
A type system for dynamic instances

Version of August 26, 2019

Albert ten Napel

A type system for dynamic instances

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Albert ten Napel
born in Urk, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2019 Albert ten Napel.

A type system for dynamic instances

Author: Albert ten Napel
Student id: 4087798
Email: a.tennapel@student.tudelft.nl

Abstract

Side-effect are ubiquitous in programming. Examples include mutable state, exceptions,
non-determinism, and user input. Algebraic effects and handlers are an approach to
programming that gives a structured way of programming with effects. Each effect in
a system with algebraic effects is defined by a set of operations. These operations can
then be called anywhere in a program. Using a handler we can give an interpretation
for the operations used. Unfortunately we are unable to express dynamic effects using
regular algebraic effects, such as the dynamic creation of mutable references. Extending
algebraic effects with effect instances enables us to express dynamic effects. These effect
instances can be dynamically created and operations called on them are distinct from
the same operation called on a different instance. Without a type system effect instances
may result in runtime errors, because operation calls may be left unhandled. Because of
their dynamic nature it is hard to give a type system for effect instances. In this thesis
we present a new language, Miro, which extends algebraic effects and handlers with a
restricted form of effect instances. We introduce the notion of an effect scopewhich encap-
sulates the creation and usage of dynamically created effect instances. We give a formal
description of the syntax and semantics of Miro. We also give a type system which en-
sures that all operation calls are handled, so that there will be no runtime errors because
of unhandled operation calls. Because effect instances can still escape their effect scope,
in computationally irrelevant parts, we encounter difficulties in proving type safety for
Miro. We discuss these difficulties and give a possible approach to prove type safety in
the future.

Thesis Committee:

Chair: Prof. dr. E. Visser, Faculty EEMCS, TU Delft
Committee Member: Dr. N. Yorke-Smith, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Bach Poulsen, Faculty EEMCS, TU Delft
University Supervisor: Dr. R. Krebbers, Faculty EEMCS, TU Delft

a.tennapel@student.tudelft.nl

Acknowledgements

I would like to thank my supervisors Robbert and Casper for their invaluable feedback and
for the interesting discussions. I would like to thank my parents for their endless love and
support. Finally. I give my special thanks to my girlfriend Justyna, for her neverending love,
support and patience.

Albert ten Napel
Urk, the Netherlands

August 26, 2019

iii

Contents

Acknowledgements iii

Contents v

1 Introduction 1

2 An introduction to algebraic effects and handlers 5
2.1 Algebraic effects and handlers . 5
2.2 Static instances . 10
2.3 Dynamic instances . 12

3 Introduction to Miro 17
3.1 Effects, effect scopes and instances . 17
3.2 Mutable vectors . 21

4 Semantics and types of algebraic effects and handlers 25
4.1 Simply-typed lambda calculus . 25
4.2 Algebraic effects . 28
4.3 Static instances . 32
4.4 Formalization . 34

5 Semantics and types of Miro 35
5.1 Syntax . 35
5.2 Environments and judgments . 36
5.3 Subtyping . 37
5.4 Well-formedness . 38
5.5 Typing rules . 39
5.6 Semantics . 42
5.7 The problem with type safety . 46

6 Related work 49

7 Conclusion and future work 53
7.1 Conclusion . 53
7.2 Future work . 54

Bibliography 57

v

Chapter 1

Introduction

Side-effects are ubiquitous in programming. Examples include mutable state, exceptions,
nondeterminism, and user input. Side-effects often make functions hard to understand, test
and debug. This is because every invocation of the same function with the same arguments
may yield different results. Furthermore side-effectful programs can also be difficult to opti-
mize, since the compiler does not have much freedom in rearranging parts of the program.

Any function that includes such side-effects is called impure, while functions whose only
effect is computing a result are called pure. Pure functions do not rely on any global state
and thus can be reasoned about in isolation of the rest of the program. Every time a pure
function is called with the same input, it will return the same output. This means those func-
tions are easier to understand, test, and debug.

There has been a lot of work on programming languages that allow more control over the
pure and impure parts of a program. Examples include Haskell (Jones 2003), Eff (Bauer
and Pretnar 2015), Koka (Leijen 2016), and Links (Hillerström and Lindley 2016). These
languages, in one way or another, give the programmer more control over which parts of
their program are pure and which parts are impure. By factoring out the pure parts from
the impure parts, we can still gain the benefits of pure functions for many parts of our pro-
grams. In addition these languages allow one to keep track of which effects exactly are used
by which function. They also allow some side-effects to be encapsulated, meaning that the
use of a particular side-effect can be completely hidden such that the function still appears
to be pure to the outside world.

Using type systems we can statically rule out programs that may lead to runtime errors.
Type systems can also play an essential role in enforcing the distinction between pure and
impure code. By extending type systems to also show which effects a function may use, we
can statically enforce which functions are pure and which are not. This gives insight to the
user to what a function may do when called, and also allows a compiler to do more inter-
esting optimizations. For example pure function calls may be reordered in any way that the
compiler sees fit, while impure function calls may not, since the effects may interact. These ef-
fect systems can have different levels of granularity. For example one system could only keep
track of a single bit per function, whether the function is impure or not. More fine-grained
systems are also possible, where each function is annotated with a set of effects that is used,
where the set of possible effects is defined by the language. For example in Koka (Leijen
2016) a function which prints something to the console may be given the type:

string -> <console> ()

Where console shows the use of the console.

1

1. Introduction

Algebraic effects and handlers (Plotkin and Pretnar 2013) are an approach to programming
with side-effects that has many of the desirable properties previously described. Algebraic
effects provide a way to factor out the pure parts from the impure parts. Users can define
effects and easily use them in functions, with different effects composing without any ex-
tra effort. Each effect in a system with algebraic effects is defined as a set of operations.
For example nondeterminism can be represented by an operation which takes to values and
chooses one. Similarly, state can be defined as two operations, get and put, where get is
meant to return the current value of the state and put is meant to change this value. These
operations can then be called anywhere in a function. Handlers take a program that calls
operations and for each operation call defines how to proceed. For example the following
piece of (pseudo)code defines an effect called State which simulates a single mutable state
cell:

effect State {
get : () -> Int
put : Int -> ()

}

postInc : Int!{State}
postInc =
x <- get ();
put (x + 1);
return x

handlePostInc : Int
handlePostInc =
f <- handle (postInc) {

get _ k -> \st -> k st st
put newst k -> \st -> k () newst
return x -> \st -> return x

};
f 42

The function postInc increments the current value in the state cell and returns the previous
value. We then handle the calls to get and put of postInc in handlePostInc using a handler.
The handler transforms get and put calls to a function expecting the current state. We name
this function f and pass it 42 as the initial state.

The problem While algebraic effects and handlers have many of the desirable properties
we would like, they are is unable to express multiple mutable references. Mutable references
have interesting applications such asmeta variables in unification algorithms and typed logic
variables (Claessen and Ljunglöf 2000). In the previous example it can be seen that postInc
does not refer to any specific reference, but instead can only manipulate one ambient refer-
ence using the get and put operations. Dynamic instances were introduced by the Eff pro-
gramming language (Bauer and Pretnar 2015) to solve this problem. With dynamic instances
multiple different instances of the same effect can be dynamically created. Using this multi-
ple mutable references can be implemented by dynamically creating instances of the State
effect (we give an example in Section 2.3). Unfortunately theses dynamic instances can es-
cape the scope of their handler. Any operation called on one of these escaped instances will
result in a runtime error, since this operation call will be unhandled. Eff also introduces
resources, these are effect instances with a globally scoped handler associated. Because the

2

handler is globally scoped the instance can never escape its scope and any operation call will
always be handled. Unfortunately there is no type system given for dynamic instances, so
we have no static guarantees that there will be no unhandled operation calls.

In Haskell the the so-called “ST monad” (Launchbury and Peyton Jones 1994) can be used
to safely manipulate multiple references in such a way that stateful computations can be en-
capsulated and that the references are not leaked outside of the function. Mutable references
can be dynamically created and manipulated. Computations using these references can be
made pure by passing them to a function called runST. This function will statically ensure
that no references will escape their scope and that the mutation effects are encapsulated.

In this thesis we define a new language named Miro based on algebraic effects and handlers
which allows for the definition of effects such as the dynamic creation of mutable references,
and the opening of files and channels. Using this system we can implement a system similar
to the ST monad from Haskell. We introduce a notion of effect scopes, which encapsulates
the creation and usage of dynamically created effect instances. Each function is statically
annotated with the effect scopes that are used in the function. Using the effect scopes we
statically ensure that effects are encapsulated. We give examples of programs using these
side-effects in Miro and show how to implement local mutable references. We give a formal
description of the syntax, typing rules and semantics of a core calculus for Miro.

Proving type safety for Miro turns out to be more difficult than anticipated. It is common
to prove type safety by first proving a type preservation lemma. Type preservation states
that if a term is well-typed and if we take a step (using the semantics) then the resulting
term is also well-typed (with the same type as before). Our language introduces some in-
termediate forms used by the small-step operational semantics. These intermediate forms
are introduced by the semantics during the process of evaluation and do not appear in the
source language. In order to prove the preservation lemma one also has to give typing rules
for these intermediate forms. We will call these the dynamic typing rules. The difficulty in
coming upwith dynamic typing rules is that effect instances can still escape their effect scope
if they are not used and not returned from a function. The dynamic typing rules have to give
these escaped instance a valid type, but since they have escaped their effect scope this is tricky
because the type of an instance depends on the effect scope, which it has escaped from. The
escaped instances do however have no computational effect and so we conjecture that type
safety still holds. Type safety might still be provable in other ways, given correct dynamic
typing rules. In this thesis we will show the problems with proving type preservation for
Miro and we will give a possible approach that may allow us to prove type safety.

Contributions

• Language. We define a language named Miro based on algebraic effects and handlers
that can handle a form of dynamic effect instances.

• Mutable references. We give examples in Miro that would be difficult or impossible
to express with ordinary algebraic effects.

• Operational semantics and type system. We define a core calculus of Miro together
with a small-step operational semantics and a type system.

• Formalizations. We have formalized algebraic effects and handlers with and without
static instances and have proven type safety in Coq1.

1https://github.com/atennapel/dynamicinstances

3

1. Introduction

Thesis structure
The thesis is structured as follows. Chapter 2 gives an introduction to ordinary algebraic
effects andhandlers, and static anddynamic instances. Chapter 3 gives an introduction to our
new language Miro. Chapter 4 gives formal definitions of systems with ordinary algebraic
effects and handlers, and static instances. Chapter 5 gives a formal account of Miro, we also
discuss the problem with proving type safety. Chapter 6 discusses related work. Chapter 7
concludes the thesis and discusses future work.

4

Chapter 2

An introduction to algebraic effects
and handlers

Side-effects are an essential part of a programming language. Without side-effects the pro-
gram would have no way to print a result to the screen, ask for user input or change global
state. We consider a function pure if it does not perform any side-effects and unpure if it
does. A pure function always gives the same result for the same inputs. A pure function
can be much easier to reason about than an unpure one because you know that it will not
do anything else but compute, it will not have any hidden inputs or outputs. Because of this
property testing pure functions is also easier, we can just give dummy inputs to the func-
tions and observe the output. So we would like the benefits of pure functions but still have
side-effects. We could give up and simply add some form of side-effects to our language
but that would immediately make our function impure, since any function might perform
side-effects. This would make us lose the benefits of pure functions.

Algebraic effects and handlers are a structured way to introduce side-effects to a program-
ming language. The basic idea is that side-effects can be described by sets of operations,
called the interface of the effect. Operations from different effects can then be called in a
program. These operations will stay abstract though, they will not actually do anything. In-
stead, similar to exceptions where exceptions can be thrown and caught, operations can be
“caught” by handlers. Different from exceptions however the handler also has access to a
continuation which can be used to continue the computation at the point where the opera-
tion was called.

In this chapter we will introduce algebraic effects and handlers through examples. Start-
ing with simple algebraic effects and handlers (Section 2.1). Afterwards we will continue
with static instances (Section 2.2) which allows for multiple static instances of the same ef-
fect to be used in a program. We end with dynamic instances (Section 2.3) which allows for
the dynamic creation of effect instances. The examples are written in a statically typed func-
tional programming language with algebraic effects and handlers with syntax reminiscent
to Haskell but semantically similar to Koka (Leijen 2016).

2.1 Algebraic effects and handlers
We will start with exceptions. We define an Exc effect interface with a single operation throw.

effect Exc {
throw : String -> Void

}

5

2. An introduction to algebraic effects and handlers

For each operation in an effect interface we specify a parameter type (on the left of the arrow)
and a return type (on the right of the arrow). The parameter type is the type of a value that
is given when the operation is called and that the handler also has access too. The return
type is the type of a value that has to be given to the continuation in the handler, this will be
shown later. This return value is received at the point where the operation was called. In the
case of Exc we take String as the parameter type, this is the error message of the exception.
An exception indicates that something went wrong and that we cannot continue in the pro-
gram. This means we do not want the program to continue at the point where the exception
was thrown, which is the point where the throw operation was called. So we do not want to
be able to call the continuation with any value. To achieve this we specify Void as the return
type of throw. This is a type with no values at all, which means that the programmer will
never be able to conjure up a suitable value when a value of type Void is requested. By using
Void as the return type we can ensure that the continuation cannot be called and so that the
program will not continue at the point where throwwas called. To make the code more read-
able we assume Void implicitly coerces to any other type.

We can now write functions that use the Exc effect. For example the following function
safeDiv which will throw an error if the right argument is 0. We assume here that Void
is equal to any type.

safeDiv : Int -> Int -> Int!{Exc}
safeDiv a b =
if b == 0 then
throw "division by zero!"

else
return a / b

We can call this function like any other function, but no computation will actually be per-
formed. The effect will remain abstract, we still need to give them a semantics.

result : Int!{Exc}
result = safeDiv 10 2

In order to actually “run” the effect we will need to handle the operations of that effect. For
example, for Exc we can write a handler that returns 0 as a default value if an exception is
thrown.

result : Int
result = handle (safeDiv 10 0) {
throw err k -> return 0
return v -> return v

} -- results in 0

For each operation we write a corresponding case in the handler, where we have access to
the argument given at operation call and a continuation, which expects a value of the return
type of the operation. There is also a case for values return, which gets as an argument the
final value of a computation and has the opportunity to modify this value or to do some final
computation. In this case we simply ignore the continuation and exit the computation early
with a 0, we also return any values without modification.

We can give multiple ways of handling the same effect. For example we can also handle
the Exc effect by capturing the failure or success in a sum type Either.

6

2.1. Algebraic effects and handlers

data Either a b = Left a | Right b

result : Either String Int
result = handle (safeDiv 10 0) {
throw err k -> return (Left err)
return v -> return (Right v)

} -- results in (Left "division by zero!")

Here we return early with Left err if an error is thrown, otherwise we wrap the resulting
value using the Right constructor.

