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Time-Restricted, Verifiable, and Efficient Query
Processing Over Encrypted Data on Cloud

Meng Li"¥, Senior Member, IEEE, Jianbo Gao

Zijian Zhang”, Chhagan Lal

Abstract—Outsourcing data users’ location data to a cloud
server (CS) enables them to obtain k& nearest points of interest.
However, data users’ privacy concerns hinder the wide-scale use.
Several studies have achieved Secure k Nearest Neighbor (SKNN)
query, but do not address time-restricted access or result privacy,and
randomly partition data items which degrades efficiency. In this
article, we propose Time-restricted, verifiable, and efficient Query
Processing (TiveQP). TiveQP has three distinguishing features. 1)
Expand SKNN: data users can query k nearest locations open at a
specific time. 2) Adopt a stronger threat model: we assume the CS
is malicious and propose complementary set (i.e., transform proving
“in” a set to proving “in” its complementary set) to allow data users
to verify results without leaking unqueried data items’ information.
3) Improve efficiency: we design a space encoding technique and
a pruning strategy to improve efficiency in query processing and
result verification. We formally proved the security of TiveQP in
the random oracle model. We conducted extensive evaluations over
a Yelp dataset to show that TiveQP significantly improves over
existing work, e.g., top-10NN query over 100 thousand data items
only needs 10 ms to get queried results and 1.4 ms for verification.

Index Terms—LEfficiency, query processing, security, time-
restricted access, verification.
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1. INTRODUCTION

OCATION-BASED Services (LBSs) enable users to up-

load their current location and location query to a Cloud
Server (CS), which returns a query result (e.g., ten nearest cafes)
to the users [1], [2], [3], [4]. However, privacy is a major concern
because locations are related to user privacy and CSs are not fully
trusted [5], [6], [7], [8], [9], [10]. The data stored on a cloud may
be analyzed or leaked. As reported [11], a British firm admitted
that some of its location data was collected without seeking
permission from users. Recently, Secure k Nearest Neighbor
(SENN) [6], [12], [13], [14], [15], [16], [17], [18] is proposed
to address this problem.

We have four motivations to advance the state-of-the-art. 1)
We observe a new requirement time-restricted access in kNN,
that is, data owners have an access time limit on their data items
and data users visit a location at a specific time. For example,
a patient makes an appointment with an oncologist (a doctor
specialized in cancer) who only provides medical service on
Monday mornings. The integration of location and time refers to
matching opening time with access time and matching locations.
It is essential to kNN since no users want to visit a closed
clinic. 2) We focus on the privacy concerns of data owners
and data users. It includes the spatial attributes of location, time
attribute of location, attached data items, and queries. 3) We find
that result privacy is not provided even if result verifiability is
enforced when the CS misbehaves. For example, a data user can
acquire the privacy of some unqueried data items from the result.
4) Existing work randomly partition data items and ignore their
spatial attributes that are useful for improving query efficiency.

We compare TiveQP with SENN schemes [6], [12], [13],
[14], [15], [16], [17], [18] and privacy-preserving range query
schemes [19], [20], [21] in Table 1.

First, we expand SKNN to support privacy-preserving time-
restricted access. Existing SENN schemes [6], [12], [13], [14],
[15], [16], [17], [18] focus on querying the k nearest locations
while not considering the time attribute. Access time is related
to data users’ daily schedules, which are highly sensitive. As in
the example above, the access time along reveals the patient’s
health condition to some extent. Therefore, time should be
protected. Second, we adopt a stronger threat model and achieve
privacy-preserving result verification. Most existing work [6],
[12], [13], [14], [15], [16], [17] only use a semi-honest (honest-
but-curious) model for the CS. A stronger security model calls
for result verification. SVKNN [18] proposes a verifiable SKNN
framework, but it uses two servers and does not address access
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-3553-0813
https://orcid.org/0000-0002-5391-8152
https://orcid.org/0000-0003-3277-3887
https://orcid.org/0000-0002-6313-4407
https://orcid.org/0000-0002-0051-1551
https://orcid.org/0000-0002-3612-1934
mailto:mengli@hfut.edu.cn
mailto:jianbogao@mail.hfut.edu.cn
mailto:liehuangz@bit.edu.cn
mailto:zhangzijian@bit.edu.cn
mailto:c.lal@tudelft.nl
mailto:mauro.conti@unipd.it

1240

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE I
COMPARISON AMONG PREVIOUS STUDIES AND TIVEQP

Feature Single | Round | Tree Strong Sublinear Access | Type& Result Result
Scheme server security query time city verifiability accuracy
Wong et al. [12] Vi 1 Accurate
Hu et al. [13] N O(logn) v/ N Accurate
Yao et al. [14] N 2 N N Accurate
Yi et al. [15] v 1 Accurate
Elmehdwi et al. [16] 1 v/ N Accurate
Wang et al. [6] v 1 v/ Accurate
SecEQP [17] vV 1 v, | AT-IND-CKA O(klog n) Approximate
SVKNN [18] 1 N Semantic N Accurate
PBtree [19] Vv 1 v IND-CKA O(klog n) n/a n/a Low FPR?
IBtree [20] V4 1 VA A-IND-CKA O(klog n) n/a n/a Low FPR
ServeDB [21] N 1 Vi L-security® O(klog n) n/a n/a N Low FPR
Our solution TiveQP v 1 v A-IND-CKA | O(klog())* VA v v Low FPR

1: Adaptive; 2: false positive rate; 3: L-secure against adaptive attacks; 4: t: number of types, c: number of cities.

time or achieve sublinear query latency. ServeDB [21] can
verify the query result but leaks other locations’ information
to data users. Third, we improve query efficiency. The tree
construction is crucial for query processing, but SecEQP [17],
SVKNN [18] and (range query schemes) PBtree [19], IBtree [20],
and ServeDB [21] randomly partition the dataset. We propose
that the attribute be exploited to improve efficiency. Therefore,
the limitation of these schemes is that they cannot satisfy the
entire conditions. Embracing such properties will make the
SEKNN more appealing to data owners and users [22], [23], [24].
Different from the previous SENN works, the TiveQP scheme
allows for time-restricted access while providing strong security,
result verification, and improved efficiency.

