DELFT UNIVERSITY OF TECHNOLOGY

MASTER THESIS

Sparse Gaussian Processes in the
Longstaff-Schwartz algorithm

Author: Supervisor:
Frederiek WESEL Dr. Pasquale CIRILLO
Committee:

Dr. Pasquale CIRILLO
Prof. Dr. Ir. C. W. OOSTERLEE
Dr. Peter DEN ISEGER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

November 19, 2019

]
TUDelft

https://www.tudelft.nl

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
EEMCS

Master of Science

Sparse Gaussian Processes in the Longstaff-Schwartz algorithm

by Frederiek WESEL

In financial applications it is often necessary to determine conditional expectations in Monte
Carlo type of simulations. The industry standard at the moment relies on linear regression,
which is characterised by the inconvenient problem of having to choose the type and number
of basis functions used to build the model, task which is made harder by the frequent impos-
sibility to use an alternative numerical method to evaluate the "ground truth". In this thesis
Gaussian Process Regression is investigated as potential substitute for linear regression, as
it is a flexible Bayesian non-parametric regression model, which requires little tuning to be
used. Its downfall is the computational complexity related to its "training" phase, namely
O (N®) operations, requiring the use of algorithmic approximations. The most prominent
approximations are reviewed and tested in different scenarios requiring the approximation
of conditional expectation by regression, among which the Longstaff-Schwartz algorithm
for the pricing of Bermudan options. This thesis was carried out in cooperation with ABN-
AMRO bank.

HTTPS://WWW.TUDELFT.NL
https://www.tudelft.nl/en/eemcs/

Acknowledgements

I would like first of all to thank my supervisor from the TU-Delft side Dr. Pasquale Cirillo for his
availability, support, excellent feedback and mentorship, as well as Dr. Peter den Iseger from the
ABN-AMRO side, for the many useful discussions, tips and overall practical and theoretical related
questions related to the subject of this thesis: I hope this work may somehow result in some interesting
applications.

Besides them, I would like to thank Prof. Dr. Ir. Kees Oosterlee for generously offering his time,
support, guidance and good will throughout the preparation and review of this document.

Special thanks goes to my former colleague Sebastiaan Jong for the technical support and help
when dealing with the ABN-AMRO (Azure) environment.

Gratitude go as well to my colleague Klest Dedja for the very interesting and frequent discussions
regarding our theseses.

T'would like of course to thank ABN-AMRO for the opportunity offered me by means of this thesis
project.

Last but certainly not least, thanks to my family and friends, for the support and the good times

we had together in these last months.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 The Longstaff-Schwartz algorithm
1.2 Gaussian Process Regression
1.3 Outlineofthethesis.

Introduction to Gaussian processes

21 Kernels
Positive definite kernels L Lo L o oo
The reproducing kernelmap L L.,
Reproducing kernel Hilbertspaces
Mercel kernelmap

2.2 Machine learning basics Lo oL Lo oL
The statistical learning framework
Loss function and empirical risk minimization
Regularization

2.3 Gaussian Processes and Gaussian Process Regression
Regularized empirical risk minimization view
Function-space view L L o
Weight-space view
Modelchoice.
Consistency e

24 Commonlyusedkernels

Gaussian Process Regression for large sets of data
3.1 Localapproximations.
3.2 Global approximations L o
Subset-of-data L.
Maximum entropy sampling
Maximum mutual information sampling
Sparsekernels
Sparse approximations Lo L
Prior approximations Lo L
Subset of regressors oL
Deterministic training conditional
Fully independent training conditional
Posterior approximations 0L
Variational freeenergy L L L.
Choice of inducing points and model selection
Structured sparse approximations L.
Toeplitz methods (exact)
Kronecker methods (exact)
Structured kernel interpolation

viii

Longstaff-Schwartz algorithm and Option evaluation 37

41 Options e 37

Europeanoptions L 38

Americanoptions L e 39

Bermudanoptions 40

42 Monte Carlomethods L L o 40

4.3 Longstaff-Schwartz algorithm 41

Convergence 44

Basisfunctions L L 45

Improvements 45

Numerical results 47

51 Sincfunction 47

Subset-of-data 50

Sparse approximations Lo 51

Structured sparse approximations L L L L 53

52 Continuation value - BermudanPut 54

5.3 Continuation value - Geometric Bermudan Basket Put 60

54 BermudanPutpricing o oo oo 63

Conclusion and Outlook 67

6.1 Summary 67

6.2 Conclusion L 69

6.3 Furtherresearch L o 69

Mathematical appendix 71

Al Gaussianidentities L L L o 71

Conditional multivariate normal density 71

A2 Matrixidentities 71

Woodbury matrixidentity o o oo 71

Sylvester determinant theorem 71

Block Cholesky decomposition 71

A3 Black-Scholes 72

Black-Scholes formula for the pricing of an European Call option 72

Black-Scholes formula for the pricing of an European Put option 72
Black-Scholes formula for the pricing of an European Geometric Basket Call

option e 72
Black-Scholes formula for the pricing of an European Geometric Basket Put

option e 73

Numerical appendix 75

B.1 Numericalresults 75

Sincfunction 75

GP o 75

SOR/DTC . . o oo 76

FITC . .o 78

VEE . . o 80

SKI . . 82

ME . . e 84

MMI .. 86

RU . 88

Continuation Value - BermudanPut 89

VEE . . o 89

SKI . . 94

Linear regression 97

Continuation Value - Geometric Bermudan Basket Put. 100

VEE . . o 100

SKI . . 101

Option Pricing - Bermudan Put

Bibliography

ix

Chapter 1

Introduction

Machine Learning algorithms, which are algorithms that build a mathematical model based
on data in order to make predictions or decisions [27], constitute a rapidly growing research
field, which is however certainly not new. Most methods originate somewhere in the begin-
ning of the second half of the last century (at the moment of writing '), and where probably
not conceived to be used on the scale in which they are now. "Old" methods such as Support
Vector Machines, Gaussian Process Regression with other kernel methods have become fea-
sible in the last twenty years due to the rise in computational efficiency gifted us by Moore’s
Law, the larger quantity of data being generated and stored, and due to the poor explain-
ability of Neural Networks.

These statistical learning techniques are seeing more applications in different types of
fields, fields which have different needs, requirements and possibly regulations, which have
in the past been dominated by simpler parametric models. One of such field is the financial
one. It has different players, such as banks, which can be described as rather conservative
and regulated entities. The use of Machine Learning algorithms within banks is in fact often
heavily restricted by internal and external directives, which advocate the use of explainable,
robust models. A good example of external regulation is given by the European Union
directives regarding guidelines for trustworthy Artificial Intelligence (superset of Machine
Learning) [64], which allow customers to demand knowledge and explanation regarding
how (automatic) decisions regarding them are taken.

In this scenario, the field of finance has seen relative little application of Machine Learn-
ing techniques, leaving many possibilities for their use open to explainable and robust meth-
ods. In this work, the use of one such algorithm is investigated for application in the field of
option pricing, but not exclusively, as many encountered problems can be considered rather
common. Here below a short introduction regarding the application and the algorithm are
given, as well as an outline of the rest of this work.

1.1 The Longstaff-Schwartz algorithm

In financial applications it is often necessary to approximate conditional expectations by
means of data, for instance in order to compute relevant risk management indicator vari-
ables or price complex options. This can happen both in case when the data is collected, e.g.
historical transaction data, or in Monte Carlo type of algorithms. Perhaps the case which
exemplifies best the latter class is given by the Longstaff-Schwartz method (LSM), a back-
wards dynamic programming algorithm which is used as industry standard for the pricing
of Bermudan (and American) options.

Its strength, compared to more traditional methods based on finite differences, is its ap-
plicability to path-dependent and highly dimensional options: in case of the former it is in
fact hard to derive the associated deterministic numerical problem, while in the latter, the
amount of memory and operations required by any finite difference methods scales expo-
nentially with the dimensionality of the problem, as one incurs in the so called "curse of
dimensionality". The Longstaff-Schwartz algorithm partially sidesteps these issues by re-
sorting to stochastic simulation, i.e. the Monte Carlo approach: the crux of this particular

! There is in fact the possibility that this thesis might be in fact discovered by some alien form of life (or worse
rediscovered by humans) in the future, so I advise you to keep the physical (and virtual) copy of this work in a very
good nuclear and termite proof shelter

2 Chapter 1. Introduction

method is the determination of the so called continuation value, which is nothing but, given
current knowledge, the estimate of the exercise value of the option at the a future time, i.e.
the conditional expectation. In current practice, the continuation value is estimated by lin-
ear regression, just as the inventors Longstaff and Schwartz did in the seminal paper of the
method which bears their names [12].

One of the biggest problems related to this approach is the construction of the linear
model, namely the choice of type and number of basis functions, the selection of paths on
which to regress, and the choice of covariates, which are all issues related to parametric mod-
els. It is in fact particularly hard to engineer meaningful and informative variables to use as
regressors since by definition all of the simulated variables are related to the continuation
value, however some are more than others.

Furthermore, while for simple options it is possible to determine the option price by solv-
ing numerically the associated numerical problem, and to thus tune the linear model in the
Longstaff-Schwartz algorithm by minimizing some kind of error metric, it often not possi-
ble to do so for complex options, since as we said, the amount of operations and memory
required to determine the exact numerical solution increases exponentially as a function of
the option underlyings and model parameters.

Another disadvantage regarding the use of parametric models in the Longstaff-Schwartz
algorithm is the fact that the regression problem changes, more or less, at every iteration
depending on the stochastic model used in the simulation, the type of option, and the option
parameters. One would therefore expect better performance when it comes to option pricing
by a more flexible method, not limited by some preselected functional form.

All these practical issues demand a different approach to the current parametric one:
in order address these problems and greatly simplify this model selection task, this work
aims to investigate the effects of approximating the conditional expectation in the Longstaff-
Schwartz algorithm by performing the regression by means of a non-parametric regression
model, not limited by a predetermined functional form. An excellent candidate is Gaussian
Process Regression.

1.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is an explainable Bayesian non-parametric regression
technique, which as the name suggests, models the data as noisy realizations of some un-
derlying process which follows a Gaussian distribution. It is considered explainable as the
relations between the response variables are clear, as they are assumed to follow a certain
distribution, that is in practice characterized (in most cases) only by the prior covariance,
which is modelled using a covariance function, known also as kernel function. It can be
seen as a Bayesian method, since inference is carried out by using the mean and variance
of some posterior distribution. It is finally non-parametric since one is modelling an un-
derlying function everywhere, not just on the available noisy realizations, allowing model
complexity to grow as function of the data.

GPR has a long history in geostatistics, therein known as "Kriging", where the regression
problem is naturally described on spatial coordinates. Application to more general "Machine
Learning" areas are more recent, and made possible due to the steady grow in computational
power and general larger availability of data, as well as thanks to the important works of a
handful of researchers, in particular by [9], [20], [21] and [31], which have made this ap-
proach well known to a broader public. In particular GPR caught the interest of many in the
nineties, e.g. because of its astounding connection to neural networks [40], which were at
the time catching interest again. Applications to the financial field are way more recent and
rare, see for instance [53] and [58].

In general unfortunately, GPR has been always used on relatively small sets of data due
to its main drawback, which is the computational complexity associated with "training" the
model. The computational complexity related to "training" does in fact amount traditionally
to O (N?), N being the number of data points in the training set. This limitation becomes
nowadays burdening for N > 10° [61], also because before the actual "training" can take
place, it is common procedure to tune the model hyperparameters, usually by empirical
Bayes, requiring again O (N?) operations per optimization step. While this procedure marks

1.3. Outline of the thesis 3

the depart from the pure Bayesian formalism, it allows easy model selection [31], while still
retaining the flexibility of modelling with Gaussian Processes.

In order to cope with these computational disadvantages, sparse approximations to the
full Gaussian Process Regression models have been developed since the very beginning.
In general these approximations are based on a selection of a set of informative support
points, which are able to best describe the entire set of data. More specifically, depending
on the considered method the support points can be actual points out of the dataset, or
as we will see, interpolation points of the kernel function. These approximations coupled
with different techniques to solve the predictive equations allow nowadays the use of this
powerful regression technique in a plethora of conditions. In this thesis, the various existing
(state-of-the-art) approximations are therefore investigated in light of their application to the
Longstaff-Schwartz algorithm, and as a consequence to other (financial) scenarios.

1.3 Outline of the thesis

In order to overcome the current limitations of the Longstaff-Schwartz algorithm, Gaussian
Process Regression and its approximations need to be tested in plausible scenarios in which
an analytical or numerical "ground truth" solution is available.

Before doing this, this work sheds light on the functioning of Gaussian Process Regres-
sion in Chapter 2, by presenting different derivations of its predictive equations which carry
different underlying ideas. This is done by presenting a brief overview of kernels (Section
2.1), machine learning basics (Section 2.2, Gaussian Processes and finally Gaussian Process
Regression (Section 2.3), coupled with an overview of the most used kernels (Section 2.4.

Next, different relevant (state-of-the-art) sparse approximations are reviewed and dis-
cussed in Chapter 3, keeping in mind the application within the Longstaff-Schwartz algo-
rithm.

After offering a concise review in Chapter 4 for the not familiar reader of the fundamental
concepts behind option pricing (Section 4.1) and the Monte Carlo methods (Section 4.2), the
Longstaff-Schwartz algorithm is presented, its disadvantages compared to different pricing
approaches are reviewed, and previous work regarding the application of Gaussian Process
Regression to the Longstaff-Schwartz algorithm is presented (Section 4.3).

To verify in practice the performance when applied to the Longstaff-Schwartz algorithm,
in Chapter 5 the examined methods and approximations are then tested on a variety of sets
of data related or not to the problem of the estimation of the continuation value (Sections 5.1,
5.2,5.3). At last, the various methods are then applied to the Longstaff-Schwartz algorithm
for the pricing of actual Bermudan options, and their performance is compared to the one of
the traditional, linear regression based, Longstaff-Schwartz method (Section 5.4).

Chapter 2

Introduction to Gaussian processes

The Gaussian Process (GP) is a simple class of probability distribution over functions. In
this setting, GPs have been studied for quite a while, but they have been used for predictive
purposes only since quite recently.

Making predictions regarding a continuum quantity (regression) using Gaussian Pro-
cesses is known as Gaussian Process Regression (GPR), sometimes referred to as Kriging
or Wiener-Kolmogorov prediction. GPR is a non-parametric Bayesian Machine Learning
algorithm [20], which originated in the field of geology based on the work of Krige and
Matheron [3], where the process is naturally defined on spatial coordinates. As stated in
the Introduction, application to more general "Machine Learning" areas are more recent, and
made possible due to the steady grow in computational power and general larger availabil-
ity of data, as well as thanks to the important works of a handful of researchers, in particular
by [9], [20], [21] and [31], which have made this approach well known to a broader public.
Applications to the financial field are way more recent, see for instance [53] and [58]. The
basic assumption behind regression is that the given realizations of the test variable are an
instance of a Gaussian Process. Combined with a noise model, it is possible to determine an
analytical predictive distribution.

To better understand what Gaussian Process Regression is, some concepts need to be in-
troduced. At first, we will examine kernels following the approach in [15]: as we will see
their choice greatly determines the type of predictive distribution in the GP setting. Some
important results such as Mercer’s theorem are needed to better explain low-rank approxi-
mation of the full GP, which will be examined in the next chapter. Furthermore we will touch
on some machine learning basics, in particular the empirical risk minimization framework
and regularization. Finally Gaussian Process Regression will be discussed.

2.1 Kernels

A kernel function is a real function of two arguments, k(x, x!). Typically the function is
symmetric (i.e. k(x,x") = k(x’,x)), and non-negative (i.e. k(x,x’) < 0) and can thus be
interpreted as a similarity measure, but that does not have to be the case necessarily.

Positive definite kernels

Definition 2.1.1 (Gram matrix). Given a function k : X 2 5, K, where K = CorK = R,
X = {xq,..., x,} and points x1, ..., x, € X, the matrix defined as:

k(xy,xn) - k(x1,xn)
K= : , @.1)
k(xn,x1) -+ k(xn,xN)

is called the Gram matrix or kernel matrix of k with respect to x1, ...x;.

Definition 2.1.2 (Positive (semi)-definite matrix). A complex n X n matrix K satisfying:

Y ciciK;j >0, 2.2)
ij

6 Chapter 2. Introduction to Gaussian processes

for all ¢; € C is called positive semi-definite. Similarly, a real symmetric n X n matrix is
called positive definite if it satisfies Equation 2.2.

Definition 2.1.3 (Positive (semi-)definite kernel). Let & be a nonempty set. A function k on
X x X whichforalln € INand all xy, ..., x, € X gives rise to a positive definite Gram matrix
is called a positive (semi-)definite kernel.

Definition 2.1.3 and positive semi-definite matrices differ as a positive semi-definite ker-
nel will induce a positive semi-definite matrix for any choice of points. Positive semi-
definitness 2.1.2 implies directly non-negativity on the diagonal:

k(x,x)>0Vxe X, (2.3)

and symmetry:

k(x,x") =k (x'x). (2.4)
Another important property which holds for inner products and kernels is the Cauchy-
Schwarz inequality:

Proposition 2.1.1 (Cauchy-Schwarz inequality for kernels). If k is a positive definite kernel
and x1, xy € X then:)
[k (21, x2)[7 < k (x1,x1) k (22, x2) - (2.5)

Remark 2.1.1 (Notation). The brackets in the Definition 2.1.3 indicate that formally the ker-
nel should be called positive semi-definite, however in practice that "semi" is dropped. To
avoid confusion we shall simply refer to positive semi-definite kernels as kernels.

Kernels can be regarded as a generalization of dot products, in the sense that they can be
defined, as we will see, as the dot product of points transformed into feature space. Some
properties such as linearity do however not hold. To arrive at this important result, we
introduce the concept of feature map.

The reproducing kernel map

Definition 2.1.4 (Feature map). Assume that k is a real-valued positive definite kernel, and
X anonempty set. We define a feature map from X into the space of function mapping X
into R denoted as R* := {f : ¥ — R} via:

O:X - RY;, x—k(,x). (2.6)

Here ® (x) denotes the function that assigns the value k(x’,x) to x’. Using a feature
map we have thus turned each data point into a function on its domain X', which can be
interpreted as a similarity function to all the points in X'. As we will see it is possible to define
a feature space associated with feature map & by turning the image of ® into a inner product
space (also known as pre-Hilbert space) and finally showing that k (x,x") = (® (x),® (X’)).

Definition 2.1.5 (Inner product space). An inner product space is a vector space H over a
field of scalars K where K = C or K = R endowed with an inner product (-, -) which sat-
isfies the following properties (symmetric bilinear form) for all the vectors x, y, z and scalars
x € K:

1. Conjugate symmetry:

(oy) =y, x). 2.7)

2. Linearity in the first arqument:
{ax,y) = a(x,y), (2.8)
(x+y2) = (xz) +(y,2). (2.9)

3. Positive-definiteness:
(x,x) >0 <<= xeH\{0}. (2.10)

2.1. Kernels 7

We begin by constructing a dot product space containing the images of the input data
under ®. To this end we first need to define a vector space, by taking a linear combination
of the form:

n
f) =) ak(,x), 2.11)
i=1
where n € IN and x4, ..., x,;, € X. Next we define another function
Z /
g() =Y Bk (-x]), (2.12)
j=1
where n € N and x4, ..., x4, € &, and a mapping between them as:
n n
f.g)=3 Y w;Bik (xi, x;) , (2.13)
i=1j=1
which is well defined as: ;
(f.8) =) Bif (x§) , (2.14)
=1
using k (x;, xi) =k (xi, x}) Similarly:
n
(f.8) =) wig(xi). (2.15)
i=1

Hence the mapping is bilinear, and also symmetric, as (f,g) = (g, f). Moreover by Defini-
tion 2.1.2 it is also positive-definite, i.e.:

(f.f) = i wiejk (x;,x;) >0 (2.16)

ij=1

Hence (-, -) is itself a positive definite kernel. Note in fact that given functions f, ..., f, and
coefficients 1, ...7, € R, we have:

n n n
Y. v (fifi) = <2 Yifi Z')’jfj> >0, (2.17)
ij=1 i=1 j=1

where the equality follows from the bilinearity of (-,-), and the inequality from equation
2.16. Hence we have that (-, -) is itself a symmetric-positive-definite kernel, defined on the
function space. We have also shown it is bilinear, hence it were positive-definite it would be
an inner product space, or pre-Hilbert space.

Note that by Equations 2.11 and 2.13:

(k(x), k(- x")) = f(x). (2.18)
k is here the representer of evaluation. By Equation 2.23 and Proposition 2.1.1 it follows that
F P =18k (), AP <k (x,x) (£ f) (219)

Hence (f, f) = 0 directly implies f = 0, which shows that (-, -) is positive definite and thus
defines an inner product space. Furthermore from Equation 2.23 we have:

(k(-,x), k(- x")) =k (x,x'). (2.20)

By these properties, positive-definite kernels k are also called reproducing kernels. In con-
clusion, the above has shown that any positive definite kernel can be seen as a dot product
in another space, s.t.:

(®(x), @ (x)) =k (x,x). (2.21)

8 Chapter 2. Introduction to Gaussian processes

Hence the inner product space H constructed is one possible instance of the feature space
associated with a kernel.

So far we have seen that a feature map can be constructed from a kernel. Also the op-
posite can be done: when we have a mapping ® from X" into an inner product space H, we
obtain a positive definite kernel by k (x,x") = (® (x),® (x’)). This can be seen as we have
forallc; e R,x; € X,i=1,..,n
2

> 0. (2.22)

i:k (xi,xj) = <iciq> (xi),i‘{ch) (x]-)> -
i,j 1= =

This allows us to give an equivalent definition of kernel as a function with the property that
there exists a map @ into a dot product space such that k (x,x") = (P (x), P (x')) holds. It
also allows construction of kernels from feature maps.

i ¢i® (x;)
i1

Reproducing kernel Hilbert spaces

In the last subsection, a description on how to define a space of functions which is a valid
realization of the feature space associated with a given kernel was provided. The space is
a vector space, and is endowed with a dot product. Such space is known more generally
as pre-Hilbert space, as it can be turned into a Hilbert space by showing that it is complete.
In case of our pre-Hilbert space of functions (Equation 2.11) endowed with inner product
(Equation2.13), it can be completed by adding the elements to which every Cauchy sequence
converges with respect to the norm corresponding to the dot product, i.e. ||f||| = /(f, f)-
A thus constructed space is usually called by properties 2.23 and 2.24 a reproducing kernel
Hilbert space, and is defined as follows:

Definition 2.1.6. Let A be a non-empty set (also called the index set) and # be a Hilbert
space of functions f : X — IR. Then H is called a reproducing kernel Hilbert space endowed

with the dot product (-, -) (and the norm ||f||| = \/(f, f)) if there exists a function k : X" X
X — R with the following properties:

1. k has the reproducing property
(kC,x) k(- 2) = (), (2.23)

in particular:

{(k(-,x),k(-,x")) =k (x,x). (2.24)

2. kspans H,i.e. H = span {k(x,-) |x € X'} where X denotes the completion of set X.

The symmetry of k follows directly from Equation 2.24, as well as its positive-definiteness
as H is a Hilbert space. k is furthermore unique: suppose the existence of two kernels k
and k' spanning the same reproducing kernel Hilbert space. Using the symmetry and the
representation properties (Equation 2.23) and (Equation 2.24) we have that:

(k(-,x),K (- x)) =k (x,x") =k (x,x") =k (¥, x) (2.25)

where the second equality uses the symmetry of the dot product. Symmetry of k yields
k(x,x') =k (x,x).

Mercel kernel map

We have seen how any positive-definite kernel admits a dot product representation in a
linear space. This was done by explicitly constructing an appropriate Hilbert space. We will
now consider another Hilbert space, constructed using Mercer’s theorem. Herein the feature
map P leads to a different target space, however the distinction is not really important, as
we are interested in the existence of some Hilbert space in which the kernel corresponds to
the dot product.

2.2. Machine learning basics 9

Theorem 2.1.1 (Mercer’s theorem [1]). Let (X,) be a finite measure space, and let k €
Lo (X€) be a symmetric real-valued function such that the integral operator T : Ly (X) —
Ly (X)

(T f) (x) := /Xk (x,x") f (x) du (x) (2.26)

is positive definite, i.e. we have for all f € L, (X) that

/Xx)(k(x,x") f(x) f (x')du (x)dp (x') > 0. (2.27)

Let ¢; € L, (X') be the normalized orthogonal eigenfunctions of Tj associated with the eigen-
values A; > 0, sorted in non-decreasing order. Then:

1. (/\])] €,

2. k(x,x") = Z}Zl Aji (x) ¢; (x) holds for almost all (x, x"). Either ny € IN or ny = co.
In the latter case the series converges for almost all (x, x’).

It follows from Equation 2 that k (x, x") = (® (x), P (x')) with:

DX D, x (\/Xj@ (x))jzl,...,nH’ (2.28)

for almost all x € X, where @ is the feature map under consideration, which is a different
target space than the one offered by the reproducible kernel Hilbert space map in Equation
2.6:

Proposition 2.1.2 (Mercer kernel map). If k is a kernel satisfying the conditions of Theorem
2.1.1, then we can construct a mapping ® into a space where k is a dot product, i.e.:

(®(x), @ (x)) =k(x,x), (2.29)

for almost all x,x’ € X. Furthermore, given any € > 0, there exists a map &, into an
n-dimensional dot product space, where n € IN. such that:

|k (x,x") = (P (x), P (x'))] <, (2.30)
for almost all x,x" € X.

Mercer’s kernel map (Proposition 2.1.2) as well as the reproducing kernel Hilbert space
map (Equation 2.6) allow us to avoid the explicit mapping ® that is needed to learn nonlinear
functions by means of dot product algorithm by simply substituting the call to (P (), P (+))
with one to k (-,). This is known as kernel trick, the utility of which will be demonstrated
in the next subsection by means of an example. In practice the choice of kernel should be
approached with care, as in some algorithms some assumptions regarding the input data
are made which could be violated by a particular kernel choice. Furthermore depending
on the choice of kernel, the data might be more or less separable. The most well known
algorithms which make use of kernels are kernel perceptron, support vector machine (SVM),
Gaussian Process Regression, principal components analysis (PCA), canonical correlation
analysis, ridge regression, spectral clustering, linear adaptive filters and others [15].

2.2 Machine learning basics

The machine learning field can be divided in three different sub-fields: supervised learning,
unsupervised learning and reinforcement learning [39]. The most common of all is the
supervised learning setting, in which a data set consisting of a series of inputs with their
associated responses is available. The goal is usually either classification or regression.
While the former seeks to find the relationship between a given input and a finite number of
classes, regression can be seen as finding the relationship between the inputs and a infinite
number of classes [39], i.e. a continuum. We now define a framework in which these task,
generally to be called supervised learning, can be performed.

10 Chapter 2. Introduction to Gaussian processes

The statistical learning framework

The general framework in which statistical learning is performed is composed as follows
[48]:

1. Domain set X" in which the data is located, which can corresponds to the data we may
wish to label.

2. Label set). In case of simple multi-class classification with c classes Y = {0,1, ..., c},
while in case of regression, as we will see,) is a continuum (usually YV = R).

3. Training set composed of 1 tuples X x) of elements drawn jointly from & and) form
the so called training data, or training set, which we denoteas S = {(x1, 1), ..., (*n, yn) }-

4. Test set 7 is composed of elements X x J drawn jointly from X, and is used for
validation purposes. In practice one has in general one set of data to work with, having
as a result the necessity to either split the data or to use other validation techniques
such as k-fold validation.

5. Learner’s output which is a prediction rule, also called predictor, hypothesis or clas-
sifier 1 : X —). The predictor can be used for predicting the label of other instances
not in the training set S.

6. Data generation model: it is assumed that the data in the training set and label set are
generated instances of an underlying distribution D over X’ x). The learner does not
know anything about the underlying distribution.

7. Measure of success: in order to measure the quality of a predictor, a metric is needed,
which is usually called loss, which will be discussed next.

Loss function and empirical risk minimization

Generally speaking one would want to be able to make an estimate as close to the true un-
derlying class, i.e. an estimate which minimizes the loss. Let us begin by giving a definition
of loss:

Definition 2.2.1 (Loss function). Denote by (x,y, f (x)) € X x Y x Y the triplet consisting
of a data point x, a response y and a prediction f (x). Thenthemap ¢/ : X x Y x Y — [0,0)
with the property I (x,y,y) = 0forall x € X and y €) is called a loss function.

Note that the thus defined loss function is always non-negative ensuring that only a
correct prediction achieves zero loss. The loss function can take different forms depending
on the task which is to be performed, namely classification or regression. In case of 0-1
classification, where Y = {—1,1} and f : X — Y, a very simple loss function can be defined

as follows:
bo—1 (x,y, f (x)) = [f (x) —y]. (2.31)

which is usually known as 0-1 loss function or simply misclassification error. In case of
regression, i.e. when estimating real-valued quantities, it is usually the magnitude of the
difference y — f (x) which is indicative of the amount of misprediction. In some contexts [
is known, think for instance of mispredicting the value of a financial instrument. In general
however, the loss function in case of regression will have the form

E(xy f(x) =g (f(x)—y). (2.32)

The most common choice is to minimize the sum of squares of the residuals f (x) — y. This
corresponds to the assumption that there is additive normally distributed noise perturbing
the observations y:

lsq (v, y, f (1)) := (F (x) = y)*. (2.33)

Definition 2.2.2 (Risk function). Given a loss function / (-, -, -), the risk function is defined
as

Lo (h) =By (€ (5,0, (1)) 234

2.2. Machine learning basics 11

In practice, the true risk is not known directly to the "learner", as it is defined over D.
However the learner can calculate the training error, or empirical risk on the available data

S.

Definition 2.2.3 (Empirical risk). Given a loss function [(+,-,-) the risk empirical risk func-

tion is defined as:
n

1
Ls (f) =) L (xiyi f (xi). (2.35)
i=1
The empirical risk minimization principle argues that under the assumption that the
data points in the training set S are i.i.d., the predictor f should be chosen such that:

f*=argminLs (f), (2.36)
feF

where F is here a (parametric) class of functions, called hypothesis class.
One important definition concerning hypothesis classes is the one of probably approxi-
mately correct (PAC) learnability:

Definition 2.2.4 (Agnostic PAC learnability for general loss functions). An hypothesis class
F is agnostic learnable with respect to a set Z and a loss function ¢ : F x Z — [0, o) if there
exists a function m g : (0, 1)2 — IN and a learning algorithm with the following property: for
every €,0 € (0,1) and for every distribution D over Z, when running the learning algorithm
onm > mr (€,6) iid. examples generated by D, the algorithm returns f € F, such that,
with probability of at least 1 — &

E'D(f) < ?’1611]_1_ Lp (h/) +e€, (2.37)

where Lp (h) :=E(,,)~p (¢ (x,y,h (x)))

The PAC framework allows the derivation on bounds of the sample complexity for many
function classes F. In particular, bounds regarding Gaussian Process Regression which are
very interesting in theory (e.g. Theorem 4 in [42]) exists, In practice however, it is a well
known fact that PAC bounds are very loose, hence their practical applicability is severely
limited to real life situations, and more interesting in theory. We therefore conclude that
estimates of the performance of a model can be obtained, as already seen, by estimating the
true risk.

