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Reliability of Fatigue Strength Curves for
Riveted Connections Using Normal and

Weibull Distribution Functions
Bruno Pedrosa1; José A. F. O. Correia2; Carlos A. S. Rebelo3; and Milan Veljkovic4

Abstract: In North America and Europe, there is a significant number of centenary metallic bridges that require maintenance and strength-
ening operations. These structures need to be adapted to increasing traffic intensities, and their structural integrity should be constantly
evaluated. Fatigue damages were not considered in the original design of old metallic bridges, and riveted connections are one of the most
frequent sources of fatigue damages on these structures. This paper intends to be a contribution for the reliable assessment of the fatigue
behavior of riveted connections by proposing S-N curves for these structural details. Experimental fatigue data is analyzed from multiple
bridges across Europe, and different statistical methods were implemented. A normal distribution function was implemented following the
ISO 12107 standard, and the results were compared with the implementation of the two-parameter Weibull distribution function. Different
estimation methodologies were implemented to determine the parameters of the Weibull distribution. S-N curves obtained by the statis-
tical analysis were then compared with design recommendations from North American and European standards. DOI: 10.1061/
AJRUA6.0001081. © 2020 American Society of Civil Engineers.

Author keywords: Fatigue; Riveted connections; Statistical analysis; Bridges.

Introduction

Metallic bridges started to be constructed all over the world, mainly
in the second half of the 19th century, which was the period when
iron became available to be used as construction material. A sig-
nificant part of these structures is still in service either because
maintenance and strengthening operations are easily affordable
compared with constructing a new bridge or due to the architecture
and cultural importance of these structures for society. From the
period that these structures were designed until now, the differences
in the traffic intensity, not only in terms of their frequency but also
in terms of their weight, might have increased significantly. In this
sense, it is essential to monitor their structural integrity and evaluate
their performance in order to accurately define what measures
should be taken to maintain and prolong their service life.

There is a specific phenomenon, relevant for structures with
long service periods, that can lead generally to noncollapsed fail-
ures but also in some cases to total failure: fatigue cracks. This is
especially important because old metallic riveted bridges were not

originally designed with this phenomenon in mind (Akesson 2010;
Mohammad 2002). Only recently, scientific studies have been con-
ducted to evaluate the fatigue behavior of materials used in these
structures (wrought-iron, puddle iron, or mild steels) (De Jesus
et al. 2015, 2011; Lesiuk et al. 2019; Pedrosa et al. 2019). The most
feasible method to assess the fatigue strength of materials and com-
ponents is to perform experimental fatigue tests on structural details
extracted from old metallic bridges. North American and European
standards used to design metallic bridges for the fatigue phenome-
non are based on experimental evidence using modern metallic
materials, and therefore, they might not be adequate for these cen-
tenary bridges. Moreover, these standards do not describe how to
design structural details, such as riveted connections. Kulak (2000)
and Di Battista et al. (1998) analyzed a significant amount of
fatigue data from experimental tests on riveted components and
proposed the use of Detail category 71 from Eurocode 3 Part 1-9
(EC3-1-9) (CEN 2005) and Category D from AASHTO (2012).
These design curves are very similar because they have the same
inverse slope (3) and detail category (71 MPa, 2 million cycles).
They only differ in the value of the constant amplitude fatigue limit
(52 MPa in the case of EC3-1-9 and 48 MPa in the case of
AASHTO Category D).

