<]
TUDelft

Delft University of Technology

Time-Restricted, Verifiable, and Efficient Query Processing over Encrypted Data on Cloud

Li, Meng; Gao, Jianbo; Zhu, Liehuang; Zhang, Zijian; Lal, Chhagan; Conti, Mauro

DOI
10.1109/TSC.2023.3311586

Publication date
2024

Document Version
Final published version

Published in
IEEE Transactions on Services Computing

Citation (APA)

Li, M., Gao, J., Zhu, L., Zhang, Z., Lal, C., & Conti, M. (2024). Time-Restricted, Verifiable, and Efficient
Query Processing over Encrypted Data on Cloud. IEEE Transactions on Services Computing, 17(3), 1239-
1251. https://doi.org/10.1109/TSC.2023.3311586

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TSC.2023.3311586
https://doi.org/10.1109/TSC.2023.3311586

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

1239

Time-Restricted, Verifiable, and Efficient Query
Processing Over Encrypted Data on Cloud

Meng Li"¥, Senior Member, IEEE, Jianbo Gao

Zijian Zhang”, Chhagan Lal

Abstract—Outsourcing data users’ location data to a cloud
server (CS) enables them to obtain k& nearest points of interest.
However, data users’ privacy concerns hinder the wide-scale use.
Several studies have achieved Secure k Nearest Neighbor (SKNN)
query, but do not address time-restricted access or result privacy,and
randomly partition data items which degrades efficiency. In this
article, we propose Time-restricted, verifiable, and efficient Query
Processing (TiveQP). TiveQP has three distinguishing features. 1)
Expand SKNN: data users can query k nearest locations open at a
specific time. 2) Adopt a stronger threat model: we assume the CS
is malicious and propose complementary set (i.e., transform proving
“in” a set to proving “in” its complementary set) to allow data users
to verify results without leaking unqueried data items’ information.
3) Improve efficiency: we design a space encoding technique and
a pruning strategy to improve efficiency in query processing and
result verification. We formally proved the security of TiveQP in
the random oracle model. We conducted extensive evaluations over
a Yelp dataset to show that TiveQP significantly improves over
existing work, e.g., top-10NN query over 100 thousand data items
only needs 10 ms to get queried results and 1.4 ms for verification.

Index Terms—LEfficiency, query processing, security, time-
restricted access, verification.

Manuscript received 9 June 2023; revised 28 July 2023; accepted 31 August
2023. Date of publication 4 September 2023; date of current version 12 June
2024. This work was supported by the National Natural Science Foundation of
China (NSFC) under the Grant 62372149 and Grant U23A20303, and also by
the National Key Research and Development Program of China under Grant
2021YFB2701202. It is partially supported by EU LOCARD Project under
Grant H2020-SU-SEC-2018-832735. Recommended for acceptance by S. Deng.
(Corresponding author: Zijian Zhang.)

Meng Li is with the Key Laboratory of Knowledge Engineering with Big Data,
Hefei University of Technology, Ministry of Education, Hefei, Anhui 230601,
China, and with the School of Computer Science and Information Engineering,
Hefei University of Technology, Hefei, Anhui 230601, China, and with the Anhui
Province Key Laboratory of Industry Safety and Emergency Technology, Hefei,
Anhui 230601, China, and also with the Intelligent Interconnected Systems
Laboratory Anhui Province, Hefei University of Technology, Hefei, Anhui
230601, China (e-mail: mengli@hfut.edu.cn).

Jianbo Gao was with the School of Cyberspace Science and Technology, Bei-
jing Institute of Technology, Xiamen, Fujian 351100, China. He is now with the
School of Computer Science and Information Engineering, Hefei University of
Technology, Hefei, Anhui 230601, China (e-mail: jianbogao @mail.hfut.edu.cn).

Liehuang Zhu is with the School of Cyberspace Science and Technol-
ogy, Beijing Institute of Technology, Xiamen, Fujian 351100, China (e-mail:
lichuangz@bit.edu.cn).

Zijian Zhang is with the School of Cyberspace Science and Technology,
Beijing Institute of Technology, Beijing 100811, China, and also with the
Southeast Institute of Information Technology, Beijing Institute of Technology,
Xiamen, Fujian 351100, China (e-mail: zhangzijian @bit.edu.cn).

Chhagan Lal is with the Department of Mathematics and HIT Center, Uni-
versity of Padua, 35131 Padua, Italy (e-mail: c.lal@tudelft.nl).

Mauro Conti is with the Department of Mathematics and HIT Center, Univer-
sity of Padua, 35131 Padua, Italy, and also with the Department of Intelligent
Systems, CyberSecurity Group, TU Delft, 2628 CD Delft, The Netherlands
(e-mail: mauro.conti @unipd.it).

Digital Object Identifier 10.1109/TSC.2023.3311586

, Student Member, IEEE, Liehuang Zhu
, and Mauro Conti

, Senior Member, IEEE,
, Fellow, IEEE

1. INTRODUCTION

OCATION-BASED Services (LBSs) enable users to up-

load their current location and location query to a Cloud
Server (CS), which returns a query result (e.g., ten nearest cafes)
to the users [1], [2], [3], [4]. However, privacy is a major concern
because locations are related to user privacy and CSs are not fully
trusted [5], [6], [7], [8], [9], [10]. The data stored on a cloud may
be analyzed or leaked. As reported [11], a British firm admitted
that some of its location data was collected without seeking
permission from users. Recently, Secure k Nearest Neighbor
(SENN) [6], [12], [13], [14], [15], [16], [17], [18] is proposed
to address this problem.

We have four motivations to advance the state-of-the-art. 1)
We observe a new requirement time-restricted access in kNN,
that is, data owners have an access time limit on their data items
and data users visit a location at a specific time. For example,
a patient makes an appointment with an oncologist (a doctor
specialized in cancer) who only provides medical service on
Monday mornings. The integration of location and time refers to
matching opening time with access time and matching locations.
It is essential to kNN since no users want to visit a closed
clinic. 2) We focus on the privacy concerns of data owners
and data users. It includes the spatial attributes of location, time
attribute of location, attached data items, and queries. 3) We find
that result privacy is not provided even if result verifiability is
enforced when the CS misbehaves. For example, a data user can
acquire the privacy of some unqueried data items from the result.
4) Existing work randomly partition data items and ignore their
spatial attributes that are useful for improving query efficiency.

We compare TiveQP with SENN schemes [6], [12], [13],
[14], [15], [16], [17], [18] and privacy-preserving range query
schemes [19], [20], [21] in Table 1.

First, we expand SKNN to support privacy-preserving time-
restricted access. Existing SENN schemes [6], [12], [13], [14],
[15], [16], [17], [18] focus on querying the k nearest locations
while not considering the time attribute. Access time is related
to data users’ daily schedules, which are highly sensitive. As in
the example above, the access time along reveals the patient’s
health condition to some extent. Therefore, time should be
protected. Second, we adopt a stronger threat model and achieve
privacy-preserving result verification. Most existing work [6],
[12], [13], [14], [15], [16], [17] only use a semi-honest (honest-
but-curious) model for the CS. A stronger security model calls
for result verification. SVKNN [18] proposes a verifiable SKNN
framework, but it uses two servers and does not address access

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3553-0813
https://orcid.org/0000-0002-5391-8152
https://orcid.org/0000-0003-3277-3887
https://orcid.org/0000-0002-6313-4407
https://orcid.org/0000-0002-0051-1551
https://orcid.org/0000-0002-3612-1934
mailto:mengli@hfut.edu.cn
mailto:jianbogao@mail.hfut.edu.cn
mailto:liehuangz@bit.edu.cn
mailto:zhangzijian@bit.edu.cn
mailto:c.lal@tudelft.nl
mailto:mauro.conti@unipd.it

1240

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE I
COMPARISON AMONG PREVIOUS STUDIES AND TIVEQP

Feature Single | Round | Tree Strong Sublinear Access | Type& Result Result
Scheme server security query time city verifiability accuracy
Wong et al. [12] Vi 1 Accurate
Hu et al. [13] N O(logn) v/ N Accurate
Yao et al. [14] N 2 N N Accurate
Yi et al. [15] v 1 Accurate
Elmehdwi et al. [16] 1 v/ N Accurate
Wang et al. [6] v 1 v/ Accurate
SecEQP [17] vV 1 v, | AT-IND-CKA O(klog n) Approximate
SVKNN [18] 1 N Semantic N Accurate
PBtree [19] Vv 1 v IND-CKA O(klog n) n/a n/a Low FPR?
IBtree [20] V4 1 VA A-IND-CKA O(klog n) n/a n/a Low FPR
ServeDB [21] N 1 Vi L-security® O(klog n) n/a n/a N Low FPR
Our solution TiveQP v 1 v A-IND-CKA | O(klog())* VA v v Low FPR

1: Adaptive; 2: false positive rate; 3: L-secure against adaptive attacks; 4: t: number of types, c: number of cities.

time or achieve sublinear query latency. ServeDB [21] can
verify the query result but leaks other locations’ information
to data users. Third, we improve query efficiency. The tree
construction is crucial for query processing, but SecEQP [17],
SVKNN [18] and (range query schemes) PBtree [19], IBtree [20],
and ServeDB [21] randomly partition the dataset. We propose
that the attribute be exploited to improve efficiency. Therefore,
the limitation of these schemes is that they cannot satisfy the
entire conditions. Embracing such properties will make the
SEKNN more appealing to data owners and users [22], [23], [24].
Different from the previous SENN works, the TiveQP scheme
allows for time-restricted access while providing strong security,
result verification, and improved efficiency.