There are three technical challenges to be addressed.

Challenge 1: How to achieve SkNN query processing with se-
cure time-restricted access? Space transformation and encoding
techniques are commonly used to solve the location query prob-
lem. The secure time-restricted access is essentially a privacy-
preserving range query problem. A straightforward approach is
to process the spatial attributes and time attribute separately.
This, however, results in low efficiency. We must integrate the
two problems and perform queries uniformly. To address this
issue, we use a space encoding technique to process locations
and leverage prefix encoding to handle location and time. All
generated codes of a data item are inserted into an Indistinguish-
able Bloom Filter (IBF) [20], that is, a secure index. Each query
is encoded into a trapdoor. In this way, we integrate the two prob-
lems by converting them into a joint keyword query problem.

Challenge 2: How to achieve result verification without vio-
lating result privacy under the existing SKNN framework? The
seminal paper in this line of research is ServeDB [21]. The
authors proposed an effective method to verify the correctness
and completeness of results without introducing a new structure.
For completeness, the CS generates proof information related to
the search paths for the data user to reproduce each step on these
paths. Unfortunately, some key nodes that are leaf nodes are
included in the returned proof. This allows the data user to freely
query any range on the nodes, violating the privacy of unqueried
data items. To address this problem, we propose the concept
of Complementary Set. Instead of proving that a location
does not fall in a region A, we prove that it resides in A’s

complementary region. Specifically, the data owner computes
for each data item three complementary sets for location, type,
and opening time. Each set is transformed into a minimum set
of prefixes. Each prefix is queried into the node IBF to produce
a bit segments. Further, a keyed hash message authentication
code (HMAC) of the segment is computed as a signature. When
proving mismatch, we return the matched bit segment and its
HMAC, instead of the entire IBF or segments, to data user.
Challenge 3: How to improve the query efficiency further
without sacrificing security ? Improving query efficiency without
sacrificing security is a difficult task [25], [26], [27]. To improve,
when constructing a TiveTree of secure indexes, we design a
pruning strategy by first classify the data items according to
their spatial attributes, e.g., type and city, and then constructing a
subtree for each type of location from the bottom to up. By doing
so, we eliminate unnecessary search paths and reduce query pro-
cessing time and result verification time. The query complexity
reduces to O(klog(;2) where ¢ and c are the numbers of types
and cities, respectively.
Our contributions are summarized as follows.
® To the best of our knowledge, this is the first work to inte-
grate time-restricted access with SKNN query processing.
® We propose a privacy-preserving result verification
method. Specifically, we propose the concept of comple-
mentary set: instead of proving that a data item does not
satisfy a condition, we prove that it satisfies its comple-
mentary conditions, preventing privacy leakage.
® Wedesign a simple-but-effective space encoding technique
to process data items and design a pruning strategy to im-
prove efficiency in query processing and result verification.
e We perform formal security analysis, including data pri-
vacy, query privacy, correctness and completeness of query
results. We conduct extensive experiments to demonstrate
that TiveQP has a significant efficiency improvement.
The remainder of this article is organized as follows. We re-
view some related work in Section II. Section Il introduces some
preliminaries. Section IV formalizes the problem. In Section V,
we elaborate TiveQP, followed by the security analysis in Section
VI and performance evaluation in Section VII, respectively. Fi-
nally, we provide some discussions in Section VIII and conclude
the paper in Section IX.
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II. RELATED WORK

In this section, we revisit some related work on SENN query
processing and privacy-preserving range query processing.

A. SENN Query Processing

Lei et al. [17] proposed a secure and efficient query process-
ing protocol called SecEQP. They leveraged a set of primitive
projection functions to convert a location into several feasible
regions. Next, it integrates the regions into an irregular polygon.
Given two locations, the CS compute the proximity of them by
comparing whether their corresponding composite projection
function output codes equal. The codes are inserted into an IBF.
All locations’ IBFs are used to construct an IBF Tree. A data
user computes projection function values and generates a set
of codes as a token. The CS conducts the query processing by
searching the token in the IBF Tree. However, SecEQP cannot
guarantee result verification.

Cuietal. [18] proposed a secure and verifiable k nearest neigh-
bor query processing protocol SVKNN. They adopted Voronoi
diagram to divide the whole area. This space encoding method is
areplaceable unit that is not directly related to their core design.
They design a new data structure, i.e., verifiable and secure index
VSI to support fast query and verification. Next, they propose
several secure protocols and a compact verification method to
facilitate the operation over VSI to support performing the search
over the secure index. However, it uses two CSs and incurs extra
computation and communication overhead.

We claim that most data users look for locations in a general
area, i.e., they do not need to find locations in areas of such
complex shapes (irregular polygon and Voronoi cell). More-
over, these techniques require data users to spend more time
pre-processing the whole area. Thus, we design a simple-but-
effective space encoding technique in this work to save the
computation time for both data users in pre-processing locations
and the CS in searching the index tree.

B. Privacy-Preserving Range Query Processing

Li et al. [19] proposed the first range query processing pro-
tocol that achieves index indistinguishability under the indis-
tinguishability against chosen keyword attack. A data owner
converts each data item (number) by prefix encoding [28]. Each
prefix is hashed, randomized, and inserted into a Bloom filter.
A PBtree is constructed for all data items. A data user converts
a query range into a minimum set of prefixes and computes a
trapdoor. The CS searches the trapdoor in the PBtree to find
a match. Based on PBtree, Li et al. [20] concerned privately
processing conjunctive queries including keyword conditions
and range conditions and proposed a privacy-preserving con-
junctive query processing protocol supporting adaptive security,
efficient query processing, and scalable index size at the same
time. Specifically, they adopt prefix encoding [19] and design
an indistinguishable Bloom filter (IBF), i.e., twin Bloom filter.
A pseudo-random hash function determines a cell location, i.e.,
which twin cell stores ‘1. Instead of building a PBtree, they
construct an IBF Tree.
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Fig. 1.  System model of TiveQP.