Another effect we might be interested in is non-determinism. To model this we define the
Flip effect interface which has a single operation flip, which returns a boolean when called
with the unit value.

effect Flip {
flip : () -> Bool

}

Using the flip operation and if-expression we can write non-deterministic computations
that can be seen as computation trees where flip branches the tree off into two subtrees. The
following program choose123 non-deterministically returns either a 1, 2 or 3.

choose123 : Bool!{Flip}
choose123 =
b1 <- flip ();
if b1 then

return 1
else

b2 <- flip ();
if b2 then
return 2

else
return 3

Here the syntax (x <- c1; c2) sequences the computations c1 and c2 by first performing c1
and then performing c2, where the return value of c1 can accessed in x.

Again choose123 does not actually perform any computation when called, because we have
yet to give it a semantics. We could always return Truewhen a flip operation is called, in the
case of choose123 this will result in the first branch being picked returning 1 as the answer.

result : Int
result = handle (choose123) {
flip () k -> k True
return v -> return v

} -- returns 1

Another handler could try all branches returning the greatest integer of all possibilities.

maxresult : Int
maxresult = handle (choose123) {
flip () k ->

7

2. An introduction to algebraic effects and handlers

vtrue <- k True;
vfalse <- k False;
return (max vtrue vfalse)

return v -> return v
} -- returns 3

Here we first call the continuation k with True and then with False. The we return the maxi-
mum between those results.

We could even collect the values from all branches by returning a list.

allvalues : List Int
allvalues = handle (choose123) {
flip () k ->
vtrue <- k True;
vfalse <- k False;
return vtrue ++ vfalse

return v -> return [v]
} -- returns [1, 2, 3]

Again we call the continuation k twice, but we append the two results instead. For the return
base case we simply wrap the value in a singleton list.

Algebraic effects have the nice property that they combine easily. For example by combin-
ing the Exc and Flip we can implement backtracking, where we choose the first non-failing
branch from a computation. For example we can write a function which returns all even
sums of the numbers 1 to 3 by reusing choose123.

evensums123 : Int!{Flip, Exc}
evensums123 =
n1 <- choose123;
n2 <- choose123;
sum <- return (n1 + n2);
if sum % 2 == 0 then
return sum

else
throw "not even!"

We implement backtracking in backtrack by handling both the flip and throw operations. For
flip and the return case we do the same as in allvalues, calling the continuation kwith both
True and False and appending the results together. For throw we ignore the error message
and continuation and exit early with the empty list, this means that branches that results in
a failure will not actually return any values.

backtrack : List Int
backtrack () = handle (handle (evensums123) {
flip () k ->
vtrue <- k True;
vfalse <- k False;
return vtrue ++ vfalse

return v -> return [v]
}) {
throw msg k -> return []

8

2.1. Algebraic effects and handlers

return v -> return v
} -- returns [2, 4, 4, 6]

We can also handle the effects independently of each other. For examplewe could implement
a partial version of backtrack that only handles the Flip effect. Any operation that is not in
the handler is just passed through.

partlybacktrack : (List Int)!{Exc}
partlybacktrack = handle (evensums123) {
flip () k ->
vtrue <- k True;
vfalse <- k False;
return vtrue ++ vfalse

return v -> return [v]
}

Now we can factor out the throw handler into its own function.

fullbacktrack : List Int
fullbacktrack = handle (partlybacktrack) {
throw msg k -> return []
return v -> return v

} -- returns [2, 4, 4, 6]

Algebraic effects always commute, meaning the effects can be handled in any order. In the
backtracking example the order of the handlers does not actually matter, but in general dif-
ferent orders could have different results.

Lastly we introduce the State effect, which allows us to implement local mutable state. We
restrict ourselves to a state that consists of a single integer value, but in a language with
parametric polymorphism a more general state effect could be written.

effect State {
get : () -> Int
put : Int -> ()

}

Our state effect has two operations, get and put. The get operation allows us to retrieve a
value from the state and with the put operation we can change the value in the state.

We can now implement the familiar “post increment” operation as seen in the C program-
ming language. This function retrieves the current value of the state, increments it by 1 and
returns the previously retrieved value.

postInc : Int!{State}
postInc =
x <- get ();
put (x + 1);
return x

To implement the semantics of the State effect we use parameter-passing similar to how the
State monad is implemented in Haskell. We will abstract the implementation of the state
handler in a function runState.

9

2. An introduction to algebraic effects and handlers

runState : Int!{State} -> (Int -> (Int, Int))
runState comp = handle (comp) {
get () k -> return (\s -> (f <- k s; return f s))
put v k -> return (\s -> (f <- k (); return f v))
return v -> return (\s -> return (s, v))

}

runState takes a computation that returns an integer and may use the State effect, and re-
turns a function that takes the initial value of the state and returns a tuple of the final state
and the return value of the computation. Let us take a look at the return case first, here we
return a function that takes a state value and returns a tuple of this state and the return value.
For the get case we return a function that takes a state value and runs the continuation kwith
this value, giving access to the state at the point where the get operation was called. From
this continuation we get back another function, which we call with the current state, contin-
uing the computation without changing the state. The put case is similar to the get but we
call the continuation with the unit value and we continue the computation by calling f with
the value giving with the put operation call.

Using state now is as simple as calling runState.

stateResult : (Int, Int)
stateResult =
f <- runState postInc; -- returns a function taking the initial state
f 42 -- post-increments 42 returning (43, 42)

Using the state effect we can implement imperative algorithms such as summing a range of
numbers. We first implement a recursive function sumRangeRec which uses State to keep a
running sum. After we define sumRange which calls sumRangeRec and runs the State effect
with 0 as the initial value.

sumRangeRec : Int -> Int -> Int!{State}
sumRangeRec a b =
if a > b then
(_, result) <- get ();
return result

else
x <- get ();
put (x + a);
sumRangeRec (a + 1) b

sumRange : Int -> Int -> Int
sumRange a b =
f <- runState (sumRangeRec a b);
f 0 -- initial sum value is 0

2.2 Static instances
Static instances extend algebraic effects by allowing multiple instances of the same effect to
co-exist. These instances be handled independently of each other. Operations in such a sys-
tem are always called on a specific instance and handlers also have to note instance they are
handling. We will write operation calls as inst#op(v) where inst is the instance. Handlers
are modified to take an instance parameter as follows handle#inst(comp) { ... } .

10

2.2. Static instances

As an example let us take another look at the safeDiv function.

safeDiv : Int -> Int -> Int!{Exc}
safeDiv a b =
if b == 0 then

throw "division by zero!"
else

return a / b

We can rewrite this to use static instances by declaring an instance of Exc called divByZero
and calling the throw operation on this instance. Note that in the we now state the instance
used instead of the effect, since multiple instances of the same effect could be used and we
would like to know which instances exactly.

instance Exc divByZero

safeDiv : Int -> Int -> Int!{divByZero}
safeDiv a b =
if b == 0 then

divByZero#throw "division by zero!"
else

return a / b

Imaginewewanted to also throwan exception in the case that the divisorwas negative. Using
instances we can easily declare another Exc instance, let us call it negativeDivisor, and use it
in our function. We also have to modify the type to mention the use of negativeDivisor.

instance Exc divByZero
instance Exc negativeDivisor

safeDivPositive : Int -> Int -> Int!{divByZero, negativeDivisor}
safeDivPositive a b =
if b == 0 then

divByZero#throw "division by zero!"
else if b < 0 then

negativeDivisor#throw "negative divisor!"
else

return a / b

We can now see from the type what kind of exceptions are used in the function. We can also
handle the exceptions independently. For example we could handle divByZero by defaulting
to 0, but leave negativeDivisor unhandled.

defaultTo0 : Int!{divByZero, negativeDivisor} -> Int!{negativeDivisor}
defaultTo0 c =
handle#divByZero (c) {

throw msg -> return 0
return v -> return v

}

11

2. An introduction to algebraic effects and handlers

2.3 Dynamic instances

Having to predeclare every instancewe are going to use is very inconvenient, especiallywhen
we have effects such as reference cells or communication channels. The global namespace
would be littered with all references and channels the program would ever use. Further-
more we do not always know how many references we need. Take for example a function
which creates a list of reference cells giving a length l. We do not know statically what the
length of the list will be and so we do not know ahead how many instances we have to de-
clare. Furthermore because all the instances would be predeclared some information about
the implementation of a function would be leaked to the global namespace. This means it is
impossible to fully encapsulate the use of an effect when using static instances.

Dynamic instances improve on static instances by allowing instances to be created dynam-
ically. Instances become first-class values, they can be assigned to variables and passed to
functions just like any other value. We use new E to create a new instance of the E effect.
The actual implementation of the function can stay exactly the same, as can the handler
defaultTo0. We can translate the previous example to use dynamic instances by defining the
divByZero and negativeDivisor as top-level variables and assigning newly created instances
to them. We omit type annotation, since there does not exist any type system that can type
all usages of dynamic instances.

divByZero = new Exc
negativeDivisor = new Exc

safeDivPositive a b =
if b == 0 then
divByZero#throw "division by zero!"

else if b < 0 then
negativeDivisor#throw "negative divisor!"

else
return a / b

defaultTo0 c =
handle#divByZero (c) {

throw msg -> return 0
return v -> return v

}

Using locally created instances we can emulate variables as they appear in imperative lan-
guages more easily. We can implement the factorial function in an imperative style using a
locally created State instance. The factorial function computes the factorial of the paramter
n by creating a new State instance named ref and calling the helper function factorialLoop
with ref and n. The base case of factorialLoop retrieves the current value from ref and re-
turns it. In the recursive case of factorialLoop the value in ref is modified by multiplying it
by n and then we continue by recursing with n - 1. The call to factorialLoop in factorial is
wrapped in the State handler explained earlier, chosing 1 as the initial value of ref. factorial
thus computes the factorial of a number by using a locally created instance, but the use of
this instance or the State effect in general never escapes the function, it is completely encap-
sulated.

12

2.3. Dynamic instances

factorialLoop ref n =
if n == 0 then

ref#get ()
else

x <- ref#get();
ref#put (x * n);
factorialLoop ref (n - 1)

factorial n =
ref <- new State;
statefn <- handle#ref (factorialLoop ref n) {
get () k -> return (\s -> (f <- k s; return f s))
put v k -> return (\s -> (f <- k (); return f v))
return v -> return (\s -> return v)

};
statefn 1 -- use 1 as the initial value of ref

Next we will implement references more generally similar to the ones available in Standard
ML (Milner, Tofte, and Harper 1990), in our case specialized to Int. In the previous example
we see a pattern of creating a State instance and then calling some function with it wrapped
with a handler. This is the pattern we want to use when implementing references. To imple-
ment this pattern more generally this we first introduce a new effect named Heap. Heap has
one operation called ref which takes an initial value Int and returns a State instance. Heap
can be seen as a collection of references. We then define a handler runRefs which takes a
Heap instance and a computation, and creates State instances for every use of ref. After we
call the continuation with the newly created instance and wrap this call in the usual State
handler, giving the argument of ref as the initial value.

effect Heap {
ref : Int -> Inst State

}

runRefs inst c =
handle#inst (c) {

ref v k ->
r <- new State;
statefn <- handle#r (k r) {
get () k -> return (\s -> (f <- k s; return f s))
put v k -> return (\s -> (f <- k (); return f v))
return v -> return (\s -> return v)

};
statefn v

return v -> return v
}

By calling runRefs at the top-level wewill have the same semantics for references as Standard
ML. In the following example we create two references and swap their values using a swap
function. First main creates a new Heap instance heap and then calls runRefswith this instance.
The computation given to runRefs is the function program called with heap.

13

2. An introduction to algebraic effects and handlers

swap r1 r2 =
x <- r1#get ();
y <- r2#get ();
r1#put(y);
r2#put(x)

program heap =
r1 <- heap#ref 1;
r2 <- heap#ref 2;
swap r1 r2;
x <- r1#get ();
y <- r2#get ();
return (x, y)

main =
heap <- new Heap;
runRefs heap (program heap) -- returns (2, 1)

In the Haskell programming language the ST monad (Launchbury and Peyton Jones 1994)
can be used to implement algorithms that internally use mutable state. The type system,
using the runST function, will make sure that the mutable state does not leak outside of the
function. For example the following function fibST implements the Fibonacci function in
constant space by creating two mutable references.

fibST :: Integer -> Integer
fibST n =

if n < 2 then
n

else runST $ do
x <- newSTRef 0
y <- newSTRef 1
fibST' n x y

where fibST' 0 x _ = readSTRef x
fibST' n x y = do

x' <- readSTRef x
y' <- readSTRef y
writeSTRef x y'
writeSTRef y $! x' + y'
fibST' (n - 1) x y

Using dynamic instances we can implement the same algorithm, named fib below. Our fib
takes a parameter n and returns the nth Fibonacci number. First we check if n is smaller than
2, in which case we can return n as the result, since nth Fibonacci number is n, if n ă 2. Else
we create a new Heap instance named heap and use the runRefs function defined earlier to run
a computation on this heap. We create two State instances on heap, x and y initialized with 0
and 1 respectively and call the auxillary function fibRecwith n and the two instances x and y.
fibRec implements the actual algorithm. It works by (recursively) looping on n, subtracting
by 1 each recursive call. x and y store the current and next Fibonacci respectively and each
loop they are moved one Fibonacci number to the right. When n is 0 we know x contains the
nth (for the initial value of n) Fibonacci number and we can just get the current value from
x and return it. Even though this algorithm uses the Heap and State effects, their uses are

14

2.3. Dynamic instances

completely encapsulated by the fib function. The fib function does not leak the fact that it’s
using those effects to implement the algorithm.

fib n =
if n < 2 then

n
else

heap <- new Heap;
runRefs heap (
x <- heap#ref 0;
y <- heap#ref 1;
fibRec n x y

)

fibRec n x y =
if n == 0 then

x#get ()
else

x' <- x#get ();
y' <- y#get ();
x#put(y');
y#put(x' + y');
fibRec (n - 1) x y

The problem with dynamic instances Dynamic instances have one big problem though:
they are too dynamic. Similar to how in general it is undecidable to know whether a refer-
ence has escaped its scope, it is also not possible to know whether an instance has a handler
associated with it. For example:

escapeRef =
heap <- new Heap;
escapedRef <- runRefs heap (
r <- heap#ref 42;
return r

);
escapedRef#get () // unhandled operation call!

Here we create a new heap and handle a computation on it using runRefs. The computation
creates a new reference and returns it. After runRefs is done the reference is returned and
named escapedRef. This reference has no handler associated with it anymore. We then call
the get operation resuling in an unhandled operation call which is a runtime error.

Because we cannot statically know whether we are calling an operation on an escaped in-
stance, it is hard to think of a type system for dynamic instances which ensures that there
are no unhandled operations. Earlier versions of the Eff programming language (Bauer and
Pretnar 2015) had dynamic instances but its type system underapproximated the uses of dy-
namic instances which meant you could still get a runtime error if any operation calls were
left unhandled.

In the next chapter (Chapter 3) we will introduce our new language Miro. By restricting
how dynamic instances can be created and handled we are able to give a type system which
ensures that all operation calls are handled.

