming model, and this
seems perfectly applicable to the strategic airline manpower planning problem, especially since
the uncertainty in this phase is rather high.

Finally, De la Torre et al. (2016) developed a MILP model to strategically plan the staff size and com
position in universities. The model is not only used for planning purposes, but also helps the university
to assess different manpower strategies in terms of costs and structure.

For the numerical example they used a planning horizon of ten periods spread over eight years.
Each period, hiring, dismissing and promotions were used to reach the target staffing level. These target
levels were obtained from a forecasted number of yearly required teaching hours for each department.
Furthermore, also forecasted attrition was used as an input. It was not mentioned how these forecasts
were calculated. In contrast to most other articles on manpower planning, staff demand was assumed
to be constant throughout the planning horizon for each unit and department.

The MILP formulation itself is rather straightforward and reminds of the crew transition problem for
airlines (Holm, 2008; Hooijen, 2019). The objective was to minimise staffing cost and the gap between
planned staff composition and the target level. De la Torre et al. (2016) chose to formulate this goal
into one objective, rather than using multiobjective optimisation. This was done by assigning a cost to
the aforementioned gap between planned and target staffing levels.

Application to the airline manpower planning problem:
Instead of choosing a multiobjective programming approach, De la Torre et al. (2016) combined
two goals into one by assigning a cost value to the second goal. Although themodel and goal are
further rather straightforward, this approach could be used in the airline industry by for instance
assigning a cost to crew satisfaction and days off in order to implement these into one objective.

2.3. Chapter Discussion
The goal of this chapter was to give an overview of the literature on the manpower planning prob
lem, with a focus on strategic (longterm) planning. Since strategic manpower planning is the least
researched phase in the airline industry, also other industries were looked at.

Four articles were discussed that investigated the strategic manpower planning for airlines. The
objective always was to minimise costs and for this a MILP formulation was used (Verbeek, 1991;
Holm, 2008; Morén, 2012), except for Hooijen (2019) who used a heuristic planning model. All articles
focused on transitioning pilots to close the gap between supply and demand, with Morén (2012) also
allowing for pilots to fly below rank and to fly on multiple aircraft types.

It was found that crew demand was always used as a given input and no article investigated the best
strategy to determine longterm crew demand. Crew demand could be derived from the flight schedule
(Hooijen, 2019) or from the expected crew utilisation (Holm, 2008) but no article explored the influence
of the demand data’s origin and quality on the outcome of the model.

It was also found that research is paying more attention to planning robustness by taking into ac
count possible disruptions already in the planning phase. This can result in higher planned costs but
lower actual costs. Schedule robustness can be measured by calculating the propagated delay in case
of disruptions and can be achieved by using multiple objectives (Ehrgott and Ryan, 2002) or by using
a stochastic formulation (Yen and Birge, 2006). No articles were found that take into account planning
robustness already in the strategic phase.
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In other industries, additional methods were used next to MILP formulations to determine the optimal
staff size. In most articles, multiple objectives were identified and thus different methods were used
to deal with this: goal programming (Trivedi, 1981; Horn et al., 2016), formulating it as one objective
(Li et al., 2007; De la Torre et al., 2016), using chance constraints (Ganguly et al., 2014) or using a
combination of techniques (Weigel and Wilcox, 1993). Multiple articles were found that allowed staff
downgrading, similar to a pilot flying below rank (Li et al., 2007; Trivedi, 1981; Ganguly et al., 2014;
Bard, 2004; Cai et al., 2004) in order to temporarily fill the gap between supply and demand.

Here too, staff demand was always used as an input and either based on historical data, or just
a parameter without more details given. Li et al. (2007) however developed a separate demand fore
casting module but did not specify how exactly it was calculated or what forecasting techniques were
used. In the next chapter, various forecasting methods will be discussed.



3
Forecasting Methods for Manpower

Supply and Demand

As already explained, strategic manpower planning has to deal with uncertainty. On the demand
side, airlines still want to predict future crew demand without having a flight schedule ready. On the
supply side, crew absence is the biggest uncertainty. In this chapter, various methods to forecast supply
and demand will be discussed. In Section 3.1, current methods used by airlines to estimate future crew
supply and demand will be explained. In Section 3.2, articles and research on possible forecasting
methods will be analysed, both general mathematical models, and models for the airline industry and
for other industries. Although not all presented models and methods are related to manpower planning,
they could still be used to forecast for instance crew absence.

3.1. Current Methods Used in Airlines
Airlines usually do not like to disclose their manpower forecasting methods and therefore not a lot of
literature has been written on this topic. Ciriani et al. (2013) identify two possibilities to determine crew
demand: the airline’s longterm fleet plan when looking more than a year ahead, and the flight sched
ules as soon as they are known (usually a year before the day of operation). Holm (2008) also identifies
the possibility of estimating demand based on crew utilisation. All three possibilities will be explained
below.

When estimating crew demand based on the airline’s fleet plan, a socalled ‘crew factor’ can be used.
This is a way for the airline to estimate how many crew members are needed per position to operate
one aircraft of a certain type. For instance, if the airline estimates that they need six captains to operate
one B737, and their longterm fleet plan states that they will be operating two B737s in two years, the
estimated demand in two years is 12 captains for the B737. This crew factor depends on the type
of airline and thus varies throughout the industry, although estimates fluctuate around 12 pilots per
aircraft (CAE, 2017; Lovelace and Higgins, 2012). The crew factor can also be varied during the year
to account for a busier or calmer schedule.

When using the initial flight schedule to estimate crew demand, ‘production days’ can be used.
Production days are the number of working days in a crew pairing and are another way to express how
many crew members are needed per position. Extra production days are used to account for training,
vacation, sickness, etc. This way, a good demand estimate can be formed (Holm, 2008), but of course
under the assumption that the flight schedule is already available in the strategic planning phase. An
example calculation can be found in Table 3.1.

