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Abstract

An important feature of Bayesian statistics is the opportunity to do sequential inference: the

posterior distribution obtained after seeing a dataset can be used as prior for a second infer-

ence. However, when Monte Carlo sampling methods are used for inference, we only have

a set of samples from the posterior distribution. To do sequential inference, we then either

have to evaluate the second posterior at only these locations and reweight the samples

accordingly, or we can estimate a functional description of the posterior probability distribu-

tion from the samples and use that as prior for the second inference. Here, we investigated

to what extent we can obtain an accurate joint posterior from two datasets if the inference is

done sequentially rather than jointly, under the condition that each inference step is done

using Monte Carlo sampling. To test this, we evaluated the accuracy of kernel density

estimates, Gaussian mixtures, mixtures of factor analyzers, vine copulas and Gaussian pro-

cesses in approximating posterior distributions, and then tested whether these approxima-

tions can be used in sequential inference. In low dimensionality, Gaussian processes are

more accurate, whereas in higher dimensionality Gaussian mixtures, mixtures of factor ana-

lyzers or vine copulas perform better. In our test cases of sequential inference, using poste-

rior approximations gives more accurate results than direct sample reweighting, but joint

inference is still preferable over sequential inference whenever possible. Since the perfor-

mance is case-specific, we provide an R package mvdens with a unified interface for the

density approximation methods.

Introduction

In Bayesian statistics, unknown variables are given a probability distribution that specifies our

knowledge about the variables. This distribution can then be updated based on available data

using Bayes’ theorem. An important advantage of this approach is that inference can be done

sequentially; that is, when we have obtained a posterior distribution after seeing a first dataset,

we can use this posterior as prior for inference with a next dataset.
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For models where the posterior distribution is not analytically tractable, Bayesian inference

is often achieved with some variant of Monte Carlo sampling. This allows us to obtain samples

from posterior distributions. When we want to use the Monte Carlo sampling results for

sequential inference, we only have this set of samples to use as prior. We can use these samples

directly for sequential inference, by reweighting them accordingly, but the sequential posterior

will then only be evaluated at those sample points, which may not be accurate. Alternatively,

we can estimate a functional representation of the first posterior, and use this functional repre-

sentation as prior for the second inference, and proceed with any Monte Carlo sampling

scheme as usual.

There are various situations where sequential inference may be useful. For example, it can

be conceptually appealing to summarize the posterior of one dataset and continue inference

with a second dataset without having to refer back to the first. As an example of this, in astron-

omy, Wang et al. [1] have estimated posterior distributions for orbital eccentricities which can

then subsequently be used as prior in further research. Alternatively, a modeler may have fitted

a model to a dataset, and when additional data arrives he or she may wish to update the poste-

rior with the new data. Often the inference is a time-consuming process [2–5], and it is not

always feasible to do a new joint inference each time new data arrives. Efficiency might also be

gained in special instances, for example when parameters can be dropped for parts of the data.

We therefore wished to investigate whether sequential inference is a feasible approach, even

when using Monte Carlo sampling for the separate inference steps. Specifically, we wished to

test whether we can obtain an accurate joint posterior P(x|y1, y2) from two datasets, by first

sampling the posterior of one dataset and then performing sequential inference with the sec-

ond dataset using an approximation of the first posterior as prior:

Pðxjy1; y2Þ �
Pðy2jxÞP̂ðxjy1Þ

Pðy2Þ
:

Here x is a vector of the variables of interest, y1 and y2 are two datasets, and P̂ is an approxi-

mation of the posterior of the first dataset obtained from Monte Carlo samples (see Methods

section). Throughout this article we assume that datasets are independent given the model. It

is important to note that doing statistical inference with multiple datasets may require addi-

tional parameters or a hierarchical structure to account for differences between datasets. We

will explicitly mention when we use dataset-specific parameters and when we will assume

them to be the same between datasets.

Estimating functional forms of posterior distributions from Monte Carlo samples is an

established part of Bayesian analysis [6], and could be done with a large variety of methods.

