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Power flow analysis using quantum 
and digital annealers: a discrete 
combinatorial optimization 
approach
Zeynab Kaseb1, Matthias Möller2, Pedro P. Vergara1 & Peter Palensky1

Power flow (PF) analysis is a foundational computational method to study the flow of power in an 
electrical network. This analysis involves solving a set of non-linear and non-convex differential-
algebraic equations. State-of-the-art solvers for PF analysis, therefore, face challenges with scalability 
and convergence, specifically for large-scale and/or ill-conditioned cases characterized by high 
penetration of renewable energy sources, among others. The adiabatic quantum computing paradigm 
has been proven to efficiently find solutions for combinatorial problems in the noisy intermediate-scale 
quantum (NISQ) era, and it can potentially address the limitations posed by state-of-the-art PF solvers. 
For the first time, we propose a novel adiabatic quantum computing approach for efficient PF analysis. 
Our key contributions are (i) a combinatorial PF algorithm and a modified version that aligns with 
the principles of PF analysis, termed the adiabatic quantum PF algorithm (AQPF), both of which use 
Quadratic Unconstrained Binary Optimization (QUBO) and Ising model formulations; (ii) a scalability 
study of the AQPF algorithm; and (iii) an extension of the AQPF algorithm to handle larger problem 
sizes using a partitioned approach. Numerical experiments are conducted using different test system 
sizes on D-Wave’s Advantage™  quantum annealer, Fujitsu’s digital annealer V3, D-Wave’s quantum-
classical hybrid annealer, and two simulated annealers running on classical computer hardware. The 
reported results demonstrate the effectiveness and high accuracy of the proposed AQPF algorithm and 
its potential to speed up the PF analysis process while handling ill-conditioned cases using quantum 
and quantum-inspired algorithms.

Keywords Combinatorial power flow analysis, Quantum annealing, QUBO, Hubo, Power systems

Power flow (PF) analysis aims to calculate the complex voltage, i.e., the voltage magnitude and phase angle, of all 
buses in power systems for given loads, generations, and network topologies. The calculated voltage magnitudes 
and phase angles are subsequently used to estimate the power and current line flows and, eventually, facilitate 
the operation and planning of power systems. PF analysis involves solving a set of equations that relate the 
complex voltage and (active/reactive) power at each bus. From this perspective, a state-space representation 
of the power system that includes a set of differential-algebraic equations is used. These equations describe the 
active and reactive power balance at all the buses, as well as the voltage magnitude drop at all lines due to the 
power losses. The alternating current (AC) PF equations are examples of such equations and can be written as a 
set of nonlinear and non-convex equations in polar or rectangular coordinates, representing Kirchhoff ’s laws1.

The AC PF equations are non-linear and non-convex, which rules out their exact analytical solution. Hence, 
the state-space representation of the power system is conventionally solved using iterative numerical methods, 
such as the Gauss-Seidel (GS) and Newton-Raphson (NR) methods2. These methods can provide steady-state 
solutions, i.e., voltages for all buses within specified accuracy boundaries3,4. However, the use of conventional 
PF analysis methods can cause convergence problems in large-scale modern power systems and is very time-
consuming. For instance, GS has limitations regarding its dependence on the initial guess solution, accuracy 
level, ability to handle small network sizes, and difficulty converging for certain system conditions. Similarly, 
NR is limited by its inability to converge when the Jacobian matrix is singular, computational expense, and 
poor performance for ill-conditioned cases, such as highly unbalanced operation 5,6. Therefore, conventional PF 
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analysis approaches are becoming ineffective at supporting modern power system operation and planning 7–9. 
From this perspective, inadequate PF analysis potentially leads to safety risks due to the inability of PF to 
accurately handle power generation from large numbers of distributed energy resources 10, as well as to predict 
blackouts. Hence, it is crucial to develop computationally efficient and numerically stable PF algorithms that can 
effectively handle the unique challenges of modern power systems11.

Several advanced algorithms have been developed in the literature to address the challenges faced by 
PF analysis, including scalability12–16 and the management of ill-conditioned cases17–23. These studies 
mostly focus on the advancement of programming techniques and the formulation of mathematical 
models grounded in classical computation principles. Efforts to address the scalability concern focus on 
reducing the computational challenges for PF analysis of large-scale modern power systems. For example, 
Lopez et al.12 developed an extended dynamic programming approach based on the optimality principle 
of the recursive Hamilton-Jacobi-Bellman equations for electrical distribution systems. The scalability of 
the proposed approach was demonstrated through experimentation with large-scale power systems and 
benchmarking against commercial programming solvers. Goncalves et al.13 formulated a mixed integer 
linear programming model for the operation planning problem of electrical distribution systems. The 
proposed formulation leverages linear expressions to model steady-state operation and hence ensures 
convergence toward the optimal solution for large-scale power systems. Dai et al.14 proposed a scalable 
algorithm employing a reduced modeling technique for solving the AC PF problem. Reformulating this 
problem as a zero-residual least-squares problem with consensus constraints, the authors used a Gauss-
Newton-based inexact algorithm to improve scalability. Idema et al.15 presented iterative linear solvers, 
which offer enhanced scalability, thus rendering them suitable for the evolving modern power systems. 
In16, the authors proposed modifications to NR to address sparsity in large power systems. Specifically, 
they introduced a sparse PF and integrated parallelization and vectorization techniques to accelerate 
computations.