Lastly, also expected crew utilisation can be used in combination with an aircraft’s expected number
of block hours, based on either the (preliminary) flight schedule or on historical data (Ciriani et al., 2013;
Yu et al., 2003). Block hours are the time between an aircraft leaving the departure gate and arriving at
the destination gate and are usually calculated per month when estimating crew demand. The number
of block hours per aircraft type is then divided by the target crew utilisation (i.e. the number of hours a
crew member is supposed to fly per month) in order to get an estimate of the crew demand. The target
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Table 3.1: Example calculation to determine the number of crew needed by using pairings and production days. The
calculation is done for a single longhaul aircraft type (LH) and two positions (captain and first officer), with the assumption that
this flight schedule is flown the entire year, and with the assumption that one captain and two first officers are needed per flight.

All values are fictitious.

LH Production days
Monday Tuesday Wednesday Thursday Friday Saturday Sunday Captain First Officer
AMSCUR     CURAMS 6 12

AMSPUJ PUJAMS 2 4
Total per week: 8 16
Total per year: 416 832
Expected production days per person per year 220 220
Production days for training, days off, absence, ... per person per year 40 40
Production days left, per person per year 180 180
Crew needed 416/180 = 2.3 832/16 = 4.6

⇒ 3 ⇒ 5

crew utilisation varies per position and can be altered to account for peak and low season.

When it comes to determining future crew supply, airlines usually have a comprehensive knowledge
about their staff. Everything starts with the number of employees, and then expected retirements are
subtracted, together with expected sickness absence, parental leave, etc. The expected sickness
absence can be a fixed number, or a dynamic one, based on historical data or recent trends. This will
be explained more in the next section.

3.2. Forecasting Methods in Literature
Longterm manpower demand forecasting is probably the most difficult part of airline manpower plan
ning, since the uncertainty is very high and the future demand depends on a lot of factors (Holm, 2008).
Manpower supply forecasting is a bit easier, although there the uncertainty of employee absence plays
an important role. Nonetheless, some methods could be used to take into account these uncertainties,
as will be explained in the next sections. In Section 3.2.1 an overview of possible mathematical fore
casting methods is given; Section 3.2.2 describes which forecasting methods are used in articles on
manpower planning for airlines. Finally, Section 3.2.3 does the same for other industries.

3.2.1. Overview of Possible Methods
Safarishahrbijari (2018) has analysed 275 papers on workforce forecasting models in all kinds of indus
tries and the article gave a good overview of possible forecasting methods. Seven major approaches
were identified: qualitative models, optimisation models, generic mathematical models, statistics and
regression, analytical stockandflow models, simulation models and time series models. An overview
of these different approaches and their strengths and flaws will be given below, based on the article of
Safarishahrbijari (2018).

Qualitative models are used in case of a lack of highquality data and depend on the input of experts.
Therefore this approach can sometimes be regarded as subjective and inaccurate, but can suffice in
case the problem at hand is rather small.

Optimisation models have been used extensively already in the previously mentioned articles.
Their goal always is to maximise or minimise (a) certain objective function(s), and several approaches
exist, such as linear programming and goal programming. Optimisation models are very popular, but
are mostly formulated linearly. In reality however, systems are rather dynamic and nonlinear, and it
can be hard and timeconsuming to catch this with optimisation models.

The generic mathematical methods mentioned in Safarishahrbijari (2018) range from the use
of linear differential equations to the labour multiplier approach to forecast future demand. Purely
mathematical formulations can capture a the dynamics of a system accurately, but are impractical
when it comes to characterising historical data.

Therefore, statistical and regression models have been developed. These models take into
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account the stochastic character of certain parameters and use historical data and a fitting process to
predict future values. Although time series models also do this, statistical and regression models do not
always have time as a parameter. For instance, regression analysis can determine ”the causal effect
of independent variables on dependent variables” (Safarishahrbijari, 2018). Again, this approach can
be inefficient when modelling a dynamic system, since they usually consider only one output.

Analytical stockandflow models in manpower planning depict the employee cohorts as stocks
and movement between them (such as promotions) as flows. This way of modelling makes the problem
easy to visualise and understand, but it cannot be done for every problem (for instance in an airline the
movement between crew positions can depend on bids, seniority, etc. and is thus not straightforward
(Hooijen, 2018)).

The sixth method mentioned in Safarishahrbijari (2018) are simulation models. Simulation is a
good way to investigate systems that cannot be solved analytically. This approach is preferred to
answer whatif questions of complex problems, but are timeconsuming to develop.

Finally, time series models are widely used to predict future values with the use of historical data.
Several forecasting techniques exist, but the most used ones when it comes to manpower planning are
BoxJenkins, exponential smoothing and Markov modelling (Safarishahrbijari, 2018).

The BoxJenkins method uses an autoregressive integrated moving average (ARIMA) to detect the
best fit of a time series model to past values, and combines an autoregressive process with a moving
average process (Commandeur and Koopman, 2007). Exponential smoothing on the other hand, uses
the weighted moving average. In this case, exponentially decreasing weights are assigned to values
that are further in the past (Verhagen, 2019). Finally, Markov modelling is based on transition proba
bilities between different states, and does only depend on the current state. However, Markov models
are unable to interact with their environment and therefore are hard to use in the airline manpower
planning problem, since crew transitions, seniority rules and crew bids all play a role there, similar to
stockandflow models (Hooijen, 2018).

Catching seasonality and trends in time series is often difficult and cannot be done by every technique.
Therefore, Qi and Zhang (2008) investigated what the best modelling approach would be when using
artificial neural networks (NN) to model trend time series. They used a standard threelayer NN with
one output node (the basics of neural networks and the use of it as a solution method for the manpower
planning problem are further explained in Section 4.4). Monte Carlo simulations were then run in order
to determine the best forecasting strategy out of a pool of five different data generating processes and
four modelling approaches (all methods used NN). They concluded that modelling with differenced data
was the best modelling approach when using NN for time series forecasting. This method detrends
data by differencing.