15

Chapter 3

Introduction to Miro

In Section 2.3 we saw how dynamic instances allow us to implement mutable references in
a system with algebraic effects. This system is untyped however, meaning that you can get
runtime errors if an operation is unhandled. This can happen if an operation is called on
a dynamic instance outside of a handler for the instance, which we gave an example of. In
this chapter we introduce our new language Miro, which combines algebraic effects and a
restricted form of dynamic instances. In order to ensure all operation calls are handled we
introduce the notion of an effect scope. An effect scope groups together instances. When cre-
ating an instance we give an effect scope to create the instance in. Every instance belongs to a
specific effect scope. Different from the system with dynamic instances from Section 2.3, we
always have to specify a handler when creating an instance, similar to resources in Eff. Speci-
fying a handler at themoment of creating an instance ensures that each instance always has a
handler associated with it. Performing effects is done with a new runscope construct, similar
to how the handle construct performed effects in Chapter 2. The construct runscope creates
a fresh scope and makes it available for use in a given computation. We can use the newly-
created scope to dynamically create effect instances in the computation. We always have to
give a handler when creating an effect instance. After runscope will ensure that all operation
calls are handled and that the effects are encapsulated. In order to allow computations to
be polymorphic over effect scopes we also introduce effect scope polymorpishm together with
effect scope abstraction and effect scope application.

We start with explaining all the novel concepts in Section 3.1, using the example of mutable
references. Then we will show how mutable vectors can be defined, followed by an imple-
mentation of a list shuffling algorithm in Section 3.2.

We build on the language used in Section 2.1. We use syntax reminiscent of Haskell with
algebraic data types and pattern matching. Type constructors and effect names are upper-
case while type variables are lowercase.

3.1 Effects, effect scopes and instances

In Figure 3.1 we give an example containing all the novel constructs of Miro.

3.1.1 Effects

To start off we define a State effect specialized to Ints. The State effect is meant to represent
a mutable reference to a single value of type Int. This definition is exactly the same as the
State effect definition in Section 2.1, in the basic algebraic effects system.

17

3. Introduction to Miro

Figure 3.1: Example of all the novel constructs

1 effect State {
2 get : () -> Int
3 put : Int -> ()
4 }
5

6 ref : forall s. Int -> (Inst s State)!{s}
7 ref [s] v =
8 new State@s {
9 get () k -> \st -> k st st

10 put st' k -> \st -> k () st'
11 return x -> \st -> return x
12 finally f -> f v
13 } as x in return x
14

15 postInc : forall s. Inst s State -> Int!{s}
16 postInc [s] inst =
17 x <- inst#get();
18 inst#put(x + 1);
19 return x
20

21 result : Int!{}
22 result =
23 runscope(s1 ->
24 r1 <- ref [s1] 10;
25 runscope(s2 ->
26 r2 <- ref [s2] 20;
27 x <- postInc [s2] r2;
28 r1#put(x);
29 return x);
30 y <- r1#get ();
31 return y) -- result is 20

3.1.2 Effect instances

In Figure 3.1 the function ref creates a new effect instance of the State effect. We can create
a fresh instance of an effect using the new keyword. The construct new State@s { ... } can
be read as “Create a fresh State instance in the effect scope s”. Here we have to give a spe-
cific scope s to create the instance on. The instance can only be used within this given scope.
The newly-created instance is available in the body of the new construct. When creating an
instance we have to give a handler. The handler specifies what should happen when the op-
erations are called. The handler is defined within curly braces and consists of a case for each
operation of the effect, plus a return case and a finally case. The handler given in the exam-
ple is the same as the handler given in Section 2.1, implementing a single mutable reference.
In addition we also have to define a finally case. In there we can perform an extra computa-
tion after the handler is performed. In the case of the handler given this is necessary because
the return type of the handler is Int -> T for some return type T. The handler transforms a
computation in to a function expected the initial value for the mutable reference. Using the
finally case we can call this function and get back the return value of the computation (of

18

3.1. Effects, effect scopes and instances

type T). In the example we simply call the function f with the intial value v given to ref.

We can now understand the type of ref:

ref : forall s. Int -> (Inst s State)!{s}

We can see from the forall s. that ref is polymorphic over scopes. That means that this
function works for any scope s.

The type variable s here is an effect scope variable. An effect scope variable can be seen as
the name of a collection of instances that we call an effect scope. Such a scope can contain
zero ormore instances, where each instance can be of any effect. A scope restricts instances in
such a way that they cannot escape that scope and instances from one scope cannot be used
in another. This also means that we can never get a runtime error because of an unhandled
operation call.

In order to apply ref we have to give an explicit scope s using the syntax ref [s]. We call
this effect scope application. In the definition we show that this function has a scope parameter
using angle brackets [s]. We call this effect scope abstraction. The second parameter is a value
of type Int which we call v. This is the initial value that we want our mutable reference to
have. The return type is Inst s State. This is an effect instance of the State effect in the
scope s. From this type we can see that ref gives back an instance on the given scope s. The
effect annotation of ref is !{s}, which shows that we actually perform effects in the scope s.
We can see from the function implementation that the only effect we perform is the creation
of an instance on s.

Using ref we can fully emulate multiple mutable references. We have the added guarantee
that the references will not escape their effect scope, they will not escape their corresponding
runscope. Adding parametric polymorphism to the effects to give State t for any type twill
enable us to emulate references of any type. With references of different types coexisting.
This is very similar to how the ST monad works in Haskell (Launchbury and Peyton Jones
1994).

Looking at the type of creatingmutable references using the STmonad inHaskell (newSTRef),
we can see that the type of ref is very similar (we explicitly wrote down the quantification
and specialized newSTRef to Int):

ref : forall s. Int -> (Inst s State)!{s}
newSTRef :: forall s. Int -> ST s (STRef s Int)

Here ST s serves the same purpose as !{s} in our system. The type STRef s Int is the type of
a mutable reference in the ST monad in Haskell. The type variable s is some “state thread”,
the purpose if this type variable is to statically ensure that references do not escape their
scope. This is exactly like the s type variable in our system, but we generalize “state threads”
to effect scopes, where any algebraic effect may be performed.

We can also define functions wrapping the get and put operations:

performGet : forall s. Inst s State -> Int!{s}
performGet [s] inst = inst#get()

performPut : forall s. Inst s State -> Int -> ()!{s}
performPut [s] inst v = inst#put(v)

19

3. Introduction to Miro

Again we can compare to the corresponding functions in the STmonad in Haskell, readSTRef
and writeSTRef:

readSTRef :: forall s. STRef s Int -> ST s Int
writeSTRef :: forall s. STRef s Int -> Int -> ST s ()

We can see that the types are very similar.

3.1.3 Using effect instances
In Figure 3.1 the function postInc shows how an effect instance can actually be used:

postInc : forall s. Inst s State -> Int!{s}
postInc [s] inst =
x <- inst#get();
inst#put(x + 1);
return x

We can see from the type that this function is polymorphic over some effect scope s. It ex-
pects some scope s and some State instance on s as its arguments. It returns an integer value
and may perform some effects on s (Int!{s}. The type of postInc can be read as “For any
scope s, given a State instance in s, return a value of type Int possibly by calling operations
on instances in s”.

Effects can be used by calling operations. Operations are always called on an effect instance.
Without an instance we are unable to perform operations. In the case of postInc we get
an instance as an argument to the function. Operation can be called on an instance us-
ing the syntax instance#operation(argument) . We write instance#operation() to mean
instance#operation(()) , when the unit value () is given as the argument. The function
postInc implements the traditional “post increment” operation on a mutable reference. In
the C language this is written x++ for some reference x. We first call the get operation on
inst. We get back a value of type Int, which we name x. Then we call put on inst with the
argument (x + 1). Finally we return the previous value of the mutable reference x.

3.1.4 Running scopes
The definition result shows how the effects in a computation can be performed:

result : Int!{}
result =
runscope(s1 ->
r1 <- ref [s1] 10;
ret <- runscope(s2 ->
r2 <- ref [s2] 20;
x <- postInc [s2] r2;
r1#put(x);
return x);

y <- r1#get ();
return y) -- result is 20

From the type we can see that result is a computation that returns an integer value. We can
see from the effect annotation (!{}) that result does not have any unhandled effects. In the
future we will omit writing !{} if a computation does not have any unhandled effects.

20

3.2. Mutable vectors

The runscope(s' -> ...) construct provides a new scope, which we named s1 and s2 in
our case, which can be used in its body. Inside runscope we can create and use instances in
this new scope. The runscope will make sure that any instances that are created on its scope
will actually be created and that any operation calls on these instances will be handled.

In result we use two nested scopes. First we create a scope called s1. On this scope we
call ref to create a mutable reference r1 with 10 as its initial value. Then we create another
scope called s2. In s2 we create another mutable reference r2 with 20 as its initial value. We
then call postInc on r2 and store the return value in x (20). Then we call r1##put(x), setting
r1 to 20. We then return x as the return value of the s2 scope, storing this value in ret in the
s1 scope. At this point the s2 scope is gone and any effects in it will be handled. The type
system will make sure that no instances created in s2 can escape s2.

Note that we also used r1 inside s2. Since r1 belongs to s1, all the operations called on it
will not be handled inside s2 but these will be forwarded instead. This means that these oper-
ations will remain unhandled until s2 is done. Because of this forwarding behaviour we can
combine effects from multiple scopes, giving us fine-grained control over where effects may
happen.

Continuing in result we get the current value of r1 and return from s1. This value is 20
which was set in scope s2. After this the scope s1 is done and any effect in it will be handled.
This leaves us with a computation of type Int!{} with no remaining effects.

3.2 Mutable vectors

Figure 3.2: Mutable vectors

1 -- list of mutable references
2 data Vector s = VNil | VCons (Inst s State) Vector
3

4 -- get the length of a vector
5 vlength : forall s. Vector s -> Int
6 vlength VNil = 0
7 vlength (VCons _ tail) = 1 + (vlength tail)
8

9 -- get the value at the index given as the first argument
10 -- assumes the index is within range of the vector
11 vget : forall s. Int -> Vector s -> Int!{s}
12 vget [s] 0 (VCons h _) = h#get()
13 vget [s] n (VCons _ t) = vget [s] (n - 1) t
14

15 -- set the value at the index given as the first argument
16 -- to the value given as the second argument
17 -- assumes the index is within range of the vector
18 vset : forall s. Int -> Int -> Vector s -> ()!{s}
19 vset [s] 0 v (VCons h _) = h#put(v)
20 vset [s] n v (VCons _ t) = vset [s] (n - 1) v t

In the previous section we have defined mutable references using the ref function. We will

21

3. Introduction to Miro

now build on them to define mutable vectors. In Figure 3.2 we define the Vector datatype.
The type Vector is a list of State instances and is indexed by the scope of instances: s. We
define three functions on Vector: vlength, vget, and vset. With vlengthwe can get the length
of a vector. With vget we can retrieve a value from a vector by giving an index. We assume
the index is within the range of the vector. With vset we can set an element of a vector by
giving an index and a value. Again we assume the index is within the range of the vector.
In order to allow these functions to work for any vector we have to introduce an effect scope
variable s again. We define both functions by recursion on the index.

Figure 3.3: Vector shuffling

1 -- random number generation effect
2 -- the operation `rand` gives back a random integer
3 -- between 0..n, where n is the argument given (exclusive)
4 effect Rng {
5 rand : Int -> Int
6 }
7

8 -- shuffles a vector given an instance of Rng
9 -- by swapping two random elements of the vector

10 -- the second argument to shuffleVector is the amount of times
11 -- to swap elements
12 shuffleVector : forall s s'. Inst s' Rng -> Int
13 -> Vector s -> ()!{s, s'}
14 shuffleVector [s] [s'] _ 0 vec = vec
15 shuffleVector [s] [s'] rng n vec =
16 let len = vlength vec;
17 i <- rng#rand(len);
18 j <- rng#rand(len);
19 a <- vget [s] i vec;
20 b <- vget [s] j vec;
21 vset [s] i b vec;
22 vset [s] j a vec;
23 shuffleVector [s] [s'] rng (n - 1) vec

As an example application we will write a shuffling algorithm for vectors. This simple algo-
rithm will shuffle a vector by randomly swapping two random elements of the vector and
repeating this some amount of times. In Figure 3.3 we show the algorithm. First we define
an effect Rng in order to abstract out the generation of random numbers. The effect Rng has
a single operation rand which returns a random integer between 0 and n given an integer n.
We define a function vlength to get the length of the vector.

We then define the actually shuffling function shuffleVector. This function takes two scope
variables, s and s', for the vector and Rng instance respectively. As arguments we take an
instance of Rng, in order to generate random numbers, an integer, for the amount of times to
shuffle, and the vector we want to shuffle. By taking a seperate scope for the Rng instance we
are more flexible when handling the computation. We can handle the effects on the vector
while leaving the Rng effects to be handled higher up.

The function shuffleVector proceeds as follows. If the amount of times we want to shuf-

22

3.2. Mutable vectors

fle is 0 we stop and return the vector. If not then we first get the length of the vector. Then
we generate two random numbers, i and j, between 0 and this length. These two numbers
will be the two elements we will swap. We then get the current values at these indeces. And
we swap the values at these indeces in the vector. We then recurse, subtracting the amount
of times to shuffle by one.

Figure 3.4: List shuffling

1 -- (linked) list of integer values
2 data List = Nil | Cons Int List
3

4 -- transform a list to a vector by replacing each value
5 -- in the list by a reference initialized with that value
6 toVector : forall s. List -> (Vector s)!{s}
7 toVector [s] Nil = VNil
8 toVector [s] (Cons h t) =
9 h' <- ref [s] h;

10 t' <- toVector [s] t;
11 return (VCons h' t')
12

13 -- transform a vector back to a list by getting the
14 -- current values from the references in the vector
15 toList : forall s. Vector s -> List!{s}
16 toList [s] VNil = Nil
17 toList [s] (VCons h t) =
18 h' <- h#get();
19 t' <- toList [s] t;
20 return (Const h' t')
21

22 -- shuffles a list given an instance of Rng
23 -- by converting it to a vector
24 -- and shuffling 100 times
25 shuffle : forall s'. Inst s' Rng -> List -> List!{s'}
26 shuffle [s'] rng lst =
27 runscope(s ->
28 let vec = toVector [s] lst;
29 shuffleVector [s] [s'] rng (vlength vec) vec;
30 return (toList vec))

Using shuffleVectorwe can implement a function to shuffle a list in Figure 3.4. Wefirst define
the usual List datatype, with Nil and Cons cases. Thenwe define two functions toVector and
toList to convert between lists and vectors. The function toVector simply recurses on the list
and creates fresh mutable references for each element of the list, initialized with the value of
the element. The function toList converts a vector to a list by getting the current values of
each reference in the vector. The function shuffle implements the actual shuffling. It takes an
effect scope, a Rng instance rng in this scope and a list lst. We first convert the list to amutable
vector. Then we use shuffleVector to shuffle the vector n times (where n is the length of the
vector), passing rng for generating the random numbers. Finally we convert the vector back
to a list and return this result. We wrap this computation in runscope to handle the effects of
the mutable vector. The use of mutable vectors is not leaked outside of the function, from the

23

3. Introduction to Miro

type and behaviour of shuffleVector we are unable to find out if mutable vectors are used.
We say that the use of the State effect is completely encapsulated. The type system ensures
that runscope actually does encapsulate all effects in its scope. Note that we do not handle
the scope of rng, we leave the Rng to be handled higher up by the caller of shuffle.