Wu et al. [21] proposed a secure and scalable protocol
ServeDB to support multi-dimensional range queries over en-
crypted data. It also considers the malicious assumption for the
CS and then put forth a verification mechanism. ServeDB opens
anew way for result verification in tree-based protocols by lever-
aging the tree index to verify the correctness and completeness
of query results. Specifically, data owners generate verification
information and the CS generates proofs for the data users to
check the results. However, the returned proofs includes leaf
nodes, i.e., Bloom filters, which make it possible for the data
user to query other ranges on the Bloom filters. This is a direct
privacy violation on other data items.

III. PROBLEM STATEMENT

In this section, we introduce our system model, threat model,
and design objectives.

A. System Model

Our system model consists of data owner, data user, and CS,
as depicted in Fig. 1.

e Data Owner has a dataset with n data items (locations):
D ={Ly,Ls,...,Ly,} The data owner encrypts each L, and
builds a secure index B. Each location has two spatial attributes
(location type and a pair of coordinates) and one time attribute
(allowed access time period). The data owner extracts the at-
tributes of L; to build a secure index B by using secret keys
and a unique random number 7. All indexes are classified and
treated as leaf nodes to construct a TiveTree T'R with verification
information from bottom to top. The Chosen Plaintext Attack
(CPA)-secure encryption algorithm Enc encrypts all data items.
Next, the data owner outsources the TiveTree and encrypted data
items to CS, and delegates the query service to authenticated
data users by sharing secret keys with them. The Pointer in
Fig. 1 means that each node index has an address pointing to
the encrypted data for retrieval.

e Data User extracts spatial attributes and time attribute
(access time) of each query location to build a trapdoor to be
sent to the CS. After receiving the search result from the CS,
the data user uses the shared keys and random number to verify
the correctness and completeness of the results, and decrypt the
encrypted data items.

e CS stores the TiveTree and the encrypted data items, and
processes SKNN queries for the data users. When it searches a
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trapdoor in the TiveTree, it generates corresponding proofs for
result verification. Finally, it returns the query results and the
proofs to the data user.

Now we give the formal definitions of the data model, index
tree model, and the query model.

Definition 1 (Data model): A dataset D is defined as a ta-
ble with five attributes {id, typ, lat,lon,per} and n records
{L1,La, ..., Ly} idistherecord identity and typis the location
type, e.g., bank, store, and cafe. [at is the latitude of location and
lon is the longitude of location. per is the allowed access time
period.

Definition 2 (Index Tree model): A index tree TR is defined
as a binary tree with n leaf nodes and n — 1 non-leaf nodes. A
leaf node consists of an IBF B, a hash value HV, a pair of string
set and HMAC set (bit, H) for its Location Complementary
Set (LCS), a pair of string set and HMAC set for its Time
Complementary Set (TCS), a node number, and a pointer to an
encrypted data item. A non-leaf node in a subtree of a specific
type consists of an IBF, a hash value HV, two similar pairs of
string set and HMAC set. A non-leaf node above the subtree
consists of an IBF, a hash value HV, a pair of string set and
HMAC set for its tYpe Complementary Set (YCS). 7R is built
in a bottom-up fashion in two phases: 1) Within each subtree,
the data owner merges two child nodes until the subtree root by
computing new B, HV, (bit, H) for LCS, (bit, H) for TCS. 2)
Staring from the subtree roots, the data owner merges two nodes
by computing new B, HV, (bit, H) for YCS.

Definition 3 (Query Model): A query Q) is defined as ) =
(typ,lat,lon, time, k) where typ is the location type, lat and
lon are the latitude and longitude of current location, time is the
time at which the data user will visit the location. For example,
Alice wants to securely query a CS whether her nearest three
cafes are open at 9:00 am. A SQL query is select % from data
items where type = “cafe” and grid = G(lat , lon) and time =
0900 and k = 3. Here, g(-,-), given a location, outputs a grid
identity.

Now we formulate the five algorithms of TiveQP in Definition
3. Setup generates secret keys and a random number. Index
builds the secure indexes and a tree. Trapdoor builds a trapdoor.
Query assists the CS in searching encrypted data items by using
the tree and the trapdoors. Verify verifies the correctness and
completeness of query results.

Definition 4 (Verifiable Multi-Dimensional Query): Our ver-
ifiable multi-dimensional query processing scheme is a tuple of
five polynomial time algorithms:

Setup(1*) — (sk, sk’,SK,r): is a probabilistic key gener-
ation algorithm executed by data owner. It takes a security
parameter A as input, and outputs two secret keys sk, sk’ to
encrypt data items and compute HMAC, a set of hash keys
SK ={k1,ka,...,km+1} and a random number 7.

Index(D, sk, sk',SK,r) — (€, TR): is a probabilistic algo-
rithm executed by data owner. It takes a location dataset D,
two secret keys sk, sk, a set of hash keys SK, and a ran-
dom number 7 as inputs, and outputs the encrypted data items
E={F,Fs,...,E,}and aTiveTree TR. TR is constructed
by nodes of IBF and each leaf node v has a secure index B, and
verification information.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

Trapdoor(SK, Q) — T): is a deterministic algorithm exe-
cuted by data user. It takes a set of hash keys SK and a query ()
as inputs, and outputs a trapdoor 7.

Query(TR,E,r,T) = (R,7): is a deterministic algorithm
executed by the CS. It takes the TiveTree 7R, a ciphertext set
&, arandom number 7, and the trapdoor 7 as inputs, and outputs
the query result set R and a proof set 7.

Verify(T, R, m, sk, sk', SK) — (1/0): is a deterministic al-
gorithm executed by data user to verify the query results. It takes
a trapdoor T, a query result set R, a proof set 7, two secret keys
sk, sk', and a set of hash keys SKC as inputs, and outputs 1/0 for
accept/reject.

B. Threat Model

Different than the semi-honest model in existing work [17],
[19], [20], we consider a stronger adversary. Besides being
curious about data items, indexes, and queries, it can tamper
with the query results or search a part of the dataset. In reality,
the attacks are from the CS being compromised by adversaries or
some rogue employee. We adopt the adaptive INDistinguishable
under Chosen Keyword Attack (IND-CKA) threat model [29].