Tseng et al. (2001) also tried to forecast seasonal time series, but they made use of grey models
(GM). The theory of grey models was developed by Deng (1982) and is particularly good at dealing with
poor information or small samples, and tries to look for patterns in this data. However this comes at a
price: grey models are known to be bad at detecting seasonality in data. Tseng et al. (2001) wanted
to overcome this by partially deseasonalising the data with the ratiotomovingaverage approach. The
deseasonalised data was then used in combination with a standard GM(1,1) model. Mean squared
error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to
evaluate the performance of the model. The authors concluded that their approach of combining a
GM(1,1) model with deseasonalised data performed better than the neural network model, the SARIMA
model and the GM(1,N) model.

3.2.2. Forecasting Methods in the Airline Industry
Rather than focusing on forecasting methods that are currently being used in airlines (Section 3.1),
this section will focus on research and articles in this field. Within the airline industry, no articles were
found that predict crew demand other than with the methods mentioned above in Section 3.1. Most
research seems to focus on predicting crew supply, and more specifically predicting crew absence and
modelling the use of reserve crew.

HomaieShandizi et al. (2016) developed a supervised learning method to forecast monthly pilot re
serve hours. Although the developed model was meant to predict reserve hours of the next month
after the new pairings were published (hence it is not strategic planning), the method they used might
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be applicable to longterm planning. Their model used historical data and monthly schedule character
istics, such as time away from base, number of landings, flying hours, etc. together with an iterative
algorithm to predict how many reserve pilots would be needed in the next month. A modified version
of classification and regression trees was used for the prediction model. This technique is based on
Morgan and Sonquist (1963) and further explained in Breiman (2017). Their model resulted in a 15%
improvement in predictions for the airline.

Van Drongelen et al. (2014) examined a possible correlation between different flight types and flight
crew absence of more than seven days, in order to better predict and prevent it. For this, they used
univariate and multivariate logistic regression on flight and absence data of more than 8000 employees.
Logistic regression is a way to relate a binary result (like being absent or not) to one or more variables
and is well explained in Kleinbaum et al. (2002). The univariate analysis of Van Drongelen et al. (2014)
showed that multiple time zone crossings and a higher number of mediumhaul flights resulted in a
higher chance of crew absence. The multivariate analysis showed no significant correlation.

Something similar was done by Boot et al. (2017), but they used sociodemographic data, such as
age, marital status and number of children, to predict longterm sickness for KLM employees. They
too used logistic regression to find possible correlations. They were able to demonstrate a connection
between longterm sickness leave and, for instance, higher age and a recent pregnancy, however the
explained variance was low. The explained variance (or Nagelkerke’s 𝑅2) is a way of evaluating a
model’s goodness of fit and the closer the value is to zero, the worse the prediction capabilities of the
model (Nagelkerke et al., 1991).

Over the years, Christopher Bayliss has worked on several methods to deal with the uncertainty of
crew absence. In Bayliss et al. (2012), they developed a probabilistic model that scheduled reserve
crew teams in such a way that the probability of crew unavailability was minimised. For their numeri
cal example however, instead of taking absence probabilities from historical data, their input absence
probabilities were uniformly distributed, resulting in an abnormal amount of disruptions. Several ob
jective functions, such as minimising the sum of probabilities or the standard deviation, and heuristic
solution methods, such as genetic algorithms and tabu search, were investigated. They concluded that
the best objective function was to minimise the sum of probabilities of crew unavailability, and that the
tabu search resulted in values close to optimality.

In Bayliss et al. (2019) they further improved this model by taking into account reserve crew induced
delays and allowing multiple crew members to be absent on a single flight. This time, instead of using
a uniform distribution for absence probability, it was assumed each crew member had a 1% chance of
being absent. This number was based on historical data, but the model could also handle individual
absence probabilities per crew member. The probabilistic model appeared to be much faster than
classic simulation methods, such as Monte Carlo simulation.

3.2.3. Forecasting Methods in Other Industries
Since not many articles were found that investigate manpower forecasting methods in the strategic
airline planning phase, this section will discuss methods that are used in other industries.

Ng et al. (2008) developed six different approaches to find optimal staffing levels before the employees’
attendance rates are known (as is the case for strategic manpower planning). The goal was to find
the right balance between satisfying the manpower demand and minimising staffing costs, since both
under and overstaffing can result in high costs.

The first approach replaced the unknown attendance rate by the average attendance rate; the sec
ond approach assumed the minimum attendance rate for all workers. These two approaches were
deterministic and rather simple, but served as a good starting point for the other approaches.

The third approach used historical data to construct a single worst case attendance rate per worker
type. The fourth approach first solved the problem with “different historical realisations of attendance
rates” (Ng et al., 2008). Then, the maximum staffing level per worker type was used as a decision
variable. The fifth approach used a twostage stochastic LP programming and sample approximation.
Lastly, the sixth approach used robust optimisation with ellipsoidal uncertainty sets, based on BenTal
and Nemirovski (1999). This method uses the assumption that the attendance rates are enclosed in
an Ndimensional ellipsoid based on historical data. Realisations of the worstcase frontier were then
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also used in the fifth approach.
They concluded that stochastic programming (approach 5) and robust optimisation (approach 6)

offered the best results in terms of staffing costs, however the fifth approach used considerably longer
computation time.

Ho (2010) used grey models to forecast construction manpower demand using a limited amount of
data, with a time horizon of one quarter. Ho (2010) proved that a single variable, first order grey model
could still be used to predict manpower demand. He found that the optimal sample size was 5, which
resulted in a mean absolute percentage error (MAPE) of only 3.21%, which can be considered very
good. This MAPE also depended on the sample number: a higher sample number results in a lower
MAPE if the data is very random; if the data is rather smooth, a lower sample number is better. It is
thus important to vary the sample number in order to find the lowest MAPE.

In conclusion, Ho (2010) stated that more sophisticated grey models might perform even better
than the basic GM(1,1) model used in his article, for instance the remnant GM(1,1) model, the GM(1,N)
model, the GM(2,1) model or the Verhulst model. These models are explained further in Liu and Lin
(2010).