Broadly, this might be done in two ways. One option is to treat the posterior distribution

approximation task as a general density estimation problem, where we estimate the density

function only from the location of the samples. Several popular density estimation methods

include kernel density (KD) estimation [7], Gaussian mixtures (GM) [8], mixtures of factor

analyzers (MFA) [9], and copulas or vine copulas (VC) [10]. An alternative option is to treat

the posterior distribution approximation task as a regression problem, since alongside the

sample positions, we usually also have the relative value of the posterior probability at the sam-

ple locations. This has the advantage of using additional information of the posterior distribu-

tion, but presents its own challenges as well. In particular, the regression function must

integrate to one for it to be a proper density function. It can be challenging to meet this con-

straint while fitting a function through many sample points. One regression method with suffi-

cient flexibility to achieve this is Gaussian process (GP) regression [11].
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To test our question of whether sequential inference can be done by estimating a functional

approximation of the first posterior, we will consider each of the aforementioned methods

(density estimation with KDs, GMs and VCs, and regression with GPs). We first test their per-

formance in approximating a known density, then test their accuracy in approximating a pos-

terior distribution from Monte Carlo samples, and subsequently test their performance in

sequential inference. Finally, we test whether sequential inference of two datasets is computa-

tionally faster than inference with the two datasets jointly.

Besides in sequential inference, posterior distribution approximations are also used in sev-

eral other areas of Bayesian computation. First, in Monte Carlo sampling itself, a proposal dis-

tribution is used, and sampling is most efficient when the proposal distribution resembles the

true target probability density. There have been many efforts to create efficient proposal distri-

butions, including using some of the density approximation methods that we consider here,

for example with vine copulas [12] and Gaussian processes [13]. Second, posterior distribution

approximations have been used in schemes for parallelizing MCMC inference [14]. In this

case the inference is split into parts, and the resulting subposteriors are combined using a pos-

terior distribution approximation to recover the full posterior. Third, in the area of Bayesian

filtering [15], a posterior distribution is updated when new data arrives over time, which also

relies on posterior distribution approximations. In the present study, we explicitly test the

accuracy in approximating posterior distributions, and, apart from the use of such approxima-

tions in sequential inference, the results presented here may be relevant for these other areas as

well.

Methods

To use the posterior obtained from Monte Carlo sampling in sequential inference, we need to

approximate the distribution

PðxjyÞ ¼
PðyjxÞPðxÞ

PðyÞ
� P̂ðxÞ;

where x is the D-dimensional variable of interest and y represents the inference data. In the

notation of the approximation P̂ðxÞ we have dropped the conditioning on y for brevity.

The approximation P̂ðxÞ needs to be constructed from samples xi that have been drawn

from the posterior P(x|y). The approximations can be achieved using density estimation or

through regression, see Fig 1. In all subsequent equations, N is the number of Monte Carlo

samples and xi is the D-dimensional value of the ith sample. While i indexes the samples, j
indexes the dimensions, so note that xj (non-bold, and indexed by j) refers to the jth element

of the D-dimensional value of x. For the regression methods, we assume that the relative,

unnormalized probability is available, and it is represented by pi for sample i, (that is, pi =

P(y|xi)P(xi)).

Density estimation

The density estimation methods use the sample positions, xi, to reconstruct an approximation

to the probability density function. Below we briefly introduce three density estimation meth-

ods: kernel density estimation, Gaussian mixtures and vine copulas, with several variations.

Fig 2 shows an example of each method in a bivariate case.

Kernel density. The kernel density approximation is given by

P̂KDðxÞ ¼
1

N

XN

i¼1

Kðx � xiÞ;
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where K(x − xi) is a kernel function. We take the kernel function to be a multivariate normal

distribution N ð0;SÞ. When D� 6 we estimate a full covariance matrix using multivariate

plug-in bandwidth selection [16] as implemented in the R package ks [17]. When D> 6 we

estimate a diagonal covariance matrix with the diagonal entries using Scott’s reference rule [7];

that is, the empirical standard deviation multiplied by N−1/(D+4).

Gaussian mixture. The Gaussian mixture approximation is given by

P̂GMðxÞ ¼
XG

g¼1

cgN ðxjm ¼ μg ;S ¼ SgÞ;

where cg, μg and Sg are the proportion, mean and covariance of the gth component, G is the

number of mixture components, and ∑cg = 1. We use a full covariance matrix, and the parame-

ters c, μ and S are estimated using expectation-maximization. The number of components is

selected by minimizing the Akaike information criterion (AIC).