C. Design Objectives

Security: For attacks from semi-honest entities, we leverage
secure indexes and trapdoors to protect privacy. Data privacy.
The adversary cannot learn anything useful about the data items
from the secure index and encrypted data items; Query privacy.
The adversary cannot infer anything useful about the location
query from the trapdoor; Result privacy. The data user cannot
know anything about the unmatched data items more than the
fact that they do not match.

Verifiability: For the attack from malicious CS, we design
a privacy-preserving and efficient method to allow data users
to verify the query results R. There are two requirements to be
satisfied. Correctness. Each returned data item L is not tampered
and is the real date item in the original dataset L € D.

Completeness: All returned data items are answers to the
SEKNN query while and all other data items are not.

Efficiency: TiveQP should achieve low query latency, i.e., a
data user receives a result set and a proof set within sublinear
query processing time.

IV. PRELIMINARIES

In this section, we briefly revisit four underlying techniques
for structuring TiveQP, namely space encoding, prefix encoding,
IBF, and Merkle tree.

A. Space Encoding

In the proposed space encoding technique, a data owner
extracts the location (lat, lon) of each data item di. The location
is projected into a fixed grid g with a grid identity and then
expanded to a wider area G(lat,lon), e.g., a set of nine grids
covering g. Next, the data owner transforms G(lat,lon) into a
minimum set of prefixes M .S. A data user extracts a grid identity

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.
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TABLE II
KEY NOTATIONS OF TIVEQP

Notation Definition

L,D,FE, Data items, data set, encrypted data item
B,r IBF, random number

k, TR Number of query items, TiveTree

di,id, typ, lat, lon, per
lat, lon, per

Data item, record identity, location type
Latitude, longitude, access time period

HV, H,bit Hash value, HMAC, bits of HMAC
q,G(.), G Grid, grid function, a set of girds
MS,F(.),PF Minimum set of prefixes, prefix family
w,{x1,x2, -+ ,x;},pr | Bitlength, prefix string, prefix

N, m Number of cell twins and hash functions
{hi,ha, -+ ,hm} Pseudo random hash function

SK Secret keys

T, 1 Trapdoor, type trapdoor

T2, T3 Location trapdoor, time trapdoor

v, root Node, root node

result_num, R Element number in result set, result set
€ Encrypted data item

z Number of row in a trapdoor

s Proof set

A Adversary

covering the current location and computes a prefix family that
will be matched with M S.

B. Prefix Encoding

Given a number z of w bits with a binary format be-
ing x1xg ... x,, its prefix family F'(z) is the group of w +
1 prefixes {1@g « + + Ty, 1T+« Typ1%,+ + oy T K - v ok, % % - -
-+}. Given a range [A, B, we transform it to a minimum set of
prefixes M F([A, B]) satisfying the condition that the union of
the prefixes is the same as [A4, B]. For a number x and range
[A, B], z € [A, B] if and only if F(x) N MF([A, B]) # 0.

C. IBF

AnIBFis an array B of N cell twins, m pseudo random hash
functions hq, hs, - - -, by, and a random oracle H. H is used
to determine which cell stores ‘1’. A keyword kw is hashed
to m twin cells Blhy(kw)], Blha(kw)],- - -, Blhm (kw)]. For
each of the m twins, H determines the chosen cell location
H(hpt1(hi(kw)) ®r) and 7 is a random number. We set its
value to be 1 and the other cell’s value to 0.

D. Merkle Tree

Merkle tree is a complete binary tree equipped with a function
hash H and an arbitrary function A. For two child nodes, n; and
n,, of any non-leaf node, n,, the function A of n, is A(n,) =

H(A(n)[|Anr)).

V. PROPOSED SCHEME

In this section, we first give an overview of our proposed
scheme and then dive into the details. We list the key notations
of TiveQP in Table II.

A. Overview

We present index tree in Section V-B. We show how to
compute a trapdoor in Section V-C. We show how to an-
swer multi-dimensional location queries and generate proofs in
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Query

Insert into Generate Verify
IBF-based indexes | verification information v results
Trapdoor
Check membership in IBFs to locate results
Generate proofs

Fig. 2. Overview of the TiveQP scheme.

Section V-D. We discuss result verification process in Section
V-E. The TiveQP overview is depicted in Fig. 2.

We use space encoding to convert the location information
of data items into a set of grid set encodings, and use prefix
encoding to convert the access time of data items into a set of
time minimum prefix set encodings. We integrate the problems
of access time and location information into a joint keyword
query problem by inserting these two sets of encodings into
the same IBF. Only trapdoors that satisfy both access time and
location can retrieve data items.

B. Index Building

We assume that the service region is divided uniformly into
a set of girds G = {g1, g2, ...}. We consider time period from
“00:00” to “24:00” and encode each half an hour as a unit, which
turns the time period to [0, 47].

We assume that the data owner and the data users share m + 1
secretkeys SKC = {sky, ska, ..., skpy41} and arandom number
r. m pseudorandom hash functions hq, heo, ..., h,, are built
as h;(.) = HMAC(.)%N (1 < i < m). Another pseudorandom
hash function is defined as h,,+1(.) = HMAC,,,11(.). H is
a hash function defined as H(.) = SHA256(.)%2. Check
(B, kw) checks whether a keyword kw exists in an IBF B.
Here, a keyword is an element in a trapdoor. For example,
T ={110,11%,1 % *} has three keywords. QuelLoc(B, kw)
outputs the a set of location values by querying a keyword kw
in an IBF B.

