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Abstract

In this thesis, we try to prove the stability of spiral arms using the density wave theory. This theory assumes that
the spiral arms are not rigid structures, but instead they are regions with increased density that move through the
galaxy like a wave [1]. The spiral structure, in this theory, are driven by the Lindblad resonances, which occur when
the star has had an integer amount of radial oscillations for every encounter with the spiral structure. Here, we
consider the standard Lindblad model for a two-armed galaxy. We consider the corotation resonance, where the star
has the same orbital frequency as the spiral structure, and the Lindblad resonances where the star has completed
two radial oscillations for every revolution it has made with respect to the spiral structure. If the star moves more
slowly than the spiral structure, it is in the outer Lindblad resonance; if it moves faster than the spiral structure, we
call it the inner Lindblad resonance.

To derive a formula for the density of stars in a galaxy, we make a few approximations. We assume that the
spiral arms are Archimedian spirals, even though spiral arms are generally shaped more like logarithmic spirals [2].
We also make linear approximations, as we approximate the Hamiltonian in the case without spiral arms with the
linear Hamiltonian H0.

To calculate the density of stars, we assume that the stars follow a certain distribution in phase-space. We then
integrate this distribution to obtain the spatial density of the stars. This density shows a clear spiral structure at outer
Lindblad resonance and corotation. However, the linear approximations mean that the distribution around inner
Lindblad resonance does not show any spiral structure. This is because we linearized the unpertubed Hamiltonian,
which means that we assumed that the radial and orbital frequencies are constant for all stars in this resonance.
However, when calculating these frequencies using the non-linearized Hamiltonian, we show that this approximation
does not work for inner Lindblad resonance, despite being a good assumption for the other resonances. So using this
model, we have derived the outer part of the spiral structure. Even though the density in the structure does not
differ much from the surrounding galaxy, the increased star formation [3] means that these arms stand out more in
luminosity than in density.

ii



Contents

1 Introduction 1

2 Derivation of the equations of motion for a star 4
2.1 Dark matter halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Derivation of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Changing to a rotating frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Linearization around circular orbits 7
3.1 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Adding a spiral potential 11

5 Coordinate transformation 12
5.1 Canonical coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Transformed Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Time-averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Star distribution 17

7 Results 19

8 Discussion and Conclusion 22

References 23

Appendix: Code 24

iii



Nomenclature

Symbol Description Physical value for the Milky Way
Coordinates

(x, y) Cartesian coordinates
r Radius to the galactic center
θ Orbital angle
θsp Orbital angle with respect to the spiral structure
p Radial momentum
l Angular momentum
φ Radial phase
ψ Orbital phase
n Radial amplitude
t Time

Stellar and galactic properties
m Stellar mass 1028 − 1032 kg [4],[5]
r+, r− Turning points for a star’s radial oscillation
v2

0 Rotational velocity ∼ 210 kpc/Gyr
Ωs Angular frequency of the spiral structure ∼ 25 rad/Gyr

Resonance properties
ω Orbital frequency in non-rotating frame
κ Radial frequency
a, b Ratio between κ and ω − Ωs
r̄ Radius for a circular orbit in resonance ∼ 8.3 kpc for corotation
l̄ Angular momentum for a circular orbit in resonance m · 1.7 pc2/yr for corotation

Spiral properties
α Curve of the spiral arms ∼ 0.4 rad/kpc
λ Disk scale length ∼ 0.3 kpc−1 [6]
ε Strength of the spiral potential ∼ 0.06 [7]

Energies per unit mass
L Lagrangian
T Kinetic energy
V Potential energy
Vsp Spiral potential
V Time-averaged spiral potential
H Hamiltonian
H0 Unpertubed Hamiltonian
H ′ Hamiltonian for the transformed system
H ′ Time-averaged Hamiltonian
U Radial potential

Stellar distribution
f Distribution in phase-space
ρ Spatial density
β Energy scale of the distibution
Z Normalization constant
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1 Introduction

In this thesis, we consider spiral galaxies. Spiral galaxies, along with irregular galaxies, make up about 60% of the
galaxies in the local universe [3]. A few examples of spiral galaxies are Messier 81 and Messier 101, seen in figure 1,
where the latter is also known as the Pinwheel galaxy.

(a) Messier 81 [8] (b) Messier 101, “Pinwheel galaxy” [3]

Figure 1: Examples of spiral galaxies

In both of these galaxies, we can see clear spiral arms extending out from the galactic center. Out of all the
galaxies that show a spiral structure, galaxies like Messier 81 and Messier 101 form a minority. About two-thirds
of all spiral galaxies also have a bar-shaped structure near the galactic center [9]. Our own galaxy, the Milky Way,
belongs to this group. Another example of a spiral galaxy with a central bar is NGC 1300.

(a) Artist’s impression of the Milky Way [10] (b) NGC 1300 [9]

Figure 2: Some barred spiral galaxies

In the barred spiral galaxies, the spiral arms extend out from the endpoints of the central bar, rather than
extending from the galactic center. The model in this thesis works for both regular and barred spiral galaxies.
Since it is not uncommon for galaxies to have a spiral structure, it is worth questioning what caused this structure.
Due to the frequent appearance of spiral arms, it is unlikely that they are caused by a purely random event. Originally,
astronomers assumed that the spiral arms were rigid mass concentrations. However, it was observed that stars close

1



to the galactic center have a higher angular frequency than stars that are further away. If the spiral arms are rigid
structures, this leads to the “winding problem”, where spiral arms become so tightly wound that they are no longer
clearly observable [1].
It was proposed that spiral arms instead are “density waves”, regions with higher density, that rotate more slowly
than the stars in the galaxy [3]. This led to the density wave theory as formulated by C. C. Lin and F. H. Shu [11].
The spiral arms in the density wave theory are driven by Lindblad resonance, which occurs when the star’s epicyclic
frequency is a multiple of the frequency at which the star encounters the spiral structure.
Galaxies usually have a diameter ranging from 1 kpc to 100 kpc, and can contain between 109 to 1014 stars [12]. The
corotation radius, which is the radius where the stars have the same rotational frequency as the spiral pattern, lies
between 7 kpc and 10 kpc [13]. For example, our Sun lies near the corotation radius of the Milky Way [14]. Since
the Sun’s distance to the galactic center is about 8.3 kpc and the Milky Way is 31-55 kpc in diameter [10], we can
see that spiral arms exist at the corotation resonance.

Not in every galaxy are the spiral arm a result of Lindblad resonance. An example of this is the Whirlpool galaxy,
NGC 5194, where the spiral arms are believed to result from its interactions with its companion galaxy NGC 5195
[15].

