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As unmanned aerial systems (UAS) turn into a full-fledged industry,
the sky will be much more crowded in the future. Large-scale UAV
applications make reliable UAV navigation a pressing need. Tradi-
tionally, global navigation satellite system (GNSS) is extensively used
as the primary positioning, navigation, and timing (PNT) service.
However, GNSS is vulnerable to intentional radio interference such as
spoofing, jamming, and repeating. Hence, alternative PNT (APNT)
attracted many researchers’ attention.

In this thesis, instead of GNSS signals, ADS-B signals from pi-
loted aircraft are leveraged for UAV navigation. We propose a coop-
erative navigation strategy for multiple UAVs in GNSS-denied envi-
ronments. It consists of: 1) a system-level, leader-follower cooperative
strategy; 2) a sensor fusion algorithm for individual UAV navigation
based on the extended Kalman filter. Furthermore, the effects of
asynchronous clocks are studied and a joint relative positioning and
synchronization algorithm is applied to tackle this problem.

Finally, Monte Carlo experiments in a multi-UAV scene are per-
formed to verify the proposed algorithms. The results show that the
proposed algorithms achieve a performance comparable to civilian
GNSS on the selected data set and under the system assumptions
we made. Moreover, the proposed cooperative navigation framework
only needs one ground station of limited service capacity as external
aid. Compared with large-scale, specialized terrestrial APNT service
networks, our proposed framework is more flexible and the system can
be deployed in areas without infrastructure.
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Abstract

As unmanned aerial systems (UAS) turn into a full-fledged industry, the sky will be
much more crowded in the future. Large-scale UAV applications make reliable UAV
navigation a pressing need. Traditionally, global navigation satellite system (GNSS)
is extensively used as the primary positioning, navigation, and timing (PNT) service.
However, GNSS is vulnerable to intentional radio interference such as spoofing, jam-
ming, and repeating. Hence, alternative PNT (APNT) attracted many researchers’
attention.

In this thesis, instead of GNSS signals, ADS-B signals from piloted aircraft are lever-
aged for UAV navigation. We propose a cooperative navigation strategy for multiple
UAVs in GNSS-denied environments. It consists of: 1) a system-level, leader-follower
cooperative strategy; 2) a sensor fusion algorithm for individual UAV navigation based
on the extended Kalman filter. Furthermore, the effects of asynchronous clocks are
studied and a joint relative positioning and synchronization algorithm is applied to
tackle this problem.

Finally, Monte Carlo experiments in a multi-UAV scene are performed to verify
the proposed algorithms. The results show that the proposed algorithms achieve a
performance comparable to civilian GNSS on the selected data set and under the system
assumptions we made. Moreover, the proposed cooperative navigation framework only
needs one ground station of limited service capacity as external aid. Compared with
large-scale, specialized terrestrial APNT service networks, our proposed framework is
more flexible and the system can be deployed in areas without infrastructure.
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Introduction 1
1.1 Background

As unmanned aerial systems (UAS) turn into a full-fledged industry, the sky will be
much more crowded in the future. As predicted by Levitate Capital in [2], the highest
unmanned aerial vehicles (UAV) market growth will be in logistics segment, from less
than USD 0.1 billion (in the year 2020) to USD 33 billion (in the year 2030). Another
report from ResearchAndMarkets.com investigated potential applications in other seg-
ments like agriculture, mining, media and entertainment, maintenance and inspections
for important infrastructure, and defense [3].

Such large-scale application makes reliable UAV localization a pressing need. Tra-
ditionally, global navigation satellite system (GNSS) is extensively used as the primary
positioning, navigation, and timing (PNT) service. However, GNSS is vulnerable to
intentional or unintentional radio interference due to its low signal-to-noise ratio (SNR)
[4]. Intentional interference has gained increasing attention because of the easy avail-
ability of software defined radios (SDR). There are three main types of intentional in-
terference, namely jamming, spoofing, and repeating [1]. Jamming is to generate strong
noise and overwhelm GNSS signals. A spoofing attack transmits counterfeit GNSS sig-
nals while a repeating attack broadcasts recorded GNSS-signals in large power after a
fixed delay. These attacks target specifically the GNSS frequency bands and can cover
from tens of meters to tens of kilometers, depending on the hardware, transmit power,
and propagation environment.

Therefore, alternative PNT (APNT) service is of interest as it provides emergency
service during GNSS outage. Many APNT solutions have been proposed, most of which
are designed for piloted aircraft. They heavily rely on new or existing infrastructure
operated by airports and air traffic control (ATC) centers. APNT for UAVs, how-
ever, utilize onboard sensors like camera, LiDAR extensively as well as short range RF
technologies. A brief review on APNT techniques is presented in the next section.

1.2 State of the Art

1.2.1 APNT for Piloted Aircraft

One of the primary considerations in APNT systems is to maximize the use of legacy
systems so that minimum impact is exerted on current investment and operations. As a
result, APNT services proposed for piloted aircraft are often based on existing avionics
and infrastructure.
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Table 1.1: Comparison of three APNT techniques[1]

Measurement Capacity/Mode Synchronization Ground station number

DME RTOF Limited/active Unnecessary 3

P-WAM TDOA Limited/active Necessary 3

Pseudolite Pseudorange Unlimited/passive Necessary 3

1.2.1.1 Distance Measurement Equipment (DME)

DME is a radio technology for slant distance measurement [5]. A airborne interrogator
initiates an exchange by transmitting a pulsed signal; the ground transponder then
replies after a fixed time delay. The reply is then received by the airborne interrogator
and the exchange is completed. The time between signal transmission and reception
at the airborne side is used to calculate the slant distance between the aircraft and
the ground transponder. As positions of ground transponders are known, the aircraft
can interrogate several ground transponders on different frequency bands to localize
itself by triangulation. Researchers also proposed DME-based passive ranging (DMPR)
which adds a ground interrogator to initiate a sequence of replies from DME ground
transponders. Hence, any aircraft can use DME replies regardless of airborne exchange
initiation.

The DME network is a mature system in operation, hence preferred by aviation
stakeholders. Nominal DME relies on round-trip time measurements so there is no
synchronization in the whole system. For DMPR, since the DME replies are always
on, synchronization is needed to utilize time of transmission in DME frames. In [5],
DMPR has demonstrated promising positioning accuracy to meet requirements of the
Federal Aviation Administration (FAA) of the United States.

1.2.1.2 Passive Wide Area Multilateration (P-WAM)

P-WAM uses time difference of arrival (TDOA) configuration. This system has been
applied in en-route navigation and approaching and now proposed by FAA as a potential
APNT architecture. As a passive localization system, it consists of multiple ground
stations that listen to signals from aircraft. Avionics transmit signals actively while at
each P-WAM station receiving time is recorded. Recorded time stamps are then sent
and evaluated at the fusion center to calculate aircraft positions by solving hyperbolic
equations. The primary signal sources of P-WAM are aviation signals on 1090MHz
band [6].

The accuracy of P-WAM depends on both TDOA precision and the dilution of
precision (DoP). The former requires nanosecond level synchronization between ground
stations. The latter is a metric of the geometric configuration of receivers. Thus,
an optimal deployment strategy of P-WAM stations can be discussed. Further, the
localization is done on the ground segment, so the results need to be sent to aircraft
through a different communication service such as traffic information service broadcast
(TIS-B).
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1.2.1.3 Pseudolite Network

A pseduolite network is a set of ground stations that transmit GNSS-like signals. It is
considered as an ground augmentation system for GNSS, which covers tens of kilometers
[7]. However, it can be used independently for navigation as well [1]. Compared to
authentic satellites, pseudolites provides signals with significantly higher SNR because
they are much closer to aircraft. Their deployment and maintenance costs are lower
than authentic satellites as well.

Like GNSS, a pseudolite network has unlimited service capacity. But its power
level fluctuates with distance substantially, making it difficult for receivers to adjust
to the signals. Moreover, it requires synchronization between ground-based stations
on the nano-second level. As a consequence, an additional reference station and a
specialized communication network are needed. In [8], researchers managed to obtain
sub-nanosecond level synchronization. Pseudolites use time of arrival (TOA) method,
just like authentic satellites. A receiver needs to solve its three-dimensional position
and a clock offset so more than three pseudolites must be observed by receivers at the
same time.

1.2.2 APNT for UAVs

With unmanned aerial vehicles being deployed in more and more applications, trusted
operations of UAV have become increasingly important to all stakeholders in the in-
dustry. One essential element to ensure trusted operations is a robust navigation so-
lution. Hence, like the situation in manned aviation, APNT for UAVs has also drawn
researchers’ attention, although the particular terms they prefer may be “navigation
solutions in GNSS-denied area” or “navigation solutions during GNSS signal outage”
instead of APNT.

Low operation and maintenance cost is often an advantage of unmanned aerial ve-
hicles. However, this could also mean that UAVs are not likely to have expensive,
high-performance avionics onboard like piloted aircraft. Most UAVs are just equipped
with simple telemetry devices and low-cost, consumer grade sensors (e.g., inertial mea-
surement units, GNSS receivers). Thus, UAV navigation systems are more vulnera-
ble compared to that of manned aircraft. For example, most consumer grade GNSS
receivers do not have the function of detecting and countering intentional radio inter-
ference, making UAVs more easily deceived by this kind of attack [9]. From another
perspective, it is also not easy for UAVs to benefit from APNT services originally de-
signed for manned aircraft, as these services, as mentioned above, all requires specific
avionics. There are problems that prevent UAVs from using these avionics, such as
size, weight, power consumption, regulation issues, and, of course, cost. Finally, with
the number of UAVs in operation taking off, the capacity of existing APNT services
may not be able to meet such demands [10].

Emerging APNT services for UAV broadly fall into two categories: APNT provided
by external source and fully independent APNT with onboard sensors. In 2021, a com-
pany named NextNav proposed an terrestrial enhancement system called TerraPoiNT
[11]. This system consists of terrestrial transmitters deployed in a service area and
provide APNT service when GNSS is not available. This approach has shown promis-
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ing results in a test held by the Department of Transportation of the United States,
according to the company’s website. Existing infrastructure can be used as APNT
sources as well, such as cellular networks, Wi-Fi networks, and television or audio
broadcast services. For example, cellular signal-based navigation has successfully ob-
tained sub-meter level positioning accuracy [12]. Synchronization issues have also been
looked at in [13]. Cellular base stations sometimes have coverage holes, which impairs
the robustness of navigation. To counter this, UAV navigation/trajectory planning is
proposed [14]. In [15], television and radio signals are treated from a signal of oppor-
tunity (SoOp) perspective, where researchers follow a two-step approach and extend
the concept of simultaneous localization and mapping (SLAM) to radio-based naviga-
tion. In [15], UAVs first collaboratively surveyed SoOp signal sources in proximity with
the aid of inertial sensors, GNSS, and inter-UAV communication devices. After some
time GNSS becomes unavailable, these vehicles then utilize collaborative inertial radio
SLAM (CIRSLAM) to continue navigation. The second step can be considered as pro-
viding some kind of APNT service. Furthermore, researchers developed and compared
two different information fusion strategies for inter-UAV collaboration.

