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Using density matrix renormalization group simulations on open chains, we map out the wave vector in the
incommensurate disordered phase of a realistic model of Rydberg chains with 1/r6 interactions, and we locate
and characterize the points along the commensurate lines where the transition out of the period 3 and 4 phases
is conformal. We confirm that it is three-state Potts for the period-3 phase, and we show that it is Ashkin-Teller
with ν � 0.80 for the period-4 phase. We further show that close to these points, the transition is still continuous,
but with a completely different scaling of the wave vector, in agreement with a chiral transition. Finally, we
propose to use the conformal points as benchmarks for Kibble-Zurek experiments, defining a roadmap towards
a conclusive identification of the chiral universality class.

DOI: 10.1103/PhysRevResearch.4.043102

I. INTRODUCTION

In recent experiments on chains of Rydberg atoms with
programmable interactions [1,2], quantum phase transitions
between commensurate (C) ordered phases of periods p =
3, 4 and an incommensurate (IC) disordered phase were
probed dynamically using the quantum Kibble-Zurek mech-
anism [3–5]. These experiments have renewed the interest in
the problem of IC-C transitions first studied in the 1980s and
1990s in the context of adsorbed monolayers [6,7]. The IC-C
critical behavior of a minimal model introduced to describe
such transitions, the p-state chiral clock model [8,9], contains
most of the relevant physics.

The IC-C transition with p � 5 happens through an inter-
mediate gapless phase of central charge c = 1 characterized
by incommensurate correlations. The dominant wave vector q
is not frozen to any specific value, but changes continuously—
floats—through the phase, which is therefore referred to as a
floating phase [8,10,11]. The disorder to floating transition is
in the Kosterlitz-Thouless (KT) universality class [12], with
exponentially diverging correlation length ξ . One reaches the
ordered phase through a Pokrovsky-Talapov [13] (PT) transi-
tion where the wave vector q (which we define in units of 2π )
goes to 1/p as a power law with the exponent β̄ = 1/2 = ν,
where ν is the correlation length critical exponent.

The most interesting cases are p = 3 and 4. Indeed, if the
chiral perturbation δ is relevant, it was suggested [14] that the
IC-C transition may still be direct but in a new nonconformal
(chiral) universality class characterized by β̄ = ν, at least up
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to a Lifshitz point δL beyond which the chiral perturbation
becomes large enough for an intermediate floating phase to
appear, and except possibly at isolated conformal points where
the chiral perturbation vanishes. We present these three possi-
ble scenarios in Fig. 1. As suggested by Huse and Fisher [14],
the product ξ |q − 1/p| provides an accurate diagnosis since it
is expected to diverge at the KT transition of a floating phase,
to approach a strictly positive constant for a chiral transition,
and to go to zero for a conformal transition.

Experimentally [1], IC-C transitions were probed on a
one-dimensional (1D) system of 51 optically trapped Rydberg
atoms. The Kibble-Zurek (KZ) exponent μ is measured by
dynamically tuning the laser parameters of the system and
ramping through the IC-C transitions along specific lines.
The experimental value of the KZ exponent, which controls
the power-law increase of the domain size with the sweep-
ing rate, is around μ � 0.38 for the p = 3 case and μ �
0.25 for p = 4, while simulations reported a value around
μ � 0.45 for p = 3 and μ � 0.2 − 0.3 for p = 4 [2]. The
agreement is good but not perfect, and these results call
for further investigation of the nature of the phase transi-
tion. One major obstacle is the absence of exact results for
the KZ exponent anywhere along the boundary that could
serve as a benchmark. For infinite systems, the KZ expo-
nent is related to the correlation length exponent ν and
the dynamical exponent z by the relation μ = ν/(1 + zν),
but it has proved difficult to determine both ν and z very
accurately.