Regularization

Empirical risk minimization can lead to overfitting, meaning that the predictor f minimizes
the empirical risk more than the true risk. This leads in turn to poor generalization, which
is the inability of f to make correct predictions of out-of-sample (unseen) data. A common
solution is to restrict the empirical risk minimization rule by performing regularization. The
key idea in regularization is to restrict the class of possible minimizers F (with f € F) of the
empirical risk functional Ly, (-) such that F becomes a compact set [15].

In practice this is often done by adding a regularizer function to the risk functional,
which is a function that penalizes the risk if the complexity of the predictor is too large.
We then have that a regularization function is a mapping R : R? — R and the regularizes
empirical risk minimization rule outputs an hypothesis such that

f* = argmin Ls (f) + AR (f), (2.38)
feF

A > 0 being the regularization constant.

It can be shown that a regularizer acts as a stabilizer, meaning intuitively that a small
change in input does not change the output much. When dealing with kernels, a very im-
portant result regarding regularization is the representer theorem, which states that the
minimizer f* of a regularized empirical risk function defined over a reproducing kernel
Hilbert space can be represented as a finite linear combination of kernel products evaluated
on the input points in the training set data. Formally:

12 Chapter 2. Introduction to Gaussian processes

Theorem 2.2.1 (Representer theorem [15]). Denote by R : [0,00) — R a strictly monotonic
increasing function, by X aset, and by £ : (X x R?) " — RU {oo} an arbitrary loss function.
Then each minimizer f* € H, H being a reproducing kernel Hilbert space, of the regularized

risk
L (e, y1, f (1)) s (Yo £ (x0))) + R fl13) (2.39)

admits a representation of the form:

fr(x) = i aik (x;,x) . (2.40)

i=1

Monotonicity of R is required for the theorem to hold, but it does not guarantee a unique
minimizer. A unique minimizer is guaranteed if both R and £ are convex [15]. The im-
portance of the representer theorem is that when dealing with a regularized empirical risk
minimization problem in a reproducing kernel Hilbert space H, it states that the solution lies
in the span of the kernels centered on the training set S.

2.3 Gaussian Processes and Gaussian Process Regression

Perhaps the most intuitive way to see a Gaussian process is to see it as a random Gaussian
distribution over functions [31] [39]. Formally:

Definition 2.3.1 (Gaussian process). A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian distribution.

Another way to think about it is as random variables f(x) indexed with respect to a
continuous (vector) variable x. For instance consider the random variables F = { fl}lN
with associated index locations X = {x;}N. Then f is a Gaussian process with distribu-
tion p(f|X) = N (m(x),k(x,x")) The Gaussian process f(x) in question is then defined as:

f(x) ~GP (m(x),k(x,x"))), (2.41)

with:
m(x) = E[f(x)], (242)
k(x,x") = E[(f(x) = m(x)) (f(x)" —m(x)))]. (243)

Remark 2.3.1 (Notation). It should be noted that a Gaussian process is a conditional proba-
bility model, i.e. it models p(f|X) and not p(f). In order to maintain a concise notation we
therefore from this points onwards omit the conditioning, unless otherwise noted.

So far the Gaussian process has been defined and modelled with different covariance
functions, which allow a great variety of functions to be modelled by varying a (small) num-
ber of hyperparameters. In order to perform regression it is sufficient to define a noise model
which links the underlying function to the available observation. Predictions can then be
made according to Bayes’ rule.

There are different ways to interpret Gaussian Process Regression. Arguably, the most
intuitive and direct is the so called function-space view, in which one can think of a Gaus-
sian process as defining a distribution over functions and inference taking place directly in
the related function-space.

Equivalently one can resort to the weight-space view, which emphasizes the similarities
between Gaussian Process Regression and Bayesian linear regression.

The predictive equation can also be derived by means of the Representer Theorem 2.2.1,
and arise as from the minimization of a regularized risk functional. We will call this the
regularized empirical risk minimization view.

2.3. Gaussian Processes and Gaussian Process Regression 13

Regularized empirical risk minimization view

By means of Theorem 2.2.1 we know what type of solution we have to consider in case
of minimizing the functional in Equation 2.39 in a reproducing kernel Hilbert space. We
now consider the following functional, corresponding to the minimization of the regularized

square loss of observations corrupted by Gaussian noise with variance o2:

(72 Z S IIAIB,. (2.44)

We are interested in finding the minimizer f* of this functional, i.e. the function which
minimizes the regularized empirical risk:

n

f* = argmin — Z | |f] |H (2.45)

feF 2 i=1

As both the loss function and the regularizer are convex, we have a unique minimizer.
From Equation 2.40 and using the representation property (k (-, x;),k (-, x;)) = k (x;,x;) of
the reproducing kernel Hilbert space we get:

1 1
L(f")= E“TKN,N“ t 552 ly — Kn,nat)?
" (2.46)

1 1 1
= EDCT (KN,N -+ ZKZZ\],N> N — 7y KN N& + 2}/ Y,
o 20

where Ky y is the Gram matrix of S. Differentiating with respect to a leads to the minimizer
= (Knn + 021) - y, which gives us the predictive equation

-1
fr(x)=Kin (KN,N + 051) Y, (2.47)

where K, y is the Gram matrix constructed with kernel k and the points in test set 7 and
training set S. We will see that Equation 2.47 does correspond to the predictive posterior
mean equation in the context of the function-space view or weight space view, however it
was derived without making any assumption regarding the distribution of the data. Un-
like in the other formulation it does hence not provide us with an estimate of a credibility
interval, which can be a major disadvantage in some situations.

Function-space view

As stated previously, the core assumption behind Gaussian process regression is that the the
underlying (latent) process f is a Gaussian Process. Hence we place a joint prior on f and
f«, such that:

P, f) =N R = (o[RN, 249)

where again Ky N, K« n and K, . are the Gram matrices constructed with kernel k and re-
spectively the points in training set S, points in test set 7 and training set, and test set. In
order to link the underlying function f, which is possibly latent, to the available observation
y a noise model is constructed. In case of the full Gaussian process regression framework, f
is assumed to be polluted by Gaussian noise € such that

y=f+e (2.49)

with p(e) = N(0,02). This leads to the following likelihood:

p(ylf) =N (f,ffﬁl)- (2.50)

Marginalizing over f using Equation A.2 in the appendix yields the marginal likelihood or
evidence:

14 Chapter 2. Introduction to Gaussian processes

p) = [pWIFP(FIAf = N (0, Kn +0ul). @51)

In order to estimate the value of the underlying function f at locations X*, the posterior
distribution can be obtained by conditioning on the observations y by Bayes’ rule:

p(f fely) = W. (2.52)

The predictive distribution can now be obtained by marginalizing out the latent variable f:

1
P = [p(E Ll af = oo [pU L) p)4 (259)

Remark 2.3.2 (Notation). To maintain consistent notation with the following chapter, the
value of f at query points X, is denoted as f., while Ky N, Ky «, Ki,n and K, « are the Gram
matrices defined on pairs of X and X..

Conditioning on X, Y and X* using the identities in Equation A.2 and Equation A.3, the
posterior p (f«|y) = N (E[f«],cov (f«)) is obtained which can be used to make predictions:

> -1
E[f.) = Kon (Knn+31) (2.54)
-1
COV(f*) = K*,* — K*,* (KN,N + 0'%1) KN,*- (255)

Clearly the posterior is again a Gaussian Process, with a given mean and covariance func-

tions, which can be represented as weighted sums, i.e. E (f.) = K, ya, witha = (Ky n + 021) ! y.

These weights can be precomputed before any prediction is made, guaranteeing a posterior
mean estimate for one sample in O(N) operations, as it amounts to a simple dot product.
Interestingly one can see that the covariance matrix of the the posterior does not depend on
the observations y, meaning that posterior covariance estimates take O (N?) operations per
sample. Furthermore, the measurement noise ensures that the matrix is not singular, and
thus (at least in theory) always invertible. Compared to other algorithms, Gaussian Process
Regression is easy to understand, as the choice of prior mean and covariance functions is
made in advance. Furthermore, as it is a probabilistic model, the generated posterior distri-
bution can be used to generate credible confidence bounds, as shown in Figure 2.1.

(A) Prior. (B) Posterior.

FIGURE 2.1: In the figure on the left three draws from a specified GP prior

are shown. On the right, three functions are drawn from the same GP and

conditioned on a set of points. In both cases the grey shaded area corresponds
to the 95% confidence interval.

Since the Ky + 021 matrix needs to be inverted in order to compute the weights, the
computational complexity during what can be considered "training" is of order O(N?),
where N is the number of datapoints in the training set. The number of operations nec-
essary during training is the main drawback of this technique. In practice, instead of taking

2.3. Gaussian Processes and Gaussian Process Regression 15

the inverse it is good practice to work with the Cholesky decomposition, whose complex-
ity amounts to O (%N3> operations, is in general more stable than a matrix inversion and
provides the determinant of the full Gram matrix for free.

Weight-space view

Suppose that instead of placing a Gaussian prior over our latent function f, we define it to
be the weighted sum of a set of M basis functions ¢; such that

i=M
f(x) =Y wigi (x) = wp(x), (2.56)

i=1

and place a Gaussian prior on the weights:

p(w) =N (0,2Zy). (2.57)

Then we can see that we have defined a Gaussian Process prior on f, since f is now a Gaus-
sian Process (by linear combination) [34]:

p(f) =GP (0,9(x) Tup(x)) - (258)

This Gaussian process is called degenerate, as it can can be represented with a finite set of
basis functions and converted back into weight-space formulation. Furthermore, the rank of
its covariance function and Gram matrix is at maximum M. One such Gaussian process is
the constructed using the linear kernel, which was examined previously.

Now by Mercer’s Theorem (2.1.1), we have that the kernel function can be decomposed
as follows:

k(x,x') =) Aapi(x) (%), (2.59)
i=1

where A; and ; are the i-th eigenvalue and eigenfunction respectively. Mercer’s Theorem
does thus provide a link between the function-space and weight-space formulations.

If the decomposition yields a finite number of terms we thus speak of a degenerate Gaus-
sian Process. Now if N < M the Gram matrix is full rank, hence inversion can (in theory) be
performed directly, at cost of O(N?) operations.

However if N > M, the most sensible way to approach the inversion of the matrix K 4
02l = ®L,dT + 021 is to use the matrix inversion lemma, also known as the Woodbury
formula A.6 by expressing the covariance matrix in terms of half-matrices such that K =

1

VVT, where V = ®X2 resulting in:
-1 -1
(VVT+a2l) =o 21— 2V (R1+VTV) VT, (2.60)

The inversion on the right-hand side requires O(M?3) operations, instead of O(N?). Hence
the weight-space formulation, equivalent to linear regression, is advantageous is case of a
degenerate Gaussian Process.

Now if the decomposition yields an infinite number of terms, the Gaussian process is
known as non-degenerate. This is the type of Gaussian process we are interested, as it is
non-parametric in nature, meaning that the complexity of the posterior increases as more
data comes in, as we are modelling an underlying global function.

This is a desirable property, as it provides a more complex solution when more data is
presented to it. This can be seen from the posterior mean in Equation 2.54, which is essen-
tially a weighed sum of N kernel function evaluations, which however necessitates always
O(N?). The power of Gaussian Process Regression can be understood perhaps better by
switching to the weight-space formulation which would in this case require the inversion of
an infinite-dimensional matrix, as the number of basis functions is in fact infinite.

16 Chapter 2. Introduction to Gaussian processes

Model choice

As mentioned in the previous section, at the heart of Gaussian process regression lies the
choice of kernel function k which does usually have some free parameters . Since (in most
cases) the hyperparameters are not known exactly in advance, they somehow need to be
estimated. Furthermore, as already mentioned, the choice of kernel structure itself is crucial,
but it is assumed to be known and representative of the underlying phenomenon.

The mean function of the Gaussian Process is often chosen to be zero or modelled in
a parametric way. The zero-mean prior assumption, which can be easily guaranteed by
normalizing the observations around their mean, does of course not imply a zero-mean pos-
terior. The choice of covariance function is based on the characteristics of the underlying
function of interest such as for instance periodicity or monotonicity and determines thus
greatly the behaviour of the predictor and can be considered the primary source of bias in
the model.

In the context of Gaussian Process Regression, the hyperparameters can be estimated by
minimizing the log-marginal-likelihood or evidence, also known as type II maximum like-
lihood or empirical Bayes, by essentially adjusting the prior in light of the data. This can
be done for instance by cross-validation, as the Gaussian Process Regression framework is a
fully probabilistic model. Other options, such as placing hyperpriors over the hyperparame-
ters do not yield an analytical and computationally tractable posterior[20], as one is forced to
resort to sampling methods or variational inference. The empirical Bayes approach, which
is in practice the standard, does however compromise the fully Bayesian formulation of the
method, as the prior belief is in fact shaped according to the data, thereby rendering overfit-
ting a possibility. In general however the behaviour of most kernels is governed by a small
number of hyperparameters, meaning that the model is not likely to overfit [20]. From a ma-
chine learning theoretical point of view, this corresponds to limiting the complexity of the
class one is trying to learn, while from a Bayesian point of view it corresponds to choosing a
less informative prior.

Recall that in the examined Gaussian Process model the prior is a Gaussian Process and
the marginalized likelihood is Gaussian as well, with the following form:

1 _ 1 N
logp(y) = —EyT(KN,N + o2y — 5 log det (KN,N + 0",21[) ~5 log27t. (2.61)

It is thus clear that an estimate of the kernel hyperparameters and noise 0, can be obtained
by minimizing this quantity. This is in practice relatively easy as the gradient of the evidence
can be determined analytically for many choices of kernel, and thus any optimizer which
accepts a gradient can be used. In practice when performing said optimization task, there
is always the danger of the optimizer getting stuck in a local minimum. This is especially
true when dealing with a little data, as the model is more likely to overfit. Usually, each local
minimum reflects a different explanation of the underlying function, as can be seen in Figure
2.2. As the difference between different modes can be big, it is good practice to restart the
optimizer multiple times with different initial conditions in order to find the best possible
minimum.

2.3. Gaussian Processes and Gaussian Process Regression 17

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(A) Underlying function f and related data points (B) Two predictive posterior distributions with
Y. different hyperparameters.

FIGURE 2.2: In the figure the left we see a plot of the underlying function
f(x) = xsin(107tx) (in blue) and of its available observations y polluted with
noise € ~ N (0,0.22) (in red). On the right, we see the mean and confidence
intervals corresponding to twice the standard deviation of the posterior of
two different models. Both models use the squared exponential kernel with
hyperparameters estimated by minimizing the log-marginalized-likelihood.
The less representative solution (in green) was obtained with hyperparam-
eters | = 0.764, ,05 = 0.222, ,0,, = 0.778, while the better one (in yellow)
used hyperparameters | = 0.072, 0s = 1.567, 0, = 0.201. We can see that the
best solution has successfully estimated the noise and recovered the latent
function.

Consistency

We have seen previously that the predictive equation in case of Gaussian Process Regression
2.54 can be derived as the minimizer of the regularizer risk functional of Equation 2.44. We
would like to know how the solution behave in case of N — o0, as intuitively we would think
that as the data increases the posterior gets overwhelmed and converges to the underlying
predictive distribution.

Let (X,) a finite measure space where y is the generative distribution of the data points
(x,y). Following [31] we note that:

N
E (Z (vi —f(xi))2> = N/(y—f(x))zdu (x,y). (2.62)

i=1
Let furthermore 7 (x) = E (y|x) be the regression function associated with the probability
measure P. The variance of 7 (x) is denoted as:

P (x) = [(=1 () du(wl). (.69

By setting
y=f=Wy-n+u-f), (2.64)

we get:

J@=r@Pdnty = [0 - f @@+ [P @dnx). @6
As the last term is independent of f we get the following regularized risk functional:

L) = g5 [1) =F () (0 + 5 111 (2.66)

By Mercer’s theorem 2.1.1, we can express f by the orthogonal eigenfunctions of the kernel
function k (-, x). Furthermore let k (-, x) be non-degenerate so that by the reproducing prop-
erty of Definition 2.1.6 its eigenfunctions span the functions function space of f, forming a
complete set, such that

18 Chapter 2. Introduction to Gaussian processes

f(x) = Y figi (%), (267)
i=1
and, under the assumption that 7 (x) is well behaved we have
n(x) =Y nigi (x). (2.68)
i=1
Hence we have that:
NS L
LU =52 L= f)"+3 13 (2.69)

This quantity can be minimized by setting the gradient the with respect to all the f; to zero,
in order to obtain:

)\.
fi= — =1 (2.70)
A+ R

We can so see that %% — 0as N — co. This implies that, given the considered assumptions,
namely the non-degeneracy of k (-, x) and the smoothness of # (x), as N — oo we have
that f; — 7;, hence the regression function is recovered. From a Bayesian perspective this
corresponds to the prior f = 0 being overwhelmed by the data as N — co. On the contrary,
always by Equation 2.70, we have that if 02 >> N, then f; ~ 0. More data is then needed
to conduct meaningful inference.

24 Commonly used kernels

In context of Gaussian Process regression some kernels are often encountered. They are usu-
ally stationary, meaning that they are only a function of x — x". Furthermore, the examined
ones are all isotropic apart from the linear one, meaning that they are invariant to spacial
shift and rotations, and depend only on ||x — x’|||2. Other types of kernels are possible as
long as they guarantee a symmetric-positive-definite Gram matrix, however they will not be
discussed, as deemed not necessary to the scope of this research.

Polynomial kernel
The polynomial kernel is defined as:

k(x,x") = (xTx + Ug)p , (2.71)

which is the common Euclidean distance squared, with order p. The kernel is called
inhomogeneous polynomial kernel for oy # 0, and homogenerous polynomial kernel
for oy = 0. It is often used as an example to demonstrate the usefulness of kernel
representation. In fact, the kernel is equivalent to a dot product of data points mapped
by feature map @ into vector space consisting of the p-th degree ordered products of
its dimensions, which in case of 0, # 0 encompasses also all its lower degree products
[15] [20]. This can be seen, for the homogeneous case, by:

r\P D b D D
/ / /
(x x) = Loxaxg | = X xaxy || X i,
=1

di=1 dp=1

k(x,x")
2.72)

This simple example makes thus clear that the so called kernel trick allows us to avoid
the computationally expensive explicit mapping by evaluating the dot product directly
in feature space. In the context of Gaussian Process Regression, p = 1 is equivalent to
performing Bayesian linear regression [20].

2.4. Commonly used kernels 19

10.0

7.54

5.0

25

0.0

=2.5

-5.0 4

-7.54

-10.0

\ 40 1 /
: 201 \\ /

] 0\>-<:(—‘1‘i

] —20-/

—404

(A)p=1landoy = 1. (B) p=2and op = 1.

FIGURE 2.3: In the figure the left three draws from a GP with polynomial

kernel with degree p = 1 and 0p = 1. On the right, three draws from a

GP with polynomial kernel with degree p = 2 and 0y = 1. In both cases the

grey shaded area corresponds to the bounds which are given by two standard
deviations.

Squared exponential

The Gaussian kernel or squared exponential kernel also known as exponentiated
quadratic kernel or Gaussian kernel has the general form:

k(x,x') = Ufe*%(x*x/)rzfl(x*x/). (2.73)

Often X is assumed to be diagonal, leading to the following formulation:

2
1yvD 1 /
_,EJ 1r(x]_x])

k(x,x') =cle j) (2.74)

It is clear that /; can be interpreted as the characteristic length scale of the correspond-
ing dimension j, while o governs the amplitude. This kernel is also known as auto-
matic relevance determination kernel. The name arises from the fact that the length
scales control the relevance of each feature. This is done automatically when maximiz-
ing the log-likelihood of Equation 2.61. Sometimes the diagonal terms are assumed to
be identical leading to:

ll==~13

k(x,x') =02 2% . (2.75)

In this case the length scale parameters is sometimes referred to as bandwidth. Since
the function is differentiable infinite amount of times it is very smooth. Some have
argued that this makes the Gaussian kernel an unrealistic choice for modeling physical
phenomena [41], and resort to the Matern kernel. In practice however, the Gaussian
kernel remains the most used kernel for its simplicity [20].

20 Chapter 2. Introduction to Gaussian processes

2.0 204
1.5
1.0
0.5
0.0
-0.5
-1.0
-15

-2.0

(A)Il=1lando; = 1. (B) I =10 and o5 = 10.

FIGURE 2.4: In the figure the left three draws from a GP with square expo-

nential kernel with length scale I = 1 and amplitude 0; = 1. On the right,

three draws from a GP with length scale I = 10 and amplitude s = 10. In
both cases the grey shaded area corresponds to twice the amplitude o5.

Matern kernel
The Matern kernel is often used in Gaussian process regression, and has the following
form:

k(x,x') = o7 1%1(_; <¢27|xlx’||2> Ky <\/ﬂ||xlx’|2> , (2.76)

where o5 is the amplitude, v > 0, > 0 and K, is a modified Bessel function of the
second type of order v. Interestingly, this choice of kernel in the GP setting yields a
function which is differentiable #n times only if n > v, a useful characteristic for mod-
eling purposes [20]. Furthermore, if the Gaussian Process is defined on a space with
dimension D = 1 (x is one dimensional) with the choice of v = %, it is the mean re-
verting Ornstein-Uhlenbeck process [47]. When v — oo the kernel collapses to the
squared exponential kernel. It is thus clear that the Matern kernel offers plenty of pos-
sibilities when trying to model a phenomenon having particular known smoothness
characteristics.

L ,rl‘ : \/\’\ /\ '/\,- 1-/'/ :
.

FIGURE 2.5: In the figure the left three draws from a GP with Matern kernel
with length scale | = 1, amplitude s = 1 and v = % On the right, three
draws from a GP with length scale | = 1, amplitude s = 1 and v = % In

both cases the grey area corresponds to twice the amplitude.

Neural network kernel A very interesting kernel which shows how Gaussian Process Re-
gression can be seen as an approximation to a neural network with many hidden units
is the neural network kernel. It was discovered in the late nineties, when interest in
neural networks and kernel methods was once more rising. The rationale behind it is

2.4. Commonly used kernels 21

quite simple. Consider in this regard a neural network with one hidden layer and n
hidden units in the regression setting. Its mapping can be described by:

n
fx)=b+Y ah(x,w), 2.77)
i=i
where 2 and b are the weights of the output layer and bias respectively, w; are the
weights of the hidden layer, and % (-, -) is the activation function. Let 2 an b be inde-
pendently distributed with zero mean and with variance 02 and 07 respectively, and
let w; be i.d.d.. Taking the expectation under all weights, we have that:

m(x) =E(f (x)) =0, (2.78)
k(x,x") =E (f (x) f (') = 0f + ;Ug]E (h (x,wi) b (x,w;5)) (2.79)
=0j +no,E (h(x,w;) h (¥, w;)) (2.80)

. . 2 . . i
If we allow 07 to scale with n i.e. 02 = ¢, we have that, since & is bounded as it is

an activation function, for n — oo, f converges to a Gaussian Process by the Central
limit theorem 4.2.2 (in Chapter 4), as they are i.d.d.. Depending on the choice of h it
is possible sometimes to obtain an analytical expression the covariance function, for
instance in case of 1 (x, w) = erf (wy + w’x) with w ~ N (0,) we have

2xTyx!

\/ (1+2xTxx) (1 + 2x/T>:x/)

k(x,x') = %arcsin , (2.81)

where x is here augmented in order for to account for the bias wy. These kernels are
interesting as they enable exact Bayesian inference for infinite width neural networks
having one hidden layer [8]. Recently, using an induction argument, these results have
been extended as well to deep neural networks [55] with an arbitrary number of hid-
den layers. These incredible results seem to suggest in this regard that for regression
tasks it makes sense to use GPR, however, as the authors point out, the computational
burden related to the full GPR makes it hard to apply this (and other types of) kernel
to large datasets. Also for this reason, it makes sense to consider approximations to the
full method.

23

Chapter 3

Gaussian Process Regression for
large sets of data

As discussed in Chapter 2, the main drawback of employing Gaussian Processes in a regres-
sion setting is that their "training” costs O (N®) operations when employing the standard
Cholesky decomposition. Apart from computational improvements which regard for in-
stance the inversion (in practice the Cholesky decomposition) of the Gram matrix, such as
for instance [59], there have been attempts to make Gaussian Process Regression viable in
case of large N, by large meaning usually N > 10° [61] by means of conducting approximate
inference. These attempts have different form and can be divided roughly in two categories,
namely local approximations and global approximations. Local approximations divide the
data for subspace learning, wile global approximations try to distillate the entire data [61].

3.1 Local approximations

When considering the O (N®) computational complexity associated with the full Gaussian
Process Regression, one might think of partitioning the data in ¢ buckets based one say some
distance metric. Applying Gaussian Process Regression to a bucket would then incur in a

complexity of O (’j—j) , hence processing the whole dataset would cost O (1;,723) operations.

This simple local approximation highlights the problem with this type of approximation,
namely the fact that "far" interactions, "far" having here a connotation dictated by the kernel
choice and the considered partitioning method, are not considered at all. Prior knowledge
of the dataset is thus required, rendering this class of approximations not freely usable in
most situations. We thus focus on the more justifieable global approximations.

3.2 Global approximations

As stated previously, global approximations operate on the whole data. They are thus able
to capture long-term spatial correlations, but they can fail to see higher-order local patterns.
According to [61], they can be divided into three categories, subset-of-data, sparse ker-
nels and sparse approximations. Generally speaking these methods rely on a selection of
support points also known as active points or inducing points A, their meaning varying
according to the type of approximation that is considered.

Subset-of-data

Subset-of-data is the most simple and intuitive GP approximation. It simply relies on choos-
ing a subset of size M << N of the full data-set, achieving thereby a computational com-
plexity of order O (M?) during training, O (M) for posterior mean estimates, and O (M?)
for posterior variance. The method can yield extremely good predictions in case of redun-
dant data, but will however fail to deliver a meaningful posterior variance estimates due to
the limited data set. Nonetheless, subset-of-data methods have the advantage of being in
general fast computational-wise, for M being small enough. The selection of the M points
can be done in different ways:

24 Chapter 3. Gaussian Process Regression for large sets of data

1. Random selection is the most simple and can yield good results in case of a redun-
dant data-set and a large number of support points M [61]. While used in practice, in
literature it is often used as a baseline for other methods.

2. Clustering techniques can be employed to divide the data-set in M clusters, of which
for instance the centroid can be taken as subset point. Again, this works well when the
data-set is separable and redundant.

3. Active learning criteria, such as differential entropy or mutual information can be
used to make a selection of points. Since the criteria are usually too computational
expensive, they are used in a greedy context, meaning that subset points are queried
subsequently. They are often encountered in literature.

Many of the criteria found in literature fall into the active learning category, and rely on
information-theoretical measures, such as entropy, mutual information or KL-divergence.
Information theory is concerned with representing data in a compact fashion as well as with
transmitting and storing it in a way that is robust to errors[47]. Since in case of the normal
distribution the variance is directly linked to the concept of entropy, and since many active
learning information-theoretical criteria make use of the variance estimate, we present some
algorithms concerned with two active learning criteria, which can be used to select a subset
of points. These criteria can be used as-is, i.e. in principle on any set of data, however their
application is not directly practical for large sets of data, as the underlying optimization
problem is usually NP-hard. Therefore generally one relies on a greedy approach which can
fulfill some performance guarantees when certain conditions are met.

Maximum entropy sampling

One common criterion in literature is maximum entropy sampling. In case of continuous
random variables, differential entropy is defined as follows.

Definition 3.2.1 (Differential entropy). The differential entropy of a continuous random vari-
able X, with probability density function p is:

H(X) = ~E [log p(X)] = — [log p(x)dP (x). (3.1)
Intuitively entropy can be seen as the average information carried by a random variable.
The information measure I(p) = —plog(p), is a useful measure:

1. I(p) is monotonically decreasing in p, so if an event is more likely it will be considered
less informative.

2. I(p) is non-negative. Every event, has the potential to carry some information.
3. I(1) = 0. A certain event is not informative, because certain.

4. I(pipj) = I(pi) + I(p;). Information gain due to independent events is additive.

One important difference between differential entropy and its continuous counterpart, is
that differential entropy can be negative. This has sparked some discussion in the academia,
but the two will be referred simply as entropy and thus treated the same way, although
according to some incorrectly.

Intuitively, one would like to conduct measurements in the locations which are most in-
formative over the whole space. This can be formulated as follows. Denote A the locations
in which measurements are conducted, V the space in which measurements are possible.
Then in order to perform maximum entropy sampling, one would like to minimize the con-
ditional entropy:

A* = argmin H (XV\A|XA) = argmax : H(X4), (3.2)
AcCV:A=k ACV:A=k

where the last equality is due to the entropy chain rule (conditioning). We can thus see that
minimizing the information gain on all unobserved locations A \ V after having observed

3.2. Global approximations 25

location A is equivalent to select location which are mutually most uncertain. Furthermore
note that, again by the chain rule of entropy, we have:

H (X4) =H (XAyi|XAi,1) +.t+H (XAy2|XA1) +H (XAyl |XA0) . 33)

Unfortunately, this optimization problem has been shown to be NP-hard [7]. Therefore,
the following greedy algorithm is used instead [5][10]:

Algorithm 1 Greedy maximum entropy sampling
i=0
A/ == {@}
while i < kdo
Aiy1 = argmax, H (X, | X 4,)
i i+1
end while

It is shown that such type of greedy algorithm has a bound on its worse case scenario
performance when certain conditions are fulfilled [4]. The result is given below:

Theorem 3.2.1 (Nemhauser et el., 1978). Let F be a monotone submodular set function over
a finite set V, with F (©). Let Ag, be the set of the first k elements chosen by the greedy
algorithm. Then:

1

F(Ag)>(1—-= max F(A)>063 max F(A). 3.4

(Ag) = (e) ACV:| A|=k (A) ACV:| A|=k (4) (3.4)

Hence if the objective function of the greedy Algorithm 1 is submodular and monotone,

the algorithm is guaranteed to find a set of points such that the performance measured by F

is at least 63% of the optimal set. Fortunately entropy is a submodular function, however it
is generally not monotone. However the following holds:

Theorem 3.2.2 (Sharma et al.,, 2015 [51]). Given any symmetric matrix £ € R"*" with
Amin (A) > 1, the function F(X) = logdet (X (X, X)) is monotone.