With respect to the management of ill-conditioned cases, conventional PF solvers, such as NR, often 
encounter numerical stability issues during convergence. Consequently, the literature offers robust alternatives 
to mitigate these challenges. For example, Tostado-Veliz et al.17, introduced a novel robust PF technique using 
the current injection form of the PF equations. Similarly, Tripathy20 applied K.M. Brown’s method to solve the 
PF. This method is a variation of NR that incorporates Gaussian elimination and ensures the utilization of the 
most recent information at each iteration. The method is particularly effective for solving ill-conditioned non-
linear algebraic equations. Tostado-Veliz et al.21 also presented a four-stage algorithm to address ill-conditioned 
cases. The algorithm was integrated with an efficient paradigm and is particularly useful in solving systems 
with reactive constraints of generators. Liu et al.22, on the other hand, took a different approach where the PF 
model is transformed into a hypothetical dynamic system by introducing a differential equation on the loading 
parameter. This innovation enables a non-iterative method based on differential transformation to solve the 
dynamic system effectively. Iwamoto23 devise a PF calculation method, characterized by its simplicity, absence 
of mathematical approximations, and minimal additional computational overhead when incorporated into NR. 
The method, therefore, offers a pragmatic solution to address ill-conditioned cases.

Despite the significant progress made in PF analysis algorithms, there remains a critical need for scalable, 
computationally efficient, and numerically stable PF analysis algorithms to meet the growing requirements of 
modern power systems. In particular, high levels of distributed energy resources, variable loads, and bidirectional 
power flows require more precise and efficient PF analysis approaches. In addition, the increasing deployment 
of advanced control and optimization techniques, such as real-time monitoring and control, demand response, 
and distributed energy resource management, necessitates the development of more sophisticated PF analysis 
algorithms. Therefore, although state-of-the-art methods have shown improvements, they are not enough to 
address the needs of modern power systems11,24. Considering the next example, the use of NR in the Power Grid 
Model environment (https://github.com/PowerGridModel) for a 369-node network necessitates approximately 
10 seconds to solve a scenario with a specific computer architecture. For a thousand scenarios, the time required 
would be 1000× 10 seconds, or more than 2.7 hours, using the same computer architecture. This duration is not 
feasible for specific applications, such as stochastic optimal power flow25, where a large number of calculations 
should be completed within a few minutes. Consequently, the power systems community is increasingly 
interested in exploring novel approaches, including quantum computing26–28, which have shown promising 
results in various applications and are, therefore, expected to revolutionize the field of PF analysis in the near 
future29.

Quantum computing models can be categorized into two key paradigms: (i) the gate-based quantum 
computing model (GQC) and (ii) the adiabatic quantum computing model (AQC). Optimism for a quantum 
speedup stems from the potential of quantum algorithms to take advantage of unique properties, e.g., superposition 
and entanglement, which allows computations with fewer operations than classical algorithms. An increasing 
number of studies, therefore, explore how quantum computing can address the complexities of modern power 
systems. Most studies implement the GQC paradigm, which can simulate specific computations using quantum 
gates and discrete time steps30,31. GQC offers flexibility in algorithm design and potential quantum speedup 
for specific problem instances, such as linear system solving. However, GQC algorithms, e.g., the Harrow-
Hassidim-Lloyd (HHL) algorithm, demand a large number of qubits and quantum gates even for small-scale 
problems, which makes them susceptible to noise inherent in current quantum computers. This noise, along 
with challenges related to the condition number of the system and readout requirements, can significantly limit 
the expected quantum speedup in power flow problems32,33.

On the other hand, a few studies focus on the AQC paradigm34,35. AQC is similar to GQC in terms of 
computational power, but it operates in an analog manner, i.e., without quantum gates or discrete time steps36,37.  
The continuous evolution of AQC from an initial ground state to a final ground state of a problem Hamiltonian 
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makes it more robust to certain types of noise and, therefore, potentially offers a more practical approach to 
solving complex optimization problems in the near term38. For example, a comparative study between a GQC 
algorithm, i.e., Quantum Alternating Operator Ansatz (QAOA), and an AQC algorithm demonstrated that AQC 
outperformed GQC on specific hardware platforms39. D-Wave’s quantum processing units (QPUs) powering 
the current generation of Advantage™  systems, as an AQC hardware example, serve as specialized accelerators 
for solving NP-hard optimization problems through a solution method called quantum annealing. These QPUs 
must be supercooled to temperatures close to absolute zero to maintain the quantum properties essential for 
computation. However, the key feature that enables efficient computation is their ability to control quantum 
mechanical effects for solving specific types of optimization problems36. Note that QPUs facilitate heuristic 
approaches to finding approximate solutions rather than solving NP-hard problems directly, and they do not 
guarantee a solution to all NP-hard problems.

The present work uses the AQC paradigm to address PF analysis. A combinatorial PF algorithm and an 
adiabatic quantum PF (AQPF) algorithm are developed and numerically justified. For the first time, two 
formulations are implemented based on the Quadratic Unconstrained Binary Optimization (QUBO) and the 
Ising model formulations for PF analysis. The scalability of the AQPF algorithm and of a partitioned variant is 
demonstrated numerically by applying them to various power system benchmarks. Experiments are performed 
for 4-bus, 9-bus, and 14-bus test systems on D-Wave’s quantum annealer and Fujitsu’s digital annealer, and 
two simulated annealers running on classical hardware. The results show the effectiveness and the significant 
potential of the AQPF algorithm in the NISQ and FTQ era. In addition, the proposed partitioned algorithm 
is introduced for the first time in the literature to the best of the authors’ knowledge, which can speed up PF 
analysis in two different aspects: by leveraging quantum hardware and reducing the number of operations 
needed for a given test system.

Results
Power flow equations
For all buses i of a power system, the mismatch between the given active and reactive power consumption/
injection at buses i, pdi  and qdi , and their net counterparts, pi and qi, can be written as

 pdi − pi = 0 (1)

 qdi − qi = 0 (2)

with

 
pi =

n∑
j=0

gij (µiµj + ωiωj) + bij (ωiµj − µiωj) (3)

 
qi =

n∑
j=0

gij (ωiµj − µiωj)− bij (µiµj + ωiωj) (4)

where gij  and bij  are the known real and imaginary parts of the elements in the bus admittance matrix Y, 
respectively, and µi and ωi are the real and imaginary parts of the complex voltages to be determined such that 
Eqs. (1)–(2) hold with equality for all buses i. To transform the problem at hand into a form that can be solved 
by a quantum or digital annealer, Eqs. (3)–(4) are expanded into

 
pi =

n∑
j=0

µigijµj + ωigijωj + ωibijµj − µibijωj (5)

 
qi =

n∑
j=0

ωigijµj − µigijωj − µibijµj − ωibijωj  (6)

Here, µi, µj, ωi, and ωj  are real-valued variables that need to be discretized in order to obtain a binary problem, 
i.e., a discrete combinatorial optimization problem. This work implements two different formulations, i.e., 
Quadratic Unconstrained Binary Optimization (QUBO) formulation and Ising model formulation, to solve such 
combinatorial PF.