A data owner has a location dataset D = {Lq, Lo, ..., L,},
where each data item L; is a location with identity, location
type, latitude, longitude, and opening hours as shown in Fig. 3.
For example, “Bank” is transformed into type “100” and then
a minimum set of prefixes. The similar operations are applied
for location and opening time. Then the data owner computes,
stores, and uploads the encrypted data items £ and a TiveTree
TR. First, the data owner encrypts each L; to a ciphertext
Enc(sk, L;). Second, the data owner computes a secure index
for each L; as follows.

e Extract (typ;, lat;, lon;, per;).

e Given the two coordinates, locate the location in a grid set
G(i) = G(lat;,lon;), e.g., a burger shop is located at a grid g4
and its service area covers G = {go, g1, .-, Js}-
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Fig. 4. TiveTree index and query processing.

e Generate a random number 7, insert each prefix pr in
G(i)’s minimum set of prefixes into an IBF B; by setting
Bilho(pr)|[H (s (ho(pr)) @ 1)) = 1 and Bilho(pr)][L —
H(hpmii(ho(pr)) @r)] =01 <o <m).

e Encode per; into a minimum set of prefixes MS; [19] and
insert each prefix into B;, e.g., “08:00-12:00” is encoded to
{010 = #x}.

Next, the data owner constructs a TiveTree 7 R as follows.

e Classify and order indexes according to type and coordi-
nates; for each type, construct a subtree from bottom to up with
corresponding indexes as leaf nodes as shown in Fig. 4.

e In each subtree, for the each data item di on a leaf node
v, compute the Location Complementary Set (LCS) and Time
Complementary Set (TCS). LCS is the grid identity set of the
regions that are outside the regions covering the location of d:.
For example, there are 15 grids in total and the current data item
locates in grid 8, then its LCS is [1,7] U [9, 15]. Its minimum
set of prefixes is {0001, 001,01 % %, 1001, 101%, 11 * x}. If a
query’s location falls into the complementary region of a node,

we can prove that the query does not match the IBF of the
node. TCS is the time period set that are the closed hours of
di. For example, the opening hour per,, = “08 : 00 — 12 : 00",
then its TCS is [0000,0800] U [1200,2400] transformed
into [0,15] U [24,47]. Tts minimum set of prefixes is
{0 % % % %, 11 % %, 10 * 1« }. Foreachkeyword w; in LCS, com-
pute bits,; = QuelLoc(B,,w;) and S,; = HMAC (bits,;).
Define bits, and S, as two sets containing all computed
{bitsy;}, {Sy;}. For TCS, compute bits, and S, similarly.
{bits, S} is a proof of completeness. Afterward, compute a
hash value HV,, = hash(FE,) as a proof of correctness.

e In each subtree, for each non-leaf node v except subroot,
merge the complementary regions of the two child nodes and
build a new LCS (TCS) to compute bits, and .S, ; compute B,, =
Bleft + Bright and HVU = haSh(H‘/left + HV;’ight)-

e For all subroots v and their father nodes, com-
pute B, = Bi. + B;; and HV, = hash(HV,. + HV,;), in-
sert typ; into B;, insert the tYpe Complementary Set
(YCS) to B, and compute {bits,,S,}, e.g., if there are
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63 types of locations, typ, = 20, YCS is the encoding of
“[1,19]A[21,63]” which is {000001,00001x,0001 * %, 001
sk, 0100 # #,010101, 0101 1%, 011 s sk, 1 s s sk sk .

Finally, the data owner outsources (£, TR, ) to the CS and
shares HV,,,; with data users.

C. Trapdoor Computation

A data user has a location query () and computes a trapdoor
T = T1 UT2UTs. Here, the three sets are prepared for type,
coordinates, and time, respectively.

e Extract (typ, lat, lon, time) of (), compute three prefix fam-
ilies PF1, PFa, and PF5 [19] for typ, g(lat,lon), and time,
e.g., “09:00” is encoded to {010010,01001%,0100 x* %, 010
sk 01 sk ok ok ok 0 sk ok sk skok ok ok ok ok ko

e Insert (ho(pr),H(hmH(ho(P”)g))
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e Send 7 to the CS and await the query results and proofs.

D. Query Processing

We answer a query by looking up the codes in IBFs of the
nodes in the TiveTree. For each node v, we check whether a
query has the common element with the prefixes in v through
mapping each element in the trapdoor on the IBF of v. During the
query, the CS also searches proofs for three types of evidence
nodes. The idea is to locate a prefix in the trapdoor that can
be queried to match a string in bits,, i.e., the prefix matches a
complementary set (s) of the index.

Before we dive into the search details, we introduce three
types of evidence nodes. ¢ Matched Leaf Node (MLN). The
leaf nodes that correctly answer the location query. All potential
query results are stored in these nodes. ¢ UnMatched Node
(UMN): The unmatched non-leaf nodes and leaf nodes that
do not satisfy the query. The search stops on these nodes.
e UnNecessary Node (UNN): The nodes that do not need to
be searched when we have obtained £ matched data items. The
three evidence nodes are defined to classify nodes and help the
CS generate verification proofs during search. Their differences
reside in how they match the search conditions.

The CS searches the 7R from top to bottom as follows.

e Set the current search node v as the root 7R.root and set
result_num = 0.

e Before the search enters a subrtee, check Check(B,, 77).
1) If Check(B,, T1) = 1 and v is a left node, set v’s right child
as UNN temporarily and search 7 along v’s left subtree and
then right subtree; if Check(B,,71) = 1 and v is a right node,
remove the previously set UNN mark and search v’s subtrees.
2) If Check(B,, T1) = 0, i.e., among the |71| = z * m pair of
hashes {(Tilj,Tfj)}, foralliandone j,1 <i <z, 1<j<m,
By[TY)[H(T @ r)] = 0, mark v as UMN and stop searching.

For the UMN, we generate proofs as follows. 1) Locate
the first prefix w; € T; that satisfies QueLoc(B,, T1) € bits,.
In this way, we obtain a proof that ) does not match D by
proving that typ falls in the type complementary set. 2) Insert
{wi, bit s, Syj, HVv} into .
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[ ] MLN: Matched leaf node
=2 7] UMN: UnMatched node
[ ] UNN: UnNecessary node
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Fig. 5. Result verification tree for UMNs, MLNs, and UNNs.

e The above search recursively applies to the subtrees until
the subroots, check the 77 the last time to decide whether to
search 77 and 75 in the subtrees.

e In each subtree, a node v, check Check(B,,7s) and
Check(B,, T3). There two conditions. 1) If both queries are
successful: v is not a leaf node, set/remove UNN and continue
to search the subtrees similarly; v is a leaf node, mark v as MLN,
insert { HV,,} into 7, insert { £, } into result set R, and add 1 to
result_num. If k data items are found, we stop the recursion
and return to insert 'V of all UNNSs to 7. 2) If there exists one
unsuccessful query, mark v as UMN and stop searching, search
w; in the other trapdoor set, and update 7.

e Return (R, 7).