In this paper, we come up with numerically exact results
for the KZ exponent across two points of the phase diagram
of the experimental model [1], i.e., one on the p = 3 boundary
and the other one on the p = 4 boundary, by very accurately
locating the lines in the IC phase where the q vector is com-
mensurate using the finite-size density matrix renormalization
group [15] (DMRG) algorithm. Along these lines, since the
system remains commensurate and chiral perturbations are
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FIG. 1. Sketch of the scenarios proposed by Huse and Fisher [14]
for commensurate-incommensurate (C-IC) phase transitions of the
classical chiral clock model when the chiral perturbation δ is rel-
evant. We define the q vector in units of 2π . In the case of the
Rydberg model, we will tune the Hamiltonian couplings instead of
the temperature T to probe for these transitions. The floating (FL)
phase is also incommensurate, but we distinguish it from the gapped
incommensurate phase at higher temperatures.

absent, the transition, if it is unique and continuous, is ex-
pected to be conformal with dynamical exponent z = 1.

For the p = 3 case, the transition is expected to be in
the universality class of the three-state Potts (P) model, with
ν = 5/6 and μ = 5/11 � 0.4545, while for the p = 4 case,
it is expected to be Ashkin-Teller (AT) [16], a family of
universality classes parametrized by a coupling λ and cor-
responding to two decoupled Ising models at λ = 0 and
to the symmetric four-state Potts model at λ = 1. Numeri-
cally, we have found an exponent ν � 0.80 corresponding
to λ � 0.5 and leading to μ � 0.444. These conformal
points are located slightly below the tips of the correspond-
ing lobes, and the value of the KZ exponent across these
points can be used as benchmarks. Note that these values
are significantly larger than those reported experimentally
for 51 sites. Furthermore, the transition is found to be
chiral in the vicinity of these points, with clear evidence
that the product ξ |q − 1/p| neither vanishes nor diverges
at the transition, and floating phases have been identified
further away from the transition, except below the period-3
phase.

This paper is structured as follows: In Sec. II, we introduce
and review the experimentally relevant model of Rydberg
atoms and its phase diagram. In Sec. III, we present our main
results, and in Sec. IV, we discuss our results in the context
of past numerical and experimental results. Furthermore, in
Appendix A, we discuss the details of our particular DMRG
implementation, including the fitting of the measured correla-
tion function, and in Appendix B, we show additional results
on complementary cuts to the ones shown in the main text

FIG. 2. Phase diagram of the Rydberg model obtained with
DMRG simulations on 121 sites. Red, blue, orange, and green
regions are the ordered phases with period p = 5, 4, 3, and 2, respec-
tively, while the black region is a commensurate disordered (CD)
phase with wave vector q = 1/2 in units of 2π . The gray region is a
sketch of the floating phase based on a previous iDMRG work [19].
Equal-q lines are shown in the disordered and floating phases. The
points P and AT are, respectively, our estimates of the Potts and
Ashkin-Teller critical points. Apart from the cuts that go through
these points, either horizontally or vertically, or along the associ-
ated commensurate lines (P and AT cuts), the other cuts discussed
throughout the text are horizontal or vertical and are labeled cn. They
are represented by arrows colored according to the ordered phase
they cross.

as well as cuts going through the p = 2 boundary, and also a
finite-size scaling analysis of the critical point drift.

II. RYDBERG MODEL

Experimentally [1], each Rydberg atom of the chain can
be excited to a Rydberg state by an applied laser with Rabi
frequency � and detuning 	. Excited Rydberg atoms have
long-range interactions between them, while they do not in-
teract in the ground state. The hard-core boson Hamiltonian
of this system is

H =
∑

i

−	n̂i + �σ̂ x
i +

∑
j>i

n̂in̂ j

(i − j)6
, (1)

where n̂i ≡ 2(σ z + 1)/2 and σ̂ x, σ z are Pauli matrices. In
the classical limit � = 0, the repulsive interaction and the
chemical potential compete. By adjusting their ratio, a devil’s
staircase [17,18] of classical ground states of many different
ratios of occupation per unit cell size is generated, with the
largest phases having one boson every p sites. The p phases
are stable when � is turned on, up to values of � ∼ 	, beyond
which the system becomes disordered.