Combinatorial power flow—QUBO formulation
µi and ωi can be written using a straightforward discretization of the form

 µi = µ0
i + xµi,0∆µi − xµi,1∆µi (7)

 ωi = ω0
i + xωi,0∆ωi − xωi,1∆ωi (8)

where x{µ,ω}i,{0,1} ∈ {0, 1} are binary decision variables whose value decides whether the base values µ0
i  and 

ω0
i  are increased (xi,0 = 1 ∧ xi,1 = 0), decreased (xi,0 = 0 ∧ xi,1 = 1), or kept at their current value 
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(xi,0 = 0 ∧ xi,1 = 0 or xi,0 = 1 ∧ xi,1 = 1). The last case allows for an ambiguous solution, but at the same 
time, it ensures that all four combinations – 00, 01, 10, 11 – of the two binary variables xi,0 and xi,1 are valid 
bitstrings. In contrast to the often-used one-hot encoding, the above approach does not involve any constraints 
to rule out invalid bitstrings, which makes it particularly attractive for practical implementation on quantum 
and digital annealers. Nevertheless, a minor downside of the discretization of Eqs. (7)–(8) is that only three 
options (‘increase’, ‘decrease’, ‘keep’) are considered at a time, thereby not fully exploiting the full capability of two 
decision variables. Furthermore, the convergence of the iterative approach to be presented below can be slow if 
the increments ∆µi and ∆ωi are chosen to be too small and/or if the base values µ0

i  and ω0
i  are far away from the 

values that satisfy Eqs. (1)–(2). This might be partly mitigated by choosing ∆µi and ∆ωi adaptively, i.e., updating 
their values in each iteration loop and, potentially, even choosing individual values for each bus i. For net active 
power injection, substitution of Eqs. (7)–(8) into Eq. (5) yields

 

pi =

#constant term
n∑

j=0

µ0
i gijµ

0
j + ω0

i gijω
0
j + ω0

i bijµ
0
j − µ0

i bijω
0
j

#linearterm

+

n∑
j=0

1∑
k=0

(−1)kµ0
i gijx

µ
j,k∆µj + (−1)kxµi,k∆µigijµ

0
j

+ (−1)kω0
i gijx

ω
j,k∆ωj + (−1)kxωi,k∆ωigijω

0
j

+ (−1)kω0
i bijx

µ
j,k∆µj + (−1)kxωi,k∆ωibijµ

0
j

− (−1)kµ0
i bijx

ω
j,k∆ωj − (−1)kxµi,k∆µibijω

0
j

#quadratic term

+

n∑
j=0

1∑
k=0

1∑
l=0

(−1)k+lxµi,k∆µigijx
µ
j,l∆µj

+ (−1)k+lxωi,k∆ωigijx
ω
j,l∆ωj

+ (−1)k+lxωi,k∆ωibijx
µ
j,l∆µj

− (−1)k+lxµi,k∆µibijx
ω
j,l∆ωj

 (9)

where the terms in the equation can be categorized as follows: constant terms, which do not contain any binary 
variables, e.g., µ0

i gijµ
0
j ; linear terms, which include a single binary variable per term, e.g., xµi,k∆µibijω

0
j ; and 

quadratic terms, which involve two binary variables per term, e.g., xµi,k∆µibijx
ω
j,l∆ωj. Details on how deriving 

the equations are provided in the “Supplementary information”. A similar expression can be derived for the net 
reactive power injection by substituting Eqs. (7)–(8) into Eq. (6)

 

qi =

#constant term
n∑

j=0

ω0
i gijµ

0
j − µ0

i gijω
0
j − µ0

i bijµ
0
j − ω0

i bijω
0
j

#linear term

+

n∑
j=0

1∑
k=0

(−1)kω0
i gijx

µ
j,k∆µj + (−1)kxωi,k∆ωigijµ

0
j

− (−1)kµ0
i gijx

ω
j,k∆ωj − (−1)kxµi,k∆µigijω

0
j

− (−1)kµ0
i bijx

µ
j,k∆µj − (−1)kxµi,k∆µibijµ

0
j

− (−1)kω0
i bijx

ω
j,k∆ωj − (−1)kxωi,k∆ωibijω

0
j

#quadratic term

+

n∑
j=0

1∑
k=0

1∑
l=0

(−1)k+lxωi,k∆ωigijx
µ
j,l∆µj

− (−1)k+lxµi,k∆µigijx
ω
j,l∆ωj

− (−1)k+lxµi,k∆µibijx
µ
j,l∆µj

− (−1)k+lxωi,k∆ωibijx
ω
j,l∆ωj

 (10)

Combinatorial power flow— Ising model formulation
As an alternative to the above QUBO formulation, µi and ωi can be represented using an alternative discretization 
of the form
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 µi = µ0
i + sµi,0∆µi + sµi,12∆µi + sµi,23∆µi (11)