The computation of reliable design S-N curves for metallic com-
ponents has been conducted using several approaches. Zhao et al.
(2009) implemented a log-normal distribution to determine prob-
abilistic S-N fields for long-term regimes. Schijve (2005) studied
the implementation of three statistical distribution functions on S-N
fields. Those functions were normal distribution, Weibull distribu-
tion, and log-normal distribution. It was found that both functions
had a good correlation with the experimental data. Furthermore,
scientific investigations performed by Correia et al. (2010) and
Sanches et al. (2015) focused on the evaluation of the fatigue
strength of riveted joints from old bridges using a probabilistic
model. Their work was to consider the adequate probabilistic dis-
tribution functions on individual parameters/properties of existing
deterministic fatigue models.
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This paper presents experimental fatigue data from different sci-
entific investigations on single and double riveted connections.
Specimens are composed of metallic materials from centenary
bridges. Different statistical methods were implemented to analyze
the studied data and to elaborate reliable design S-N curves. The
statistical analysis proposed in the Eurocode to define design
curves were implemented, and a comparison was established with
the implementation of the Weibull distribution. This alternative is
widely used in the literature (Sakin and Ay 2008; Zhang et al. 2008)
to analyze fatigue experimental data, and it is characterized by
its flexibility to establish reliable assessments. Several scientific
investigations can also be found in literature (Castillo et al. 2006;
Castillo and Fernández-Canteli 2009), recommending that the two-
parameter Weibull distribution does correlate with fatigue data.
Therefore, this Weibull distribution depends on both shape and
scale parameter whose estimation can be made by several methods:
the maximum likelihood method (MLM), method of moments
(MM), linear least squares method (LLSM), and weighted linear
least squares method (WLLSM). All these methods were imple-
mented, and the evaluation of each method was assessed by three
different goodness-of-fit statistics tests: the Kolmogorov-Smirnov,
Anderson-Darling, and χ-squared tests.

Fatigue Experimental Data

A set of experimental fatigue data from different scientific inves-
tigations (Mayorga et al. 2016; Pedrosa et al. 2019; Taras and
Greiner 2010b) on riveted connections using material from Euro-
pean centenary bridges were used in this paper. For single shear
riveted connections, a total of 35 specimens were analyzed. Some
of them were extracted from structural elements of Portuguese cen-
tenary bridges, namely, seven specimens from the Luiz I bridge
(located in Porto, Portugal, and designed in 1886), seven specimens
from the Pinhão bridge (located in Esposende, Portugal, and de-
signed in 1906), and eight specimens from the Trezoi bridge
(located in Mortágua, Portugal, and designed in 1956). For double
shear riveted connections, a total of 146 specimens were used. Part
of them were also extracted from structural elements of Portuguese
centenary bridges, namely, 14 specimens from the Eiffel bridge
(located in Viana do Castelo, Portugal, and designed in 1878) and
15 specimens fabricated with metallic plates extracted from struc-
tural elements of the Fão bridge (located in Esposende, Portugal,
and designed in 1892) (Pedrosa et al. 2019). Double shear speci-
mens were complemented with experimental data from fatigue tests
with 10 fabricated specimens composed of puddle iron plates ex-
tracted from structural elements of the bridge over the river Adour
built in France in 1864 (Mayorga et al. 2016). Experimental data
collected by Taras and Greiner (2010b) of fatigue tests for both
single (13 specimens) and double (107 specimens) shear riveted

connections were also added to the present analysis. A summary
is presented in Table 1 with the details of the experimental data.

It is necessary to take into account mean stress effects when
using fatigue data tested under different conditions, and therefore,
experimental data used in this paper was normalized by computing
the normalized stress range, Δσnorm, as shown in Eq. (1). This
methodology was proposed by Taras and Greiner (2010b)

Δσnorm ¼ Δσ
fðRσÞ

ð1Þ

where Δσ = stress range applied during the experimental test; and
fðRσÞ = normalization function to consider the stress ratio effects.
This function depends on the year that the bridge was built. For
wrought iron and mild steel manufactured before 1900, fðRσÞ is
defined

fðRσÞ ¼
1 − Rσ

1 − 0.7 · Rσ
⇐ − 1 ≤ Rσ ≤ 0

fðRσÞ ¼
1 − Rσ

1 − 0.75 · Rσ
⇐Rσ > 0 ð2Þ

For mild steel after 1900 (St37, St48, and St52, corresponding to
S235, S275 and S355, respectively) the following normalization
function is proposed:

fðRσÞ ¼
1 − Rσ

1 − 0.4 · Rσ
⇐ − 1 ≤ Rσ ≤ 0

fðRσÞ ¼
1 − Rσ

1 − 0.6 · Rσ
⇐Rσ > 0 ð3Þ

Statistical Analysis

There are multiple sources of scatter in fatigue, not only on labo-
ratory test series but also on structures in service. Within the aspects
to be consider on laboratory experimental campaigns, there is the
material source (single batch of material or different batches), the
production (specimen production and surface treatment), and the
load (accuracy of the test equipment). However, statistical methods
should be used to overcome this matter and establish practical so-
lutions to analyze the obtained data. Unfortunately, the distribution
function cannot be derived on the basis of physical arguments. In
general, it is simply assumed or adjusted to the experimental data of
a large test series. Two popular distributions are the normal or
Gaussian distribution and the Weibull distribution (Schijve 2004).

ISO 12107

Usually, fatigue experimental data is represented with the applied
stress range, Δσ, and number of cycles, N, using a logarithmic

Table 1. Details of the experimental data used in the analysis

Type of connection Bridge Year Stress ratio No. of specimens

Single shear Luiz I (Pedrosa et al. 2019) 1886 0.1 7
Pinhão (Pedrosa et al. 2019) 1906 0.1 7
Trezoi (Pedrosa et al. 2019) 1956 0.1 8
Taras and Greiner (2010a) 1975–1995 Variable 13

Double shear Eiffel (Pedrosa et al. 2019) 1878 0.1 14
Fão (Pedrosa et al. 2019) 1892 0.01 15
Adour (Mayorga et al. 2016) 1864 0.0 10
Taras and Greiner (2010a) 1935–1941 Variable 107
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scale. This methodology allows one to define a linear relation
(Basquin relation) between those parameters, as described in the
following equation:

logN ¼ logCþm logΔσ ð4Þ

where m = inverse slope; and logC = intersection with the axis
logΔσ. Thereby, a mean S-N curve can be defined for the obtained
results using a linear regression based on the least squares estima-
tion method. Moreover, a characteristic S-N curve can be estab-
lished as the lower limit corresponding to a probability of
failure pn for the population at a confidence level ð1 − αnÞ and
for a sample size n using the following equation:

logN ¼ logCþm logΔσ

− kð1−αnÞ;pn ;ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðlogΔσ − logΔσÞ2P

n
i¼1 ðlogΔσi − logΔσÞ2

s
ð5Þ

where kð1−αnÞ;pn;n = one-sided tolerance limit for a normal distribu-
tion, which depends on the confidence level, ð1 − αnÞ, probability
of failure, pn, and the sample size, n; s = standard deviation; and
logΔσ represents the mean value of applied stress ranges. The term
inside the root sign is a correction to the estimated standard
deviation. It is stated in the ISO 12107 standard (ISO 2012) that it
can be neglected when the number and range of tests are large
enough. Because S-N curves proposed in Eurocode 3 consider a
constant value of standard deviation (straight line), this correction
term was neglected in this study.

Two-Parameter Weibull Distribution and Estimation
of Its Parameters

The Weibull distribution function is a statistical distribution func-
tion of wide applicability (Weibull 1951). The description of the
cumulative probability function with two parameters is given in
Eq. (6)

PðNÞ ¼ 1 − e−
�

N
αw

�
βw

ð6Þ

where N = number of cycles at failure; αw = scale parameter; and
βw = shape parameter. These parameters can be estimated with dif-
ferent methods. In this paper, four different estimation methods will
be applied in order to determine their most accurate values using
fatigue data from the experimental campaign: the MLM, MMM,
LLSM, and WLLSM. The evaluation of each method is performed
by computing mean-squared errors (MSE) between the estimative
values for each method and the estimative values using Bernard’s
median rank (Fothergill 1990), which is presented in Eq. (7)

PðNiÞ ¼
i − 0.3
nþ 0.4

ð7Þ

where i = order number of failures; and n = sample size.