The global phase diagram of the relevant region shown in
Fig. 2 and plotted in the natural units 	/� and Rb ≡ �−1/6

has been obtained on chains of 121 sites. The q vector has
been deduced from a fit of the correlation function from the
middle site with the Ornstein-Zernike form. For the sizes that
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FIG. 3. Scaling across the boundaries of the period-3 (top) and period-4 (bottom) phases. Left panels: Inverse of the correlation length
along the commensurate line with q = 1/3 (top) and 1/4 (bottom). Upon approaching the conformal three-state Potts (P) and Ashkin-Teller
(AT) points, the product δq × ξ vanishes. In the vicinity of these points, along cuts c3 and c7, the product δq × ξ goes to a finite value, signaling
a direct chiral transition in the Huse-Fisher universality class. Far away from the P and AT points, the product δq × ξ diverges (and its inverse
goes to zero) at the Kosterlitz-Thouless transition.

we could reach with our finite-chain DMRG algorithm, it is
not possible to map out the floating phase accurately, so we
just show a sketch based on the results of a previous infinite
DMRG study [19], which for that matter is more accurate.
Note that according to that study, there is no floating phase
around the tips of the period-4 and period-3 phases, and a
floating phase was only observed beyond 	/� � 24 below
the period-3 phase.

III. DMRG RESULTS

To more accurately locate the conformal points, we have
progressively refined the equal-q lines in the vicinity of the
period-3 and -4 lobes for 301 and then 601 sites, reaching an
accuracy in q of the order of 10−4 (see Appendix B 2). We
then determined the correlation length ξ along the q = 1/3
and 1/4 lines (P and AT cuts in Fig. 3). The point where ξ

diverges or, equivalently, where 1/ξ vanishes is our estimate
of the location of the conformal points, and the exponent with
which it diverges is our numerical estimate of ν.

To further characterize the conformal transitions, we con-
sidered vertical and horizontal cuts that go through the
estimated P and AT points, respectively. These are labeled
“P/AT cut (vertical or horizontal)” in Fig. 3. Along these
cuts, q varies and, accordingly, one can estimate the exponent
β̄ and follow the behavior of the product ξ |q − 1/p|. The
two vertical lines on each of the plots of this product and
the 	q ≡ |q − 1/p| plots are the 301 and 601 site estimates
of the critical points obtained from the correlation length fit.
To fit the 	q power laws, we fix the critical points to these
estimates.

A. q = 1/3 cut

The commensurate q = 1/3 line has been found to be-
have linearly close to the 1/3 phase, approximately following
Rb � 0.1284	/� + 1.9527. Along this cut, we expect the

transition to be three-state Potts, with exponents ν = 5/6 �
0.833, β̄ = 5/3 � 1.66, and β = 1/9 [20,21]. This point is
called P in the phase diagram of Fig. 2. It is located at
(	/�,Rb) � (1.942, 2.202). Our results for 601 sites agree
within 1% with the theory predictions. The discrepancy in
the 301 site exponents could be due to finite-size effects that
displace the q = 1/3 line, so that along this cut, we slightly
missed the 301 site equal-q line. As expected, the concavities
of q and ξ are opposite, and the product ξ	q converges to
zero. Overall, our results provide strong evidence in favor of
a three-state Potts transition at point P.

B. q = 1/4 cut

Turning now to the IC-C transition of the 1/4 phase,
the q = 1/4 equal-q line approximately follows Rb =
0.1441	/� + 2.8747 (AT cut) when we are very close to the
1/4 phase. Along this commensurate line and for 601 sites,
we find a phase transition at a point denoted AT in Fig. 2 at
(	/�,Rb) � (2.346, 3.213) with exponent ν � 0.80, which
is consistently replicated with a horizontal cut that crosses this
critical point. The β̄ exponent, unknown analytically for the
AT universality class, is in any case larger than 1 [14,22], and
the ξ	q product decays to zero at the transition.

C. Order parameter

To further confirm the conformal nature of the transitions
along the commensurate lines, we looked at the scaling of the
order parameter O defined as the maximal difference in the
occupation 〈n̂l〉. To avoid the Friedel oscillations at the edges,
we only consider the middle 10 sites, leading to the following
definition of O:

O ≡ max
l∈J

〈n̂l〉 − min
l∈J

〈n̂l〉 , (2)

where J ≡ { L−1
2 − 4, . . . , L−1

2 + 5} for odd L. The results
are shown in Fig. 4. Along the P cut, and for 601 sites,
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FIG. 4. Order parameter scaling along (a) the P and (b) the AT
cuts (note the log-log scale). The data were fitted with the expected
power-law behavior: O ∼ ‖	/� − (	/�)c‖β . For 301 sites, both
the exponent and the critical points are fitting parameters, while
for 601 sites, β is fixed to the expected values to show the good
agreement with our estimated ν along these cuts. The horizontal
coordinates were shifted by the estimated critical point values.