 ωi = ω0
i + sωi,0∆ωi + sωi,12∆ωi + sωi,23∆ωi (12)

where s{ω,µ}i,{0,1,2} ∈ {±1} are spin variables. As for the binary variables in Eqs. (7)–(8), any combination of spin-
variable values yields an admissible solution in the range µ0

i ± {0, 2, 4, 6}∆µi and ω0
i ± {0, 2, 4, 6}∆ωi, which 

allows for more fine-grained control of the increment/decrement at the cost of just two additional variables per 
bus i. To prevent any confusion, we would like to note that the resulting Ising model is not equivalent to the 
previous QUBO formulation but an algorithmic alternative with different properties. In particular, adding an 
increment or decrement in the QUBO formulation requires introducing two additional binary variables, with one 
variable representing an increment and the other a decrement. In contrast, the Ising model inherently includes 
both positive and negative values in its spin variables and hence, needs only one spin variable to represent an 
increment or a decrement. Based on a sensitivity analysis performed in this work, it is recommended to rescale 
∆ωi and ∆µi by a factor of 3. For net active power injection, substitution of Eqs. (11)–(12) into Eq. (5) yields

 

pi =

#constant term
n∑

j=0

µ0
i gijµ

0
j + ω0

i gijω
0
j + ω0

i bijµ
0
j − µ0

i bijω
0
j

#linear term

+

n∑
j=0

2∑
k=0

(k + 1)µ0
i gijs

µ
j,k∆µj + (k + 1)sµi,k∆µigijµ

0
j

+ (k + 1)ω0
i gijs

ω
j,k∆ωj + (k + 1)sωi,k∆ωigijω

0
j

+ (k + 1)ω0
i bijs

µ
j,k∆µj + (k + 1)sωi,k∆ωibijµ

0
j

− (k + 1)µ0
i bijs

ω
j,k∆ωj − (k + 1)sµi,k∆µibijω

0
j

#quadratic term

+

n∑
j=0

2∑
k=0

2∑
l=0

(k + 1)(l + 1)sµi,k∆µigijs
µ
j,l∆µj

+ (k + 1)(l + 1)sωi,k∆ωigijs
ω
j,l∆ωj

+ (k + 1)(l + 1)sωi,k∆ωibijs
µ
j,l∆µj

− (k + 1)(l + 1)sµi,k∆µibijs
ω
j,l∆ωj

 (13)

where the three clauses represent constant, linear, and quadratic terms, respectively. A similar expression can be 
derived for net reactive power injection by substituting Eqs. (11)–(12) into Eq. (6)

 

qi =

#constant term
n∑

j=0

ω0
i gijµ

0
j − µ0

i gijω
0
j − µ0

i bijµ
0
j − ω0

i bijω
0
j

#linear term

+

n∑
j=0

2∑
k=0

(k + 1)ω0
i gijs

µ
j,k∆µj + (k + 1)sωi,k∆ωigijµ

0
j

− (k + 1)µ0
i gijs

ω
j,k∆ωj − (k + 1)sµi,k∆µigijω

0
j

− (k + 1)µ0
i bijs

µ
j,k∆µj − (k + 1)sµi,k∆µibijµ

0
j

− (k + 1)ω0
i bijs

ω
j,k∆ωj − (k + 1)sωi,k∆ωibijω

0
j

#quadratic term

+

n∑
j=0

2∑
k=0

2∑
l=0

(k + 1)(l + 1)sωi,k∆ωigijs
µ
j,l∆µj

− (k + 1)(l + 1)sµi,k∆µigijs
ω
j,l∆ωj

− (k + 1)(l + 1)sµi,k∆µibijs
µ
j,l∆µj

− (k + 1)(l + 1)sωi,k∆ωibijs
ω
j,l∆ωj

 (14)

Numerical justification of combinatorial power flow
Solving Eqs. (1)–(2) with the aid of a simulated, digital, or quantum annealer amounts to minimizing the sum of 
all the terms squared, i.e., the Hamiltonian H(x⃗) and H(s⃗)
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H(·) =

n∑
i=0

(
pdi − pi

)2
+
(
qdi − qi

)2
. (15)

Here, x⃗ and s⃗ represent vectors of binary and spin variables, respectively. Working out all the terms yields a 
fourth-order polynomial for the binary/spin variables. The solvers are D-Wave’s simulated annealer Neal 
(https://docs.ocean.dwavesys.com/en/latest/docs_neal/sdk_index.html) (SA1), D-Wave’s quantum-classical 
hybrid annealer (https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html) (HA), D-Wave’s Advantage™   
system (www.dwavesys.com/learn/quantum-computing) (QA), Fujitsu’s classical simulated annealer (SA2), and 
Fujitsu’s digital annealer V3 (www.fujitsu.com/global/services/business-services/digital-annealer) (DA). Since 
all solvers can handle only quadratic terms, higher-order terms need to be reduced by introducing auxiliary 
variables. The Python packages PyQUBO (https://pyqubo.readthedocs.io) and DADK are used to develop the 
QUBO and Ising model based on the Hamiltonian (15), which can perform the reduction of higher-order terms 
through the functions H.compile().to_qubo() and BinPol.reduce_higher_degree_to_qubo(H), respectively. 
PyQUBO is used when the solver is SA1, HA, and QA, while DADK is used in combination with SA2 and DA 
to reduce higher-order terms.

We observe differences between the two implementations, PyQUBO and DADK, in terms of the number of 
auxiliary variables required to encode the same problem sizes, with the DADK package often proving more 
efficient by requiring fewer auxiliary variables. However, in both implementations, we ensure that the order 
reduction process accurately preserves the optimal solutions and retains the same variable assignments for the 
lowest energy solutions. When performing order reduction, it is crucial to consider the specific objectives. In 
some scenarios, maintaining the entire energy spectrum ordering is important, especially when relative energy 
differences between states are significant. However, in many practical applications, including this study, the 
primary goal is to ensure that the optimal solutions remain unchanged after order reduction. References40,41 
provide a broader perspective on various order reduction techniques.