3.3. Chapter Discussion
The objective of this chapter was to list and discuss several forecasting methods that can be used in
the strategic planning phase of an airline to predict crew supply and demand.

Seven mathematical forecasting methods were identified, and their strengths and weaknesses were
discussed. For the final approach, time series, several methods were further identified: BoxJenkins,
exponential smoothing, and Markov modelling. Since it can be hard to catch seasonality or trends with
timeseries, the use of neural networks and grey models were explored. Grey models are known to
be bad at detecting seasonality, but this was overcome by deseasonalising the data first (Tseng et al.,
2001).

Means to evaluate a model’s goodness of fit were also identified: Nagelkerke’s 𝑅2 (Boot et al.,
2017), mean squared error, mean absolute error and mean absolute percentage error (Tseng et al.,
2001; Ho, 2010).

Three methods that are currently used by airlines to predict crew demand were identified: using the
longterm fleet plan, using the flight schedule and preliminary crew pairings, or using the expected
crew utilisation in combination with expected blockhours. No articles have been found that compare
the effectiveness of these methods.

On the other hand, some articles were found that developed models to predict crew supply, and
more specifically crew absence and reserve crew. This can be done by using supervised learning to
find a relation between the flight schedule and reserve crew usage (HomaieShandizi et al., 2016), or
by finding correlations between crew absence and operational factors (Van Drongelen et al., 2014) or
sociodemographic factors (Boot et al., 2017). Another method to deal with the uncertainty is to in
troduce absence probabilities when making a crew plan. These absence probabilities are taken from
historical data and could be calculated per position or even per crew member (Bayliss et al., 2012,
2019).

Other industries naturally also deal with employee absence. Out of six approaches, Ng et al. (2008)
concluded that robust optimisation with ellipsoidal uncertainty sets was the best method to find optimal
staffing levels before the attendance rate is known. Besides this, also a stochastic decision model (Cai
et al., 2004) or grey models (Ho, 2010) could be used to deal with uncertain demand.





4
Solution Methods for the Manpower

Planning Problem

This chapter will give an overview of possible solution methods for the strategic manpower planning
problem. In general, most models described in this literature review were either solved by using a
commercial LP solver or a heuristic method. Commercial LP solvers offer a classic and exact approach
to find the solution to an optimisation problem, but usually have high computation times, especially for
large problems such as the manpower planning problem. To deal with these high computation times, it
is most common in research to either make adjustments to the exact solution method (such as branch
and bound methods to reduce the solution space) or to use a heuristic method to find satisfactory (but
suboptimal) results. These methods can also be combined with simulations, and recently machine
learning as well. All of these possible methods are explained in detail in sections 4.1, 4.2, 4.3 and 4.4
respectively.

4.1. Exact Methods
The easiest way to solve an optimisation problem formulated as a (mixedinteger) linear programming
problem, is to programme the model into a commercial solver and let it find the optimal solution.
Trivedi (1981) programmed his mixed integer goal programming model on nurse budgeting into a com
puter which solved it in about 60 seconds. The model was rather simple and assumed a constant nurse
demand throughout the year, and this might explain the low computation time.

De la Torre et al. (2016) used the commercial optimisation software CPLEX Optimizer to solve their
model to optimise the longterm academic staff size, with a planning period of eight years. Since the
most complex scenario took so long to solve, they had to impose a maximum computing time of 10,000
seconds. In this case, the gap to the optimal solution was approximately 2%, which was considered
very good given the time horizon of the planning.

Ganguly et al. (2014) also used CPLEX to solve their staff planning model for a medical emergency
department. Optimal schedules were found within one second, although the model was heavily simpli
fied in that case. When they allowed for different care providers to work as a team, the computation time
increased to over five hours with an optimality gap of 3%. They concluded that it would be better to use
techniques such as branch and price or column generation to decrease computation times in the future.

Although CPLEX now uses branch and cut by default when solving MIP problems (IBM, 2020), Júdice
et al. (2005) specifically states the branch and cut version of the MIP solver in CPLEX was selected for
the shift scheduling problem for a mail processing centre. The branch and cut method is a combina
tion of two common solution methods: branch and bound, and cutting planes. It was designed in the
1980s to deal with growing problem sizes (more than 100 variables). Nowadays, the branch and cut
method is suited to solve problems with many thousand variables (under some conditions) (Hillier and
Lieberman, 2015). Although this method reduces computation time, Júdice et al. (2005) did not find an
optimal solution after 12 hours.
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Morén (2012) designed a new branch and boundmethod to solve the cockpit crew transitioning prob
lem with a planning horizon of one to four years. His new method, called implication branching, was
combined with the existing methods of reliability branching and distribution node selection. Implication
branching uses knowledge that is specific to the problem at hand and uses the constraints to estimate
how important certain variables are, and how many variables are influenced by a decision. By us
ing this method, the same objective value was reached up to five times faster than with conventional
branch and bound methods, although the solution time depended on the characteristics of the airline.
For some airline configurations used in the numerical example, computation times of 144,000 seconds
(40 hours) were still not enough to find the optimal value, although the method was still faster than
conventional methods.

Finally, the concept of column generation to solve large integer programmes (Barnhart et al., 1998)
has also proven its value in the airline manpower planning problem, especially in the scheduling phase
(Kasirzadeh et al., 2015). Column generation only considers a feasible subset of variables in the be
ginning, and then only columns (variables) are added if they improve the objective function. Column
generation was, among others, used by Gamache et al. (1999) to solve a large airline’s rostering prob
lem. In their case, computation times were reduced by a factor of a thousand.

4.2. Heuristic Methods
As Morén (2012) illustrated, the computation times to solve a realistic airline manpower planning prob
lem using exact methods are extremely high. His model only included cockpit crew transitions, hence
solving an even larger problem (by for instance including cabin crew, or extending the time horizon) bor
ders on the impossible. For this reason, researchers often resort to heuristic methods. These provide
suboptimal, but acceptable results against lower computation time. Several methods and algorithms
exist, as will be shown below.