So in order for Theorem 3.2.1 to hold in the case of entropy, it is sufficient to force the
eigenvalues to be larger than one. This can be trivially done in a naive way by controlling
the scaling factor, also known as signal variance, parameter 2. Furthermore, if we look
into the structure of, for instance, the Gaussian kernel, we can see that if two points x and
x" are extremely close with respect to the characteristic length [, the matrix will tend to be
badly conditioned, and the eigenvalues will tend to zero. An important result which relates
in case of Gaussian kernels the characteristic length, mesh size and minimum eigenvalue is

presented below [6][51]:
Theorem 3.2.3 (Narcowich et al., 1992 [6]). Let ¥ € IR"*" be a Gaussian kernel such that one

)1
has k(x,x") = USZ 22 for points x1, X2, ..., Xy € R? and I > 0. If the minimum separation

€ = min;; |[x; — x;||2 satisfies % > 6d then:

o (5]

Since the minimal eigenvalue can be forced above one by controlling the two param-
eters one can envision a method for sampling the most informative points by using such
greedy rule ensuring that the entropy is monotone. This can be done either by restricting the
choice of hyperparameters or by removing points neighbouring a given point if too close.
From experimental research it seems however that the bound presented in Theorem 3.2.3 is
rather loose [51], however no theoretical guarantees are known, apart from empirical find-
ings which show good results even in case of not too well conditioned covariance matrices
[51].

This information-theoretical criterion is in practice easy to implement when it comes to
Gaussian Process Regression. In fact, the entropy of a random variable which follows the
multivariate normal distribution is the following;:

26 Chapter 3. Gaussian Process Regression for large sets of data

Proposition 3.2.1 (Entropy of a multivariate normal). Let X ~ A (y,X). Then
H(X) = %logdet (2mex) . (3.6)

Therefore due to the monotonicity entropy of a multivariate normal random variable,
maximizing entropy is equivalent to maximizing the posterior variance. The naive im-
plementation of Algorithm 1 in case of Gaussian Process Regression consists of two steps
which are to be repeated per loop cycle i, namely training a model on the active points A;
and querying the point in V' \ A; which has maximum variance. Training the model costs

@ (|Ai|3) and querying the point having maximum variance costs O <|V \ Al |Ai|2) as
well, as a posterior variance estimate is necessary for each point not in \4;. Training costs can
however be reduced by employing recursively block Cholesky decomposition as presented
in appendix A.2. Updating the model in this way brings down training cost to an order of
(@) (|.A1-|2>, similarly to matrix-vector multiplication. In literature this criteria is often used

in conjunction with a sparse approximation, and serves thus as to select its support points,
see for instance the informative vector machine [16][20].

Maximum mutual information sampling

As shown in [33], an improved design criterion is mutual information. Mutual information
is defined as follows:

Definition 3.2.2 (Mutual information). The mutual information of random variables X and
Y is:

MI(X;Y) = H (X) — H (X]Y).

Intuitively, mutual information measures the information that X and Y share, as it weights
how much knowing one of these variables reduces uncertainty about the other. Sampling by
mutual information ensures that the queried points do not accumulate on the boundary (in
which the variance is higher), but fill the whole space unlike the case with entropy. We thus
wish to maximize the mutual information:

A" = argmax MI (X 4; X 4) = argmax H (XV\A) -H (XV\A|XA) . (3.7)
ACV:A=k ACV:A=k
As in case of entropy, this optimization problem has been shown to be NP-hard [7].
Therefore, the following greedy algorithm is used instead [33], which provides the maxi-
mum increase in mutual information:

Algorithm 2 Greedy maximum mutual information sampling
i=0
A, = {0}
while i < kdo
Assy = argmax, MI (Xy45 Xy 4,) = MI (X4 Xy 4,)
i+i+1
end while

By Theorem 3.2.1 and Lemma 5 in [33], we have a result analogue to the one of Theorem
3.2.3. Once more, in order for the technical conditions to be fulfilled, either the hyperpa-
rameters must be restricted, or a minimum inter-point distance must be enforced. However
since the bound of Lemma 5 in [33] is loose, practice shows that the algorithm performs
well even if the covariance matrix is ill-conditioned. Naive implementations runs to similar
problems as with Algorithm 1, however note that by Definition 3.2.2 we have that:

Fi = MI (quAi;XV\Ai) — MI (XA,.;XV\A,_) — H (X,|X4) —H (Xy|XV\(A’_Uy)> . (38)

3.2. Global approximations 27

By properties of the log function and by the posterior variance in the Gaussian Process
Regression setting of Equation 2.54, we have that:

K (y,y) — Ky, Ai) K1 (Ai, A) K (Ay,y)
K(y,y) =Ky, V\ (AiUy)) KTV (AiUy), VA (AiUy)) KV (A Uy) ,y)(;) 0
where the numerator is the queried posterior variance of a GP built on A; and the de-
nominator is the queried posterior variance of a GP builton V' \ (A; U y). This representation
allows again to use the block Cholesky decomposition of Equation A.2 in the Appendix, to
ensure a cost at training of O (|Ai|2 +|V\ (AiUy) |3> instead of a naive O (|Ai|3 +V\ (AjUy) |3)
Searching the point which maximizes the objective function in Equation 3.9 requires in any

case O (|V \ Al AP+ IV (A Uy)|3> operations.

Fi o

Sparse kernels

Sparse kernels try to reduce the computational complexity of the training phase by ensur-
ing that Gram matrix Ky n which takes part in the posterior mean and variance estimation
is sparse. This is usually accomplished by compactly supported kernels, which impose
k(x,x") = 0if |x — x’| exceed a certain threshold. This ensures that only non-zero elements
of Ky n take part in the calculation. Computational complexity is reduced to O (¢cN?), with
0 < ¢ < 1. One of the biggest difficulties of this approach is ensuring that the thus con-
structed kernel is symmetric and positive-definite.

Sparse approximations

Sparse approximations rely on constructing a low-rank approximation of the full Gram ma-
trix Ky n. This low rank approximation is based on the observation that typically the Gram
matrix K has many small eigenvalues which can be removed without loosing too much pre-
cision[15]. In practice this could be simply accomplished by keeping the first M eigenvalues
of the eigenvalue decomposition:

KN,N ~ UN,MAM,MUM,N- (310)

The inverse of Ky n could then be computed with the Woodbury formula in Equation A.6,
and the determinant with its equivalent for determinants, see EquationA 2, requiring O (NM?)
operations. This is however not efficient, as the eigenvalue decomposition requires O (N3)
operations. Hence another type of approximation, namely the Nystrém approximation is
used, which achieves low-rank by selecting a subset of M points and has form:

Kap ~ Qap = KamKy i Knms- (3.11)

Its inverse can then be computed with the Woodbury formula in Equation A.6, and the deter-
minant with its equivalent for determinants in Equation A.2 requiring O (NM?) operations.

The Nystrom approximation can be derived in different ways, we show the derivation
followed in [15] and [20]. Herein the idea behind the Nystrom approximation is to select
M << N basis functions k (x1,), ...,k (xp1, -) where xq, ..., x) are without loss of generality
the first M data points, so that every basis function k (x;, -) can be approximated as linear
combination of the others.

k(x,-,-) %Iz(xif) = Zai,jk (x]-,~) . (312)

28 Chapter 3. Gaussian Process Regression for large sets of data

The coefficients are chosen such that they minimize the distance in reproducing kernel Hilbert
space:

a* = argmin Err ()

acRN*xM
N z 2
= argmin k(x;,-)—k(x;-
aeiwmg [i) = I i) 3 (3.13)
=f{r (KN,N) — 2tr (OCKM,N) + tr (DCKM,MDCT)
= KN,MK]T/EM/
which gives finally:
Knn =~ QNN = KN,MKI_/EMKM,N- (3.14)
It can be shown that [15]:
Err () = tr (Kyn) —tr (QNN) - (3.15)

The quantity in Equation 3.15 is used by [13] as a selection criteria of the M inducing points
in a subset-of-data setting.

Substituting the Nystrom approximation of Equation 3.11 into the equations of posterior
mean and variance 2.54 can however lead to rather unpredictable behaviour, since it does
not define a generative probabilistic model, and the low-rank covariance is not necessarily
symmetric-positive-definite.

Inspired by the Nystrom approximation, sparse approximations build a generative prob-
abilistic model, which achieves sparsity by the choice of M inducing points (also known
as active points or support points or pseudo points) to summarize the whole data. Denote
these points with (X, far). In all sparse approximations fj follows the same GP prior as
f. Furthermore, fj is assumed to be a sufficient statistic for f, i.e. for any variable z it holds
that p (z|f, fm) = p (z|fm)- Thejoint prior can always be recovered by marginalizing out f
as

U = [P F 1) p) dfur (316)

Following the classification in [24] and [61] three type of sparse approximations can be
defined:

1. Prior approximations which approximate the prior but perform exact inference.

2. Posterior approximation which retain the exact prior but perform approximate infer-
ence.

3. Structured sparse approximations which exploit specific structures of the Gram ma-
trix.

In what follows we will go trough the main prior approximations by looking at the var-
ious methods as described by their authors and in the unifying comparative framework
developed in [24].

Prior approximations

Prior approximations modify the joint prior in Equation 3.16 which is the origin of the cubic
complexity [24], using assumptions of independence:

pUL) =0 () = [a(1fn) g (L) p (o) dfus (317)

where p (f, fm) and p (f«, fm) are known as training and test conditionals which are
distributed as follows (by Equation A.2):

p(flfm) =N (KNMKXAleMf Kn,N — QN,N) , (3.18)

p (f*|fM) =N (K*,MK;/EMfM/ Ky — Q*,*) . (3.19)

3.2. Global approximations 29

fum is called inducing variable as it induces the dependency between f and f., which are
conditionally independent. In order to obtain computational gains, the covariances of the
train and test conditionals are modified as:

p(flfm) =N (KNMKX/IleM, QN,N) , (3.20)
p(flfar) = N (KiaKidaafur, Qs (321)

The log-marginal-likelihood p (v) of Equation 2.61 is thus approximated as:

- g log (277) .

(3.22)
Specific choices of Qy,y enable computation of (Qn n + Qn,n + 021) and]QN,N + QNN + 021 ‘
in O (NM?) operations thanks to Equation A.6 and Equation A.2, and lead to different
sparse approximations.

1 ~ -1 1 -
logp (y) = —EyT (QN,N + QNN+ 0131) y—5 log ‘QN,N + QNN + 021

Subset of regressors Subset of regressors (SOR) [13], also called deterministic inducing
conditional in the unifying framework of [24], is a sparse approximation which uses a linear
model in the parameters for any f,:

f* = K*,MwM/ (323)

p(wm) =N (0, K;AfM) , (3.24)
which assigns one weight to each inducing input. Note that due to the definition of w it is
possible to recover the exact prior in fj:

fm =Kumwm = (fm, fm) = Knom (wam, wm) Knomt = Kagm, (3.25)

which thus read
p(fm) =N (0, Kmm) - (3.26)

Using the fact that fjr = Kpgmwp from Equation 3.23 and the exact prior on f) it is possible
to reformulate the subset of regressors model as follows:

fe= K*,MKX/Il,MfM/ (3.27)
p(wm) =N (0,Kyly) - (3.28)

Conditioning on fy; yields the training and test conditionals:

q(flfm) =N (KNMKX/[leM/ 0) , (3.29)
qa(flfm) =N (K*,MKA}TMfM,O) , (3.30)

which corresponds to choosing Qn y = 0 and Q. « = 0. The joint prior can then be obtained
by Equation 3.17 and reads:

(7,00 = (0[N Qo). @31)

The joint prior in Equation 3.16 is factually a Nystrom approximation on the set of M sup-
port points, with a rank of at most M. This means that when drawing function from the prior
we are limited to a maximum of M independent functions, the other being linear combina-
tions of the former [24]. While this restrictive approach might work when considering the
predictive posterior distribution, it does considerably underpredict the predictive posterior
variances [20] [24] [61]. Hence the predictive equations of the subset of regressors approx-
imation can be obtained simply by replacing the various sub-matrices of the full Gramm

30 Chapter 3. Gaussian Process Regression for large sets of data

matrix of Equation 2.48 with the ones of Equation 3.31. The resulting predictive equation
read:

1500 = (@ (Qua +31) ', Qe = Qun (Quav-+31) Qn.) G32)

=N (UJZK*,NZKM,N% K*,MZKM,*) , (3.33)

where T = ((Tn’ 2K MNKN M+ Ky, M) L. The first equation closely resembles the full Gaus-
sian Process Regression predictive equations 2.54, while the second one allows for computa-
tional savings thanks to the Woodbury formula in Equation A.6, requiring O (NM?) opera-
tions for "training", O (M) for posterior mean estimates and O (M?) for posterior variance.

Deterministic training conditional The deterministic training conditional (DTC), also known
as projected process approximation in [31] was proposed in [18] to improve the posterior
variance estimate of the subset of regressors method, while providing the same posterior
mean estimates. The original derivation in [18] is a likelihood approximation which makes
use of the projection f = K¢, Ky, o fp such that:

PIf) = alu) =N (Kpp, Kpl o fu, 031) (3.34)

The equivalent derivation in the unifying framework of prior approximations by [24] main-
tains the likelihood of the full model, but introduces the train and test conditionals which
have the following form:

q(flfm) =N (KNMKA}MM, 0) , (3.35)
q(f*lfm) = p (felfm) - (3.36)

The train conditional is the same of the subset of regressors method, and the test conditional
is simply the exact test conditional. The associated joint prior is given by:

q(f. fo) =N (0, [%N;V %ND (3.37)

which is the same as the one of the subset of regressors of equation 3.31, except for that Q. «
is replaced by the full K, . As a result as already said, the predictive mean is the same as in
case of the subset of regressors method, while the variance is not:

—1 -1
7(fily) =N (Q*,N (Qua+031) v, Kup = Qv (Qun +021) QN,*> , (33

— N (a,;ZK*,NZKM,Ny, Kew — Qup + K*,MZKM,*)) (3.39)

where again X = ((7,{ ZKM,NKN,M + KM,M)_l. Now unlike the subset of regressors ap-
proach, which yields a Gaussian Process, in the case of the deterministic training condi-
tional, the covariance function is factually not the same for the latent values corresponding
to the training set and to the ones corresponding to the test set. Since the process cannot
be described as in Definition 2.3.1, it is not properly a Gaussian Process. The computational
complexity is the same, which is O (NM?) operations for training, O (M) for posterior mean
estimates and O (M?) for posterior variance.

Fully independent training conditional The fully independent training conditional (FITC),
also known as sparse pseudo-input Gaussian Process, was proposed by [30]. As in case of
the deterministic training conditional, the original derivation is done by a likelihood approx-
imation which has the form

pWlf) =qlfm) =N (Kf,fMK;NlI,foM/ diag (KfM,fM - Qf,f) +Uﬁl) : (3.40)

3.2. Global approximations 31

The corresponding training and test conditionals are [24]:

N
q(flfm) = 11 =N (KNMK]_/[leM/ diag (Kf,f - Qf,f)) , (3.41)
q(f*|fm) =N (felfm)- (3.42)

As we can see, the approximation does not induce a deterministic relation between fy; and
f- The associated effective prior is given by:
) . (3.43)

—dia —K "

-0 o [501
Q*,I\] K*,*

The only difference with the fully deterministic conditional is that the sub-matrix associated

with f is exact on the diagonal. The predictive distribution is:

9 (Fely) = N (Qen (Qua+)y, Koo = Qun (Qun +4) ' On) (3.44)
=N (K*,NZKM,NA—ly, Kiw — Qur + K*,MZKM,*) , (3.45)

where ¥ = (KM,NAflKN,M + KM,M) land A = diag (KfM/fM — Qs+ U%I). As in case of

the deterministic training conditional, the underlying process is not a Gaussian Process. It
can however become one if we allow for the following joint prior:

On,N — diag (Qf,f - Kﬂf) QN -]) (3.46)

1 Jx) = N 0,

1) ([QiN On,N — diag (Qf,f - Kf,f)

as the covariance function would in this case be k (x, x') = k (x, x") +8; j (k (x, x") —k (x,x')).
This sparse approximation method is referred to as fully independent conditional in the
unifying framework of [24], and has the same computational complexity as the other Nys-
trom based methods. One possible improvement that maintains the same computational
complexity is to retain the exact covariances on a larger portion than only the diagonal, i.e.
considering training conditional having exact block-diagonal matrices. The name assigned
by [24] to this approach is the partially independent training conditional, and recommends
using % blocks of size M x M. Once more, the joint prior would not be a Gaussian Process,
which can be corrected by allowing the test conditional to have a similar structure.

Posterior approximations

Unlike prior approximations, posterior approximations do not rely on modifying the joint
prior p (f, f«), and rely instead on approximating the predictive posterior distribution di-
rectly. As all sparse approximations, a set of M inducing i.d.d. variables and locations
(Xm, fm) is considered. By the full Gaussian Process prior assumption of Equation 3.16 and
the posterior predictive equations 2.54 we have (using Nystrom notation Qnyn = Ky n —
KN,MKX/EMKM,N) that:

plf) =N (ylf, U%I), (3.47)
p(f1fa) = N (FIKnmKndaafit, Kun = Quin) (348)
p(fm) =N (fml0, Kpm) - (3.49)

Applying Jensen’s inequality on log p (y|fam) leads to:

log p (y|fm) =108 Efi5,,) (P (WIfm)) = Eps5,) logp (vlfm)) := L. (3.50)

Note that the difference £1 — log (y|fum) is the
Kullback-Leibler divergence KL (p (f, fm); p (f|fm, v)) defined as:

32 Chapter 3. Gaussian Process Regression for large sets of data

Definition 3.2.3 (Kullbach-Leibler (KL) divergence). The Kullbach-Leibler divergence of two
random variables X and Y having probability distributions p and g is:

X
KL (p;q) = Epx) (log ZEX;) = /Xlog 2((9)3 dP (x).

If the assumption is made that p (y;|f;) are conditionally independent, i.e.

N
plf) = HP (vil fi), (3.51)

it can be shown that the bound reduces to:

L diag(Kn,n—Qn,N)

N —
et =[NV (inKN,MK;ﬁMfM) e i (3.52)
i=1

The £1 bound in Equation 3.50 is the basis of all posterior approximations, as it provides a
measure of distance in the KL sense of of the posterior given the data and inducing variables

and the posterior given the inducing variables only. The KL divergence KIL (p (f, fm); p (flfm,y))
is minimized when there are M inducing variables fj; such that f = fjs and that Qny N =

Ky n, which implies that e“1 = p (y|f) achieving equality in the bound of Equation 3.50. The

idea behind this type of posterior distribution is to then maximize the bound with respect to
variational parameters, minimizing the KL divergence.

Variational free energy The most well known sparse posterior approximation is the vari-
ational free energy method (VFE) proposed in [35]. Herein the author derives a bound by
marginalizing out the inducing variables fy; such that:

logp () = log / p (ylfm) p (fm)dfm > log / e“1p (fu) = Lo, (3.53)
which leads to:
_ 1
Ly = log N (y|0, KKt aKmu + a,%l) — 5t (Kny = Q) - (3.54)
n
Note that: .
Ly =logqprc — 552 (KnN — QNN) - (3.55)

n

Hence the £, bound is the same as the DTC likelihood except for the trace term which acts as
regularizer [35] and represent the total variance evaluated on the training set, or more simply
as we have seen in Equation ??, the goodness of the Nystrém approximation. It has been
shown furthermore in [35] that £, is increasing as a function of M, i.e. more inducing points
give a model that fits the training data better and that is closer (in the KL sense) to the full
Gaussian Process Regression model. As one would expect from a posterior approximation,
we see that when f)y = f the trace term goes to zero, and the £, becomes the likelihood
of the full model. The related predictive distribution is the same as the DTC one, which is
given by:

q(fdly) =N (Q*,N (QN,N + Uﬁ) - Y, K — Qun (QN,N + 07211) - QN,*) (3.56)

—N (o;ZK*,NZKM,Ny, Kiw — Qur+ K*,MZKM,*)) (3.57)

where again X~ = ((Tn’ 2K MNKN M+ Ky, M) ! The only difference with the DTC approach is
thus related to the pseudo input determination, which can be performed jointly with the hy-
perparameters by maximizing £,. Similarly to the VFE method, the FITC likelihood recovers
the full likelihood when fj; = f. However by its construction (and in practice due to the
absence of the regularization term), the full likelihood is not its the global optimum, leading
to predictions which can be potentially better than the ones of the full model. In this sense

3.2. Global approximations 33

the examined prior approximations, and in particular the FITC, can be seen as models which
differ from the full Gaussian Process Regression formulation, in contrast with posterior ap-
proximations. The approach of [35] presented above requires thus the same computational
costs of O (NM?). This was reduced by [45] by applying stochastic variational inference
(SVI) coupled with with stochastic gradient descent to the bound of Equation 3.53 leading
to a complexity of O (M?), being independent of the size of the set of data. The approach
was generalized by [50] to DTC, FITC and their variants, although one of the limitations is
that the optimization of the inducing points cannot be carried out jointly with the hyperpa-
rameters learning. Although the computationally advantageous SVI approach of [45] has
no real drawbacks compared to the standard formulation of [35] as it converges to the same
predictive distribution, it will not be examined nor implemented, as the size of the sets of
data in this thesis do not make its use necessary.

Choice of inducing points and model selection

Until this point the selection of inducing points X,s was considered as given. Historically
inducing points have always been selected as a subset of the training set by some kind of cri-
teria in a subset-of-data setting. In fact, every prior approximation presented hereto was pre-
sented in its seminal paper as coupled to a subset-of-data method. As explained previously,
to address the computational complexity of a full combinatorial search, greedy algorithms
have been the standard method of selection. Greedy algorithms such as the ones proposed
in the previous section are quite fast, however in order to perform well they need to have
access to reasonable model hyperparameters, which practically forces to conduct minimiza-
tion of the log-likelihood of the full Gaussian process regression model on either the full
training set or on a randomly selected subset [20]. In their paper, [30] proposed to jointly
optimize the log-likelihood of Equation 3.22 to obtain point estimates of both the hyperpa-
rameters and the inducing points simultaneously, which can be done for all sparse method
considered until now. The advantages of this approach become less evident for large M [61].
The computational complexity of evaluating the log-likelihood of Equation 3.22is O (NM?),
while the evaluation of its gradient costs O (NM?D) per iteration. In any case, obtaining the
global maximum is very unlikely in case of both approaches, as they both carry the risk of
finding a poor global optimum [30].

Structured sparse approximations

Until this point the considered methods can be considered general in the sense that they
do not require any structure in the data or in the choice of kernel. Considering data that
has a particular structure, coupled with a suitable choice of kernel, can give rise to other
approximation methods, labelled structured sparse approximations by [61].

Toeplitz methods (exact) Toeplitz methods were for Gaussian Process Regression were
first introduced in [26]. As one can guess by their denomination, Toeplitz methods are based
on the Toeplitz matrix structure arising in the Gram matrix of an isotropic kernel combined
with the data lying on an evenly spaced one dimensional grid:

Definition 3.2.4 (Toeplitz matrix). Let A € R"™*". If A;; = Aj 11 Vi€ {l,...,m—1}andVj €
{1,...,n—1}, then A is a Toeplitz matrix.

Such structure is advantageous as it is possible to perform Cholesky decomposition and
other normally costly operation in O (N?) provided the matrix is positive-definite [26]. A
full representation of the matrix is furthermore never needed, as in case of the square Gram
matrix the first row or column contains all the distinct elements. The computational cost
of "training" was reduced further to an impressive O (N log (N)) by [52] using fast matrix
vector products. The pitfal of such approximations is that they are suitable for only a very
limited number of scenarios.

Kronecker methods (exact) Kronecker methods were introduced in [65] and [43]. As the
name suggests they revolve around the Kronecker product:

34 Chapter 3. Gaussian Process Regression for large sets of data

Definition 3.2.5 (Kronecker product). Let A € R"*" and B € RP*1. Then:

Al,lB ce Al,nB
C=A®B= :) (3.58)
ApiB ... AunB

where C € R™P*™_More generally, letA = A1 ®---@Ap = ®E:1 Ay, where A; € RCGi*Ca,
Then:

(3.59)

Al,] = All‘(l),]'(n o ..

,‘(D),]'(D)'
where 0 < i(d),j(d) <Gjand0<i,j< N = H,?Zl G4, meaning that A ¢ RITi=1 GaxT1i- Ga,

If we consider inputs (X, y), with x € RP lying on a Cartesian grid such that x € & x
-+ x Xp, and a product kernel k (-, -) having form:

D
k(x,x') = Hki (xi,x7), (3.60)

i=1
where k; (-, -) is the factor of k (-, -) associated with dimension i, then the i, j-th entry of the
Gram matrix associated with k (-, -) can be expressed in the form of Equation 3.59, and thus

by Definition 3.2.5 as:
D

Knn = Q) Ky, (3.61)
d=1

where Ky y;, is the Gram matrix constructed on basis of the i-th dimension of the whole X,
N being in this case N = [T2; N;. By the mixed-product property of the Kronecker product
((A®B)(C® D) = AC ® BD), the Gram matrix Ky y can be efficiently decomposed by
Cholesky decomposition:

Kyn = LLT, (3.62)

with L = ®F_, L;, L, being the lower triangular matrix resulting from the Cholesky decom-
position of the Gram matrix belonging to the d-th dimension. More importantly, in the work
of [65] and [43], the eigenvalue decomposition of the full Gram matrix plays an important
role, and similarly the Cholesky decomposition, can be decomposed as:

Kyn = UAUT, (3.63)

where again the matrices can be decomposed as Kronecker products along its dimensions.
Both decompositions are comparable in complexity, namely O (N?), and are obtainable ba-
sically for free for D << N. The reason why eigenvalue decomposition is substituting the
in this context more familiar Cholesky decomposition, is that it is used by the authors to
perform the matrix vector multiplication in the predictive mean posterior distribution of
Equation 2.54 in O (N) instead of the usual O (N?) by expressing it as a tensor product [65].
The overall computational complexity regarding "training", i.e. what in the normal Gaussian
Process Regression framework encompasses Gram matrix inversion and the aforementioned

. D+1 . . L.
product, requires only O (DN T+) operations as thanks to eigenvalue decomposition as we
can efficiently use fast matrix vector products:

(K+ 1) Ty (uau” +a2) Ty—u (A+a?) “uty, (3.64)

Similarly to the Toeplitz methods, which complement Kronecker methods, the incredible
performance does however require the data to be structured, which is a major drawback, as
in most real-life scenarios it is either simply not structured or might be affected by corrup-
tion. The latter case was analyzed by [43] by introducing dummy variables and responses,
and non-stationary noise. Furthermore, Kronecker methods suffer from the "curse of dimen-
sionality", as the grid blows up in size exponentially, limiting further their applicability.

3.2. Global approximations 35

Structured kernel interpolation As explained in the previous paragraphs, the Toeplitz and
Kronecker methods reduce tremendously the amount of operations needed for "training",
the main requirement being that the data is structured on a lattice. In order to overcome this
limitation, one could think of considering a sparse approximation e.g. SOR, which as has
been seen can be regarded as a standard Gaussian Process Regression model with a kernel
embedding the Nystrom approximation of the type k (x,x') = Q, v = Ky, MKI_/I%MK M.y, and
then place the M inducing points on a grid, in order to allow computational gains to be
made by Kronecker or Toeplitz methods when it comes to the handling of Ky » in the pre-
dictive posterior mean of Equation 3.32 (in case of SOR). In this way the O (M?) operations
embedded in the O (NM?) total operations could be reduced to superlinear.

In order to further reduce the total O (N Mz) operations of the considered (unstructured)
sparse approximations, the idea behind structured kernel interpolation (SKI) presented in
[52] is to approximate the Ky »; Gram matrix by interpolating with the smaller Gram ma-
trix of the inducing points Kp; y, e.g. if one considers linear interpolation in a one dimen-
sional scenario in which the Toeplitz approximations is applicable, the i, j-th entry of Ky u

given by k (xi, xM].) it can be expressed approximated as k (xi, xM].) ~ wk (xMa/xM]) +

(1-w)k (be, xMj>, where x);, and x), are the inducing points bounding x;, and w; and

(1 — w;) are the interpolation weights. The general form of SKI interpolation can thus be
written as:
KN,M ~ WKM,Mr (365)

where W is the sparse matrix containing the interpolation weights. When substituting the
approximation of Equation 3.65 in the training set Gram sub-matrix of the joint prior of SOR
of Equation 3.31, we have the following;:

KN ~ KKyl yiKn = WKy mKyd KW' = WKy W' (3.66)
We can see that the SKI approximation of Equation 3.66 allows matrix-vector multiplication
with O (N + M?) if the inducing points are unstructured and W is sparse. If Kronecker

structure is exploited, we have again O (DM%> operations, O (N + Mlog (M)) in case

of Toeplitz structure, allowing fast "training" to take place by solving Equation 2.54 with
conjugate gradient. To evaluate the log-marginal likelihood, it is also necessary to compute
log |Kn,n + 01|, which is in SKI approximated by using the first N eigenvalues of Ky u:

N N
log ‘KN,N + 02| =) log (AN,Ni + (7,21) ~) log (Z\I\/IIAM’Mi + (7,21) , (3.67)
i=1 i=1
where here Ay y and Ay are the eigenvalues of the full and grid Gram matrices respec-
tively. The approximation is shown to be asymptotically consistent for large N.

Generally speaking, SKI works well, i.e. requires less inducing points, if the kernel is
smooth. More involved kernels require better interpolations, leading to a fuller W. Fur-
thermore, as SKI can make use of Toepliz or Kronecker structure, it works well for small
dimensional datasets, in particular with D < 4 as it otherwise incurs in the "curse of dimen-
sionality" [61], as the grid size blows up exponentially in D.

The authors in [52] also point out the interesting connection of SKI with the unifying
framework of [24]. In particular, by performing interpolation using the Gaussian Process
Regression predictive posterior mean of Equation 2.54 (by setting ¢, = 0) on the kernel it-

self, such that the training set is S = { (xam,, k (2, xl\]))f\i1 }, we get back the SOR kernel.