For all solvers, the number of readouts is the same and ranges from 2000 to 100,000, depending on the 
size of the test system. SA1 approaches equilibrium by updating at decreasing temperatures until reaching the 
target temperature, that is 1/kT, where T is the temperature in kelvin and k is Boltzmann’s constant. Spins are 
updated once per point per temperature using the Metropolis-Hastings algorithm. At low temperatures, the 
distribution focuses on the ground states, and long, smooth temperature schedules ensure that samples match 
the equilibrium distribution. For HA, the time limit parameter was set to 10 seconds. The chip ID of QA is 
Advantage_system5.4. The minor embedding method is used to map the problem onto the QA. Chain strength is 
determined by the square of the power consumption variables p⃗d and q⃗d, as well as the line properties of the test 
systems, i.e., the admittance matrix Y. This ensures that the chain strength is sufficiently large to prevent chain 
breaks while remaining small enough to maintain the significance of the QUBO terms. The target graph for the 
embedding is sparse, reflecting the nature of the power test systems, which are not fully connected.

For SA2 and DA, the time limit is 10 seconds, the scaling bit precision is 64, and the overall timeout is 3,600 
seconds. In addition to simulated annealing, DA supports parallel tempering as an alternative optimization 
algorithm. Parallel tempering runs multiple replicas of the optimization process at different temperatures 
simultaneously. These replicas can exchange their temperatures with neighboring replicas based on a Metropolis 
criterion, which, in turn, facilitates a global search for the optimum. SA2 and DA initiate optimization from a 
random state in each run, aiming to reach a configuration with the optimal energy value within the decision 
variable space.

Algorithm 1 represents the pseudo-code of the combinatorial PF algorithm. Initially, the vectors p⃗d and q⃗d
, respectively, representing the active and reactive power demands, and the admittance matrix Y are assigned 
based on the given test system power consumption and topology (lines 1-3). The increments/decrements ∆µ 
and ∆ω, as well as the real and imaginary voltage vectors ⃗µ and ω⃗, are initialized with user-specified values (lines 
4–7), based on which the initial active and reactive power vectors ⃗p and ⃗q are calculated (lines 8-9). Subsequently, 
the initial Hamiltonian H(x⃗) or H(s⃗) (cf. Eq. (15)) is calculated (line 10), providing an approximate solution 
based on the initial voltage estimates. The residual threshold ϵ is set in line 11, and the iteration counter it is 
initialized to zero before starting the loop.

Once the minimization problem with the Hamiltonian (15) has been solved (line 14), the resulting vectors 
x⃗ =

[
xµ0,0, . . . , x

ω
n,1

]
∈ {0, 1}4n for the QUBO formulation, and s⃗ =

[
sµ0,0, . . . , s

ω
n,2

]
∈ {±1}6n for the Ising 

model formulation can be used to update the real and imaginary parts of the voltages µi and ωi according to 
Eqs. (7)–(8), and (11)–(12), respectively (lines 15 and 16). Note that auxiliary variables stemming from the 
conversion of higher-order terms into quadratic ones are neglected for the voltage updates. If the values of H(x⃗) 
or H(s⃗) drop below a certain user-defined threshold ϵ, the so-computed complex voltages (µ⃗ + jω⃗) are accepted 
as solution values. Otherwise, the complex voltage base values µ0

i := µi and ω0
i := ωi are redefined, and the 

minimization problem is solved with the updated Hamiltonian (15) until convergence is reached. A secondary 
stopping criterion of the iteration schemes is when all xµi,0 = xµi,1 and xωi,0 = xωi,1 for the QUBO formulation, and 
sµi,0 + sµi,1 = −sµi,2 and sωi,0 + sωi,1 = −sωi,2 for the Ising model formulation, meaning that none of the base values 
µ0
i  and ω0

i  are updated and the iteration stalls. Note that this is very unlikely to happen in practice. Sporadic qubit 
flips most likely trigger at least some updates. Once convergence is reached, pi and qi are calculated for all buses 
i via Eqs. (3)–(4). Note that the iterative process in Algorithm 1 is essential for refining the solution to the power 
flow problem, as the initial solution may not meet the desired accuracy or might be a local minimum.
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Algorithm 1. Combinatorial power flow algorithm.

Five different annealers, i.e., SA1, HA, QA, SA2, and DA, are used to minimize the QUBO/Ising model for 
which the computational details are presented in Table 1. Experiments are performed on a 4-bus test system 
with known pdi  and qdi  and unknown µi and ωi for all buses i. This implementation results in 136 binary and 
300 spin variables for the QUBO and Ising model formulations, respectively, using PyQUBO, and 104 binary 
and 236 spin variables for the QUBO and Ising model formulations, respectively, using DADK. The difference 
in variables stems from the fact that the two Python packages implement different strategies to convert higher-
order terms into quadratic terms, with DADK adopting a more efficient approach. In the QUBO formulation, 
QA requires the most iterations to reach the defined threshold ϵ = 1× 10−3, while SA1 takes the most iterations 
in the Ising model formulation. DA achieves ϵ with the fewest iterations in both the QUBO and Ising model 
formulations. The Ising model with QA is the most time-consuming per iteration due to the high communication 
time, including QPU access, delay, programming, readout, and sampling time. It is also important to note that 
different annealers reach different minimal energies with the same defined ϵ, as shown in Table 1.