Figure 3: The Whirlpool galaxy and its companion NGC 5195 [15]

The Whirlpool galaxy shows that a collision can induce a spiral structure. This, however, is not always the case.
If two spiral galaxies collide, then the resulting galaxy might not have spiral arms. An example of this is the collision
of the Milky Way with Andromeda, which is expected to happen in a few billion years. Numerical models of this
collision show that the resulting galaxy is an elliptical galaxy [16]. Elliptical galaxies are approximately ellipsoidal
in shape, and do not have much structure [17], as we can see from galaxy ESO 325-G004 in figure 4.

Figure 4: Elliptical galaxy ESO 325-G004 [17]

In this thesis, we do make a few approximations. Most of these approximations are to make the mathematics
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simple enough that we can calculate most of the formulas analytically. However, we do also assume that the spiral
structure has the shape of an Archimedean spiral.

(a) Archimedean spiral (b) Logarithmic spiral

Figure 5: Two different spirals

The Archimedean spiral has the property that the rotation stays constant, even at a larger radius, meaning that
the distance between two consecutive revolutions is constant everywhere. The logarithmic spiral has the property
that its shape stays the same, even when scaling it up or down. This does mean that it winds up faster and faster
as the radius drops, and is undefined at the origin.
Even though most spiral arms follow the pattern of a logarithmic spiral [2], we assume an Archimedean spiral since
we also consider the galactic center in our calculations. Using a logarithmic spiral would mean that some functions
are undefined here, which is not a desirable result.
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2 Derivation of the equations of motion for a star

The rotation curve or velocity curve of a disc galaxy show the orbital velocity of the galaxy’s stars and interstellar
gas as a function of the distance to the galactic center. If we would calculate the rotation curves from the visible
disc, we would expect the velocity to drop after a certain radius [18]. However, the measured rotation curves are
flat, and the expected drop has not been measured yet.

Figure 6: The Milky Way’s rotation curve [19].
The velocity does not drop to zero as we would expect from the visible stars and gas

The lack of this expected drop in velocity curves is often explained with a dark matter “halo”, a ring of dark
matter surrounding the galactic disc.

2.1 Dark matter halo

The velocity curves from figure 6 are evidence of the presence of dark matter. The mass density due to the stars in
a galaxy is not enough to produce the potential V , or the rotation curves in figure 6. Assuming that a galaxy has
a spherically symmetric mass distribution ρ = ρ(r) , then the gravitational force working on a star with distance R
from the galactic center, is the same as when all mass inside a sphere with radius R would be concentrated in the
galactic center. This galactic force must be the same as the centrifugal force, and since the velocity approaches a
constant v0:

v2
0

R
=
GM(R)

R2
=

G

R2

ˆ R

0

4πr2ρ(r) dr.

The mass on a spherical shell with radius r is equal to 4πr2ρ(r) dr, and summing this mass over all shells from radius
0 to R, gives M(R), the mass inside the sphere with radius R. Now, it follows that the density ρ is proportional
to r−2. The galaxy, in approximation, has a uniform stellar mass distribution for r < r0, with r0 the radius of the
galaxy. From this we can conclude that there is another source of mass (dark matter), that gives the total density
distribution ρ(r) ∝ r−2.

2.2 Derivation of the Hamiltonian

The non-relativistic Lagrangian of a system is defined as

L = T − V, (1)

where T is the total kinetic energy of the system, and V is the potential energy. If we only consider the motion of
one star inside this galaxy, then the kinetic energy is equal to T = 1

2mv
2. Since m cancels out in the equations of

motion, we can replace all energies with energy per unit mass.
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Now we want to calculate the velocity v. Note that any velocity can be split into a radial velocity and an angular
one. Since the system is a circular disk, we introduce polar coordinates in an inertial frame, so

x = r cos(θ) and y = r sin(θ).

Figure 7: Location and velocities of a star in a galaxy in polar coordinates

The radial velocity vr is equal to ṙ, as this velocity is equal to the change in distance to the center. For the
angular velocity, first note that θ̇ is the angular frequency (in rad

s ). If the star has no radial velocity, it will move in
a circular motion, and the time it takes to complete one orbit is t = 2π

θ̇
. Now, the velocity, and therefore the angular

velocity is equal to

vθ =
2πr

t
= θ̇r,

and combining these results gives

T =
ṙ2

2
+
θ̇2r2

2
. (2)

Since the rotation curves are flat, we know that the velocity of stars approaches a constant v0 for larger distances to
the galactic center as seen in figure 6. The gravitational force is the only force present, so it must be equal to the
centrifugal force to keep the stars in orbit, and thus

Fz = −mv
2

r
= −v

2

r︸︷︷︸
m=1

= −v
2
0

r︸︷︷︸
r large

.

We know that the force is equal to minus the gradient of the potential,

Fz = −v
2
0

r
= − ∂

∂r
V,

so approximately, we have

V = v2
0 log(r) + C. (3)

Since the constant C does not contibute to the motion of the star, we can set it equal to 0. We do not yet consider
a spiral arm in this potential. We call V the dark-matter background potential.
Substituting equations (2) and (3) into (1), we get the Lagrangian

L =
ṙ2

2
+
θ̇2r2

2
− v2

0 log(r). (4)
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From this, we can calculate the conjugate momenta as a function of the velocities:

p =
∂L
∂ṙ

= ṙ

l =
∂L
∂θ̇

= θ̇r2.

The Hamiltonian is defined as

H = pṙ + lθ̇ − L

=
p2

2
+

l2

2r2
+ v2

0 log(r). (5)

Here we can see that for this system, the Hamiltonian H = T + V , which is the total energy for this star.
From this Hamiltonian, we can calculate the equations of motion using the following system of differential equations

ṙ =
∂H

∂p
= p ṗ = −∂H

∂r
=
l2

r3
− v2

0

r

θ̇ =
∂H

∂l
=

l

r2
l̇ = −∂H

∂θ
= 0.

(6)

Since we do not yet consider the spiral arms in the potential, the Hamiltonian is axisymmetric, and the angular
momentum l is a conserved quantity.

2.3 Changing to a rotating frame

In the previous section, we have found the Hamiltonian in the inertial frame for polar coordinates. However, the
properties of the star with respect to the spiral arms are the ones that need to be analyzed. Because of this, it is
not useful to calculate the orbit of this star inside the inertial frame, but instead we calculate in a rotating frame.
In this frame the spiral arms are stationary.
Assume that the spiral arms rotate with angular frequency Ωs. Then changing to a rotating frame will add an extra
term −Ωsl to the Hamiltonian. We can show this in two different ways. First, note that only the θ changes. At any
time, the radius and momentum of the star is the same as in the inertial frame, so only the θ is different than before.
Since we rotate in the direction of the spiral arms, the angular frequency in the rotating frame is

θ̇sp = θ̇ − Ωs.