There are three technical challenges to be addressed.

Challenge 1: How to achieve SkNN query processing with se-
cure time-restricted access? Space transformation and encoding
techniques are commonly used to solve the location query prob-
lem. The secure time-restricted access is essentially a privacy-
preserving range query problem. A straightforward approach is
to process the spatial attributes and time attribute separately.
This, however, results in low efficiency. We must integrate the
two problems and perform queries uniformly. To address this
issue, we use a space encoding technique to process locations
and leverage prefix encoding to handle location and time. All
generated codes of a data item are inserted into an Indistinguish-
able Bloom Filter (IBF) [20], that is, a secure index. Each query
is encoded into a trapdoor. In this way, we integrate the two prob-
lems by converting them into a joint keyword query problem.

Challenge 2: How to achieve result verification without vio-
lating result privacy under the existing SKNN framework? The
seminal paper in this line of research is ServeDB [21]. The
authors proposed an effective method to verify the correctness
and completeness of results without introducing a new structure.
For completeness, the CS generates proof information related to
the search paths for the data user to reproduce each step on these
paths. Unfortunately, some key nodes that are leaf nodes are
included in the returned proof. This allows the data user to freely
query any range on the nodes, violating the privacy of unqueried
data items. To address this problem, we propose the concept
of Complementary Set. Instead of proving that a location
does not fall in a region A, we prove that it resides in A’s

complementary region. Specifically, the data owner computes
for each data item three complementary sets for location, type,
and opening time. Each set is transformed into a minimum set
of prefixes. Each prefix is queried into the node IBF to produce
a bit segments. Further, a keyed hash message authentication
code (HMAC) of the segment is computed as a signature. When
proving mismatch, we return the matched bit segment and its
HMAC, instead of the entire IBF or segments, to data user.
Challenge 3: How to improve the query efficiency further
without sacrificing security ? Improving query efficiency without
sacrificing security is a difficult task [25], [26], [27]. To improve,
when constructing a TiveTree of secure indexes, we design a
pruning strategy by first classify the data items according to
their spatial attributes, e.g., type and city, and then constructing a
subtree for each type of location from the bottom to up. By doing
so, we eliminate unnecessary search paths and reduce query pro-
cessing time and result verification time. The query complexity
reduces to O(klog(;2) where ¢ and c are the numbers of types
and cities, respectively.
Our contributions are summarized as follows.
® To the best of our knowledge, this is the first work to inte-
grate time-restricted access with SKNN query processing.
® We propose a privacy-preserving result verification
method. Specifically, we propose the concept of comple-
mentary set: instead of proving that a data item does not
satisfy a condition, we prove that it satisfies its comple-
mentary conditions, preventing privacy leakage.
® Wedesign a simple-but-effective space encoding technique
to process data items and design a pruning strategy to im-
prove efficiency in query processing and result verification.
e We perform formal security analysis, including data pri-
vacy, query privacy, correctness and completeness of query
results. We conduct extensive experiments to demonstrate
that TiveQP has a significant efficiency improvement.
The remainder of this article is organized as follows. We re-
view some related work in Section II. Section Il introduces some
preliminaries. Section IV formalizes the problem. In Section V,
we elaborate TiveQP, followed by the security analysis in Section
VI and performance evaluation in Section VII, respectively. Fi-
nally, we provide some discussions in Section VIII and conclude
the paper in Section IX.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

II. RELATED WORK

In this section, we revisit some related work on SENN query
processing and privacy-preserving range query processing.

A. SENN Query Processing

Lei et al. [17] proposed a secure and efficient query process-
ing protocol called SecEQP. They leveraged a set of primitive
projection functions to convert a location into several feasible
regions. Next, it integrates the regions into an irregular polygon.
Given two locations, the CS compute the proximity of them by
comparing whether their corresponding composite projection
function output codes equal. The codes are inserted into an IBF.
All locations’ IBFs are used to construct an IBF Tree. A data
user computes projection function values and generates a set
of codes as a token. The CS conducts the query processing by
searching the token in the IBF Tree. However, SecEQP cannot
guarantee result verification.

Cuietal. [18] proposed a secure and verifiable k nearest neigh-
bor query processing protocol SVKNN. They adopted Voronoi
diagram to divide the whole area. This space encoding method is
areplaceable unit that is not directly related to their core design.
They design a new data structure, i.e., verifiable and secure index
VSI to support fast query and verification. Next, they propose
several secure protocols and a compact verification method to
facilitate the operation over VSI to support performing the search
over the secure index. However, it uses two CSs and incurs extra
computation and communication overhead.

We claim that most data users look for locations in a general
area, i.e., they do not need to find locations in areas of such
complex shapes (irregular polygon and Voronoi cell). More-
over, these techniques require data users to spend more time
pre-processing the whole area. Thus, we design a simple-but-
effective space encoding technique in this work to save the
computation time for both data users in pre-processing locations
and the CS in searching the index tree.

B. Privacy-Preserving Range Query Processing

Li et al. [19] proposed the first range query processing pro-
tocol that achieves index indistinguishability under the indis-
tinguishability against chosen keyword attack. A data owner
converts each data item (number) by prefix encoding [28]. Each
prefix is hashed, randomized, and inserted into a Bloom filter.
A PBtree is constructed for all data items. A data user converts
a query range into a minimum set of prefixes and computes a
trapdoor. The CS searches the trapdoor in the PBtree to find
a match. Based on PBtree, Li et al. [20] concerned privately
processing conjunctive queries including keyword conditions
and range conditions and proposed a privacy-preserving con-
junctive query processing protocol supporting adaptive security,
efficient query processing, and scalable index size at the same
time. Specifically, they adopt prefix encoding [19] and design
an indistinguishable Bloom filter (IBF), i.e., twin Bloom filter.
A pseudo-random hash function determines a cell location, i.e.,
which twin cell stores ‘1. Instead of building a PBtree, they
construct an IBF Tree.

1241

Spatial attributes
Secure . —
R index] TiveTree ~ \
Time attribute pdex Outsource E ‘Eih

Data lPointers
owner

Classified data
items

Encrypted data Cloud Server

Results
and
proofs

SKNN

query
Aﬁp Spatial attributes
Shared Trapdoor
secret keys Time attibute

Data user

Fig. 1. System model of TiveQP.

Wu et al. [21] proposed a secure and scalable protocol
ServeDB to support multi-dimensional range queries over en-
crypted data. It also considers the malicious assumption for the
CS and then put forth a verification mechanism. ServeDB opens
anew way for result verification in tree-based protocols by lever-
aging the tree index to verify the correctness and completeness
of query results. Specifically, data owners generate verification
information and the CS generates proofs for the data users to
check the results. However, the returned proofs includes leaf
nodes, i.e., Bloom filters, which make it possible for the data
user to query other ranges on the Bloom filters. This is a direct
privacy violation on other data items.

III. PROBLEM STATEMENT

In this section, we introduce our system model, threat model,
and design objectives.

A. System Model

Our system model consists of data owner, data user, and CS,
as depicted in Fig. 1.

e Data Owner has a dataset with n data items (locations):
D ={Ly,Ls,...,Ly,} The data owner encrypts each L, and
builds a secure index B. Each location has two spatial attributes
(location type and a pair of coordinates) and one time attribute
(allowed access time period). The data owner extracts the at-
tributes of L; to build a secure index B by using secret keys
and a unique random number 7. All indexes are classified and
treated as leaf nodes to construct a TiveTree T'R with verification
information from bottom to top. The Chosen Plaintext Attack
(CPA)-secure encryption algorithm Enc encrypts all data items.
Next, the data owner outsources the TiveTree and encrypted data
items to CS, and delegates the query service to authenticated
data users by sharing secret keys with them. The Pointer in
Fig. 1 means that each node index has an address pointing to
the encrypted data for retrieval.

e Data User extracts spatial attributes and time attribute
(access time) of each query location to build a trapdoor to be
sent to the CS. After receiving the search result from the CS,
the data user uses the shared keys and random number to verify
the correctness and completeness of the results, and decrypt the
encrypted data items.

e CS stores the TiveTree and the encrypted data items, and
processes SKNN queries for the data users. When it searches a

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

1242

trapdoor in the TiveTree, it generates corresponding proofs for
result verification. Finally, it returns the query results and the
proofs to the data user.

Now we give the formal definitions of the data model, index
tree model, and the query model.