Figure 1 illustrates µ⃗ = [µ1, µ2, µ3] and ω⃗ = [ω1, ω2, ω3] achieved by five annealers using the combinatorial 
PF algorithm for the 4-bus test system over iterations. Graphs (a-f) show results for the QUBO formulation, 
while graphs (g-l) depict results for the Ising model formulation. Note that the values of µ0 and ω0 are already 
known for the reference bus, set, respectively, to 1 and 0, and hence are not shown in the graphs. The µi and ωi 
obtained from the Newton-Raphson classical solver (NR) are also included in the graphs. Figure 1a–c presents 
the convergence of µ1−3 using the QUBO formulation. It is observed that µ2 converges more rapidly than µ1 and 
µ3, with the primary delay in the convergence of µ1 and µ3 being attributed to the slow convergence of QA. QA, 
in particular, exhibits slower convergence compared to the other annealers. Interestingly, although QA struggles 
with convergence speed, the values of ω1−3 generated by QA oscillate around the corresponding values obtained 
by NR. This suggests that while QA may eventually approach the correct solution, its path to convergence is less 
direct, particularly in the QUBO formulation. The slower convergence of µ1 and µ3 in the QUBO formulation, 
therefore, can be directly linked to the performance of QA. On the other hand, the Ising model formulation, 
depicted in Fig. 1g–l, shows a different trend. Here, SA1 is the slowest to converge, as corroborated by Table 1. 
However, the convergence behavior in the Ising model is more uniform across µ1− 3 and ω1−3. Therefore, the 

Formulation Compiler # of variables [−] Compile time [s] Annealer # of iterations [−] Time per iteration [s] Hamiltonian [W 2 + V ar2]

QUBO

PyQUBO 136 0.08 SA1 35 0.677 8.58× 10−4

PyQUBO 136 0.08 HA 35 9.718 5.37× 10−4

PyQUBO 136 0.08 QA 98 58.598 9.01× 10−4

DADK 104 0.14 SA2 34 0.16 7.55× 10−4

DADK 104 8.66 DA 24 8.12 8.81× 10−4

Ising

PyQUBO 300 1.88 SA1 69 1.942 9.05× 10−4

PyQUBO 300 1.88 HA 52 10.602 9.42× 10−4

PyQUBO 300 1.88 QA 44 230.2 6.97× 10−4

DADK 236 1.03 SA2 52 1.06 8.63× 10−4

DADK 236 9.12 DA 23 9.38 8.50× 10−4

Table 1. Computational details for the combinatorial power flow algorithm with the QUBO and Ising model 
formulations based on the 4-bus test system.
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annealers, when working with the Ising model, exhibit a smoother and more consistent convergence trajectory 
due to the more fine-grained updates allowed by this formulation.

Numerical justification of adiabatic quantum power flow
In the combinatorial PF algorithm, we assume that the active and reactive powers are available for all buses 
i = 0, . . . , n, which is inconsistent with the principles of PF analysis. For example, active and reactive powers 
at the reference bus are unknown, while the complex voltage µ + jω is known. To address this discrepancy, 
adjustments are necessary to Algorithm 1. Algorithm 2 represents the pseudo-code of the modified algorithm 
that aligns with the principles of PF analysis. Specifically, for a power system with one reference bus, the active 
and reactive power values for the reference bus i = 0 are excluded from the respective vectors ⃗pd and ⃗qd, resulting 
in p⃗d =

[
pd1, p

d
2, . . . , p

d
n

]
 and q⃗d =

[
qd1, q

d
2, . . . , q

d
n

]
 (lines 1 and 2). In addition, µ0 = 1 and ω0 = 0 are assigned to 

the reference bus i = 0 before the loop starts, ensuring they are not updated during the loop (lines 4 and 5). The 
remaining of the algorithm is the same as Algorithm 1.

Figure 1. Representation of µ⃗ = [µ1, µ2, µ3] and ω⃗ = [ω1, ω2, ω3] obtained by the combinatorial power flow 
algorithm. Experiments are performed using D-Wave’s classical simulated annealer Neal (SA1), D-Wave’s 
quantum-classical hybrid annealer (HA), D-Wave’s Advantage™  system (QA), Fujitsu’s classical simulated 
annealer (SA2), and Fujitsu’s digital annealer V3 (DA) using both (a–f) QUBO and (g–l) Ising model 
formulations for the 4-bus test system. The reference bus i = 0 is not shown. The graphs include µi and ωi 
obtained from the Newton-Raphson classical solver (NR).
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Algorithm 2. Adiabatic power flow algorithm.

D-Wave’s Advantage™   system (QA) and Fujitsu’s digital annealer V3 (DA) are used to minimize the 
QUBO/Ising model developed based on the Hamiltonian at each iteration until convergence is reached. 
Experiments are performed for the 4-bus test system with known pdi  and qdi  and unknown µi and ωi for 
all load buses i = 1, 2, 3, while µ0 = 1 and ω0 = 0 are known and pd0 and qd0  are unknown for the reference 
bus i = 0. Note that for the AQPF algorithm, the number of binary and spin variables is the same as 
in the combinatorial PF algorithm. The effectiveness of the AQPF algorithm is justified by comparing 
µ⃗ = [µ1, µ2, µ3] and ω⃗ = [ω1, ω2, ω3] obtained by QA and DA with those obtained from NR for the 4-bus test 
system. The results are detailed in Table 2. It is observed that the Ising model formulation with QA achieves 
results closest to those derived from NR, followed by the QUBO formulation with QA, for ϵ = 1× 10−3. A 
systematic comparison between the performance of the AQPF algorithm and NR over iterations is provided 
in the “Supplementary information”. 

Numerical justification of scalability of AQPF
The scalability of the AQPF algorithm, defined as the ability to handle a larger number of binary/spin variables, 
is justified through experiments conducted on a larger power system, specifically a 9-bus test system, using the 
same five annealers as before. In this implementation, PyQUBO generates 666 binary and 1485 spin variables 
for the QUBO and Ising model, respectively, while DADK generates 249 binary and 900 spin variables for the 
QUBO and Ising model, respectively. The threshold value for considering the iteration process converged is set 
to ϵ = 1× 10−3.