Likewise all other sparse approximations examined by [24] can be derived in this way, high-
lighting that the inducing points are actually performing the duty of interpolation points.
The authors name SKI configured to use Kronecker or Toeplitz structure in combination
with sparse interpolation KISS-GP, as the interpolated kernel is used in Gaussian Process
Regression.

The SKI approach which makes use of structure in the data and in the kernel (such in the
"full" Kronecker or Toeplitz methods) is able to partially lift the "curse of dimensionality”,
since inference operations are carried out dimension-wise. In particular, such approach can
benefit as well from early stopped Conjugate Gradient solves, see [60].

37

Chapter 4

Longstaff-Schwartz algorithm and
Option evaluation

In this section the basics behind the Monte Carlo methods and options are introduced, as
well as rudiments of option pricing, in order to explain the Longstaff-Schwartz algorithm.

4.1 Options

Options are financial instruments which are members of the more general family of deriva-
tives, which as the name implies, derive their value on some underlying asset. For the sake
of completeness and for the unfamiliar reader, we give below the definition of option in
its most general form and a summary of the most important results in the field of option
pricing:

Definition 4.1.1 (Option [29]). An option is the right (but not the obligation) to buy or to sell
one unit of one (or more) risky asset(s) at a prespecified fixed price within a specified period.

As one can imagine, different constructions are possible, i.e. different types of options
arise depending on the type and number of underlying assets, the definition of time period,
and so on. In practice however, two very simple options are often encountered, namely the
call and put options, whose definitions are given below:

Definition 4.1.2 (Call option [29]). An call option is the right (but not the obligation) to buy
one unit of a risky asset S at a prespecified fixed price K within a specified period. The claim
of a call option is given by:

P(S) = max (S —K,0). 4.1)

Definition 4.1.3 (Put option [29]). An put option is the right (but not the obligation) to sell
one unit of a risky asset S at a prespecified fixed price K within a specified period. The claim
of a put option is given by:

P(S) = max (K —S,0). (4.2)

The "prespecified fixed price" is usually called strike price. Assigning a value to options
is called pricing. Option pricing is in practice done by using the Black-Scholes model [2], or
on improved models which build on it. In the Black-Scholes model we assume the existence
of a risk-free asset B and a stock S whose dynamics are described as follows:

dBt = T’Btdi’, (43)
dS = uS;dt + o SdW,. (4.4)

Here the dynamics of the risk-free asset are described by a simple differential equation, with
B driven by r, known as the risk-free rate, while the one of the stock are described by the
stochastic differential equation of the Geometric Brownian Motion (GBM), described by u €
R, the drift, and o € R, the volatility. W; here indicates the Brownian or Wiener increment
at time t, s.t. Wy — Ws ~ N (0,t—s) : Vs, t : s < t. The model is assumed to be valid
int € [0, T], where T is the maturity, and the information about the state of the market is
contained in the natural filtration F; generated by the GBM.

38 Chapter 4. Longstaff-Schwartz algorithm and Option evaluation

The most important result arising from said model is given by the Black-Scholes-Merton
theorem which we report below:

Theorem 4.1.1 (Black-Scholes-Merton theorem). In the Black-Scholes-Merton model, any
option i, which is a non-negative F;-measurable random variable, square integrable under
the risk-neutral probability measure Q, is replicable by means of an admissible strategy, and
the value at time ¢ of any replicating portfolio is equal to:

Vi = Eq (e*f(T*fhpm) . (4.5)

This gives us a practical tool to price options, which is in fact easily extendable to other types
of models. Here Q is the risk-neutral measure, a probability measure such that the 153—’; isa
Martingale, i.e.

St Ss

_— = — . < .
Eq (Bt |.7-"S> B’ Vs:s <t 4.6)
Eq (|S]) < o0, V. (4.7)

The existence and the uniqueness of Q are a consequence of the fundamental theorems
of asset pricing, see for instance [29].

Depending on the allowed exercise times, different options types arise. Commonly en-
countered options are:

1. European options allow only one exercise time t = T, the option maturity.
2. American options allow the holder to exercise V¢t € [0, T].

3. Bermudan options allow exercise at a set of specified exercise times {t, ..., t,} such
thattg <t <..<t,=T.

At first glance, the Bermudan option is similar to both the European and American options.
As we will see later in fact, this similarity allows the pricing of American options by means
of a Bermudan option with many exercise opportunities, highlighting the importance of this
thesis work.

European options

European options are arguably the simplest type of options: the holder is allowed to exercise
at one time, in which t = T. Let us formally define an European option:

Definition 4.1.4 (European option). A European option consists of a F; measurable payout
process terminal payment 7 > 0 at time ¢ = T such that:

Eq ((yr)") < oo for some p > 1. (4.8)

Pricing such option is done using Theorem 4.1.1. In case of European options, it is of-
ten not possible to have analytical or closed for pricing. A notable exceptions is given by
the pricing of European calls and puts options valued under the Black-Scholes model, see
Subsections A.3 and A.3 in Appendix A. In general however European options are priced
either by solving the Partial Differential Equation associated with the pricing problem (see
Feynmann-Kac theorem, for instance in [36]), or by simulating the underlying stock and de-
termining the option price by approximating the conditional expectation under risk neutral
measure in Equation 4.5 either by trees (e.g. bynomial trees) or Monte Carlo simulations. An
example of a Monte Carlo simulation used to price a European Put option is given below in
Figures 4.1a and 4.1b for the simulation of the stock value and the values of European puts
respectively at different times.

4.1. Options 39

WWMM«««wm»

50 55 0 5 10 15 20 25

(A) Distribution over time of stock following GBM (B) Distribution of the value of a European put op-
with Sy, = 36,7 = 0.06 and 0 = 0.2. tion with Sy, = 36, r = 0.06, 0 = 0.2, K = 40 and
maturities 7 = {1, ..., 10}.

American options

Unlike European options, American options do not have closed form solution for pricing as
American options allow to exercise at every moment in time before expiration. We first of
all give a definition of American option:

Definition 4.1.5 (American option). An American option consists of a F; measurable stochas-
tic process ()¢ (o r) with ¢y > 0and a final payment ¢ at the exercise time T € [0, T] chosen
by the holder of the option. Furthermore 7 is assumed to be a stopping time, ; is assumed
to posses continuous paths and that

Eq (sup (tlJT)”) < oo for some p > 1. 4.9)
7€(0,T]

Since the buyer of a American (or Bermudan) option is allowed to choose when to ex-
ercise, the exact time of the payment is not known in advance to the seller. However for
each fixed exercise strategy, the payment ¢, where 7 is a stopping time in [0, T, is uniquely
determined. Intuitively we can therefore imagine that the fair price is given by following the
exercise strategy which maximises the fair price in Equation 4.5, see [36] for a more rigorous
argumentation, which is beyond the scope if this work. We hence state the result regarding
the fair price of the American option.

Theorem 4.1.2 (Fair price of an American option). The fair price of an American option ¢ is
given by:
Vi, = sup Eq (e " 9| Fy), (4.10)
7€(0,T]
and there exists a stopping time T € [0, T| such that the supremum will be attained for the
hedging strategy corresponding to T*.

Note that showing the existence of the optimal stopping time T and the form of the valu-
ation process is involved. However once can see quite easily that if the price of the American
option differs from its fair price, an arbitrage opportunity arises. Furthermore by Theorem
4.1.2 we can see that the optimal strategy is to exercise the American option at the first time
7* when B+ coincides with the option price. However there is no explicit formulation for T
unless one consider the Perpetual American Put as approximation, meaning that computa-
tional methods are needed for their pricing.

40 Chapter 4. Longstaff-Schwartz algorithm and Option evaluation

Bermudan options

Bermudan options can be seen as a middle ground between European and American op-
tions, as apart from allowing the holder to exercise at maturity, they allow other finite exer-
cise opportunities.

Definition 4.1.6 (Bermudan option). Consider the time instants such that t) < #; < ... <
t, = T, and where T = {t,...,t,} denotes all possible exercise moments. A Bermudan
option consists of a set of F; measurable random variables 1; > 0 and a final payment ¥ at
the exercise time T € 7. T is assumed to be a stopping time and furthermore

Eq [sup (Br)" | < oo for some y > 1. (4.11)
TeT

Similarly to the American, we state the corresponding fair price theorem and the exis-
tence of an optimal strategy.

Theorem 4.1.3 (Fair price of a Bermudan option). The fair price V;, of a Bermudan option
is given by:
Vi, = supEq (e | Fyy) (4.12)
teT
where T = {to,...,.t, = T} is the set of possible exercise moments and, and there exists
a stopping time T* such that the supremum will be attained for the hedging strategy 7t*
corresponding to T*.

So in order to price American or Bermudan options with Monte Carlo methods it is
not only necessary to generate a number of paths, but also to determine when it is opti-
mal for the holder to exercise. Furthermore in practice the pricing of American options
is done by approximating them with their Bermudan counterpart, under the condition that
max; (t;j11 — t;) — 0. The goodness of this approximation is analyzed in [22] and [23]. Differ-
ent approaches to do so are viable, one of them is the Longstaff-Schwartz algorithm, which
is based on the Monte Carlo method.

4.2 Monte Carlo methods

Monte Carlo methods are a class of algorithms which rely on repeated sampling of random
variables in order to obtain numerical results. They are most useful when it is difficult or
impossible to rely on other approaches, which is often the case when pricing exotic options.

The main idea here is to approximate the expected value by an arithmetic average of the
results of a number of independent experiments which have the same distribution. The basis
of the method is the strong law of large numbers [36][44].

Theorem 4.2.1 (Strong law of large numbers). Let (X™), _n be a sequence of integrable,
real-valued random variables that are independent, identically distributed and defined on a
probability space (Q), F,P). Then, we have almost-surely:

1 m . .
— Y X(w)—E(X') form— co. (4.13)
1 x5 ()

This bring us to the (crude) Monte Carlo method:

Algorithm 3 (Crude) Monte Carlo method

Generate a sequence (X™), . of integrable, real-valued random variables that are inde-
pendent, identically distributed and defined on a probability space (Q), F,P).
Approximate E (X) ~ L -1 Xi(w).

This method is referred as crude since there are many improvements that can be made
when dealing with the error. Given the assumption of finite variance, one can get idea about
the error one by measuring the sampled standard deviation. This is possible as for the central
limit theorem:

4.3. Longstaff-Schwartz algorithm 41

Theorem 4.2.2 (Central limit theorem). Let (X™), . be a sequence of independent real-
valued random variables that are identically distributed with mean y and finite variance ¢
and are defined on a probability space (€}, F,P). Then, the normalized and centralized sum
of these random variables converges in distribution towards the standard normal distribu-

tion, i.e. we have:

m

j=1 X —mp
mo

So for large m we see that the standard deviation of the error is of order O (ﬁ) The
simple idea behind the Monte Carlo method is what lies behind the Longstaff-Schwartz

method for the pricing of Bermudan (and American) options.

— N(0,1) asm — oo. (4.14)

4.3 Longstaff-Schwartz algorithm

The Longstaff-Schwartz algorithm [12], also known as least-squares method (LSM) is the
most popular algorithm used in real-life applications when it comes to pricing Bermudan
and American options with more than one underlying [36]. When dealing with one under-
lying, binomial methods or finite difference methods perform better, but become impractical
from a computational point of view as the number of underlying increases [36]. The algo-
rithm makes use of backward dynamic programming by which the optimal stopping time
T* is determined for each path by starting at t = T and progressing backwards.

To elucidate the algorithm we introduce again the set of exercise times 7 = {fo, ..., tx}
and associated state variable X = {Xj, ..., X;; }, such that X; € R™, where m is the number of
generated paths.

Now consider one realized path j. Since the optimal exercise strategy is not known a
priori, we start from the time of expiration ¢t = T and progress backwards in time. At each
step we evaluate whether it is optimal to exercise or to wait.

Att = t, = T if the holder has still the opportunity to exercise, he should do so, since
the intrinsic value ¥ of the option is non-negative. The value of the option is thus equal

to its intrinsic value, i.e. Vt]n = ¢ lp{n. Going back one step at t = t,,_1, the holder needs

to evaluate whether it is optimal to exercise and receive lpinil or wait. The value of keep-
ing the option is in such case Eq (e’””*l B{n |]-'tn), hence the holder needs to exercise if

e’”“*ltp{nfl > Eq (e’”"l/;{n |]:t”71>, in other words if thnil > Eq (Vt],, |‘7:tn_1)' Depend-
ing on this, the optimal exercise time T* conditioned on not having exercised before t,_;
and on Xin—l equals t; or t,_1. The same decision making process is applied to all paths
j, and then recursively to the previous time steps i. This decision making process can be

described as follows in Algorithm 4, where Tl-] = 1indicates that the optional exercise at time
t; for paths j is to exercise:

42 Chapter 4. Longstaff-Schwartz algorithm and Option evaluation

Algorithm 4 Backward dynamic programming for determining the exercise strategy of
Bermudan options

Set T = {to, ... tn}

Generate X' = {X, ..., X }, with X; € R"

Initialize exercise time vector T = {1y, ..., T, }, with 7; € R™ and 7, = 1 for all paths j

Set V| =e "y (Xi) for all paths j

forie {n,n—1,..,1} do

forje {1,..,m} do '
Determine the optimal conditional exercise strategy Tl-] by:

T =

i et]
i {’L’i‘, if th_ > E (V'fi+1|fti) (4.15)

]
T else

end for
end for

In order to use this algorithm in practice, a reliable way of computing the expectation
in Algorithm 4 is needed, also known as continuation value. The idea behind Longstaff-
Schwartz is to approximate the continuation value as a linear combination of L basis func-
tions:

L
CTi = (VTH—l |]:t[) ~ 2 wl-,k<pk(Xt].), (416)
k=0

where X; is the state process at the i-th time-step, ¢y is the k-th basis function and w; j is its
associated weight corresponding to time i. The justification behind the approach is related
to the definition of conditional expectation as projection.

Theorem 4.3.1 (Conditional expectation as projection). Let (X, F,IP) be a probability space,
let 7 C F be a sub o-algebra of F and let X be a L? random variable. Then E (X|F) is the
projection of X € L? (F) onto L2 (F).

By Theorem 4.3.1, an estimate of w; can be obtained by minimizing the L? distance
between our variates and regressor function by solving the following optimization problem:

w

2
w; = argmin (]EQ (Ve 1Xe) —) i,k¢k(Xt,-)> . (4.17)
w;

j=0

The solution of the linear regression problem is the optimal coefficient vector
wh = (wl’fl, ey wl*N) such that:

-1
w = (1) HEy, 19)

where Hj is the design matrix with H;(j, k) = ¢ (X}, ;) and y; is the vector y; ; = [E (VT]‘ Xti> :
i+1

The above regression-based method can be improved by considering the stopping time of
each path, enabling to set up an interleaving mechanism over the time levels for comparing
the cash flows. This gives rise to the Longstaff-Schwartz Algorithm 5, where only points
in-the-money enter the regression:

4.3. Longstaff-Schwartz algorithm 43

Algorithm 5 Longstaff-Schwartz for calculating the price in Bermudan options
Set T = {to, ey tn}
Generate m independent paths X = {Xj, ..., X, }, with X; € R"
Set V] =e "y (X{) for all paths j
forie {N—-1,..,1} do
Solve the regression problem in Equation 4.17 i.e. compute optimal weights by:

-1
wi = (HH;) Hy (4.19)
Compute the estimates of the continuation values for all paths j by:
IV e (x o
Cr :=Eq (Vti+1’}—ti) ~ Eq <Vti+1| {Xt,}-_ Vg (Xt,') > 0> ~ Z wi,k‘P]'(Xfi)'
=1 k=0
(4.20)

Determine the optimal conditional exercise strategy for all paths j by:

Vi = ‘P(XQ ity (Xi) > ¢}

(4.21)
! V., else
tity

end for ,
Se iy — s (F 1LV, 50).

The last step is necessary as there cannot be an exercise opportunity at the first time-
step tp. The alternative is to perform regression over the all paths, essentially substituting
Equation 4.20 with:

Cr :==Eq (sz‘+1 | Fi;) ~ Eq (Vti+1 X)), (4.22)

1

and Equation 4.21 with:
V] =max(y(x]).cl). (4.23)

An example of pricing a simple Bermudan put with a the LSM algorithm is given below. In
Figure 4.2a we can see the distribution over time of the considered stock, while on the right
in Figure 4.2b we can see the distribution of the value of the option evolve (backwards) in
time: at the last exercise opportunity at t = 1 the distribution is quite flat accounting for the
uncertainty in the underlying stock price, while progressing to earlier times the unbiased
option price is recovered by means of the stock model.

44 Chapter 4. Longstaff-Schwartz algorithm and Option evaluation

5

-

-

50 s5 10 12 14

(A) Distribution over time of stock following GBM (B) Distribution of the value of a Bermudan put
with 54, = 36,7 = 0.06 and o = 0.2. option with S, = 36, r = 0.06, ¢ = 0.2, K = 40
and exercise possibilities 7 = {0, ..., 10}.

There are several things that need to be addressed when it comes to Algorithm 5.

Convergence

There are two sources of error in the LSM algorithm, namely the error in the Monte Carlo
simulation consisting in a time discretization error and a truncation error, and the discretiza-
tion error in the approximation of the continuation value. The convergence of the LSM esti-
mate was first analyzed by Longstaff and Schwartz themselves in [12] in case of geometric
Brownian motion paths. More general rigorous results regarding convergence can be found
in [14]. Therein the authors have firstly introduced:

Vb= sup Eq(e¢q), (4.24)
Tin S{‘P1/¢L}

where the set S {¢y,...¢r} contains only exercise strategies based on the solution of the
regression problem with basis functions ¢y, ...,¢. Secondly the authors introduced VtL’m
which equals the Longstaff-Schwartz estimate as computed above in the LSM algorithm 5,
i.e. with m simulated paths and L basis functions. Under some technical conditions, among
which completeness of the basis function set, it is proven that with a growing number L of
basis functions the approximating option price Vtg converges to the real option price with a

L) [14], ie.

convergence rate of O (T

N———

VE—> Vi, as L— oo, (4.25)

The authors also prove that with a growing number of simulated paths, the Longstaff-
Schwartz estimate Vtﬁm converges almost surely towards the approximating option price
Vi ie.

VOL’m — th(; almost surely as L — oo. (4.26)

Hence for a fixed number L of basis functions the LSM algorithm converges to the solution of
the optimal stopping problem of Equation 4.25, and not to the option price. It has also been
shown in [19] that the number of paths required for convergence grows exponentially with
the order of polynomials used. These results are important, however the practical question
regarding how many, and more importantly which, basis function to choose remains open.
In fact, the complexity of the model can be addressed efficiently when approaching the prob-
lem from an empirical risk minimization point and choosing a model which minimizes the
true risk (generalization error) by means of cross-validation [39]. However in financial liter-
ature and practice the choice of basis function and their number seems often to be based on
experience or trial-and-error.

4.3. Longstaff-Schwartz algorithm 45

Basis functions

The parametric estimate which is the core of the Longstaff-Schwartz algorithm, is greatly
affected by the choice of basis functions. In their seminal paper [12], Longstaff and Schwartz
made use of weighted Laguerre polynomials, however nothing prohibits another choice.
Some have argued in favour of simple polynomials, power series, Legendre polynomials,
Hermite polynomials, etc.

The choice of basis functions, explanatory variables and their number has serious reper-
cussion on the results due to the danger of overfitting and are in general strongly dependent
on the underlying process and payoff function. This is why some have rather arbitrarily sug-
gested to use only polynomial terms up to second degree of meaningful financial variables
that drive future exercise [17]. Other have argued instead of using monomial basis functions
up to the third order, possibly including the payoff function [44].

As stated previously, pricing of American options can be done using the LSM algo-
rithm by approximating them with their Bermudan counterpart, under the condition that
max; (ti+1 — t;) = 0. The goodness of this approximation is analyzed in [22] and [23], having

as result that the L? error bounds are of order O (ﬁ) , where 1 is the number of time-steps.

Improvements

The basic LSM algorithm performs the regression only on the paths that are in-the-money,
since early exercise is only relevant when the option is in the-money. This was firstly sug-
gested by Longstaff and Schwartz themselves [12]. While this does improve the estimate, it
also introduces the problem of having possibly fewer paths to regress. When so, it is com-
mon practice to not early exercise.

To lower the bias it has been suggested in [19] to perform first the optimization of the
exercise strategy and then simulate another set of independent, identically distributed paths
to price the option. In practice however, the bias of the LSM algorithm is already low [44].

If the value of the corresponding European option is available at exercise, it can be used
as lower bound for the continuation value [44]. One should therefore early exercise only if
the intrinsic value is above both the computed continuation value and European value. The
European value, if available, can also be used as control variate as done in [25] and [63].

Lastly, the parametric regression step can be substituted by a non-parametric regression
step, rendering thus model selection way easier. For Gaussian Process Regression, this was
done recently in [62] and [63].

In [62], the authors introduce Gaussian Process Regression as a substitute for the linear
model giving rise to the least-squares problem of Equation 4.18. Furthermore they introduce
batched Gaussian Process Regression in order to account for the heteroscedasticity of the
noise present in the realizations of the process characterizing the continuation value. As will
be shown, the associated noise violates the Gaussian assumption due to the non-negativity
of the continuation value. In this context, for every realization of a simulated path, a set of
n' i.d.d. replicating paths is generated. For each realization x, the corresponding sample
mean and sample standard deviation of the continuation value are computed. Considering
a total of m generated paths, the regression step takes place using the 7 couples consisting
of the realizations of the underlying and the batch-average of its corresponding continuation
values and the obtained estimate of the noise. Apart from accounting for heteroscedasticity,
this approach offers various benefits such as a reduced computation complexity amount-

o(x)

ml
marginalized log-likelihood and with less local maxima. The author also analyzes some
sparse approximations to Gaussian Process Regression in order to alleviate the computa-
tional burden even further by limiting the number of paths to be included in the regression
step. The numerical results show that the batching can speed up the pricing and improve
the accuracy of the results.

In [63], the authors improve the work of [62] by using the value of the European coun-
terpart of the option in consideration as control variate, based on the works of [25]. They
consider homoscedastic Gaussian noise in the regression step, which is estimated jointly

ing to O ((%)3), a better signal-to-noise ratio E (€2 (x)) = resulting in a smoother

46 Chapter 4. Longstaff-Schwartz algorithm and Option evaluation

together with the other hyperparametrs by marginal log-likelihood maximization on a ran-
domly chosen control set. The reduced variance estimated continuation value is then given
by:

Cti—l = Pti—l (Vti) — 1Tty (pti—l (Yl‘i) —E (17’] (th) |Xti—1)> ’ (4.27)

where Py, | (+) is the predictive mean of the Gaussian Process Regression model at 7;, , and
flt;_, is chosen such to minimize the variance of C;, |, resulting in:

_ Pti—l (Vfini) - Pti—l (Vti) Pti—l (Yti)

Mtiq (4.28)
Py (Yg) =Pty (Yti)z
The control variates are adjusted as follows:
Vi, = Eqg (#J (Xt,) |Xti71) if, (Xti—]) >Chy (4.29)
Y, , =Y, else ! '

and initialized as Y}, = ¢ (X},).

The numerical results show that Gaussian Process Regression can be successfully em-
ployed in the estimation of the continuation value in the setting of Equation 4.18, consis-
tently outperforming the traditional Longstaff-Schwartz method. Adding control variates
further improves the results at a non-negligible computational overhead keeping in mind
that posterior mean estimates scale with O (m?), m being the number of paths under con-
sideration.

Based on these results, it seems a sensible idea to better investigate the effects of using
sparse Gaussian Process Regression models instead of the full GPR in order to reduce overall
computational cost, possibly combining it with batching, in order for even greater compu-
tational savings to be made. To do this the examined sparse approximations to Gaussian
Process Regressions are compared in different scenarios having the form of numerical ex-
periments. The methods which are best fit to the application to the LSM algorithms are then
compared in the LSM setting.

47

Chapter 5

Numerical results

In this chapter the various approximations presented so far are tested. The examined ap-
proximations, except for SKI, as well as the full method are implemented in Python using
the NumPy [28] scientific computing library as well as TensorFlow [49], both free to use and
open source. The TensorFlow implementation allows, besides performance gains obtainable
by GPU computing, to compute the gradient of the marginalized log-likelihood function by
automatic differentiation at little computational cost, reducing further the "training" time.
SKlis adopted from the GPyTorch [59] package, based on the deep learning package PyTorch
[59], similar to TensorFlow, while the implementation of linear regression used is taken from
scikit-learn [38]. The code and results shown below can be found in the ABN-AMRO Azure
DevOps environment at: https://dev.azure.com/cbsp-abnamro/FRR-RiskModels/_git/
GaussianProcessActiveLearning.

The choice of hyperparameters and inducing points is carried out by maximizing the
log-marginal-likelihood, said optimization being carried out by means of the default opti-
mizer of the SciPy library [11], the quasi-Newton method of Broyden, Fletcher, Goldfarb, and
Shanno (BFGS). In case of SKI, the method of gradient ascent is utilized, with learning rate
determined by empirical risk minimization on a new validation set. Optimization of the hy-
perparameters is carried out in R™ by optimizing with respect to their exponentiated value,
and are initialized by sampling from the uniform distribution such that 6; ~ ¢/ (107>,10) to
in principle minimize relative error. As shown in [57] this choice has however little impact
on the final results of the optimization problem. When present, support points are optimized
jointly with the hyperparameters, and are initialized uniformly from the training set as rec-
ommended by [30]. Five optimization runs are performed, the best is used for inference.

When dealing with linear regression we consider polynomial basis functions, their num-
ber being chosen by empirical risk minimization on an i.d.d. generated set of data.

The choice of error metric befalls on the mean-absolute-error and maximum-absolute-
error which are easier to interpret than say the means-square-error. Apart from these two
error metric the R? score is presented for each experiment, which is nonetheless related to
the sample variance and thus to the mean-square-error.

A general overview of the various methods is given in the first set of data, the normal-
ized sinc function. Subsequently, the continuation value estimation problem is analyzed
by means of examples which allow the determination of the exact continuation value, used
as reference. Finally pricing of Bermudan options is performed and compared against the
traditional LSM algorithm.

5.1 Sinc function

In order to compare the methods which have been brought forth in the previous chapter, a
simple and easily observable one dimensional toy problem is generated following the exam-
plein [61]. A relatively large (when considering full Gaussian Process Regression) amount
of points, 10000, are sampled uniformly across the [—4, 4] interval in order to accentuate the
differences in performance of the examined algorithms. The latent function f is chosen to be

the normalized sinc function: _
sin (7tx)

f(x) = S, 5.1)

7TX

https://dev.azure.com/cbsp-abnamro/FRR-RiskModels/_git/GaussianProcessActiveLearning
https://dev.azure.com/cbsp-abnamro/FRR-RiskModels/_git/GaussianProcessActiveLearning

48 Chapter 5. Numerical results

Observations are produced by adding homoscedastic noise such that y = f + €, where
€ ~ N (0, 0.04%). A plot of the underlying function and its relative observations is given
in Figure 5.1a. Subsequently a test set (X, f) of 100000 i.d.d. samples is generated simi-
larly to the training set, which is used to make out-of-sample predictions, i.e. compute the
resulting mean-absolute-error, maximum-absolute-error and R? score. This is done for a dif-
ferent number of inducing points, which are in this setting selected in both scenarios using a
subset-of data method and by jointly optimizing the model log-likelihood together with the
hyperparameters, when dealing with sparse approximations. The considered kernel is in all
cases the squared exponential kernel of Equation 2.75, namely:

=2
k(x,x') = o2 22 2 (5.2)

An overview of the set of data is given in Figure 5.1.

1.2 .

y X
observations 10000 10000
Minimum -0.33 -3.99
Maximum 1.11 3.99

Mean 0.12 -0.02
Variance 0.11 5.36
Skewness 1.47 0.01
Kurtosis 1.09 -1.20

, : , , , (B) Descriptive statistics.
-6 -4 -2 0 2 4 6

(A) Set of data: the red crosses are the data, the

black line is the underlying function. The green

line is the GPR estimate, with its confidence inter-
val in grey.

(C) Histogram of the y values. (D) Histogram of the X values.

FIGURE 5.1: Overview of the set of data.

An graphic overview of the various estimates of the examined methods is given below,
in Figure 5.2, where in-sample prediction are showed in case of 15 inducing points.

5.1. Sinc function

-6 -4 -2 0 2 4 6

(B) ME sampling.

4

—0.4 1 AA A AAAAAA;'AAAAA
-6 4 2 0 2 4 6 -6 -4 -2 0 2 4 6
(€) MMI sampling. (D) SOR.

(E) DTC. (F) FITC.

—=0.4 1 AA A A A AAAAAAAAMNM -0.4 A A A A A A A A A A

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
(G) VFEE. (H) SKI.

FIGURE 5.2: Plots of the various approximations. The black line is the un-

derlying function, the green line is the prediction of the considered approxi-

mation, the blue triangles are the locations of the inducing points. The grey
shaded area represents the 95% confidence interval.

49

A plot of the in-sample results (of Tables B.1, B.3, B.5, B.7, B.9, B.15, B.11 and B.13 in the
Appendix B) is given in the next couple of subsections for all examined methods. In-sample
results are displayed as they are related to the continuation value estimation problem of

50 Chapter 5. Numerical results

the Longstaff-Schwartz algorithm. Comparing in-sample results to out-of-sample results (of
Tables B.2, B.4, B.6, B.§, B.10, B.16, B.12 and B.14 in the Appendix B), we can however see that
in-sample results are worse than their out-of-sample counterpart for most approximations,
meaning that the model is able to generalize well.

Subset-of-data

The examined subset-of-data approximations are compared among each other and with the
full GP. In this setting the hyperparameters are determined on the full set of data for all
methods.

When comparing visually the results of the different SOD methods in Figure 5.2a, Figure
5.2b and Figure 5.2c, we can see that the inducing points chosen with maximum entropy
in Figure 5.2b are located (in this case slightly) more towards boundaries of the data set as
observed in [33] due to the fact that the posterior covariance is largest further away from
sampled locations. These points are likely to waste information, while the ones sampled
with the mutual information sampling scheme in Figure 5.2c does not suffer from this, as the
rule tries to find the set of points which reduce the entropy over the unseen locations. The
95% confidence region, as well as the predictive posterior mean of all SOD methods appears
to be quite faithful with respect to the original model, as the data is quite redundant.