Definition 1 (Data model): A dataset D is defined as a ta-
ble with five attributes {id, typ, lat,lon,per} and n records
{L1,La, ..., Ly} idistherecord identity and typis the location
type, e.g., bank, store, and cafe. [at is the latitude of location and
lon is the longitude of location. per is the allowed access time
period.

Definition 2 (Index Tree model): A index tree TR is defined
as a binary tree with n leaf nodes and n — 1 non-leaf nodes. A
leaf node consists of an IBF B, a hash value HV, a pair of string
set and HMAC set (bit, H) for its Location Complementary
Set (LCS), a pair of string set and HMAC set for its Time
Complementary Set (TCS), a node number, and a pointer to an
encrypted data item. A non-leaf node in a subtree of a specific
type consists of an IBF, a hash value HV, two similar pairs of
string set and HMAC set. A non-leaf node above the subtree
consists of an IBF, a hash value HV, a pair of string set and
HMAC set for its tYpe Complementary Set (YCS). 7R is built
in a bottom-up fashion in two phases: 1) Within each subtree,
the data owner merges two child nodes until the subtree root by
computing new B, HV, (bit, H) for LCS, (bit, H) for TCS. 2)
Staring from the subtree roots, the data owner merges two nodes
by computing new B, HV, (bit, H) for YCS.

Definition 3 (Query Model): A query Q) is defined as) =
(typ,lat,lon, time, k) where typ is the location type, lat and
lon are the latitude and longitude of current location, time is the
time at which the data user will visit the location. For example,
Alice wants to securely query a CS whether her nearest three
cafes are open at 9:00 am. A SQL query is select % from data
items where type = “cafe” and grid = G(lat , lon) and time =
0900 and k = 3. Here, g(-,-), given a location, outputs a grid
identity.

Now we formulate the five algorithms of TiveQP in Definition
3. Setup generates secret keys and a random number. Index
builds the secure indexes and a tree. Trapdoor builds a trapdoor.
Query assists the CS in searching encrypted data items by using
the tree and the trapdoors. Verify verifies the correctness and
completeness of query results.

Definition 4 (Verifiable Multi-Dimensional Query): Our ver-
ifiable multi-dimensional query processing scheme is a tuple of
five polynomial time algorithms:

Setup(1*) — (sk, sk’,SK,r): is a probabilistic key gener-
ation algorithm executed by data owner. It takes a security
parameter A as input, and outputs two secret keys sk, sk’ to
encrypt data items and compute HMAC, a set of hash keys
SK ={k1,ka,...,km+1} and a random number 7.

Index(D, sk, sk',SK,r) — (€, TR): is a probabilistic algo-
rithm executed by data owner. It takes a location dataset D,
two secret keys sk, sk, a set of hash keys SK, and a ran-
dom number 7 as inputs, and outputs the encrypted data items
E={F,Fs,...,E,}and aTiveTree TR. TR is constructed
by nodes of IBF and each leaf node v has a secure index B, and
verification information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Trapdoor(SK, Q) — T): is a deterministic algorithm exe-
cuted by data user. It takes a set of hash keys SK and a query ()
as inputs, and outputs a trapdoor 7.

Query(TR,E,r,T) = (R,7): is a deterministic algorithm
executed by the CS. It takes the TiveTree 7R, a ciphertext set
&, arandom number 7, and the trapdoor 7 as inputs, and outputs
the query result set R and a proof set 7.

Verify(T, R, m, sk, sk', SK) — (1/0): is a deterministic al-
gorithm executed by data user to verify the query results. It takes
a trapdoor T, a query result set R, a proof set 7, two secret keys
sk, sk', and a set of hash keys SKC as inputs, and outputs 1/0 for
accept/reject.

B. Threat Model

Different than the semi-honest model in existing work [17],
[19], [20], we consider a stronger adversary. Besides being
curious about data items, indexes, and queries, it can tamper
with the query results or search a part of the dataset. In reality,
the attacks are from the CS being compromised by adversaries or
some rogue employee. We adopt the adaptive INDistinguishable
under Chosen Keyword Attack (IND-CKA) threat model [29].

C. Design Objectives

Security: For attacks from semi-honest entities, we leverage
secure indexes and trapdoors to protect privacy. Data privacy.
The adversary cannot learn anything useful about the data items
from the secure index and encrypted data items; Query privacy.
The adversary cannot infer anything useful about the location
query from the trapdoor; Result privacy. The data user cannot
know anything about the unmatched data items more than the
fact that they do not match.

Verifiability: For the attack from malicious CS, we design
a privacy-preserving and efficient method to allow data users
to verify the query results R. There are two requirements to be
satisfied. Correctness. Each returned data item L is not tampered
and is the real date item in the original dataset L € D.

Completeness: All returned data items are answers to the
SEKNN query while and all other data items are not.

Efficiency: TiveQP should achieve low query latency, i.e., a
data user receives a result set and a proof set within sublinear
query processing time.

IV. PRELIMINARIES

In this section, we briefly revisit four underlying techniques
for structuring TiveQP, namely space encoding, prefix encoding,
IBF, and Merkle tree.

A. Space Encoding

In the proposed space encoding technique, a data owner
extracts the location (lat, lon) of each data item di. The location
is projected into a fixed grid g with a grid identity and then
expanded to a wider area G(lat,lon), e.g., a set of nine grids
covering g. Next, the data owner transforms G(lat,lon) into a
minimum set of prefixes M .S. A data user extracts a grid identity

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

TABLE II
KEY NOTATIONS OF TIVEQP

Notation Definition

L,D,FE, Data items, data set, encrypted data item
B,r IBF, random number

k, TR Number of query items, TiveTree

di,id, typ, lat, lon, per
lat, lon, per

Data item, record identity, location type
Latitude, longitude, access time period

HV, H,bit Hash value, HMAC, bits of HMAC
q,G(.), G Grid, grid function, a set of girds
MS,F(.),PF Minimum set of prefixes, prefix family
w,{x1,x2, -+ ,x;},pr | Bitlength, prefix string, prefix

N, m Number of cell twins and hash functions
{hi,ha, -+ ,hm} Pseudo random hash function

SK Secret keys

T, 1 Trapdoor, type trapdoor

T2, T3 Location trapdoor, time trapdoor

v, root Node, root node

result_num, R Element number in result set, result set
€ Encrypted data item

z Number of row in a trapdoor

s Proof set

A Adversary

covering the current location and computes a prefix family that
will be matched with M S.

B. Prefix Encoding

Given a number z of w bits with a binary format be-
ing x1xg ... x,, its prefix family F'(z) is the group of w +
1 prefixes {1@g « + + Ty, 1T+« Typ1%,+ + oy T K - v ok, % % - -
-+}. Given a range [A, B, we transform it to a minimum set of
prefixes M F([A, B]) satisfying the condition that the union of
the prefixes is the same as [A4, B]. For a number x and range
[A, B], z € [A, B] if and only if F(x) N MF([A, B]) # 0.

C. IBF

AnIBFis an array B of N cell twins, m pseudo random hash
functions hq, hs, - - -, by, and a random oracle H. H is used
to determine which cell stores ‘1’. A keyword kw is hashed
to m twin cells Blhy(kw)], Blha(kw)],- - -, Blhm (kw)]. For
each of the m twins, H determines the chosen cell location
H(hpt1(hi(kw)) ®r) and 7 is a random number. We set its
value to be 1 and the other cell’s value to 0.

D. Merkle Tree

Merkle tree is a complete binary tree equipped with a function
hash H and an arbitrary function A. For two child nodes, n; and
n,, of any non-leaf node, n,, the function A of n, is A(n,) =

H(A(n)[|Anr)).

V. PROPOSED SCHEME

In this section, we first give an overview of our proposed
scheme and then dive into the details. We list the key notations
of TiveQP in Table II.

A. Overview

We present index tree in Section V-B. We show how to
compute a trapdoor in Section V-C. We show how to an-
swer multi-dimensional location queries and generate proofs in

1243

Keyword (open/close) extraction
Period/timestamp extraction

Keyword (type) extraction
Space encoding

Prefix encoding Prefix encoding

Query

Insert into Generate Verify
IBF-based indexes | verification information v results
Trapdoor
Check membership in IBFs to locate results
Generate proofs

Fig. 2. Overview of the TiveQP scheme.

Section V-D. We discuss result verification process in Section
V-E. The TiveQP overview is depicted in Fig. 2.

We use space encoding to convert the location information
of data items into a set of grid set encodings, and use prefix
encoding to convert the access time of data items into a set of
time minimum prefix set encodings. We integrate the problems
of access time and location information into a joint keyword
query problem by inserting these two sets of encodings into
the same IBF. Only trapdoors that satisfy both access time and
location can retrieve data items.

B. Index Building

We assume that the service region is divided uniformly into
a set of girds G = {g1, g2, ...}. We consider time period from
“00:00” to “24:00” and encode each half an hour as a unit, which
turns the time period to [0, 47].