Figure 3.5: Running list shuffling

1 runshuffle : List -> List
2 runshuffle lst =
3 runscope(s ->
4 seedref <- ref [s] 123456789;
5 rng <- new Rng@s {
6 rand n k ->
7 currentseed <- seedref#get();
8 let newseed = (1103515245 * currentseed + 12345) % n;
9 seedref#put(newseed);

10 k newseed
11 return x -> return x
12 finally x -> return x
13 };
14 shuffle [s] rng lst)

In Figure 3.5 we define the function runshuffle which can shuffle a list lst. We use a naive
implementation of random number generation using a linear congruential generator. Inside
of a new scope swe first create a mutable reference called seedref, which we set to a random
intial seed value. This reference will store the current state of the random number generator,
which we call the seed. We then create a fresh Rng instance called rng. We implement the
rand operation by first getting the current seed value from seedref. Then we calculate a new
seed value using arbitrarily chosen numbers, store this in seedref and call the continuation
with it. The return and finally cases do not do anything special. Finally we call shuffle with
our Rng instance and lst. In this example we can see how we can use other effects in the
handler of an instance. The Rng uses an instance of State to implement the rand operation.
Both of these effects exist and are handled in the same scope s. From the type of runshuffle
(List -> List) we can see that all the effects are encapsulated and that the function is pure.

In this chapter we have seen how to program with effect scopes. Like the regular algebraic
effects (Section 2.1) we can use and combine different effects simply by using their opera-
tions in a program. What is different is that handlers are given when creating instances. We
have seen that we can abstract over and instantiate effect scopes. Lastly we saw how effect
scopes enable use to implement mutable references and vectors while still being safe.

24

Chapter 4

Semantics and types of algebraic
effects and handlers

In this chapter we will give a theoretical basics for algebraic effects and handlers as intro-
duced in Chapter 2. We do this in order to ease the reader in to the theoretical calculus for
Miro (given in Chapter 5) which is based on the calculus for algebraic effects given in this
chapter. We will start with the simply-typed lambda calculus (Section 4.1) and then add
algebraic effects (Section 4.2) and static instances (Section 4.3) to it.

4.1 Simply-typed lambda calculus
As our base language we will take the fine-grained call-by-value simply-typed lambda cal-
culus (FG-STLC) (Levy, Power, and Thielecke 2003). This system is a version of the simply-
typed lambda calculus with a syntactic distinction between values and computations. Be-
cause of this distinction there is exactly one evaluation order: call-by-value. In a systemwith
side effects the evaluation order is very important since a different order could have a differ-
ent result. Having the evaluation order be apparent from the syntax is thus a good choice for
a system with algebraic effects. Another way to look at FG-STLC is to see it as a syntax for
the lambda calculus that constrains the program to always be in A-normal form (Flanagan
et al. 1993).
The terms are shown in Figure 4.1. The terms are split in to values and computations. Values
are pieces of data that have no effects, while computations are terms that may have effects.

Values We have x, y, z, k ranging over variables, where we will use k for variables that de-
note continuations later on. Lambda abstractions are denoted as λx.c, note that the body c of
the abstraction is restricted to be a computation as opposed to the ordinary lambda calculus
where the body can be any expression. To keep things simple we take unit () as our only base
value. Adding more base values will not complicate the theory. Using the unit value we can
also delay computations by wrapping them in an abstraction that takes a unit value.

Figure 4.1: Syntax of the fine-grained lambda calculus

ν ::= x, y, z, k | λx.c | ()

c ::= return ν | ν ν | x Ð c; c

25

4. Semantics and types of algebraic effects and handlers

Figure 4.2: Semantics of the fine-grained lambda calculus

S-App

(λx.c) ν ⇝ c[x := ν]

S-SeqReturn

(x Ð return ν; c)⇝ c[x := ν]

S-Seq
c1 ⇝ c1

1

(x Ð c1; c2)⇝ (x Ð c1
1; c2)

Figure 4.3: Types of the fine-grained simply-typed lambda calculus

τ ::= () | τ Ñ τ

τ ::= τ

Computations For any value ν we have return ν for the computation that simply returns a
value without performing any effects. We have function application (ν ν), where both the
function and argument have to be values. Sequencing computations is done with (x Ð c; c).
Normally in the lambda calculus the function and the argument in an application could be
any term and so a choice would have to be made in what order these have to be evaluated
or whether to evaluate the argument at all before substitution. In the fine-grained calculus
both the function and argument in (ν ν) are values so there is no choice of evaluation order.
The order is made explicit by the sequencing syntax (x Ð c; c).

Semantics The small-step operational semantics is shown in Figure 4.2. The relation⇝ is
defined on computations, where the c ⇝ c1 means c reduces to c1 in one step. These rules
are a fine-grained approach to the standard reduction rules of the simply-typed lambda cal-
culus. In S-App we apply a lambda abstraction to a value argument, by substituting the value
for the variable x in the body of the abstraction. In S-SeqReturn we sequence a computation
that just returns a value in another computation by substituting the value for the variable x
in the computation. Lastly, in S-Seq we can reduce a sequence of two computations, c1 and c2
by reducing the first, c1.

We define⇝˚ as the transitive-reflexive closure of⇝. Meaning that c in c⇝˚ c1 can reach c1

in zero or more steps, while c in c⇝ c1 reaches c1 in exactly on step.

Types Next we give the types in Figure 4.3. Similar to the terms we split the syntax into
value and computation types. Values are typed by value types and computations are typed
by computation types. A value type is either the unit type () or a function type with a value
type τ as argument type and a computation type τ as return type.

For the simply-typed lambda calculus a computation type is simply a value type, but when
we add algebraic effects computation types will become more meaningful by recording the
effects a computation may use.

26

4.1. Simply-typed lambda calculus

Figure 4.4: Typing rules of the fine-grained simply-typed lambda calculus

T-Var
Γ[x] = τ

Γ $ x : τ

T-Unit

Γ $ () : ()

T-Abs
Γ, x : τ1 $ c : τ2

Γ $ λx.c : τ1 Ñ τ2

T-Return
Γ $ ν : τ

Γ $ return ν : τ

T-App
Γ $ ν1 : τ1 Ñ τ2 Γ $ ν2 : τ1

Γ $ ν1 ν2 : τ2

T-Seq
Γ $ c1 : τ1 Γ, x : τ1 $ c2 : τ2

Γ $ (x Ð c1; c2) : τ2

Typing rules Finally we give the typing rules in Figure 4.4. We have a typing judgment for
values Γ $ ν : τ and a typing judgment for computations Γ $ c : τ . In both these judgments
the context Γ assigns value types to variables.

The rules for variables (T-Var), unit (T-Unit), abstractions (T-Abs) and applications (T-App) are
the standard typing rules of the simply-typed lambda calculus. For return ν (T-Return) we
simply check the type of ν. For the sequencing of two computations (x Ð c1; c2) (T-Seq) we
first check the type of c1 and then check c2 with the type of c1 added to the context for x.

Type safety In order to prove type safety for the previously defined calculus we first have
definewhat it means for a computation to be a value. We define a computation c to be a value
if c is of the form return ν for some value ν.

value(c) if Dν.c = return ν

Using this definition we can state the following type safety theorem for the fine-grained sim-
ply typed lambda calculus.

Theorem 1 (Type safety).

if (¨ $ c : τ) and (c⇝˚ c1) then value(c1) or (Dc2. c1 ⇝ c2)

This states that given a well-typed computation c and taking some amount of steps then the
resulting computation c1 will be of either a value or another step can be taken. In other words
the term will not get “stuck”. Note that this is only true if the computation c is typed in the
empty context. If the context is not empty then the computation could get stuck on free vari-
ables.

We can prove this theorem using the following lemmas:

Lemma 1 (Progress).
if (¨ $ c : τ) then value(c) or (Dc1. c⇝ c1)

Lemma 2 (Preservation).

if (Γ $ c : τ) and (c⇝ c1) then (Γ $ c1 : τ)

Where the Progress lemma states that given a well-typed computation c then either c is a
value or c can take a step. The Preservation lemma states that given a well-typed compu-
tation c and if c can take a step to c1, then c1 is also well-typed. We can prove both these
by induction on the typing derivations. Note again that the context has to be empty for the

27

4. Semantics and types of algebraic effects and handlers

Progress lemma, again because the computation could get stuck on free variables. For the
Preservation lemma the context can be anything however, since the operational semantics
will not introduce any new free variables that are not already in the context.

We formalized the fine-grained simply-typed lambda calculus and have proven the type
safety theorem in the Coq proof assistant. We briefly discuss the formalization in Section 4.4.

4.2 Algebraic effects
We now extend the previous calculus with algebraic effects and handlers. We assume there
is a set of effect names EffName withE Ď EffName, for exampleE = tFlip,State, ...u. For each
effect ϵ there assume there is a non-empty set of operations Oϵ. For example OFlip = tflipu

and OState = tget, putu.

Figure 4.5: Syntax of algebraic effects

ν ::= x, y, z, k | λx.c | ()

c ::= return ν | ν ν | x Ð c; c | op(ν) | handle(c)thu

h ::= op x k Ñ c; h | return x Ñ c

Syntax The syntax for the extended system is shown in Figure 4.5, additions are highlighted
with a gray background. Values stay the same. We add two forms of computations, oper-
ation calls op(ν) where op P Oϵ for some effect ϵ and we can handle computations using
handle(c)thu. Handlers h are lists of operation cases op x k Ñ c; h ending in the return case
return x Ñ c. We assume that operations are not repeated within a handler.

Semantics Wegive a small-step operational semantics in Figure 4.6. S-App, AlgEff-S-SeqReturn
and S-Seq are the same as in the fine-grained system and are left out of the figure. To be
able to handle a computation we first transform the computation to the form return ν or
(x Ð op(ν); c). S-Flatten and S-Op are used to get a computation to those forms. The last
four rules are used to handle a computation. S-HandleReturn handles a computation of the
form return ν by substituting ν in the body of the return case of the handler. S-HandleOp
and S-HandleOpSkip handle computations of the form (x Ð op(ν); c). If the operation op is
contained in the handler h then the rule S-HandleOp substitutes the value ν of the operation
call in the body of the matching operation case c1. We also substitute a continuation in c1,
which continues with the computation c wrapped by the same handler h. Because rewrap
the handler h in the continuation we implement what are called deep handlers. Another ap-
proach is to omit h from the continuation, which are called shallow handlers (Hillerström and
Lindley 2018). We chose to define deep handlers because shallow handlers require explicit
recursion to implement the example handlers we gave in Chapter 2. If the operation op is not
contained in the handler then we float out the operation call op(ν) and wrap the handler h
around the continuing computation c. Lastly, S-Handle is able to reduce a computation in
the handle computation.

Type syntax We now give a type system which ensures that a program reduced by the
given semantics will not get “stuck” meaning that the result will be a computation of the

28

4.2. Algebraic effects

Figure 4.6: Semantics of algebraic effects

S-Flatten

(x Ð (y Ð c1; c2); c3)⇝ (y Ð c1; (x Ð c2; c3))

S-Op

op(ν)⇝ (x Ð op(ν); return x)

S-HandleReturn

handle(return ν)th; return x Ñ cu⇝ c[x := ν]

S-HandleOp
op x k Ñ c1 P h

handle(y Ð op(ν); c)thu⇝ c1[x := ν, k := (λy.handle(c)thu)]

S-HandleOpSkip
op R h

handle(x Ð op(ν); c)thu⇝ (x Ð op(ν); handle(c)thu)

S-Handle
c⇝ c1

handle(c)thu⇝ handle(c1)thu

Figure 4.7: Types of algebraic effects

τ ::= () | τ Ñ τ

τ ::= τ ! r

r ::= tϵ1, ..., ϵnu

Figure 4.8: Subtyping rules of algebraic effects

Sub-Unit

() ă: ()

Sub-Arr
τ3 ă: τ1 τ2 ă: τ4

τ1 Ñ τ2 ă: τ3 Ñ τ4

Sub-Annot
τ1 ă: τ2 r1 Ď r2

τ1 ! r1 ă: τ2 ! r2

29

4. Semantics and types of algebraic effects and handlers

Figure 4.9: Typing rules of algebraic effects

T-Var
Γ[x] = τ

Γ $ x : τ ! ∅

T-Unit

Γ $ () : ()

T-Abs
Γ, x : τ1 $ c : τ2

Γ $ λx.c : τ1 Ñ τ2

T-SubVal
Γ $ ν : τ1 τ1 ă: τ2

Γ $ ν : τ2

T-Return
Γ $ ν : τ

Γ $ return ν : τ ! ∅

T-App
Γ $ ν1 : τ1 Ñ τ2 Γ $ ν2 : τ1

Γ $ ν1 ν2 : τ2

T-Seq
Γ $ c1 : τ1 ! r Γ, x : τ1 $ c2 : τ2 ! r

Γ $ (x Ð c1; c2) : τ2 ! r

T-Op
op ñ (ϵ, τ1op, τ

2
op) Γ $ ν : τ1op

Γ $ op(ν) : τ2op ! tϵu

T-Handle
Γ $ c : τ1 ! r1 op P h ô op P Oϵ Γ $τ1 h : τ2 ! r2

Γ $ handle(c)thu : τ2 ! ((r1ztϵu) Y r2)

T-SubComp
Γ $ c : τ1 τ1 ă: τ2

Γ $ c : τ2

T-HOp
Γ $τ1 h : τ2 ! r op ñ (ϵ, τ1op, τ

2
op) Γ, x : τ1op, k : τ2op Ñ τ2 ! r $ c : τ2 ! r

Γ $τ1 (op x k Ñ c; h) : τ2 ! r

T-HReturn
Γ, x : τ1 $ c : τ2 ! r

Γ $τ1 (return x Ñ c) : τ2 ! r

form return ν for some value ν. In Figure 4.7 we give the syntax of the types. Value types τ
are the same as in the fine-grained system. Computation types τ are now of the form τ ! r
for some value type τ . An annotation r Ď E is a set of effect names.

Subtyping It is always valid in the system to weaken a type by adding more effects to an
annotation. This is done using subtyping judgments τ ă: τ and τ ă: τ . In Figure 4.8 we
give the subtyping rules for the system. Subtyping proceeds structurally on the value and
computation types. In Sub-Arrwe compare function arguments contravariantly. To compare
two annotated types we compare the value types and then check that the annotation on the
left is a subset of the annotation on the right.

Typing rules Finally we give the typing rules in Figure 4.9. We have three judgements:
1. Γ $ ν : τ , which types the value ν with the value type τ
2. Γ $ c : τ , which types the computation c with the computation type τ
3. Γ $τ h : τ , which types the handler h with the computation type τ given some value

type τ
We can get the type of a variable from the context using Γ[x] = τ . For each operation op
we have a parameter type τ1op and a return type τ2op. We use the syntax op ñ (ϵ, τ1op, τ

2
op) to

retrieve the effect, parameter and return type given an operation op.

T-Var, T-Unit, T-Abs, T-App, and T-Seq are the same as in the fine-grained system. We can
weaken the type of values and computations using subtyping using the rules T-SubVal and
T-SubComp. For return computations return ν we type the value and annotate it with the

30

4.2. Algebraic effects

empty effect set using the rule T-Return. T-Op shows that for operation calls we first lookup
the operation in the context to find the effect, parameter and return types. We then check that
the argument of the operation call is of the same type as the paramter type of the operation.
Finally we type the operation call as an annotated type of the return type and a singleton
effect set of the effect of the operation.