Figure 2 illustrates the vectors ⃗µ = [µ0, µ1, . . . , µ8] and ⃗ω = [ω0, ω1, . . . , ω8] obtained from SA1, HA, QA, SA2, 
and DA using both the (a and b) QUBO and (c and d) Ising model formulations. Additionally, the graphs include 
µi and ωi obtained from the Newton-Raphson classical solver (NR). Accordingly, the AQPF algorithm shows 
scalability, yet using the Ising model with it for the 9-bus test system requires managing more variables than does 
the use of the QUBO formulation. This presents challenges for embedding in QA due to the partial connectivity 
of qubits in D-Wave’s Advantage™  system. In addition, SA1 fails to converge for the Ising model formulation. 
However, HA, SA2, and DA effectively manage the increased number of spin variables for the 9-bus test system. 
Note that the computational time per iteration on the quantum hardware, independent of the communication 
overhead, is substantially less than the microsecond scale. This observation indicates the prospective capability 
of the AQPF algorithm to address PF challenges, i.e., scalability and handling ill-conditioned cases, in large 

µ1 µ2 µ3 ω1 ω2 ω3

NR 0.902 0.916 0.890 − 0.092 − 0.080 − 0.104

QA (QUBO) 0.904 0.917 0.892 − 0.092 − 0.079 − 0.104

DA (QUBO) 0.904 0.918 0.895 − 0.091 − 0.079 − 0.103

QA (Ising) 0.902 0.916 0.891 − 0.092 − 0.081 − 0.104

DA (Ising) 0.903 0.917 0.891 − 0.094 − 0.080 − 0.107

Table 2. Performance comparison of D-Wave’s Advantage™  system (QA) and Fujitsu’s digital annealer V3 
(DA) with the Newton-Raphson classical solver (NR). The AQPF algorithm is implemented using the QUBO 
and Ising model formulations for the 4-bus test system. The reference bus i = 0 with known values of µ0 = 1 
and ω0 = 0 is not shown.
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power systems within a microsecond timeframe, provided that quantum hardware accessibility resembles that 
of today’s classical hardware. However, realizing this potential is impeded by the constraints inherent to current 
quantum hardware implementations.

Numerical justification of a partitioned AQPF
A heuristic search algorithm is developed and integrated into the AQPF algorithm to provide valid solutions 
for specific parts of the QUBO/Ising model formulation by excluding one or more buses from the formulations. 
This is especially important for large power systems as increasing the number of buses exponentially increases 
the number of binary/spin variables in the QUBO/Ising model formulation. The heuristic search algorithm 
is employed before using the resulting bitstring 

[
xµ0,0, . . . , x

ω
n,1

]
∈ {0, 1}4n for the QUBO formulation, and [

sµ0,0, . . . , s
ω
n,2

]
∈ {±1}6n for the Ising model formulation to update the real and imaginary parts of the complex 

voltages, i.e., µi and ωi. The proposed heuristic search algorithm randomly flips one or more bits of the bitstring 
multiple times to prevent convergence to local optima and ensure a heuristic search of the solution space. The 
partitioned AQPF algorithm, therefore, offers a distinctive advantage by enabling PF analysis in cases where data 
is incomplete or inaccurate or computational resources are inadequate.

The algorithm is explored and justified using 4-bus and 14-bus test systems. The experiments are conducted 
using DA. For the 4-bus test system, bus i = 3 is left out of Hamiltonian (15) based on the QUBO formulation 
(9)–(10), i.e.,

 

H4 - bus
part (·) =

n∑

i = 0

i ̸= 3

(
pdi − pi

)2
+
(
qdi − qi

)2
.

 (16)

The resulting values with ϵ = 1× 10−3 are ⃗µ = [1, 0.902, 0.916, 0.891] and ⃗ω = [0,−0.092,−0.079,−0.102]. Note 
that by excluding bus i = 3, the number of binary variables decreases by up to 44%, generating only 58 binary 
variables using DADK. For the 14-bus test system, three buses, namely, i = 7, 9, 10 are left out of Hamiltonian 
(15) leading to

 

H14 - bus
part (·) =

n∑

i = 0

i ̸= 7, 9, 10

(
pdi − pi

)2
+
(
qdi − qi

)2
.
 (17)

This implementation results in a total of 392 binary variables, reducing their count by 102 (up to 20%) compared 
to the AQPF algorithm. For the 14-bus test system, the mean difference between pi obtained from the partitioned 
AQPF algorithm and pdi  obtained from NR is 3.64× 10−3[W ], with a standard deviation of 1.57× 10−2[W ]. 
Similarly, the mean difference between qi obtained from the partitioned AQPF algorithm and qdi  obtained from 
NR is 1.67× 10−3[V ar], with a standard deviation of 1.42× 10−2[V ar]. Details on the results obtained by the 
14-bus test system are provided in the “Supplementary information”. 

Discussion
This work introduces adiabatic quantum power flow (AQPF) for the first time in the literature, which leverages 
reliable quantum annealers42–44. Hence, the AQPF algorithm proposed is appropriate for noisy-intermediate-

Fig. 2. Representation of (a and c) µ⃗ = [µ0, µ1, . . . , µ8] and (b and d) ω⃗ = [ω0, ω1, . . . , ω8] obtained by the 
AQPF algorithm. Experiments are performed using D-Wave’s classical simulated annealer (SA1), D-Wave’s 
quantum-classical hybrid annealer (HA), D-Wave’s Advantage™  system (QA), Fujitsu’s classical simulated 
annealer (SA2), and Fujitsu’s digital annealer V3 (DA) using both (a and b) QUBO and (c and d) Ising model 
formulations for the 9-bus test system. The graphs include µ⃗ and ω⃗ obtained from the Newton-Raphson 
classical solver (NR).
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scale quantum (NISQ) and fault-tolerant quantum (FTQ) hardware as the adiabatic quantum computing model 
offers more fault tolerance than does the gate-based quantum computing model (GQC) in the NISQ era36. 
Fujitsu’s Digital Annealer, with the capacity to handle up to 100,000 decision variables, can test larger power 
systems compared to state-of-the-art (gate-based) quantum algorithms for power flow (PF) analysis, which can 
hardly handle test systems with more than five buses for the time being.