One of the heuristic methods to solve largescale integer problems is the use of genetic algorithms
(GA). Genetic algorithms are based on Darwin’s evolution theory and generally consist of five key
concepts to mimic the process of natural selection: a population, a fitness function, selection, crossover
and mutation. The fittest solution will be selected for reproduction and this way, after many generations,
the optimal solution is found (Sivanandam and Deepa, 2008; Mallawaarachchi, 2017).

Cai and Li (2000) designed their own genetic algorithm to solve the scheduling problem of staff with
mixed skills under multiple criteria. The goal was to integrate this model into an integrated scheduling
system. Their proposed algorithm used a multipoint crossover, a parent selection based on the three
objectives of the model, and an extra heuristic to solve infeasible crossovers. They concluded that
the algorithm was only successful if the set of feasible schedules were identified before the GA was
applied. This is because the algorithm is slowed down considerably if the problem at hand is large.

Škraba et al. (2016) also used genetic algorithms and combined it with stochastic local search to
solve their manpower model for large hierarchical organisations and to determine the optimal man
power strategy in terms of transitions, recruitment, etc. Their fitness scores were calculated by taking
the average number of transitions a person needed to reach his goal position.

Another method often used to solve large problems like these, is tabu search. This method uses
a local search procedure and starts by only accepting improved solutions at each iteration to find a
local optimum. However, the main characteristic of a tabu search is that it also accepts deteriorated
solutions to avoid getting stuck in that local optimum. It then uses a memory structure to avoid returning
to the previous solution in the next iteration. A tabu list keeps track of the forbidden moves (Hillier and
Lieberman, 2015; Hooijen, 2018).

Thalén (2010) used tabu search to solve the cockpit crew planning problem. The planning horizon
for his model was one year and he investigated both the staffing problem and the transition problem.
The ultimate objective was to provide the right amount of pilots with the right qualifications against the
lowest cost. The algorithm itself used two different neighbourhoods and best results were obtained
when the tabu search was sequentially shifting between them. This method provided the same solu
tions as a commercial MIP solver (such as CPLEX), but was no less than 30 times faster. The problem
at hand was quite large: it consisted of 1100 pilots, 13 positions and 3 bases. With a solution time
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of about 8000 seconds, a solution time that is 30 times faster makes a significant difference. The
commercial solver only outdid the tabu search method if it was run for 2.5 days.

Tabu search was also applied to the cockpit crew transition problem by Hooijen (2019) to avoid
awarding transitions between the same pilot positions constantly. These moves were added to the
tabu list and thus the algorithm was forced to look for other, and eventually better solutions. The best
transition option in the neighbourhood was then picked by a selection algorithm using a tree search,
combinedwith either a naive selection algorithm, a greedy algorithm or Dijkstra’s shortest path algorithm
to decrease search space and computation time. The model and algorithm themselves were already
explained in Section 2.1.3.

The lowest computation time was reached with the naive selection algorithm. This method however
resulted in the worst solution quality and stability. He therefore concluded that the optimal configura
tion, in terms of both computation time and solution quality, was the shortest path algorithm based on
Dijkstra’s algorithm (Dijkstra et al., 1959).

A greedy heuristic was also used by Bard (2004) to solve the break assignment problem during staff
scheduling since the problem took too long to solve using CPLEX. Different kinds of greedy algorithms
exist, but in general a greedy algorithm chooses the best option at each iteration, hence it is a fast but
shortsighted algorithm and it easily produces suboptimal solutions. Dijkstra’s algorithm, as used by
Hooijen (2019), is an optimised version of a greedy algorithm, and looks more ahead (Gendreau et al.,
2010).

In Bard (2004), a greedy heuristic was used to assign breaks to shifts. The algorithm went over the
shifts chronologically and assigned available breaks. An assigned break was then removed from the
list with available breaks. This was done until all shifts had breaks.

Horn et al. (2016) used a fixandrelax heuristic to solve their mixedinteger linear programming model
on strategic workforce planning in the army. The name fixandrelax comes from first fixing, and then
relaxing the model’s variables. Since it took too long to solve with a commercial LP solver, they inves
tigated different heuristic methods and chose to adopt the fixandrelax method, based on Escudero
and Salmeron (2005). Their heuristic method consisted of two stages: in stage 1 the goal was to meet
the staffing targets; in stage 2 the goal was to minimise operational costs.

To clarify the concept of fixandrelax, the algorithm of stage 1 will be explained. Integrality con
straints were first relaxed to obtain an initial feasible solution. Then, all variables were fixed and the
objective coefficients were set to zero. Then, per hierarchical staff position variables were relaxed
and the model was solved (with integrality but still with objective coefficients of zero). In the end, all
variables were relaxed, objective coefficients were released and the model was solved entirely.

The model, consisting of the two stages, and for an army with 41 trades, 7 ranks and a time horizon
of 17 years, was solved in approximately 8000 seconds (2.2 hours). For stage 1 only, the commercial
solver on the other hand needed more than 24 hours.

4.3. Simulation
Simulation is often used when the problem at hand is large and complex and when uncertainty is in
volved. Simulations may not have mathematical solutions and are good way to investigate systems or
problems that cannot be solved analytically. Although they are an effective way to deal with uncertain
ties and to analyse different scenarios, they are often timeconsuming to develop (Safarishahrbijari,
2018).

Verbeek (1991) made use of simulation in his strategic manpower decision support system. This
was done to deal with uncertain pilot behaviour, but it is not further explained how exactly the simulation
was set up. His model has a planning horizon of ten years and thus uncertainty plays a big role when
planning this much in advance, hence it is a pity that no more details were given.

Qi and Bard (2006) also developed a simulation model for their research to determine the optimal
staff size and composition for a postal service centre. Simulation was used to validate their results, and
to determine whether the employee schedules meet the service standards. The outline of their model
could already be seen in Figure 2.5 on page 40.