For handling we use the rule T-Handle. First we typecheck the type of the computation
we are handling as having the computation type τ1 ! r1. Then we check that all operations
in the handler h are in the set of operations of some effect ϵ, this means that handlers always
have to contain exactly the operations of some effect. We then typecheck the handler h, giv-
ing it the type of the computation we are handling τ1 and getting the return type τ2 ! r2. The
return type of the handling computation is then τ2 annotated with the effects from the han-
dled computation minus the effect ϵ we handled together with the effects from the handler.

Finally the rules T-HOp and T-HReturn type the two cases of a handler. T-HReturn checks
that the computation c of the return case types as τ2 ! r after adding x to Γwith the given type
τ1. τ2 ! r is the return type of the handler. T-HOp first checks the rest of the handler. Then the
parameter and return types of the operation op are retrieved. Finally we add the parameter
x of the operation and the continuation k to Γ and check that the type of the computation c
agrees with the return type of the rest of the handler.

Type safety We can defined a type safety theorem very similar to the one for the simply-
typed lambda calculus.

Theorem 2 (Type safety).

if (¨ $ c : τ ! ∅) and (c⇝˚ c1) then value(c1) or (Dc2. c1 ⇝ c2)

The theorem states that if a computation c is typed in the empty context with an empty effect
annotation and we take some amount of steps, then the computation is value or we can take
another step. This theorem only works with the empty effect annotation, because if an ef-
fect is in the annotation then there may be an unhandled operation call and the computation
would not be able to proceed.

We can prove the type safety theorem using progress and preservation lemmas. We first
give the preservation lemma, which is exactly the same as the one from the simply-typed
lambda calculus.

Lemma 3 (Preservation).

if (Γ $ c : τ) and (c⇝ c1) then (Γ $ c1 : τ)

The progress lemma differs only in that the computation cannot have any effects. Again
because we could get stuck if any operation calls are unhandled.

Lemma 4 (Progress).

if (¨ $ c : τ ! ∅) then value(c) or (Dc1. c⇝ c1)

We need a more general version of the progress lemma in order to get a strong enough in-
duction hypothesis to be able to prove it. We define a computation c to be effectful if c has
unhandled operations. Formally we define this as follows:

effectful(c) ≜
(
Dop ν.c = op(ν)

)
or

(
Dx op ν c1.c = x Ð op(ν); c1

)
We can now give the generalized version of the progress lemma:

31

4. Semantics and types of algebraic effects and handlers

Lemma 5 (Progress effectful).

if (¨ $ c : τ ! r) then value(c) or effectful(c) or (Dc1. c⇝ c1)

This lemma generalizes τ ! ∅ to τ ! r in the Progress lemma above. This allows c to be typed
with any effect annotation, by adding the possibility that c has unhandled operations. We
need this generalization or else the induction hypothesis is too weak and we would get stuck
if we used any effects.

We formalized the algebraic effect and handler system and have proven the type safety the-
orem in the Coq proof assistant. We briefly discuss the formalization in Section 4.4.

4.3 Static instances
Finally we extend algebraic effects with static instances. Adding static instances brings the
system one step closer towards the calculus of Miro, as we will see in Chapter 5. We assume
there exists a set of instances I = tι1, ..., ιnu, where each instance belongs to a single effect ϵ,
written as E[ι] = ϵ.

Syntax The syntax of the system with algebraic effects and handlers is extended in Fig-
ure 4.10, changes and new additions are shown in gray. For values we add instances, these
are taking from the set of instances I . We also change the operation call and handle compu-
tations to take an extra value term, which is the instance they are operating on.

Figure 4.10: Syntax of algebraic effects with static instances

ν ::= x, y, z, k | λx.c | () | ι

c ::= return ν | ν ν | x Ð c; c | ν#op(ν) | handleν(c)thu

h ::= op x k Ñ c; h | return x Ñ c

Semantics The semantics for static instances are shown in Figure 4.11. The rules from alge-
braic effects that did not change are left out of this figure. The rules S-Op, S-HandleReturn
and S-Handle are, except for the change in syntax with the addition of the value term, identi-
cal to the corresponding rules in the previous system. For static instances the only important
change is in the S-HandleOp and S-HandleOpSkip rules. In S-HandleOp the instance in the
handle and the instance in the operation call have to be the same, besides this the rule is the
same as the corresponding rule in the previous system. If the instances do not match or if
the operation is not in the handler then the rule S-HandleOpSkip is used to lift the operation
call over the handler, also like in the previous system.

Type syntax The updated syntax for types is shown in Figure 4.12. We add instances types,
which are just instance names from the set I . The effect annotation on the computation types
are now sets of instance names instead effect names.

Subtyping For subtyping we keep the rules from the previous system but we add a rule
for the instance types (Figure 4.13).

32

4.3. Static instances

Figure 4.11: Semantics of algebraic effects with static instances

S-Op

ν1#op(ν2)⇝ (x Ð ν1#op(ν2); return x)

S-HandleReturn

handleν1(return ν2)th; return x Ñ cu⇝ c[x := ν2]

S-HandleOp
op x k Ñ c1 P h

handleι(y Ð ι#op(ν); c)thu⇝ c1[x := ν, k := (λy.handleι(c)thu)]

S-HandleOpSkip
op R h ι1 ‰ ι2

handleι1(x Ð ι2#op(ν); c)thu⇝ (x Ð ι2#op(ν); handleι1(c)thu)

S-Handle
c⇝ c1

handleν(c)thu⇝ handleν(c1)thu

Figure 4.12: Types of algebraic effects with static instances

τ ::= () | inst(ι) | τ Ñ τ

τ ::= τ ! r

r ::= tι1, ..., ιnu

Figure 4.13: Subtyping rules of algebraic effects with static instances

Sub-Inst

inst(ι) ă: inst(ι)

33

4. Semantics and types of algebraic effects and handlers

Figure 4.14: Typing rules of algebraic effects with static instances

T-Inst

Γ $ ι : inst(ι)

T-Op
Γ $ ν1 : inst(ι)

E[ι] = ϵ Γ[op] = (ϵ, τ1op, τ
2
op) Γ $ ν2 : τ

1
op

Γ $ ν1#op(ν2) : τ2op ! tιu

T-Handle
Γ $ ν : inst(ι)

E[ι] = ϵ Γ $ c : τ1 ! r1 op P h ô op P Oϵ Γ $τ1 h : τ2 ! r2

Γ $ handleν(c)thu : τ2 ! ((r1ztιu) Y r2)

Typing rules The typing rules from the previous system mostly stay the same except for
the rules T-OP and T-Handle, they are showin in Figure 4.14. We also had a rule to type
instances (T-Inst), this rule simply types an instance as a instance type with the same name.
For both T-OP and T-Handle we just have to check that the added value term is an instance
and that the effect of that instance matches the operations.

Type safety We give a type safety theorem for the system with static instances.

Theorem 3 (Type safety).

if (¨ $ c : τ ! ∅) and (c⇝˚ c1) then value(c1) or (Dc2. c1 ⇝ c2)

This theorem is exactly the same as the one for algebraic effects in Section 4.2. We can reuse
the notion of a computation being a value value without any modifications.

Again we use progress and preservation lemmas to prove the type safety theorem. These
lemmas are exactly the same as the ones in Section 4.2. We only need to slightly update our
effectful notion, because operation calls are now called on instances.

effectful(c) ≜
(
Dι op ν.c = ι#op(ν)

)
or

(
Dι x op ν c1.c = x Ð ι#op(ν); c1

)
We formalized the system with static instances and have proven the type safety theorem in
Coq. We will now discuss the formalizations of the different systems.

4.4 Formalization
We have formalized and proven type safety for all the three systems discussed in this chapter
in Coq1. We used DeBruijn indices to deal with naming and substitution. We also restrict
effects to only have one operation, modeled as a natural number. Handlers can only han-
dle a single operation. The system formalized slightly differs in that we follow the syntax
from Bauer and Pretnar (Bauer and Pretnar 2014). Operation calls are of the form op(ν, x.c),
carrying around a continuation. Also handlers are first-class values of type τ ñ τ . These
changes make the proofs easier. Having continations inside operation calls means we can
move operation calls over sequencing, so the effectful predicate only has one form:

effectful(c) ≜ Dop ν c1.c = op(ν, x.c1)

Adding static instances did not result in much added complexity.
1https://github.com/atennapel/dynamicinstances

34

Chapter 5

Semantics and types of Miro

In this chapter we give a formal account of Miro. We give the syntax, typing rules and a
small-step operation semantics. We end the chapter with a discussion on the difficulties of
proving type safety for Miro. The system builds on the formal system with algebraic effects,
handlers and static instances of Section 4.3. We add constructs to handle effect scope poly-
morphism, to create new instances, and to handle effect scopes, as informally described in
Chapter 3.

In Section 5.1 we give the syntax of the terms and types of Miro. In Section 5.2 we give
the environments and judgments used in the typing rules and semantics. In Section 5.3 we
give subtyping rules for the types. In Section 5.4 we give well-formedness rules for the types.
In Section 5.5 we give the typing rules. In Section 5.6 we give a small-step operation seman-
tics for Miro. Finally in Section 5.7 we discuss the problems we encountered when trying to
prove type safety.

5.1 Syntax
Just like in the formal systems of algebraic effects of Section 4.2 and Section 4.3 we assume
there is set of effect names EffName withE Ď EffName. For exampleE = tFlip,State,Exc, ...u.
There is also a set of operation names O. Each effect ε P E has a non-empty set of operation
names Oε P O. For example OFlip = tflipu and OState = tget, putu. Every operation name
only corresponds to a single effect. Each operation op has a parameter type τ1op and a return
type τ2op.

In Figure 5.1 we show the syntax of the types and terms ofMiro. We introduce some interme-
diate forms which are introduced by the semantics but do not appear in the source language.
We color these forms with a gray background.

An effect scope s is either a scope variable svar or a scope location sloc. Effect scope vari-
ables svar and effects scope locations sloc are both modeled by countable infinite sets.

Like in the systems in Chapter 4 terms and types are both split between values and com-
putations, and value types and computation types. Values are typed by value types and
computations are typed by computation types.

Value types τ are either an instance type Inst s ε, indexed by an effect scope s and an ef-
fect ε; or a function type τ Ñ τ where the parameter type is a value type and the return
type is a computation type; or a universally quantified computation type @svar.τ , where the

35

5. Semantics and types of Miro

Figure 5.1: Syntax

s ::= svar | sloc

τ ::= Inst s ε | τ Ñ τ | @svar.τ

τ ::= τ ! r

ν ::= x, y, z, k | inst(l) | λx.c | Λsvar.c

c ::= return ν | ν ν | x Ð c; c | ν#op(ν) | ν [s]

| new ε@s th; finally x Ñ cu as x in c

| runscope(svar Ñ c)

| runscopesloc(c)

| runinstlsloc,εthu(c)

h ::= op x k Ñ c;h | return x Ñ c

domain of quantification are effect scopes.

A computation type τ is always an annotated value type of the form τ ! r. Annotations r
are sets of effect scopes ts1, ..., snu.

Values are either variables x, k, where we always use k do denote variables that refer to
continuations; or instances inst(l), indexed by some instance location l, which are modeled
by some countable infinite set. Instances would not appear in the surface language, but are
introduced by the semantics. Values can also be lambda abstractions λx.c, where the body
is a computation; or effect scope abstractions Λsvar.c, where we abstract over a computation
c, with the domain of the quantification being effect scopes.

As usual, for computations we have return ν, to lift a value ν in to a computation. We have
application ν ν and sequencing x Ð c; c. We have operation calls ν#op(ν). The new con-
structs are as follows. We have effect scope application ν [s]. We can create new instances
with new ε@s th; finally x Ñ cu as x in c, where h is a handler. We can handle compu-
tations with runscope(svar Ñ c). Finally we have two more intermediate constructs which
would not appear in the surface language, but are introduced by the semantics. Effect scope
handlers runscopesloc(c) handle a specific scope sloc in the computation c. Instance handlers
runinstlsloc,εthu(c) handle the operations of a single instance of the location l in the computa-
tion c, we also keep track of the associated scope location sloc and effect ε. We will discuss
these in Section 5.6.

Finally we have handlers h which are lists of operation cases ending with a return case. Op-
eration cases are of the form op x k Ñ c;h, where h is the rest of the handler. Return cases
are of the form return x Ñ c.

5.2 Environments and judgments
We will now give the environment and judgments used in the typing rules and semantics.

Environments The syntax for the environments is shown in Figure 5.2.

36

5.3. Subtyping

Figure 5.2: Environments

Γ ::= ¨ | Γ, x : τ

∆ ::= ¨ | ∆, svar | ∆, sloc | ∆, l := (sloc, ε)

σ ::= ¨ | σ, sloc | σ, l

• Γ is the typing enviroment, which assigns variables x to value types τ .
• ∆ is the static environment, which keeps track of the scope variables svar, scope locations

sloc, and instance locations l that are in use. For instance locations we also keep track
of the associated scope location sloc and effect ε. Because instance locations depend on
scope locations we introduce a well-formedness judgment for ∆ in Section 5.4;

• σ is the dynamic environment, which keeps track of scope location sloc and instance lo-
cations l. The dynamic environment is used to generate fresh scope and instance loca-
tions. This environment is only used by the semantics.

Judgments There are four kinds of judgments: subtyping (Section 5.3), well-formedness
(Section 5.4) and typing judgments (Section 5.5).

The subtyping judgments are used to weaken the effect annotation of a computation type.
Weakening the effect annotation is sometimes necessary in order to type a program. For ex-
ample when typing the sequencing of two computations x Ð c1; c2, if the two computations
do not agree on the effects then subtyping can be used toweaken both the computations such
that the effect annotations agree. There is a subtyping judgment for both the value types τ
and the computation types τ these mutually depend on one another:

• τ ă: τ 1 holds when the value type τ is a subtype of τ 1.
• τ ă: τ 1 holds when the computation type τ is a subtype of τ 1.

We have a well-formedness judgments for the static environment∆, scopes s, and value and
computation types τ and τ . The well-formedness judgments have the following forms:

• $ ∆ asserts that all instance locations in ∆ refer to valid scope locations and that all
scope variables and scope and instance locations are unique.

• ∆ $ s asserts that the scope s exists in ∆.
• ∆ $ τ asserts that all the scopes in the value type τ are valid under ∆.
• ∆ $ τ asserts that all the scopes in the computation type τ are valid under ∆.

Lastly, there are three typing judgments:
• ∆;Γ $ ν : τ asserts that the value ν has the value type τ under the ∆ and Γ environ-

ments.
• ∆;Γ $ c : τ asserts that the computation c has the computation type τ under the∆ and

Γ environments.
• ∆;Γ $τ h : τ asserts that the handler h transform a return value of type τ to the

computation type τ .