the scaling is in excellent agreement with the exact re-
sult β = 1/9. Along the AT cut, we expect the exponent
β to be related to ν by β = ν/8, a prediction derived
from the lowest conformal field theory (CFT) scaling di-
mension of the AT model [23]. For 601 sites, the scaling
is in good agreement with β = 0.1, the expected value
for ν � 0.8.

D. p = 3 nonconformal cuts

Let us now discuss the results we have obtained away from
these points, starting with the period-3 phase. Both below the
1/3 line (c3 cut, vertical, 	/� = 2.4) and above it (c4 cut,
horizontal, Rb = 2.225, Fig. 10) we find clear evidence of
a chiral transition: ξ	q is nearly flat upon approaching the
transition. Note that cut c3 is remarkably far from the Potts
point on the scale of the phase diagram of Fig. 2, leaving
a significant parameter range to probe the chiral universality
class experimentally.

Along the cut c5 at Rb = 2.45, further above, the IC-C
transition is more consistent with Pokrovsky-Talapov, with
ν = 0.6 and β̄ � 0.52. It actually makes sense that β̄ is more
accurate since, with our algorithm, q converges faster than ξ .
On the disordered side, the correlation length grows rapidly
until it eventually levels off before the PT transition. This is
consistent with a KT transition into a floating phase, with ξ

being limited by the finite size. The ξ	q product shows a
clear divergence before q becomes commensurate. This result
might indicate that the floating phase reaches closer to the
tip of the lobe than what is shown in the phase diagrams
(see, however, Appendix B 4 for a discussion of finite-size
effects). The same conclusions apply to cut c6 further above
(Appendix B 3).

E. p = 4 nonconformal cuts

The situation is very similar around the period-4 phase.
The c7 cut (Rb = 3.22) is in agreement with a direct chiral
transition of exponent ν (�β̄) slightly higher than at the AT
point, suggesting that this exponent increases as we initially
move away from the AT point. Cut c8 (Rb = 3.32) shows a
clear indication of an intermediate floating phase. Both expo-
nents are in good agreement with the PT universality class,

especially for 601 sites with ν ′ � 0.52 and β̄ � 0.47, and the
ξ	q product diverges at the KT transition, as expected.

IV. DISCUSSION

A. Comparison with blockade models

It is instructive to compare these results with those obtained
recently on blockade models [24,25], in which configurations
with bosons at a distance less or equal to r = 1, 2, . . . are
forbidden while only the interaction at distance r + 1 is kept,
and which are expected to be good effective models between
the phases p = r + 1 and p = r + 2.

For the period-3 phase of the r = 1 blockade
model [24,26,27], there is a single point where the transition
is conformal whose location is known exactly because it
belongs to an integrable line [24]. Lines of chiral transitions
seem to surround the Potts point [26,27], while further away
intermediate floating phases appear [24,27]. Our results agree
with all these properties. The only difference it that the chiral
transition of our model is more extended below the lobe than
for the blockade model. Note that, more generally, our results
agree with those obtained on classical 2D and quantum 1D
versions of the period-3 case [9,14,22,28–35], for which the
existence of a transition line in the chiral universality class is
supported both by experiments [6,7] and by recent numerical
work [24,26,27,36,37].

In the context of Rydberg atoms, the r = 2 blockade model
has only been introduced and studied very recently [25]. The
transition out of the period-4 phase along the commensu-
rate line was found to be Ashkin-Teller with ν � 0.78 and
λ = 0.57. Our estimates ν � 0.80 and λ = 0.5 are not far,
confirming the qualitative relevance of blockade models. The
parameter range of chiral transitions is comparable in both
cases. Note that the presence of a range of chiral transition
before a floating phase appears is in agreement with the very
recent results obtained on a classical 2D chiral Ashkin-Teller
model [38], according to which a chiral transition is expected
for λ � 0.42 and up to λ � 0.978 [31].