Now note that θ̇ = ∂H
∂l , so to achieve this term −Ωs, we will need an extra term −Ωsl in the Hamiltonian.

Of course, another way to prove this is by using the Lagrangian. We want to change the angle θ to the angle θsp in
the rotating frame. Using the Lagrangian from equation (4)

L =
ṙ2

2
+
θ̇2r2

2
− v2

0 log(r),

and substituting θ̇ = θ̇sp + Ωs, we get

L =
ṙ2

2
+

(θ̇sp + Ωs)
2r2

2
− v2

0 log(r), (7)

which gives the conjugate momenta
p = ṙ

l = (θ̇sp + Ωs)r
2.

(8)

Now we get for the Hamiltonian that

H = pṙ + lθ̇sp − L

=
p2

2
+

l2

2r2
+ v2

0 log(r)− Ωsl, (9)

and we get the required term −Ωsl in the Hamiltonian.
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3 Linearization around circular orbits

It has been observed that stars in a spiral or disk-shaped galaxy move approximately in circular orbits. Consider
a star in an exact circular orbit around the galactic center, we know that r(t) = r̄ and θ(t) = ωt, where ω is the
angular frequency of this orbit. This also gives that

p̄ = ṙ = 0, and l̄ = θ̇r2 = ωr̄2.

Now assume that the star is not exactly in a circular orbit, but rather near one. This means that r(t) and r̄ are not
equal, but instead differ by a small value δr(t), such that r(t) = r̄ + δr(t). Similarly, θ(t) = ωt + δθ(t), p = p̄ + δp
and l = l̄ + δl. Substituting this into the Hamiltonian from equation (9), we get

H =
p2

2
+

l2

2r2
− Ωsl + v2

0 log(r)

=
(p̄+ δp)2

2
+

(l̄ + δl)2

2(r̄ + δr)2
− Ωs(l̄ + δl) + v2

0 log(r̄ + δr).

Since the unknowns (δr, δθ, δp, δl) are small, we can expand the Hamiltonian to the second order around the circular
orbit with δr, δθ, δp, δl = 0.

H =
p̄2

2
+
l̄2

2r̄
− Ωs l̄ + v2

0 log(r̄) + δr

[
− l̄

2

r̄3
+
v2

0

r̄

]
+ (δp)p̄+ δl

[
l̄

r̄2
− Ωs

]
+ (δl)2 1

2r̄2

+ (δr)2

[
3

2

l̄2

r̄4
− v2

0

2r̄2

]
+ (δl)(δr)

[
− l̄

r̄3

]
+

(δp)2

2
.

(10)

Extracting the equations of motion out of the expanded Hamiltonian in equation (10), we get

δṙ =
∂H

∂δp
= p̄+ δp = δp

ω + δθ̇ =
∂H

∂δl
=

l̄

r̄2
− Ωs +

δl

r̄2
− δr l̄

r̄3

δṗ = −∂H
∂δr

=
l̄2

r̄3
− v2

0

r̄
− δr

[
3
l̄2

r̄4
− v2

0

r̄2

]
+ δl

l̄

r̄3

δl̇ = −∂H
∂δθ

= 0.

Since the circular orbit is a stationary point for the Hamiltonian (a star in a circular orbit stays in that orbit), we
expect the Hamiltonian to approach a harmonic oscillator around this point. Therefore, if we take (δr, δθ, δp, δl)
small enough, we are left with just constants and second order terms. This means that all linear terms should vanish,
and thus {

v2
0

r −
l̄2

r̄3 = 0
l̄
r̄2 − Ωs = 0

so l̄ = v0r̄ and l̄ = Ωsr̄
2, from which it follows that v0 = Ωsr̄, and Ωs = ω.

This yields a linear system of differential equations, where we use that l̄ = ωr̄2

δṙ = δp

Ωs + δθ̇ =
δl

r̄2
− δrω

r̄

δṗ = −2δrω2 + δl
ω

r̄

δl̇ = 0.

and in the inertial frame (where the Ωs vanishes), we can rewrite this to
δṙ

δθ̇
δṗ

δl̇

 =


0 0 1 0
−ωr̄ 0 0 1

r̄2

−2ω2 0 0 ω
r̄

0 0 0 0



δr
δθ
δp
δl

 (11)
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which has eigenvalues λ = 0 (with a multiplicity of 2), λ = ±i
√

2ω = ±i
√

2 v0

r̄ . All non-zero eigenvalues are purely
imaginary, meaning that the stationary solutions of this system are stable. If the star has an orbit close to a stationary
solution, so its orbit is almost circular, the orbit will stay near this circular orbit.
Since the general solution of this linearized system has the form

eλtv,

where v is an eigenvector of matrix (11), we can see that the system has an epicyclic frequency

κ =
√

2
v0

r̄
. (12)

Since the orbit had an angular frequency ω = v0

r̄ , the epicyclic frequency is also κ =
√

2ω.

If we do not require the linear term in l to become zero, and instead ignore the quadratic term, then(
l̄

r̄2
− Ωs

)
δl = (ω − Ωs)δl.

Using the epicyclic frequency κ in equation (12), the quadratic term in r becomes(
2l̄2

3r̄4
− v2

0

2r̄2

)
δr2 =

κ2

2
δr2.

If we also drop the constants, the linearized Hamiltonian becomes

H0(r, θ, p, l) =
p2

2
+
κ2

2
(r − r̄)2 + (ω − Ωs)l. (13)

The motions of stars in nearly circular orbits should be well approximated by H0.

3.1 Resonances

Resonances occur when an integer number of epicyclic oscillations coincide with an integer number of orbits, so in
the rotating frame,

a(ω − Ωs) = bκ, (14)

with a, b ∈ Z. We can assume that a > 0. Considering only 2 : 1 resonances, this model has a = 2 and b = ±1 or
b = 0, where b = 1 for inner Lindblad resonance, and b = −1 for outer Lindblad resonance. If b = 0, then ω = Ωs,
and the star is in corotation with the spiral arms.
From 2(ω − Ωs) = ±κ and κ =

√
2ω, it follows that

ω =

√
2√

2∓ 1
Ωs κ =

2√
2∓ 1

Ωs, (15)

with the minus sign for inner Lindblad resonance, and the plus sign for outer Lindblad resonance. Furthermore, the
equilibrium radius and angular momentum of this orbit, when expressed in Ωs and v0, become

r̄ =

(
1∓ 1√

2

)
v0

Ωs
l̄ =

(
1∓ 1√

2

)
v2

0

Ωs
. (16)

The Lindblad resonances are the closed orbits in the rotating frame where the spiral arms are stationary. If the orbits
are not closed, then the effects of the spiral arms will reach their maximum at a different phase on every orbit, so
the total change will average to zero. For the closed orbits, these effects will occur at the same phase every orbit, so
the change adds up and does not nullify itself. This is why we consider only the Lindblad resonances and corotation.
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3.2 Exact solution

If we do not consider spiral arms, then the system is axisymmetric with respect to the galactic center. This means that
the angular momentum l is conserved in this system. This follows from the Hamiltonian (9), which is independent
of θ. Also note that this Hamiltonian is time-independent, so it represents a constant of motion, and it is also
conserved. So we have l = L and H = E for this system. Now, the motion of the star in this two-dimensional plane
is integrable. We can write the radial velocity as

ṙ = p = ±
√

2E − L2

r2
+ 2ΩsL− 2v2

0 log(r).