Truncated gaussian mixture. When the prior probability distribution P(x) is bounded,

we can use truncated Gaussians with known bounds in the mixture:

P̂TGMðxÞ ¼
XG

g¼1

cgN Tðxjm ¼ μg ;S ¼ Sg ; a ¼ a; b ¼ bÞ;

where a and b are the known lower and upper bounds respectively. The parameters are esti-

mated using expectation-maximization for truncated Gaussian mixtures [18], using the trun-

cated Gaussian moment calculations provided by [19]. The number of components is selected

by minimizing the AIC.

Mixture of factor analyzers. In factor analysis, a latent variable z is introduced to repre-

sent the target distribution in a lower-dimensional space. The elements of the m-dimensional

Fig 1. Reconstructing a probability density function by density estimation or regression. Using Monte Carlo

sampling we have samples drawn from the target probability distribution. With density estimation, the locations of the

samples is used to reconstructed the probability distribution. With regression, both the sample location and the

unnormalized, relative probability is used to reconstruct the probability distribution. The example function is a t-
distribution with ν = 4 centered at 7.5.

https://doi.org/10.1371/journal.pone.0230101.g001
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variable z are called the factors. This can be extended to mixtures of factor analyzers in multi-

ple ways, one of which consists of introducing multiple factor analyzers to describe different

parts of the target distribution [9]. The approximation of our posterior distribution is then

given by

P̂MFAðxÞ ¼
XG

g¼1

cg

Z

N ðxjm ¼ μg þ Bgz;S ¼ CgÞPðzÞdz

where z is the m-dimensional latent variable, Bg are the D × m loading matrices, Cg are diago-

nal covariance matrices with elements σ1, . . .σD and cg are the mixture weights. The factors z

are assumed to be distributed by a unit normal distribition with zero mean. For simplicity, we

only consider the case where each mixture element has a separate mean, loading matrix and

covariance matrix. The mixtures of factor analyzers are fitted using the Alternating Expecta-

tion Conditional Maximization algorithm [9], as implemented in the R package EMMIXmfa
[20]. The number of components and number of factors are selected by minimizing the AIC.

Fig 2. Density estimation methods applied to a bivariate example. At the top, we start with samples obtained through Monte

Carlo sampling from the posterior of two variables (x1 and x2). The two variables are βkill and γ from the (bounded) Lotka-Volterra

example discussed later. On the left, a kernel density estimate or a Gaussian mixture is fitted to the samples. In the middle, the

variables are first transformed to an unbounded domain (in this case through a scaled logit transform) before a KD or GM is fitted.

On the right, the variables are transformed to have uniform marginal distributions between 0 and 1, using either a parametric

mixture or an empirical cumulative distribution with Pareto tails. Subsequently, a copula function is fitted to the transformed

variables. Finally, on the bottom row, new samples are drawn from each of the approximations. Where necessary, the new samples

are transformed with the inverse of the original transformation. In each case the distribution of the new samples is similar to the

original sample distribution, but slight differences between the approximations can be observed as well.

https://doi.org/10.1371/journal.pone.0230101.g002
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Vine copula. With copulas, the multivariate distribution is decomposed into marginal

distributions and a description of the dependency structure. The copula density approxima-

tion is then given by

P̂COPðxÞ ¼ cðF1ðx1Þ; . . . ; FDðxDÞÞ
YD

j¼1

fjðxjÞ;

where c is a copula function, fj is the marginal probability density function for dimension j,
and Fj the corresponding marginal cumulative density function. Various different families of

copula function exist; by using the R package VineCopula [21], we evaluate various commonly

used families and their rotations and select the optimal function by minimizing the AIC.

For D> 2; a multi-dimensional copula function could be used, but we instead model the

approximation using regular vine copulas [22], given by the equation

P̂VCðxÞ ¼
YD� 1

l¼1

YD� l

k¼1

ck;ðkþlÞjðkþ1Þ;...;ðkþl� 1Þ

YD

j¼1

fjðxjÞ;

where the first two products are the pair-copulas and the third product contains the marginal

densities as before. The bivariate pair-copula functions are selected as before by minimizing

the AIC, and the vine structure is selected using a maximum spanning tree with Kendall’s tau

edge weights [23].