E. Result Verification

With the returned proof 7, the data user uses 7 to verify the
correctness and completeness of the result set R.

Verifying Correctness: The data user needs to verify both
whether R is correct and whether the CS creates R itself. First,
the data user decrypts the £ from R and checks whether her/his
query matches the data items in plaintext. Second, the data user
recomputes the value of the root hash’(root) from bottom to up
based on the Merkle Tree [30] by using the hash values { HV'}
of evidence nodes from 7. If hash’(root) equals to the data
owner’s hash value hash(root), the data user is convinced that
‘R is authentic and the evidence nodes are true nodes of the
TiveTree.

Verifying Completeness: In query processing, a trapdoor 7
is processed from the root toward the leafs. The query process
terminates until the trapdoor matches a leaf node or the trapdoor
does not match the TiveTree index. Each matched data item has
a search path, for which we mark the evidence nodes. Hence,
using the UMNs, MLNs, and UNNS, a data user can reproduce
the query process from bottom to up for each path.

As shown in Fig. 5, we use the Path 1 and Path 2 as two
examples. Assume the query with & = 2 matches L4 and Lg. Ny
matches the query for having L4 and its left child node is marked
as UMN for not matching the query. The search continues in the
right subtree of [V} until the node N;g matches the query which

Authorized licensed use limited to: TU Delft Library. Downloaded on July 12,2024 at 07:41:41 UTC from IEEE Xplore. Restrictions apply.



1246

is marked as MLN. Finally, the Path 1 is Ny - Ny — Ny —
Ng — Nig. On Path 2, we notice there are two UNNs, N5 and
Ng. They are marked because we obtain k = 2 data items when
the search reaches N1;. Therefore, we do not need to search N1
or Ng. For each search path, the union of UMNs, MLNs, and
UNNSs must reproduce the search faithfully. If the CS ignores
some nodes on purpose, the result set will be incomplete.

VI. SECURITY ANALYSIS

We prove that the TiveQP is secure under the adaptive IND-
CKA model. We use HMAC and SHA256 to implement the hash
functions hq, ho, ..., hy41 and H, respectively. A function is
a pseudo-random function if and only if the function output and
the truly random function output cannot be distinguished by a
Probabilistic Polynomial Time (PPT) adversary [31], [32]. A
PPT adversary A can view its past queries and corresponding
trapdoors, results, and proofs before selecting a future query in
simulation.

To prove TiveQP is secure under adaptive IND-CKA model,
we first construct a PPT simulator S that can simulate future
queries. Next, we show that A which interacts with S is chal-
lenged to distinguish between the real secure index and ones
from S with a non-negligible probability. Formally, a query pro-
cessing scheme is secure if a PPT adversary .A cannot distinguish
the a real index generated by pseudo-random functions from a
simulated index generated by truly random functions, with a
non-negligible probability:

|Pr [Real 4 ¢(1") = 1] — Pr [Ideal 4 5(1*) = 1] | < negl(%),

where negl(A) is a negligible function. We define two leakage
functions as follows:

e L1(D) = (n,N,TR,|E|): Given the location dataset D,
L1 outputs the dataset size n, the IBF bit length N, the TiveTree
TR, and the ciphertext bit length | E|.

e Lo(D,Q) = (a(Q), B(Q),~(Q)): Given a location dataset
D and a location query @), Lo outputs the data item id returned
by a query «(Q), the search pattern 5(Q), and the path pattern
Y(Q)-

Theorem 1 (Security): TiveQP is IND-CKA (L1, L2)-secure
in the random oracle model against an adaptive .A.

Proof: We first construct S that simulates a view
V*=(TR",T*,E") based on the information returned by
L1(TR,D) and L2(TR, D, Q). Next, we show that A cannot
distinguish between V* and the real adversary view A.

e To simulate 7R, S first builds an identically structured
TiveTree. S acquires N from £, and sets up an IBF B,, for each
node v in the 7'R. In the ith cell of B,,, S sets B,[i][0] = 1 and
B, [i][1] = 0 or vice versa. The twin is determined by tossing a
coin. Next, the S associates B,, with a randomly chosen number
r. For the verification information, S randomly chooses a grid
for each leaf node, computes corresponding LCS and TCS, and
generates bits, and S,. S continues this steps until the subtree
nodes and computes YCS for each node until the root. Finally,
S returns 7TR" to the A. Each IBF B, in TR" has the same size
as the one in 7R. Their ‘0’s and ‘1’s are equally distributed.
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TABLE III
PARAMETER SETTINGS (BOLD: DEFAULT VALUES)

Value
20000 40000 60000 80000 100000
20 40 60 80 100

Parameter
Number of data items n
Location type ¢

Grid width gw (km) 12345
Query parameter k 15101520
[sk[, [sk], ki, |r] 1024

m 5

FPR 1%

1: t corresponds with n.

Therefore, the A cannot distinguish the simulated 7R* from
the real TR.

o To simulate 7, S knows if a received () has been processed
from Ls. If so, S returns the previous trapdoor 7 to 4. Other-
wise, S generates a new trapdoor 7 * that is a set of m-pair of
hashes. Given the access pattern from Lo, S knows which data
items match 7. For the MLF, S generates the output by using H
to select e-pair of hashes while satisfying that the selected hash
pairs match the MLF. For the unmatched leaf node, S generates
the output by using the random oracle to mismatch the 7 with
the leaf node. The e-pair of hashes is 7. Since the trapdoor is
generated by the random hash functions, A cannot distinguish
T from the real trapdoor.

e To simulate £*, S first acquires n and |E| from £;. Next,
S simulates the ciphertext set with random plaintexts and the
known CPA-secure encryption algorithm Enc. S has to make
sure that the size of the simulated ciphertext is the same as the
one of the real ciphertext.