We define

U(r) =
L2

2r2
− ΩsL+ v2

0 log(r)

as the radial potential.

E

5 10 15 20
r

-2

-1

1

2

U(r)

Figure 8: The radial potential energy versus r. A star with energy E moves radially
between the two turning points r− and r+ where U(r) is equal to E

From Figure 8, we can see that there are two radii for which U(r) = E, and thus p = 0. Therefore the radial
motion is bound between these two turning points, so r− ≤ r ≤ r+. For these points, we have

E =
L2

2r2
−
− ΩsL+ v2

0 log(r−) =
L2

2r2
+

− ΩsL+ v2
0 log(r+).

From this, we can calculate the angular momentum as a function of the turning points

L = v0r−r+

√
2

r2
+ − r2

−
log

(
r+

r−

)
.

Substituting this back, we find an expression for the energy

E = v2
0

r2
+ log(r+)− r2

− log(r−)

r2
+ − r2

−
− ΩsL.

Since the time it takes to travel between the turning points is half the radial oscillation time, we get for the frequencies

π

κ
=

ˆ π/κ

0

dt =

ˆ r+

r−

dr

p
and

ωπ

κ
=

ˆ r+

r−

θ̇ + Ωs
ṙ

dr =

ˆ r+

r−

L

r2p
dr.

Using the expressions for p, E and L, this becomes

π

κ
=

√
r2
+ − r2

−

v0

√
2

ˆ r+

r−

(
r2
+ log

(r+

r

)
+ r2
− log

(
r

r−

)
−
r2
−r

2
+

r2
log

(
r+

r−

))− 1
2

dr (17)
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and

ωπ

κ
= r+r−

√
log

(
r+

r−

)ˆ r+

r−

(
r2
+ log

(r+

r

)
+ r2
− log

(
r

r−

)
−
r2
−r

2
+

r2
log

(
r+

r−

))− 1
2 dr

r2
. (18)

For a certain resonance, we need
ω − Ωs
κ

=
ω

κ
− Ωs

κ
=
b

a

to hold. Using equations (17) and (18), we can find the turning points for different resonances, and calculate the
corresponding frequencies κ and ω. These frequencies are plotted in figure 9.

Inner Lindblad Resonance

Corotation

Outer Lindblad Resonance

0.5 1.0 1.5 2.0 2.5
r

1

2

3

4

5

ω

(a) ω at resonance

Corotation

Outer Lindblad Resonance

Inner Lindblad Resonance

0.5 1.0 1.5 2.0 2.5
r

2

4

6

8

κ

(b) κ at resonance

Figure 9: The angular and radial frequencies, ω and κ respectively, at resonance for different turning points.
The data is calculated using equations (17) and (18)

We can see that the frequencies ω and κ stay constant over a wide range of amplitudes at corotation and outer
Lindblad resonance, but that at inner Lindblad resonance, they increase quickly when the amplitude becomes larger.
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4 Adding a spiral potential

If we want to add a spiral potential to the Hamiltonian, we must go back to the Lagrangian. The kinetic energy in
the rotating frame has not changed, so

L =
ṙ2

2
+

(θ̇sp + Ωs)
2r2

2
− V.

Since we want to add a potential due to the spiral arms, the potential energy V is no longer equal to v2
0 log(r) as it

was in equation (7). Here,
V = v2

0 log(r) + Vsp,

where Vsp is the potential caused by the spiral structure. In the rotating frame, the spiral arms are stationary and
give an extra potential with the form of an Archimedian spiral

Vsp = εe−λr cos(αr − 2θ). (19)

Here, ε is the strenght of the potential, and is only a small number, as the spiral arms only have a slight effect on
the motion of the star. λ makes the potential approach zero for larger radii, and α indicates the curve of the spiral
arms.

-4 -2 0 2 4
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-2

0

2

4

(a) Spiral potential with α = 0.5, λ = 0

-4 -2 0 2 4

-4

-2

0
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4

(b) Spiral potential with α = 1, λ = 0.1

Figure 10: Examples of the spiral potential for different α and λ

Now note that the spiral potential Vsp does not depend on the velocities ṙ and θ̇. Because of this, the formulas
for the conjugate momenta p and l do not differ from the ones we got in equation (8), which means that for the
Hamiltonian, we get

H =
p2

2
+

l2

2r2
− Ωsl + v2

0 log(r) + εe−λr cos(αr − 2θ).

Using this Hamiltonian, we can calculate the motion of the stars, where we now do consider the spiral arms. The
system of differential equations that we use to calculate this motion becomes

ṙ =
∂H

∂p
= p ṗ = −∂H

∂r
=
l2

r3
− v2

0

r
− ∂Vsp

∂r

θ̇ =
∂H

∂l
=

l

r2
− Ωs l̇ = −∂H

∂θ
= −∂Vsp

∂θ
.

(20)

Since we now have a spiral potential, the Hamiltonian is no longer rotationally symmetric, and the angular momentum
l is not constant.
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5 Coordinate transformation

We are not interested in the general solution of the Hamilton equations. Instead, we want to research the deviation
between the true orbits and the solutions from the unpertubed Hamiltonian H0 from (13). To do so, we now transform
this problem from polar coordinates (r, θ, p, l) to the variables (φ, ψ, n, l) that change slowly in time. If we take a
reference point that has a circular orbit of radius r̄ around the galactic center, and let this point move with constant
orbital frequency ω − Ωs, then ψ is the difference between the orbital angle of the star and that of this reference
point. The radial oscillation of the star around r = r̄ has amplitude proportional to

√
n, and phase φ+ κt. The new

angular momentum l is the same as the old one.

Figure 11: The slow variables

This is summarized in the coordinate transformation
r = r̄ +

√
2n

κ
cos(φ+ κt)

p = −
√

2nκ sin(φ+ κt)

θ = ψ + (ω − Ωs)t

l = l

(21)

with inverse transformation 

φ = arctan

(
− p

κ(r − r̄)

)
− κt

n =
κ

2
(r − r̄)2 +

p2

2κ
ψ = θ − (ω − Ωs)t

l = l.