Maximum Likelihood Method
This method is popular within the scientific community mainly
because it is versatile and reliable. The likelihood function of the
Weibull distribution (Goglio and Rossetto 2004) is given by Eq. (8),
where n is the sample size

Lðαw;βwjNÞ ¼
Yn
i¼1

fðNijαw; βwÞ

¼
Yn
i¼1

�
βw

αwβw
Ni½βw − 1� exp

�
−
�
Ni

αw

�
βw
	


¼
�

βw

αwβw

�
n Yn
i¼1

�
Ni½βw − 1� exp

�
−
�P

Ni

αw

�
βw
	


ð8Þ

The estimation of the Weibull parameters is obtained with the
log-likelihood function. They are computed by maximizing the log-
arithmic function by means of interactive numerical methods.

Method of Moments
The moment method is one of the oldest estimation methods
(Bolfarine and Sandoval 2001). The estimation of distribution
parameters relies on matching sampling moments to the experimen-
tal data. Sampling moments are determined using Eq. (9)

μk ¼
1

n

Xn
i¼1

Nk
i ð9Þ

For N as an independent and identically distributed variable, the
first two population moments ðM1;M2Þ are enough to estimate
Weibull distribution parameters. These moments are computed
with Eqs. (10) and (11)

M1 ¼ αwΓ

�
1þ 1

βw

�
ð10Þ

M2 ¼ α2
wΓ

�
1þ 2

βw

�
ð11Þ

where Γ = gamma function. Using mathematical operations, it is
possible to relate these equations resulting in Eq. (12). It corre-
sponds to the coefficient of variation of the sample, and it is
dependent only on the shape parameter, βw. The solution can be
found using the Newton-Raphson method. Ben-Israel (1966) de-
tailed the application of this method

μ2

μ2
1

¼
Γð1þ 2

βw
Þ

Γ2ð1þ 1
βw
Þ ð12Þ

Linear Least Squares Method
The application of a logarithm in Eq. (6) allows one to establish a
linear model as presented in Eq. (13) in which X ¼ lnðNiÞ and
Y ¼ lnð− lnð1 − PðNiÞÞÞ

lnð− lnð1 − PðNiÞÞÞ ¼ αw lnðNiÞ − αw lnðβwÞ ð13Þ

The estimation of Weibull parameters is then computed with a
simple linear regression (Barbosa et al. 2018). The optimization
method is applied using the following equation:

minQQ ¼
Xn
i¼1

½Yi − ðαwXi − αw lnðβwÞÞ�2 ð14Þ

Finally, the estimation of the Weibull parameters is performed
with the partial derivatives of QQ, as presented subsequently

αw ¼ n
P

n
i¼1 XiYi −P

n
i¼1 Xi

P
n
i¼1 Yi

n
P

n
i¼1 X

2
i − ðPn

i¼1 XiÞ2
ð15Þ
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βw ¼ exp

�Pn
i¼1 Yi − αw

P
n
i¼1 Xi

nαw

�
ð16Þ

Weighted Linear Least Squares Method
The weighted linear least squares estimation method assigns differ-
ent relevance for each element of the data set (Zhang et al. 2008).
The approximation of weights, wi, is modeled with a polynomial
function dependent on the estimated values of the accumulated
probability function PðNiÞ, as presented in Eq. (17) (Barbosa
et al. 2018)

wi ¼ −0.076þ 3.610PðNiÞ − 6.867PðNiÞ2 þ 13.54PðNiÞ3
− 9.231PðNiÞ4 ð17Þ

The optimization method follows the same strategy as in the
linear least square method [Eq. (14)]. In this case, the values of
scale and shape parameters of the Weibull distribution are obtained
with Eqs. (18) and (19), respectively