To sum up, the simulated view and the real view are indis-
tinguishable by A. Therefore, TiveQP is adaptive IND-CKA
(L4, L2)-secure in the random oracle model against an adaptive
adversary, i.e., the index privacy and query privacy are achieved.
Furthermore, the CS does not return the IBF of leaf node to the
data user as [21] did but only returns one bit string and one
HMAC. The data owner can only validate the mismatching of
query, but cannot insert the trapdoor of other queries on the IBF.
Therefore, result privacy is achieved. (]

VII. PERFORMANCE EVALUATION

In this section, we introduce our experiment settings (dataset,
parameters, baselines, and setup) and analyze the performance
of each phase in detail.

A. Experiment Settings

Dataset: We use a dataset of Yelp’s businesses and user data
from 836 cities in the US and Canada [33], [34]. We upload
all source codes, processed datesets, and an instruction file to
https://github.com/UbiPLab/TiveQP. Given that the size of the
original dataset is too large (4.9 GB), we only provide a link.

Parameters: We vary n from 10,000 to 100,000, location type
t from 20 to 100, gird width gw from 1 to 5 km, and % from 1
to 50. According to the FPR equation [19], [35], the resulting
size of an IBF ranges from 24 to 120 KB. The detailed parameter
setting is listed in Table III. The default value of n is set to 20000
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Fig. 6. Performance of tree construction.

after we review the experimental settings of state-of-the art and
it is a relatively high value for query processing.

Baselines: To evaluate the query performance of secure multi-
dimension query framework, we compare TiveQP with six base-
lines: 1) PBtree [19] supports range query on single dimensional
data. 2) IBtree [20] achieves conjunctive query processing by
using IBFs. 3) SecEQP [17] is based on projection-based func-
tions and IBFs to encode locations. 4) ServeDB [21] facilitates
multi-dimensional and verifiable range query. 5) R*-Tree [36]
is a dynamic tree for indexing spatial information. 6) TiveQP
without type is similar to TiveQP but it has not type in the data
items.

Setup: We implemented TiveQP in Java and conducted experi-
ments on a PC server running Windows Server 2021 R2 Datacen-
ter with a 3.7-GHz Intel(R) Core(TM) i7-8770 K processor and
32 GB RAM. We used HMAC-SHA256 as the pseudo-random
function to implement the hash functions of IBF. We used AES as
the symmetric encryption algorithm. Since AES can be used for
TiveQP and other schemes when encrypting data items, we focus
on the index and remove the encryption results in comparison.

B. Tree Construction

With n increasing from 20 to 100 K and gw increasing from
1 to 5 km, the construction time of TiveQP grows from 3.58 to
19 minutes, and decreases from 3.58 to 1.54 minutes, respec-
tively. In Fig. 6(a) and (b), the tree size, w.r.t. different n and
gw, grows from 2.89 to 14.37 GB, and decreases from 2.89 to
2.34 GB, respectively.

It is obvious that the construction costs increase linearly with
n. The costs reduce with gw because each grid covers more
space and the number of grids decreases when gw becomes
bigger, thus reducing the size of minimum set of prefixes MS
and the size of location complementary sets. The effect of gw
on tree construction is small since the total size of bits and Hv
is much shorter than the IBFs.
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We notice that the leftmost green dot drops rapidly to the next
one in Fig. 6(b). This is because when gw increases from 1 to 2,
the size difference of the two corresponding complementary sets
is bigger than the ones after, leading to more hash operations.

The generation of verification information dominate the con-
struction time because we need to compute the complementary
sets of each node and then compute bits and Hv. Such compu-
tations consume more time than the hash operations of IBFs on
leaf nodes.

The size of an IBF corresponds to the total number of prefixes
inserted to the IBF. The IBFs dominate the size of the tree. For
example, when n = 20,000 and gw = 1 km, the tree size is
2.893 GB while the size of IBFs is 1.863 GB. This is because 1)
an IBF has a long size in order to maintain the F'PR give fixed
n and m; 2) each of the three complementary sets for a leaf
node produces a small set of prefix family that leads to a small
communication overhead, and the three complementary sets will
become smaller as the nodes merge upward; 3) each string in
bits has m bits with an identifier, both the elements in the HMAC
set S, and the hash value HV are 256 bits. Experimental results
show that the construction cost of TiveTree is acceptable.

C. Query Processing

The time complexity of query processing is O(klog(%)).

Average time: Fig. 7(a) to (c) show the query delays w.r.t.
varied n, gw, and k, respectively. Experimental results indicate
that the query processing time is in ms scale.

1) Varying n. When gw = 1 and k = 10, the average query
processing time of TiveQP requires around 10 milliseconds.
It does not increase with n because 1) we use all data items
of queried type in the five sets of experiments such that their
total number stays unchanged and 2) the desired data items
are arranged closer on the leaf level after we organize the tree
according to type and city, i.e., they are placed in a small subtree
from the overall structure of the index tree. 2) Varying gw. When
n = 20,000 and k£ = 10, with the grid width increasing from 1
to 5 km, the average query processing time decreases from 10.1
to 6.2 milliseconds. This happens because as w increases, the
prefix number in the location trapdoor becomes less, which leads
to less hash operations and then less search time. (3) Varying
k. When n. = 20,000 and gw = 1, with k increasing from 1 to
20, the average query processing time grows from 2.5 to 19.8
milliseconds. This is obvious since more queries will lead to
more search paths and time.

Communication Overhead: Fig. 7(d)—(f) show the commu-
nication overhead w.r.t. varied n, gw, and k, respectively. The
communication overhead does not change much with n either
because for the same reason in query processing. When gw
increases, the grid number decreases and the size of grid codes
decreases, thus reducing the communication overhead.

D. Result Verification

The data user verifies the correctness and completeness of the
result. We record the average verification time w.r.t. n, gw, and
k. Fig. 8(a)—(c) show that the time is almost constant with varied
n and gw. We attribute this advantage, i.e., near “immunity” to
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n and gw, to the method that TiveQP builds the index tree after
careful structure organization. The time grows slightly with &
because the user has to check more proofs from more search
paths.