(22)

Note that for constant φ, ψ, n, l, the functions (21) are exactly the solutions of the system defined by the Hamiltonian
H0 given by (13).
The transformation from (r, p) to (φ, n) is like a harmonic oscillator transformation. [20, Chapter 9]
A simple harmonic oscillator has the Hamiltonian

H =
1

2m
(p2 +m2ω2q2).

12



Now, using the transformation

q =

√
2P

mω
sin(Q)

p =
√

2Pmω cos(Q),

the Hamiltonian becomes H = ωP .
In the same way, the transformation (21) takes the quadratic part of the linearized Hamiltonian (13), p

2

2 + κ2

2 (r−r̄)
and transforms it into a linear term. Therefore, this Hamiltonian in the new variables becomes

H0 = κn+ (ω − Ωs)l. (23)

5.1 Canonical coordinate transformation

To calculate the new Hamiltonian in the new coordinates, we first must show that this transformation is canonical.
A canonical transformation is a coordinate transformation that preserves the form of Hamilton’s equations (the
equations of motion). When transforming from coordinates (r, θ) and conjugate momenta (p, l) to the new coordinates
(φ, ψ) and corresponding momenta (n, l), then the transformation is canonical if it satisfies the direct conditions [21]

∂(φ, ψ)

∂(p, l)
= −∂(r, θ)

∂(n, l)
,

∂(φ, ψ)

∂(r, θ)
=
∂(p, l)

∂(n, l)

∂(n, l)

∂(r, θ)
= − ∂(p, l)

∂(φ, ψ)
,

∂(n, l)

∂(p, l)
=

∂(r, θ)

∂(φ, ψ)
.

For example, this means that ∂φ
∂r = ∂p

∂n , or that ∂n
∂θ = − ∂p

∂ψ . Most of the direct conditions give trivial results, as these

equations give zero, like ∂r
∂ψ or ∂θ

∂n , or 1, like ∂l
∂l . Four of the direct conditions are not trivial. The transformation

can be shown to obey these conditions using that

cos(arctan(x)) =
1√

x2 + 1
, sin(arctan(x)) =

x√
x2 + 1

,

for all x ∈ R. For example, with the direct condition ∂φ
∂p = − ∂r

∂n ,

∂φ

∂p
=

∂

∂p

[
arctan

(
− p

κ(r − r̄)

)
− κt

]
= − 1

κ(r − r̄)

(
p2

κ2(r − r̄)2
+ 1

)−1

since
∂

∂x
arctan(x) =

1

x2 + 1

= − κ(r − r̄)
p2 + κ2(r − r̄)2

.

Also,

− ∂r
∂n

= −
√

1

2nκ
cos(φ+ κt)

= −

√
1

κ2(r − r̄)2 + p2
cos

(
arctan

(
− p

κ(r − r̄)

))

= −

√
1

κ2(r − r̄)2 + p2

κ(r − r̄)√
p2 + κ2(r − r̄)2

= − κ(r − r̄)
p2 + κ2(r − r̄)2

.

So indeed, ∂φ
∂p = − ∂r

∂n . The conditions

∂φ

∂r
=
∂p

∂n
,

∂n

∂p
=
∂r

∂φ
,

∂n

∂r
= − ∂p

∂φ

can be proven in the same way as the one above.
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5.2 Equations of motion

We can obtain the new equations of motion directly from the transformation equations. Since l remains unchanged
by this transformation, we get

l̇ = −∂Vsp[r(φ, n), θ(ψ), p(φ, n), l]

∂θ
.

The transformation rule for θ only depends on ψ, and

ψ̇ = θ̇ − (ω − Ωs) =
l(

r̄ +
√

2n
κ cos(φ+ κt)

)2 − ω.

For the radial coordinates φ and n, the transformation can be compactly written as

(r − r̄) + i
p

κ
=

√
2n

κ
e−i(φ+κt).

Taking the time derivative, this becomes

ṙ + i
ṗ

κ
=

(
ṅ

2n
− i(φ̇+ κ)

)√
2n

κ
e−i(φ+κt)

ṅ

2n
− i(φ̇+ κ) =

(
ṙ + i

ṗ

κ

)√
κ

2n
ei(φ+κt).

Since the real and imaginary parts of these equations have to be the same, we can conclude that

ṅ =
√

2nκ

(
ṙ cos(φ+ κt)− ṗ

κ
sin(φ+ κt)

)
φ̇ = −

√
κ

2n

(
ṙ sin(φ+ κt) +

ṗ

κ
cos(φ+ κt)

)
− κ.

Substituting ṙ and ṗ with their equations of motion (20) and transforming to the new variables, we obtain:

ṅ = −2nκ cos(φ+ κt) sin(φ+ κt)−
√

2n

κ
ṗ sin(φ+ κt)

φ̇ = κ sin2(φ+ κt)−
√

1

2nκ
ṗ cos(φ+ κt)− κ,

where for ṗ we must substitute

ṗ =
l2

r(φ, n)3
− v2

0

r(φ, n)
− ∂Vsp[r(φ, n), θ(ψ), p(φ, n), l]

∂r
.

5.3 Transformed Hamiltonian

Since the transformation from (r, θ, p, l) to (φ, ψ, n, l) is canonical, the new equations of motion are also Hamilton
equations. The equations of motion for φ(t), ψ(t), n(t), l(t) are controlled by a new Hamiltonian, which is the difference
between the old Hamiltonian and the unpertubed Hamiltonian H0 [20, Chapter 12]:

H ′ = H −H0.

In the new coordinates, this Hamiltonian is equal to

H ′ =
p2

2
+

l2

2r2
+ v2

0 log(r)− Ωsl + Vsp(r, θ, p, l)−H0

= κn sin2(φ+ κt) +
l2

2
[
r̄ +

√
2n
κ cos(φ+ κt)

]2 + v2
0 log

(
r̄ +

√
2n

κ
cos(φ+ κt)

)

+ Vsp(φ, ψ, n, l)− (κn+ ωl) .
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In these coordinates, the Hamilton equations are

φ̇ =
∂H ′

∂n
, ψ̇ =

∂H ′

∂l
, ṅ = −∂H

′

∂ψ
, l̇ = −∂H

′

∂ψ
.

Since
Vsp(φ, ψ, n, l) = εe−λr(φ,n) cos(αr(φ, n)− 2ψ − 2(ω − Ωs)t),

the Hamilton equations are identical to the equations of motion calculated from the transformation (21). Since H ′ is
the correct Hamiltonian for the slow variables, this independently confirms that the transformation (21) is canonical.