Atlason et al. (2004) used a combination of simulation and an iterative cutting plane method (an
exact method) to minimise staffing costs in a service system, while satisfying a certain service level.
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This service level was expressed by a service level function and it was assumed that this function was
so complex that the algebraic form was unknown, hence simulation was the only way to evaluate its
value. Furthermore, by combining integer programming with simulation, they only needed to simulate
a small portion of the possible solutions.

Finally, Bayliss et al. (2017) used simulation to generate disruption scenarios for an airline. The
goal of their model was to schedule reserve crew under crew absence uncertainty. To do this, they
first simulated the airline without reserve crew to create disruption scenarios, with stochastic inputs
such as flight times and crew absence. These scenarios were then used as input for the mixed integer
programming model that determined which reserve crew schedules would have a positive impact on
the simulated disruptions. The simulation could then be run again to validate these proposed reserve
crew schedules.

4.4. Machine Learning
The technique of machine learning is used to categorise algorithms that improve their performance by
experience. Machine learning is often used in cases where the algorithm itself is unknown, but the in
and output are known (e.g. distinguishing spam emails from normal ones, facial recognition, etc.). In
this case, the computer is trained to generate the algorithm itself by using lots of in and output data
(Alpaydin, 2014). Machine learning can be combined with exact methods or heuristic search methods
to improve the solution quality or lower the computation time. Although machine learning has many
applications, it is not often used for the manpower planning problem.

Thathachar and Sastry (2002) described several learning automata (LA), which are a type of ma
chine learning algorithms for finite action sets. The main characteristic of LA is that the probability
distribution over the action set is updated at each iteration and depends on the previous actions and
their results. The choice of which action to take is then based on this probability distribution. As the
algorithm learns, the actions that are taken have an increasing chance of improving the objective func
tion.

Beulen et al. (2020) used neural networks (NN) to evaluate airline crew’s flight requests. Neural
networks are a form of supervised machine learning and are based on biological neural networks in
a brain and consist of four main components: an input layer, (a) hidden layer(s), an output layer and
nodes, called neurons (Alpaydin, 2014).

In Beulen et al. (2020), the goal was to assess flight requests in a costefficient way. This was done
by assigning a score to each request based on the cost impact this request may have in a later stage.
They used two hidden layers and 100 neurons, and the algorithm was combined with a mixed integer
linear programming model to optimise the rostering. The neural network algorithm was tested on data
of a major European airline and granted 22% more requests while using nearly the same workforce
size.

No articles have been found that use machine learning for the strategic manpower planning problem
in airlines.

4.5. Chapter Discussion
The goal of this chapter was to give an overview of possible solution methods for the strategic man
power planning problem. Four major solution methodologies were identified: exact methods, heuristic
methods, simulation and machine learning.

Exact methods mostly use a commercial solver to find the optimal objective value of a linear program
ming formulation. Multiple techniques exist to decrease the solution space and reduce computation
time, such as column generation (Barnhart et al., 1998), branch and cut (Júdice et al., 2005) or branch
and bound (Morén, 2012). However, when problems start to get very big, as is the case for airlines,
computation times increase drastically, as Júdice et al. (2005) and Morén (2012) illustrated.

For this reason heuristic algorithms can be used that find suboptimal but acceptable results against a
lower computation time. Four algorithms were explained: genetic algorithms, tabu search, greedy
heuristics and fixandrelax heuristics. Cai and Li (2000) used genetic algorithms to solve a crew
scheduling problem but concluded that it would be better to identify the sets of feasible schedules
beforehand to decrease computation time. Tabu search is a popular method to solve large problems
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with promising results compared to commercial solvers. Thalén (2010) showed that acceptable results
were reached with a tabu search after only a thirtieth of the time a commercial solver needed. Next, it
was shown that simple greedy heuristics are fast but often produce far from optimal results. For this
reason, it is favourable to use a more complex greedy heuristic such as Dijkstra’s algorithm (Hooijen,
2019). Finally, Horn et al. (2016) demonstrated that by using a fixandrelax heuristic large computation
times can be reduced significantly.

Simulation can also be used to solve large and complex problems with uncertainty involved, or when
certain parameters are impossible to formulate in an algebraic way (Atlason et al., 2004). Verbeek
(1991) simulated pilot’s behaviour but gave no further details. Simulation can also be used to vali
date results (Qi and Bard, 2006). Finally, simulation can also be used to generate different disruption
scenarios and use these scenarios as an input to planning and scheduling models (Bayliss et al., 2017).

Ultimately the technique of machine learning, such as learning automata and neural networks was
explained. Although no articles were found that use machine learning for the strategic manpower
planning problem, Beulen et al. (2020) showed that it is absolutely possible to use machine learning in
the airline industry and that it is capable of significantly improving results.





5
Research Gap and Opportunity

This chapter will describe the identified research gap based on the literature review. Next, the
research opportunity will be presented in the form of a research question and several objectives.

5.1. Research Gap
The airline manpower planning problem has been called one of the most important ones in the airline
industry, and labour costs are the second biggest expense for airlines (Sohoni et al., 2004; Belobaba
et al., 2009). Yet, airlines generally start their manpower planning only one to one and a half year
in advance, and most research focuses on the operational planning phase: developing optimal, cost
minimised crew schedules. Longterm, strategic manpower planning is a mostly unexplored area,
especially forecasting crew demand and supply before the flight schedule is known.

Holm (2008) has called this crew demand forecasting the most difficult part of manpower planning.
Methods used by airlines now depart either from the flight schedule, or from the fleet plan and then
apply a crew factor, but no research has been conducted that analyses the effectiveness of different
crew demand forecasting methods. Several mathematical forecasting models have been identified,
such as timeseries models, logistic regression, grey models and artificial neural networks.