For the marginal distribution and density functions, common choices include empirical

distribution functions and parametric distributions. We consider these two options, as well as

using Pareto tails and parametric mixtures:

• Empirical distribution marginal: An empirical marginal distribution function is given by

FjðxjÞ ¼
1

N

XN

i¼1

1xi;j�xj
;

where 1xi;j�xj
is the indicator function. A corresponding density function is constructed using

a 1-dimensional kernel density estimate

fjðxjÞ ¼
1

N

XN

i¼1

N ðxi;j; sjÞ;

where σj is estimated using plug-in bandwidth selection.

For the quantile function (the inverse of the cumulative distribution function) we use a linear

interpolation of the empirical distribution function. When the prior has bounded support,

samples are mirrored across the boundary to improve the estimate near the boundaries.

• Pareto tails: Since an empirical distribution can be inaccurate in the tails, we also consider

augmenting the empirical density with Pareto tails. The distribution is then split in three

parts, a body described by the empirical distribution function and kernel density estimate as

before, and two tails described by a generalized Pareto distribution (GPD). An important

choice is where to put the threshold beyond which data are used to fit the tail distribution

[24]. We use the simple rule of thumb of using 10% of the samples to estimate a tail [25].

Since we have a tail on each side, we use the middle 80% of the samples for the body, and the
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upper and lower 10% of the samples to estimate the Pareto tail on each side:

FjðxjÞ ¼

q � qFj;xj;1
ð
tj;1 � xj

sj;1
Þ if xj � tj;1

ð1 � qÞ þ qFj;xj;2
ð
xj � tj;2

sj;2
Þ if xj � tj;2

Fj;ECDFðxjÞ otherwise;

8
>>>>>><

>>>>>>:

where

FxðzÞ ¼ 1 � ð1þ x � zÞ� 1=x

is the GPD function, q is the quantile used for the threshold (q = 0.1 for the 10% rule), and

tj,1 and tj,2 are the lower and upper qth quantile of xj respectively. Fj,ECDF(xj) is the empirical

distribution function as before. To ensure continuity in the density function between the

Pareto tail and the ECDF body, we set σj = q/fj,KD(tj). The shape parameter ξj is estimated by

maximum likelihood, separately for each tail. The density function of the tails is given by the

GPD density, scaled by q:

fxðzÞ ¼
q
sj
ðxz þ 1Þ

� ðxþ1Þ=x
:

In the case of bounded support, we do not use a Pareto tail unless the empirical density at

the boundary is less than a threshold � (which we set to 1/N). While a GPD can handle a

bounded support (by taking ξ< 0), we find this often leads to a poorer approximation than

an empirical estimate with mirroring across the boundary.

• Parametric mixtures: The marginal densities can also be approximated with mixtures of

parametric distributions. For unbounded variables we use a mixture of normals:

fjðxjÞ ¼
XG

g¼1

cgN ðxjjm ¼ mg ; s
2 ¼ s2

gÞ:

When there are known bounds, we use gamma distributions (when there is only a lower or

upper bound) or beta distributions (when there is both a lower and upper bound) instead of

normal distributions; these distributions are scaled, shifted and/or reflected to match the

bounds. The parameters are estimated using expectation-maximization, and we select the

number of components by minimizing the AIC.

Regression

When the relative probability density at the sample positions is available, the density function

can be estimated by regression. Typically, only the relative, unnormalized probability density

will be available. If that is the case, it will be necessary to normalize the regression function to

ensure that it integrates to one over the prior domain.

When an estimate of the marginal likelihood P(y) is available in addition to the samples,

then the probability values can be normalized before entering the regression. If the approxima-

tion is accurate, this would ensure that the regression function is properly normalized as well,

but we don’t further explore this option of normalization with a known marginal likelihood

here.
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Gaussian process. As regression method we employ Gaussian process regression, since it

provides flexibility for approximating arbitrary density functions, and it handles multivariate

regressors naturally. In order to handle unnormalized input densities, we multiply the Gauss-

ian process predictive distribution with a scaling parameter. By calculating the integral of the

predictive distribution (see below), we can constrain the distribution to integrate to one by set-

ting the scaling parameter to the reciprocal of the integral.