5.4 Time-averaging

In the unpertubed system where the stars’ orbits are driven by the zero-Hamiltonian H0, the stars move with angular
frequency ω−Ωs, and have radial frequency κ. Since stars move approximately in circular orbits, and circular orbits
give constant φ, ψ, n, l, the slow variables that define these orbits change slowly or stay constant in time. The change
in these variables over one orbit is small, we can instead consider the secular change over many orbits, which is give
by the time-averaged Hamiltonian [20]. The method of slow variables used in this model is devised by Visser.
The stars approximately have angular frequency ω − Ωs, so the time it takes to complete one orbit is equal to

t =
2π

ω − Ωs
.

Therefore, the time-averaged Hamiltonian must be defined as

H ′ =
ω − Ωs

2π

ˆ 2π/(ω−Ωs)

0

H ′ dt.

Note that
ω − Ωs

2π

ˆ 2π/(ω−Ωs)

0

1

1 +
√

κn
v2
0

cos(φ+ κt)
dt =

(
1− κn

v2
0

)3/2

.

We can calculate
ω − Ωs

2π

ˆ 2π/(ω−Ωs)

0

log

(
1 +

√
κn

v2
0

cos(φ+ κt)

)
dt

by time-averaging the derivative with respect to n of this logarithm, and integrating the resulting function. This
yields

ω − Ωs
2π

ˆ 2π/(ω−Ωs)

0

log

(
1 +

√
κn

v2
0

cos(φ+ κt)

)
dt = log

(
1 +

√
1− κn

v2
0

)
.

Combining this result with 2n
κr̄2 = κn

v2
0

, we obtain for the time-averaged Hamiltonian

H ′ =
κ2l2

4v2
0

(
1− κn

v2
0

)3/2
+ v2

0 log

(
1 +

√
1− κn

v2
0

)
− κn

2
− ωl + V , (24)

where V is the time-averaged spiral potential.
In the old variables, the spiral potential is equal to

V (r, θ, p, l) = εe−λr cos (αr − 2θ) .

Using cos(x) = Re(eix), this can be rewritten to

V (r, θ, p, l) = ε Re
[
ei(α+iλ)r−2iθ

]
.

Substituting the new variables, this becomes

V (φ, ψ, n, l) = ε Re
[
ei(α+iλ)r̄ei(α+iλ)

√
2n
κ cos(φ+κt)e−2iψe−ibκt

]
.
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Now we can use the Fourier series

eiz cos(x) =

∞∑
h=−∞

ihJh(z)eihx,

where Jh are the Bessel functions of the first kind, to write the spiral potential as

V (φ, ψ, n, l) = ε Re

[ ∞∑
h=−∞

ei(α+iλ)r̄Jh

(
(α+ iλ)

√
2n

κ

)
ei(hφ−2ψ)ei(h−b)κt

]
.

When averaging over the orbital period, and thus over an integer amount of radial oscillations, all term vanish except
for the constant term where h = b. This gives that

V (φ, ψ, n, l) = ε Re

[
ei(α+iλ)r̄Jb

(
(α+ iλ)

√
2n

κ

)
ei(bφ−2ψ)

]
. (25)
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6 Star distribution

We want to calculate the way the stars distribute themselves inside the galaxy due to the spiral potential. For
this, we assume that there is a time-independent distribution of stars f(φ, ψ, n, l) in the slow variables. Using the
coordinate rules (21), we can transform this to a distribution in the original coordinates using

f(r, θ, p, l) =

˚
δ (r − r(t)) δ (θ − θ(t)) δ (p− p(t))f(φ, ψ, n, l) dφ dψ dn,

where the overline again represents the time-averaged function. Hence f(r, θ, p, l) is a time-independent function.
With this distribution, we can calculate the spatial density of stars ρ inside the galaxy by integrating over the
conjugate momenta:

ρ(r, θ) =
1

r

¨
f(r, θ, p, l) dp dl.

The 1
r term is the Jacobian that occurs when transforming from cartesian coordinates to polar coordinates. Now, if

the distribution f is normalized, then the density ρ will be normalized as well. Now note that the expression for the
density has become

ρ(r, θ) =
1

r

¨ ˚
δ (r − r(t)) δ (θ − θ(t)) δ (p− p(t))f(φ, ψ, n, l) dφ dψ dn dp dl.

The coordinate p is independent from φ, ψ, n, l, and

ˆ ∞
−∞

δ (p− p(t)) dp = 1,

so we have

ρ(r, θ) =
1

r

˚
δ (r − r(t)) δ (θ − θ(t))

ˆ
f(φ, ψ, n, l) dl dφ dψ dn.

Here, we have to integrate φ and ψ from 0 to 2π, and l from −∞ to ∞. The boundaries for the n-integral will prove

to be at n = κ
2 (r − r̄)2 and n = κr̄2

2 .
To obtain the spatial density of stars, ρ(r, θ), we have to make an assumption on the initial distribution f . Since

the stable resonances are found at the minima of H ′, we assume a distribution like a maximal-entropy state:

f(φ, ψ, n, l) =
1

Z
e−βH

′(φ,ψ,n,l),

where Z is a normalization constant. Due to this maximal-entropy state, the stars are most likely to find themselves
in the stable orbits near the minima of H ′. Because of this, it is reasonable to assume this state as the initial
distribution. Simultaneously, this state is the Laplace transform of δ(E −H ′), so even if this state is not the correct
initial distribution, it is still useful to calculate the density due to this state. The method for calculating the density
of stars is devised by Visser, who also proposed this initial star distribution.

First, let us evaluate the integral over l.

ˆ ∞
−∞

exp

βωL− β κ2l2

4v2
0

(
1− κn

v2
0

)
 dl.

Since ˆ ∞
−∞

exp
(
−Al2 −Bl

)
dl =

√
π

A
e
B2

4A if Re(A) > 0,

this integral becomes equal to √
2π

β
r̄

(
1− κn

v2
0

)3/4

exp

(
1

2
βω2r̄2

[
1− κn

v2
0

]3/2
)
.
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Now we need to evaluate the integrals over φ and ψ. In the Hamiltonian H ′, only V depends on these variables, so
these integrals only affect this term.

¨
δ (r − r(t)) δ (θ − θ(t))e−βV (φ,ψ,n,l) dφ dψ.

Since ψ = θ − (ω − Ω)t = b
aκt, where a = 2 and b = −1, 0, 1, we can rewrite this to

ˆ
δ (r − r(t)) e−βV (φ,θ− b2κt,n,l) dφ.

This becomes
e−βV =

κ√
2κn− κ2(r − r̄)2

(
e−βV (φ1(r,n),θ,n) + e−βV (φ2(r,n),θ,n)

)
,

where

φ1(r, n) = − arccos

(
(r − r̄)

√
κ

2n

)
and φ2(r, n) = arccos

(
(r − r̄)

√
κ

2n

)
.