Next to this, airlines have started to focus on planning robustness, i.e. making sure that the staffing
levels can deal with disruptions or unexpected circumstances so that the impact on the operations
is minimised. The idea is that higher planned costs may result in lower actual costs. Whereas earlier
research focusedmainly on cost minimisation, it now also focuses assuring a certain level of robustness
in the planning. However, no articles were found that consider robustness already in the strategic
manpower planning phase.

Finally, most articles on manpower planning, be it in the airline industry or beyond, make use of
(MI)LP formulations and then solve it by either using a commercial solver or by using heuristic methods
if the problem size becomes too large. Machine learning techniques, such as learning automata or
neural networks, are barely used, despite having shown their value (Thathachar and Sastry, 2002;
Beulen et al., 2020).

5.2. Research Opportunity
Based on the previous section the goal of the proposed research can be formulated in a research
question:

How to model airline crew demand and determine the optimal staff size per crew position in
the strategic planning phase before the flight schedule is known, while ensuring planning

robustness?
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Research objectives:

1. Identify the contributing factors to and their effect on crew demand.
2. Analyse different crew demand forecasting methods and assumptions before the flight schedule

is known.
3. Develop a strategic manpower planning tool that provides insight into future crew demand and

the optimal staff size.
4. Explore options to measure and ensure planning robustness already in the strategic planning

phase.

The proposed research question comprises two subproblems: modelling airline crew demand already
in the strategic planning phase, before the flight schedule is known, and determining the ideal staff
size while ensuring a certain robustness level. Both parts would need an output per crew position, and
interact with each other in order to make it an integrated planning tool.

The objective of the tool would not be to determine the best strategy to close the gap between crew
demand and supply, but rather to determine the optimal crew size in terms of cost and robustness
already in the strategic planning phase before a flight schedule is known.

The first part would identify the various factors contributing to crew demand (flights, crew absence,
etc.) and would investigate different forecasting methods and their effectiveness, such as timeseries,
neural networks, but also the methods currently used in the airline.

The second part would ensure planning robustness. For this, a measure of robustness in the strate
gic planning phase needs to be decided first. Articles found on planning robustness focused on the
operational planning phase and used the chance of propagated delay as a measure of robustness.
Clearly, this metric cannot be used for robustness in the strategic phase, since the flight schedule is
not known yet, and it is all about planning robustness instead of scheduling robustness.

The goal of the integrated model would be to minimise costs but maximise robustness. These two
objectives are in conflict but this can be solved by either using bicriteria optimisation (Ehrgott and
Ryan, 2002), by converting a multiobjective model into a single objective one (De la Torre et al., 2016;
Li et al., 2007) or by assigning a robustness score to a crew size and improve it with machine learning
techniques.
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A
Results with Different Numbers of

Scenarios
This appendix presents the results of Case 1 and Case 2 with varying number of generated crew de
mand scenarios. The analysis is done for 8, 10, 12, 15, 20 and 50 generated scenarios per repetition.
The results are the average over 20 repetitions.

In Table A.1 the results for Case 1 are shown. It can be seen that the average objective value increases
with the number of scenarios. When generating more demand scenarios, the generated samples come
from more extreme points in the demand distributions. This means that with increasing number of
generated scenarios, there will be more scenarios with extreme demand values.

The model deals with these more extreme demand values in two ways. When there is much lower
demand than supply, the model cannot do much: in Case 1, no dismissals are allowed and thus the
model relies on the natural outflow to lower the total crew supply. This results in more crew than needed
and thus higher costs. On the other hand, when there is much higher demand than supply, the model
can hire temporary and permanent crew members. This also results in higher costs.

Table A.1: Results for Case 1 for different numbers of scenarios.

Scenarios (𝑘) Repetitions Objective value [MU]

Min Max Avg Δ(min,max) [%]

8 20 56445 56714 56572 0.48

10 20 56483 56804 56622 0.57

12 20 56563 56824 56674 0.46

15 20 56605 56857 56717 0.44

20 20 56683 57026 56793 0.60

50 20 56871 57201 57005 0.58

The same happens for Case 2, as can be seen in Table A.2. Here too, the objective value increases with
an increasing number of generated scenarios. In Case 2, the model has the option to fire permanent
crew members. Hence, when the crew demand is much lower than the supply, the model will choose
to fire employees. However, this comes with a high cost. This means that again, both more extreme
high and low demand scenarios result in higher costs.
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Table A.2: Results for Case 2 for different numbers of scenarios.

Scenarios (𝑘) Repetitions Objective value [MU]

Min Max Avg Δ(min,max) [%]

8 20 53682 54149 53940 0.87

10 20 53828 54253 54067 0.78

12 20 54039 54515 54268 0.88

15 20 54147 54616 54390 0.86

20 20 54317 54690 54522 0.68

50 20 54791 55197 55053 0.74



B
Descriptive Sampling

Themethodology used in this report adopts the principle of Latin hypercube sampling (LHS) to generate
correlated crew demand scenarios. However, if the variables that need to be sampled are not correlated
and independent, LHS is not needed. In this case, scenarios can be generated using the method of
descriptive sampling, as used in Listes and Dekker (2005). This method divides the distribution in
equal quantiles to generate scenarios. The different steps are explained below and are illustrated with
examples obtained with the same data as used in our research.

1. Start with the monthly block hour demand distributions. These distributions are the convoluted
daily Beta block hour distributions as presented in the report. They can be approximated by a
normal distribution, i.e. 𝑑𝑖 ∼ 𝑁(𝜇𝑖 , 𝜎𝑖) with probability distribution function 𝐹𝑖. This can be seen in
Figure B.1a.

(a) Convoluted, normal block hour distribution. (b) Convoluted, normal block hour distribution divided in evenly
spaced quantiles.

Figure B.1: Example of descriptive sampling.