The AQPF algorithm adheres to the principles of the adiabatic quantum computing model (AQC), where 
the system evolves slowly enough to remain in its ground state throughout the computation. This gradual 
evolution mirrors how the AQPF algorithm iteratively refines voltage estimates to reduce the PF mismatch and 
ensure steady convergence to the optimal solution. It is important to note that while AQC offers a promising 
alternative to GQC for certain applications, it also has limitations, particularly in the context of PF analysis. 
AQC is inherently more suited for discrete optimization problems, whereas PF analysis is a continuous 
problem. Additionally, the performance of AQC can be highly dependent on problem encoding and the specific 
characteristics of the quantum hardware. Therefore, further research is needed to identify scenarios where AQC 
can provide a practical quantum advantage in PF analysis.

An effective partitioned AQPF algorithm is also proposed, which is capable of reducing the number of 
required (coherent) qubits for a given test system. This advantage is especially very important for performing 
computations on D-Wave’s Advantage™   system. The partitioned AQPF algorithm, when used on various 
power test systems, shows remarkable capability. It can solve a partitioned formulation, which is a significant 
achievement, and enables PF analysis even when data is incomplete or inaccurate or when computational 
resources are insufficient. However, this reduction leads to an increased number of iterations needed to reach a 
defined threshold compared to the standard AQPF algorithm. Nevertheless, in the short term, this trade-off is 
beneficial as many NISQ architectures can quickly repeat executions45.

The proposed AQPF algorithm is a valuable contribution to the literature and holds promise as a pivotal 
bridge toward harnessing adiabatic quantum capabilities for enhancing PF analysis. It is also noteworthy that 
the (partitioned) AQPF algorithm can link up with a classical Newton-Raphson (NR) solver. This combination 
can be applied with a large defined threshold to serve as a warm start for managing ill-conditioned cases. There 
are several questions that persist in the study of AQPF. These include broadening the scope of the algorithm to 
incorporate PV buses, devising a systematic approach for independently updating complex voltages for each 
bus in every iteration, exploring efficient order reduction techniques specifically developed for PF analysis, and 
eventually implementing the algorithm in real-world power systems.

Methods
Quantum annealing
(QA) is one of the two paradigms encountered in quantum computing. While gate-based quantum computing 
follows the principles of digital computing, that is, the data stored in the quantum registers is nuancedly 
controlled by applying a sequence of gates — the quantum program —, quantum annealing can be seen as an 
analog computing approach tailored toward solving unconstrained optimization problems given in Ising model 
formulation

 
min

s⃗∈{±1}n

∑
i<j

Jijsisj +
∑
i

hisi, (18)

with interaction terms Jij  and external magnetic field terms hi. Starting from a superposition of all possible states, 
the system evolves following the time-dependent Schrödinger equation into a state of minimal energy—the 
ground state of the Hamiltonian. The results reported in this paper have been obtained on D-Wave’s Advantage™  
system which provides more than 5000 qubits and 35,000 couplers between them responsible for imprinting the 
problem Hamiltonian. Simply said, a positive weight, Jij > 0, stimulates the opposite orientation of the spin 
qubits si and sj, whereas a negative weight, Jij < 0, stimulates si = sj.

The main challenges in practical QA are as follows: (i) since physical qubits are not all-to-all connected the graph 
of the problem Hamiltonian needs to be ‘embedded’ into the hardware graph, which, in general, is an NP-hard 
problem; (ii) the number of couplers per qubit is limited (degree 15 for the Advantage™  system) so that a qubit, 
say, si with a lot of non-zero Jijs needs to be expanded into a chain of qubits that are forced to attain the same 
value via sufficiently larger coupler values; and (iii) the value range of the hardware is limited meaning that J 
and h are rescaled to [−2, 2] thereby possibly suppressing values that are small in magnitude. While (iii) leads to 
inaccurate results, (i) and (ii) are a severe problem for scalability since larger problem instances can no longer be 
embedded and, hence, cannot be solved with QA, cf. Fig. 2.

Digital annealing
(DA) mimics the annealing process on application-specific CMOS hardware that solves many Markov-Chain 
Monte-Carlo instances in parallel. Fujitsu’s DA offers up to 100000 qubits organized in units of 8,192 fully-
connected qubits and 64-bit precision. In contrast to D-Wave’s QA, Fujitsu’s DA accepts problems in QUBO 
form, which can be obtained from Eq. (18) by setting si = 2xi − 1 and converting J and h into a symmetric 
matrix Q. For the problem sizes studied in this paper, a single unit of 8192 qubits suffices, so that embedding is 
not a problem.
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Reduction of higher-order terms
is necessary to convert the fourth-order polynomial of the Hamiltonian (15) into a quadratic polynomial that 
can be directly solved on D-Wave’s QA and Fujitsu’s DA. A possible approach is to introduce auxiliary variables 
of the form zij = xixj and replace triplet interactions by

 
xixjxk = min

zij
{zijxk + λP (xi, xj; zij)} , λ > 0  (19)

with the penalty term P defined as follows

 P (xi, xj; zij) = xixj − 2 (xi + xj) zij + 3zij  (20)

Likewise, expressions with four binary variables can be replaced by

 
xixjxkxl = min

zij ,zkl
{λP (xi, xj; zij) + λP (xk, xl; zkl)} (21)

A comprehensive overview of so-called quadratization techniques is given in46.

Heuristic search
Algorithm 3 presents the heuristic search approach adopted in this work to avoid getting stuck in local minima 
and enable a partitioned AQPF algorithm.

Algorithm 3. Heuristic search approach.

∆µi and ∆ωi update. ∆µi and ∆ωi are updated as a function of the number of iterations. In the beginning, 
i.e., it = 0, the increment/decrement is large, i.e., ∆µi = 4× 10−2 and ∆ωi = 2× 10−2, and as the number of 
iterations increases, it becomes increasingly smaller to refine the values, e.g., ∆µi = 1× 10−4 and ∆ωi = 5× 10−5 
for it = 50. In this work, the same ∆µi and ∆ωi are used for all the buses i.

Data availability
The data that support the plots within this article and other findings of this study are available from the corre-
sponding author upon reasonable request.
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