B. KZ exponent

Finally, let us come back to the KZ exponent and to the
identification of the exponents of the chiral universality class,
the main open issue in the field. On the theory side, the
bottleneck is the determination of the dynamical exponent z.
It is fixed to z = 1 at the conformal points P and AT, but an
accurate estimate of its value away from these points is still
beyond state-of-the-art simulations. What one can get quite
accurately, however, is the exponent ν, and the fact that its
value is consistent with that of β̄ along the chiral transition
is an indication that crossover effects are negligible for the
model of Rydberg chains, contrary to the classical 2D chiral
Potts model where crossover effects lead to an overestimate
of ν and a violation of the ν = β̄ criterion close to the Potts
point [37].

On the experimental side, by contrast, one can accurately
measure the KZ exponent. If measured on very large systems,
this exponent should provide the missing piece of informa-
tion on ν and z since μ = ν/(1 + zν). How large should the
systems be? The discrepancy between our numerically exact
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results at points P and AT and the experimental results on
51 sites clearly demonstrates that one needs larger systems.
At point P, which corresponds to Rb � 2.202, the theoretical
value is μ = 5/11 � 0.4545, while the experimental result
is around μ � 0.38. Similarly, at the AT point Rb � 3.213,
our estimate is μ � 0.444, while the measured value is again
much smaller, around μ � 0.25.

These remarks define a clear roadmap towards a conclusive
identification of the chiral universality class with chains of
Rydberg atoms. KZ experiments should be carried out across
the conformal P and AT points identified in the present work
on systems of increasing size until a quantitative agreement
is reached with the numerically exact estimates of μ reported
here. Then, a comparison between experimental values away
from the conformal points and theoretical estimates of ν

should allow one to reach precise conclusions regarding the
critical exponents of the chiral transition. Work is in progress
to refine our estimates of the exponent ν all along the bound-
ary of the period-3 and period-4 phases where the transition
is believed to be chiral. We hope that the present results will
in parallel encourage experimentalists to perform KZ experi-
ments on longer chains to help solve the longstanding problem
of the universality class of the chiral transition.
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APPENDIX A: NUMERICAL METHOD

1. Algorithm

We simulate the Rydberg model with our own two-site
DMRG [15] code in the matrix product state [39] (MPS)

TABLE I. Power-law fitting coefficients used for 601 sites,
rounded to six decimal places. The resulting cost function F is
3.8 × 10−19. The closeness of some λn suggests that the fit could
be improved even further. However, it is not clear how to properly
approach the search for a global minimum to the problem given the
large number of parameters.

un λn

−4.375780 × 10−2 0.325988
−3.707815 × 10−2 0.326220
−1.216618 × 10−6 0.787502
2.120790 × 10−18 1.013796
4.620461 × 10−7 0.830014
4.587174 × 10−6 0.730021
1.936228 × 10−05 0.634314
1.244534 × 10−3 0.429284
6.849186 × 10−2 −0.017733
7.054547 × 10−2 0.103117
8.547828 × 10−2 0.322411
8.550526 × 10−1 0.009142

FIG. 5. Demonstration of the two-step fitting scheme for a 601
site simulation along the c8 cut, at (	/�,Rb) = (2.23, 3.32).

formalism. We represent the Hamiltonian as a matrix product
operator (MPO) where the long-range power-law interaction
is approximated by a sum of 12 exponentials [40,41], which
leads to an MPO virtual bond dimension of 14. The param-
eters of the exponential approximation are determined by a
minimization of the cost function,

F ≡
L∑

r=1

(
r−6 −

12∑
i=1

uiλ
r
i

)2

. (A1)

For all sizes considered, the minimized cost function was
smaller than 10−16 (Table I). As a comparison, a truncation
of the power law preserving the first 12 terms results in an
equivalent squared differences error of ∼7.5 × 10−14.

To avoid stability problems in DMRG, we chose system
sizes of the form L = 12l + 1, which split the ground-state
degeneracy by guaranteeing a single ground state with occu-
pied edges for p = 3, 4. For the full phase diagram, we chose
L = 121 which stabilizes all relevant orders.