Fully independent navigation with onboard sensors of UAVs is a vast field of re-
search, where navigation meets computer vision, optimization, and artificial intelli-
gence. For example, in [16], researchers proposed a robust monocular visual-inertial
odometry for UAV six degrees-of-freedom (DOF) state estimation. This work shows
good long-term stability and robustness. Though this method only provides state es-
timates in some local navigation coordinate system (e.g., a coordinate system using
takeoff position as origin and defining three axes based on some criterion), it is still
useful in the sense of APNT. Autonomous vehicles can switch to this navigation so-
lution when GNSS is unavailable, using the last reliable absolute position as the start
point. Combining odometry information also enables more robust autonomous vehicles
navigation in GNSS-degraded environment, where GNSS does not completely fail but
experiences intermittent signal loss [17].

1.3 Goals

In this thesis, we explore the possibility of an APNT solution for UAVs with minimum
infrastructure requirement. We do this by exploiting Automatic Dependent Surveil-
lance–Broadcast (ADS-B) signals that are free-to-use from other piloted aircraft. How-
ever, there’s no free lunch. Lacking important navigational information, ADS-B signals
are not designed for navigation purposes and must be treated as signal of opportunity
(SoOp). Moreover, piloted aircraft are not aware of the presence of UAVs, let alone
cooperation or communication. To overcome these problems, an SoOp-based time dif-
ference of arrival (TDOA) configuration is applied. We further look at the potential of
cooperation between UAVs that request for APNT service and propose a cooperative
localization strategy based on inter-UAV communication networks.

The main goals of the thesis are:

• Analyze the feasibility of ADS-B SoOp and establish the corresponding data
model;
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• Propose a cooperative localization strategy for a network of UAVs;

• Propose an onboard sensor fusion algorithm for individual UAV navigation using
low-cost sensors;

• Extend the cooperative localization strategy to a network of asynchronous UAVs
and verify its robustness.

1.4 Outline

This thesis is structured as follows and shown in Fig.1.1:

• In Chapter 2, some preliminary knowledge is presented on ADS-B systems, GNSS
localization, the extended Kalman filter, quaternion basics, and notation conven-
tions used in this thesis.

• In Chapter 3, we exploit ADS-B signals as signal of opportunity (SoOp) and
introduce an SoOp-based time difference of arrival (TDOA) configuration for re-
ceiver localization; a Newton-Raphson method is applied to solve the SoOp-based
TDOA measurement equations.

• In Chapter 4, we propose a leader-follower strategy for cooperative localization of
multiple UAVs based on inter-UAV networks. A sensor fusion algorithm based on
the extended Kalman filter is proposed for individual UAV localization without
GNSS service.

• In Chapter 5, we extend the leader-follower cooperative strategy to the circum-
stance where all UAVs and the ground station are asynchronous. The effects of
local asynchronous clocks are discussed, by which the errors caused are identified.
The joint relative positioning and synchronization algorithm is applied in order
to make the cooperative localization framework robust against clock asynchrony.

• Chapter 6 concludes the thesis. The main contributions of this thesis are summa-
rized and future research directions are discussed.
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Figure 1.1: A brief schematic figure for thesis outline
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Preliminaries 2
In this chapter, we present some preliminary knowledge. In Section2.1, we introduce
the Automatic Dependent Surveillance–Broadcast (ADS–B) system and briefly touch
ADS-B message decoding. In Section2.2, the localization method used in GNSS as well
as its assumptions/requirements are presented. This helps the reader to get familiar
with localization problems. In Section2.3, the definition and some fundamental prop-
erties of quaternions are presented. Quaternions are extensively used in orientation
representation of rigid bodies. In Chapter4, the orientation of the UAV is parameter-
ized by (unit) quaternions. In Section2.4, a review of the extended Kalman filter is
presented, which is used in Chapter4.

2.1 Automatic Dependent Surveillance–Broadcast (ADS–B)

Automatic Dependent Surveillance - Broadcast is an surveillance technology that is
used extensively in ATC applications. Aircraft broadcast ADS-B messages periodically
with on-board Mode-S transponders, which include navigational information such as
surface/airborne position, airborne velocity, call sign, operational status, etc. ADS-
B enables ATC ground stations to track aircraft continuously in regions that are not
covered by traditional radars, as its coverage can be greatly extended by ground-based
or space-based ADS-B receivers. It is considered to be a key component of the future
air transportation system and is mandated both by EUROCONTROL [18] in Europea
and FAA [19] in the U.S. since 2020.

Prior to the introduction of ADS-B, ATC applications heavily relied on the primary
surveillance radar (PSR) and the secondary surveillance radar (SSR). PSR provides
slant distance as well as aircraft’s azimuth information with respect to the radar loca-
tion, while SSR provides aircraft’s altitude and identity. However, inherent limitations
of PSR and SSR technology hinder further improvement in accuracy and coverage.
ADS-B is thus introduced to enhance situational awareness for both ATC controllers
and pilots.

Now we briefly discuss about how to decode ADS-B messages. Most of the contents
are summarized from [20].

2.1.1 Aircraft Identity Decoding

In navigation, we always need to differentiate signals coming from different sources.
In every legal ADS-B message, the International Civil Aviation Organization (ICAO)
address of an aircraft is encoded. This ICAO address is a unique registration number
for every piloted aircraft in the world. So it is very handy to discriminate different
aircraft by looking at the ICAO address.
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2.1.2 Time of Arrival Decoding

ADS-B is not designed to contain any time of transmit information, which means we
cannot directly calculate the signal propagation delay by finding the difference between
time of transmit and time of arrival. As a highly standardized communication protocol,
it is not feasible to arbitrarily change the message structure and add time of transmit
information. Further, since aircraft broadcasting ADS-B signals are not aware of our
UAVs, it is also not practical to send messages from UAVs to manned aircraft or to
synchronize with manned aircraft.

2.1.3 Airborne Position Decoding

A typical airborne position message contains longitude, latitude, and altitude of an
aircraft. It is trivial to decode altitude but longitude and latitude are encoded in Com-
pact Position Reporting (CPR) format. One can use globally unambiguous position
decoding or locally unambiguous position decoding. Globally unambiguous position
decoding, without any prior information, always needs a pair of ”odd” and ”even”
messages to calculate a globally correct position [20]. Locally unambiguous position
decoding, on the other hand, requires a known reference position. The reference should
be close to the decoded position, e.g., within a range of 180 nautical miles (NM). The
advantage is that from every message one can decode a position.

2.1.4 Airborne Velocity Decoding

The airborne velocity message reports velocity decomposed in East-West, North-South
and vertical directions. In the field of civil aviation, it is also common to compute a
track angle without considering altitude changes. It is trivial to decode the message
itself. But it is worth noting that only ground speed can be used in our application.
The ground speed of aircraft is measured with respect to the ground, which is the sum
of the true airspeed vector and the wind velocity vector.

2.2 GNSS Navigation

Global navigation satellite system (GNSS) refers to any satellite constellation that
provides positioning, navigation, and timing (PNT) service. Existing constellations
include GPS, Galileo, BeiDou, GLONASS, etc. GNSS is based on time of arrival
(TOA) localization, a simplified setting of which is shown in Fig.2.1. A comprehensive
introduction of GNSS navigation can be found in [21].

In Fig.2.1, the receiver at the surface of the earth can capture specially designed
GNSS navigation signals from multiple satellites in view. GNSS signals contain many
useful contents, including ranging signals and navigation messages. A ranging signal is
a segment of code modulation signal tailored for high-precision time of arrival measure-
ment. Ranging signals can also be used to identify which satellite is broadcasting since
they are unique for each satellite. Two essential elements of navigation messages are
time of transmission and ephemeris data. The time of transmission records when the
ranging signal is initiated precisely by the satellite. The ephemeris data let the receiver
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Figure 2.1: A simplified illustration of how GNSS works

be able to figure out the actual location of the satellite, which moves with about 3000
meters per second on orbit. Other information to enable precise measurement and error
compensation are also included, but we only consider an simplified data model.

Here is the data model. Suppose the whole satellite constellation conforms to some
standard time frame, and the time of transmission at the satellite side ttmt and time of
arrival at the receiver side trcv are both recorded under this frame. The travel distance
of radio waves d from satellite to receiver can be calculated, assuming the propagation
speed is the speed of light c. The relation of these quantities is given by

trcv − ttmt =
d

c
=
∥xsat − xu∥

c
(2.1)

However, the receiver is not necessarily synchronized to the GNSS standard time frame.
Let us define the time of arrival measured with respect to the local clock of receiver tu
as the ”true” trcv plus some clock bias bu, given by

tu = trcv + bu (2.2)

If the observation period is sufficiently small, the clock bias is modeled as constant
across measurements from different satellites. Combining these two equations and
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adding a residual error term ϵu, the complete pseudorange data model is given by

τu = (tu − ttmt)c = ∥xsat − xu∥+ bu + ϵu (2.3)

where the newly introduced term ϵu incorporate errors caused by ionospheric prop-
agation delay, tropospheric propagation delay, measurement noise, and other effects
[22].

Our goal is to solve for xu and bu. Here trcv is measured using ranging signals.
The satellite location xsat and ttmt are obtained from navigation messages. Unique
ranging codes also help the receiver differentiate between satellites. Since the unknown
user location is three-dimensional, there are four unknowns in total in the pseudorange
equation. By accumulating pseudorange measurements with respect to different satel-
lites, a system of equations in xu and bu can be obtained. To make it an overdetermined
system, at least four satellites are required. In practice, Seven to eight satellites in view
are preferred.

In this section, the working principle of GNSS is reviewed based on a simplified yet
fundamental model. To summarize, from the receiver side the followings are needed:

• time of arrival (measured at the receiver);

• time of transmission (external information);

• satellite location (external information);

• information to differentiate between satellites;

• synchronization between the satellite and the receiver.

2.3 Quaternion Representation

The quaternion is an extension of the complex number. It is a commonly used
parametrization of orientation. A quaternion is defined as

q = q0 + q1 · i+ q2 · j + q3 · k (2.4)

where q0 is the coefficient of the real part and q1, q2, q3 are the coefficients of three
imaginary parts. We usually omit the imaginary units i, j, k and write a quaternion
in a compact form

q =


q0
q1
q2
q3

 (2.5)

The multiplication of two quaternions p = [p0, p1, p2, p3]
T and q = [q0, q1, q2, q3]

T is
defined as

p⊗ q =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3

 =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0



p0
p1
p2
p3

 (2.6)

10



The conjugate of q is defined as

q∗ =


q0
−q1
−q2
−q3

 (2.7)

.
Given a vector af1 ∈ R4 expressed in the coordinate frame f1, and a quaternion qf2f1

that describes the rotation from f1 to another coordinate frame f2, the same vector
expressed in f2, denoted by af2 is given by

af2 = qf2f1 ⊗ af1 ⊗ (qf2f1)
∗ (2.8)

where (qf2f1)
∗ is the conjugate of qf2f1. This multiplication of the first two terms can be

computed using 2.6, whose result is then right-multiplied by (qf2f1)
∗ and can be computed

using 2.6 again.
If af1 ∈ R3, it is required to first augment af1 = [a1, a2, a3]

T to a four-dimensional
vector by filling the first component with 0, given by

af1,aug =


0
a1
a2
a3

 (2.9)

.