We assume that the data owner and the data users share m + 1
secretkeys SKC = {sky, ska, ..., skpy41} and arandom number
r. m pseudorandom hash functions hq, heo, ..., h,, are built
as h;(.) = HMAC(.)%N (1 < i < m). Another pseudorandom
hash function is defined as h,,+1(.) = HMAC,,,11(.). H is
a hash function defined as H(.) = SHA256(.)%2. Check
(B, kw) checks whether a keyword kw exists in an IBF B.
Here, a keyword is an element in a trapdoor. For example,
T ={110,11%,1 % *} has three keywords. QuelLoc(B, kw)
outputs the a set of location values by querying a keyword kw
in an IBF B.

A data owner has a location dataset D = {Lq, Lo, ..., L,},
where each data item L; is a location with identity, location
type, latitude, longitude, and opening hours as shown in Fig. 3.
For example, “Bank” is transformed into type “100” and then
a minimum set of prefixes. The similar operations are applied
for location and opening time. Then the data owner computes,
stores, and uploads the encrypted data items £ and a TiveTree
TR. First, the data owner encrypts each L; to a ciphertext
Enc(sk, L;). Second, the data owner computes a secure index
for each L; as follows.

e Extract (typ;, lat;, lon;, per;).

e Given the two coordinates, locate the location in a grid set
G(i) = G(lat;,lon;), e.g., a burger shop is located at a grid g4
and its service area covers G = {go, g1, .-, Js}-

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

1244

[EROES NGRS R ook > 100 >

ID | Type | Lat | Lng | Opening hours
Ly | Store | xxx | xxx 08:00-21:00
L, | Cafe |yyy | yyy | 07:00-20:30 ° °
2 (Lat,Lon) i> i>
L; | Store | zzz | zzz 08:30-22:00]

08:00-
12:00 C> ues o>

Lml Bank l XXX I yyy I 08:00-12:00

01100100,0110010%,011001**,

0000111,000100*
0010001,001001*
0011011,001110*

010%**

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Root

Insert w;

Lg Ly Lg LgLsg

Ly L, Ly Ls
1. Location 2. Type, 3.1D, grid 4. Prefix family, o .
dataset location, period set, range minimum set of prefixes 5. IBF (secure mix index) g 6. TiveTree
01100100,0110010%, 51
v i> 100 011001**,01100%**,
Query set Ban 0110%***,011%****,
T, Y = ” o1reeresgeereess {hi(w), hea(h(W)),..,
ype | tat | e Ime hdw), he.a(h(w)),
Bank | aaa | aaa 0900 6 i> [_] 0010010,001001*%,00100**, Generate « o Verify
) ° 0010tt*,001tx*»'00tt*at' A
Gym | bbb | bbb | 2000 5 (tatlon) 11 T purks xewannn hi(w), hea(h(W)), .., results
Zoo | ccc | ccc | 1430 1 010010,01001*0100**, hw), hesa(h(w))}
09:00 i> 18 i> 010%%* Q1***= Qrrrss.
1. Query 2. Type, 3.1D, 4. Prefix 5. Pairs of hashes
set location, time grid, range family (trapdoor)
Fig. 3. Example of TiveQP.
3.1 Queried bits and HMAC values
L(N:) ={Ls, L7 Lg Lo} for key nodes
{wy, {wy, {wy, {wy, UMN {PLCI; } b
W, W, W, W, 1P2; -+ its,S
********* -»> } } } } in subtrees + TCS I::> bits,S
1,P2,}
UMN YCcs
,,,,,,, WD2,eee > bits,S
| Subtree N above subtrees+ {pupa--} s
}o/types 2
} 3.2 A hash value for each node
| HV(N;)=hash(HV(N;5)+HV(N;6))
} Blh{(w)[H(hea(hi(w))) ©r)]=1 N
| Blh{(wi)l[1-H(he.a(h{w;) ©r)]=0
.. B AT y N. N.
04 0 |1 A0 .. 0 = 16
T - —= HV(N;s)= HV(N16)=
1}170]0|0] ... 1 hash(E2) hash(E,)
1. Construct 2. Encode 3. Compute
TiveTree each node verification information
Fig. 4. TiveTree index and query processing.

e Generate a random number 7, insert each prefix pr in
G(i)’s minimum set of prefixes into an IBF B; by setting
Bilho(pr)|[H (s (ho(pr)) @ 1)) = 1 and Bilho(pr)][L —
H(hpmii(ho(pr)) @r)] =01 <o <m).

e Encode per; into a minimum set of prefixes MS; [19] and
insert each prefix into B;, e.g., “08:00-12:00” is encoded to
{010 = #x}.

Next, the data owner constructs a TiveTree 7 R as follows.

e Classify and order indexes according to type and coordi-
nates; for each type, construct a subtree from bottom to up with
corresponding indexes as leaf nodes as shown in Fig. 4.

e In each subtree, for the each data item di on a leaf node
v, compute the Location Complementary Set (LCS) and Time
Complementary Set (TCS). LCS is the grid identity set of the
regions that are outside the regions covering the location of d:.
For example, there are 15 grids in total and the current data item
locates in grid 8, then its LCS is [1,7] U [9, 15]. Its minimum
set of prefixes is {0001, 001,01 % %, 1001, 101%, 11 * x}. If a
query’s location falls into the complementary region of a node,

we can prove that the query does not match the IBF of the
node. TCS is the time period set that are the closed hours of
di. For example, the opening hour per,, = “08 : 00 — 12 : 00",
then its TCS is [0000,0800] U [1200,2400] transformed
into [0,15] U [24,47]. Tts minimum set of prefixes is
{0 % % % %, 11 % %, 10 * 1« }. Foreachkeyword w; in LCS, com-
pute bits,; = QuelLoc(B,,w;) and S,; = HMAC (bits,;).
Define bits, and S, as two sets containing all computed
{bitsy;}, {Sy;}. For TCS, compute bits, and S, similarly.
{bits, S} is a proof of completeness. Afterward, compute a
hash value HV,, = hash(FE,) as a proof of correctness.

e In each subtree, for each non-leaf node v except subroot,
merge the complementary regions of the two child nodes and
build a new LCS (TCS) to compute bits, and .S, ; compute B,, =
Bleft + Bright and HVU = haSh(H‘/left + HV;’ight)-

e For all subroots v and their father nodes, com-
pute B, = Bi. + B;; and HV, = hash(HV,. + HV,;), in-
sert typ; into B;, insert the tYpe Complementary Set
(YCS) to B, and compute {bits,,S,}, e.g., if there are

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

63 types of locations, typ, = 20, YCS is the encoding of
“[1,19]A[21,63]” which is {000001,00001x,0001 * %, 001
sk, 0100 # #,010101, 0101 1%, 011 s sk, 1 s s sk sk .

Finally, the data owner outsources (£, TR,) to the CS and
shares HV,,,; with data users.

C. Trapdoor Computation

A data user has a location query () and computes a trapdoor
T = T1 UT2UTs. Here, the three sets are prepared for type,
coordinates, and time, respectively.

e Extract (typ, lat, lon, time) of (), compute three prefix fam-
ilies PF1, PFa, and PF5 [19] for typ, g(lat,lon), and time,
e.g., “09:00” is encoded to {010010,01001%,0100 x* %, 010
sk 01 sk ok ok ok 0 sk ok sk skok ok ok ok ok ko

e Insert (ho(pr),H(hmH(ho(P”)g))

i
3
m
A,
J
N
5
—t
]
o
o
=
[=N
5
w2
[¢]
=3

=

S

)

i

3

=
>

3

+
=

—
S

i

=

~—

N~—

(1 <o<m,pr e PFs3)into T3.
e Send 7 to the CS and await the query results and proofs.

D. Query Processing

We answer a query by looking up the codes in IBFs of the
nodes in the TiveTree. For each node v, we check whether a
query has the common element with the prefixes in v through
mapping each element in the trapdoor on the IBF of v. During the
query, the CS also searches proofs for three types of evidence
nodes. The idea is to locate a prefix in the trapdoor that can
be queried to match a string in bits,, i.e., the prefix matches a
complementary set (s) of the index.

Before we dive into the search details, we introduce three
types of evidence nodes. ¢ Matched Leaf Node (MLN). The
leaf nodes that correctly answer the location query. All potential
query results are stored in these nodes. ¢ UnMatched Node
(UMN): The unmatched non-leaf nodes and leaf nodes that
do not satisfy the query. The search stops on these nodes.
e UnNecessary Node (UNN): The nodes that do not need to
be searched when we have obtained £ matched data items. The
three evidence nodes are defined to classify nodes and help the
CS generate verification proofs during search. Their differences
reside in how they match the search conditions.

The CS searches the 7R from top to bottom as follows.

e Set the current search node v as the root 7R.root and set
result_num = 0.

e Before the search enters a subrtee, check Check(B,, 77).
1) If Check(B,, T1) = 1 and v is a left node, set v’s right child
as UNN temporarily and search 7 along v’s left subtree and
then right subtree; if Check(B,,71) = 1 and v is a right node,
remove the previously set UNN mark and search v’s subtrees.
2) If Check(B,, T1) = 0, i.e., among the |71| = z * m pair of
hashes {(Tilj,Tfj)}, foralliandone j,1 <i <z, 1<j<m,
By[TY)[H(T @ r)] = 0, mark v as UMN and stop searching.