αw ¼
P

n
i¼1 wi

P
n
i¼1 wiXiYi −P

n
i¼1 wiXi

P
n
i¼1 wiYiP

n
i¼1 wi

P
n
i¼1 wiX2

i − ðPn
i¼1 wiXiÞ2

ð18Þ

βw ¼ exp

�Pn
i¼1 wiYi − αw

P
n
i¼1 wiXi

αw
P

n
i¼1 wi

�
ð19Þ

Probabilistic S-N Curves
For the computation of S-N curves based on the two-parameter
Weibull distribution, it is necessary to consider that the values of
the scale parameter and the shape parameter are constants for all
stress levels of a S-N curve. Therefore, the number of cycles at fail-
ure need to be normalized by dividing the number of cycles ob-
tained experimentally by the number of cycles obtained with the
mean S-N curve. This is a commonly-used strategy (Júnior and
Belísio 2014). After the determination of the Weibull distribution
parameters, probabilistic S-N curves were computed using the fol-
lowing equation:

logΔσ ¼
log

�
N

βw½− lnð1−pÞ�αw
�

m
− logC

m
ð20Þ

where p = probability of failure.

Goodness-of-Fit Statistic Tests

The evaluation of the results from each estimation method was per-
formed by using goodness-of-fit statistics. Three different tests
were implemented for the Weibull distribution adherence to the ex-
perimental data: the Kolmogorov-Smirnov (KS) test, described in
Eq. (21); the Anderson-Darling (AD) test, described in Eq. (22);
and the χ-squared test, described in Eq. (23)

KS ¼ sup jPðNiÞ − PðNiÞest·methodj ð21Þ

AD ¼ −n − 1

n

Xn
i¼1

fð2i − 1ÞðlogðPðNiÞest·methodÞ

þ logð1 − PðNnþ1−iÞest·methodÞÞg ð22Þ

χ2 ¼ ðPðNiÞest·method − PðNiÞÞ2
PðNiÞ

ð23Þ

This evaluation enables one to determine the most accurate es-
timation method for each study case (single and double shear spec-
imens) and choose the values for the Weibull distribution function.

Single Shear

Experimental data from single shear riveted specimens was ana-
lyzed and normalized, as presented in Fig. 1. The statistical analysis
was implemented using the least square method to find the values
for the inverse slope, m, and the intersection with the vertical axis,
log c, of the mean S-N curve. It was found that the optimal mean
S-N curve has an inverse slope with a value of 2.9 and a coefficient
of determination with a value of 0.54. In order to determine a mean
S-N curve whose value of the inverse slope is a natural number, a
new mean S-N curve was defined, and in this case, imposing that
the value of the inverse slope is the closest natural value of 2.9,
which is 3. This value imposed to the inverse slope of the curve
is the value used in the standards [EC3-1-9 (CEN 2005) and
AASHTO (2012)]. It was found that this new curve has the same
value of the coefficient of determination. In this sense, in the fol-
lowing analysis, only the curve with an inverse slope equal to 3 is
proposed to be used.

ISO 12107

Taking into account the analysis made with mean S-N curves, the
determination of the characteristic curves using the standard ISO
12107 (ISO 2012) was conducted only for the curve with an in-
verse slope equal to 3. There are two parameters that need to be
defined: the confidence level ð1 − αnÞ and the probability of fail-
ure (pn). Eurocode 3 Part 1-9 (CEN 2005) recommends the use of
ð1 − αnÞ ¼ 75% and pn ¼ 95%; however, the American Institute
of Steel Construction (Fisher 1981) used a different value for the
confidence level—95% in this case. Fig. 2 presents the character-
istic curves for both scenarios. In this case, it is possible to ob-
serve that both curves represent a good design approach for the
presented data.

The design curve defined by the Detail category 71 and inverse
slope equal to 5 was proposed by Taras and Greiner (2010b). It can
be observed that this curve is not able to represent the fatigue
strength of single shear riveted connections, especially for lower
levels of an applied stress range. Furthermore, the Detail category
71 from Eurocode 3 (CEN 2005) and the Category D from
AASHTO (2012) for riveted connections do not represent a design

Fig. 1. Experimental data for single riveted connections: mean S-N
curves.
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safe criterion also. In fact, as previously discussed by several au-
thors (De Jesus et al. 2015; Pedrosa et al. 2019), S-N curves pro-
posed in Eurocode 3 (CEN 2005) and AASHTO (2012) are not able
to represent the fatigue behavior of structural details composed by
old metallic materials, such as puddle iron.