2.4 Extended Kalman Filter

The Kalman filter-based sensor fusion approaches are extensively used. The Kalman
filter is proposed under the assumption that the system model and the measurement
model are both linear with white Gaussian noise. However, if the system model or the
measurement relationship is inherently nonlinear, the Kalman filter needs to linearize
about the current mean and covariance, which is called an extended Kalman filter [23].

Concretely, suppose we have a system or process governed by a nonlinear stochastic
difference equation

xk = f(xk−1) +wk−1 (2.10)

where xk ∈ Rn, xk−1 ∈ Rn are state vectors at time instance k and k − 1 respectively
and random variable wk−1 ∈ Rn is the process noise at time instance k − 1. The
measurement relationship relates the measurement vector z ∈ Rm to the state, which
is given by

zk = g(xk) + vk (2.11)

where random variable vk is the measurement noise at time instance k. The measure-
ment relationship is also a nonlinear stochastic difference equation.
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Please note that we model the process and measurement noise as additive. It is often
assumed that they are both white noise and normally distributed with zero mean.

p(w) ∼ N (0,Q) (2.12)

p(v) ∼ N (0,R) (2.13)

The computation of the extended Kalman filter is very similar to the original Kalman
filter in the linear-Gaussian case, only some quantities need to be alternated for the
nonlinear models. A more detailed derivation can be found in [23]. First, we need to
set the initial value for EKF, namely, x̂0 and P0. We project the state estimate x̂k−1

at time instant k − 1 ahead to k by

x̃k = f(x̂k−1) (2.14)

without taking process noise wk into consideration. The error covariance Pk−1 is also
projected ahead along with the state by

P̃k = FkPk−1F
T
k +WkQk−1W

T
k (2.15)

which, along with 2.14, are called the ”prediction step” or time update of EKF. Here,
Fk is the Jacobian matrix of the system model in 2.10 taken with respect to the state
x̂k−1 at time instant k, which indicates linearization about the state estimate from
the last time instant. Similarly, Wk is the Jacobian matrix of the system model with
respect to the noise random variable wk. It is an identity matrix because the noise is
additive.

Then comes the ”correction step” or measurement update. To fuse measurements
the Kalman gain needs to be computed as following

Kk = P̃kH
T
k (HkP̃kH

T
k + VkRkV

T
k )−1 (2.16)

where Hk is the Jacobian matrix of the measurement model in 2.11 with respect to
the state x̃k and Vk, an identity matrix, is the Jacobian matrix of the measurement
model with respect to the noise random variable vk. The estimate is updated with
measurements as

x̂k = x̃k +Kk(zk − g(x̃k)) (2.17)

The error covariance of the posterior estimate xk at time instant k is also updated as

Pk = (I −KkHk)P̃k (2.18)
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Algorithm 1 The extended Kalman filter

1: Input: x0, P0, the sequence of data zk (k ∈ {1, 2, 3, ..,K}).
2: Output: State estimates xk, posterior covariance Pk and Kalman gains Kk (k ∈
{1, 2, 3, ..,K}).

3:

4: Begin
5: Initialize x0 and P0 with initial states (position, velocity, etc.) of each target.
6: For k = 1 to K do
7: Project xk−1 to x̃k

8: Project Pk−1 to P̃k

9: Compute Kk

10: Update x̃k to xk with Kk and zk
11: Update P̃k to Pk with Kk

12: end
13: end
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Signal of Opportunity
Navigation using ADS-B 3
In this chapter, we consider how to use ADS-B signals as signal of opportunity (SoOp)
for navigation. First, we analyze what information can be extracted from received ADS-
B signals and compare with the available information in GNSS navigation problem.
Our analysis shows that ADS-B SoOp lacks certain important information, hence the
localization configuration in GNSS does not work in the case of ADS-B SoOp. In order
to solve this problem, an SoOp-based time difference of arrival (TDOA) configuration
from [24] is applied. Finally, we show that the SoOp-based TDOA localization is in
essence solving a system of nonlinear equations. Via reformulation, this problem can
be solved using the Newton-Raphson method [22].

3.1 Analysis of ADS-B SoOp

ADS-B signals have been used in UAV localization, being a promising technology for
future UAV surveillance and traffic management. In most works, such as [25] and
[26], it is proposed that passive localization of the UAV is performed with ground
infrastructure, whose results are then routed back to the UAV. To the best of the
author’s knowledge, however, few works exploit ADS-B signal of opportunity and use
it in a similar way to GNSS.

Signal of opportunity (SoOp) navigation refers to the use of any signal for navigation,
which is normally intended for purposes other than navigation. SoOp navigation can
leverage signals such as FM/AM radio signals, TV signals, and cellular signals in order
to improve navigation availability.

ADS-B signals are also among potential signal of opportunity. ADS-B SoOp has
several advantages: 1) it is abundant in areas with high density air traffic; 2) ADS-B
signals can be received from a distance of up to tens of kilometers [27]; 3) it usually has
a higher signal-to-noise ratio (SNR) than that of GNSS signals [28]; 4) it does not need
survey of signal sources in advance since locations of ADS-B sources can be obtained
from received signals. In this thesis, we explore the possibility of ADS-B SoOp as an
external aiding source for UAV navigation.

Recall from Section2.1, the following information can be obtained from received
ADS-B signals:

• airborne position of the signal source (piloted aircraft);

• airborne velocity of the signal source (piloted aircraft);

• ICAO registration number that can be used to distinguish different sources;

• time of arrival measured at the receiver side.
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Compare the available navigation information of ADS-B SoOp with that of GNSS,
as mentioned in Section2.2, we find that time of transmission information is missing
for ADS-B SoOp. Actually, according to the ADS-B implementation standard, time
of transmission information is not contained in the broadcast messages. Hence, the
requirement of time of transmission information must be lifted in ADS-B SoOp. Fur-
thermore, aircraft transmitting ADS-B signals are not aware of potential SoOp users.
Hence, it is not practical to establish communication between aircraft with ADS-B and
SoOp users or synchronize them in any way. Third, ADS-B SoOp users should only be
equipped with receivers and not transmit any signal on the protected frequency band
where ADS-B service sits. Given the problems about ADS-B SoOp, it can be seen
that the traditional TOA localization method used in GNSS will not work because it
requires the availability of time of transmission information at the user side as well as
synchronization between the user and signal providers. Therefore, in this chapter, a
different configuration, namely the SoOp-based TDOA is used [24].

3.1.1 List of Assumptions

In this thesis, UAVs requesting for APNT service and explioting SoOp in proximity
are referred to as targets. Piloted aircraft that provide ADS-B signals are referred to
as beacons. A reference station is also deployed to aid UAV navigation. For example,
in Fig.3.1 the aircraft broadcasting ADS-B signals is a beacon; the ground station is
considered a reference; The UAV on the right with bidirectional link to ground station
is, apparently, a target.

1. Targets, beacons, and the reference are all synchronized.

2. Targets can distinguish signals from different beacons.

3. Targets can communication with the reference on a channel other than that of
ADS-B.

4. During an observation period, the network consisting of targets, beacons, and the
reference is assumed to be static.

5. The system works under line-of-sight conditions without considering multi-path
propagation or shading.

3.2 SoOp-based TDOA

For a mobile target, a set of beacons can be used for navigation with the aid of the
reference station, whose location is very well known. Let us define the state of the
target as xt ∈ R6, state of i-th beacon xi ∈ R6 (i ∈ {1, 2, ..., N}), and state of the
reference xr ∈ R6. Further, define x(p) ∈ R3 and x(v) ∈ R3 as the position and velocity
vector for a target, a beacon, or a reference, respectively.

The geometric interpretation of SoOp-based TDOA is shown in Fig.3.1. For simplic-
ity, we assume all targets, beacons, and references involved are synchronized, which is
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Figure 3.1: The geometric interpretation of SoOp-based TDOA.

a strong assumption. When the i-th beacon (1 < i < N) transmits an ADS-B message,
time of arrival (TOA) at the reference tr,r is measured and given by

tr,r =

∥∥∥x(p)
r − x(p)

i

∥∥∥
c

+ te (3.1)

where te is the time of transmission at the beacon and radio waves are assumed to
propagate with the speed of light c.

Similarly, TOA measurement at the target is measured and given by

tr,t =

∥∥∥x(p)
t − x

(p)
i

∥∥∥
c

+ te (3.2)

where te is the time of transmission at the beacon.
Here te is unknown for both the target and the reference. To circumvent this, we

derive TDOA measurement ρi between the target and the reference w.r.t. beacon i
instead.

ρi = tr,t − tr,r + wi (3.3)

where wi is the measurement noise.
For convenience, we let ρi absorb the speed of light c and adjust the magnitude of

measurement noise wi accordingly. Hence, the TDOA measurement equation can be
rewritten as

ρi =
∥∥∥x(p)

t − x
(p)
i

∥∥∥− ∥∥∥x(p)
r − x

(p)
i

∥∥∥+ wi (3.4)
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In this TDOA measurement equation, the location of the i-th beacon can be decoded

from the ADS-B message, as mentioned in Section2.1. The location of the reference x
(p)
r

and the time of arrival recorded at the reference tr,r will be sent to the target through
the bidirectional communication link depicted in Fig.3.1. The time of arrival tr,t can be
obtained at the target. Specific methods of time of arrival measurement particularly
for ADS-B signals can be found in [29], which achieve nanosecond-level precision and
require only low-cost software-defined radio (SDR) receivers.

For every ADS-B message, a TDOA measurement can be extracted. In order to
solve for the location of the target, one needs more than three (N > 3) measurements
from different beacons. They can be stacked and written as

ρ1 =
∥∥∥x(p)

t − x
(p)
1

∥∥∥− ∥∥∥x(p)
r − x

(p)
1

∥∥∥+ w1 (3.5)

ρ2 =
∥∥∥x(p)

t − x
(p)
2

∥∥∥− ∥∥∥x(p)
r − x

(p)
2

∥∥∥+ w2 (3.6)

...

ρN =
∥∥∥x(p)

t − x
(p)
N

∥∥∥− ∥∥∥x(p)
r − x

(p)
N

∥∥∥+ wN (3.7)

This is a nonlinear set of equations in x
(p)
t .

3.3 Solving SoOp Equations

If the target is able to receive multiple messages simultaneously and generate multiple
pairs of TDOA measurements, we can estimate the target’s location by solving a set
of nonlinear equations iteratively in a fashion similar to solving GNSS pseudorange
equations [22].