On each two-site DMRG update where we carry out
a singular-value decomposition, we discard singular values
smaller than 10−9, as these carry a statistical weight substan-
tially smaller than machine precision; however, the truncation

FIG. 6. Correlation length along the 	/� = 3 cut (a) that
crosses the commensurate transition line below the period-2 lobe,
and the 	/� = 2 cut (b) that crosses it above. All points shown in the
disordered sides are inside the commensurate phase. The small finite-
size effects observed let us conclude from the exponent obtained that
the transition is in the Ising universality class.
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FIG. 7. Regions where the q = 1/3, 1/4 lines meet their respective ordered phases. The colored grid data show the order parameter O (see
main text). A linear fit of the 1/3 line gives Rb = 0.1284	/� + 1.9527 (P cut), while for 1/4 we have Rb = 0.1441	/� + 2.8747 (AT cut).
All other equal-q lines are repelled when approaching the ordered phases.

of the bond dimension to a hard limit D is effectively much
more relevant. Overall, the truncated weight in the last DMRG
update in the middle of the chain was always lower than 10−6.

As a convergence criteria, we required the relative energy
variance

〈�|H2|�〉
〈�|H |�〉2 − 1, (A2)

where |�〉 is the variational MPS state, to be smaller than
10−11 when estimating the boundaries of phases and 10−12

when determining critical exponents and the q = 1/3, 1/4
lines. An MPS virtual bond dimension of 350 was typically
enough to reach such precision for 601 sites and close to
the 1/4 conformal point, while bond dimensions up to 500
were used to reach convergence close to or inside the floating
phases.

2. Correlations and q vector

We obtain q by fitting the correlation function between the
middle site j and site j + r,

Cr ≡ 〈n̂ j n̂ j+r〉 − 〈n̂ j〉 〈n̂ j+r〉 , (A3)

with the expected Ornstein-Zernike (OZ) form [42]

Cr ∼ Ar cos (2πqr + φ0), (A4)

where

Ar ≡ A0
e−r/ξ

√
r

. (A5)

We discard points from the head and the tail end of the correla-
tion function until an OZ regime is thought to be reached, then
we fit the remaining points. We implemented a two-step fitting
scheme (Fig. 5) that has been described before [25], where

FIG. 8. Inverse of the correlation length (top) and distance of the incommensurate wave vector q to its commensurate value 1/3 (bottom)
for three cuts across the boundary of the period-3 lobe.
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FIG. 9. Inverse of the correlation length (top) and distance of the incommensurate wave vector q to its commensurate value π/2 (bottom)
for three cuts across the boundary of the period-4 lobe.

first we obtain ξ and A0 by performing a linear fit on C(r)
√

r
in a semilogarithmic scale. Then, q is obtained by a least-
squares cosine fit on C(r)/A(r), where one minimizes the cost
function F (q) defined as the sum of squared differences. The
confidence intervals (error bars) shown in the plots of q are an
estimate of the fitting error. They are calculated by assuming
that the error δq is proportional to the cost function. It then
follows that δq = F (dF/dq)−1 in lowest order, which can be
explicitly calculated. The main contributions to this error are
not precision errors in the fitting algorithm, but are instead
errors in the determination of ξ and A0, or deviations from an
OZ regime. The error bars of ξ were deemed too small to be
represented. The error of ξ	q is derived from these errors by
the differential chain rule.

In general, we find the limit of reliable correlation lengths
to be ξ ∼ L/6, beyond which ξ is noticeably limited by the

finite size. Still, we find that the q vector suffers less from
finite-size effects than ξ , and that a cosine fit beyond this ξ

limit can still give an accurate estimate of q.

APPENDIX B: SUPPLEMENTAL DATA

1. Period-2

In contrast to the p � 3 cases, the 1/2 lobe is surrounded
by a commensurate disordered (CD) phase. The phase transi-
tion is continuous in the Ising universality class. We confirmed
the latter by taking several cuts along the phase boundary and
verifying that upon approaching the transition, the correlation
length diverges with the critical exponent ν ≈ 1. We confirm
this at least up to the deepest cuts we considered at 	/� = 3,
as seen in Fig. 6. Above the lobe (on the side closer to the 1/3
phase), we looked at cuts up to 	/� = 2, with similar results.