R — GP
1750 4 ME R
- MMI J 0.20 ME
1500 A X $ - MMI
X \
| / \
1250 X 015\
\
1000 1 />€ \
¥)

7504)(/ 0.101 ‘.\

500 1
)(X 0.05 1 9<\
250 , \
oot - XSO e
0 = XX 0.00 —
10! 10? 10° 10! 10? 102

(A) Marginalized log-likelihood. (B) Mean-absolute-error.

5.1. Sinc function 51

0.8 — GP
' R
5 ME !
0.7 -‘.\ - um 0.9 I_I
0.6 \‘ 0.8 II
059 | i
\\ 0.7 4 ’I
044 '\ i
i oo |
031 | i
\ 054 |
0.24 \ 1 — GP
0.1 X\ 041 R
. : i
XOSS | "
004 x -—-)é--)(-9<'><>e%‘§§ 034 > MMmI
100 102 103 10! 102 103
(C) Max-absolute-error. (D) R2.

FIGURE 5.3: Marginalized log-likelihood and error metric in case of SOD ap-
proximations. The grey shaded area represents the 95% confidence interval.

We can see in Figure 5.3a that the marginalized log-likelihood of all methods increases as
a function of the number of points in a similar fashion. This is because in this experiment the
hyperparameters are chosen to be the ones of the full Gaussian Process Regression model.
From the error metrics in Figure 5.3 we can see that maximum entropy and maximum mu-
tual information sampling outperform a full Gaussian Process Regression model built on
random sampling for small M < 100 for all error metrics. As argued in [61], all meth-
ods are thus equivalent for a large number of inducing points, which can also be noted by
the shrinking 95% confidence intervals in Figure 5.3. ME and MMI are however significantly
better under the M = 100 threshold, in particular MMI as point selection is performed based
not only on previously selected points. ME is shows similar performance, as it essentially
tends to place points equidistantly. ME and MMI however do require an a-priori estimate
of the hyperparameters, either on the full set [30] (which is rarely possible) or on a random
subset as for instance in [62]. Random sampling does not require this knowledge in advance,
and is thus much more easily applicable in practice, see for instance [63].

Alternating hyperparameters learning (model exploration) with sampling (model ex-
ploitation) is treated for instance in [32] and in [46], who both perform these task in a
fully Bayesian framework with a discretized hyperparameter space, requiring an extensive
amount of computations, making its implementation far from ideal in practice, especially
in a possibly large scenario. In particular the approach of [32] is based on bounds on the

disadvantage of greedy sampling which are very loose [51], rendering the results hardly
useful.

Sparse approximations

The various sparse approximations are compared among each other for different number of
inducing points. Note that in this setting the inducing points are chosen by the maximum
log-likelihood optimization and are jointly optimized with the hyperparameters.

The choice of inducing points made by SOR, DTC and FITC appears visually similar in
Figure 5.2d, Figure 5.2e and Figure 5.2f (note again that the difference between SOR and
DTC lies only in the predictive covariance), as well as their posterior mean and confidence
intervals, which do not resemble the ones of the full model in Figure 5.1a. What all these
approximations do have in common, is that they tend to place the inducing points in the
neighbourhood of inflection points and local minima. It is in these points in fact that the
marginalized log-likelihood is more sensitive to change, as a better representation of the
underlying kernel functions in these "critical" points leads to a higher likelihood compared

52 Chapter 5. Numerical results

to a more evenly spaced configuration. We do expect such approximations to be prone to
overfitting, in particular when dealing with datasets containing little variation.

e —sh g A, Aghool o shmakeA A
17970 {77°X ’(%;j el PN 100150 o Aohaa +J[3 F=dAet
N i 7 A
A |l llI|"| PN / ‘I A
1% [N T SN Vo
17965 1 »001481 74 v ¥ Vo
V) thi (R
2001464 1 1 ‘.:}:«‘#} \ "
17960 A \ b I
GP).00144 { — GP [T Vol
SOR/DTC sorTC § § Vo
] '
17955 —k- FITC).00142 4 —*- FITC il A 191
- VFE - VFE %X
).00140 1
17950
).00138 1
17945 Wﬁé 001 5
.x.x-)é .00136
K
17940 T).00134 4 T
102 103 102 103
(A) Marginalized log-likelihood. (B) Mean-absolute-error.
000075 F9:999e=1
0.009 1 & ek
TR 7 = N N
0.008 .,X'\X:rb< iRy] 000071 - 2EXRmee00. "
% \ i I"ji \ !
0007 X 1 N 000070 n N
\ H T ,'“‘ 14“ 4
0.006 - VI — oGP 1\ [R
1 E 1 1
Y SOR/DTC 000069 ,J?\ ;'.;t; : A P
0.005 - -4~ FITC RN 1T AT P
Y k- \ I
—%- VFE 000068 \ Jr,l'i" x ek A
0.004 Loy i L
000067
0.003 1 o
SOR/DTC
0.002 000066 -4~ FITC
- VFE
0.001 . .
102 10 102 10°
(¢) Max-absolute-error. (D) R2.

FIGURE 5.4: Marginalized log-likelihood and error metric in case of sparse
approximations.

When examining visually the results presented in Figure 5.5 and considering the result-
ing locations of the optimized inducing points the variance-reducing effect of the regulariz-
ing trace term present in the VFE likelihood appears evident. We can in fact see in Figure
5.4a that for all choices of points, the prior approximations (SOR, DTC and FITC) reach a
higher marginalized log-likelihood that both the full model as well as VFE. VFE is here the
only model which strives to approximate the posterior of the full model as good as possi-
ble, its likelihood converging almost monotonically (due to the varying hyperparameters)
to the one of the full model. Apart from having a higher value than the one of the VFE,
the marginalized log-likelihoods of the prior approximations do not increase monotonically
due to the absence of a regularizing term, rendering these approximations quite unreliable
to use in practice, as they render more difficult choosing the number of inducing points
M. The treated prior approximations, do hence by construction not try to approximate the
posterior but to find a set of inducing points and hyperparameters that maximize their like-
lihood, which unlike posterior approximations, does not recover the one of the full Gaussian
Process Regression of Equation 2.61 when M — N.

5.1. Sinc function 53

When comparing the error metrics (Figure 5.4b, Figure 5.4c and Figure 5.4d), we can see
that VFE scores in all cases way better than its counterparts, surpassing the performance
in the mean-absolute and max-absolute sense of the full model for small M. In this simple
example, its errors do in fact increase as a function of M. This can be again explained by
looking at the trace term in Equation 3.55, which tends to shift the inducing points where
the difference between the approximated Gram matrices is minimized. When looking at
the marginalized log-likelihood and the various error metrics in relation to the other error
metrics it can be concluded that all prior approximations are overfitting, as pointed out by
[35].

In light of these results if one were to make a choice between the existing sparse approx-
imations to be employed on a large set of data, it would be advisable to use VFE if the aim
is to recover the full Gaussian Process Regression model and if the confidence intervals are
deemed important. Prior approximations have been shown to not work well and to under-
perform with respect to the VFE model because in practice when optimizing jointly over the
inducing points and hyperparameters, the absence of the regularizing trace term allows plac-
ing the inducing points outside of the domain of the training set. Although this behaviour
can be corrected by performing constrained optimization (at a higher computational cost), it
is problematic since it is a waste of computational resources both at "training" (optimization
over inducing points and hyperparameters, and predictive mean precomputations) and at
"test”, rendering these prior approximation ill-suited for practical use.

Structured sparse approximations

In this example, as in most sets of data, the Toeplitz and Kronecker methods are not applica-
ble, as the data does not lie on a grid. Therefore, the only structured sparse approximation
which is applicable is SKI, which as discussed in the dedicated chapter, places the support
points on a grid and exploits the thus generated structure.

The SKI method in this example was "trained" using gradient ascent with learning rate
« = 0.1 and a maximum of 60 iterations. The number of support points was chosen to reach
at maximum M = N = 10000 as the number of points in the training set, as suggested by
[52]. Note that since the type of interpolation employed in SKI is cubic, the effects of adding
a support point are quite different than when considering Nystrom-based methods.

From Figure 5.2h we can see the SKI estimate of the underlying function. Due to the fact
that the inducing points are evenly spaced, we have worse performance near the inflection
points compared to the examined sparse approximation, but we do not expect this approx-
imation to overfit compared to the full GPR. Overall performance seems also worse, most
probably due to the fact that cubic interpolation is used instead of the Nystrom low-rank
form, hence the number of interpolation points is not related to the rank of the approxi-
mated Gram matrix.

To confirm this intuition, we show below the results of this particular method and its
performance when compared to the full model.

54 Chapter 5. Numerical results

- — - — P
SKI
15000 1 0201
10000 0.151
0.101
5000
0.05
oA
— P
SKI 0.00 }———=: S N —
10! 102 103 10° 10t 102 103 10¢
(A) Marginalized log-likelihood. (B) Mean-absolute-error.
084 — &r .. R
sKi ol
0.7
0.6 -2
0.5
_4]
0.4
0.3 -6
0.2 el
0.1
0] — P
0.04 TP — SKI
10! 102 103 104 10! 102 10° 10%
() Max-absolute-error. (D) R2.

FIGURE 5.5: Marginalized log-likelihood and error metric in case of SKI.

We see in Figure 5.5a that the marginalized log-likelihood of SKI approaches the one of
the full method at M = 30, since the inducing points are evenly spread over the whole do-
main. We can observe that due the fact that "training" is performed using gradient descent,
the obtained local maxima are in some cases a little off due to the choice of learning rate.

Similar observations hold for the error metrics, as they all approach the baseline of the
full GPR, rendering this approximation method interesting for use considering its extremely
low computational complexity.

5.2 Continuation value - Bermudan Put

In order to successfully apply Gaussian Process Regression to the Longstaff-Schwartz algo-
rithm for the pricing of Bermudan and American options, it is necessary to ensure that the
continuation value is estimated correctly. In the traditional variant of the LSM algorithm
(see Algorithm 5), this step is performed by resorting to the use of a linear model, which
seen its downsides, namely the choice of basis functions, we wish to replace by GPR. To
verify the performance gain obtained by making use of the full Gaussian Process Regression
model and its sparse approximation, another test problem is set up in which the continua-
tion value is estimated from simulated data. More specifically, we note that the first step in
the Longstaff-Schwartz Algorithm 5 in which the continuation value Cr, , = Eq (V4,|X:, ;)

5.2. Continuation value - Bermudan Put 55

is determined coincides with the value at ¢t = t,_; of the related European option having
maturity T, as the holder exercises in any case at t = t, = T. Under Geometric Brow-
nian Motion dynamics this is given by the Black-Scholes formula (see Equation A.10 for a
European Call option and Equation A.13 for a European Put option). This provides us an ex-
act benchmark to test the working in the Longstaff-Schwartz setting of the various examined
methods, which can be considered representative of the whole problem also because the first
step has influence on the goodness of the Longstaff-Schwartz estimator, as the continuation
value estimation error accumulates as more regressions are performed.

We consider the estimation of the continuation value in the following different con-
texts, namely the pricing of Bermudan Puts options under Geometric Brownian Motion dy-
namics with initial stock values Sy, € {36,38,40,42,44}, risk-free rate r = 0.06, volatility
o € {0.2,0.4}, strike K = 40, maturities T € {1,2} and 50 exercise opportunities per year, so
to account for a different level of moneyness.

We benchmark the various considered methods against the estimation of
Cu—1 = Eq (V4,Xt, ,) determined path-wise with the Black-Scholes put formula of Equa-
tion A.13, i.e. the first step of the LSM algorithm. We consider N = 100000 paths in order
to provide a realistic benchmark, as done in the LSM paper [12]. To exclude any source of
bias relative to the discretization, the paths are sampled from their underlying log-normal
distribution, i.e. no discretization is employed, as in [12]. The performance of the selected
sparse approximations is compared against the one of linear regression.

An overview of the set of data is given in Figure 5.6.

Cn-1
25 A) Vi,
20 Vt” Stn71
observations 100000 100000
151 Minimum 0.00 14.25
Maximum 25.87 104.40
101 Mean 4.06 38.18
Variance 20.98 58.14
5 Skewness 0.94 0.61
Kurtosis -0.04 0.72
°1 ' ' ' ' (B) Descriptive statistics.
20 40 60 80 100

(A) Set of data: the red crosses are the data, the
black line is the underlying function, given by the
Black-Scholes formula.

56 Chapter 5. Numerical results

0.6

0.5

0.4

0.3

0.2

0.1

0.0

80 100

(C) Histogram of the V;, values. (D) Histogram of the S;, , values.

FIGURE 5.6: Overview of the set of data.

From Figure 5.6 we get an overview of the highly non-standard regression problem. As
expected, since we are simulating the Geometric Brownian Motion exactly, the distribution
of S, in Figure 5.6d is in fact log-normal. Although the values observed in Figure 5.6a
might appear to follow a Gaussian distribution, we see that there is a relevant mass at zero,
corresponding to the paths being out of the money, and also some skew. Furthermore, we
can infer from Figure 5.6a that the noise is heteroscedastic and highly non-standard, be-
coming suddenly zero when most paths are in the money. We thus get insight on why in
their paper [12] Longstaff and Schwartz consider only in-the-money paths to regress upon,
namely to reduce the mass at zero and to facilitate their (polynomial) fitting, and why the
choice of basis functions and covariates is so important.

When it comes to Gaussian Process Regression, the heteroscedastic noise does not di-
rectly violate the noise assumption of Equation 2.49. In practice however, the assumption
of homoscedastic Gaussian noise is common practice, as it limits to 0;, the number of noise-
related hyperparameters to be estimated by maximizing the marginalized log-likelihood of
Equation 2.61 or otherwise. As discussed in the previous section, when using GPR it is
possible to circumvent the problem by performing batched Monte Carlo simulation as done
in [62], essentially constructing a state-dependant estimate € (x) by sampling the standard
deviation from the batched replicates. This approach is however not applicable to the ex-
amined sparse approximations which are suitable to this particular problem, as it is impos-
sible to sample the underlying function at the locations of the varying support points. The
batched approach does therefore only work when no interpolation of the kernel function
takes place, i.e. either the full model is considered, or a subset-of-data approach, or a struc-
tured sparse approximation which does not rely on support points, such the Kroenecker or
Toeplitz methods.

We proceed to the determination of the continuation value using all examined tech-
niques. In case of the traditional Longstaff-Schwartz algorithm, polynomials basis functions
are considered, with degree chosen by empirical risk minimization of the continuation value
estimation problem on an i.d.d. generated set of data, see for instance below Figure 5.7a, in
case of a Bermudan put. An overview of the thus selected degrees is given below in Table
5.7b, where we can observe great variability in the optimal polynomial degree needed for
regression depending on whether the moneyness of the option at the related timestep.

5.2. Continuation value - Bermudan Put 57

1.75 4 —e— Mean AE
1501
1.251
1.00 S T 1 2
0751 ¢ 02 04 02 04
' 36 11 7 8 6
0301 38 0 7 7 6
0.25 40 8 7 7 6
42 7 7 7 6
0.00 " ; ; . .
~0.25

(B) Optimal grade of the set of polynomials used
in the linear regression case. All the values are pa-
rameters of the corresponding Bermudan puts.
(A) Mean absolute error of the continuation value
estimation problem as a function of the grade of
the polynomial basis functions. The black line
shaded grey area represents the 95% confidence
interval. Bermudan Put with 50 exercise opportu-
nities per year, Sy, = 36,7 = 0.06,0 =02, T =1,
K = 40.

Unlike in the other examples, when considering the full Gaussian Process Regression as
well as the subset-of-data methods, the hyperparameters cannot be determined on the whole
set, because of the great computational expense. GPR is thus not considered in this scenario.
In case of all the other sparse approximations, the hyperparameters are optimized jointly
together with the support points, at reduced costs as we have seen. The used kernel is the
squared exponential kernel of Equation 2.75 for all methods, namely:

2
||X*xl||2

k(x,x) =02 2% . (5.3)

A plot of the regression problem and the related in-sample solution of the examined methods
is shown below in Figure 5.8.

25 25

20 A

154

104

20 30 40 50 60 70 20 30 40 50 60 70

(A) SOR regression. (B) DTC regression.

58 Chapter 5. Numerical results

25 25

201

151

10 A

20 30 40 50 60 70 20 30 40 50 60 70

() FITC regression. (D) VFE regression.

25

(E) SKI regression. (F) Linear regression.

FIGURE 5.8: Plots and histograms related to the examined models in case of
a the continuation value estimation problem related to a Bermudan Put with
50 exercise opportunities per year, S;, = 36,7 = 0.06,c = 0.2, T =1, K = 40.

Due to the fact that all prior approximations overfit similarly to what experienced in the
previous section and the overall bad performance of subset-of-data methods, we proceed to
test the best performing methods which remain, i.e. VFE, SKI and linear regression. Below
one can find a plots of the various error metrics in case of one four scenarios, namely S;, =
36, r = 0.06, c € {0.2,04}, T € {1,2}, K = 40 comparing the different methods. VFE is
tested for a different number of support points M € {5,10,20,40,80}, while SKI uses the
same number of support points as observations as recommended by [52] ie. M = N =
100000. As in the previous case, linear regression makes use of polynomial basis functions
of degree given in Table 5.7b.

5.2. Continuation value - Bermudan Put 59

—10615 o mm o i ——————————— 1187 e s sssssssssssssssEsEnmmEmq

0.893
0.598 1

0.304

—he= 0=0.2,T=1
== 0=0.2,T=2

0=04,T=1
505691 S 0=04,T=2
-90523 -
130478 - 0.0104
170432-F;-' — -~
5 10 20 40 80 5 10 20 40 80
(A) Marginalized log-likelihood. (B) Mean-absolute-error.
24.00 1
1811 " s s s s s s E EEEEEESESESEEEEEEEEESY).99999 jum == = s —5
12.21 4
6'31- S B E N EEESESESEESESESESESNEESEESEEENEGEN
).99433
hessssssssssssssssssnnnnnzd
= 0=0.2,T=1
).98866 == o=02T=2
0.41 4 0=04,T=1
= 0=04,T=2
).98300
= 0=02,T=1
—.— 0=02,T=2
0=04,T=1
== 0=04,T=2)J)O7734 A s e e s s s s s s EEEEEEEEEEEEEEEEY
5 10 20 40 80 5 10 20 40 80
(C) Max-absolute-error. (D) R2.

FIGURE 5.9: Marginalized log-likelihood and error metrics in case of the

continuation value estimation problem for a Bermudan Put with S;, = 36,

r=0.06,0 € {0.2,04}, T € {1,2}, K = 40 and 50 exercise possibilities per

year. Full lines represent VFE, dotted lines linear regression, and dashed lines
SKI.

In the Figure 5.9 the results in case of the VFE method of Tables B.17, B.18, B.19, B.20, the
SKI method of Tables B.37, B.38, B.39, B.40 and the linear regression of Tables B.57, B.58, B.59,
B.60 are presented in the form of a plot, the results related to the other options can be find
in tabular form in the Appendix B.1. One can see from Figure 5.9 that in most cases all the
methods perform better when the parameters relate to higher moneyness since when more
paths are in-the-money or close to being in-the-money, less points are zero in the regression
problem. Linear regression scores overall quite bad: although the number of basis function
was chosen by empirical risk minimization, it seems that polynomial basis functions are un-
able to describe well enough the underlying function. VFE and SKI perform in fact strictly
better than linear regression, the former achieving good results already with 20 supports
points. Furthermore, note that when pricing a Bermudan or American option having ma-
turity T = 2, an estimation problem similar to the one presented here for an option having
maturity T = 1 occurs halfway i.e. at t = 25At after the first continuation value estimation.
This implies that when examining these results we should keep in mind that the degree of
the polynomial basis functions was chosen as it being the minimizer of the empirical risk of
the examined continuation value estimation problem, not of the final option price i.e. of the

60 Chapter 5. Numerical results

LSM estimator. This in turns implies that when pricing actual Bermudan or American op-
tions the performance of linear regression on the continuation value estimation problem will
be strictly worse than the ones reported here, as the degree of the polynomial basis functions
which minimizes the overall empirical risk will differ from the ones reported in the T =1
and T = 2 scenarios (see Table 5.7b), as the continuation value estimation problem changes
at each time step. Gaussian Process based methods will by default not have this limitation as
they are non-parametric methods, and by the Bayesian formalism in this regards not prone
to overfit given enough data and a simple enough kernel function. One should however
be careful when selecting hyperparameters by empirical Bayes (type II maximum likelihood
estimation) as done in this thesis, as the prior distribution becomes in fact modified (in the
form of kernel function) by the data. As mentioned previously, a generic choice of kernel
function renders overfitting unlikely, as it limits the informativeness of the prior.

5.3 Continuation value - Geometric Bermudan Basket Put

In order to depart from the one-dimensional case examined in the previous section and still
have a closed form solution to the estimation value problem we consider another type of
option, namely the Bermudan Geometric Basket Put, having payoff:

D \D
1p(s},...,stN):max K—<Hs;> 0. (5.4)
i=1

The payoff of such option is similar to the one of an European Put, having as argument
however the geometric averages of D stocks, which we model again as Geometric Brownian
Motions, each having different volatility ¢;. Under this condition it is possible to derive
an analytical pricing formula similar to the one used for pricing a standard European Put
under Geometric Brownian Motion dynamics (see Equation A.13 in the Appendix A), given
in Equation A.20 in Appendix A. Interestingly, as we are dealing with a geometric average
and log-normally distributed underlying, the price is a function of the arithmetic averages of
the volatilities and the geometric averages of the starting values of the underlyings, and not
on a function of these variables, i.e. when pricing such option in a Monte Carlo simulation
it does not matter which underlying is assigned which volatility as long as they are all the
same.

Similarly to the previous section we then proceed to the evaluation of the performance of
VEE, SKI and linear regression in case of the continuation value estimation problem related
to last step of the Monte Carlo simulation, i.e. C,_1 = Eg (VT ST, ,) , this case however, in a
multi-dimensional setting.

We consider the estimation of the continuation value in the following different contexts,
namely the pricing of Geometric Bermudan Basket Puts options under Geometric Brownian
Motion dynamics with initial stock values

Sip € {Sh,53} = {{36,36,144,9,16,81} , {44,44,121,16,16,121}}, risk-free rate r = 0.06,

volatility o € {{0.1,0.2,0.3,0.4,0.5,0.05} }, strike K = 40, maturities T € {1,2} and again 50
exercise opportunities per year, so to account for a different level of moneyness.

We benchmark the various considered methods against the estimation of C,,_1 = Eq (VT IST, ,)
determined path-wise with the Geometric European Basket Put pricing formula of Equation
A.20, i.e. the first step of the LSM algorithm. We consider N = 100000 paths in order to
provide a realistic benchmark, as done in the LSM paper [12]. To exclude any source of
bias relative to the discretization, the paths are sampled from their underlying log-normal
distribution, i.e. no discretization is employed, as in [12]. The performance of the selected
sparse approximations is compared against the one of linear regression with polynomial
basis function, with degree determined again by empirical risk minimization.

An overview of the set of data is given below in Figure 5.10:

5.3. Continuation value - Geometric Bermudan Basket Put 61

0.5

0.4

0.3

0.2

0.1

0.0

00 25 50 75 100 125 150 17.5 20.0

(A) Histogram of the V;, values. (B) Histogram of the S}H values.
Vi, S St S Si S St
n—1 n—1 n—1 n—1 n—1 n—1

observations 100000 100000 100000 100000 100000 100000 100000
Minimum 0.00 24.82 15.97 38.90 1.41 1.92 69.00
Maximum 19.99 58.04 85.06 54457 52.86 145.78 108.52

Mean 3.93 38.20 38.15 152.43 9.54 16.97 85.90
Variance 12.12 14.36 5786 2154.26 15.51 80.09 18.19
Skewness 0.60 0.29 0.59 0.93 1.32 1.73 0.14
Kurtosis -0.46 0.15 0.61 1.56 3.31 5.87 0.04

(C) Descriptive statistics.

FIGURE 5.10: Overview of the set of data.

As in the one dimensional case there is considerable mass at zero, yielding a similar yet
multidimensional regression problem.

We proceed to the determination of the continuation value using all examined tech-
niques. In case of the traditional Longstaff-Schwartz algorithm, polynomials basis functions
are considered, with degree chosen by empirical risk minimization of the continuation value
estimation problem on an i.d.d. generated set of data, see for instance below Figure 5.11a,
in case of a Bermudan put. An overview of the thus selected degrees is given below in Ta-
ble 5.11b, where we can observe variability in the optimal polynomial degree needed for
regression depending on whether the moneyness of the option at the related timestep.

62 Chapter 5. Numerical results

—e— Mean AE
1.44

1.24

1.01

0.8 1
T
€7 1 2
0.4 1 St Stol 9 10
o S 10 11

0.2 1

(B) Optimal grade of the set of polynomials used
in the linear regression case. All the values are pa-
rameters of the corresponding Bermudan puts.

(A) Mean absolute error of the continuation value
estimation problem as a function of the grade of
the polynomial basis functions. The black line
shaded grey area represents the 95% confidence
interval. Bermudan Put with 50 exercise oppor-
tunities per year, Sy, = {36,36,144,9,16,81}, r =
0.06, c = {0.1,0.2,0.3,04,0.5,0.05}, T = 1, K =
40.

The kernel used for the sparse Gaussian Process approximations is the squared exponen-
tial of Equation 2.75, i.e. with one common length-scale (bandwidth). The reduced number
of hyperparameters is also beneficial in terms of time spend in the "training" phase. To
keep the computational time reasonable we consider M — 40 support points for VFE, and
M = N = 100000 for SKI.

The results are presented below in Table 5.1:

S T LSM (Polynomial) VFE SKI
fo Mean AE Std Mean AE Std Mean AE Std
{36,36,144,9,16,81} 1 0.104 3.030 0.293 8.761 2.844 15.756
{36,36,144,9,16,81} 2 0.138 5.4117 0.576 11.514 3.444 20.051
{44,44,121,16,16,121} 1 0.313 23.443 0.246 6.742 0.864 12.962
{44,44,121,16,16,121} 2 0.435 23.245 0.549 10.750 1.397 17.051
Mean error: 0.247 0.134 0.416 0.147 2.137 1.045

TABLE 5.1: Geometric Bermudan Basket Put, mean absolute error, r = 0.06,
c={0.1,0.2,0.3,0.4,0.5,0.05}.

From the results we can see that in this scenario linear regression outperforms both VFE
with M = 40 support points, and SKI, with M = 100000. In case of SKI, there were some
technical problems related to determining the hyperparameters, in fact the gradient ascent
optimizer of the GPyTorch package [59], which is used to examine SKI(P), would often crash,
even with extremely low values of the learning rate, forcing early stopping of the ascent pro-
cedure and thus far from ideal hyperparameters. In case of VFE, the results, which are two-
folds worse that the linear regression benchmark, suffer from the low number of inducing
points. In fact, even though the considered Gaussian kernel has one common lengthscale
for all dimensions, it is clear that when considering a dataset with more dimensions the con-
ditioning of the resulting Gram matrix lowers as the interactions across the dimensions are
smoothed out, necessitating more inducing points (i.e. a higher rank approximation) than
otherwise. When looking at the computational times, presented in below in Table 5.2, it is
clear that when dealing with only a six dimensional regression problem, linear regression
becomes unmanageable for the considered number of basis functions, since the interaction
terms are computed. When considering computational time, VFE performs more or less

5.4. Bermudan Put pricing 63

as linear regression, as the support points are optimized jointly with the hyperparameters,
incurring in higher computational costs, which as we have seen, scale linearly with the num-
ber of dimensions. SKI(P) on the other hand, when considering the computational time, is
clearly the winner, as the support poitns structure is fixed, as is able to decompose the solu-
tion of the predictive equations over each dimension.

S LSM (Polynomial) VFE SKI
to Mean AE Std Mean AE Std Mean AE Std
{36,36,144,9, 16,81} 111.19 5.02 470.51 19.40 4490 0.52

{44,44,121,16,16,121} 798.15 0.81 449.77 17.83 47.11 0.58
{44,44,121,16,16,121} 2076.16 210.63 44891 60.04 47.64 0.27
Mean time: 939.84 771.57 490.70 0.147 46.22 1.17

T
1
{36,36,144,9,16,81} 2 773.93 0.75 593.61 34.34 45.25 0.41
1
2

TABLE 5.2: Geometric Bermudan Basket Put, mean computational time, r =
0.06, c = {0.1,0.2,0.3,0.4,0.5,0.05}.

5.4 Bermudan Put pricing

After having analyzed the crucial step of the LSM algorithm, namely the estimation of the
continuation value, we resort to test the goodness of the examined approximation and lin-
ear regression in the full algorithm. We hence setup a series of experiments, having the
same parameters as the ones in the one-dimensional continuation value estimation prob-
lem, namely the pricing of Bermudan Puts options under Geometric Brownian Motion dy-
namics with initial stock values Sy, € {36,38,40,42,44}, risk-free rate r = 0.06, volatility
o € {0.2,0.4}, strike K = 40, maturities T € {1,2} and 50 exercise opportunities per year,
so to account for a different level of moneyness, i.e. we try to replicate and improve Table
1 in the LSM paper [12]. As in [12] we consider N = 100000 paths in order to provide a
realistic benchmark, and simulate the process of the underlying exactly. The results from
the traditional LSM algorithm as well as the one PSOR finite difference solution are taken
from [12] who use for pricing all the options (scaled) Laguerre polynomials of third degree

$ = {€7§,€7§ (1-X) et (1-2X) } In addition we attempt pricing with polynomial
basis functions whose degree is again determined by empirical risk minimization, see below
Figure 5.12a and Table 5.12b, using the LSM Algorithm 5.

64 Chapter 5. Numerical results

3.5
—e— Mean AE
3.01
2.5
2.0 S, T 1 2
c 02 04 02 04

1.5 36 7 7 10 6

38 9 7 7 6
101 40 9 7 7 6
o5 42 8 7 7 6

44 7 7 7 6
0.0 1

(B) Optimal grade of the set of polynomials used
in the linear regression case. All the values are pa-
rameters of the corresponding Bermudan puts.
(A) Mean absolute error of the continuation value
estimation problem as a function of the grade of
the polynomial basis functions. The black line
shaded grey area (not visible) represents the 95%
confidence interval. Bermudan Put with 50 exer-
cise opportunities per year, S;, = 36, r = 0.06,
c=02,T=1,K = 40.

We consider both VFE and SKI approximation, the first with M = 40 support points
in light of the results of 5.9b, the latter with M = 100000 as advised in [52] and learning
rate « = 0.5. In case of VFE, the hyperparamters and support points are estimated jointly
every 25 iteration, while the support points are optimized at every other iteration, keeping
the hyperparameters constant, similarly to what is done by [62]. The same holds for SKI
except of course for the support points, which are automatically placed on a grid, resulting
in a Toeplitz structure. The kernel used for both sparse Gaussian Process approximations
is the squared exponential of Equation 2.75. For both approximations we use the estimator
of Equation 4.21 and perform regression on all the paths, since when considering the for-
mulation of Algorithm 5 we often incur in numerical instability when trying to find suitable
hyperparameters when the option gets out-of-the-money.