First, some mathematical manipulation is needed to reformulate the problem, which
is shown as follows.

di = ρi +
∥∥∥x(p)

r − x
(p)
i

∥∥∥ =
∥∥∥x(p)

t − x
(p)
i

∥∥∥+ wρ,i (3.8)

To solve equations iteratively, one needs an initial value to start. An initial guess of

the target’s state, x
(p,0)
t , can obtained from other onboard sensors, say, the inertial

measurement unit (IMU). Let us calculate d
(0)
i with the known position of the ith

beacon x
(p)
i and the initial guess x

(p,0)
t .

d
(0)
i =

∥∥∥x(p,0)
t − x(p)

i

∥∥∥+ wρ,i (3.9)

The difference between the real measurement di and predicted d
(0)
i is given by

δdi = di − d
(0)
i = (

∥∥∥x(p)
t − x

(p)
i

∥∥∥+ wρ,i)− (
∥∥∥x(p,0)

t − x(p)
i

∥∥∥+ wρ,i) (3.10)

If we rewrite the real position of the target x
(p)
t as a combination of the current estimate

and an residual error term, which is

x
(p)
t = x

(p,0)
t + δx

(p)
t (3.11)
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Then a natural idea is to update the estimate by every iteration and reduce the residual
error. Substitute 3.11 into the expression of discrepancy in the real and predicted
measurement, we get

δdi =
∥∥∥x(p,0)

t + δx
(p)
t − x

(p)
i

∥∥∥− ∥∥∥x(p,0)
t − x(p)

i

∥∥∥ (3.12)

This is the error equation. We’d like to further linearize this error equation to formulate
it as a least squares problem. The linearization is done with respect to the position of
the target. It is given by

δdi = −
(x

(p)
i − x

(p,0)
t )∥∥∥x(p)

i − x
(p,0)
t

∥∥∥δx(p)
t (3.13)

Note that the coefficient term in front of the unknown δx
(p)
t in 3.13 is actually the

direction vector from xi to xt. We denote it by

ut,i =
(x

(p,0)
t − x(p)

i )∥∥∥x(p,0)
t − x(p)

i

∥∥∥ (3.14)

We also define 1 = uT
t,i which is an 1-by-3 row vector.

If the target observed multiple beacons in proximity, say, 6 beacons (N = 6). Mul-
tiple TDOA measurements can be stacked as

δd1
δd2
δd3
δd4
δd5
δd6

 =


11

12

13

14

15

16

 δx
(p)
t (3.15)

This method is called the Newton-Raphson method. It is inherently a method to
solve nonlinear equations, but contains a linearization and solves the problem by least
squares in every iteration.
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Cooperative Navigation of
Multiple UAVs 4
In this chapter, the localization problem of multiple UAVs in GNSS-denied environ-
ments is explored. In Section4.1, a leader-follower framework for cooperative navigation
is proposed based on inter-UAV communication networks. The ADS-B SoOp proposed
in Chapter3 is incorporated as an alternative way to provide absolute location informa-
tion in GNSS-denied environments. We also discuss how this navigation information
is shared among multiple UAVs. Under this leader-follower framework, the navigation
system for individual UAVs is designed to fuse both shared navigation information and
onboard sensor information. Its general architecture and detailed design are presented
in Section4.2 and 4.3. Finally, some simulation results are shown in Section4.4 to verify
the proposed algorithms.

4.1 Problem Formulation

Suppose there are a group of UAVs deployed in the field. Each of them is equipped with
inertial measurement units (IMU), GNSS receivers, and some specific type of aiding
sensor intended for APNT. Initially, the UAVs use the primary PNT source, namely
the GNSS service, to navigate. After some time, GNSS signals become unavailable
due to intentional radio interference. The UAVs then initiate APNT aiding sensors
and perform cooperative navigation with the help of the ground station and inter-UAV
communication networks.

The cooperative navigation strategy is described as follows. In an inter-UAV, co-
operative network, all UAVs involved fall into two categories, leaders or followers. The
main differences lie in the role they play in the network, the type of aiding sensors
equipped, and their capability. A leader is a UAV that has direct access to absolute
position information. Leader UAVs are equipped with ADS-B SoOp receivers and air-
to-ground communication devices. Hence, they are capable of exploiting ADS-B SoOp
signals to obtain geographic locations with the help of a ground station, which has been
introduced in Chapter3. Meanwhile, leader UAVs also have bidirectional communica-
tion links to (at least some of) the follower UAVs and share with them leaders’ own
position estimates. A follower is a UAV that only has direct access to relative position
information with respect to some chosen neighbour. Follower UAVs are equipped with
two-way ranging (TWR) devices and are capable of inter-UAV communication. They
obtain relative positions through TWR module as well as their neighbours’ position es-
timates. With this information they compute their own positions. In other words, the
absolute position information flows from the leader to all followers. A chosen neighbour
of the follower UAV can either be a leader or a follower itself.
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Figure 4.1: The leader-follower network structure of UAVs, beacons, and the ground reference.
To emphasize on UAV network configurations, the arrowed lines from beacons to the reference
indicating signal transmission are omitted.

From a network perspective, however, neighbours are not arbitrarily chosen for
followers. Typical configurations of the inter-UAV network are shown in Fig.4.1. In this
figure, all UAVs in operation are divided into three groups. Each group demonstrates
a possible network configuration. Within the group boundary of black solid circles, a
red mark represents a leader while a blue mark represents a follower. Every blue solid
line with arrows on both sides indicate a bidirectional communication link between a
pair of UAVs. We observe that

• the minimum connectivity requirement is that all UAVs in the same group be
connected;

• a UAV can act as neighbour of multiple other UAVs;

• at least one follower UAV chooses the leader in the network as its neighbour.

In such networks, we further define the distance to the leader for a follower as the
number of hops in the network following a shortest path from that particular follower
to the leader. If a follower UAV has the distance of h hops, then it is called a D(h) target
(UAV). The leader is thus a D(0) target. As long as the capability of communication
device permits, multiple targets with the same D(h) value can exist in the network.

We further observe that in order to let absolute position information be used by
all targets (directly or indirectly), an order of transmission needs to be designed. It is
designed in such a way that absolute position information should always flow from a
D(h− 1) target to a D(h) target. Intuitively, the information always propagates from
the leader to the “farthest” follower(s) with the largest D(h) value in the network.

In this thesis, the cooperative strategy mentioned above is referred to as the leader-
follower strategy. In our case, leaders have access to crucial navigation information

22



from ADS-B SoOp as well as air-to-ground communication capability, both of which
followers lack. A leader is able to navigate as long as the ground station is available,
while followers must rely on the leader and cooperation across the network.

The leader-follower strategy is more on the inter-UAV cooperation side. The navi-
gation problem of each individual UAV, however, remains unaddressed. Practically, the
location update rate of ADS-B SoOp receivers is low, which makes it unsuitable as the
only navigation sensor for small, agile UAVs. It is inherently limited by the broadcast
frequency of ADS-B signal sources and the number of simultaneous broadcast during
one observation period. For example, the airborne positions of piloted aircraft are
broadcast by ADS-B transponders with 2Hz [20]; if there are three groups of beacons
alternately broadcasting signals, with four beacons simultaneously broadcasting in each
group, the update rate is then 6Hz. This requires 12 beacons in view and a special
broadcasting order. With abundant beacons in view, the update rate may be equal to
or higher than 2Hz, but it is unlikely to achieve an update rate higher than civilian
GNSS receivers (typically < 10Hz). As a result, follower UAVs without SoOp receivers
also acquire absolute position information at such a low rate.

The solution to this problem is to incorporate onboard IMU into the navigation sys-
tem. Typical low-cost micro-electromechanical system (MEMS) IMU has a sampling
rate of 100Hz or even higher. It is capable of capturing small motions of UAVs and
providing much denser estimates of position or other states. However, the low-cost,
consumer-grade IMU has bad long-term stability. Its estimation bias grows unbound-
edly with time. Therefore, these two sensors have complementary properties. The
ADS-B SoOp sensor provides positioning data with bounded errors but at a lower rate,
while the IMU has a high update rate and is good at measuring small motions but its
output drifts with time. It is then a sensor fusion problem of how to fuse data from
the two sensors to achieve a better navigation performance than that of using either
one of them.

4.1.1 Updated List of Assumptions

In addition to system assumptions listed in Section3.1.1, we add three more assumptions
regarding leaders, followers, and network configuration:

• leaders have direct access to absolute position information and air-to-ground com-
munication capability;

• followers have access to relative position information w.r.t. its chosen neighbour
and inter-UAV communication capability;

• the inter-UAV communication network is, topologically, a connected graph;

4.2 Sensor Fusion Architecture

To fuse data from the IMU and the aiding sensor, a loosely-coupled architecture is
used, which is shown in Fig.4.2.
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Figure 4.2: The general sensor fusion architecture of all UAVs(targets).

Figure 4.3: The sensor fusion architecture of a “leader” UAV.

Figure 4.4: The sensor fusion architecture of a “follower” UAV.
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An 9-axis IMU provides three-dimensional measurements of linear acceleration (by
accelerometer, “Accel”), angular velocity (by gyroscope, “Gyro”), and geomagnetic
field vector (by magnetometer, “Mag”). The aiding sensor, without specifying the
type for now, just outputs measurements of the platform’s positions. The sensor data
are then fused by an extended Kalman filter (EKF). Theoretical contents on EKF is
presented in Section2.4.

The term “loosely-coupled” refers to the fact that the aiding sensor provides direct
state measurements (e.g., three-dimensional position) instead of some raw measure-
ments (e.g., GNSS-like pseudorange and pseudorange rates) which are linked to inter-
nal states of the EKF by more complex relations. In the next section, we will see that
this architecture simplifies the measurement model design of the fusion filter. Different
types of aiding sensors can be easily fused using the same measurement model in the
fusion filter.

As mentioned above, the aiding sensor is different for leaders and followers. For a
leader UAV, the aiding sensor consists of an ADS-B receiver and a processor. We refer
to this module by the name “APS” (ADS-B Positioning by Signal-of-opportunity). The
ADS-B receiver extracts time difference of arrival (TDOA) measurements of all available
beacons with respect to the ground reference station. With the reference position
acquired by air-to-ground communication, the processor is able to estimate the position
by solving a set of SoOp measurement equations, as discussed in Chapter 3. Finally,
the position estimates from this module are treated as direct state measurements and
forwarded to the EKF fusion filter. The workflow is shown in Fig.4.3.

For a follower UAV, the aiding sensor includes a two-way-ranging (TWR) mod-
ule and a processor for computing positions. The TWR module acquires the position
of a chosen neighbour by interrogating that neighbour. Additionally, time of arrival
(TOA) recorded at both sides during two-way communication are acquired and direc-
tion of arrival (DOA) is estimated. In the signal processor, first the relative position
is estimated with TOA and DOA information. Then it is added by the neighbour’s
position to estimate the position of the follower itself. This is also regarded as direct
state measurements and forwarded to the EKF fusion filter. The workflow is shown in
Fig.4.4.

4.3 EKF Model Description

4.3.1 Motion Model

In tracking and surveillance applications, an abundant set of motion models have been
proposed [30]. People are quite interested in utilizing multiple motion models simulta-
neously in order to better capture the dynamics of targets [31]. In such multiple model
approaches, each model usually corresponds to a specific type of motion.

For self-state estimation tasks, however, if the sampling rate of onboard sensors
are high enough, during the sampling interval some simple type of motion can be
assumed (e.g., uniform linear motion, uniformly accelerated rectilinear motion). Hence,
a generic motion model is preferred. With high sampling rate and a generic motion
model, the sophisticated modeling of target’s real dynamics can be circumvented and
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the navigation algorithm are readily applied to different platforms, whether it is an
unmanned aerial vehicle, a rover, or an autonomous ship.