For the UMN, we generate proofs as follows. 1) Locate
the first prefix w; € T; that satisfies QueLoc(B,, T1) € bits,.
In this way, we obtain a proof that) does not match D by
proving that typ falls in the type complementary set. 2) Insert
{wi, bit s, Syj, HVv} into .

1245

[] MLN: Matched leaf node
=2 7] UMN: UnMatched node
[] UNN: UnNecessary node

No

Pathl Path2

of Q;: of Qz:

N{) NO
VAR
N; N,
J/ J/
N,y Ns
J/ J/
Ny Ni
J/

Nm

UMN

Fig. 5. Result verification tree for UMNs, MLNs, and UNNs.

e The above search recursively applies to the subtrees until
the subroots, check the 77 the last time to decide whether to
search 77 and 75 in the subtrees.

e In each subtree, a node v, check Check(B,,7s) and
Check(B,, T3). There two conditions. 1) If both queries are
successful: v is not a leaf node, set/remove UNN and continue
to search the subtrees similarly; v is a leaf node, mark v as MLN,
insert { HV,,} into 7, insert { £, } into result set R, and add 1 to
result_num. If k data items are found, we stop the recursion
and return to insert 'V of all UNNSs to 7. 2) If there exists one
unsuccessful query, mark v as UMN and stop searching, search
w; in the other trapdoor set, and update 7.

e Return (R, 7).

E. Result Verification

With the returned proof 7, the data user uses 7 to verify the
correctness and completeness of the result set R.

Verifying Correctness: The data user needs to verify both
whether R is correct and whether the CS creates R itself. First,
the data user decrypts the £ from R and checks whether her/his
query matches the data items in plaintext. Second, the data user
recomputes the value of the root hash’(root) from bottom to up
based on the Merkle Tree [30] by using the hash values { HV'}
of evidence nodes from 7. If hash’(root) equals to the data
owner’s hash value hash(root), the data user is convinced that
‘R is authentic and the evidence nodes are true nodes of the
TiveTree.

Verifying Completeness: In query processing, a trapdoor 7
is processed from the root toward the leafs. The query process
terminates until the trapdoor matches a leaf node or the trapdoor
does not match the TiveTree index. Each matched data item has
a search path, for which we mark the evidence nodes. Hence,
using the UMNs, MLNs, and UNNS, a data user can reproduce
the query process from bottom to up for each path.

As shown in Fig. 5, we use the Path 1 and Path 2 as two
examples. Assume the query with & = 2 matches L4 and Lg. Ny
matches the query for having L4 and its left child node is marked
as UMN for not matching the query. The search continues in the
right subtree of [V} until the node N;g matches the query which

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

1246

is marked as MLN. Finally, the Path 1 is Ny - Ny — Ny —
Ng — Nig. On Path 2, we notice there are two UNNs, N5 and
Ng. They are marked because we obtain k = 2 data items when
the search reaches N1;. Therefore, we do not need to search N1
or Ng. For each search path, the union of UMNs, MLNs, and
UNNSs must reproduce the search faithfully. If the CS ignores
some nodes on purpose, the result set will be incomplete.

VI. SECURITY ANALYSIS

We prove that the TiveQP is secure under the adaptive IND-
CKA model. We use HMAC and SHA256 to implement the hash
functions hq, ho, ..., hy41 and H, respectively. A function is
a pseudo-random function if and only if the function output and
the truly random function output cannot be distinguished by a
Probabilistic Polynomial Time (PPT) adversary [31], [32]. A
PPT adversary A can view its past queries and corresponding
trapdoors, results, and proofs before selecting a future query in
simulation.

To prove TiveQP is secure under adaptive IND-CKA model,
we first construct a PPT simulator S that can simulate future
queries. Next, we show that A which interacts with S is chal-
lenged to distinguish between the real secure index and ones
from S with a non-negligible probability. Formally, a query pro-
cessing scheme is secure if a PPT adversary .A cannot distinguish
the a real index generated by pseudo-random functions from a
simulated index generated by truly random functions, with a
non-negligible probability:

|Pr [Real 4 ¢(1") = 1] — Pr [Ideal 4 5(1*) = 1] | < negl(%),

where negl(A) is a negligible function. We define two leakage
functions as follows:

e L1(D) = (n,N,TR,|E|): Given the location dataset D,
L1 outputs the dataset size n, the IBF bit length N, the TiveTree
TR, and the ciphertext bit length | E|.

e Lo(D,Q) = (a(Q), B(Q),~(Q)): Given a location dataset
D and a location query @), Lo outputs the data item id returned
by a query «(Q), the search pattern 5(Q), and the path pattern
Y(Q)-

Theorem 1 (Security): TiveQP is IND-CKA (L1, L2)-secure
in the random oracle model against an adaptive .A.

Proof: We first construct S that simulates a view
V*=(TR",T*,E") based on the information returned by
L1(TR,D) and L2(TR, D, Q). Next, we show that A cannot
distinguish between V* and the real adversary view A.

e To simulate 7R, S first builds an identically structured
TiveTree. S acquires N from £, and sets up an IBF B,, for each
node v in the 7'R. In the ith cell of B,,, S sets B,[i][0] = 1 and
B, [i][1] = 0 or vice versa. The twin is determined by tossing a
coin. Next, the S associates B,, with a randomly chosen number
r. For the verification information, S randomly chooses a grid
for each leaf node, computes corresponding LCS and TCS, and
generates bits, and S,. S continues this steps until the subtree
nodes and computes YCS for each node until the root. Finally,
S returns 7TR" to the A. Each IBF B, in TR" has the same size
as the one in 7R. Their ‘0’s and ‘1’s are equally distributed.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE III
PARAMETER SETTINGS (BOLD: DEFAULT VALUES)

Value
20000 40000 60000 80000 100000
20 40 60 80 100

Parameter
Number of data items n
Location type ¢

Grid width gw (km) 12345
Query parameter k 15101520
[sk[, [sk], ki, |r] 1024

m 5

FPR 1%

1: t corresponds with n.

Therefore, the A cannot distinguish the simulated 7R* from
the real TR.

o To simulate 7, S knows if a received () has been processed
from Ls. If so, S returns the previous trapdoor 7 to 4. Other-
wise, S generates a new trapdoor 7 * that is a set of m-pair of
hashes. Given the access pattern from Lo, S knows which data
items match 7. For the MLF, S generates the output by using H
to select e-pair of hashes while satisfying that the selected hash
pairs match the MLF. For the unmatched leaf node, S generates
the output by using the random oracle to mismatch the 7 with
the leaf node. The e-pair of hashes is 7. Since the trapdoor is
generated by the random hash functions, A cannot distinguish
T from the real trapdoor.

e To simulate £*, S first acquires n and |E| from £;. Next,
S simulates the ciphertext set with random plaintexts and the
known CPA-secure encryption algorithm Enc. S has to make
sure that the size of the simulated ciphertext is the same as the
one of the real ciphertext.

To sum up, the simulated view and the real view are indis-
tinguishable by A. Therefore, TiveQP is adaptive IND-CKA
(L4, L2)-secure in the random oracle model against an adaptive
adversary, i.e., the index privacy and query privacy are achieved.
Furthermore, the CS does not return the IBF of leaf node to the
data user as [21] did but only returns one bit string and one
HMAC. The data owner can only validate the mismatching of
query, but cannot insert the trapdoor of other queries on the IBF.
Therefore, result privacy is achieved. (]

VII. PERFORMANCE EVALUATION

In this section, we introduce our experiment settings (dataset,
parameters, baselines, and setup) and analyze the performance
of each phase in detail.

A. Experiment Settings

Dataset: We use a dataset of Yelp’s businesses and user data
from 836 cities in the US and Canada [33], [34]. We upload
all source codes, processed datesets, and an instruction file to
https://github.com/UbiPLab/TiveQP. Given that the size of the
original dataset is too large (4.9 GB), we only provide a link.

Parameters: We vary n from 10,000 to 100,000, location type
t from 20 to 100, gird width gw from 1 to 5 km, and % from 1
to 50. According to the FPR equation [19], [35], the resulting
size of an IBF ranges from 24 to 120 KB. The detailed parameter
setting is listed in Table III. The default value of n is set to 20000

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

https://github.com/UbiPLab/TiveQP

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

—=—PBiree —+ IBree —+— ServeDB
SecEQP —e— R*-Tree
<« TiveQP —>— TiveQP without type

—=— PBtree —— |Btree —— ServeDB
SecEQP —e— R*-Tree

10-—>— TiveQP without type < TiveQP

Construction time (min)
Construction time (min)

i
/f
e
P I — = X X
20000 40000 60000 80000 100000 1 2
Number of data items n

4 5

3
Grid width gw

(a) Construction time varying n (b) Construction time varying
gw

20 -—*— PBtree —o— |Btree—4— ServeDB
SecEQP —e— R*-Tree
1—>— TiveQP without type —

6
—=— PBtree —e— |Btree —+— ServeDB
SecEQP —e— R*-Tree
—»— TiveQP without type —«

TiveQP|

TiveQP

3 o

Index size (GB)

~

Index size (GB)
o
o4

°
o

20000 40000 60000 80000 100000 1 2
Number of data items n

3 4 5
Grid width gw

(c) Index size varying n (d) Index size varying gw

Fig. 6. Performance of tree construction.

after we review the experimental settings of state-of-the art and
it is a relatively high value for query processing.