The behavior of Gaussian processes is characterized by their mean and covariance func-

tions. We set the mean function to be zero everywhere, as we expect the probability to go to

zero in regions where we do not have any samples. The predictive mean of the Gaussian pro-

cess function based on the input samples X is then given by:

P̂GPðxÞ ¼
1

Z
Kðx;XÞKðX;XÞ� 1p;

where Z is the normalizing constant (see below) and K(X1, X2) is the matrix obtained by apply-

ing the covariance function k(x1, x2) to all pairs of X1 and X2 (see e.g. [11] for more details on

Gaussian processes).

As covariance function we consider two commonly used kernels, the squared exponential

kSEðx; x�Þ ¼ exp
r2

2l2

� �

and the Matérn kernel with n ¼ 3
2=

kMat32ðx; x�Þ ¼ ð1þ
ffiffiffi
3
p

r
l
Þ exp ð�

ð
ffiffiffi
3
p

rÞ
l
Þ;

where r is the Euclidean norm |x − x�| and l a length scale parameter. The parameter l is opti-

mized by minimizing the root mean square error of P̂GPðxÞ in a 5-fold cross-validation.

In order to normalize the Gaussian process predictive distribution such that it integrates to

1, it is necessary to calculate the integral:

Z ¼
Z 1

� 1

Kðx�;XÞKðX;XÞ� 1pdx�:

Solving K(X, X)−1 p = α, we have

Z ¼

Z 1

� 1

Kðx�;XÞαdx�

¼

Z 1

� 1

XN

i¼1

kðx�; xiÞaidx
�

¼
XN

i¼1

ai

Z 1

� 1

kðx�; xiÞdx
�

In the case of the squared exponential kernel kðx�; xÞ ¼ exp � jx
�� xj
2l2

� �
, we have

Z 1

� 1

kðx�; xÞdx� ¼ ð
ffiffiffiffiffiffiffiffi
2pl2
p

Þ
D
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and

Z ¼ ð
ffiffiffiffiffiffiffiffi
2pl2
p

Þ
D
XN

i¼1

ai:

For any isotropic kernel k(x�, x) = h(|x� − x|) we can transform to polar coordinates to get

Z 1

� 1

hðjx� � xjÞdx� ¼ oD� 1

Z 1

0

hðrÞrD� 1dr;

where r = |x� − x| and ωD−1 is the surface area of a (D − 1)-sphere with unit radius, which can

be calculated as

oD� 1 ¼
2pD=2

G D
2

� � :

For the Matérn kernel with n ¼ 3
2= this gives

Z 1

� 1

hðjx� � xjÞdx� ¼
2pD=2

G D
2

� �
l
ffiffiffi
3
p

� �D

ð1þ DÞGðDÞ:

A downside of using Gaussian processes for probability densities is that they do not natu-

rally allow for a constraint that the function is non-negative everywhere. As a result, negative

probability densities can occur. This could be circumvented by transforming the densities (for

example by log transform (as done in [26]) or logistic transform (as done in [13])), but then

the predictive function can no longer be normalized to integrate to one in the untransformed

space. We found that, in our test cases, constraining Z to be positive during the optimization

of l prevented large negative densities, and any remaining negative densities were typically

very small and were pragmatically set to zero.

Importance reweighting

As reference for the approximation methods, instead of constructing an approximate distribu-

tion function, we can also use the Monte Carlo samples from the initial inference directly and

reweight them given the likelihood of the second dataset. That is, the samples are given

weights

wi ¼ Pðy2jxiÞ=
XN

i¼1

Pðy2jxiÞ;

where y2 indicates the data in the second inference and xi are the sample positions from the

first inference as before. This can be viewed as importance sampling from the joint posterior

distribution with the posterior of the first dataset as proposal distribution, with the fixed set of

samples.

Transformations for bounded variables

Some of the approximation methods can explicitly handle a bounded support. In the other

cases, we can use rejection sampling to discard samples outside the prior support. Alterna-

tively, the variables can be transformed to an unbounded domain before applying the posterior

approximation methods. We consider a log transform (when there is only a lower or upper

bound) or a logit transform (when there is both a lower and upper bound), and scale, shift or

PLOS ONE Multivariate posterior distribution function approximations

PLOS ONE | https://doi.org/10.1371/journal.pone.0230101 March 13, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0230101


reflect the variables as necessary. The probability density function is corrected for the transfor-

mation by multiplying with the derivative of the transform.