Let us first define the states for the fusion filter. With 9-axis strapdown IMUs,
it is possible to simultaneously estimate the orientation, velocity, and position of the
platform as well as the local geomagnetic vector. Additionally, it is necessary for
consumer-grade IMUs to estimate the sensor bias given its poor long-term stability.
All the states are incorporated in a 22-element vector that is given by

xt = [q,pTNED,v
T
NED, b

T
∆θ, b

T
∆v, g

T
NED, b

T
m]

T (4.1)

where

pNED = [pN , pE, pD]
T (4.2)

vNED = [vN , vE, vD]
T (4.3)

b∆θ = [b∆θ,x, b∆θ,y, b∆θ,z]
T (4.4)

b∆v = [b∆v,x, b∆v,y, b∆v,z]
T (4.5)

gNED = [gN , gE, gD]
T (4.6)

bm = [bm,x, bm,y, bm,z]
T (4.7)

(4.8)

where q0, q1, q2, and q3 are four components of a quaternion (see Section2.3) which
describes the rotation from the coordinate frame fixed on the current platform (UAV
body frame) to the local navigation frame (a North-East-Down frame) in the three-
dimensional space; [pN , pE, pD]

T and [vN , vE, vD]
T are three-dimensional position and

velocity in the local navigation frame, respectively; [gN , gE, gD]
T is the estimated ge-

omagnetic field vector in the local navigation frame. Furthermore, sensor biases are
modeled as additive constant terms. [b∆θ,x, b∆θ,y, b∆θ,z]

T and [b∆v,x, b∆v,y, b∆v,z]
T repre-

sent the bias in the angular increment [∆θx,∆θy,∆θz]
T and the velocity increment

[∆vx,∆vy,∆vz]
T , respectively. The bias in magnetometer readings is modeled as

[bm,x, bm,y, bm,z]
T .

Please note that the angular and velocity increment are used in the state update
of EKF and they are not directly obtained from the gyroscope and the accelerometer.
The two sensors measure the angular velocity and the linear acceleration, respectively.
Raw outputs are then integrated using the trapezoidal rule

∆θraw =
∆T

2
(ω0 + 2ω1 + . . .+ 2ωM−1 + 2ωM) (4.9)

∆vraw =
∆T

2
(a0 + 2a1 + . . .+ 2aM−1 + 2aM) (4.10)

(4.11)

where ∆θ, ∆v ∈ R3 are angular and velocity increments; ∆T is the sampling interval
between time instant k−1 and k; ωi(i = 0, 1, 2, ...,M) ∈ R3 is the raw angular velocity
data from the gyroscope; ai(i = 0, 1, 2, ...,M) ∈ R3 is the raw linear acceleration data
from the accelerometer; M ≥ 1 is the number of sampling intervals. Please note that
all these quantities are measured and computed in the body frame of the UAV.

26



With angular and velocity increments obtained, now we are ready to formu-
late the state update. First, the increments are subtracted by the biases b∆θ =
[b∆θ,x, b∆θ,y, b∆θ,z]

T and b∆v = [b∆v,x, b∆v,y, b∆v,z]
T . Next, let us assume the orienta-

tion change during sampling interval, which is sufficiently small, is approximated by
(∆θraw − b∆θ) ∈ R3. It is converted to a quaternion denoted by q′ = [q′0, q

′
1, q

′
2, q

′
3]

T .
According to Section2.3, the updated orientation is given by

qk = qk−1 ⊗ q′ (4.12)

where the orientation qk−1 at the last time instant k − 1 is updated by multiplying q′

to obtain qk. Hence, the transition matrix Fq is given by the Jacobian matrix taken
with respect to the states involved. Note that for this particular equation, not only the
orientation are involved but also the bias of angular increments. A detailed derivation
of Fq can be found in [32].

Since the velocity increment ∆v = (∆vraw − b∆v) ∈ R3 is measured in the body
frame of the UAV, it is necessary to convert it to the local navigation frame, which can
be written as

∆vNED = qk−1 ⊗∆v ⊗ q∗k−1 (4.13)

where ∆vNED is the velocity increment in the local navigation frame. Hence, the
velocity update equation is

vNED,k = vNED,k−1 +∆vNED + ag,NED ·∆T (4.14)

where the updated velocity vector at time instant k is vNED,k ∈ R3. Apart from the
velocity increment, the local gravitational acceleration ag,NED also has an influence on
the velocity. The state transition matrix Fv is obtained by finding the corresponding
Jacobian matrix, which is described in detail in [32].

The position update assumes a simple uniform linear motion and is given by

pNED,k = pNED,k−1 + vNED,k−1 ·∆T (4.15)

where pNED,k ∈ R3 and pNED,k−1 ∈ R3 are positions expressed in the local navigation
frame (North-East-Down) at time instance k and k−1 respectively. The corresponding
state transition matrix Fp is given by

Fp =
[
03×4 I3×3 ∆TI3×3 03×6 03×3 03×3

]
(4.16)

The geomagnetic field vector has the following transition model

gNED,k = I3×3 gNED,k−1 +wgeo,k (4.17)

where gNED = [gN , gE, gD]
T is a part of the state vector that represents the local

geomagnetic vector in the local navigation frame; the corresponding transition matrix
is set as an identity and possible variation is modeled in the noise term wgeo. The
complete state transition matrix Fgeo is given by

Fgeo =
[
03×4 03×3 03×3 03×6 I3×3 03×3

]
(4.18)
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It is worth noting that sensor biases often vary slowly in time. In other words, if we
include a slowly changing bias term in the process noise, the probability distribution of
the process noise will be a normal distribution with a nontrivial, time-varying mean,
which violates the assumptions of the Kalman filter. Hence, it makes more sense to
incorporate sensor biases in the state vector.

In our application, time-varying biases of the angular increment, the velocity incre-
ment, and the magnetometer readings have the corresponding state transition modelb∆θ

b∆v

bm


k

= I9×9

b∆θ

b∆v

bm


k−1

+

w∆θ

w∆v

wm


k

(4.19)

where I9×9 is an 9-by-9 identity matrix and w∆θ ∈ R3, w∆v ∈ R3, and wm ∈ R3 are
random variables representing process noise. Setting the transition matrix as identity,
we model the sensor biases as random walk processes using additive white Gaussian
noise. It can be considered as reflecting the stability of the sensor biases. The complete
state transition matrix for all the sensor bias terms is then given by

Fbias =

[
Fb1

Fb2

]
(4.20)

where Fb1 ∈ R6×22 models the state transition of the bias in angular and velocity
increments; Fb2 ∈ R3×22 models the state transition of the magnetometer bias. They
are defined as

Fb1 =
[
06×4 06×3 06×3 I6×6 06×3 06×3

]
(4.21)

Fb2 =
[
03×4 03×3 03×3 03×6 03×3 I3×3

]
(4.22)

Finally, the state transition matrix Ft for the full state vector xt is given by

Ft =


Fq

Fp

Fv

Fb1

Fgeo

Fb2

 (4.23)

4.3.2 Measurement Model

For the loosely-coupled architecture, direct state measurements (i.e., position measure-
ments) of the target are available to the fusion filter, so the measurement model is given
by zloc,Nzloc,E

zloc,D


k

= I3×3

pNpE
pD


k

+ vloc,k (4.24)

Other states irrelevant to the measurement model are hence not included. The
corresponding entries of these irrelevant states in the measurement matrix are filled
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with zeros. The complete measurement matrix Ht, conforming to the definition of the
state vector in Section4.3.1, is written as

Ht =
[
03×4 I3×3 03×3 03×6 03×3 03×3

]
(4.25)

Practically, both the APS and the TWR module will output locations in geographic
coordinates. Thus, it is useful to convert the longitudes, latitudes, and altitudes to
coordinates under the North-East-Down local navigation frame.

4.3.3 Pseudo Code

Finally, the pseudo code of the EKF-based sensor fusion algorithm is presented as
follows.

Algorithm 2 The EKF-based sensor fusion algorithm

1: Input: xt,0, initial state
2: Pt,0, initial uncertainty
3: Qk, Rk (k ∈ {1, 2, 3, ..,K}), noise covariance matrices
4: zloc,k, position measurement
5: Output: xt,k, state estimate
6: Pt,k, posterior covariance
7: Kk (k ∈ {1, 2, 3, ..,K}), Kalman gain
8:

9: Begin
10: Initialize xt,0 and Pt,0 with initial states (e.g., orientation, position, velocity, bias).
11: For k = 1 to K do
12: x̃t,k = f(xt,k−1) ▷ State prediction using IMU data
13: P̃t,k = FtPt,k−1F

T
t +Qk−1

14: If zloc,k is available
15: Kk = P̃t,kH

T
t (HtP̃t,kH

T
t +Rk)

−1

16: xt,k = x̃t,k +Kk(zloc,k − g(x̃t,k)) ▷ State correction using position data
17: Pt,k = (I −KkHt)P̃t,k

18: end
19: end

4.4 Simulations

4.4.1 Simulation Setup

In this section, simulation results of multiple UAV cooperative localization are pre-
sented. The most important assumption, as mentioned in Section4.1, is that all UAVs
involved in cooperative navigation as well as the ground reference station are perfectly
synchronized. We further assume the TWR module introduce very small errors in rel-
ative positioning. Asynchronous clocks will introduce new errors in both SoOp-based
localization and relative positioning. This will be discussed in detail and tackled in the
next chapter.
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There are other important simulation parameters listed below. UAVs are equipped
with consumer-grade IMUs with typical update rate, measurement range, resolution,
and noise parameters. The UAVs are assumed to operate in areas with dense air traffic,
hence eight beacons are used in simulation. The trajectories of beacons are designed to
mimic that of cruising commercial airplanes, with similar altitude and ground speed.
According to the implementation standard of the ADS-B system, the airborne position
broadcast rate is 2Hz, leading to a similar low update rate of ADS-B sensors on UAVs.
Finally, the standard deviation of beacon locations is 60 meters. According to [27],
95% of the analyzed flights show a cross-track accuracy better than 51.83 meters (0.03
NM), which can be considered as an approximation of the standard deviation value
σb,position. In [33] researchers conclude that 53% of the aircraft they observe broadcast
airborne position reports with a horizontal protection limit (HPL) of 0.1NM, which
indicates that there is a probability of 95% that an aircraft is actually in the circular
area defined with the reported location as the center and the HPL value as the radius.
This is similar to the three-sigma rule for the Gaussian distribution. Thus, we obtain
an approximate of σb,position = 0.033NM . Key simulation parameters are listed in the
table below.

Table 4.1: Key simulation parameters

Simulation parameter Value

Total simulation time(s) 70
Number of deployed UAVs 5
Number of ground stations 1
IMU sampling rate(Hz) 100
SoOp sensor update rate(Hz) 2
SoOp beacon number 8
SoOp beacon position standard deviation(m) 60
SoOp measurement noise standard deviation(m) 1× 10−2

TWRmeasurement noise standard deviation(m) 0.5
Number of Monte Carlo runs 50

A baseline simulation is first performed using the parameter values listed above.
Furthermore, we vary different parameters individually and perform corresponding ex-
periments to analyze the influences of the following factors on the navigation perfor-
mance:

• localization using only SoOp versus using both IMU and SoOp;

• the number of available beacons (4, 6, and 8 beacons);

• the position uncertainty of available beacons (60m, 180m);

• the network topology of UAVs (shown in Fig.4.5).