Baselines: To evaluate the query performance of secure multi-
dimension query framework, we compare TiveQP with six base-
lines: 1) PBtree [19] supports range query on single dimensional
data. 2) IBtree [20] achieves conjunctive query processing by
using IBFs. 3) SecEQP [17] is based on projection-based func-
tions and IBFs to encode locations. 4) ServeDB [21] facilitates
multi-dimensional and verifiable range query. 5) R*-Tree [36]
is a dynamic tree for indexing spatial information. 6) TiveQP
without type is similar to TiveQP but it has not type in the data
items.

Setup: We implemented TiveQP in Java and conducted experi-
ments on a PC server running Windows Server 2021 R2 Datacen-
ter with a 3.7-GHz Intel(R) Core(TM) i7-8770 K processor and
32 GB RAM. We used HMAC-SHA256 as the pseudo-random
function to implement the hash functions of IBF. We used AES as
the symmetric encryption algorithm. Since AES can be used for
TiveQP and other schemes when encrypting data items, we focus
on the index and remove the encryption results in comparison.

B. Tree Construction

With n increasing from 20 to 100 K and gw increasing from
1 to 5 km, the construction time of TiveQP grows from 3.58 to
19 minutes, and decreases from 3.58 to 1.54 minutes, respec-
tively. In Fig. 6(a) and (b), the tree size, w.r.t. different n and
gw, grows from 2.89 to 14.37 GB, and decreases from 2.89 to
2.34 GB, respectively.

It is obvious that the construction costs increase linearly with
n. The costs reduce with gw because each grid covers more
space and the number of grids decreases when gw becomes
bigger, thus reducing the size of minimum set of prefixes MS
and the size of location complementary sets. The effect of gw
on tree construction is small since the total size of bits and Hv
is much shorter than the IBFs.

1247

We notice that the leftmost green dot drops rapidly to the next
one in Fig. 6(b). This is because when gw increases from 1 to 2,
the size difference of the two corresponding complementary sets
is bigger than the ones after, leading to more hash operations.

The generation of verification information dominate the con-
struction time because we need to compute the complementary
sets of each node and then compute bits and Hv. Such compu-
tations consume more time than the hash operations of IBFs on
leaf nodes.

The size of an IBF corresponds to the total number of prefixes
inserted to the IBF. The IBFs dominate the size of the tree. For
example, when n = 20,000 and gw = 1 km, the tree size is
2.893 GB while the size of IBFs is 1.863 GB. This is because 1)
an IBF has a long size in order to maintain the F'PR give fixed
n and m; 2) each of the three complementary sets for a leaf
node produces a small set of prefix family that leads to a small
communication overhead, and the three complementary sets will
become smaller as the nodes merge upward; 3) each string in
bits has m bits with an identifier, both the elements in the HMAC
set S, and the hash value HV are 256 bits. Experimental results
show that the construction cost of TiveTree is acceptable.

C. Query Processing

The time complexity of query processing is O(klog(%)).

Average time: Fig. 7(a) to (c) show the query delays w.r.t.
varied n, gw, and k, respectively. Experimental results indicate
that the query processing time is in ms scale.

1) Varying n. When gw = 1 and k = 10, the average query
processing time of TiveQP requires around 10 milliseconds.
It does not increase with n because 1) we use all data items
of queried type in the five sets of experiments such that their
total number stays unchanged and 2) the desired data items
are arranged closer on the leaf level after we organize the tree
according to type and city, i.e., they are placed in a small subtree
from the overall structure of the index tree. 2) Varying gw. When
n = 20,000 and k£ = 10, with the grid width increasing from 1
to 5 km, the average query processing time decreases from 10.1
to 6.2 milliseconds. This happens because as w increases, the
prefix number in the location trapdoor becomes less, which leads
to less hash operations and then less search time. (3) Varying
k. When n. = 20,000 and gw = 1, with k increasing from 1 to
20, the average query processing time grows from 2.5 to 19.8
milliseconds. This is obvious since more queries will lead to
more search paths and time.

Communication Overhead: Fig. 7(d)—(f) show the commu-
nication overhead w.r.t. varied n, gw, and k, respectively. The
communication overhead does not change much with n either
because for the same reason in query processing. When gw
increases, the grid number decreases and the size of grid codes
decreases, thus reducing the communication overhead.

D. Result Verification

The data user verifies the correctness and completeness of the
result. We record the average verification time w.r.t. n, gw, and
k. Fig. 8(a)—(c) show that the time is almost constant with varied
n and gw. We attribute this advantage, i.e., near “immunity” to

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

1248

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

50
80 -—=— PBtree —e— |Btree —— ServeDB

SecEQP —e— R*-Tree

70 ~—>— TiveQP without type —«— TiveQP

N
S

—=— PBtree —e— |Btree —— ServeDB 80
SecEQP —e— R*-Tree
—— TiveQP without type —«

—=— PBtree —o— |Btree —— ServeDB
SecEQP —e— R*-Tree

TiveQP 70 -—>— TiveQP without type —<«— TiveQP

@
S
L

Average query time (m:
5
Average query time (ms
w
o
L

N
1=}
L

2o @
S © o
! ! L

Average query time (ms)
@
o

=)
L

-~ ¢———————¢——————4

T T T T
40000 60000 80000 100000 1 2

Number of data items n

T
20000

(a) Average query time by varying n

3
Grid width gw

(b) Average query time varying gw

Query parameter k

(c) Average query time varying k

120
—a— ServeDB —a— ServeDB 200 {—*— ServeDB
200 1+—— TiveQP without type —— TiveQP without type —— TiveQP without type
—<— TiveQP 100 4—<— TiveQP <— TiveQP
150 4 E“\L\‘\. 150 4
— ~ 80 - —
))
3 2 2
(] [Q
N N 60
100 % &0 3100
o S N
g 8 8
i @ 404 o
50 - 50
y/,—,k"*/' 20 »\v‘>—_>“,
——
< 4 <
T T T T T 0 T T T T T 0 r T T T T
20000 40000 60000 80000 100000 1 > 3 4 5 1 5 10 15 20
Number of data items n Grid width gw Query parameter k
(d) Proof size varying n (e) Proof size varying gw (f) Proof size varying k
Fig. 7. Performance of query processing.
12 20
24 4—4— ServeDB —A— ServeDB SgrveDB -
] TiveQP without type »— TiveQP without type 18 4—p— T!veQP without type|
T o0 % TiveQP gm 4—<—TiveQP Tg 16— TiveQP
o 18 ° @ 14 4
E 6 £ 8+ ‘\A\‘\.—‘ £
=161 = c 124
S1al 8 2
= = T 104
8121 S 8 £
= E o 84
010 [;
S, 8- 8 41 2 6
g o]
@ 64 [} > 4
<] 2.] R —
5] . - “ +———«¢ «— ¢ 24 | a— —————<———=
— —————+—— ¢ <«
0 T T T T r 0 . . : . . o T T T T T
1 2 3 4 5
20000 40000 60000 80000 100000 1 2 4 5

Number of data items n

(a) Average verification time varying n

Fig. 8. Performance of result verification.

n and gw, to the method that TiveQP builds the index tree after
careful structure organization. The time grows slightly with &
because the user has to check more proofs from more search
paths.

E. Comparison

In index construction, PBtree has a lower cost because it
1) uses a Bloom filter as index leading to less hash operations
(only on leaf nodes) and half index size, 2) avoids logical OR
operations when building the tree upwards, and 3) does not
compute any verification information. The costs of IBtree and
SecEQP are lower for not generating verification information.