Since the star density has to be real, the root in the denominator of e−βV ,√
2κn− κ2(r − r̄)2,

must be real. Therefore, there are only contributions from

κ

2
(r − r̄)2 < n <

κr̄2

2
.

These conditions can be rewritten to

(r − r̄) <
√

2n

κ
< r̄.

This means that we only get contributions if the amplitude of the radial oscillation around r̄ is large enough that we
can actually reach a point at radius r, but not so large that the radius could become smaller than zero. This also
implies that r has to be smaller than 2r̄.
Also note that

exp

(
−βv2

0 log

(
1 +

√
1− κn

v2
0

))
=

(
1 +

√
1− κn/v2

0

)−βv2
0

and
κn

2
=

1

2
ω2r̄2κn

v2
0

.

Now we can express the star density ρ as a single integral over n:

ρ(r, θ) =

√
2π

β

r̄

Zr

ˆ κr̄2

2

κ
2 (r−r̄)2

(
1− κn

v2
0

)3/4

e

1
2βω

2r̄2

[(
1−κn

v2
0

)3/2

+κn

v2
0

](
1 +

√
1− κn

v2
0

)−βv2
0

e−βV dn. (26)

We can use this equation (26) to calculate the density of stars around r̄ for a specific resonance.
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7 Results

Equation (26) still contains r̄ and b, both of which depend on the resonance we consider. Because of this, we can
only show the density of the stars around one of the Lindblad resonances. The extra density inside the spiral arms
is a small amount compared to the density in the galaxy, so the spiral structure is visualized the best using contour
plots. Here we use 200 contour levels. At all resonances, the contours are strictly increasing when approaching the
galactic center, except at small radii.

(a) α = 4, λ = .2, β = 4, ε = .3 (b) α = 5, λ = .5, β = 2.5, ε = .3

(c) α = 5, λ = .7, β = 3.5, ε = .5 (d) α = 4, λ = .3, β = 1.5, ε = .5

Figure 12: Density of stars near outer Lindblad resonance;
the dashed red line indicates the assumed spiral arms

The density of stars shows an central elliptical orbit due to the resonance, from which a faint arm spirals outward,
and an arm spirals inward. For lower values of β, the outward-spiralling arm becomes less visible as the difference in
density between it and the surrounding part of the galaxy becomes smaller. This is to be expected, as lower values
of β, so β ≈ 0, give an axisymmetric result for the density of stars. In contrast, higher values for β push the stars
not only into the orbits with maximum amplitude, but also along the angular minima of the spiral potential.
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We can also calculate the density of stars for orbits near corotation.

(a) α = 4, λ = .2, β = 4, ε = .3 (b) α = 5, λ = .5, β = 2.5, ε = .3

(c) α = 5, λ = .7, β = 3.5, ε = .5 (d) α = 4, λ = .3, β = 1.5, ε = .5

Figure 13: Density of stars near corotation;
the dashed red line indicates the assumed spiral arms

Apart from the maximum density near the galactic center, we see two bulges in the density that are aligned with
the spiral potential. Since the stars in corotation are stationary with respect to the spiral arms, the stars will clump
together near the minima of the spiral arms. When β increases, again the stars will be forced into orbits with higher

eccentricity, but the term e−βV will push the stars toward these bulges at the corotation resonance.

20



Again, we use equation (26) to calculate the density of stars at inner Lindblad resonance.

(a) α = 4, λ = .2, β = 4, ε = .3 (b) α = 5, λ = .5, β = 2.5, ε = .3

(c) α = 5, λ = .7, β = 3.5, ε = .5 (d) α = 4, λ = .3, β = 1.5, ε = .5

Figure 14: Density of stars near inner Lindblad resonance;
the dashed red line indicates the assumed spiral arms

At inner Lindblad resonance, the density of stars is devoid of any spiral structure. If we were to consider only
the spiral potential, the stars would move in orbits with maximum amplitude that do not follow the spiral potential.
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8 Discussion and Conclusion

From figures 12 to 14, we can see that the results give no spiral structure near the inner Lindblad resonance. This is
unfortunate, as the inner Lindblad resonance should contribute the most towards the total spiral structure. Because
the amount of stars decreases for larger radii, most of the stars will follow the inner resonance.
The problem with our approximations for inner Lindblad resonance lies in equation (13). Because we chose H0 to
be linear in l, we assume that ω, and therefore also κ, are independent of the radius of the orbit of the star, and are
only influenced by the resonance that the star follows. After calculating the frequencies as a function of the turning
points in figure 9, we can see that at the inner Lindblad resonance, κ and ω change quickly when approaching higher
amplitudes. This problem is nonexistent for corotation and outer Lindblad resonance, as in these resonances, the
frequencies stay nearly constant over the entire range of amplitudes.

A way to combat this is to consider higher order terms in the linearized Hamiltonian (13). If, for example, we do
not stop after the linear term in l, and instead include the quadratic term in l and the term (r− r̄)(l− l̄), the motion
in θ will become nontrivial. After transforming the Hamiltonian, we need to linearize the transformed H0 in n and l,
to make sure that the frequencies do not depend on the slow coordinates. If they do, then the secular approximation
will fail since we cannot calculate the time-average. After all, it is impossible to calculate the coordinates from the
time-averaged system, if the time period over which we average depends on the coordinates.

In figures 12 and 13, we can see that the results give a spiral structure near outer Lindblad resonance and
corotation. For galaxies like the Milky Way, spiral arms still exist at corotation and outer Lindblad resonance. Since
the corotation radius is approximately 8 kpc, outer Lindblad resonance exists around 13 kpc, as r̄ for the outer
resonance is around 1.7 times larger than the corotation radius. The radius of the Milky Way is between 15 to 25
kpc, so the outer Lindblad resonance is still relevant. This means that using this model, we have found a spiral
structure in the density of stars that could resemble the outer part of the spiral arms for these galaxies. Even though
the added density is small, this does mean that the spiral arms are regions of increased star formation [3]. Because
of this, even though the relative change in density is small, the spiral arms are a lot brighter, as these regions contain
more young, bright stars.

We should note that when calculating the density at the outer Lindblad resonance, that there is also an arm
spiralling inwards that appears to spiral in the opposite direction compared to the assumed spiral arms. This result
is not detrimental to the validity of this model, as spiral galaxies usually have arms that split up. In this case, one
arm splits into two, where one spirals outward and the other spirals inward, which is what we see in figure 12.