4.4.2 Multi-UAV Simulation Results

In our simulation, there are five UAVs deployed in an area of 3500m × 2000m ×
100m. A ground reference is also deployed at the location [10, 20, 10](m). The pairwise
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(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

Figure 4.5: Different configurations of UAV networks, including a ground reference.

distances of these UAVs vary from hundreds of to over one thousand meters. Typical
wireless technologies using ISM (industrial, scientific and medical) bands (e.g., LoRa,
APRS) are able to provide robust connection at this range. Hence the proposed UAV
network is feasible.

The trajectories of eight beacons are presented in Fig.4.6. These beacons are a few
kilometers away from the area where UAVs are deployed. Their typical ground speed is
over 200 knots and typical altitude is above 6000 meters, which are designed to mimic
cruising commercial airplanes. A rectangular shape area is bounded by black solid
lines, within which UAVs are deployed. The trajectories of five UAVs are presented
in Fig.4.7. From the figure we can see that these trajectories contain rich maneuvers.
They are selected from the MidAir data set of small, high agility drones [34].

Figure 4.6: Trajectories of beacons and the UAV deployment area
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Figure 4.7: Trajectories of UAVs

4.4.3 Baseline Simulation

In this subsection, we present the Monte Carlo simulation results using the parameter
values listed in Table4.1. To give an intuition, the estimated trajectory of one of the
UAVs are plotted in Fig.4.8. The corresponding estimation error plots of its orientation,
position, and velocity are presented in Fig.4.9. The complete results of all five UAVs are
presented in Table4.2, 4.3, 4.4, and 4.5. To quantify the performance of the proposed
algorithms, three different metrics are used, namely the Averaged Mean Square Error
(AMSE), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE).
They are computed as

AMSE(υ̂,υ) = N−1
exp

∑Nexp

n=1 ∥υ̂ − υ∥
2 , (4.26)

RMSE(υ̂,υ) =
√

N−1
exp

∑Nexp

n=1 ∥υ̂ − υ∥
2, (4.27)

MAE(υ̂,υ) = N−1
exp

∑Nexp

n=1 ∥υ̂ − υ∥ . (4.28)

where Nexp is number of experiments conducted; υ̂ is the obtained estimate; υ is the
unknown vector to be estimated. Since we compute these three metrics for a range of
different quantities with different dimensions, the dimensions of υ̂ and υ are omitted
here.

32



Figure 4.8: Baseline simulation: UAV 1 estimated positions

As seen in the left of Fig.4.8, position estimates from APS are quite sparse compared
with the groundtruth trajectory. This is due to the low broadcast rate of ADS-B air-
borne position reports of beacons. Apparently, these sparse estimates are not adequate
for UAV navigation. Hence, it is necessary to also incorporate the IMU. During the
update interval of ADS-B SoOp, the fusion filter performs dead reckoning using IMU
data. Position estimates provided by ADS-B SoOp are seen as measurements for the
correction update of EKF. Note that although ADS-B SoOp has an update rate even
lower than that of typical civilian GNSS receivers (5-10Hz), we still managed to use it
as navigation aiding source in the proposed algorithm.

Incorporating the IMU not only gives much denser state estimates but also more
accurate ones. Comparing the estimation errors in Table4.3 and 4.4, it is observed
that the proposed sensor fusion algorithm improve the overall navigation performance,
reducing more than 50% of the errors. Furthermore, with IMU data more states such
as the orientation and the velocity can be estimated.
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Figure 4.9: Baseline simulation: UAV 1 tracking errors

Table 4.2: Baseline simulation: orientation tracking performance (APS + IMU)

UAV ID AMSE(degs2) RMSE(degs) MAE(degs)

1 0.0551 0.2348 0.2000
2 0.0525 0.2290 0.1967
3 0.1650 0.4063 0.3645
4 0.2471 0.4971 0.4379
5 0.0547 0.2339 0.2060

Table 4.3: Baseline simulation: position tracking performance (APS only)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 4.28 2.05 1.62
2 4.56 2.11 1.67
3 4.84 2.18 1.72
4 4.83 2.18 1.73
5 5.07 2.24 1.77

Table 4.4: Baseline simulation: position tracking performance (APS + IMU)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 1.71 1.30 1.03
2 1.83 1.34 1.07
3 1.91 1.37 1.09
4 1.88 1.36 1.08
5 2.03 1.42 1.12
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Table 4.5: Baseline simulation: velocity tracking performance (APS + IMU)

UAV ID AMSE(m2/s2) RMSE(m/s) MAE(m/s)

1 0.33 0.57 0.45
2 0.36 0.60 0.47
3 0.36 0.59 0.48
4 0.36 0.60 0.49
5 0.39 0.62 0.50

4.4.4 Simulation with Varying Number of Beacons

We now look at the effects of varying number of available beacons. Experiments are
performed in the case of four, six, and eight beacons in view. The estimated trajectories
are shown in Fig.4.10. The blue line indicates the groundtruth trajectory, while the
red, yellow, and purple lines represent estimated trajectories with four, six, and eight
beacons respectively.

As the number of available beacons increases, the tracking performance is improved
for each of the UAVs. If we look at Fig.4.10, the estimated trajectory becomes smoother
as well as more accurate as signals from more beacons are exploited. The zigzag patterns
of the trajectories indicate drift of dead reckoning results and corrections using ADS-B
SoOp data. Although only the performance of position estimation is analyzed, similar
conclusions on the tracking performance of other states can be drawn.

Furthermore, here we only examined the case of four, six, and eight beacons. For
cases with less than three available beacons, the system will not work at all because it
is a loosely-coupled architecture and the ADS-B SoOp data processing is independent
from the fusion filter. The independent SoOp-based TDOA processing requires three or
more beacons to give an unambiguous estimate. Hence, the proposed algorithm works
under the condition that there is sufficient amount of live air traffic in proximity and
at least three or more beacons are in view.
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Figure 4.10: Comparison of estimated trajectories of UAV 1

4.4.5 Simulation with Increased Beacon Uncertainty

The influence of beacon uncertainty is also examined. We model the beacon position
error (the discrepancy between the reported position through ADS-B and the actual
position) as a random error governed by a zero-mean Gaussian distribution, with its
standard deviation σb error. Monte Carlo experiments are conducted w.r.t. σb error =
180m. The simulation results are presented in Table4.6, 4.7, and 4.8. They can be
compared with that of the baseline simulation with σb error = 60m.

The tracking performance of all the states degrades as the beacon uncertainty in-
creases. For ADS-B SoOp localization, one disadvantage is that the accuracy of re-
ported beacon positions depend on the performance of civil aviation surveillance tech-
nology and infrastructure. Currently, which in most cases provides an accuracy of
several tens of meters. This is far less accurate than that of satellite reported posi-
tions (normally < 1m [35]). However, as aviation surveillance technology advances, the
performance of ADS-B SoOp will benefit from it.

Table 4.6: Simulation with increased beacon uncertainty: orientation tracking performance
(APS + IMU)

UAV ID AMSE(degs2) RMSE(degs) MAE(degs)

1 0.0679 0.2605 0.2212
2 0.0602 0.2453 0.2104
3 0.1625 0.4032 0.3566
4 0.2736 0.5230 0.4594
5 0.0560 0.2366 0.2089
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Table 4.7: Simulation with increased beacon uncertainty: position tracking performance (APS
+ IMU)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 14.71 3.79 2.94
2 14.88 3.81 2.96
3 14.80 3.80 2.95
4 14.83 3.81 2.95
5 15.05 3.84 2.98

Table 4.8: Simulation with increased beacon uncertainty: velocity tracking performance (APS
+ IMU)

UAV ID AMSE(m2/s2) RMSE(m/s) MAE(m/s)

1 2.64 1.61 1.26
2 2.69 1.62 1.27
3 2.65 1.61 1.26
4 2.66 1.61 1.26
5 2.70 1.63 1.27

4.4.6 Simulation with Different Network Configurations

Now we turn to the influences of different UAV network configurations. Monte Carlo
experiments are conducted with three different configurations shown in Fig.4.5. The
results of the first configuration in Fig.4.5a have been presented in Section4.4.3. The
results of the other two configurations are presented in Table4.9, 4.10, 4.11 in Sec-
tion4.4.6.1 and Table4.12, 4.13, 4.14 in Section4.4.6.2, respectively.

First, we observe that the algorithm works as long as the inter-UAV network is topo-
logically a connected graph. Second, difference in network topology has an influence
on the tracking performance of individual UAVs. It is observed that for followers with
the same D(h) value defined in Section4.1 or in the same “layer” of the network from a
leader-centered perspective, similar tracking performance is achieved. Meanwhile, the
tracking performance of followers degrades as their D(h) UAV increases. This observa-
tion can guide the grouping of a large swarm of UAVs doing cooperative localization.
The required localization performance will set a lower bound in accuracy as well as the
largest D(h) value that can exist in a network(group), which is a subset of the UAV
swarm. For a large swarm of UAVs, it is better to divide them into multiple smaller
groups and assign multiple leaders. Meanwhile, multiple leaders will impose a burden
on the service capacity of the ground station. Hence, trade-off is needed. An “optimal”
assigning strategy and network structure may be of interest in this context.
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4.4.6.1 Network Configuration 2

Table 4.9: Simulation of configuration 2: orientation tracking performance (APS + IMU)

UAV ID AMSE(degs2) RMSE(degs) MAE(degs)

1 0.0538 0.2320 0.2022
2 0.0630 0.2510 0.2151
3 0.1419 0.3767 0.3340
4 0.2569 0.5068 0.4502
5 0.0619 0.2489 0.2219

Table 4.10: Simulation of configuration 2: position tracking performance (APS + IMU)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 1.66 1.28 1.01
2 1.78 1.32 1.05
3 1.77 1.32 1.05
4 1.75 1.31 1.04
5 1.79 1.33 1.05

Table 4.11: Simulation of configuration 2: velocity tracking performance (APS + IMU)

UAV ID AMSE(m2/s2) RMSE(m/s) MAE(m/s)

1 0.33 0.57 0.45
2 0.35 0.59 0.47
3 0.34 0.58 0.46
4 0.34 0.58 0.46
5 0.34 0.58 0.47

4.4.6.2 Network Configuration 3

Table 4.12: Simulation of configuration 3: orientation tracking performance (APS + IMU)

UAV ID AMSE(degs2) RMSE(degs) MAE(degs)

1 0.0598 0.2446 0.2118
2 0.0537 0.2317 0.2006
3 0.1766 0.4202 0.3662
4 0.2933 0.5416 0.4876
5 0.0535 0.2312 0.2027
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Table 4.13: Simulation of configuration 3: position tracking performance (APS + IMU)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 1.70 1.29 1.02
2 1.80 1.34 1.06
3 1.89 1.37 1.09
4 1.96 1.39 1.10
5 2.11 1.45 1.15

Table 4.14: Simulation of configuration 3: velocity tracking performance (APS + IMU)

UAV ID AMSE(m2/s2) RMSE(m/s) MAE(m/s)

1 0.33 0.57 0.45
2 0.35 0.59 0.47
3 0.36 0.60 0.48
4 0.38 0.61 0.49
5 0.40 0.63 0.51
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Joint Relative Positioning and
Synchronization 5
In this chapter, the relative positioning as well as the synchronization problem of the
inter-UAV network are addressed. As mentioned in Chapter4, the relative positions
between each pair of UAVs with a direct communication link need to be estimated. This
information is essential for cooperative localization. Since we use the two-way ranging
(TWR) method, synchronization between each pair of UAVs is required. Furthermore,
in order to use ADS-B SoOp, UAVs need to be synchronized to the ground station as
well.