3
Grid width gw

(b) Average verification time varying gw

Query parameter k

(c) Average verification time varying k

IBtree and SecEQP have an index tree of the same size for using
the same IBF. ServeDB costs more than TiveQP because it uses
multiple levels to encode locations, inserts data items into a
Bloom filter for each node, and computes a HMAC for each
Bloom filter segment of each node, thus involving more hashes.
ServeDB’s index size is larger than TiveQP’s (after gw = 1) be-
cause its verification information contains many HMACs, even
using Bloom filter as index. For example, when n = 20, 000, the
size of HMACs sums to (20000 % 2 — 1) = IN/200 * 256bits =
1.192 GB. The construction cost of TiveQP without type is
higher than TiveQP because it computes and contains more
pairs of bits and S for non-leaf nodes above the subtrees. The
construction cost of R-Tree is the lowest because in only uses

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

five-dimension points to create node indexes when inserting data
items. However, it reveals data privacy. We did not introduce the
update and delete property which the existing work (PBTree,
IBTree, SecEQP, and ServeDB) did not mention either. All the
trees support the two properties by recomputing a new leaf
node and its father nodes and deleting a leaf node and updating
its father nodes. Compared with other trees, TiveTree is built
in a bottom-up fashion as IBtree and SecEQP. Each node in
the TiveTree has an IBF index. All nodes in TiveTree contain
verification information in each node for result verification as
in ServeDB. In query processing, PBtree, IBtree, SecEQP,
and ServeDB spend more time for two reasons. First, they
process three types of data: type, location, and time. Second,
they randomly partition the data items without considering the
spatial attributes of data items when building the index. This
in turn causes more search paths than TiveQP, thus resulting in
more hash operations and more query processing time. Specifi-
cally, PBTree’s query time exceeds other schemes for using one
HMAC and one modular operation in processing each prefix.
SecEQP’s query time is higher than the one of IBtree for using
multiple coordinate systems. ServeDB has extra query time for
using multiple levels to encode locations that involves more hash
checks on Bloom filters. It has a higher communication cost than
TiveQP for transmitting more proofs that include the Bloom
filter and HMAC:s of each key node. The query time of R*-Tree
is higher than TiveQP because the search on multi-dimension
points spends more time than IBF hashes.

In result verification, ServeDB consumes more time because
its data user 1) verifies the correctness by using Merkle tree,
2) verifies the correctness of Bloom filter for each key node, 3)
re-maps the trapdoors for each key node to verify the correctness
of matched trapdoor set U M T and matched trapdoor set MT,
and 4) verifies the query process in each search path. Specifically,
the second step involves many Bloom filter hashes and checking
HMAC:s.

The cost of TiveQP without type is always higher than TiveQP
for computing extra LCS in construction and performing addi-
tional checks on location and time above subtrees in querying.
Comparison shows that TiveQP provides an advantage in query
processing and result verification. The construction is an one-
time and offline process, which will not impact the efficiency
greatly. The accuracy of TiveQP is the same as IBTree and Se-
cEQP for using IBF as index. Since itis well studied and the page
numbers are limited, we do not provide accuracy comparison.
We do not compare with SVKNN because 1) We are different in
index, system model, and techniques; 2) SVKNN requires two
servers to execute secure grid computation and Paillier encryp-
tions/decryptions, resulting in 560 seconds (n = 2000, k = 20)
while ours is 10 ms (n = 20000, &k = 20).

VIII. DISCUSSIONS

In this section, we discuss two relevant issues, namely local
processing and time period.

A. Complementary Set

The complementary sets of location, time, and type are pro-
posed to verify query results without violating the privacy of

1249

other data items. After the data owner uses space encoding and
prefix encoding techniques to calculate the complementary sets
of location, time, and type, the complementary sets are inserted
into the IBF for data users to verify during the validation phase.
Therefore, the complementary information will not be stored,
but the inserted IBF will be sent to an untrusted cloud server and
stored for verification.

The differences in applying the complementary set to location,
time, and type is preprocessing. In specific, they have different
format that leads to difference preprocessing operations to unify
them into an appropriate format for prefix encoding.

B. Local Processing

It is feasible for the CS not to process the time query but
the data user does it locally. However, this results in increased
search time, inaccurate results, and poor service experience.
Further, the time feature is already adopted in current services
like OpenTable (https://www.opentable.ca).

C. Time Period

Regarding splitting time period, we can process opening hours
and access time separately by transforming them into two sets,
and then match them via private set intersection. Specifically,
the opening hours of stores are relatively fixed while the access
time of users are dynamic. Therefore, the treatment of the two
time is somehow different. We can apply the splitting technique
to a wider range of application scenarios. For example, a user
needs £ nearest cafes that are rated over three stars and a rider
hails a ride with a specific time to meet the driver.

The current design considers a general accessing hour (e.g., a
store opens every day from “8:00” to “12:00”). However, in real
life, the accessing time of locations can be different for dates.
Therefore, we can revise the coding of opening time and access
time according to the specific scenarios.

D. Result Deletion

If an untrusted cloud server intentionally deletes some correct
results, these correct results will be marked as UMN rather than
MLN. When users verify the completeness, they will reconstruct
the search path for each matched result and verify each evidence
node include UMN in the search path. Such UMNs will not pass
verification.

IX. CONCLUSION

We have proposed a time-restricted, verifiable, and efficient
SENN query processing scheme TiveQP. Two key novelties are
fusing the feature of time-restricted access into SENN query
processing by integrating spatial attribute with time attribute,
and designing a privacy-preserving verification method by lever-
aging membership checking in complementary sets. We design
a space encoding technique and a prunning strategy to improve
query efficiency. We formally state and prove the security of
TiveQP. Experimental results show that TiveQP is highly effi-
cient in query processing and result verification.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

1250

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, “Pri-
vate queries in location based services: Anonymizers are not necessary,” in
Proc. 34th ACM SIGMOD Int. Conf. Manage. Data, Vancouver, Canada,
2008, pp. 121-132.

M. Li, Y. Chen, S. Zheng, D. Hu, C. Lal, and M. Conti, “Privacy-
preserving navigation supporting similar queries in vehicular networks,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 2, pp. 1133-1148,
Mar./Apr. 2022, doi: 10.1109/TDSC.2020.3017534.

M. Li, Y. Chen, C. Lal, M. Conti, M. Alazab, and D. Hu, “Eunomia:
Anonymous and secure vehicular digital forensics based on blockchain,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 1, pp. 225-241,
Jan./Feb. 2023, doi: 10.1109/TDSC.2021.3130583.

M. Li, L. Zhu, Z. Zhang, C. Lal, M. Conti, and M. Alazab, “User-defined
privacy-preserving traffic monitoring against n-by-1 jamming attack,”
IEEE/ACM Trans. Netw., vol. 30, no. 5, pp. 2060-2073, Oct. 2022,
doi: 10.1109/TNET.2022.3157654.

G. Kellaris, G. Kollios, K. Nissim, and A. O‘Neill, “Generic attacks onse-
cure outsourced databases,” in Proc. 23rd ACM Conf. Comput. Commun.
Secur., Vienna, Austria, 2016, pp. 1329-1340.

B. Wang, Y. Hou, and M. Li, “Practical and secure nearest neighbor
search on encrypted large-scale data,” in Proc. IEEE 35th Annu. Int. Conf.
Comput. Commun., San Francisco, USA, 2016, pp. 1-9.

E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Data re-
covery on encrypted databases with k-nearest neighbor query leakage,”
in Proc. IEEE 40th Symp. Secur. Privacy, San Francisco, USA, 2019,
pp. 1033-1050.

L. Ou, Z. Qin, S. Liao, J. Weng, and X. Jia, “An optimal noise mechanism
for cross-correlated 10T data releasing,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 4, pp. 1528-1540, Jul./Aug. 2021.

L. Ou, Z. Qin, S. Liao, Y. Hong, and X. Jia, “Releasing correlated
trajectories: Towards high utility and optimal differential privacy,” IEEE
Trans. Dependable Secure Comput., vol. 17, no. 5, pp. 1109-1123,
Sep./Oct. 2020.

L. Ou, Z. Qin, S. Liao, T. Li, and D. Zhang, “Singular spectrum analysis
for local differential privacy of classifications in the smart grid,” /EEE
Internet Things J., vol. 7, no. 6, pp. 5246-5255, Jun. 2020.

J. Wakefield, “Location data collection firm admits privacy breach,” BBC,
2021. [Online]. Available: https://www.bbc.com/news/technology--
59063766

W. K. Wong, D. W. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proc. 35th ACM SIGMOD Int.
Conf. Manage. Data, Providence, USA, 2009, pp. 139-152.

H. Hu, J. Xu, C. Ren, and B. Choi, “Processing private queries over
untrusted data cloud through privacy homomorphism,” in Proc. IEEE 27th
Int. Conf. Data Eng., Hannover, Germany, 2011, pp. 601-612.

B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in
Proc. 29th IEEE Int. Conf. Data Eng., Brisbane, Australia, 2013,
pp. 733-744.

Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neighbor
query over encrypted data in outsourced environment,” in Proc. IEEE 30th
Int. Conf. Data Eng., Chicago, USA, 2014, pp. 664-675.

X. Yi, R. Paulet, E. Bertino, and V. Varadharajan, “Practical k nearest
neighbor queries with location privacy,” in Proc. IEEE 30th Int. Conf.
Data Eng., Chicago, USA, 2014, pp. 640-651.

X. Lei, A. X. Liu, R. Li, and G.-H. Tu, “SecEQP: A secure and ef-
ficient scheme for SKNN query problem over encrypted geodata on
cloud,” in Proc. IEEE 35th Int. Conf. Data Eng., Macao, China, 2019,
pp. 662-673.

N. Cui, X. Yang, B. Wang, J. Li, and G. Wang, “SVKNN: Efficient secure
and verifiable k-nearest neighbor query on the cloud platform,” in Proc.
1IEEE 36th Int. Conf. Data Eng., Dallas, USA, 2020, pp. 253-264.