5.3 Subtyping
In Figure 5.3 we give the subtyping rules for both the value and the computation types. The
subtyping checks that that the effectsmentioned in the type on the right are the same ormore

37

5. Semantics and types of Miro

Figure 5.3: Subtyping

Sub-Inst

Inst s ε ă: Inst s ε

Sub-Arr
τ2 ă: τ1 τ1 ă: τ2

τ1 Ñ τ1 ă: τ2 Ñ τ2

Sub-Forall
τ1 ă: τ2

@svar.τ1 ă: @svar.τ2

Sub-Annot
τ1 ă: τ2 r1 Ď r2

τ1 ! r1 ă: τ2 ! r2

general than the type on the left. An instance type Inst s ε is a subtype of another instance
type if they are structurally equal, shown in the rule Sub-Inst. Function types τ Ñ τ are
compared by subtyping the parameter types contravariantly and subtyping the return types
covariantly, shown in the rule Sub-Arr. Universally quantified types @svar.τ are structurally
recursed upon, given they the quantified variables are equal (Sub-Forall). Lastly, annotated
types τ ! r are compared by comparing the value types and checking that the annotation on
the left type is a subtype of the annotation on the right type (Sub-Annot).

5.4 Well-formedness

Figure 5.4: Well-formedness for ∆

WFS-Empty

$ ¨

WFS-ScopeVar
$ ∆ svar R ∆

$ ∆, svar

WFS-ScopeLoc
$ ∆ sloc R ∆

$ ∆, sloc

WFS-InstanceLoc
$ ∆ l R ∆ sloc P ∆

$ ∆, l := (sloc, ε)

Figure 5.5: Well-formedness for scopes and types

WF-SVar
$ ∆ svar P ∆

∆ $ svar

WF-SLoc
$ ∆ sloc P ∆

∆ $ sloc

WF-Inst
∆ $ s

∆ $ Inst s ε

WF-Arr
∆ $ τ ∆ $ τ

∆ $ τ Ñ τ

WF-Forall
∆, svar $ τ

∆ $ @svar.τ

WF-Annot
∆ $ τ @(s P r) ñ ∆ $ s

∆ $ τ ! r

In Figure 5.4 we give the well-formedness rules for the static environment ∆. If ∆ is empty
then it is well-formed (WFS-Empty). For scope locations sloc we check that the rest of ∆ is
well-formed and that sloc does not occur in it, meaning that sloc is unique (WFS-ScopeLoc).

38

5.5. Typing rules

For instance locations l we also check that the rest of ∆ is well-formed and that l is unique.
Lastly, we check that the scope location sloc used by l is defined in ∆.

In Figure 5.5 we give the well-formedness rules for the value and computation types. Well-
formedness asserts that the effect scopes in the type are accounted for in ∆. The rules WF-
SVar and WF-SLoc assert that the effect scope variables svar and locations sloc are valid by
checking that they are contained in the static environment ∆. For instance types we check
that the mentioned effect scope is valid (WF-Inst). For function types τ Ñ τ we check that
both the parameter and return type is valid. For universally quantified types @svar.τ we
check that the computation type τ is valid, after adding the variable svar to the environment.
Lastly, for annotated types τ ! r we first check that that the value type τ is valid. Then we
check that each effect scope in the annotation r is valid.

5.5 Typing rules
The typing rules for values, computations and handlers are given in Figure 5.6, Figure 5.7
and Figure 5.8, respectively. We call the typing rules for the intermediate forms (as given in
Section 5.1) the dynamic typing rules. As we will discuss in Section 5.7 these typing rules are
likely incomplete or incorrect. We color the dynamic typing rules with a gray background.

Figure 5.6: Value typing rules

T-Var
$ ∆ Γ[x] = τ

∆;Γ $ x : τ

T-Inst
$ ∆ ∆[l] = (sloc, ε)

∆; Γ $ inst(l) : Inst sloc ε

T-Abs
∆;Γ, x : τ $ c : τ

∆;Γ $ λx.c : τ Ñ τ

T-SAbs
∆, svar; Γ $ c : τ

∆;Γ $ Λsvar.c : @svar.τ

T-SubVal
∆;Γ $ ν : τ1 ∆ $ τ2 τ1 ă: τ2

∆;Γ $ ν : τ2

The typing rules for the values are given in Figure 5.6. The rules T-Var, T-Abs and T-SubVal
are practically unchanged from the corresponding rules in the algebraic effects type system
from Section 4.2. Instances inst(l) are assigned instance types, with the scope location and
effect looked up in the static environment ∆ using the location l (T-Inst). Similar to abstrac-
tions, effect scope abstractions are assigned a universally quantified type @svar.τ , by typing
the body with τ after adding svar to ∆ (T-TAbs).

The typing rules for the computations are given in Figure 5.7. The rules T-Return, T-App,
T-Seq and T-SubComp are practically unchanged from the corresponding rules in the alge-
braic effects type system from Section 4.2.

The rule for effect scope application (T-TApp) asserts that, in the application ν [s], the scope
s is well-formed. Then we check that ν is a universally quantified type @s1.τ . Finally we sub-
stitute the given scope s for the quantified variable s1 in τ .

39

5. Semantics and types of Miro

For operation calls (T-Op) ν1#op(ν2) we first check that the type of ν1 is an instance type
Inst s ε. We then check that the operation op is an operation of the effect of the instance ε
(op P Oε). Lastly, we check that the given value ν2 matches the parameter type of the opera-
tion op (τ1op). The type given to the operation call is the return type of the operation τ2op with
the scope of the instance, s, in the annotation.

Figure 5.7: Computation typing rules

T-Return
∆;Γ $ ν : τ

∆;Γ $ return ν : τ ! ∅

T-App
∆;Γ $ ν1 : τ Ñ τ ∆;Γ $ ν2 : τ

∆;Γ $ ν1 ν2 : τ

T-SApp
∆ $ s ∆;Γ $ ν : @s1

var.τ

∆;Γ $ ν [s] : τ [s1
var := s]

T-Seq
∆;Γ $ c1 : τ1 ! r ∆;Γ, x : τ1 $ c2 : τ2 ! r

∆;Γ $ (x Ð c1; c2) : τ2 ! r

T-Op
∆;Γ $ ν1 : Inst s ε op P Oε ∆;Γ $ ν2 : τ

1
op

∆;Γ $ ν1#op(ν2) : τ2op ! tsu

T-New
∆ $ s op P Oε ðñ op P h ∆;Γ, x : Inst s ε $ c : τ1 ! r

∆;Γ $τ1 h : τ2 ! r s P r ∆;Γ, y : τ2 $ c1 : τ1 ! r

∆;Γ $ new ε@s th; finally y Ñ c1u as x in c : τ1 ! r

T-Runscope
∆, svar; Γ $ c : τ ! r svar R τ

∆;Γ $ runscope(svar Ñ c) : τ ! (rztsvaru)

T-RunscopeLoc
sloc R ∆ ∆, sloc; Γ $ c : τ ! r sloc R τ

∆;Γ $ runscopesloc(c) : τ ! (rztslocu)

T-Runinst
l R ∆ ∆ $ sloc ∆, l := (sloc, ε); Γ $ c : τ1 ! r

op P Oε ðñ op P h ∆;Γ $τ1 h : τ2 ! r

∆;Γ $ runinstlsloc,εthu(c) : τ2 ! r

T-SubComp
∆;Γ $ c : τ1 ∆ $ τ2 τ1 ă: τ2

∆;Γ $ c : τ2

The rule T-New types the creation of new instance: new ε@s th; finally y Ñ c1u as x in c. We
are creating a new instance x of effect ε in the effect scope s. First we check that the given
effect scope s is valid. Then we check that the operations in the handler h are exactly the

40

5.5. Typing rules

operations of the effect of the new instance ε. This means it is not valid to either omit opera-
tions or to have operations of other effects in the handler. This way we can ensure that every
operation is accounted for. We then typecheck the computation c with the new instance
added the to the environment Γ as x, with the type τ1 ! r. Then we typecheck the handler
h, passing the type τ1 of c to the handler typing judgement. The handler can transform the
return type τ1 to another type τ2, but note that the effects annotation r has to be the same.
We check that the scope s is contained in r. The reason for this is because the creation of
an instance in s is also an effect and so we have to account for this effect in the annotation
by adding s to r. Lastly, we check the finally case. We add τ2 to the environment as y and
typecheck the computation c1 as τ1 ! r. Note that the finally case is not allowed to return a
different type than the computation c. Finally the type of the whole instance creation is τ1 ! r.

The rule T-Handle types handling computations: runscope(svar Ñ c). We typecheck the
body c with the effect scope variable svar added to the scope environment. Then we check
that the effects do not escape their scope by checking that that svar is not contained in the
return type τ . We then type the whole computation as τ ! (rztsvaru). Knowing that svar does
not escape we can safely remove it from the effect annotation.

The rule T-HandleScope deals with the handling of a specific scope sloc and is very simi-
lar to the previous rule T-Handle. Instead of the effect scope variable svar we now deal with
an effect scope location sloc. We first check that sloc is not contained in ∆, if this is the case
then we would have duplicate scope locations. We then proceed like in T-Handle, checking
that sloc does not escape.

The rule T-HandleInst typechecks the handling of an instance at location l using a handler
h. First we check that l is unique by checking it is not contained in ∆. Then we check that
the scope location sloc is well-formed under ∆. We check that the operations in the handler
match the operations of the effect. We then typecheck the computation c and the handler h
like in T-New, after adding l to ∆ with the associated scope location sloc and effect ε.

Figure 5.8: Handler typing rules

T-HandlerOp
∆;Γ $τ1 h : τ2 ! r ∆;Γ, x : τ1op, k : τ2op Ñ τ2 ! r $ c : τ2 ! r

∆;Γ $τ1 (op x k Ñ c;h) : τ2 ! r

T-HandlerReturn
∆;Γ, x : τ1 $ c : τ2 ! r

∆;Γ $τ1 (return x Ñ c) : τ2 ! r

Finally we discuss the typing rules for the handlers, given in Figure 5.8. T-HandlerReturn
types the return case of a handler. We typecheck the body c after adding the variable x with
type τ1 to the environment. The type τ1 is passed with the handler typing judgement in
the typing rules T-New and T-HandleInst. It is the return type of the computation we are
handling. The computation c can transform this type to another type τ2 with some effect
annotation r, which is the return type of the return case.

The rule T-HandlerOp shows the typing of an operation case. We first typecheck the rest
of handler h, passing along the return type τ1 of the computation we are handling. We type-
check the rest of the handler as τ2 ! r, this is the return type of the whole handler. Then we

41

5. Semantics and types of Miro

typecheck the body of the operation case c. We add the operation call argument x with the
parameter type τ1op of the operation to the environment. We also add the continuation k to
the environment. This is a function from the return type τ2op of the operation, to the return
type of the whole handler τ2 ! r. We check that the body of the case c returns a computation
of the same type.

5.6 Semantics

Finally we give a small-step operational semantics for Miro

The judgment c1 ⇝
σ

c2 takes a step from the computation c1 to c2 in the dynamic environment
σ. The environment σ is used as a stack of in-scope scope locations and instance locations,
and is also used to generate fresh locations. σ will always be monotically extended by⇝.

Figure 5.9: Semantics

S-App

(λx.c) ν ⇝
σ

c[x := ν]

S-SApp

(Λsvar.c) [s
1]⇝

σ
c[svar := s1]

S-Seq
c1 ⇝

σ
c1
1

(x Ð c1; c2)⇝
σ

(x Ð c1
1; c2)

S-SeqReturn

(x Ð (return ν); c)⇝
σ

c[x := ν]

S-Flatten

(y Ð (x Ð c1; c2); c3 ⇝
σ

(x Ð c1; y Ð c2; c3)

S-LiftNew

(x Ð (new ε@s th; finally z Ñ c3u as y in c1); c2)⇝
σ

new ε@s th; finally z Ñ c3u as y in (x Ð c1; c2)

S-Runscope
sloc R σ sloc R c

runscope(svar Ñ c)⇝
σ

runscopesloc(c[svar := sloc])

In Figure 5.9 we give the semantics for every construct except the effect scope and instance
handlers. The rules S-App, S-Seq, S-SeqReturn and S-Flatten are the same as the correspond-
ing rules in the algebraic effects system of Section 4.2. The rule S-TApp handles an effect scope
application similarly to a normal application, by substituting the effect scope s1 for the scope
variable svar of the scope abstraction. S-LiftNew lifts the creation of an instance out and over
sequencing. By repeatedly applying this rule we can bubble up the instance creation until we
hit an effect scope handler. The rule S-Runscope creates a fresh scope location with which to
handle instances. A fresh scope location sloc is created, we aseert that sloc is fresh by checking
it is not contained in σ or c. This new scope location is substituted in the body c for svar. We
then transform runscope(svar Ñ ...) to the intermediate form runscopesloc(...), which is tagged
with the scope location sloc which it will handle.

42

5.6. Semantics

Figure 5.10: Semantics of effect scope handlers

S-RunscopeCong
c ⇝
σ,sloc

c1

runscopesloc(c)⇝
σ

runscopesloc(c1)

S-RunscopeReturn

runscopesloc(return ν)⇝
σ

return ν

S-RunscopeOp

runscopesloc(ν1#op(ν2))⇝
σ

ν1#op(ν2)

S-RunscopeSeqOp

runscopesloc(x Ð ν1#op(ν2); c)⇝
σ

(x Ð ν1#op(ν2); runscopesloc(c))

S-RunscopeNewSkip
sloc ‰ s1

loc

runscopesloc(new ε@s1
loc th; finally y Ñ c1u as x in c)⇝

σ

new ε@s1
loc th; finally y Ñ c1u as x in runscopesloc(c)

S-RunscopeNew
l R σ l R c l R c1

runscopesloc(new ε@sloc th; finally y Ñ c1u as x in c)⇝
σ

runscopesloc(y Ð runinstlsloc,εthu(c[x := inst(l)]); c1)

In Figure 5.10 we give the semantics for the effect scope handlers. An effect scope handler
for a specific effect scope location will create fresh instances when a new construct is en-
countered (S-RunscopeNew). An instance handler with the handler of the new construct is
wrapped around the computation and the finally case is wrapped around that. The newly
created location l is asserted to be fresh by checking that it is not contained in σ, c and c1. If a
new is encountered with a different effect scope we skip it and nest the scope handler inside
(T-RunscopeNewSkip). Using the rule S-RunscopeCong we can reduce a computation inside
a scope handler. We add the scope location sloc to σ to ensure newly created scope location
are different from sloc. We can remove a scope handler if we encounter either a return or
operation call (S-RunscopeReturn and S-RunscopeOp). Effect scope handlers can be pushed
inside sequencing, lifting an operation call over it (S-RunscopeSeqOp).

Lastly, in Figure 5.11 we give the semantics for the instance handlers. Instance handlers
handle operation calls on instances with the same location as the handler. To be able to han-
dle operation calls with one rule we first have to transform operation calls that are not being
sequenced to the sequencing form (S-RuninstOpPrepare). When an operation call is encoun-
tered on an instance with the same location as the instance handler, the operation is handled
(S-RuninstOp). The operation is looked up in the handler h and the computation cop in the
operation case is performed. If a return is encountered the computation cr in the return case
is performed (S-HandleInstReturn). Operation calls on instances with a different location
l1 are skipped, nesting the instance handler inside (S-RuninstOpSkip). Similarly new calls are
also skipped, again nesting the instance handler inside (S-RuninstNew). Lastly, computa-
tions inside instance handlers can be reduced further (S-RuninstCong). Similarly to scope
locations, we add the instance location l to σ in order to ensure newly created locations are
different from l.