To tackle these problems, a joint relative ranging and synchronization algorithm
from [36] is applied. First, an affine model is used to approximate the behaviour of
local asynchronous clocks. Second, a polynomial model is used to approximate the
time-varying relative range between two UAVs. The mobile pairwise least squares
(MPLS) from [36] is performed on every pairwise communication link to jointly solve
the ranging and synchronization problem. We further incorporate direction of arrival
information with respect to the UAV platform to obtain relative positions. Finally, sim-
ulation results show that 1) MPLS converge on the proposed inter-UAV network with-
out increasing connectivity compared to that in Chapter4; 2) the proposed cooperative
navigation strategy, with joint relative positioning and synchronization incorporated,
is robust against asynchronous clocks of UAVs and the ground station.

5.1 Asynchronous Clocks and Affine Clock Model

In chapter 4, all derivations are based on the idealized assumption that all targets,
beacons, and references are synchronized. However, to work with real-world systems,
it is more practical to assume that all vehicles involved run their own local clocks and
they are not necessarily synchronized. The errors originated from asynchronous clocks
will plague the measurements of ADS-B SoOp as well as TWR relative positioning.
For example, the typical skew of low-cost oven-controlled crystal oscillators (OCXO) or
temperature compensated crystal oscillators (TCXO) ranges from 10−11 to 10−6 [37]. It
contributes a timing error of up to 86.4ms during one day. Even in a period of 100ms,
considering the propagation speed of light, this will, in the worst case, add an error of
60 meters to the pseudorange measurement.

If there is a ground reference, the UAVs are able to synchronize to it. Furthermore,
if the ground reference itself is quipped with a clock precise enough with respect to
some ”true” time, say, the GNSS reference time, the UAVs will simultaneously get
timing service. However, as seen in Chapter4, only leader UAVs have bidirectional
communication with the ground reference. It is then a problem how follower UAVs can
also be synchronized to the ground reference without direct communication links.

Let’s start with the simplest case where only two UAVs are involved. If we define a
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standard time frame as the ”true” time, local clocks, due to hardware imperfections and
environment temperature, vary nonlinearly with respect to the true time. Nevertheless,
it is sufficient to employ an affine clock error model given that Allan deviation can be
neglected for a sufficiently small time period. Let ti be the local time at target i,
i = {1, 2}. The relation between the local time and the true time t is then modeled as
an affine function,

ti = κit+ ϵi ⇔ Ci(ti) ≜ t = αiti + βi (5.1)

where κi ∈ R+ and ϵi ∈ R are the clock skew and the clock offset, respectively. Clock
skew is a quantity to describe how fast the local clock drifts. It has no unit and can
be interpreted as ”given one time unit in true time, how much time is actually ticked
in the local time in the same time unit”. Hence, an ideal clock has skew equal to 1.
As mentioned previously, the clock skew of low-cost OCXO or TCXO ranges between
[1 − 10−6, 1 + 10−6]. The clock offset is the error accumulated up to time ti, which
should be 0 for an ideal clock. The skew and offset both are inherently time-varying,
but in a short observation period of our system, they are modeled as constant [38]. The
right part of 5.1 shows the inverse relation, where [αi, βi] ≜ [κ−1

i ,−κ−1
i ϵi]. They are

calibration parameters needed to synchronize the local clock at target i with the true
time.

5.2 Polynomial Relative Range Model

For a static pair of nodes, the relative range between them can be directly estimated
since it is constant. For a pair of mobile nodes, however, the relative range is a function
of time. In other words, at each time index the relative range is unique. It is then
natural to approximate this nonlinear function by a polynomial function during a small
observation period. Let τij = c−1dij be the propagation delay between the target i and
j at some time instant, where dij is the relative range between i and j and c the speed
of light. The propagation delay τij(t) can be written as

τij(t) = c−1Rij(t)

= c−1(r
(0)
ij + r

(1)
ij t+ r

(2)
ij t2 + · · ·+ r

(L−1)
ij tL−1) (5.2)

where Rij(t) is used to model the time-varying pairwise range between target i and j

and rij = [r
(0)
ij , r

(1)
ij , ...r

(L−1)
ij ]T ∈ RL×1 contains all the coefficients of the approximation,

which is not time-varying. L is the order of approximation and should be chosen
according to the type of motion of targets.

Practically, the propagation delay τij(t) is measured by targets with respect to their
local clocks. So we substitute 5.1 into 5.2, we have the propagation delay as a function
of local time ti at target i in the following

τij(t) = c−1Rij(Ci(ti))
= c−1(γ

(0)
ij + γ

(1)
ij ti + γ

(2)
ij t2i + · · ·+ γ

(L−1)
ij tL−1

i ) (5.3)

where on the right side of the equation above

Gij(ti) = c−1Rij(Ci(ti)) (5.4)
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represents the pairwise propagation delay with respect to the local time at target i.

The range coefficients γij = [γ
(0)
ij , γ

(1)
ij , ..., γ

(L−1)
ij ]T ∈ RL×1 incorporate the range ap-

proximation parameters and the clock discrepancy of target i as well.

5.3 Mobile Pairwise Least Squares

As mentioned in Section 4.1, a pair of targets are able to communicate with each
other. They communicate back and forth and signal transmission and receipt are
timestamped at both sides independently with respect to the local clocks. Let K be
the number of observation periods. In the kth observation period the corresponding
timestamp recorded at node i is Tij,k and at node j it is Tji,k. A timestamp can indicate
transmission or receipt and it is determined by the direction of communication. Let
Eij,k = ±1 indicate the direction of communication. For example, when Eij,k = +1 the
signal is transmitted by node i and received by node j. When Eij,k = −1 it is vice
versa.

Now we have defined the set of time indices k = {1, 2, 3, ..., K}, so the signal prop-
agation delay can be written as τij,k = c−1dij,k, where dij,k denotes the unique relative
range between target i and j at time instant k.

Ideally, if the target pair are perfectly synchronized and noise-free, the kth times-
tamps marked at target i and j have the following relation

Tji,k =

{
Tij,k + c−1dij,k fori→ j

Tij,k − c−1dij,k fori← j
(5.5)

Using the direction indicator Eij,k, this can be combined into one equation given by

Tji,k = Tij,k + c−1Eij,kdij,k

= Tij,k + c−1Eij,kRij(Tij,k) (5.6)

where the pairwise range dij,k is replaced by the value of relative range function Rij(ti)
at time instant Tij,k. To further incorporate the clock discrepancy, we rewrite the
equation as

Tij,k − Tji,k + Eij,kGij(Tij,k) = 0 (5.7)

where all the timestamps are recorded with respect to the local time. To make the
equation still hold under the asynchronous condition, we need to convert all timestamps
to a standard time frame, namely the true time. Therefore, the clock model in 5.1 is
substituted into 5.7 as

Ci(Tij,k)− Cj(Tji,k) + Eij,kGij(Tij,k) = 0 (5.8)

In reality, timestamps will also be contaminated by noise. For simplicity, it is
modeled as white Gaussian noise. Therefore, we can further incorporate noise terms
and rewrite the equation 5.8 as

Ci(Tij,k + ηi,k)− Cj(Tji,k + ηj,k) + Eij,kGij(Tij,k + ηi,k) = 0 (5.9)

43



where ηi,k and ηj,k represents the noise. Substitute the specific form of the clock model
and relative range model into the equation, we get the following equation

αiTij,k − αjTji,k + βi − βj + Eij,k(γ
(0)
ij + γ

(1)
ij Tij,k + γ

(2)
ij T 2

ij,k + · · ·) = ηij,k (5.10)

where all noise-related terms are absorbed by ηij,k. Timestamps Tij,k and Tji,k recorded
at time instant k at respective targets are measurements and the communication di-
rection Eij,k at time instant k is also known. So the unknowns of the equation can be
split into three categories: 1) [αi, βi] is the calibration parameter vector of the clock at
target i; 2) [αj, βj] is the calibration parameter vector of the clock at the other target

j; 3) [γ
(0)
ij , γ

(1)
ij , γ

(2)
ij , ..., γ

(L−1)
ij ] are the range coefficients we need to approximate the

relative range between the target pair. Note that these parameters, under reasonable
assumptions, are not time-varying. Therefore, it is intuitive to use the least-squares
approach to solve this problem. This is referred to as mobile pairwise least squares in
[36]. For K observation periods, K sets of data are acquired and K equations can be
stacked.

Thus, a complete joint clock and range parameter model for K communications
between a pair of targets i and j can be constructed as follows by stacking 5.10

[Aij,1,Aij,2]



αi

βi

αj

βj

γ
(0)
ij

γ
(1)
ij
...

γ
(L−1)
ij


= ηij (5.11)

where

Aij,1 = [tij,−tji1K ,−1K ] (5.12)

Aij,2 = EijVij (5.13)

Vij = [t⊙0
ij , t

⊙1
ij , ..., t

⊙L−1
ij ] (5.14)

consist of the following vectors

tij = [Tij,1, ..., Tij,K ]
T ∈ RK×1 (5.15)

Eij = diag(eij) ∈ RK×K (5.16)

eij = [Eij,1, ..., Eij,K ]
T ∈ RK×1 (5.17)

The time stamps recorded at target i and j during bidirectional communication are
stored in tij and tji, respectively. eij is a vector indicating the transmission direction
for each data packet, which is also recorded at target i and j. Finally, the noise vector
at the right side of the equation 5.11 is defined as

ηij = [ηij,1, ..., ηij,K ]
T ∈ RK×1 (5.18)
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According to [36], a time constraint is required in order to obtain a unique solution.
In our case, it is convenient to assume, say, the clock of target i to be the time reference.
By setting αi = 1 and βi = 0, equation 5.10 can be rewritten as

Tij,k − αjTji,k − βj + Eij,k(γ
(0)
ij + γ

(1)
ij Tij,k + γ

(2)
ij T 2

ij,k + · · ·) = ηij,k (5.19)

Stacking all data from K communications, we have the normal equation given by

Aijψij = bij + ηij (5.20)

where

Aij = [−tji,−1K ,Aij,2] ∈ RK×(L+2) (5.21)

ψij = [αj, βj,γ
T
ij ]

T ∈ R(L+2)×1 (5.22)

bij = −tij (5.23)

For this problem, the least squares solution is then computed by

ψ̂ij = argmin
ψij

∥Aijψij − bij∥22 = (AT
ijAij)

−1AT
ijbij (5.24)

5.4 Direction Estimation

Direction estimation refers to estimation of a three-dimensional unit vector that de-
scribes the azimuth and elevation information of target j with respect to target i. This
direction vector is used by target i to solve the SoOp measurement equations in Chap-
ter 3. We assume that all the UAVs are equipped with some device to estimate the
direction of arrival (DOA) for signals coming from other UAVs. Again, this direction
vector is time-varying.