Now, we have shown that an initial spiral potential Vsp leads to a spiral structure in the density of stars. Since the
derived structure follows the assumed spiral potential, we can say that the spiral arms are self-consistent. After all, a
spiral arm superimposes a faint spiral potential onto the existing background potential. However, the spiral potential
does not have to be created by stars. If, for example, the distribution of interstellar gas or dark matter contained a
spiral structure, this would also have led to the formation of spiral arms.
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Appendix: Code

These are the MATLAB [22] scripts used to generate figures 12 to 14. The main code saves the constants for the
function rho to load.

function y=rho(r,theta,h,l) %defining the density
load('constants.mat') %loading the constants from the other file
omega = 1/(1-sqrt(2)*h/l)*Omega;
kappa = sqrt(2)*omega;
rbar = v0/omega;

if((r/rbar -1)ˆ2+0.01<0.99) %If we can create an x (where x = kappa*n/v0ˆ2)
x = linspace((r/rbar -1)ˆ2+0.01,0.99,100); %create a range of x to integrate over

%so that the Inf at the
%boundaries are avoided

V = @(n) eps.*real(1iˆh.*besselj(h,(alpha+1i.*lambda).*sqrt(2.*x).*v0./kappa)...
.*exp(1i.*(alpha+1i*lambda).*rbar-2.*1i.*theta)...
.*exp((-1)ˆn.*h.*1i.*acos((r-rbar)./(rbar.*sqrt(x)))));

bV = 1./sqrt(rbarˆ2.*x-(r-rbar)ˆ2).*(...
exp(-b.*V(1))+exp(-b.*V(2))); %Define eˆ{-beta*V}

%The total function we integrate over
f = (1-x).ˆ(3/4).*(1+sqrt(1-x)).ˆ(-b*v0ˆ2).*exp(0.5*b*omegaˆ2*rbarˆ2.*((1-x).ˆ(3/2)+x)).*bV;

y=trapz(x,f)/r; %Integrate over x and divide by r.
%The constants are not important as only the shape
%matters

else
y=0; %If we are out of range, there are no stars.

end

clear;clc;
%% Define constants
tic;
v0 = 1;
Omega = 1;
alpha = 4;
lambda = .3;
eps = .5;
b = 3.5;

h=-1;
l=2;
omega = 1/(1-sqrt(2)*h/l)*Omega;
kappa = sqrt(2)*omega;
rbar = v0/omega;
lbar = v0*rbar;

scale = 2*rbar;
res = 200;
x = linspace(-scale,scale,res);
y = linspace(-scale,scale,res);

data = zeros(res);
save('constants','v0','Omega','alpha','lambda','eps','b'); %save constants for rho
%%
parfor i = 1:length(x) %parallel processing

temp1 = zeros(1,length(y));
for j = 1:length(y)

[theta,r]=cart2pol(x(i),y(j));%(x,y) to (r,theta) for rho to use
temp1(j)=rho(r,theta,h,l); %Calculate rho for all x,y

end

24



data(i,:)=temp1;
end

r = linspace(0,2*rbar,100);
t1 = alpha.*r-pi/2;
t2 = alpha.*r+pi/2;
[a,b] = pol2cart(t1,r);
[a2,b2]=pol2cart(t2,r);%The minima of the spiral potential
%%
databw = data/max(max(data));%databw has a maximum of 1 to be used by imshow
[X,Y]=meshgrid(x,y);
figure;
hold on
contour(X,Y,data,200)%create a contour plot of rho
xlabel('x')
ylabel('y')
axis equal tight
line(a,b,max(max(data))*ones(size(a)),'color','r','LineStyle','--');
line(a2,b2,max(max(data))*ones(size(a)),'color','r','LineStyle','--');
hold off
figure;
imshow(flip(databw,2))
toc;

This is the Mathematica [23] script used to generate figure 9.
Omega = 1; (*Defining the constants*)

v0 = 1;

h = 1;

l = 2;

rbar = (1 - Sqrt[2]* h/ l) v0/ Omega;

res = 100;

(*Defining relevant functions*)

tau[a_, b_] := Sqrt[b^2 - a^2]/(v0* Sqrt[2]) * NIntegrate[1/(Sqrt[b^2 Log[b/ r] + a^2 Log[r/ a] - a^2 b^2/ r^2 Log[b/ a]]), {r, a, b}];

sigma[a_, b_] := b a Sqrt[Log[b/ a]]* NIntegrate[1/(Sqrt[b^2 Log[b/ r] + a^2 Log[r/ a] - a^2 b^2/ r^2 Log[b/ a]])/ r^2, {r, a, b}];

hoverl[a_, b_] := sigma[a, b]/ Pi - Omega* tau[a, b]/ Pi;

kappa[a_, b_] := Pi/ tau[a, b];

omega[a_, b_] := sigma[a, b]/ tau[a, b];

(*Calculating the lower and upper turning points*)

rm = Table[0 + i* rbar/ res, {i, 1, res}];

rp = Table[Re[x] /. FindRoot[hoverl[rm[[i]], x] ⩵ h/ l, {x, rbar + 0.05}, Evaluated → False], {i, 1, res}]; // Quiet

lowerlist1 = Table[{rm[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

upperlist1 = Table[{rp[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

(*The same for corotation*)

h = 0;

rbar = (1 - Sqrt[2]* h/ l) v0/ Omega;

rm = Table[0 + i* rbar/ res, {i, 1, res}];

rp = Table[Re[x] /. FindRoot[hoverl[rm[[i]], x] ⩵ h/ l, {x, rbar + 0.05}, Evaluated → False], {i, 1, res}]; // Quiet

lowerlist2 = Table[{rm[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

upperlist2 = Table[{rp[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

(*The same for outer Lindblad resonance*)

h = -1;

rbar = (1 - Sqrt[2]* h/ l) v0/ Omega;

rm = Table[0 + i* rbar/ res, {i, 1, res}];

rp = Table[Re[x] /. FindRoot[hoverl[rm[[i]], x] ⩵ h/ l, {x, rbar + 0.05}, Evaluated → False], {i, 1, res}]; // Quiet

(*Outputting the figures*)

lowerlist3 = Table[{rm[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

upperlist3 = Table[{rp[[i]], kappa[rm[[i]], rp[[i]]]}, {i, 1, Length[rm]}];

upper1 = ListPlot[upperlist1, PlotStyle → Red];

lower1 = ListPlot[lowerlist1, PlotStyle → Red];

upper2 = ListPlot[upperlist2, PlotStyle → Blue];

lower2 = ListPlot[lowerlist2, PlotStyle → Blue];

upper3 = ListPlot[upperlist3, PlotStyle → Green];

lower3 = ListPlot[lowerlist3, PlotStyle → Green];

Show[lower1, upper1, lower2, upper2, lower3, upper3, PlotRange → All , AxesOrigin → {0, 0},

AxesLabel -> {ToExpression["r", TeXForm, HoldForm], ToExpression["\\kappa", TeXForm, HoldForm]}]
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