The resulting errors are shown below in Table 5.3, while the results themselves are in
Table B.89 in the Appendix A.

5.4. Bermudan Put pricing 65

S, s T LSM (Laguerre) LSM (Polynomial) VFE SKI
0 Mean Std Mean Std Mean Std Mean @ Std

36 02 1 0006 0.010 0.099 0.012 0.000 0.004 0.000 0.007
36 02 2 0.019 0.012 0.196 0.058 0.006 0.010 0.009 0.014
36 04 1 0010 0.020 0311 0.030 0.011 0.015 0.008 0.018
36 04 2 0.020 0024 0.708 0.018 0.014 0.025 0.011 0.029
38 02 1 0.006 0.009 0.156 0.008 0.004 0.008 0.007 0.008
38 02 2 0010 0.011 0.253 0.011 0.007 0.006 0.013 0.011
38 04 1 0.009 0.019 0.358 0.043 0.004 0.019 0.007 0.024
38 04 2 0.001 0.022 0.715 0.027 0.024 0.025 0.022 0.028
40 02 1 0.001 0.009 0.175 0.014 0.007 0.007 0.010 0.010
40 02 2 0.006 0010 0.279 0.020 0.006 0.005 0.008 0.014
40 04 1 0.004 0.018 0413 0.036 0.005 0.019 0.008 0.020
40 04 2 0.001 0.022 0.719 0.042 0.010 0.029 0.008 0.029
42 02 1 0.000 0.007 0.179 0.012 0.002 0.006 0.002 0.008
42 02 2 0006 0.010 0311 0.020 0.009 0.009 0.007 0.011
42 04 1 0.006 0017 0.467 0.039 0.010 0.013 0.012 0.015
42 04 2 0.005 0.021 0.751 0.044 0.029 0.015 0.029 0.018
44 02 1 0.008 0007 0172 0.013 0.002 0.007 0.004 0.007
4 02 2 0.015 0.009 0.338 0.019 0.004 0.007 0.003 0.010
4 04 1 0.009 0.017 0.511 0.044 0.007 0.015 0.005 0.018
4 04 2 0.025 0.021 0.796 0.069 0.015 0.020 0.016 0.023

Mean error: 0.008 0.007 0.395 0.223 0.009 0.007 0.009 0.007

TABLE 5.3: Bermudan Put numerical results errors. The Laguerre LSM and
PSOR results used as benchmark are from [12].

We can see that the results of the VFE and SKI methods when applied to the full Longstaff-
Schwartz algorithm are in most scenarios better than the ones obtained by using linear re-
gression. This holds especially true when one regards the results obtained using polynomial
basis functions, which are clearly not suitable for the pricing of these types of options, while
the LSM results regarding Laguerre polynomials shown in the Table B.89 are overall very
good, as they are carefully selected for this particular task [12]. In particular, we can ob-
serve that options priced with linear regression using Laguerre basis functions obtain on
average an error which is two orders of magnitude lower than when using polynomial basis
functions, highlighting the large difference induced by different model choices.

It is therefore clear that, when not estimating the hyperparameters at every iteration, the
advantage of using Gaussian Process Regression or its approximations in the LSM algorithm
is not desirable in order to attain superior performance (which would be in principle obtain-
able also with linear regression, provided good knowledge regarding the basis functions
etc.), but rather because of the fact that it allows to sidestep the previously discussed issues
which plague parametric models, in particular linear regression, and obtain good results.

As in the previous sections, options which are less often in-the-money give worse and
uncertain results compared to the PSOR benchmark, independent of the method. Further-
more as one can expect, SKI performs slightly worse (higher mean and standard deviation
of the option price) than VFE due to the choice of learning rate, which was kept constant for
all iterations of the algorithm, leaving surely some margin for improvement in that sense.

Furthermore, when examining the estimated option prices of Table B.89 in the Appendix,
we see that both VFE and SKI methods are always overestimating the option price, i.e. are
affected by positive bias. This might be related to the fact that the hyperparameters are esti-
mated every 25 iterations, and do therefore induce a temporal dependence among the differ-
ent iterations, resulting in positive bias. In order to verify this claim it would be interesting
to replicate the experiment while estimating the hyperparameters every iteration, which is in
our experience however particularly costly since the closer the option gets in the money, the
more mass is located at zero, invalidating further the assumption of (homoscedastic) Gaus-
sian noise, resulting in a non-smooth marginalized log-likelihood function, and requiring
more restarts of the optimizer to yield sensible results.

67

Chapter 6

Conclusion and Outlook

In this thesis, Gaussian Process Regression and a variety of related approximation based on
a selection of support points were reviewed in relation to their application regarding the
determination of conditional expectations, in particular in the Monte Carlo based Longstaff-
Schwartz algorithm for the pricing of Bermudan and American options. The full method, as
well as the selected approximation were implemented and tested on different sets of data in
order to evaluate their application to the Longstaff-Schwartz algorithm.

6.1 Summary

Gaussian Process Regression has proven itself to be a flexible regression technique, however
hard to use on large, possibly high-dimensional datasets, since the computational complex-
ity related to "training" is of order O (N®) if one uses Cholesky factorisation. Solving the
(possibly preconditioned) linear system by a modified version of the Conjugate Gradient
algorithm with early stopping, as done in [59], can lower down the complexity to O (N?),
which is a very big improvement, but similar to the case of SVMs with Gaussian kernel, still
severely limits the applicability to larger datasets. Furthermore, the examined exact struc-
tured methods, namely Toeplitz or Kronecker based methods, are very promising as they
greatly reduce the computational complexity of the "training" and "test" phases, bringing
it down to superlinear. Unfortunately the cases in which the training data is located on a
Cartesian grid or on evenly spaced one-dimensional intervals are very limited, rendering
these methods not applicable in most situations. Therefore sparse approximations are at this
moment still a necessity.

Judging from the empirical comparison which was carried out, i.e. Section 5, it is clear
that the examined subset-of-data methods related to information theory are hard to apply
in a real-life scenario, since they require some form of prior knowledge of the hyperpa-
rameters and base their support points selection on the posterior variance estimate, which
does not depend on the observations. As pointed out before, a fully Bayesian approach
to make use of such information-theoretical measures is highly impractical, as hierarchical
modelling with Gaussian Process Regression requires resorting to the use of sampling meth-
ods or variational inference to obtain an approximation of the posterior, as no hyperprior
on the hyperparameters is known which can yield an analytical posterior. Using then such
posterior approximation to select informative points from the training set with computa-
tional complexity of O (N2) per sample does not seem an appealing course of action. Lastly,
discarding available data is clearly a poor choice.

On the other hand the examined sparse approximations based on the Nystrom low-rank
approximation seem to be promising. Unfortunately, as pointed out previously, prior ap-
proximations have been observed to overfit on the examined datasets and to place their sup-
port points on local minima or inflection points, or even outside of the training set. Posterior
approximations, such as the examined VFE have been shown to correct this behaviour by
effectively adding a penalty term to the marginalized log-likelihood of the Discrete Training
Conditional, forcing it to recover the one of the full Gaussian Process Regression as M — N.
Further related observed benefits of the penalty term are faster hyperparameter estimation
and more importantly an even distribution of the support points inside the training set. One
drawback of all these methods is the selection of support points by itself, which if done by
marginal log-likelihood maximization is relatively costly. A priori selection of the support

68 Chapter 6. Conclusion and Outlook

points is of course possible, but not always applicable and not convenient, as one might then
just as well resort to the use of a structured sparse approximation such as SKI, which places
the support points on a grid.

By placing the support points on a grid such that the Ky 3y Gran matrix is either Toeplitz
or Kronecker, and by approximating the Ky 51 Gram matrix associated with Nystrom-based
methods by (cubic) interpolation, Structured Kernel Interpolation makes Toeplitz and Kro-
necker methods applicable to every set of data. Unfortunately all these methods suffer from
the "curse of dimensionality", as the number of support points per grid dimension decreases
exponentially as a function of the number of dimensions of the data. A notable exception is
the SKIP approach of [60], which is able to partially lift the "curse of dimensionality” when
considering structured kernels (and data).

When it comes to numerical results, the estimation of the continuation value, i.e. the ap-
proximation of the conditional expectation in the LSM algorithm, was carried out in case of
all examined approximations. The most promising results are obtained from the VFE and
SKI methods, which represent the state-of-the-art of the current approximations of Gaussian
Process Regression. When comparing the two methods it can be concluded that SKI is over-
all cheaper computational-wise when dealing both with low dimensional problems D < 5
[52] and high dimensional problems (SKIP) [60]: its superlinear computational complexity
obtained thanks to its structured support points (and kernel) is hard to beat. The superiority
over other methods in this regard is clear when considering the estimation of the continua-
tion value in a multidimensional setting as done in Section 5.3, where the computation time
of VFE (and linear regression) becomes quickly unmanageable as the number of dimensions
increases.

The practicality of these methods is clear when comparing them with the industry stan-
dard, namely linear regression, Although the problem of specifying the prior, i.e. mean and
kernel function, seems similar to the tedious one regarding the choice of basis functions in
case of linear regression, this is not the case, as theory and practice have shown that in most
cases a simple but flexible kernel such as, the Gaussian kernel in one of its isotropic variants,
is most often a good choice, as the number of hyperparameters is very limited, limiting thus
to some extent, as we have discussed, the informativeness of the prior and thus the possi-
bility of overfitting, which is introduced by the empirical Bayes procedure. Empirical Bayes
ensures the departure from the full Bayesian formalism, and renders the problem of overfit-
ting or underfitting, i.e. the goodness of the model fit only reliably examinable by looking at
the empirical and true risks (training and test errors), as from a frequentist point of view. In
return, however, model flexibility is made possible.

The application of the considered sparse approximation to the Longstaff-Schwartz al-
gorithm was considered in case of a variety of Bermudan put options with different mon-
eyness. As stated in the related section, the empirical Bayes method was not applied at
every iteration in order to reduce computational time, but instead the kernel was "frozen"
for a number of iterations. Although the results are good and comparable if not better than
the one obtained by linear regression in [12] with "optimal" choice of basis functions, we
have that both methods (Longstaff-Schwartz using VFE and SKI) overestimate the option
price and seem thus to have slight positive bias, which is especially noticeable in case of
options with long maturity. This might be due to the kernel "freezing" procedure that was
just mentioned, which effectively induces a temporal dependency in the continuation value
estimation problem since 6; are not themselves F; measurable at every timestep ¢, F; for
some k depending on the iteration and "freezing". This issue can be solved by updating the
hyperparameters at each timestep, and possibly by determining the option exercise strategy
on a different set of id.d. paths than the ones used for the actual pricing, as done in [19] to
further reduce the bias.

The very practical "freezing" approach is, as explained, formally unjustified, as well as
the practice of fitting the hyperparameters to a subset of the "training” set, which is very
uncommon in literature (but is applied to the LSM algorithm by [63]), since one assumes
that the sampled data is synthesising the whole dataset. As we have seen in the subset-
of-data example, this assumption does not lead to good results depending on the choice of
kernel, and the characteristics of the dataset.

In general, the use of Gaussian Process Regression and of its sparse approximation in
the LSM algorithm is still limited by the "curse of dimensionality", which plagues more or

6.2. Conclusion 69

less all examined methods, rendering them unpractical or unusable when pricing basket
options with many underlying or with complicated highly-dimensional underlying mod-
els. Of course as stated previously, SKI is especially plagued by this problem, limiting its
applicability to cases in which D < 5.

6.2 Conclusion

Gaussian Process Regression is an extremely interesting explainable machine learning algo-
rithm, with many connections to different branches of mathematics and computer science,
most notably its resemblance to SVMs, splines, and most notably neural Neural Networks.
Applications to large datasets are becoming easier thanks to the advances made in the last
years when it comes to GPR approximations and computational advances, however high
dimensionality plagues many such approximations.

In this thesis the applicability of GPR and its approximations have been studied in light
of a possible application to the LSM algorithm. In light of the results presented in Chapter 5,
itis clear that the use of GPR, in particular of the VFE and SKI methods, delivers good results
in the context of option pricing, nearly identical to the good linear regression benchmark of
[12]. In particular, although there remain some practical issues to be solved such as deciding
how often to estimate the hyperparameters or the choice of kernel, it is clear that the main
advantage of such algorithms when it comes to the LSM algorithm is the fact that they do not
require to know in advance what, how many, and which basis functions to use as opposed
to linear regression.

The computational time involved in pricing options is still however one order of magni-
tude higher than when using linear regression with few basis functions. We have seen how-
ever that in higher dimensional problems, all methods fail to deliver results in an acceptable
time, except for SKIP, which partially bypasses the "curse of dimensionality". SKI(P) is there-
fore surely the most versatile approximation, as it can be applied to datasets of (in theory)
arbitrary dimension, without requiring to optimize the inducing points. It is by all means
not perfect, as relying on a grid can be a severe drawback if most data is concentrated locally,
but its fast training time combined with the possibility to exploit the structure of the Gram
matrix, makes it the best approximation so far examined.

In conclusion, applications (in finance) which involve regression are a good scenario for
GPR, and might prove it to be the regression algorithm of choice, given its excellent explain-
ability, flexibility, and its connection to other algorithms such as SVMs, splines, and Neural
Networks.

6.3 Further research

The main drawback which limits the use of Gaussian Process Regression and its approxi-
mations in applications such as the LSM algorithm, is at this point in time is not only the
computational burden arising from a large dataset, but also the "curse of dimensionality"
associated with high dimensionality when considering the reviewed approximations.

One promising idea to attempt to lift said curse is given by the Tensor Train Decomposi-
tion [37], a type of tensor decomposition which generalizes the concept of low-rank form and
renders many linear algebra operations cheap if one considers its decomposed form. Its com-
putation is based on the low-rank approximation of auxiliary unfolding matrices, similarly
to what is done in case of kernel matrices having Kronecker structure in case of Kronecker
structured methods. Applications of Tensor Train Decomposition to Gaussian Process Re-
gression are still lacking, one notable exception being [54]. The authors herein use a stochas-
tic variational inference approach similar to the stochastic VFE method of [45] (in this case
inducing points located on a Cartesian grid are considered), using however Tensor Train
decomposition in order to decompose the mean vector of the variational distribution, while
decomposing the covariance matrix using the resulting Kronecker structure. The predictive
posterior distribution is then be approximated by the variational distribution, obtained as in
[45] by stochastic optimization, and having linear complexity with respect to dimensionality
of the dataset. The drawback of this approach is however that once more inducing points

70 Chapter 6. Conclusion and Outlook

are used which are located on a Cartesian grid, therefore limiting the expressiveness of the
approximated kernel function on the small manifold on which most of the data lies, requir-
ing again (exponentially) more inducing points than necessary. One would therefore ideally
wish to utilize Tensor Train decomposition or another type of decomposition in a way that
does not require the use of (structured) inducing points, similarly to what is done with exact
Kronecker and Toeplitz methods, which seem intuitively to be some kind of particular case
in a more general (at the moment non-existing) framework.

In order to further improve the applicability of GPR to the LSM algorithm, one may
want to first of all to investigate why regression on only in-the-money paths as done in [12]
performs worse with Gaussian Process Regression. Also, the non-standard continuation
value estimation problem can perhaps benefit from modelling the noise as heteroscedastic
following [56], which however introduces more hyperparameters to be fitted with empirical
Bayes, rendering the model more complex and potentially prone to overfit. As mentioned
previously in Chapter 5, one might also want to investigate the source of the positive bias
affecting the option pricing results by verifying that the costly performance gain obtainable
by estimating the hyperparameters at every iteration is bias-free. Furthermore, it would be
a good idea to experiment also with different kernels departing from the commonly used
Gaussian kernel, for example the Neural Network kernel, or perhaps some other kernel
derived keeping in mind the fact that moments of the various stochastic processes used to
model the underlying stocks and assets are very often known. Lastly, option pricing in more
realistic condition should be explored, involving higher dimensional models for the assets.

Appendix A

Mathematical appendix

A.1 Gaussian identities

Conditional multivariate normal density

Let x and y be jointly normally distributed, such that:

x my|] [A Ccl\ _ my| [A
R (R R (N
Then the marginal distribution of x reads [34]:

p(x) = N (my, A)
and the distribution of x given y reads [34]:

plxly) =N (mx +CB ' (y—my), A— CBflCT)

=N (mx —A7IC(y—my) ,A*1>

A.2 Matrix identities

Woodbury matrix identity
Let Abe an N x N invertible matrix. Then [34]:

-1
(A+Uucv) '=a1-alu (c—1 + VA—lu) VA~

where A, U, V, C have conformable size.
Sylvester determinant theorem
Let Abe an N x N invertible matrix. Then [34]:
|A4+UCV| = |A]|C||C ' +vA~U
where A, U, V, C have conformable size.

Block Cholesky decomposition

Consider a symmetric-positive-definite block matrix:

< o

Then the matrix can be decomposed as [34]:

71

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

72 Appendix A. Mathematical appendix

0>
O w

} =LLT (A.8)

with L:

(A.9)

A.3 Black-Scholes

Black-Scholes formula for the pricing of an European Call option

The value V; at time t of an European Call option having payoff ¢ (S;) = max (S — K, 0),
maturity T and strike K related to a stock S with GBM dynamics such that dS; = uS;dt +
oStdWy, where p is the rate of return, o is the volatility, and under a risk-free rate r ensures
that:

Vi=e "TEq (¢ (S7) | F1)

(A.10)
= 5@ (dy) — Ke " T (dy),

where @ (-) is the cumulative density function of a normally distributed random variable,
and dq and d; are given by:

In (%) + (r—i— %02) (T—t)

di = , A1l
1 T (A.11)
d2 = dl —ovT—t (AlZ)

Black-Scholes formula for the pricing of an European Put option

The value V; at time ¢ of an European Put option having payoff ¢ (S;) = max (K — S¢,0),
maturity T and strike K related to a stock S with GBM dynamics such that dS; = uSdt +
oStdW;, where p is the rate of return, o is the volatility, and under a risk-free rate r ensures
that:

Vi = e "TEq (¢ (S7) | F)

A.13
=Ke "N (—dy) — S (—dy) (A13)

where @ (+) is the cumulative density function of a normally distributed random variable,
and dq and d; are given by:

in(%)+(r+130%) (T

dy = , A.l4
! VTt (A19
dy —dy — VT —L. (A.15)

Black-Scholes formula for the pricing of an European Geometric Basket
Call option

The value V; at time t of an European Geometric Call option having payoff ¢ (S},...,SN) =
1 ‘
max ((Hi.;l S;) b K, 0) , maturity T and strike K related to a stock S' with GBM dynamics

such that dS} = uSidt + o'SidW;, where y is the rate of return, ¢’ is the volatility, and under
a risk-free rate r ensures that:

A.3. Black-Scholes 73

A C) (1;] (S},...,S{V) |ft)

b N, (A.16)
i=1

where ® (-) is the cumulative density function of a normally distributed random variable,
and dj, d and ¢ are given by:

D i b
In <(H"}<S')D) +7 (T —t) — 3D&?
dy =

~ , (A.17)
g
& —o+d, (A.18)
D P
5 — 2132 (T—1) (A.19)

Black-Scholes formula for the pricing of an European Geometric Basket
Put option

The value V; at time t of an European Geometric Call option having payoff ¢ (S},...,SN) =
l .
max (K — (Hle S;) P , 0) , maturity T and strike K related to a stock S* with GBM dynamics

such that dS} = uSidt + o'SidW;, where y is the rate of return, ¢’ is the volatility, and under
a risk-free rate r ensures that:

Vi = eir(Tir)]EQ (IIJ (51, .. ,Sy) ‘}—t)

D \ND (A.20)
=Ke "T1® (dy) — (Hs;) e 2PV (1 — @ (dy)),
i=1

where @ (+) is the cumulative density function of a normally distributed random variable,
and d; and d; are given by:

D i]
In (m”}ft)D) +7 (T —t) - ;D>
dy =

- , (A.21)

dy =0 —d (A.22)
D _i2

RERNPE S LA (A.23)

D2

75

Appendix B

Numerical appendix

B.1 Numerical results

In this Appendix, the results present in the thesis in the form of plots are presented in tabular
form.

Sinc function

Results related to Section 5.1.

GP
log-likelihood Mean AE Max AE R2 time
17945 0.0013646 0.00839399 0.99997096 51.75
TABLE B.1: In-sample error metrics in case of the full GP method on the sinc
dataset.
log-likelihood =~ Mean AE Max AE R? time
17945 0.00135226 0.00838319 0.99997209 51.75

TABLE B.2: Out-of-sample error metrics in case of the full GP method on the
sinc dataset.

76 Appendix B. Numerical appendix

SOR/DTC
M log-likelihood Mean AE Max AE R? time
5 11249 0.03126938 0.21358278 0.95678191 0.27
10 17970 0.00149866 0.0088006 0.99996782 0.34
15 17968 0.00145605 0.00714424 0.99997011 0.89
20 17971 0.00150475 0.00897212 0.99996754 1.13
25 17970 0.00149464 0.00881789 0.99996818 1.54
30 17971 0.00150477 0.00897328 0.99996754 1.62
35 17971 0.00149669 0.00861424 0.99996836 1.42
40 17968 0.00150456 0.00838172 0.9999655 1.88
45 17970 0.00149866 0.0088006 0.99996782 1.63
50 17971 0.00150718 0.00854673 0.99996799 2.46
55 17969 0.00141285 0.00855699 0.9999696 3.38
60 17969 0.00142321 0.00785756 0.99996998 2.77
65 17971 0.00149413 0.00879333 0.9999683 1.17
70 17971 0.00150155 0.00892016 0.99996799 3.36
75 17970 0.00149012 0.00880565 0.99996833 3.15
80 17971 0.00149303 0.00887613 0.99996823 3.41
85 17971 0.00150516 0.00899921 0.99996752 5.76
90 17969 0.00140505 0.00738545 0.99997027 4.25
95 17971 0.00149724 0.00877288 0.99996823 3.85
100 17969 0.00142234 0.00787802 0.99996998 5.96
200 17971 0.00149414 0.0087934 0.9999683 12.19
300 17971 0.00150895 0.00847688 0.99996799 14.20
400 17971 0.00150727 0.00855382 0.99996798 19.51
500 17971 0.00150752 0.00899396 0.99996746 24.36
600 17969 0.00141284 0.00855648 0.9999696 34.28
700 17969 0.00141287 0.00855714 0.9999696 38.43
800 17969 0.00142356 0.0081767 0.99996975 40.85
900 17971 0.00149996 0.00899616 0.99996792 46.78
1000 17970 0.00150336 0.00880083 0.99996769 48.21

TABLE B.3: In-sample error metrics in case of the SOR/DTC method on the
sinc dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

11249
17970
17968
17971
17970
17971
17971
17968
17970
17971
17969
17969
17971
17971
17970
17971
17971
17969
17971
17969
17971
17971
17971
17971
17969
17969
17969
17971
17970

0.0305816
0.00148919
0.00145105
0.00149514
0.00148865
0.00149516
0.00149128
0.00148765
0.00148919
0.00150009
0.00140087
0.00141437
0.00148846
0.00149557
0.00148421
0.00148684
0.00149552
0.00141438
0.00149155
0.00141336
0.00148846
0.00150209
0.00150016
0.00149813
0.00140087
0.00140090
0.00141403
0.00149359

0.0014941

Max AE
0.21358277
0.00878611
0.00713663
0.00895696
0.00880338
0.00895812
0.00860017
0.00836812
0.00878612
0.00853254
0.00854288

0.0078453
0.0087787
0.00890507
0.00879118
0.00886126
0.00898395
0.00737417
0.00875829
0.00786574
0.00877877
0.00846293
0.00853961
0.00897873
0.00854237
0.00854303
0.0081634
0.00898093
0.00878634

RZ
0.95902923
0.99996899
0.99997090
0.99996874
0.99996923
0.99996874

0.9999694
0.99996683
0.99996899
0.99996908
0.99997081
0.99997105
0.99996936
0.99996906
0.99996938

0.9999693
0.99996871
0.99997077
0.99996928
0.99997105
0.99996936
0.99996907
0.99996908
0.99996865
0.99997081
0.99997080
0.99997087
0.99996901
0.99996886

time
0.21
0.36
0.76
0.99
1.15
1.60
1.11
2.42
2.27
2.17
2.65
4.52
3.03
2.96
4.07
444
471
5.85
3.90
5.44
10.31
9.61
26.32
18.70
21.53
31.08
40.03
42.89
39.17

TABLE B.4: Out-of-sample error metrics in case of the full GP method on the
sinc dataset.

77

78 Appendix B. Numerical appendix

FITC
M log-likelihood Mean AE Max AE R? time
5 16167 0.02140347 0.05279918 0.99375242 0.32
10 17971 0.00149348 0.00863559 0.99996844 0.58
15 17970 0.00150217 0.00825691 0.99996835 1.03
20 17970 0.00149221 0.00888536 0.99996822 0.79
25 17970 0.00141544 0.0070347 0.99996894 0.85
30 17970 0.00150217 0.00825688 0.99996835 1.51
40 17970 0.00150401 0.00881403 0.99996766 2.32
45 17971 0.0015014 0.00894103 0.99996766 2.04
50 17970 0.00149676 0.00889583 0.99996807 2.76
55 17971 0.0015051 0.00899251 0.99996752 3.20
60 17969 0.00142348 0.00813646 0.99996978 3.18
65 17971 0.00150134 0.00891295 0.999968 3.08
70 17970 0.00141547 0.00691219 0.99996899 2.86
75 17971 0.00150656 0.00895251 0.99996751 4.10
80 17968 0.00146008 0.00713451 0.99997 4.22
85 17968 0.00145893 0.0071379 0.99997003 3.84
90 17969 0.00141284 0.00855656 0.9999696 5.46
95 17971 0.00150433 0.00851773 0.99996809 4.81
100 17971 0.0014948 0.00891777 0.99996819 3.94
200 17969 0.001475 0.00528559 0.99996876 10.72
300 17971 0.00150061 0.0089268 0.99996801 10.906
400 17971 0.00149968 0.00893564 0.99996803 11.20
500 17971 0.00150185 0.00898295 0.99996762 18.13
600 17969 0.00142348 0.00814805 0.99996977 23.42
700 17969 0.00141211 0.0085062 0.99996965 32.88
800 17971 0.00149499 0.00895716 0.99996815 39.66
900 17969 0.00141327 0.00858578 0.99996957 62.13
1000 17968 0.00142486 0.00821734 0.99996961 42.51

TABLE B.5: In-sample error metrics in case of the FITC method on the sinc
dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

16167
17971
17970
17970
17970
17970
17970
17970
17971
17970
17971
17969
17971
17970
17971
17968
17968
17969
17971
17971
17969
17971
17971
17971
17969
17969
17971
17969
17968

0.021723
0.00148809
0.00149568
0.00148612
0.00141323

0.0014922
0.00149568
0.00149482
0.00149168

0.0014906
0.00149547
0.00141403
0.00149537
0.00141335

0.0014971
0.00145506
0.00145391
0.00140087
0.00149713

0.0014889
0.00147694
0.00149463

0.0014937
0.00149213
0.00141401
0.00140022
0.00148903
0.00140125
0.00141364

Max AE
0.05279917
0.00862147
0.00824368
0.00887056
0.00702452
0.00879338
0.00824365
0.00879952
0.00892598

0.008881
0.00897727

0.0081233
0.00889789
0.00690242
0.00893743
0.00712693
0.00713031
0.00854245
0.00850362
0.00890274

0.0052855

0.0089117
0.00892051
0.00896774
0.00813485
0.00849228

0.008942
0.00857156
0.00820403

RZ
0.99368879
0.99996947
0.99996939
0.99996929
0.99996969
0.99996891
0.99996939
0.99996883
0.99996885
0.99996914
0.99996872
0.99997089
0.99996907
0.99996973
0.99996869
0.99997079
0.99997082
0.99997081
0.99996918
0.99996926

0.9999691
0.99996909
0.99996911
0.99996882
0.99997088
0.99997085
0.99996923
0.99997078
0.99997077

time
0.32
0.52
0.54
0.70
1.20
1.18
1.50
1.26
2.59
3.17
1.91
2.54
4.68
5.20
3.45
3.56
4.01
4.43
6.29
6.85
8.69
16.96
24.64
25.78
25.56
40.70
39.75
29.04
54.83

TABLE B.6: Out-of-sample error metrics in case of the FITC method on the
sinc dataset.