Combining the estimated relative rangeRij(Ci(ti)) ∈ R and the unit direction vector

denoted by ξij(ti) ∈ R3, the relative position ∆x
(p)
i ∈ R3, as a function of local time ti

at target i, can be written as

∆x
(p)
i = Rij(Ci(ti))ξij(ti) (5.25)
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5.5 Simulations

5.5.1 Results of joint ranging and synchronization

In this subsection, results of joint ranging and synchronization are presented. We
use the identical set of UAV trajectories as that in Chapter4. The UAV network
configuration is shown in Fig.4.5a. The mobile pairwise least squares (MGLS) is applied
on every valid communication link in this network. It has been shown in [36] that the
algorithm converge as long as the network is topologically a connected graph. To
adhere to the needs of online processing, a moving window technique is also applied.
The length of the rectangular window is K = 500. It is also the number of total
communication, linearly distributed within a small period of 5 seconds. The ratio of
forward and backward communication is 1 : 1.

To evaluate the performance of the algorithm, the Root Mean Square Error (RMSE)
metric is used. The RMSE errors are computed for the clock skew, the clock offset and
the pairwise relative range. It is given by

RMSE(υ̂,υ) =
√

N−1
exp

∑Nexp

n=1 ∥υ̂ − υ∥
2, (5.26)

where υ̂(n) ∈ R3 is the n-th estimate and υ ∈ R3 is the unknown vector to be
estimated.

On each communication link Monte Carlo experiments with the number of runs
Nexp = 50 are performed. The order of relative range approximation is set to be
L = 3. The initial clock skews and offsets of the deployed UAVs as well as that of
the ground station are generated considering the typical values of low-cost oscillators
mentioned in Section5.1. The skews of each UAV are generated randomly within the
interval [1 − 5ppm, 1 + 5ppm] while clock offsets are also generated randomly within
the interval [−5, 5] seconds. All the initial skews and offsets used in this experiment
are shown in Table5.1. Without the loss of generality, the clock of the ground reference
is set to have a skew of 1 and an offset of 0 second(s). The leader UAV is synchronized
to the ground reference. Each follower UAV is synchronized to its neighbour which
is ”closer” to the leader UAV than itself (in the sense of the number of hops in the
network to the leader).

The simulation results are shown in Table5.2. The RMSE of the clock skew estima-
tion is at the magnitude of 10−10 and RMSE of the offset estimation is at the magnitude
of 10−8. RMSE of the pairwise range estimation is around 0.5 meters, regardless of dif-
ferent trajectories. Although the network shown in Fig.4.5a is not a full-mesh network,
the algorithm still converges. Please note that the number of unique links in this exper-
iment is equal to the minimum required number of links in order to preserve network
connectivity. Another advantage of the mobile pairwise least squares (MPLS) is that it
naturally works in a distributed fashion and can be easily adapted for online estimation.

46



Table 5.1: Initial skews and offsets of each UAV and the ground station

UAV ID Clock skew Clock offset(s)

0(ref) 1 0
1 1− 3× 10−6 3
2 1− 4× 10−6 4
3 1 + 4× 10−6 4
4 1 + 2× 10−6 −1
5 1 + 3× 10−6 −2

Table 5.2: Tracking Performance of clock parameters and relative ranges

Link RMSE skew RMSE offset(s) RMSE range(m)

0 ←→ 1 3.1363× 10−10 1.8699× 10−8 0.4267
1 ←→ 2 5.0049× 10−10 7.4569× 10−8 0.5419
2 ←→ 3 3.6495× 10−10 4.2004× 10−8 0.4338
2 ←→ 4 4.8012× 10−10 2.0695× 10−8 0.4854
4 ←→ 5 4.8016× 10−10 1.9388× 10−8 0.3475

5.5.2 Results of cooperative localization with residual errors injected

Residual errors after synchronization will be translated into SoOp-based TDOA mea-
surements as well as two-way ranging (TWR) relative range measurements. In this
subsection, we present the simulation results with these residual errors injected.

Let us be more specific about the errors caused by local clocks. First, we look at
leader UAVs that exploit ADS-B SoOp measurements. Recall the list of assumptions
presented in Chapter 4, the whole network is considered static during an observation
period sufficiently small; the clock skew and offset can thus be assumed constant within
this observation period. Furthermore, we assume that the beacons, namely piloted
aircraft providing ADS-B signals, are equipped with high-end clocks or oscillators that
have a small skew. Under these assumptions, before synchronization is performed, the
SoOp-based TDOA measurement model under asynchronous beacons and targets from
[37] can be applied, which is given by

ρb =
∥∥∥x(p)

t − x
(p)
b

∥∥∥− ∥∥∥x(p)
r − x

(p)
b

∥∥∥+ cκt,r∆T + cϵt,r + wρ (5.27)

where x
(p)
t , x

(p)
r , x

(p)
b ∈ R3 are positions of the target t, the reference r, and the beacon

b; κt,r = 1/κr − 1/κt is the relative clock skew between the target t and its reference r;
ϵt,r is the relative bias accumulated up to now. c is the speed of light.

If we manage to do synchronization between the reference and the target (leader) by
estimating the clock skew and offset of the target, denoted by κ̂t and ϵ̂t,r, the corrected
TDOA measurement is then given by

ρ̂b =
∥∥∥x(p)

t − x
(p)
b

∥∥∥− ∥∥∥x(p)
r − x

(p)
b

∥∥∥+ c(κt,r − κ̂t,r)∆T + c(ϵt,r − ϵ̂t,r) + wρ (5.28)
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where κ̂t,r = 1/κr − 1/κ̂t. The last three terms in the equation above consist of the
residual errors after synchronization. Here the local clock of the reference is considered
as the standard clock, hence κr = 1. In simulations, we store the estimated clock skews
and offsets and compute the error terms c(κt,r − κ̂t,r)∆T and c(ϵt,r − ϵ̂t,r). Then we
inject the errors into generated SoOp-based TDOA measurements.

For follower UAVs, relative ranges are obtained simultaneously with clock calibra-
tion parameters, as mentioned in Section5.3. The ranging accuracy of mobile pairwise
least squares (MPLS) is shown in the section above. Hence, we inject the relative range
errors by augmenting the standard deviation of TWR sensor measurement noise, which
is among simulation parameters listed in Table4.1.

Other key simulation parameters are identical to that in Table4.1. Monte Carlo
experiments are conducted with residual errors injected. A snapshot of the estimated
trajectory of UAV 1 in one simulation run is visualized in Fig.5.1, with corresponding
error plots shown in Fig.5.2. Complete results of Monte Carlo experiments are shown
in Table5.3, 5.4, and 5.5. It is observed that residual errors make the navigation per-
formance degrade. Larger errors in TWR measurements also make the performance
degradation caused by increasing D(h) values more severe, compared to that in Sec-
tion4.4.3 and 4.4.6. Despite that, the proposed algorithm still converges and shows
robustness against synchronization errors.

Figure 5.1: Simulation with residual errors injected: UAV 1 estimated trajectory
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Figure 5.2: Simulation with residual errors injected: UAV 1 tracking errors

Table 5.3: Simulation with residual errors injected: orientation tracking performance (APS
+ IMU)

UAV ID AMSE(degs2) RMSE(degs) MAE(degs)

1 0.0572 0.2391 0.2065
2 0.0579 0.2407 0.2076
3 0.1754 0.4188 0.3778
4 0.2285 0.4780 0.4208
5 0.0665 0.2578 0.2243

Table 5.4: Simulation with residual errors injected: position tracking performance (APS +
IMU)

UAV ID AMSE(m2) RMSE(m) MAE(m)

1 13.19 2.90 2.29
2 14.09 3.11 2.47
3 14.79 3.28 2.60
4 14.70 3.26 2.59
5 15.72 3.46 2.74
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Table 5.5: Simulation with residual errors injected: velocity tracking performance (APS +
IMU)

UAV ID AMSE(m2/s2) RMSE(m/s) MAE(m/s)

1 2.38 1.25 1.00
2 2.55 1.34 1.07
3 2.67 1.40 1.12
4 2.67 1.40 1.12
5 2.83 1.48 1.19
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Conclusion and Future Work 6
6.1 Conclusion

In this thesis, we propose a novel framework of cooperative localization in order to
provide a group of small unmanned aerial vehicles (UAVs) with alternative positioning,
navigation, and timing (APNT) service in GNSS-denied environments. The proposed
algorithms are simulated in the scene of multi-UAV cooperative localization and the
effectiveness of the algorithms are verified. The main contributions of this thesis are as
follows.

• We propose that ADS-B signals from piloted aircraft can be exploited as signal of
opportunity for navigation purposes. We analyze what information and physical
properties can be extracted from ADS-B signals. Based on the analysis, an SoOp-
based TDOA configuration is chosen for this problem. By leveraging ADS-B
SoOp, UAVs do not require dedicated APNT infrastructure to provide navigation
signals, though a ground reference station is still needed.

• We propose a leader-follower strategy for cooperative localization of multiple
UAVs based on inter-UAV communication networks. By leveraging this strat-
egy, the service burden of the ground reference station is reduced. It is further
verified on synchronized UAV networks with different topological configurations.
Additionally, an empirical observation from Monte Carlo experiments is that the
proposed algorithm does not need a full-mesh inter-UAV network to converge.

• An EKF-based sensor fusion algorithm is designed for individual UAV navigation.
It fuses data from a low-cost IMU and an aiding sensor (ADS-B SoOp sensor
or TWR sensor). The proposed algorithm is verified in a multi-UAV scene with
practical simulation parameters, showing its robustness against varying number of
available beacons, varying beacon uncertainty, and variation of network topology.
The proposed algorithm achieves an overall performance comparable to civilian
GNSS in our experiments. Meanwhile, we acknowledge that many other factors
can have an influence, e.g. geometric distribution of beacons, radio wave propaga-
tion, hardware implementation, which are not considered and out of the scope of
this thesis. Hence, this conclusion is restricted in selected data sets and simulation
settings.

• We identified how errors caused by asynchronous clocks can be translated into
both absolute and relative position measurements. A joint relative positioning and
synchronization algorithm is applied to tackle this problem. The pairwise version
of this algorithm is verified in a scene of five UAVs. Furthermore, this algorithm
does not increase the minimum connectivity requirement of inter-UAV networks.
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With this algorithm, the cooperative localization strategy can be further extended
to a network of asynchronous UAVs.

6.2 Future Work

The work of this thesis can be further improved from the following aspects.
First, for ADS-B SoOp, there are more specific problems remain unaddressed. The

success of ADS-B SoOp relies on a good estimation of signal time of arrival (TOA). It
is then a problem of how precise TOA estimation needs to be. Based on the precision
requirement, some TOA estimation techniques such as [29] can be used.

Second, in [36] it is shown that mobile global least squares (MGLS) outperforms
mobile pairwise least squares(MPLS) in certain networks. Therefore, MGLS can be
applied to further reduce synchronization errors. For a network of UAVs, distributed
processing is often favoured. Hence, a distributed version of MGLS suitable for UAV
applications may be of interest.
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