E. Comparison

In index construction, PBtree has a lower cost because it
1) uses a Bloom filter as index leading to less hash operations
(only on leaf nodes) and half index size, 2) avoids logical OR
operations when building the tree upwards, and 3) does not
compute any verification information. The costs of IBtree and
SecEQP are lower for not generating verification information.

3
Grid width gw

(b) Average verification time varying gw

Query parameter k

(c) Average verification time varying k

IBtree and SecEQP have an index tree of the same size for using
the same IBF. ServeDB costs more than TiveQP because it uses
multiple levels to encode locations, inserts data items into a
Bloom filter for each node, and computes a HMAC for each
Bloom filter segment of each node, thus involving more hashes.
ServeDB’s index size is larger than TiveQP’s (after gw = 1) be-
cause its verification information contains many HMACs, even
using Bloom filter as index. For example, when n = 20, 000, the
size of HMACs sums to (20000 % 2 — 1) = IN/200 * 256bits =
1.192 GB. The construction cost of TiveQP without type is
higher than TiveQP because it computes and contains more
pairs of bits and S for non-leaf nodes above the subtrees. The
construction cost of R-Tree is the lowest because in only uses
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five-dimension points to create node indexes when inserting data
items. However, it reveals data privacy. We did not introduce the
update and delete property which the existing work (PBTree,
IBTree, SecEQP, and ServeDB) did not mention either. All the
trees support the two properties by recomputing a new leaf
node and its father nodes and deleting a leaf node and updating
its father nodes. Compared with other trees, TiveTree is built
in a bottom-up fashion as IBtree and SecEQP. Each node in
the TiveTree has an IBF index. All nodes in TiveTree contain
verification information in each node for result verification as
in ServeDB. In query processing, PBtree, IBtree, SecEQP,
and ServeDB spend more time for two reasons. First, they
process three types of data: type, location, and time. Second,
they randomly partition the data items without considering the
spatial attributes of data items when building the index. This
in turn causes more search paths than TiveQP, thus resulting in
more hash operations and more query processing time. Specifi-
cally, PBTree’s query time exceeds other schemes for using one
HMAC and one modular operation in processing each prefix.
SecEQP’s query time is higher than the one of IBtree for using
multiple coordinate systems. ServeDB has extra query time for
using multiple levels to encode locations that involves more hash
checks on Bloom filters. It has a higher communication cost than
TiveQP for transmitting more proofs that include the Bloom
filter and HMAC:s of each key node. The query time of R*-Tree
is higher than TiveQP because the search on multi-dimension
points spends more time than IBF hashes.

In result verification, ServeDB consumes more time because
its data user 1) verifies the correctness by using Merkle tree,
2) verifies the correctness of Bloom filter for each key node, 3)
re-maps the trapdoors for each key node to verify the correctness
of matched trapdoor set U M T and matched trapdoor set MT,
and 4) verifies the query process in each search path. Specifically,
the second step involves many Bloom filter hashes and checking
HMAC:s.

The cost of TiveQP without type is always higher than TiveQP
for computing extra LCS in construction and performing addi-
tional checks on location and time above subtrees in querying.
Comparison shows that TiveQP provides an advantage in query
processing and result verification. The construction is an one-
time and offline process, which will not impact the efficiency
greatly. The accuracy of TiveQP is the same as IBTree and Se-
cEQP for using IBF as index. Since itis well studied and the page
numbers are limited, we do not provide accuracy comparison.
We do not compare with SVKNN because 1) We are different in
index, system model, and techniques; 2) SVKNN requires two
servers to execute secure grid computation and Paillier encryp-
tions/decryptions, resulting in 560 seconds (n = 2000, k = 20)
while ours is 10 ms (n = 20000, &k = 20).

VIII. DISCUSSIONS

In this section, we discuss two relevant issues, namely local
processing and time period.

A. Complementary Set

The complementary sets of location, time, and type are pro-
posed to verify query results without violating the privacy of
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other data items. After the data owner uses space encoding and
prefix encoding techniques to calculate the complementary sets
of location, time, and type, the complementary sets are inserted
into the IBF for data users to verify during the validation phase.
Therefore, the complementary information will not be stored,
but the inserted IBF will be sent to an untrusted cloud server and
stored for verification.

The differences in applying the complementary set to location,
time, and type is preprocessing. In specific, they have different
format that leads to difference preprocessing operations to unify
them into an appropriate format for prefix encoding.

B. Local Processing

It is feasible for the CS not to process the time query but
the data user does it locally. However, this results in increased
search time, inaccurate results, and poor service experience.
Further, the time feature is already adopted in current services
like OpenTable (https://www.opentable.ca).

C. Time Period

Regarding splitting time period, we can process opening hours
and access time separately by transforming them into two sets,
and then match them via private set intersection. Specifically,
the opening hours of stores are relatively fixed while the access
time of users are dynamic. Therefore, the treatment of the two
time is somehow different. We can apply the splitting technique
to a wider range of application scenarios. For example, a user
needs £ nearest cafes that are rated over three stars and a rider
hails a ride with a specific time to meet the driver.

The current design considers a general accessing hour (e.g., a
store opens every day from “8:00” to “12:00”). However, in real
life, the accessing time of locations can be different for dates.
Therefore, we can revise the coding of opening time and access
time according to the specific scenarios.

D. Result Deletion

If an untrusted cloud server intentionally deletes some correct
results, these correct results will be marked as UMN rather than
MLN. When users verify the completeness, they will reconstruct
the search path for each matched result and verify each evidence
node include UMN in the search path. Such UMNs will not pass
verification.

IX. CONCLUSION

We have proposed a time-restricted, verifiable, and efficient
SENN query processing scheme TiveQP. Two key novelties are
fusing the feature of time-restricted access into SENN query
processing by integrating spatial attribute with time attribute,
and designing a privacy-preserving verification method by lever-
aging membership checking in complementary sets. We design
a space encoding technique and a prunning strategy to improve
query efficiency. We formally state and prove the security of
TiveQP. Experimental results show that TiveQP is highly effi-
cient in query processing and result verification.
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