R. Li, A. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query pro-
cessing with strong privacy protection for cloud computing,” in Proc. 40th
Int. Conf. Very Large Data Bases, Hangzhou, China, 2014, pp. 1953-1964.
R.Liand A. X. Liu, “Adaptively secure conjunctive query processing over
encrypted data for cloud computing,” in Proc. IEEE 33rd Int. Conf. Data
Eng., San Diego, USA, 2017, pp. 697-708.

S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “ServeDB: Secure,
verifiable, and efficient range queries on outsourced database,” in Proc.
IEEE 35th Int. Conf. Data Eng., Macao, China, 2019, pp. 626-637.

C. Guo, W. Li, X. Tang, K.-K. R. Choo, and Y. Liu, “Forward private
verifiable dynamic searchable symmetric encryption with efficient con-
junctive query,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2023.3262060.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

[23] C. Guo, W. Liu, X. Liu, and Y. Zhang, “Secure similarity search over
encrypted non-uniform datasets,” /[EEE Trans. Cloud Comput., vol. 10,
no. 3, pp. 2102-2117, Third Quarter 2022.

C. Guo, X. Chen, Y. Jie, Z. Fu, M. Li, and B. Feng, “Dynamic multi-phrase
ranked search over encrypted data with symmetric searchable encryption,”
IEEE Trans. Serv. Comput., vol. 13, no. 6, pp. 1034-1044, Nov./Dec. 2020.
Y. Zhang et al., “Anonymous multi-hop payment for payment channel
networks,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2023.3262681.

X. Jia, Z. Yu, J. Shao, R. Lu, G. Wei, and Z. Liu, “Cross-chain vir-
tual payment channels,” IEEE Trans. Inf. Forensics Secur, vol. 18,
pp. 3401-3413, 2023.

M. Li, Y. Chen, C. Lal, M. Conti, F. Martinelli, and M. Alazab,
“Nereus: Anonymous and secure ride-hailing service based on private
smart contracts,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 4,
pp. 2849-2866, Jul./Aug. 2023.

A. X. Liu and F. Chen, “Collaborative enforcement of firewall policies
in virtual private networks,” in Proc. 27th ACM Symp. Princ. Distrib.
Comput., Toronto, Canada, 2008, pp. 95-104.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., Virginia, USA, 2006,
pp. 79-88.

M. Szydlo, “Merkle tree traversal in log space and time,” in Proc. 10th Int.
Conf. Theory Appl. Cryptographic Techn., Interlaken, Switzerland, 2004,
pp. 541-554.

M. Naor and O. Reingold, “Number-theoretic constructions of efficient
pseudo-random functions,” in Proc. 38th Annu. Symp. Foundations Com-
put. Sci., Miami Beach, USA, 1997, pp. 458—467.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed. Boca
Raton, FL, USA: Chapman & Hall/CRC, 2015.

“Yelp open dataset,” 2023. [Online]. Available: https://www.yelp.com/
dataset

“Yelp dataset,” 2023. [Online]. Available: https://www.kaggle.com/yelp-
dataset/yelp-dataset

B. H. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Commun. ACM, 1970, vol. 13, no. 7, pp. 422-426.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Atlantic City, USA, 1990,
pp. 322-331.

[24]

[25]

[26]

[27]

[28]

[29]

Meng Li (Senior Member, IEE) received the PhD
degree in computer science and technology from the
School of Computer Science and Technology, Beijing
Institute of Technology (BIT), China, in 2019. He
is an associate professor and dean assistant with the
School of Computer Science and Information En-
gineering, Hefei University of Technology (HFUT),
China. He is also a postdoc researcher with the De-
partment of Mathematics and HIT Center, University
of Padua, Italy, where he is with the Security and
PRIvacy Through Zeal (SPRITZ) research group led
by Prof. Mauro Conti (IEEE fellow). He was sponsored by ERCIM ‘Alain
Bensoussan’ Fellowship Programme (from 2020 to 2021) to conduct postdoc
research supervised by Prof. Fabio Martinelli with CNR, Italy. He was sponsored
by China Scholarship Council (CSC) (from 2017 to 2018) for joint Ph.D. study
supervised by Prof. Xiaodong Lin in the Broadband Communications Research
(BBCR) Lab, University of Waterloo and Wilfrid Laurier University, Canada.
His research interests include security, privacy, fairness, applied cryptography,
cloud computing, edge computing, blockchain, and vehicular networks. In this
area, he has published more than 60 papers in international peer-reviewed trans-
actions, journals, magazines, and conferences, including /EEE Transactions on
Dependable and Secure Computing, IEEE/ACM Transactions on Networking,
IEEE Transactions on Services Computing, IEEE Transactions on Vehicular
Technology, IEEE Transactions on Smart Grid, IEEE Transactions on Indus-
trial Informatics, IEEE Transactions on Network and Service Management,
IEEE Transactions on Network Science and Engineering, IEEE Transactions
on Green Communications and Networking, IoT Journal, Information science,
Future Generation Computer Systems, IEEE Communications Magazine, IEEE
Wireless Communications, MobiCom, ICICS, SecureComm, TrustCom, and
IPCCC. He is an associate editor of IEEE Transactions on Information Forensics
and Security and IEEE Transactions on Network and Service Management.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TDSC.2020.3017534
https://dx.doi.org/10.1109/TDSC.2021.3130583
https://dx.doi.org/10.1109/TNET.2022.3157654
https://www.bbc.com/news/technology--59063766
https://www.bbc.com/news/technology--59063766
https://dx.doi.org/10.1109/TDSC.2023.3262060
https://dx.doi.org/10.1109/TDSC.2023.3262681
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset

LI et al.: TIME-RESTRICTED, VERIFIABLE, AND EFFICIENT QUERY PROCESSING OVER ENCRYPTED DATA ON CLOUD

Jianbo Gao (Student Member, IEEE) received the
BE degree from Anhui Medical University, in 2020,
and the MS degree from the School of Computer
Science and Information Engineering, Hefei Univer-
sity of Technology, in 2023. He is currently working
toward the PhD degree with the School of Cyberspace
Science and Technology, Beijing Institute of Technol-
ogy. His research interests include security, privacy,
applied cryptography, and vehicular networks.

Liehuang Zhu (Senior Member, IEEE) is currently
a professor, secretary with the School of Cyberspace
Science and Technology, Beijing Institute of Technol-
ogy. He has published more than 100 peer-reviewed
journal or conference papers, including more than 50
IEEE/ACM Transactions papers. He has been granted
a number of IEEE Best Paper Awards, including
TWQoS 17°, TrustCom 18’. His research interests in-
clude security protocol analysis and design, wireless
sensor networks, and cloud computing.

Zijian Zhang received the PhD degree from the
School of Computer Science and Technology, Bei-
jing Institute of Technology. He is now an associate
professor with the School of Cyberspace Science and
Technology, Beijing Institute of Technology. He was
a visiting scholar with the Computer Science and
Engineering Department, State University of New
York at Buffalo in 2015. His research interests include
design of authentication and key agreement protocol
and analysis of entity behavior and preference.

1251

Chhagan Lal received the PhD degree in computer
science and engineering from the Malaviya National
Institute of Technology, Jaipur, India, in 2014. He is
currently working as a postdoctoral research fellow
with the Delft University of Technology, The Nether-
land. Previously, he was a postdoctoral fellow with
the Department of Mathematics, University of Padua,
Italy, where he was part of the SPRITZ research
group. He was a postdoctoral research fellow with
the Simula Research Laboratory, Norway. His current
research interests include applications of blockchain
technologies, security in software-defined networking, and Internet of Things
networks.

Mauro Conti (Fellow, IEEE) received the PhD de-
gree from the Sapienza University of Rome, Italy,
in 2009. He is full professor with the University of
Padua, Italy. He is also affiliated with TU Delft and
University of Washington, Seattle. After his PhD,
he was a postdoc researcher with Vrije Universiteit
Amsterdam, The Netherlands. In 2011 he joined
as assistant professor with the University of Padua,
where he became associate professor in 2015, and
full professorin 2018. He has been visiting researcher
with GMU, UCLA, UCI, TU Darmstadt, UF, and FIU.
He has been awarded with a Marie Curie Fellowship (2012) by the European
Commission, and with a Fellowship by the German DAAD (2013). His research
is also funded by companies, including Cisco, Intel, and Huawei. His main
research interest include the area of Security and Privacy. In this area, he
published more than 400 papers in topmost international peer-reviewed journals
and conferences. He is editor-in-chief for /IEEE Transactions on Information
Forensics and Security, area editor-in-chief for IEEE Communications Surveys
& Tutorials, and has been associate editor for several journals, including JEEE
Communications Surveys & Tutorials, IEEE Transactions on Dependable and
Secure Computing, and IEEE Transactions on Network and Service Manage-
ment. He was program chair for TRUST 2015, ICISS 2016, WiSec 2017, ACNS
2020, CANS 2021, and general chair for SecureComm 2012, SACMAT 2013,
NSS 2021, and ACNS 2022. He is senior member of the ACM, and fellow of
the Young Academy of Europe.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