FIG. 10. Inverse of the correlation length (left), distance of the incommensurate wave vector q to its commensurate value 1/3 (middle),
and the product ξ	q (right) for two additional cuts across the boundary of the period-3 lobe.
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FIG. 11. Finite-size scaling analysis along the c1 (Ising), P, and AT cuts. Top panels: Inverse correlation length for several system sizes
along the cuts. Bottom panels: Finite-size scaling of the size-dependent critical points, where ν = 1, 3/5, 0.80, for c1, P, and AT, respectively.
The L → ∞ limits lead to Rb = 1.1434 for c1, 	/� = 1.951 for P, and 	/� = 2.357 for AT.

We did not look at cuts beyond 	/� = 2 above since it was
expected already from the effective p = 3 blockade model that
the transition would be Ising on this side [24,27]. However,
as we move away from the 1/3 phase, the Ising critical line
of the blockade model eventually ends at a tricritical Ising
point, below which the transition is first order. We did not
find any evidence of a first-order transition in the Rydberg
model. It is not very surprising though because the tricritical
point of the blockade model is located at negative (attractive)
next-to-blockade interactions, which naturally does not occur
in the Rydberg model. A more appropriate effective model
of the lower part of the 1/2 lobe is the p = 2 “blockade”
hard-core boson model, which is the same as the Rydberg
model in Eq. (1) but where the interaction is truncated to
the first term, a nearest-neighbor interaction. A change of
variables to a spin system reduces this model to an Ising model
with transverse and longitudinal fields where the transition is
always Ising [43].

2. Equal-q lines

The equal-q lines that we show in the phase diagrams are
obtained by interpolation of the q vector on a finite grid.
We use this same method to accurately determine where the
q = 1/3 and 1/4 lines meet their respective ordered phases,
using data from simulations on 601 sites very close to the
phase boundary, as shown in Fig. 7. The grid data in these
figures show the order parameter O. We can see in these
figures the start of the ordered phases in the top right. Sim-
ulations along these linear fits then lead to estimates of the
conformal critical points.

3. Period-3 and -4

In Figs. 8 and 9, we show the inverse ξ and q-vector scaling
along the incommensurate cuts crossing the 1/3 and 1/4 phase

boundaries, respectively, from which the ξ	q products shown
in Fig. 3 have been obtained.

We estimate the width of the floating phase by
extrapolating to infinity the divergence of ξ	q. For a cut c5,
we detect a floating phase of width in 	/� of approximately
0.01 for 301 sites and 0.004 for 601 sites. As stated in the main
text, this might be an indication that the floating phase reaches
closer to the top of the lobe than what is shown in the phase
diagrams. However, the shrinking width of the floating phase
with system size might also suggest that there is a crossover to
a chiral regime at larger system sizes. Similar reasoning can
be applied to cut c6 located further above in Rb and presented
in Fig. 10, which turns out to be qualitatively equivalent to the
cut c5.

Figure 10 shows the results from two complementary cuts
above the P point that were not included in the main text. The
c4 cut (Rb = 2.225) results are consistent with a chiral transi-
tion above, but very close to, the P point. Together with the c3

cut, these two cuts suggest that the P point is surrounded by
chiral transition lines. The c6 cut (	/� = 2) is qualitatively
equivalent to the c5 cut below it and brings further evidence in

FIG. 12. Inverse correlation length along the p = 3, 4 conformal
cuts, as a function of the parametric distance to the estimated critical
points (x ≡ �/	).
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favor of an intermediate floating phase between the 1/3 and
1/4 phases.

4. Finite-size scaling

It is already apparent from the results shown for 301
and 601 sites that a significant drift of the equal-q lines
and of the phase boundaries happens at small system sizes.
Indeed, as shown in Fig. 11, the P and AT points show a

significant drift between 601 sites down to experimentally
relevant sizes such as 61 sites. If we correct for the phase
boundary drift, the finite-size difference in the correlation
length between 301 and 601 sites is not as significant (Fig. 12),
although it is still more noticeable in the p = 4 case. It
is not unreasonable to expect a further drift of ν towards
lower values for system sizes larger than we considered,
possibly reaching closer to the blockade model prediction
of ν � 0.78 [25].
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