Two-Parameter Weibull Distribution

The two-parameter Weibull distribution was applied to the fatigue
data of single shear riveted specimens. The relation between the
cumulative probability obtained for each data point with the
Bernard median rank and the cumulative probability obtained with
the Weibull distribution using four different estimation methods is
presented in Fig. 3. The values of the Weibull distribution parameters
are presented in Fig. 4, as well as the values for each goodness-of-fit
statistic test for each estimation method. It is verified that LLSM is
the estimation method that led to more accurate values because two
out of three tests indicate this method as the best in relation to the
Weibull distribution function (shaded cells in Fig. 4).

In Fig. 5 are presented S-N curves computed with the Weibull
distribution function for 50%, 95%, and 97.5% probability of fail-
ure as well as the design (characteristic) curve obtained with ISO
12107 (ISO 2012). It is possible to observe that the curve with the
95% probability of failure for the Weibull distribution can be con-
sidered as a good design criterion. It has a detail category of 45 MPa.
This curve is less conservative when compared to the design curve
defined with ISO 12107 (ISO 2012), but it represents a safe design
criterion for the presented fatigue data.

Comparison

The statistical analysis implemented previously enable one to es-
tablish fatigue design curves using different approaches. In Table 2,
the main characteristics of these curves are summarized for both
normal and Weibull distribution functions for single shear exper-
imental fatigue data.

Double Shear

In Fig. 6 is presented the experimental data from double shear riv-
eted specimens. The statistical analysis using the least square
method enable the definition of a mean S-N curve with two degrees
of freedom (inverse slope, m, and intersection with vertical axis,
log c) resulting in an inverse slope of 4.1 and a coefficient of de-
termination of 0.52. In order to define a mean S-N curve with an
inverse slope with a natural number, a new curve was establish im-
posing an inverse slope of 4.0 (the closest natural number to 4.1).
This new curve has the same value of the coefficient of determi-
nation as the previous one. In the following analysis, only the curve
with an inverse slope equal to 4 is proposed to be used.

ISO 12107

Taking into account the analysis made with mean S-N curves, the
determination of the characteristic curves using the ISO 12107 stan-
dard (ISO 2012) was conducted only for the curve with an inverse
slope equal to 4. The confidence level ð1 − αnÞ and probability of
failure (pn) were defined as Eurocode 3 Part 1-9 (CEN 2005) rec-
ommends: ð1 − αnÞ ¼ 75% and pn ¼ 95%. The possibility of using
a confidence level equal to 95% was analyzed. In Fig. 7 are

Fig. 2. Experimental data for single riveted connections: design S-N
curves.

Fig. 3. Cumulative Weibull distribution function: single riveted
connections.

Fig. 4. Parameters of Weibull distribution and goodness-of-fit statistics: single riveted connections.
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presented the characteristic curves for both scenarios. In this case, it
is possible to observe that the curve with a higher confidence level
should be used.

Taras and Greiner (2010b) proposed a design curve with a detail
category of 80 and an inverse slope equal to 5 for this detail. It can
be observed that this curve represents fewer conservative predic-
tions compared to the curves obtained with the statistical analysis.
Furthermore, the Detail category 71 from Eurocode 3 (CEN 2005)
and the Category D from AASHTO (2012) for riveted connections
do not represent a design safe criterion also. The inadaptability of
current standards to predict the fatigue strength of structural details
with old metallic materials is evident.

Two-Parameter Weibull Distribution

The two-parameter Weibull distribution was applied to the fatigue
data of double shear riveted specimens. The relation between the

Fig. 5. Experimental data for single shear riveted connections: normal
and Weibull distributions.