79

80 Appendix B. Numerical appendix

VFE
M log-likelihood Mean AE Max AE R? time
5 14687 0.02157777 0.05442483 0.99366071 0.26
10 17797 0.00148314 0.01527733 0.99995763 0.50
15 17941 0.00134701 0.00744574 0.9999717 1.09
20 17942 0.0013606 0.00817657 0.99997112 0.96
25 17943 0.00136144 0.00821661 0.99997109 1.32
30 17943 0.00136212 0.00824998 0.99997107 1.93
35 17943 0.00136215 0.0083228 0.99997104 1.81
40 17943 0.00136277 0.00829698 0.99997104 1.48
45 17943 0.00136295 0.00830496 0.99997103 2.12
50 17944 0.00136299 0.00833651 0.99997102 2.20
55 17944 0.00136314 0.00833905 0.99997101 3.13
60 17944 0.00136324 0.0083327 0.99997101 3.24
65 17944 0.00136339 0.00834705 0.999971 4.64
70 17944 0.00136349 0.00834855 0.999971 2.01
75 17944 0.0013634 0.00834649 0.999971 2.85
80 17944 0.00136344 0.00834911 0.999971 591
85 17944 0.00136346 0.00835076 0.999971 4.43
90 17944 0.00136354 0.00835291 0.999971 5.85
95 17944 0.0013638 0.00835996 0.99997099 4.70
100 17944 0.0013638 0.00836171 0.99997099 4.55
200 17944 0.00136413 0.00837541 0.99997098 9.19
300 17944 0.00136423 0.00838002 0.99997097 15.96
400 17944 0.00136433 0.00838355 0.99997097 17.80
500 17944 0.00136438 0.00838536 0.99997096 15.48
600 17944 0.0013644 0.00838648 0.99997096 39.35
700 17944 0.00136443 0.00838734 0.99997096 31.98
800 17945 0.00136443 0.00838776 0.99997096 55.44
900 17945 0.00136445 0.0083886 0.99997096 40.76
1000 17945 0.00136445 0.00838896 0.99997096 42.95

TABLE B.7: In-sample error metrics in case of the VFE method on the sinc
dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

14687
17797
17941
17942
17943
17943
17943
17943
17943
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17944
17945
17945
17945

0.02191061
0.00146294
0.00133761
0.00134844
0.00134923
0.00134984
0.00134986
0.00135043
0.0013506
0.00135063
0.00135079
0.00135089
0.00135101
0.00135112
0.00135104
0.00135108
0.00135111
0.00135117
0.0013514
0.00135141
0.00135175
0.00135186
0.00135195
0.00135201
0.00135203
0.00135206
0.00135207
0.00135208
0.00135209

Max AE
0.05442511
0.0152562
0.00743802
0.00816655
0.00820645
0.0082397
0.00831224
0.00828652
0.00829448
0.00832591
0.00832843
0.00832211
0.00833641
0.0083379
0.00833585
0.00833845
0.0083401
0.00834224
0.00834928
0.00835102
0.00836467
0.00836927
0.00837279
0.00837459
0.00837571
0.00837656
0.00837699
0.00837782
0.00837817

RZ
0.99358794
0.99996114

0.9999727
0.99997222
0.9999722
0.99997218
0.99997216
0.99997215
0.99997215
0.99997214
0.99997213
0.99997214
0.99997213
0.99997212
0.99997213
0.99997213
0.99997213
0.99997212
0.99997212
0.99997211
0.9999721
0.9999721
0.9999721
0.99997209
0.99997209
0.99997209
0.99997209
0.99997209
0.99997209

time
0.00
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.11
0.12
0.15
0.25
0.24
0.36
0.38
0.43
0.49
0.61
0.57
0.54
1.99
5.56
11.46
18.79
16.63
18.03
42.87
44.85
73.42

TABLE B.8: Out-of-sample error metrics in case of the VFE method on the
sinc dataset.

81

82

SKI

method
M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000
10000

log-likelihood =~ Mean AE

-2766
-1044
12106
17265
17610
17630
17638
17880
17919
17678
17537
17610
16906
17742
17612
17287
17812
17793
17893
17279
17893
17600
15272
15148
17919
17928
17712
17887
17859
17897

0.23766244
0.19788665
0.04833559
0.01047249
0.00395782
0.00250444
0.00158953
0.00257322
0.00128148
0.00138329
0.00288868
0.00137575
0.00422475
0.00137622
0.00137642
0.00339482
0.00136599
0.00135747
0.00136668
0.0041205
0.00137191
0.00137982
0.00670047
0.0072856
0.00136955
0.00136662
0.00136448
0.00135853
0.00132323
0.00137278

Appendix B. Numerical appendix

SKI
Max AE
0.80488472
0.58621741
0.11058767
0.02632327
0.01247529
0.008977
0.00804558
0.00888747
0.00622999
0.00823215
0.01074471
0.00853562
0.01930995
0.00864696
0.00865705
0.01259642
0.00843102
0.00830784
0.00841673
0.02734016
0.00855777
0.00891471
0.05057857
0.0467018
0.00848417
0.0084208
0.00837771
0.00828972
0.00787663
0.00855628

RZ
0.63210363
0.81504959
0.96799256
0.99846063
0.99978282
0.99990794
0.99995978
0.99990615
0.99997432
0.99997013
0.99987609
0.99997049
0.99973114
0.99997045
0.99997047
0.99983649
0.99997088
0.99997114
0.99997089
0.99969353
0.99997071
0.99997026
0.99928856

0.9991955
0.99997081
0.9999709
0.99997098
0.99997114
0.99997225
0.9999707

time
0.00
0.00
0.01
0.02
0.04
0.06
0.07
0.11
0.13
0.17
0.18
0.16
0.20
0.26
0.25
0.29
0.40
0.43
0.72
0.63
2.42
5.13
10.52
17.83
19.67
26.70
40.22
34.09
43.79
155.80

TABLE B.9: In-sample error metrics in case of the SKI method on the sinc
dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000
10000

log-likelihood =~ Mean AE

-2766
-1044
12106
17265
17610
17630
17638
17880
17919
17678
17537
17610
16906
17742
17612
17287
17812
17793
17893
17279
17893
17600
15272
15148
17919
17928
17712
17887
17859
17897

0.24007628
0.19922318
0.04912239
0.01056446
0.00395296
0.00246586
0.00157614
0.00252801
0.00129001
0.00137107
0.00292754
0.00135803
0.00425469
0.00136543
0.00136293
0.00339782
0.00135457
0.00134564
0.00135412
0.00411176
0.00135929
0.00136786
0.00686001
0.00748222
0.00135704
0.00135424
0.00135209
0.00134653
0.00131364
0.00136033

Max AE
0.80488467
0.58621834
0.11058724
0.02632299
0.01247663
0.00896219
0.00803465
0.00887327
0.00622677
0.00822205
0.01074365
0.00852455
0.01930901
0.00863556
0.00864558
0.01259635
0.00842032
0.00829758

0.0084061
0.02731309
0.00854645
0.00890206
0.05072173
0.04661886
0.00847303
0.00840989
0.00836697
0.00827931
0.00786776
0.00854486

RZ
10.70863677
0.83583501
0.96747716
0.99845042
0.99978605
0.99991163
0.99996106
0.99990972
0.99997472
0.99997126
0.99987522
0.99997176
0.99973325
0.99997159
0.99997165
0.99983889
0.99997199
0.99997225
0.99997203
0.99970785
0.99997186
0.99997146
0.99926607
0.9991759
0.99997195
0.99997204
0.99997211
0.99997225
0.99997328
0.99997185

time
0.00
0.00
0.01
0.02
0.03
0.05
0.08
0.08
0.10
0.17
0.19
0.15
0.22
0.19
0.32
0.36
0.55
0.64
0.40
0.78
2.25
6.84
10.88
14.29
23.95
25.24
52.94
64.43
64.66
132.03

TABLE B.10: Out-of-sample error metrics in case of the VFE method on the
sinc dataset.

83

84

ME

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

-2
-7
-0
9
18
27
36
40
51
58
63
69
73
82
90
97
105
114
125
133
328
506
693
888
1082
1265
1459
1644
1820

0.18543448
0.04382552
0.03356221
0.03048575
0.02702565
0.02626958
0.02390141
0.02227904
0.02282144
0.01892062
0.0154454
0.01470911
0.01267962
0.0131888
0.01181846
0.00933381
0.00721587
0.00720123
0.00738555
0.00740302
0.0070762
0.00905463
0.00671628
0.00688539
0.00639854
0.00613421
0.00570428
0.00497743
0.00453953

Appendix B. Numerical appendix

Max AE
0.73152732
0.1210511
0.09776485
0.07751189
0.07438436
0.07197084
0.06382236
0.06339869
0.0640439
0.06374239
0.06354367
0.06360358
0.06077794
0.06195334
0.06206089
0.06196227
0.06275165
0.06231883
0.0622856
0.06265939
0.06511289
0.06600798
0.06642679
0.06673003
0.06701568
0.06642545
0.06626452
0.06646336
0.06648251

RZ
0.35215214
0.97434358
0.98572373
0.98879067
0.99012817
0.99118725
0.99318009
0.99385649
0.99352089
0.99528839
0.99676362
0.99694112
0.99776532
0.99773212
0.99796115
0.99840502

0.9988615
0.99898555
0.99898332
0.99895965
0.99905121
0.99863832
0.99907589
0.99904276
0.99901974
0.99914797
0.99925747
0.99929725
0.99931018

time
0.04
0.07
0.10
0.19
0.21
0.21
0.34
0.34
0.48
0.46
0.41
0.62
0.65
0.77
0.77
0.77
0.96
1.04
1.04
1.21
3.07
5.71
9.15
13.31
18.46
25.10
33.39
44.01
55.48

TABLE B.11: In-sample error metrics in case of the ME method on the sinc
dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

-2
-7
-0
9
18
27
36
40
51
58
63
69
73
82
90
97
105
114
125
133
328
506
693
888
1082
1265
1459
1644
1820

0.18932218
0.04503656
0.0343897
0.03114042
0.02755516
0.02676955
0.02437404
0.0228515
0.02332425
0.01923048
0.01565477
0.01478178
0.01270502
0.01323638
0.01179763
0.00924969
0.00712846
0.00714501
0.00730057
0.00737248
0.00712201
0.00909528
0.00682375
0.00698314
0.00645891
0.00612947
0.00573587
0.00500479
0.00456646

Max AE
0.73152721
0.1210511
0.09776479
0.07751179
0.0743844
0.07197085
0.06367622
0.0632454
0.06388785
0.06356669
0.0633546
0.06341089
0.06052108
0.06169674
0.06180332
0.06171032
0.06249946
0.06205999
0.06202618
0.06239859
0.06489222
0.0658026
0.06623666
0.06655713
0.06686809
0.06624724
0.06607131
0.06627498
0.0663063

RZ
0.35134151
0.97373733
0.98539747
0.98860427
0.98997681
0.99107481
0.99306741

0.9937535
0.9934478
0.99527836
0.99676957
0.99696779
0.9977942
0.99775961
0.9980013
0.99846181
0.998897
0.99901226
0.99901419
0.9989835
0.99905656
0.99864928
0.99906582
0.99902996
0.99900708
0.99914104
0.99924839
0.99928819
0.99929717

time
0.04
0.07
0.10
0.19
0.21
0.21
0.34
0.34
0.48
0.46
0.41
0.62
0.65
0.77
0.77
0.77
0.96
1.04
1.04
1.21
3.07
5.79
9.15
13.31
18.46
25.10
33.39
44.01
55.48

TABLE B.12: Out-of-sample error metrics in case of the ME method on the
sinc dataset.

85

86 Appendix B. Numerical appendix

MMI
M log-likelihood Mean AE Max AE R? time
5 2 0.19393654 0.77307944 0.30266861 22.01
10 -5 0.0574218 0.13066505 0.95355062 49.15
15 -2 0.02224221 0.0561663 0.99270404 75.79
20 3 0.01876017 0.04467476 0.99527085 101.85
25 12 0.01798621 0.05598774 0.99543425 130.25
30 18 0.01841691 0.05554927 0.99518968 156.96
35 27 0.01538395 0.04744228 0.99642995 186.47
40 36 0.01238852 0.04560722 0.99725045 214.67
45 45 0.01238428 0.04494226 0.99748595 238.94
50 55 0.01253622 0.0446003 0.99766725 264.06
55 64 0.01295751 0.03944784 0.99753271 292.69
60 74 0.01215219 0.03840304 0.99771029 319.76
65 83 0.010578 0.03185543 0.99838976 346.10
70 92 0.01155432 0.03190874 0.99814853 376.90
75 101 0.01204016 0.03461431 0.99798372 401.91
80 109 0.0100182 0.03389753 0.99831343 426.78
85 115 0.01048806 0.0293536 0.99834336 455.87
90 125 0.01003838 0.02506804 0.99859778 484.28
95 135 0.00950035 0.02524885 0.99871198 509.64
100 146 0.00948327 0.02337092 0.99876294 536.41
200 327 0.00884771 0.02688212 0.99878911 1069.88
300 498 0.00631997 0.02370055 0.99937137 1587.26
400 681 0.00510943 0.03316376 ~ 0.9995673 2099.09
500 847 0.00353343 0.02738125 0.99976229 2599.03
600 1025 0.00428554 0.04190526 0.99958656 3110.30
700 1206 0.00453174 0.0477211 0.99950215 3578.65
800 1372 0.00638223 0.05735533 0.99917266 3964.75
900 1529 0.00611358 0.05035897 0.99922174 4378.77
1000 1707 0.00631532 0.04668259 0.99922001 4799.27

TABLE B.13: In-sample error metrics in case of the MMI method on the sinc
dataset.

B.1. Numerical results

M
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
200
300
400
500
600
700
800
900
1000

log-likelihood ~ Mean AE

-2
-5
-2
3
12
18
27
36
45
55
64
74
83
92
101
109
115
125
135
146
327
498
681
847
1025
1206
1372
1529
1707

0.19707343
0.05742635
0.0217686
0.01864092
0.01775461
0.01829773
0.01517947
0.01212132
0.01216022
0.01229039
0.01265953
0.01187212
0.01033177
0.01135879
0.01184544
0.00985201
0.0103172
0.00989711
0.00934418
0.00933751
0.00864642
0.00627131
0.00512678
0.00355089
0.00424306
0.00447505
0.00631297
0.00599254
0.00618387

Max AE
0.77307842
0.13066509
0.05616623
0.04467478
0.05598772
0.05554917
0.04744227
0.04560721
0.04494219
0.04444235
0.03944784
0.03840284
0.03185543
0.03190874
0.03461431
0.03389751
0.02935361
0.02506804
0.02524886
0.02337089
0.02688212
0.02363621
0.03308194
0.02730718
0.04187528
0.04768839
0.05731693
0.05033048
0.04665776

R2
0.30073987
0.95446365
0.99307711
0.99538668
0.99562351
0.99536362
0.99658414
0.99739879
0.99761185
0.99778554
0.99765498
0.99782202
0.99847014
0.99822503

0.9980711
0.99838812
0.99841397
0.99865098
0.99876615
0.99881199
0.99884433
0.99938488
0.99956928
0.99976352
0.99961676
0.99954317
0.99922996
0.99927563
0.99926957

time
22.01
49.15
75.79
101.85
130.25
156.96
186.47
214.67
238.94
264.06
292.69
319.76
346.10
376.90
401.91
426.78
455.87
484.28
509.64
536.41
1069.86
1587.26
2099.09
2599.03
3110.30
3578.63
3964.75
4378.77
4799.27

TABLE B.14: Out-of-sample error metrics in case of the MMI method on the
sinc dataset.

87

88 Appendix B. Numerical appendix

RU

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean Std

5 -2 0 0.0364 0.65909625 0.164 0.50361807 0.20224
10 9 0 0.0425 0.38778933 0.164 0.81204787 0.12915
15 1 0 0.0303 0.24944018 0.155 0.92220334 0.08684
20 8 0 0.0149 0.17853251 0.095 0.96516769 0.03215
25 15 0 0.0154 0.14038716 0.097 0.97607407 0.03498
30 21 0 0.0083 0.11156898 0.077 0.98647077 0.01597
35 38 0 0.0056 0.09131751 0.056 0.99149431 0.00679
40 46 0 0.0066 0.08669047 0.069 0.99250153 0.00934
45 44 0 0.0046 0.07595616 0.050 0.99394228 0.00495
50 61 0 0.0044 0.06748399 0.040 0.99485231 0.00442
55 67 0 0.0032 0.05552961 0.025 0.99639353 0.00170
60 81 0 0.0032 0.05304931 0.025 0.99667145 0.00162
65 89 0 0.003 0.06182251 0.043 0.9962052 0.00308
70 88 0 0.0030 0.05274497 0.030 0.99676429 0.00274
75 105 0 0.0031 0.0514035 0.027 0.99697603 0.00191
80 103 0 0.0028 0.05013763 0.024 0.99741819 0.00114
85 110 0 0.0027 0.05315087 0.030 0.99736081 0.00128
90 124 0 0.0025 0.04633058 0.020 0.99760139 0.00099
95 137 0 0.0026 0.04585622 0.019 0.99776408 0.00096
100 148 0 0.0021 0.0424709 0.0178 0.99799665 0.00081
200 323 0 0.0017 0.03042285 0.0130 0.99898448 0.00043
300 484 0 0.0014 0.02661855 0.0124 0.99927854 0.00029
400 662 0 0.0012 0.02196403 0.007 0.99950208 0.00018
500 838 0 0.0009 0.02041042 0.006 0.99957865 0.00013
600 1035 0 0.0009 0.01975732 0.008 0.99965248 0.00012
700 1202 0 0.0008 0.01856492 0.007 0.99969388 0.00010
800 1396 0 0.0009 0.0185336 0.007 0.99970275 0.00012
900 1565 0 0.0009 0.01690154 0.007 0.99974042 0.00010
1000 1753 0 0.0007 0.01568948 0.006 0.99976462 0.00008

TABLE B.15: In-sample error metrics in case of the RU method on the sinc
dataset.

B.1. Numerical results

M

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
200
300
400
500
600
700
800
900
1000

Continuation Value - Bermudan Put

log-likelihood

Mean
-2
-9

1
8
15
21
38
46
44
61
67
81
89
88
105
103
110
124
137
148
323
484
662
838
1035
1202
1396
1565
1753

TABLE B.16: Out-of-sample error metrics in case of the RU method on the

Std

o

SO OO OO OO O ODODODODODODODODODODODOCDODODOOO OO

Mean AE Max AE
Mean Std Mean Std
0.0359 0.65909275 0.164 0.50937223
0.0422 0.38776683 0.164 0.81479966
0.0300 0.24939902 0.155 0.92319926
0.0148 0.17853251 0.095 0.96516769
0.0154 0.14035325 0.097 0.97654333
0.0081 0.11151835 0.077 0.98681545
0.0055 0.09127016 0.056 0.99166854
0.0065 0.08663841 0.069 0.992705
0.0045 0.0759 0.050 0.9940857
0.0044 0.0674258 0.040 0.99494954
0.0032 0.0554833 0.025 0.9964412
0.0032 0.05300257 0.025 0.99672396
0.0036 0.06178169 0.043 0.99629927
0.0030 0.05270263 0.030 0.99682593

0.00314 0.05136519 0.027 0.99704324
0.0028 0.05010034 0.024 0.99745855
0.0027 0.05308592 0.030 0.99741643
0.0025 0.04628951 0.020 0.99763501
0.0026 0.04581677 0.019 0.99780906
0.0021 0.04242491 0.017 0.99803275
0.0017 0.03038505 0.013 0.99900321
0.0014 0.02658694 0.012 0.99929103
0.0012 0.02194189 0.007 0.99951003
0.0009 0.02038533 0.006 0.99958614
0.0009 0.01972826 0.007 0.99966034
0.0008 0.01853344 0.006 0.99970022
0.0009 0.01850535 0.007 0.99970942
0.0009 0.01687427 0.006 0.99974551
0.0007 0.01567081 0.006 0.99976983

Results related to Section 5.2.

VFE

M

5
10
20
40
80

log-likelihood

Mean
-115323
-111629
-110862
-110880
-110849

TABLE B.17: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,

Std
306
300
274
274
259

sinc dataset.

Mean AE

Mean
0.13432294
0.05690284
0.01810467
0.00967454
0.00969784

Std
0.0146
0.0018
0.0011
0.0013
0.0014

Max AE

Mean
4.20194969
3.34085516
0.92883407
0.48829547
0.41092232

c=02T=1,K=40.

Std
0.5492
0.5955
0.5164
0.2839
0.2140

RZ
Mean
0.20235
0.12718
0.08608
0.03150
0.03462
0.01537
0.00661
0.00899
0.00470
0.00426
0.00168
0.00160
0.00293
0.00257
0.00180
0.00112
0.00122
0.00099
0.00095
0.00080
0.00042
0.00028
0.00018
0.00013
0.00012
0.00010
0.00011
0.00010
0.00008

RZ
Mean
0.9983793
0.99976112
0.99997615
0.99999262
0.99999252

Std
0.0002
0.0000
0.0000
0.0000
0.0000

89
time
Mean Std
8.63 3.21
8.66 2.57
9.81 2.75
2944 6.29
744 29.69

90

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

log-likelihood
Std
1364
341
348
343
329

Mean
-113323
-102132
-100047

-99752
-99692

Mean AE

Mean
0.25545325
0.11023685
0.03458839
0.01087566
0.01014562

Std
0.0347
0.0013
0.0031
0.0012
0.0012

Max
Mean
4.33293242
4.96605704
3.38080061
0.68433346
0.80984769

Appendix B. Numerical appendix

AE
Std
0.6007
1.0700
0.9899
0.6661
1.1027

RZ

Mean
0.99614644
0.99934845
0.99992982
0.99999289
0.99999314

TABLE B.18: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,
c=02,T=2,K=40.

log-likelihood

Mean
-170432
-165993
-165139
-165092
-165014

Std
254
278
310
325
304

Mean AE

Mean
0.33256577
0.10128177
0.03562613
0.01546232
0.01568638

Std
0.9972
0.0015
0.0018
0.0022
0.0023

Max AE

Mean
6.90656069
7.05699897
4.24846637
1.39563334
1.49930209

Std
0.3896
0.1872
2.6328
2.1403
2.2818

RZ

Mean
0.99721842
0.99968755
0.99996165
0.99999216
0.99999162

TABLE B.19: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,
c=04,T=1,K = 40.

log-likelihood

Mean
-166914
-159081
-155973
-155271
-155288

Std
339
339
326
318
340

Mean AE

Mean
0.42828118
0.17055218
0.07814909
0.02705529
0.01682747

Std
0.0029
0.0200
0.0090
0.0045
0.0018

Max AE
Mean Std
8.66662364 0.0298
8.66860392 0.0296
8.48171917 0.8944
5.84741024 3.6421
4.53338919 4.07623

RZ

Mean
0.99650616
0.99918635
0.99984555
0.99997607
0.99998654

TABLE B.20: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,
c=04,T=2,K=40.

log-likelihood

Mean
-108702
-104133
-103204
-103145
-103064

Std
313
329
365
351
388

Mean AE

Mean
0.15336173
0.07445897
0.01830223
0.00909887
0.00919951

Std
0.0153
0.0028
0.0012
0.0014
0.0014

Max AE

Mean
3.21739705
4.56983885
1.24575451
0.50860658
0.44681682

Std
0.9016
1.2332
0.8864
0.2684
0.2414

RZ
Mean
0.9975007
0.99947845
0.99996834
0.99999109
0.99999107

TABLE B.21: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 38, r = 0.06,
c=02T=1,K=40.

Std
0.0007
0.0000
0.0000
0.0000
0.0000

Std
0.0002
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0001
0.0000
0.0000
0.0000

Std
0.0003
0.0000
0.0000
0.0000
0.0000

time
Mean Std
7.30 2.51
9.67 2.55
9.70 3.15
2491 7.90
73.44 25.77
time
Mean Std
8.37 2.29
9.86 2.61
10.19 247
3240 6.00
71.82 27.90
time
Mean Std
8.08 2.67
9.22 2.98
9.01 2.93
27.04 5.72
81.74 21.32
time
Mean Std
6.75 2.40
9.35 2.51
9.38 2.54
2725 5.35
78.78 34.63

B.1. Numerical results

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

log-likelihood

Mean
-107540
-96299
-93961
-93492
-93468

TABLE B.22: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 38, r = 0.06,
c=02T=2K=40.

Std
140
376
379
359
350

log-likelihood

Mean
-167823
-163308
-162362
-162287
-162263

TABLE B.23: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 38, r = 0.06,

Std
298
330
347
376
353

log-likelihood

Mean
-165946
-157824
-154322
-153647
-153548

TABLE B.24: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 38, r = 0.06,

Std
283
364
381
351
341

log-likelihood

Mean
-100401
-94410
-93465
-93345
-93368

TABLE B.25: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 40, r = 0.06,

Std
409
421
382
421
343

Mean AE

Mean
0.25601862
0.10521484
0.03975772
0.01095227
0.00975132

Std
0.0452
0.0025
0.0019
0.0011
0.0013

Mean AE

Mean
0.32762285
0.10244986
0.03675706
0.01530334
0.01518682

Std
0.0017
0.0021
0.0020
0.0025
0.0023

Max AE

Mean
7.50678895
4.75352275

3.1509920
0.87967942
0.72067636

Std
1.7280
1.2129
0.4938
0.9040
0.8079

Max AE

Mean
6.46512568
6.17392665
4.83346118
1.21563428
1.20357501

c=04,T=1,K=40.

Mean AE

Mean
0.43049406
0.17618113
0.08875623
0.02871037
0.01600179

Std
0.0022
0.0208
0.0104
0.0035
0.0019

Std
0.4594
0.0434
1.8410
1.7594
1.7658

Max AE

Mean
7.85738056
7.85384497
7.79298404
6.03959254
5.18618317

c=04,T=2,K=A40.

Mean AE

Mean
0.16487204
0.17618113
0.08875623
0.02871037
0.01600179

Std
0.0144
0.0016
0.0019
0.0013
0.0013

Std
0.0283
0.0306
0.4129
2.9331
3.5369

Max AE

Mean
2.46903422
7.85384497
7.79298404
6.03959254
5.18618317

c=02T=1,K=40.

Std
1.0974
1.4310
0.5876
0.3140
0.3064

RZ

Mean
0.99558842
0.99926438
0.99989345
0.99999081
0.99999235

R2

Mean
0.99702071
0.99964104
0.99995326
0.99999174
0.99999160

RZ

Mean
0.99618511
0.99908562
0.99981204
0.99997228
0.99998453

RZ

Mean
0.99632702
0.99908562
0.99981204
0.99997228
0.99998453

Std
0.0010
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0001
0.0000
0.0000
0.0000

Std
0.0004
0.0000
0.0000
0.0000
0.0000

91
time
Mean Std
7.23 2.57
8.88 2.44
7.98 2.03
20.33 4.59
73.83 2743
time
Mean Std
8.55 2.68
8.73 2.30
10.18 2.68
3040 6.10
73.61 26.19
time
Mean Std
7.69 2.23
9.09 2.66
9.27 3.20
25.72 5.33
80.43 20.81
time
Mean Std
7.39 2.72
9.31 2.82
8.37 2.17
2490 4.53
7717 32.66

92

M

5
10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

log-likelihood
Mean Std
-100917 770
-89455 397
-86739 402
-86243 409
-86223 390

Mean AE

Mean
0.24038043
0.09745350
0.03882846
0.01117587
0.00915326

Std
0.0264
0.0035
0.0011
0.0013
0.0012

Appendix B. Numerical appendix

Max AE

Mean
7.96214975
4.73262027
2.69527555
0.87255885
0.60686592

Std
1.7470
1.2256
0.4216
0.8290
0.5253

RZ

Mean
0.99505573
0.99918876
0.99987102
0.99998778
0.99999102

TABLE B.26: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=02,T=2,K=40.

log-likelihood

Mean
-164718
-160195
-159055
-158948
-158905

Std
328
375
340
344
356

Mean AE

Mean
0.3157927
0.10288734
0.03844238
0.01485763
0.01456976

Std
0.0019
0.0023
0.0024
0.0025
0.0022

Max AE

Mean
6.50988571
5.36096559
4.85639108

1.7121116
1.47017781

Std
0.7919
0.0217

1.095
1.9542
1.7776

RZ

Mean
0.99685567
0.99957913
0.99994202
0.99999039
0.99999112

TABLE B.27: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=04,T=1,K = 40.

log-likelihood

Mean
-164696
-156336
-152518
-151638
-151499

Std
359
381
340
410
357

Mean AE

Mean
0.42544263
0.18035653
0.09316215
0.03067318
0.01605621

Std
0.0125
0.0204
0.0078
0.0027
0.0018

Max AE

Mean
7.12486994
7.12848521
7.11004979
6.02343506
5.32300968

Std
0.0249
0.0291
0.0932
2.2056
29512

RZ

Mean
0.99598901
0.99898859
0.99977930
0.99996667
0.99998351

TABLE B.28: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=04,T=2,K=40.

log-likelihood
Mean Std
-83091 70000
-83089 448
-81905 412
-81842 453
-81744 452

Mean AE

Mean
0.16952838
0.06131753
0.02150919
0.00752196
0.00754794

Std
0.0332
0.0015
0.0010
0.0012
0.0013

Max AE

Mean
6.74823717
3.87174594
1.65025943
0.48179458
0.51682675

Std
2.0863
1.3860
0.5150
0.3079
0.3180

RZ

Mean
0.99422872
0.99929906
0.99991212
0.99998589
0.99998559

TABLE B.29: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,
c=02T=1,K=40.

Std
0.0007
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0000
0.0000
0.0000
0.0000

Std
0.0003
0.0001
0.0000
0.0000
0.0000

Std
0.0033
0.0000
0.0000
0.0000
0.0000

time
Mean Std
7.78 241
9.48 2.80
8.23 2.37
20.71 5.78
65.88 20.59
time
Mean Std
7.90 2.58
9.01 2.79
1048 3.11
2897 454
78.13 24.19
time
Mean Std
8.09 2.82
9.35 2.43
9.06 2.75
25.08 5.45
79.53 25.13
time
Mean Std
7.11 2.62
9.00 2.46
8.02 2.06
22.79 450
74.67 25.53

B.1. Numerical results

10
20
40
80

10
20
40
80

10
20
40
80

10
20
40
80

log-likelihood

Mean
-93351
-81828
-78766
-78121
-78178

TABLE B.30: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 42, r = 0.06,

Std
510
412
431
451
444

log-likelihood

Mean
-161178
-156609
-155342
-155212
-155131

TABLE B.31: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,

Std
333
347
378
352
383

log-likelihood

Mean
-163166
-154632
-150377
-149521
-149411

TABLE B.32: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,

Std
411
365
370
378
418

log-likelihood

Mean
-77365
-70154
-68810
-68614
-68574

TABLE B.33: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 44, r = 0.06,

Std
526
430
496
479
582

Mean AE

Mean
0.21423839
0.08893690
0.03670870
0.01119737
0.00811433

Std
0.0215
0.0029
0.0014
0.0012
0.0010

Max AE

Mean
8.41718881
5.0074352
2.48689725
0.73828574
0.67403662

c=02T=2,K=140.

Mean AE

Mean
0.30301681
0.10354263
0.04111474
0.01542604
0.01496856

Std
0.0018
0.0019
0.0027
0.0028
0.0026

Std
2.0255
1.4172
0.5525
0.5895
0.5247

Max AE

Mean
6.67485638
4.65764461
4.43093525
1.58190803
1.16442713

c=04,T=1,K=40.

Mean AE

Mean
0.42102008
0.1744398
0.09726191
0.03191160
0.01543913

Std
0.0170
0.0172
0.0042
0.0022
0.0021

Std
0.6872
0.1168
0.6318
1.6378
1.2570

Max AE

Mean
6.46215674
6.46339731
6.45936304
5.83726464
5.03155084

c=04,T=2,K=A40.

Mean AE

Mean
0.13341328
0.0547805
0.01916242
0.00640639
0.00656072

Std
0.0110
0.0010
0.0013
0.0010
0.0011

Std
0.0295
0.0267
0.0270
1.5655
2.5184

Max AE

Mean
7.82946417
3.28376837

1.4344297
0.44306026
0.47906048

c=02T=1,K=40.