43

5. Semantics and types of Miro

Figure 5.11: Semantics of instance handlers

S-RuninstCong
c⇝

σ,l
c1

runinstlsloc,εthu(c)⇝
σ

runinstlsloc,εthu(c1)

S-RuninstNew

runinstlsloc,εthu(new ε@s th1; finally y Ñ c1u as x in c)⇝
σ

new ε@s th1; finally y Ñ c1u as x in runinstlsloc,εthu(c)

S-RuninstOpPrepare

runinstlsloc,εthu(ν1#op(ν2))⇝
σ

runinstlsloc,εthu(x Ð ν1#op(ν2); return x)

S-RuninstOpSkip
l ‰ l1

runinstlsloc,εthu(x Ð inst(l1)#op(ν); c)⇝
σ

(x Ð inst(l1)#op(ν); runinstlsloc,εthu(c))

S-RuninstOp
h[op] = (x, k, cop)

runinstlsloc,εthu(y Ð inst(l)#op(ν); c)⇝
σ

cop[x := ν, k := (λy.runinstlsloc,εthu(c))]

S-RuninstReturn

runinstlsloc,εth; return xr Ñ cru(return ν)⇝
σ

cr[xr := ν]

Example semantics derivation We now give an example derivation of a small program
creating and manipulating a single State instance. The program creates a new State on the
scope s called r, retrieves the current value, adds 1 and returns the new value. The instance is
handled using the standard State handler, which we call h. We give the used semantics rules
on the right for every step. When multiple rules are given we mean a nesting of rules. For
example (S-RunscopeCong, S-SeqReturn) means we use S-SeqReturn on the computation
inside of runscopesloc(c).

h =

get x k Ñ return (λst.f Ð k st; f st);

put x k Ñ return (λst.f Ð k (); f x);

return x Ñ return (λst.return x)

runscope(s Ñ new State@s th; finally f Ñ f 0u as r in
x Ð r#get(); _ Ð r#put(x+ 1); r#get())

44

5.6. Semantics

runscope(s Ñ new State@s th; finally f Ñ f 0u as r in
x Ð r#get(); _ Ð r#put(x+ 1); r#get())

⇝ (S-Runscope)

runscopes(new State@s th; finally f Ñ f 0u as r in
x Ð r#get(); _ Ð r#put(x+ 1); r#get())

⇝ (S-RunscopeNew)

runscopes(f Ð runinstls,Statethu(

x Ð inst(l)#get(); _ Ð inst(l)#put(x+ 1); inst(l)#get()); f 0)

⇝ (S-RunscopeCong, S-Seq, S-RuninstOp)

runscopes(f Ð return (λst.f Ð (λx.runinstls,Statethu(

_ Ð inst(l)#put(x+ 1); inst(l)#get())) st; f st); f0)

⇝ (S-RunscopeCong, S-SeqReturn)

runscopes((λst.f Ð (λx.runinstls,Statethu(

_ Ð inst(l)#put(x+ 1); inst(l)#get())) st; f st) 0)

⇝ (S-RunscopeCong, S-App)

runscopes(f Ð (λx.runinstls,Statethu(

_ Ð inst(l)#put(x+ 1); inst(l)#get())) 0; f 0)

⇝ (S-RunscopeCong, S-Seq, S-App)

runscopes(f Ð runinstls,Statethu(

_ Ð inst(l)#put(0 + 1); inst(l)#get()); f 0)

⇝ (S-RunscopeCong, S-Seq, S-RuninstOp)

runscopes(f Ð (return (λst.f Ð (λ_.runinstls,Statethu(

inst(l)#get())) (); f (0 + 1))); f 0)

⇝ (S-RunscopeCong, S-SeqReturn)

runscopes((λst.f Ð (λ_.runinstls,Statethu(inst(l)#get())) (); f (0 + 1)) 0)

⇝ (S-RunscopeCong, S-App)

runscopes(f Ð (λ_.runinstls,Statethu(inst(l)#get())) (); f (0 + 1))

⇝ (S-RunscopeCong, S-Seq, S-App)

runscopes(f Ð runinstls,Statethu(inst(l)#get()); f (0 + 1))

⇝ (S-RunscopeCong, S-Seq, S-RuninstOpPrepare)

runscopes(f Ð runinstls,Statethu(x Ð inst(l)#get(); return x); f (0 + 1))

⇝ (S-RunscopeCong, S-Seq, S-RuninstOp)

runscopes(f Ð (return (λst.f Ð (λx.runinstls,Statethu(return x)) st; f st)); f (0 + 1))

⇝ (S-RunscopeCong, S-SeqReturn)

runscopes((λst.f Ð (λx.runinstls,Statethu(return x)) st; f st) (0 + 1))

45

5. Semantics and types of Miro

⇝ (S-RunscopeCong, S-App)

runscopes(f Ð (λx.runinstls,Statethu(return x)) (0 + 1); f (0 + 1))

⇝ (S-RunscopeCong, S-Seq, S-App)

runscopes(f Ð runinstls,Statethu(return (0 + 1)); f (0 + 1))

⇝ (S-RunscopeCong, S-Seq, S-RuninstReturn)

runscopes(f Ð return (λst.return (0 + 1)); f (0 + 1))

⇝ (S-RunscopeCong, S-SeqReturn)

runscopes((λst.return (0 + 1)) (0 + 1))

⇝ (S-RunscopeCong, S-App)

runscopes(return (0 + 1))

⇝ (S-RunscopeCong, S-RunscopeReturn)

return (0 + 1)

One thing to notice from this derivation is that runscopesloc(...) remains wrapped around at
the top until all operation calls on its scope are handled. Similarly runinstls,Statethu(...) always
remains wrapped around the part of the program that has operation calls on l.

5.7 The problem with type safety
Because our initial goal was to give a type safe language with algebraic effects and dynamic
instances, it is important to formally proof type safety, in order to gain absolute certainty that
our system is actually type safe. Like in Section 4.2 we can give a Type safety theorem and a
Preservation lemma:

Theorem 4 (Type safety).

if (¨; ¨ $ c : τ ! ∅) and (c ⇝̈˚ c1) then value(c1) or (Dc2. c1 ⇝̈ c2)

Lemma 6 (Preservation).

if (∆; Γ $ c : τ) and (c ⇝̈ c1) then (∆; Γ $ c1 : τ)

However because effect instances can escape their effect scope, Preservation does not hold for
our given typing rules and semantics. As a counter-example consider the following program
(where h is the handler from the example semantics derivation given earlier):

runscope(s Ñ new State@s th; finally f Ñ f 0u as r in return (λ_.r1 Ð return r; return 42))

This program creates a new scope and creates a State instance named r in it. We then return
a lambda abstraction which contains but does not use r, instead it returns 42. We can easily
see that this program is of type () Ñ Int ! ∅. We will give the semantics derivation for this
program:

46

5.7. The problem with type safety

runscope(s Ñ new State@s th; finally f Ñ f 0u as r in return (λ_.r1 Ð return r; return 42))

⇝ (S-Runscope)

runscopes(new State@s th; finally f Ñ f 0u as r in return (λ_.r1 Ð return r; return 42))

⇝ (S-RunscopeNew)

runscopes(f Ð runinstls,Statethu(return (λ_.r1 Ð return inst(l); return 42)); f 0)

⇝ (S-RunscopeCong, S-Seq, S-RuninstReturn)

runscopes(f Ð return (λst.return (λ_.r1 Ð return inst(l); return 42)); f 0)

At this point the inst(l) is no longer under the runinstls,Statethu(...), it has escaped its scope. Be-
cause inst(l) is not actually used, this is no problem for the semantics. However the program
does not typecheck anymore. Once we get to inst(l) we would use the typing rule T-Inst to
try to type it. This will not work because l is not in the static environment ∆, because l is
only in ∆ under runinstls,Statethu(...)! Because of this Preservation does not hold, and we are
unable to proof type safety. This does not mean that type safety does not hold for Miro, it
only means that the given dynamic typing rules for the intermediate forms are incomplete
or incorrect.

One possible approach to solving this problem is to look at a type safety proof for the simply-
typed lambda calculus with references given in (Pierce 2002). A store µ for reference assign-
ments is used for the semantics. The semantics judgment then has the form t, µ⇝ t1, µ1, with
µ1 being a possibly updated store (and t some term). For the typing rules a static environ-
mentΣ is introduced which assign references to types. The Preservation lemma then has the
following form:

Lemma 7 (Preservation).

if (Σ; Γ $ t : τ) and (Σ; Γ $ µ) and (t, µ⇝ t1, µ1) then(DΣ1.(Σ Ď Σ1) and (Σ1; Γ $ t1 : τ) and (Σ1; Γ $ µ1))

This states that given a well-typed term t and a well-typed store µ. If we take a step from t
to t1 with the store being updated to µ. Then there exists some static environment Σ1 that is
an extension of Σ such that t is still well-typed with the same type under Σ1 and the updated
store is also well-typed under Σ1.

For our dynamic instanceswe can take a similar approachwith our version of µ storing scope
and instance locations. The static environmentΣwould have to store assignments of instance
locations l to scope locations sloc and effects ε, so that we are able to give inst(l) the correct
instance type (Inst sloc ε). Due to time constraints we are unable to try out this approach but
we conjecture it may allow use to prove a Preservation lemma and type safety.

47

Chapter 6

Related work

Algebraic effects and handlers is a wide field with many different areas and features to
consider, such as concurrency and asynchrony (Dolan et al. 2017; Leijen 2017a), effect sub-
typing (Saleh et al. 2018), shallow handlers (Hillerström and Lindley 2018), event correla-
tion (Bracevac et al. 2018), and effects in dependent types (Ahman 2018). Wewill focus only
on languages which have support for dynamic effects, namely Eff (Bauer and Pretnar 2015),
an OCaml embedding of Eff (Kiselyov and Sivaramakrishnan 2016), and Koka (Leijen 2017b;
Leijen 2016).

Eff The Eff programming language (Bauer and Pretnar 2015) was the first language with
support for algebraic effects and handlers. It featured fully dynamic instances (Section 2.3)
allowing for dynamic effects. Eff did not feature an effect typing system initially. Having
no effect typing system means there are fewer restrictions on what one can do, but there are
also fewer static guarantees. For example it is not statically guaranteed that all operation call
will be handled, which could result in runtime errors (as we have shown in Section 2.3). An
effect typing system was proposed (Bauer and Pretnar 2014) but it did not feature dynamic
instances, only static instances (Section 2.2 and Section 4.3). The current version of Eff does
not have dynamic instances since they were considered too difficult in the theory. Dynamic
instances in Eff can be introducedwithout an associated handler, different thanMiro. Inmost
languagemutable references are globally scoped. Eff supports these kinds of globally scoped
dynamic effects using resources, taking an example from “Programmingwith algebraic effects
and handlers” (Bauer and Pretnar 2015):

let ref x =
new ref @ x with

operation lookup () @ s -> (s, s)
operation update s' @ _ -> ((), s')

end

Here the new E @ x with h syntax creates a new instance of effect Ewith an associated global
handler h. The x is a piece of state that the handler is allowed to manipulate. In the example
the ref function creates a new instance of the ref effect with initial value x. Resources al-
ways have a handler associated with them. These special handlers are globally scoped (they
are wrapped around the whole program) and are more restricted than regular handlers and
have different semantics. Because the handler is globally scoped any operation call on an
instance with a resource will always be handled. Such handlers are also sometimes called
default handlers. In the future work we discuss the possibility of adding default handlers to
Miro in Section 7.2.

49

6. Related work

OCaml embedding A variant of Eff was implemented as an embedding in OCaml (Kise-
lyov and Sivaramakrishnan 2016). This embedding features algebraic effects and handlers
and dynamic instances, again without an effect typing system. The implementation relies
on multi-prompt delimited control in OCaml. The embedding does not implement the re-
sources or default handlers from Eff. Instead the observation is made that dynamic effects
can be seen as just another effect, which are called higher-order effects. A effect called New is
defined with a new operation. We give the definition of New here but refer to the paper for a
full explanation.

type eff handler t = {h: forall w. eff result prompt -> (unit -> w) -> w}
type dyn instance =
New : eff handler t * (eff result prompt -> dyn instance result)
-> dyn instance

let new instance p arg = shift0 p (fun k -> Eff (New (arg,k)))
let new handler p thunk =
handle it p thunk
(fun v -> v)
(fun loop -> function New ({h=h},k) ->
let new instance p = new prompt () in

h new instance p (fun () -> loop @@ k new instance p))
let pnew = new prompt ()
let newref s0 = new instance pnew {h = handle ref s0}

The new operation takes as arguments an effect and a handler. Then a handler for New is
defined which creates instances for each new operation and wraps the continuation in the
handler that was given as argument. We use a very similar technique to implement creation
of instances. Our runscope construct is similar to the handler of New in the Eff embedding. In
essence we ban the normal creation of dynamic instances and force users to always use the
equivalent of the New effect. This restriction allows use to give a type systemwhichmake sure
no instance escape their handler. In theOCaml embedding no such restrictions aremade and
just like Eff one has no static guarantees that all operations will be handled.

Koka Koka is a programming languagewith effect inference using rowpolymorphism (Lei-
jen 2017b). Later algebraic effects and handlers were also added (Leijen 2016). Some notion
of mutable references can be implemented (Biernacki et al. 2018) by extending the language
with a lift (also called inject) operation to inject effects, skipping a handler. References
implemented using this technique are very limited though, being unable to escape even sin-
gle functions. Leijen proposed an extension for Koka with dynamic effect handlers (Leijen
2018). This extension introduces umbrella effects, which are effects that can contain dynamic
effects. For example an umbrella effect heap can be defined which contains dynamic effects
of type ref (mutable references).

effect heap {
fun new-ref(init : a) : ref<a>

}
effect dynamic ref<a> in heap {
fun get() : a
fun set(x : a) : ()

}

50

Values of type ref can then created using by defining a dynamic handler.

fun with-ref(init:a, action:ref<a> -> e b) : e b {
handle dynamic (action) (local=init) {
get() -> resume(local,local)
set(x) -> resume((),x)

} }

Similar to how we have give a handler when creating a dynamic instance. Using these dy-
namic handlers we can implement polymorphic heaps. In order to let references escape the
function in which they are created, a new-ref operation is defined on the umbrella effect heap.

fun heap(action : () -> <heap|e> a) : e a {
handle(action) {
new-ref(init) -> with-ref(init,resume)

} }

The heap handler then creates the dynamic ref handlers for each time new-ref is called, in-
stalling these handlers under the heap handler. This way the references can escape functions
that define them as long as these functions are called under the heap handler. This is very
similar to the New effect of the OCaml Eff embedding and to our runscope construct. Koka
does not statically check that the dynamic effects do not escape their handler. Instead an ex-
ception effect is added to the effect annotation each time a dynamic handler is created. This
means that one is always forced to handle the exceptions even if you know that none will be
thrown. Similar to Miro safe references are proposed using higher-ranked types, like in the
ST monad in Haskell, in order to ensure that no unhandled operations will happen. These
definitions still do not remove the exception effect in the effect annotation though. In Miro
instead we statically guarantee that instances do not escape their scope, we do not require
and exception effect in the effect annotation.