2. Specify the number of scenarios (or samples) 𝐾 that need to be generated. These scenarios 𝑑𝑖𝑗
will be sampled from distribution 𝑖 at equally spaced quantiles according to:

𝑑𝑖𝑗 = 𝐹−1𝑖 (𝑗 − 0.5𝐾 ) 𝑗 = 1, 2, ..., 𝐾 (B.1)

Dividing the distribution into equally spaced quantiles makes sure the sampling occurs in a fair
way. At lower densities, fewer demand values are sampled than at higher densities.
This step is illustrated in Figure B.1b with 𝐾 = 10. Here it can be seen that the quantiles are
closer together at higher densities. The sample values are taken where the dashed quantile lines
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intersect the normal distribution. This results in a vector with the following 10 values: [1410, 1455,
1482, 1504, 1523, 1541, 1560, 1582, 1609, 1654]. Repeating this step for all 𝑁 monthly block
hour distributions hence results in 𝑁 vectors.

3. Make a random permutation of the values 𝑑𝑖𝑗, 𝑗 = 1, 2, ..., 𝐾, for each 𝑖 = 1, 2, ..., 𝑁 with 𝑁 the
number of distributions. This will result in 𝐾 vectors (i.e. scenarios) of the form [𝑑1,𝑗 , 𝑑2,𝑗 , ..., 𝑑𝑁,𝑗]
with 𝑗 = 1, 2, ..., 𝐾. Each scenario has the same probability 1/𝐾.

To illustrate this, we can take the vector from Step 2 and assume another vector with sample
values from another distribution, shown in Figure B.2. Then we have:
Vector 1: [1410, 1455, 1482, 1504, 1523, 1541, 1560, 1582, 1609, 1654]
Vector 2: [1210, 1272, 1309, 1338, 1365, 1390, 1417, 1446, 1483, 1545]
Making a random permutation would then, for instance, result in the scenarios presented in Ta
ble B.1. Each scenario in the table has a probability of 0.1.

Figure B.2: Distribution used to generate samples for vector 2.

Table B.1: Example of random permutation of two distributions with 10 scenarios.

Scenario 𝑑1 𝑑2
1 1504 1365

2 1523 1272

3 1582 1446

4 1410 1309

5 1609 1338

6 1482 1390

7 1541 1417

8 1560 1545

9 1654 1210

10 1455 1483



C
Implementation in Python

This appendix will explain how the convolution of the daily distributions and the Latin hypercube sam
pling method were implemented in Python.

C.1. Convolution of the Daily Distributions
The daily block hour distributions, who follow a Beta distribution, need to be convoluted to come to a
monthly distribution. With 𝑛 being the number of days in the respective month, the Beta distribution
needs to be convoluted 𝑛 times. This was implemented in Python using the following steps:

1. Discretize the Beta distribution’s probability density function (pdf) into a probability mass function
(pmf). For this the pdf and pmf functions from the scipy.stats library are used1.

2. Create an array of size 𝑛×𝑚 with 𝑛 the number of days in the respective month and𝑚 the number
of discretization points.

3. Compute the onedimensional discrete Fourier transform of the array. For this, the function
fft.fft from the Numpy library is used2. This function uses the Fast Fourier Transform al
gorithm. This results again in an array of size 𝑛 ×𝑚

4. For each column in the resulting array, take the product of all elements. For this, the function
prod from the builtin math module is used. This results in a onedimensional array of length 𝑚.

5. Compute the onedimensional inverse discrete Fourier transform of the resulting array. For this,
the function fft.ifft from the Numpy library is used. This again results in a onedimensional
array of length 𝑚.

6. Access the real part of the output by using the .real command. These values form the pmf of
the convoluted distribution.

C.2. Latin Hypercube Sampling
The Latin hypercube sampling (LHS) method was already described in the report. These steps are
repeated here and for every step it is explained how it is implemented in Python.

1. Create a random (𝑘 × 𝑛) matrix Z∗, with 𝑘 the number of scenarios and 𝑛 the number of crew
positions. This matrix contains 𝑘 Latin hypercube samples of size 𝑛 from a standardised nor
mal distribution. For this, the function lhs from the PyDOE2 package3 is used with the center
criterion activated.

1https://scipy.org/
2https://numpy.org/
3https://pypi.org/project/pyDOE2/
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The correlation matrix I∗ of the samples and the identity matrix I do not coincide, hence they are
not independent. To induce the desired correlation, the the (𝑘 × 𝑛) matrix Z is created by using
lower triangular Cholesky decomposition (Golub and Van Loan, 1996):

I = C ⋅ CT (C.1)

I∗ = E ⋅ ET (C.2)

Z = Z∗ ⋅ C ⋅ E−1 (C.3)

Z contains 𝑘 independent samples of size 𝑛 from a standardised normal distribution.
The Cholesky decomposition is implemented in Python by using the cholesky function from
Numpy’s linalg library. The correlation matrix I∗ is obtained with the builtin corr function.
The standardised normal distribution is obtained with Scipy’s norm.ppf function.

2. Create a random (𝑘 × 𝑛) matrix G. This matrix contains 𝑘 samples from a standardised normal
distribution with the previously obtained correlation matrix B containing the correlation between
crew positions. In other words, B contains the desired correlation. By applying lower triangular
Cholesky decomposition, this desired correlation is induced in Z:

B = P ⋅ PT ⋅G = Z ⋅ P ⋅ C−1 (C.4)

In Python, the Cholesky decomposition is again done with Numpy’s cholesky function. Trans
posing and multiplying matrices can be done with Numpy’s transpose and dot functions.

3. Apply the inverse transformation method to G to create (𝑘 × 𝑛) matrix D. The matrix D complies
with the desired marginal distributions at each crew position. The inverse transformation method
states that applying the inverse cumulative distribution function of any distribution 𝐹 to a random
variable with 𝑈(0, 1) distribution results in a random variable whose distribution is exactly 𝐹 (Ross,
2014). In this case, 𝐹 is always a normal distribution, since we know that the monthly block hours
are normally distributed. The correlation matrix of the generated samples is now equal to the
desired correlation matrix B.
For this step, the function cdf from the scipy.stats library was used.
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