Marginal likelihood estimation from posterior approximation

When the approximation of the posterior distribution function can be normalized such that it

integrates to one (as is the case for all methods used here), we can use the approximation to

obtain an estimate of the marginal likelihood. Since P̂ðxÞ � PðxjyÞ, and

PðxjyÞ ¼
PðyjxÞPðxÞ

PðyÞ
;

we can use a linear regression of the approximation probability density against the unnorma-

lized posterior probability at each sample position and obtain an estimate P̂ðyÞ of the marginal

likelihood from the slope of the regression. Depending on the setting, it may be beneficial to

log transform the probabilities:

log P̂ðxÞ ¼ log ðPðyjxÞPðxÞÞ � log P̂ðyÞ

and get an estimate of the log marginal likelihood from the intercept of the regression.

Monte Carlo sampling

Unless stated otherwise, Monte Carlo sampling was done using parallel tempered Markov

chain Monte Carlo (PT-MCMC) [27] with automated parameter blocking [28]. When using

MCMC, the samples are subsampled to produce a chain with no observable autocorrelation.

The first half of the simulation is always removed as burn-in, and adaptation is only done dur-

ing the burn-in period. In the section on marginal likelihood estimation, we also used sequen-

tial Monte Carlo (SMC) with MCMC proposal distributions [29], and nested sampling [30].

Marginal likelihood estimates were obtained by thermodynamic integration (when using

PT-MCMC), by the resampling weights (when using SMC) and by sampling the mass ratios

(when using nested sampling). The sampling and marginal likelihood estimation were done

using the Bayesian inference software package BCM [31].

Implementation—mvdens
Implementations of the density approximation methods are available as an R package mvdens
at http://ccb.nki.nl/software/mvdens.

Results

Approximating known target densities

To test whether the density approximation methods can adequately describe multivariate den-

sity functions, we first attempted to reconstruct several known target distributions, represent-

ing different features which might arise in posterior distributions, namely multimodality,

ridges and heavy tails.

Gaussian mixture. As first test, we used a mixture of two multivariate Gaussians,

PðxÞ ¼
2

3
N ðμ1;S1Þ þ

1

3
N ðμ2;S2Þ;

with random covariance matrices and μ1 = μ2 = 0 for the first test case. Fig 3A (left panel)

shows 500 random samples drawn from this distribution for D = 2. We then compared how

PLOS ONE Multivariate posterior distribution function approximations

PLOS ONE | https://doi.org/10.1371/journal.pone.0230101 March 13, 2020 10 / 25

http://ccb.nki.nl/software/mvdens
https://doi.org/10.1371/journal.pone.0230101


well the approximation methods can reconstruct this density from 500 samples, at increasing

dimensionality (Fig 3A, right panels).

In the low-dimensional setting, Gaussian processes give the best approximation. Since the

Gaussian processes can use the relative probability density at the sample positions, they have

more information to create a good approximation, which allows a very good reconstruction

already with few samples. In the higher-dimensional setting however, the Gaussian processes

do not perform as well, likely due to having only a single length scale parameter l. Fitting such

a regression through high dimensional multivariate sample points leads to an overdispersed

distribution, which is limiting the performance.

At D = 10, the Gaussian mixture approximation achieves higher accuracy than all other

approaches, including Gaussian process regression. Among the density estimation methods, it

Fig 3. Comparison of the approximation methods for reconstructing known target distributions with increasing

dimensionality. The density approximations were trained on 500 samples, and the accuracy was evaluated by the root mean square

error (RMSE) calculated over 500 new samples. This procedure was repeated 100 times and the boxplots show the resulting RMSEs.

Note that the scale of the RMSE is different for different dimensionalities and test cases, as the mean density at the location of the

samples is also different.

https://doi.org/10.1371/journal.pone.0230101.g003
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is to be expected that the Gaussian mixture approximation is most accurate, since it has the

same functional form as the target density.

Multimodality. To test the performance of the approximation methods in a multimodal

setting, we separated the two Gaussians in space by setting μ2 = μ1 + 10 in every dimension

(Fig 3B). As before, Gaussian processes work well in low dimensions, while Gaussian mixtures

are better at higher dimensions. In this multimodal case, vine copulas do significantly worse

even at D = 2. This is likely due to the fact that the available copula functions are designed to

describe the shape of a single mode, and are not necessarily suited for describing multimodal

distributions. As in the unimodal case, using Pareto tails or parametric mixtures does tend to

give slightly better performance than using only an ECDF marginal. For the GP kernels, the

squared exponential kernel has better performance than the heavier-tailed Matérn kernel in

this case, which is to be expected given the exponential nature of the target distribution.