Table 2. Summary of proposed design curves for single shear riveted
connections

Statistical
distribution

Connection type Single shear

Inverse slope, m 3

Normal Confidence level 0.95
Probability of failure (%) 95

Detail category, Δσc (MPa) 35

Weibull Estimation method LLSM
αw 1.4424
βw 1.4696

Probability of failure (%) 95
Detail category, Δσc (MPa) 45

Fig. 6. Experimental data for double riveted connections: mean S-N
curves.

Fig. 7. Experimental data for double riveted connections: design S-N
curves.

Fig. 8. Cumulative Weibull distribution function: double riveted
connections.
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cumulative probability obtained for each data point with the
Bernard median rank and the cumulative probability obtained with
the Weibull distribution using four different estimation methods for
its parameters is present in Fig. 8. The values of the Weibull dis-
tribution parameters are presented in Fig. 9, as well as the values for
each goodness-of-fit statistic test for each estimation method. For
double shear riveted connections, the estimation method that leads
to more accurate results is the WLLSM because two out of three
tests indicate this method as the best in relation to the Weibull dis-
tribution function (shaded cells in Fig. 9).

In Fig. 10 are presented S-N curves computed with the Weibull
distribution function for 50%, 95%, and 97.5% probability of fail-
ure as well as the design (characteristic) curve obtained with ISO
12107 (ISO 2012). It is possible to observe that the curve with a

97.5% probability of failure for the Weibull distribution can be con-
sidered as a good design criterion. It has a detail category of
73 MPa.

Comparison

The statistical analysis implemented previously enable one to es-
tablish fatigue design curves using different approaches. In Table 3
the main characteristics of these curves are summarized for both
normal and Weibull distribution functions for double shear riveted
connections.

Concluding Remarks

The scientific work developed within this paper enable one to ana-
lyze fatigue experimental data from fatigue tests with riveted con-
nections from different sources and to establish reliable proposals
for design S-N curves.

It was found that a S-N curve with an inverse slope of 3 has a
good correlation with the experimental data for single shear riveted
connections. It was observed that design curves proposed in North
American and European standards are not able to represent riveted
connections made with old metallic materials. For this structural
detail, the curve proposed by Taras and Greiner (2010b) was not
a good design approach also. Parameters of the Weibull distribution
function, αw and βw, were estimated, and the method that leads to
better goodness-of-fit results is the linear least squared method.
Characteristic curves computed with the Weibull distribution func-
tion showed that a probability of failure equal to 95% can be used.

For double shear riveted connections, a S-N curve with an in-
verse slope of 4 was found to have a good correlation with the ex-
perimental data. The inadaptability of the current standards was
also verified for this detail. The estimation of Weibull distribution
parameters allowed the authors to understand that the weighted lin-
ear least squared method leads to more accurate results. It was
found that a design curve using the Weibull distribution function
with a probability of failure equal to 97.5% can be considered.

Additionally, it was found that a normal distribution with a 95%
probability of failure (using either a 95% or 75% confidence level)
leads to more conservative results compared to a Weibull distribu-
tion with a 95% probability of failure. It should be stated that alter-
native approaches should be implemented in future investigations
in order to improve the reliability of design S-N curves, namely,
using numerical approaches by computing initiation and propaga-
tion fatigue phases. It is also important to study the implementation
of alternative fatigue models, which are capable to predict the
fatigue strength in all regimes (low to high cycle regimes).

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.

Fig. 9. Parameters of Weibull distribution and goodness-of-fit statistics: double riveted connections.

Fig. 10. Experimental data for double shear riveted connections: nor-
mal and Weibull distributions.

Table 3. Summary of proposed design curves for double shear riveted
connections

Statistical
distribution

Connection type Double shear

Inverse slope, m 4

Normal Confidence level 0.95
Probability of failure (%) 95

Detail category, Δσc (MPa) 61

Weibull Estimation method WLLSM
αw 1.1545
βw 1.5251

Probability of failure (%) 97.5
Detail category, Δσc (MPa) 59
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