Std
1.5186
1.0402
0.4918
0.3004
0.2533

RZ

Mean
0.99472242
0.99909837
0.99984829
0.99998413
0.99999019

R2

Mean
0.99666001
0.99950746
0.99992734
0.99998830
0.99998966

RZ

Mean
0.99571983
0.99897660
0.99975332
0.99996091
0.99998379

RZ
Mean
0.99419185
0.99915965
0.9998938
0.99998218
0.99998079

Std
0.0007
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0000
0.0000
0.0000
0.0000

Std
0.0004
0.0001
0.0000
0.0000
0.0000

Std
0.0007
0.0000
0.0000
0.0000
0.0000

93
time
Mean Std
7.60 2.29
9.31 2.33
7.88 2.12
19.04 5.52
68.42 18.06
time
Mean Std
7.61 2.54
9.13 2.47
9.46 247
28.07 5.42
79.30 24.55
time
Mean Std
7.60 2.68
9.12 2.90
8.71 2.66
25.07 7.34
77.79 19.63
time
Mean Std
7.25 2.46
8.59 2.39
8.65 2.28
2349 591
81.97 3281

94

10
20
40
80

10
20
40
80

10
20
40
80

SKI

10°

10°

Appendix B. Numerical appendix

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean

-85211 496 0.19563202 0.0067 8.82933974 1.5122 0.99405421
-73674 464 0.07997007 0.0036 4.82424893 1.3675 0.99900303
-70025 470 0.03419116 0.0011 2.07078534 0.5507 0.99982283
-69406 494 0.01098718 0.0010 0.86452235 0.5135 0.99997893
-69412 417 0.00721437 0.0010 0.56876061 0.4791 0.99998856

TABLE B.34: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 44, r = 0.06,
c=02,T=2,K=40.

RZ

Mean
0.99643805
0.99942263
0.99990806
0.99998623
0.99998789

log-likelihood

Mean Std
-157363 352
-152820 382
-151322 395
-151058 364
-151043 355

Mean AE
Mean
0.28999211
0.10402011
0.04379968
0.01527153
0.01438716

Max AE
Mean
6.92137471
4.03721148
3.93627156
1.77394868
1.57725522

Std
0.0017
0.0022
0.0028
0.0026
0.0028

Std
0.9592
0.1334
0.3072
1.4974
1.4205

TABLE B.35: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 44, r = 0.06,
c=04,T=1,K = 40.

RZ

Mean
0.99543051
0.99888728
0.99973259
0.99995768
0.99998329

log-likelihood

Mean Std
-161511 455
-152634 411
-148039 388
-147123 394
-147014 430

Mean AE
Mean
0.4157561
0.17645334
0.09682039
0.03206126
0.01528469

Max AE
Mean
5.90771584
5.8556139
5.85832130
5.72052989
4.78156175

Std
0.0210
0.0175
0.0025
0.0017
0.0020

Std
0.1805
0.0256
0.0246
0.6646
2.0910

TABLE B.36: In-sample error metrics for the VFE method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 44, r = 0.06,
c=04,T=2,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-11171 236 0.02348796 0.9410 0.99993234 0.0125 0.40573911

TABLE B.37: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,
c=02T=1,K=40.

log-likelihood Mean AE Max AE R2
Mean Std Mean Std Mean Std Mean
-10614 685 0.04865295 0.0083 1.19274856 0.3077 0.99985114

TABLE B.38: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 36, r = 0.06,
c=02T=2,K=40.

Std
0.0003
0.0000
0.0000
0.0000
0.0000

Std
0.0000
0.0000
0.0000
0.0000
0.0000

Std
0.0004
0.0001
0.0000
0.0000
0.0000

Std
0.0000

Std
0.0000

time
Mean Std
8.08 2.68
9.20 3.30
8.08 2.15
17.75 4.55
65.68 16.89
time
Mean Std
7.53 2.72
9.29 2.66
9.06 2.55
26.34 5.60
82.58 32.65
time
Mean Std
7.89 2.96
9.44 2.96
8.58 2.55
22,73 5.12
79.62 18.30
time
Mean Std
86.30 26.53
time
Mean Std
137.34 15.15

B.1. Numerical results

10°

10°

10°

10°

10°

10°

10°

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-16437 254 0.05091184 0.0224 1.77168807 0.7168 0.99989607

TABLE B.39: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 36, r = 0.06,
c=04,T=1,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15829 440 0.09207003 0.0076 1.49750811 0.5225 0.99982994

TABLE B.40: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 36, r = 0.06,
0c=04,T=2,K=40.

log-likelihood Mean AE Max AE R2
Mean Std Mean Std Mean Std Mean
-10567 414 0.03015784 0.0132 1.13519556 0.3605 0.99986609

TABLE B.41: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 38, r = 0.06,
c=02T=1,K=40

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-9904 693 0.04342493 0.0054 1.08943762 0.3105 0.99985761

TABLE B.42: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 38, r = 0.06,
0c=02T=2,K=40.

log-likelihood Mean AE Max AE R2
Mean Std Mean Std Mean Std Mean
-16166 243 0.05684489 0.0192 1.57689492 0.5609 0.99987172

TABLE B.43: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 38, r = 0.06,
c=04,T=1K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15610 193 0.08796388 0.0062 1.41244121 0.5585 0.99983583

TABLE B.44: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 38, r = 0.06,
c=04,T=2K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-10049 812 0.03238061 0.0129 1.08319521 0.3424 0.99978521

TABLE B.45: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S¢, = 40, r = 0.06,
c=02T=1K=40.

Std
0.0000

Std
0.0000

Std
0.0001

Std
0.0000

Std
0.0000

Std
0.0000

Std
0.0002

95

time
Mean Std
89.56 20.59
time
Mean Std
113.02 11.20
time
Mean Std
101.73 30.71
time
Mean Std
139.66 14.86
time
Mean Std
95.12 20.54
time
Mean Std
113.78 10.39
time
Mean Std
117.17 28.31

96

10°

10°

10°

10°

10°

10°

10°

Appendix B. Numerical appendix

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-9406 470 0.04242062 0.0062 1.05288815 0.2798 0.99982116

TABLE B.46: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=02T=2,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15892 302 0.05989392 0.0143 1.48555804 0.5782 0.99985495

TABLE B.47: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=04,T=1K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15379 0 0.08393862 0.6167 1.49958331 0.5782 0.99984156

TABLE B.48: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 40, r = 0.06,
c=04,T=2,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-8963 0 0.03313712 0.3603 1.1781852 0.5782 0.99970361

TABLE B.49: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,
c=02T=1K=40

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-8785 443 0.04097914 0.0079 1.11718795 0.2968 0.99976418

TABLE B.50: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,
c=02,T=2K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15620 1216 0.06166912 0.0121 1.43739914 0.6271 0.99982948

TABLE B.51: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,
c=04,T=1,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
-15214 238 0.07953481 0.0050 1.31256018 0.4506 0.99984483

TABLE B.52: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 42, r = 0.06,
c=04,T=2,K=40.

Std
0.0000

Std
0.0000

Std
0.0000

Std
0.0001

Std
0.0001

Std
0.0001

Std
0.0000

time
Mean Std
140.54 15.49
time
Mean Std
104.67 17.25
time
Mean Std
114.27 10.59
time
Mean Std
130.98 17.64
time
Mean Std
139.92 16.29
time
Mean Std
108.88 14.24
time
Mean Std
11559 9.68

B.1. Numerical results

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean

Std

10° -8229 313 0.0417056 0.0087 1.59138907 0.3678 0.99901338 0.0005

TABLE B.53: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 44, r = 0.06,
c=02T=1,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
105 -8322 342 0.04320576 0.0069 1.29373739 0.3487 0.99960108

TABLE B.54: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with Sy, = 44, r = 0.06,
c=02T=2K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
10° -15139 297 0.05757976 0.0070 1.33032458 0.4996 0.99983756

TABLE B.55: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 44, r = 0.06,
c=04T=1,K=40.

log-likelihood Mean AE Max AE R?
Mean Std Mean Std Mean Std Mean
105 -15011 255 0.07494083 0.0072 1.34082644 0.4897 0.99985261

TABLE B.56: In-sample error metrics for the SKI method in case of the contin-
uation value estimation problem of a Bermudan Put with S;, = 44, r = 0.06,
c=04,T =2 K=40.

Linear regression

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.23989264 0.0082 9.71971165 3.6564 0.99589716 0.0004 0.04 0.01

TABLE B.57: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 36,
r=20.06,0 =02,T=1,K=40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.39779119 0.0193 18.56740754 6.2392 0.9921359 0.0009 0.02 0.01

TABLE B.58: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 36,
r=20.06,0=02,T=2,K=40.

Std
0.0001

Std
0.0000

Std
0.0000

97

time

Mean
129.38

Std
12.31

time

Mean
141.70

Std
12.61

time

Mean
110.81

Std
10.58

time

Mean
115.72

Std
11.20

98 Appendix B. Numerical appendix

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.50531203 0.0202 24.00460813 9.5757 0.99348577 0.0008 0.02 0.00

TABLE B.59: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 36,
r=0.06,0=04,T=1,K = 40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
1.18718252 0.0101 18.28645778 8.2092 0.97733513 0.0003 0.02 0.00

TABLE B.60: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with Sy, = 36,
r=0.06,0=04,T=2,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.25814969 0.0131 12.08053463 4.1988 0.99405516 0.0007 0.03 0.00

TABLE B.61: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 38,
r=20.06,0=02T=1,K=40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.40520975 0.0085 15.97785982 4.4914 0.99000505 0.0003 0.02 0.00

TABLE B.62: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with Sy, = 38,
r=0.060 =02, T=2,K=40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.53552586 0.0388 30.82606504 10.8669 0.9917618 0.0014 0.02 0.00

TABLE B.63: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S, = 38,
r=20.06,0=04,T=1,K = 40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
1.168016 0.0069 14.87485881 8.2457 0.97648133 0.0003 0.02 0.00

TABLE B.64: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 38,
r=0.06,0=04,T=2,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.26276347 0.0055 12.31728577 2.8407 0.991456 0.0003 0.02 0.00

TABLE B.65: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 40,
r=006,0=02T=1,K=40.

B.1. Numerical results 99

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.39956049 0.0196 18.36903964 5.9830 0.98789848 0.0011 0.02 0.00

TABLE B.66: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 40,
r=20.06,0=02,T=2,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.59157594 0.0553 34.48178117 10.9219 0.98888348 0.0021 0.02 0.00

TABLE B.67: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 40,
r=20.06,0=04,T=1,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
1.14175044 0.0099 17.39859893 9.9450 0.9756607 0.0004 0.02 0.00

TABLE B.68: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 40,
r=20.06,0 =04, T =2, K = 40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.25133502 0.0054 15.58881883 4.6799 0.98809457 0.0005 0.02 0.00

TABLE B.69: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 42,
r=20.06,0=02T=1,K=40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.41827952 0.0305 23.41086516 5.9140 0.98314268 0.0025 0.02 0.00

TABLE B.70: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 42,
r=20.06,0=02,T=2,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.63547327 0.0560 35.93860343 9.3157 0.98582736 0.0025 0.02 0.00

TABLE B.71: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;; = 42,
r=006,0=04T=2,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
1.12680611 0.0254 30.52090191 16.5161 0.97429009 0.0012 0.02 0.00

TABLE B.72: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 42,
r=006,0=04T=2,K=40.

100 Appendix B. Numerical appendix

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.22719862 0.0097 13.4191642 4.1141 0.98577521 0.0009 0.02 0.00

TABLE B.73: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 44,
r=0.06,0=02T=1,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.43582748 0.0277 23.24357222 6.0478 0.97587461 0.0034 0.02 0.00

TABLE B.74: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 44,
r=20.06,0 =02, T =2, K =40.

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.69226273 0.0653 39.72504615 13.3534 0.98087177 0.0046 0.02 0.00

TABLE B.75: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 44,
r=0.06,0=04,T =1,K=40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
1.12093733 0.0409 42.40980774 23.8037 0.97218987 0.0026 0.02 0.00

TABLE B.76: In-sample error metrics for linear regression in case of the
continuation value estimation problem of a Bermudan Put with S;, = 44,
r=0.06,0=04T=2,K = 40.

Continuation Value - Geometric Bermudan Basket Put

Results related to Section 5.3.

VFE

u log-likelihood Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std Mean Std
40 -112967 361 0.2937975 8.76 1.22138941 0.00 0.98442853 0.00 470.51 19.40

TABLE B.77: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {36,36,144,9,16,81}, r = 0.06, ¢ = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

log-likelihood Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std Mean Std
40 -151499 606 0.57626496 11.51 1.01465011 0.00 0.96264223 0.00 593.61 34.34

TABLE B.78: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {36,36,144,9,16,81}, r = 0.06, ¢ = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

B.1. Numerical results 101

40

40

SKI

10°

10°

10°

10°

log-likelihood Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std Mean Std

-82227 930 0.24600697 6.74 1.11752664 0.00 0.98228196 0.00 449.77 17.83

TABLE B.79: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

St, = {44, 44,121,16, 16, 121}, r=0.06,0 = {0.1,0.2, 0.3,0.4,0.5,0.05}, T=2,

K = 40.

log-likelihood Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std Mean @ Std
-139903 264 0.54948562 10.75 3.15817292 0.28 0.96437910 0.00 48891 40.08

TABLE B.80: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Si, = {44,44,121,16,16,121},r = 0.06, o = {0.1,0.2,0.3,0.4,0.5,0.05}, T = 2,
K = 40.

log-likelihood Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std Mean Std
-171213 697 2.84498958 15.75 4.99640825 0.02 0.74334325 025 4490 0.52

TABLE B.81: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {36,36,144,9,16,81}, r = 0.06, o = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

log-likelihood Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std Mean Std
-259945 318 3.44433084 20.05 7.77677043 0.01 0.84087422 0.16 4525 0.41

TABLE B.82: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {36,36,144,9,16,81}, r = 0.06, ¢ = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

log-likelihood Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std Mean Std
-464926 386 0.86457555 1296 67.25570763 0.00 0.84998194 0.05 47.11 0.58

TABLE B.83: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {44,44,121,16,16,121},r = 0.06, 0 = {0.1,0.2,0.3,0.4,0.5,0.05}, T = 2,
K = 40.

log-likelihood Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std Mean Std
-661371 546 1.39763649 17.05 73.10885677 0.00 0.58646864 0.06 47.64 0.27

TABLE B.84: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Si, = {44,44,121,16,16,121},r = 0.06, o = {0.1,0.2,0.3,0.4,0.5,0.05}, T = 2,
K = 40.

102 Appendix B. Numerical appendix
Linear regression

Mean AE Max AE R2 time
Mean Std Mean Std Mean Std Mean Std
0.10403400 3.03 0.99795668 0.01 0.65854412 0.00 111.19 5.02

TABLE B.85: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {36,36,144,9,16,81}, r = 0.06, ¢ = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.13845224 5.41 0.99581288 0.01 0.7541375 0.00 773.93 0.75

TABLE B.86: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

St, = {36,36,144,9,16,81}, r = 0.06, 0 = {0.1,0.2,0.3,0.4,0.5,0.05}, T =1,
K = 40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.31341389 23.44 0.95771014 0.24 0.68288676 0.08 798.15 0.81

TABLE B.87: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

Sy, = {44,44,121,16,16,121},r = 0.06, 0 = {0.1,0.2,0.3,0.4,0.5,0.05}, T = 2,
K = 40.

Mean AE Max AE R? time
Mean Std Mean Std Mean Std Mean Std
0.43512548 23.24 1.3770118 0.04 0.57587461 0.03 2076.16 210.63

TABLE B.88: In-sample error metrics for linear regression in case of the

continuation value estimation problem of a Geometric Bermudan Put with

S, = {44,44,121,16,16,121}, r = 0.06, = {0.1,0.2,0.3,0.4,0.5,0.05}, T = 2,
K = 40.

Option Pricing - Bermudan Put

Results related to Section 5.4.

B.1. Numerical results

St

36
36
36
36
38
38
38
38
40
40
40
40
42
42
42
42
44
44
44
44

0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
04
0.2
0.2
0.4
0.4

T PSOR
1 4478
2 4.840
1 7101
2 8.508
1 3.250
2 3745
1 6.148
2 7.670
1 2314
2 2885
1 5312
2 6.920
1 1.617
2 2212
1 4.582
2 6.248
1 1.110
2 1.690
1 3948
2 5647

TABLE B.89: Bermudan Put numerical results. PSOR benchmark and LSM

LSM (Laguerre)
Mean Std
4472 0.010
4.821 0.012
7.091 0.020
8.488 0.024
3.244 0.009
3.735 0.011
6.139 0.019
7.669 0.022
2.313 0.009
2.879 0.010
5.308 0.018
6.921 0.022
1.617 0.007
2206 0.010
4.588 0.017
6.243 0.021
1.118 0.007
1.675 0.009
3957 0.017
5.622 0.021

LSM (Polynomial)
Mean Std
4577 0.012
5.036 0.058
7.412 0.030
9.216 0.018
3.406 0.008
3.998 0.011
6.506 0.043
8.385 0.027
2.489 0.014
3.164 0.020
5.725 0.036
7.639 0.042
1.796 0.012
2.523 0.020
5.049 0.039
6.999 0.044
1.282 0.013
2.028 0.019
4.459 0.044
6.443 0.069

results are from [12].

VFE

Mean
4478
4.846
7.112
8.522
3.254
3.752
6.152
7.694
2.321
2.891
5.317
6.930
1.619
2.221
4.592
6.277
1.112
1.694
3.955
5.662

Std
0.004
0.010
0.015
0.025
0.008
0.006
0.019
0.025
0.007
0.005
0.019
0.029
0.006
0.009
0.013
0.015
0.007
0.007
0.015
0.020

103

SKI

Mean
4478
4.849
7.109
8.519
3.257
3.758
6.155
7.692
2.324
2.893
5.320
6.928
1.619
2.219
4.594
6.277
1.114
1.693
3.953
5.663

Std
0.007
0.014
0.018
0.029
0.008
0.011
0.024
0.028
0.010
0.014
0.020
0.029
0.008
0.011
0.015
0.018
0.007
0.010
0.018
0.023

105

Bibliography

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Mercer, “Xvi. functions of positive and negative type, and their connection the the-
ory of integral equations”, Philosophical transactions of the royal society of London. Series
A, containing papers of a mathematical or physical character, vol. 209, no. 441-458, pp. 415-
446, 1909.

F. Black and M. Scholes, “The pricing of options and corporate liabilities”, Journal of
political economy, vol. 81, no. 3, pp. 637-654, 1973.

G. Matheron, “The intrinsic random functions and their applications”, Advances in ap-
plied probability, vol. 5, no. 3, pp. 439-468, 1973.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for
maximizing submodular set functions—i”, Mathematical programming, vol. 14, no. 1,
pp. 265-294, 1978,

M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three methods for
selecting values of input variables in the analysis of output from a computer code”,
Technometrics, vol. 21, no. 2, pp. 239-245, 1979.

F.J. Narcowich and J. D. Ward, “Norm estimates for the inverses of a general class of
scattered-data radial-function interpolation matrices”, Journal of Approximation Theory,
vol. 69, no. 1, pp. 84-109, 1992.

C.-W. Ko, J. Lee, and M. Queyranne, “An exact algorithm for maximum entropy sam-
pling”, Operations Research, vol. 43, no. 4, pp. 684-691, 1995.

R. M. Neal, “Priors for infinite networks”, in Bayesian Learning for Neural Networks,
Springer, 1996, pp. 29-53.

C. K. Williams and C. E. Rasmussen, “Gaussian processes for regression”, in Advances
in neural information processing systems, 1996, pp. 514-520.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer, “Gaussian process regression: Ac-
tive data selection and test point rejection”, in Mustererkennung 2000, Springer, 2000,
pp- 27-34.

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python,
[Online; accessed <today>], 2001-. [Online]. Available: http://www.scipy.org/.

F. A. Longstaff and E. S. Schwartz, “Valuing american options by simulation: A simple
least-squares approach”, The review of financial studies, vol. 14, no. 1, pp. 113-147, 2001.

A.].Smola and P. L. Bartlett, “Sparse greedy gaussian process regression”, in Advances
in neural information processing systems, 2001, pp. 619-625.

E. Clément, D. Lamberton, and P. Protter, “An analysis of a least squares regression
method for american option pricing”, Finance and Stochastics, vol. 6, no. 4, pp. 449-471,
2002.

B. Scholkopf, A. J. Smola, E. Bach, et al., Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

R. Herbrich, N. D. Lawrence, and M. Seeger, “Fast sparse gaussian process methods:
The informative vector machine”, in Advances in neural information processing systems,
2003, pp. 625-632.

V. V. Piterbarg, “A practitioner’s guide to pricing and hedging callable libor exotics in
forward libor models”, 2003.

M. Seeger, C. Williams, and N. Lawrence, “Fast forward selection to speed up sparse
gaussian process regression”, Tech. Rep., 2003.

http://www.scipy.org/

106 BIBLIOGRAPHY

[19] P. Glasserman, B. Yu, et al., “Number of paths versus number of basis functions in
american option pricing”, The Annals of Applied Probability, vol. 14, no. 4, pp. 2090-
2119, 2004.

[20] C. E. Rasmussen, “Gaussian processes in machine learning”, in Advanced lectures on
machine learning, Springer, 2004, pp. 63-71.

[21] M. Seeger, “Gaussian processes for machine learning”, International journal of neural
systems, vol. 14, no. 02, pp. 69-106, 2004.

[22] V. Bally, G. Pages, and J. Printems, “A quantization tree method for pricing and hedg-
ing multidimensional american options”, Mathematical Finance: An International Journal
of Mathematics, Statistics and Financial Economics, vol. 15, no. 1, pp. 119-168, 2005.

[23] P.Dupuis, H. Wang, et al., “On the convergence from discrete to continuous time in an
optimal stopping problem”, The Annals of Applied Probability, vol. 15, no. 2, pp. 1339-
1366, 2005.

[24]]. Quifionero-Candela and C. E. Rasmussen, “A unifying view of sparse approximate
gaussian process regression”, Journal of Machine Learning Research, vol. 6, no. Dec, pp. 1939-
1959, 2005.

[25] N. S. Rasmussen, “Control variates for monte carlo valuation of american options”,
Journal of Computational Finance, vol. 9, no. 1, 2005.

[26] Y. Zhang, W. E. Leithead, and D. J. Leith, “Time-series gaussian process regression
based on toeplitz computation of o (n 2) operations and o (n)-level storage”, in Pro-
ceedings of the 44th IEEE Conference on Decision and Control, IEEE, 2005, pp. 3711-3716.

[27] C. M. Bishop, Pattern recognition and machine learning. Springer Science+ Business Me-
dia, 2006.

[28] T.E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[29] R. Seydel and R. Seydel, Tools for computational finance. Springer, 2006, vol. 3.

[30] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs”, in
Advances in neural information processing systems, 2006, pp. 1257-1264.

[31] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, 3. MIT
Press Cambridge, MA, 2006, vol. 2.

[32] A. Krause and C. Guestrin, “Nonmyopic active learning of gaussian processes: An
exploration-exploitation approach”, in Proceedings of the 24th international conference on
Machine learning, ACM, 2007, pp. 449-456.

[33] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies”, Journal of Machine Learn-
ing Research, vol. 9, no. Feb, pp. 235-284, 2008.

[34] K. B. Petersen, M. S. Pedersen, et al., “The matrix cookbook”, Technical University of
Denmark, vol. 7, no. 15, p. 510, 2008.

[35] M. Titsias, “Variational learning of inducing variables in sparse gaussian processes”,
in Artificial Intelligence and Statistics, 2009, pp. 567-574.

[36] R.Korn, E. Korn, and G. Kroisandt, Monte Carlo methods and models in finance and insur-
ance. CRC press, 2010.

[37] L V. Oseledets, “Tensor-train decomposition”, SIAM Journal on Scientific Computing,
vol. 33, no. 5, pp. 2295-2317, 2011.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python”,
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[39] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[40] R. M. Neal, Bayesian learning for neural networks. Springer Science & Business Media,
2012, vol. 118.

BIBLIOGRAPHY 107

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

M. L. Stein, Interpolation of spatial data: some theory for kriging. Springer Science & Busi-
ness Media, 2012.

T. Suzuki, “Pac-bayesian bound for gaussian process regression and multiple kernel
additive model”, in Conference on Learning Theory, 2012, pp. 8-1.

E. Gilboa, Y. Saatgi, and J. P. Cunningham, “Scaling multidimensional inference for
structured gaussian processes”, IEEE transactions on pattern analysis and machine intelli-
gence, vol. 37, no. 2, pp. 424436, 2013.

P. Glasserman, Monte Carlo methods in financial engineering. Springer Science & Business
Media, 2013, vol. 53.

J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big data”, arXiv
preprint arXiv:1309.6835, 2013.

T. N. Hoang, B. K. H. Low, P. Jaillet, and M. Kankanhalli, “Nonmyopic -bayes-optimal
active learning of gaussian processes”, 2014.

C. Robert, Machine learning, a probabilistic perspective, 2014.

S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, E Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine learning on het-
erogeneous systems, Software available from tensorflow.org, 2015. [Online]. Available:
https://www.tensorflow.org/.

T. N. Hoang, Q. M. Hoang, and B. K. H. Low, “A unifying framework of anytime
sparse gaussian process regression models with stochastic variational inference for
big data.”, in ICML, 2015, pp. 569-578.

D. Sharma, A. Kapoor, and A. Deshpande, “On greedy maximization of entropy”, in
International Conference on Machine Learning, 2015, pp. 1330-1338.

A. Wilson and H. Nickisch, “Kernel interpolation for scalable structured gaussian pro-
cesses (kiss-gp)”, in International Conference on Machine Learning, 2015, pp. 1775-1784.

J. Han, X.-P. Zhang, and F. Wang, “Gaussian process regression stochastic volatility
model for financial time series”, IEEE Journal of Selected Topics in Signal Processing,
vol. 10, no. 6, pp- 1015-1028, 2016.

P. Izmailov, A. Novikov, and D. Kropotov, “Scalable gaussian processes with billions
of inducing inputs via tensor train decomposition”, arXiv preprint arXiv:1710.07324,
2017.

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz,]. Pennington, and J. Sohl-Dickstein, “Deep
neural networks as gaussian processes”, arXiv preprint arXiv:1711.00165, 2017.

M. Binois, R. B. Gramacy, and M. Ludkovski, “Practical heteroscedastic gaussian pro-
cess modeling for large simulation experiments”, Journal of Computational and Graphical
Statistics, vol. 27, no. 4, pp. 808-821, 2018.

Z. Chen and B. Wang, “How priors of initial hyperparameters affect gaussian process
regression models”, Neurocomputing, vol. 275, pp. 1702-1710, 2018.

J. De Spiegeleer, D. B. Madan, S. Reyners, and W. Schoutens, “Machine learning for
quantitative finance: Fast derivative pricing, hedging and fitting”, Quantitative Finance,
vol. 18, no. 10, pp. 1635-1643, 2018.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson, “Gpytorch: Black-
box matrix-matrix gaussian process inference with gpu acceleration”, in Advances in
Neural Information Processing Systems, 2018, pp. 7576-7586.

J. R. Gardner, G. Pleiss, R. Wu, K. Q. Weinberger, and A. G. Wilson, “Product kernel
interpolation for scalable gaussian processes”, arXiv preprint arXiv:1802.08903, 2018.

https://www.tensorflow.org/

108 BIBLIOGRAPHY

[61] H.Liu, Y.-S.Ong, X. Shen, and J. Cai, “When gaussian process meets big data: A review
of scalable gps”, arXiv preprint arXiv:1807.01065, 2018.

[62] M. Ludkovski, “Kriging metamodels and experimental design for bermudan option
pricing”, 2018.

[63] G.Mu, T. Godina, A. Maffia, and Y. C. Sun, “Supervised machine learning with control
variates for american option pricing”, Foundations of Computing and Decision Sciences,
vol. 43, no. 3, pp. 207-217, 2018.

[64] E.Commission, Ethics guidelines for trustworthy ai, E. Commission, Ed. [Online]. Avail-
able: ec . europa . eu/digital - single - market / en/news /ethics - guidelines -
trustworthy-ai.

[65] Y. Saatgi, “Scalable inference for structured gaussian process models”, PhD thesis,
Citeseer.

ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

	Abstract
	Acknowledgements
	Introduction
	The Longstaff-Schwartz algorithm
	Gaussian Process Regression
	Outline of the thesis

	Introduction to Gaussian processes
	Kernels
	Positive definite kernels
	The reproducing kernel map
	Reproducing kernel Hilbert spaces
	Mercel kernel map

	Machine learning basics
	The statistical learning framework
	Loss function and empirical risk minimization
	Regularization

	Gaussian Processes and Gaussian Process Regression
	Regularized empirical risk minimization view
	Function-space view
	Weight-space view
	Model choice
	Consistency

	Commonly used kernels

	Gaussian Process Regression for large sets of data
	Local approximations
	Global approximations
	Subset-of-data
	Maximum entropy sampling
	Maximum mutual information sampling

	Sparse kernels
	Sparse approximations
	Prior approximations
	Subset of regressors
	Deterministic training conditional
	Fully independent training conditional

	Posterior approximations
	Variational free energy

	Choice of inducing points and model selection
	Structured sparse approximations
	Toeplitz methods (exact)
	Kronecker methods (exact)
	Structured kernel interpolation

	Longstaff-Schwartz algorithm and Option evaluation
	Options
	European options
	American options
	Bermudan options

	Monte Carlo methods
	Longstaff-Schwartz algorithm
	Convergence
	Basis functions
	Improvements

	Numerical results
	Sinc function
	Subset-of-data
	Sparse approximations
	Structured sparse approximations

	Continuation value - Bermudan Put
	Continuation value - Geometric Bermudan Basket Put
	Bermudan Put pricing

	Conclusion and Outlook
	Summary
	Conclusion
	Further research

	Mathematical appendix
	Gaussian identities
	Conditional multivariate normal density

	Matrix identities
	Woodbury matrix identity
	Sylvester determinant theorem
	Block Cholesky decomposition

	Black-Scholes
	Black-Scholes formula for the pricing of an European Call option
	Black-Scholes formula for the pricing of an European Put option
	Black-Scholes formula for the pricing of an European Geometric Basket Call option
	Black-Scholes formula for the pricing of an European Geometric Basket Put option

	Numerical appendix
	Numerical results
	Sinc function
	GP
	SOR/DTC
	FITC
	VFE
	SKI
	ME
	MMI
	RU

	Continuation Value - Bermudan Put
	VFE
	SKI
	Linear regression

	Continuation Value - Geometric Bermudan Basket Put
	VFE
	SKI
	Linear regression

	Option Pricing - Bermudan Put

	Bibliography