51

Chapter 7

Conclusion and future work

We conclude with a brief discussion of what we presented in this thesis and discuss possible
future work.

7.1 Conclusion

In Chapter 2 we have seen that algebraic effects and handlers are a composable approach to
programming with side-effects. Using algebraic effects effects we can keep functions pure
until we handle the effects within them. We have also seen that we are unable to express
mutable references within algebraic effects and handlers. Dynamic instances, as introduced
by Bauer and Pretnar in Eff (Bauer and Pretnar 2015), allow the programmer to dynamically
generate instances of effects. Using dynamic instances one can implement dynamic effects
such as mutable references and the dynamic opening of channels. Unfortunately the type
system of Eff under-approximates the uses of effects, which can lead to runtime errors.

In Chapter 3 we presented a new language Miro with algebraic effects and handlers, and
dynamic instances. Using a notion of effect scopes we are able to safely use dynamically cre-
ated instances, ensuring that all operation calls are handled. We have shown how we can
implement mutable references and vectors in Miro.

In Chapter 4 we presented formal accounts of algebraic effects and handler, with and with-
out static instances, giving a type system and operational semantics. We have formalized
these systems and proven type safety in Coq.

Finally, in Chapter 5 we have presented a type system and operational semantics for the
core language of Miro. We ended the chapter with a discussion on the difficulties of proving
type safety for Miro and gave a possible approach that might allow us to make progress on
these proofs.

In this thesis we have shown that we can safely combine algebraic effects with a restricted
form of dynamic instances by giving an explicit scope for the use of an instance. Using the
notion of an effect scope and effect scope variables we can ensure that no operation call will
be left unhandled andwe can avoid runtime errors. We have also discussed the difficulties in
proving type safety for Miro. By enabling the definition of dynamic effects, such as mutable
references, algebraic effects and handlers can be useful in more situations.

53

7. Conclusion and future work

7.2 Future work
Mechanization Wecurrently have formalized the systemwith static instances of Section 2.1
and Section 2.2 and have proven type safety in Coq1. This formalization is briefly discussed
in Section 4.4. Due to time constraints we were unable to also provide a formalization for
Miro. It would be beneficial to also formalize the syntax, semantics and typing rules Miro
and to prove type safety, in order to gain more certainty the system is safe.

We have implemented a prototype of Miro in Haskell2. We implemented the typing rules
in a bidirectional (Pierce and Turner 2000) style. We also implemented the small-step oper-
ation semantics. Using the prototype we can typecheck and run Miro programs and verify
our ideas.

There are many kinds of features possible which increase the expressiveness and guarantees
of Miro. We will now discuss possible extensions to Miro.

Parametric polymorphism over any type. In order to keep the system simple and to only
focus on the novel elements,Miro only supports parametric polymorphismover effect scopes.
It would be very useful in practice to allow quantification over any type. We do not think
that adding this will interfere with the other elements of the system.

Polymorphic effects. Having added polymorphism over any type it makes sense to also
allow for polymorphic effects. In our exampleswe have defined a State effectwith Int values.
In order to avoid having to define a seperate effect for each type we would like to keep in our
state, we could allow for effects to have type parameters. For example, we could define a
polymorphic State effect like:

effect State t {
get : () -> t
put : t -> ()

}

Using this effect we can have fully polymorphic mutable references. For example, the type of
a reference holding an integer valuewould be Inst s (State Int). Given that each reference
carries the type of the value in the reference, get and put can be type safe.

Improved effect annotations. Currently the effect annotation of a computation type is a set
of effect scopes. We could make these annotations more precise by also noting which effects
are used on each scope. For example, from Int!{s1, s2} to Int!{{State, Flip}@s1, {Rng}@s2}.
We could also allow users to restrict which effects occur on which effect scope in this way,
giving more static guarantees. We do not see any difficulty in extending the annotations in
this way.

Combine with regular algebraic effects and handlers. In Miro handlers are given when
creating instances. These handlers are necessary in order tomake sure that every instance has
a handler, which completely handles the effects of that specific instance. In regular algebraic
effects (Section 2.1) operation calls can be called anywhere and can also be handled anywhere
higher up.
These are two different ways of using algebraic effects. We could combine Miro with the
regular algebraic effects and handlers. For example:

1https://github.com/atennapel/dynamicinstances
2https://github.com/atennapel/dynamicinstances/tree/master/hs

54

7.2. Future work

combination : forall s. (Inst s State) -> ()!{s, State}
combination [s] r =
x <- #get();
r#put(x)

The function combination takes as argument a State instance on some effect scope s. We
then call the get operation, but not on an instance and call this value x. We then store x
in the reference argument r, by calling the r#put . From the effect annotation on the type of
combinationwe can see we are both using the effect scope s and Statewithout a scope. While
r already has a handler associated with it, because one has to be given when creating it, the
#get operation does not. We still have to give a handler for #get higher up, like one would
do with regular algebraic effects and handlers. Effect interfaces can be used for both systems
as we do not change these from the regular algebraic effects system in Miro. It is not clear
how difficult it is to combine these two systems as they can interact, regular operations can
be called within an effect scope.

Global scope Usually mutable references are globally scoped, meaning they are valid for
the entire program. In Miro we have to explicitly scope instances using runscope. In order
to fully emulate global mutable references we could add a special scope location global. In-
stances created on the global scope are globally scoped and can be used anywhere. We can
modify the ref function from Section 3.1 to create globally scoped mutable references.

globalref : Int -> (Inst global State)!{global}
globalref v =
new State@global {

get () k -> \st -> k st st
put st' k -> \st -> k () st'
return x -> \st -> return x
finally f -> f v

} as x in return x

Notice that we no longer need forall s. in the type. By combining globally scoped instances
and polymorphic effects we would be able to emulate fully polymorphic mutable references,
as seen in the ML programming language. We would need a special runglobalscope con-
struct in the semantics which always surrounds the entire program and handles any global
instances. Care would have to be taken to ensure global instances cannot escape, we have to
still make sure their operations are always handled. Questions remain on what limitations
we need on the global handlers. Should we be allowed to call other effects in the handlers?
Should we be allowed to invoke the continuation zero or multiple times? This idea is simi-
lar to the concept of resources in the Eff programming language, as discussed in the related
work in Chapter 6. Handlers on the global scope are similar to default handlers.

55

Bibliography

Ahman, Danel (2018). “Handling fibred algebraic effects”. In:PACMPL 2.POPL, 7:1–7:29. doi:
10.1145/3158095. url: https://doi.org/10.1145/3158095.

Bauer, Andrej and Matija Pretnar (2014). “An Effect System for Algebraic Effects and Han-
dlers”. In: Logical Methods in Computer Science 10.4. doi: 10.2168/LMCS-10(4:9)2014. url:
https://doi.org/10.2168/LMCS-10(4:9)2014.

— (2015). “Programming with algebraic effects and handlers”. In: J. Log. Algebr. Meth. Pro-
gram. 84.1, pp. 108–123. doi: 10.1016/j.jlamp.2014.02.001. url: https://doi.org/10.
1016/j.jlamp.2014.02.001.

Biernacki, Dariusz et al. (2018). “Handle with care: relational interpretation of algebraic ef-
fects and handlers”. In: PACMPL 2.POPL, 8:1–8:30. doi: 10 . 1145 / 3158096. url: https :
//doi.org/10.1145/3158096.

Bracevac, Oliver et al. (2018). “Versatile event correlationwith algebraic effects”. In: PACMPL
2.ICFP, 67:1–67:31. doi: 10.1145/3236762. url: https://doi.org/10.1145/3236762.

Claessen, Koen and Peter Ljunglöf (2000). “Typed Logical Variables in Haskell”. In: Electr.
Notes Theor. Comput. Sci. 41.1, p. 37. doi: 10.1016/S1571- 0661(05)80544- 4. url: https:
//doi.org/10.1016/S1571-0661(05)80544-4.

Dolan, Stephen et al. (2017). “Concurrent System Programming with Effect Handlers”. In:
Trends in Functional Programming - 18th International Symposium, TFP 2017, Canterbury, UK,
June 19-21, 2017, Revised Selected Papers. Ed. by Meng Wang and Scott Owens. Vol. 10788.
Lecture Notes in Computer Science. Springer, pp. 98–117. isbn: 978-3-319-89718-9. doi:
10.1007/978-3-319-89719-6_6. url: https://doi.org/10.1007/978-3-319-89719-6%5C_6.

Flanagan, Cormac et al. (1993). “The Essence of Compiling with Continuations”. In: Proceed-
ings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementa-
tion (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993. Ed. by Robert Cartwright.
ACM, pp. 237–247. isbn: 0-89791-598-4. doi: 10.1145/155090.155113. url: https://doi.
org/10.1145/155090.155113.

Hillerström, Daniel and Sam Lindley (2016). “Liberating effects with rows and handlers”.
In: Proceedings of the 1st International Workshop on Type-Driven Development, TyDe@ICFP
2016, Nara, Japan, September 18, 2016. Ed. by James Chapman andWouter Swierstra. ACM,
pp. 15–27. isbn: 978-1-4503-4435-7. doi: 10.1145/2976022.2976033. url: https://doi.org/
10.1145/2976022.2976033.

— (2018). “Shallow Effect Handlers”. In: Programming Languages and Systems - 16th Asian
Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings. Ed. by
Sukyoung Ryu. Vol. 11275. Lecture Notes in Computer Science. Springer, pp. 415–435.
isbn: 978-3-030-02767-4. doi: 10.1007/978-3-030-02768-1_22. url: https://doi.org/10.
1007/978-3-030-02768-1%5C_22.

Jones, Simon Peyton (2003). Haskell 98 language and libraries: the revised report. Cambridge
University Press.

57

https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3236762
https://doi.org/10.1145/3236762
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1007/978-3-319-89719-6_6
https://doi.org/10.1007/978-3-319-89719-6%5C_6
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-030-02768-1%5C_22
https://doi.org/10.1007/978-3-030-02768-1%5C_22

Bibliography

Kiselyov, Oleg and K. C. Sivaramakrishnan (2016). “Eff Directly in OCaml”. In: Proceedings
ML Family Workshop / OCaml Users and Developers workshops, ML/OCAML 2016, Nara,
Japan, September 22-23, 2016. Ed. by Kenichi Asai and Mark R. Shinwell. Vol. 285. EPTCS,
pp. 23–58. doi: 10.4204/EPTCS.285.2. url: https://doi.org/10.4204/EPTCS.285.2.

Launchbury, John and Simon L. Peyton Jones (1994). “Lazy Functional State Threads”. In:
Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design and Imple-
mentation (PLDI), Orlando, Florida, USA, June 20-24, 1994. Ed. by Vivek Sarkar, Barbara G.
Ryder, and Mary Lou Soffa. ACM, pp. 24–35. isbn: 0-89791-662-X. doi: 10.1145/178243.
178246. url: https://doi.org/10.1145/178243.178246.

Leijen, Daan (2016). Algebraic Effects for Functional Programming. Tech. rep. Technical Report.
15 pages. https://www. microsoft. com/en-us/research …

— (2017a). “Structured asynchrony with algebraic effects”. In: Proceedings of the 2nd ACM
SIGPLAN International Workshop on Type-Driven Development, TyDe@ICFP 2017, Oxford,
UK, September 3, 2017. Ed. by Sam Lindley and Brent A. Yorgey. ACM, pp. 16–29. isbn:
978-1-4503-5183-6. doi: 10.1145/3122975.3122977. url: https://doi.org/10.1145/3122975.
3122977.

— (2017b). “Type directed compilation of row-typed algebraic effects”. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. Ed. by Giuseppe Castagna and Andrew D. Gordon. ACM,
pp. 486–499. isbn: 978-1-4503-4660-3. doi: 10.1145/3009837. url: http://dl.acm.org/
citation.cfm?id=3009872.

— (2018). “First class dynamic effect handlers: or, polymorphic heaps with dynamic effect
handlers”. In: Proceedings of the 3rd ACM SIGPLAN International Workshop on Type-Driven
Development, TyDe@ICFP 2018, St. Louis, MO, USA, September 27, 2018. Ed. by Richard A.
Eisenberg and Niki Vazou. ACM, pp. 51–64. doi: 10.1145/3240719.3241789. url: https:
//doi.org/10.1145/3240719.3241789.

Levy, Paul Blain, John Power, and Hayo Thielecke (2003). “Modelling environments in call-
by-value programming languages”. In: Inf. Comput. 185.2, pp. 182–210. doi: 10 . 1016 /
S0890-5401(03)00088-9. url: https://doi.org/10.1016/S0890-5401(03)00088-9.

Milner, Robin, Mads Tofte, and Robert Harper (1990). Definition of standard ML. MIT Press.
isbn: 978-0-262-63132-7.

Pierce, BenjaminC. (2002).Types and programming languages.MITPress. isbn: 978-0-262-16209-
8.

Pierce, Benjamin C. and David N. Turner (2000). “Local type inference”. In: ACM Trans. Pro-
gram. Lang. Syst. 22.1, pp. 1–44. doi: 10.1145/345099.345100. url: https://doi.org/10.
1145/345099.345100.

Plotkin, Gordon D. andMatija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Meth-
ods in Computer Science 9.4. doi: 10.2168/LMCS-9(4:23)2013. url: https://doi.org/10.
2168/LMCS-9(4:23)2013.

Saleh, AmrHany et al. (2018). “Explicit Effect Subtyping”. In:Programming Languages and Sys-
tems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings. Ed. by Amal Ahmed. Vol. 10801. Lecture Notes in Computer Sci-
ence. Springer, pp. 327–354. isbn: 978-3-319-89883-4. doi: 10.1007/978-3-319-89884-1_12.
url: https://doi.org/10.1007/978-3-319-89884-1%5C_12.

58

https://doi.org/10.4204/EPTCS.285.2
https://doi.org/10.4204/EPTCS.285.2
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/3122975.3122977
https://doi.org/10.1145/3122975.3122977
https://doi.org/10.1145/3122975.3122977
https://doi.org/10.1145/3009837
http://dl.acm.org/citation.cfm?id=3009872
http://dl.acm.org/citation.cfm?id=3009872
https://doi.org/10.1145/3240719.3241789
https://doi.org/10.1145/3240719.3241789
https://doi.org/10.1145/3240719.3241789
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1007/978-3-319-89884-1_12
https://doi.org/10.1007/978-3-319-89884-1%5C_12

	Acknowledgements
	Contents
	Introduction
	An introduction to algebraic effects and handlers
	Algebraic effects and handlers
	Static instances
	Dynamic instances

	Introduction to Miro
	Effects, effect scopes and instances
	Mutable vectors

	Semantics and types of algebraic effects and handlers
	Simply-typed lambda calculus
	Algebraic effects
	Static instances
	Formalization

	Semantics and types of Miro
	Syntax
	Environments and judgments
	Subtyping
	Well-formedness
	Typing rules
	Semantics
	The problem with type safety

	Related work
	Conclusion and future work
	Conclusion
	Future work

	Bibliography