Ridges. Another difficulty which can occur in posterior distributions is the presence of

ridges. To test how well the approximation methods can deal with this, we tested a ridge distri-

bution:

Pðx1::D� 1Þ ¼ N ð0; s1Þ

PðxDÞ ¼ N ðyþ 3 � yþ ð1 � yÞ2; s2Þ

y ¼
XD� 1

i¼1

xi

As shown in Fig 3C, also in this case Gaussian processes give the best approximation in two

dimensions, but at higher dimensions mixtures of factor analyzers outperform all other meth-

ods, showing the value of the dimensionality reduction introduced by the factor analyzers. In

two dimensions, kernel densities with full covariance bandwidth matrices are better here than

copulas.

Heavy tails. A third difficulty in posterior distributions is heavy tails; in this case there

will be relatively few samples spread over a large space, making it more difficult to obtain an

accurate approximation. To test how well the approximation methods can deal with this, we

used a multivariate t-distribution with five degrees of freedom as target distribution, with a

random covariance matrix as before:

PðxÞ ¼ tðxjm ¼ 0;S; n ¼ 5Þ

Again, Gaussian processes are most accurate in two dimensions. However, in this case a

Matérn kernel is better than a squared exponential kernel, as could be expected given the

heavier tail of a Matérn kernel (with ν = 32). At higher dimensions, all of the approximation

methods have difficulties approximating this distribution.

Approximating a posterior distribution

To test how the methods perform in approximating a posterior density function, we turned to

a dynamic model of a predator-prey system. Specifically, we used a modified Lotka-Volterra

system to model the interactions between the Canadian lynx and the showshoe hare [32]. This

system was chosen because of the availability of several datasets, a modest number of parame-

ters (5 dynamic parameters and 2 initial conditions for each dataset), and non-linearity in the

system which likely leads to non-linearity in the posterior probability distribution of the

parameters, making for a meaningful test case.
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The model is given by the differential equations

dx
dt ¼ ax � ðbkill þ bstressÞxy

dy
dt ¼ dxy � gy

;

where x represents the hare population and y the lynx population. The populations are mea-

sured by their density, i.e. the number of individuals per area in arbitrary units. In the standard

Lotka-Volterra model, there is a single parameter β for the effect of predation. We have split

this effect into two parts, βkill and βstress, because it has been shown that at high lynx densities,

the hares not only die from increased predation, but also produce less offspring, which appears

to be due to stress induced by the constant threat of predation [32, 33]. The modeled natality

(number of offspring per adult female in one breeding season) is given by 2 � exp(α − βstress y).

All of the parameters should be positive. To simplify the inference and approximations, we

first infer the parameters on log scale, so that there are no discontinuities in the posterior den-

sity (we lift this restriction of unbounded priors later). As prior we take a diagonal multivariate

normal distribution. When wide priors are used, unrealistic parameter values can be found,

corresponding to oscillations through the data points at very high frequency; we therefore

restricted the prior to a relatively narrow distribution so that only the correct oscillation with a

period of roughly 10 years is obtained.

We used two datasets to infer the parameters. The first dataset is the Hudson Bay Company

data of lynx pelt records [34], which we will refer to as the lynx data; in particular we used the

McKenzie River station data from 1832 through 1851. The second dataset is a study of a hare

population and its reproductive output [35], from 1962 through 1976, which we will refer to as

the hare data. Note that the lynx data only contains measurements of the lynxes while the hare

data only contains measurements of the hares. The lynx and hare densities are normalized to

be between 0 and 1 by dividing by the maximum observed value. For the likelihood we take

normally distributed error with fixed σ of 0.15 for the normalized densities and 2.0 for the

untransformed natality. The data are obtained from different geographical regions and in dif-

ferent time periods. It is therefore safe to assume that the datasets are independent. The model

describes the common predator-prey interaction irrespective of the geographical region and

time period. The differences between the datasets are modeled by having separate variables for

the initial conditions; i.e. the 5 dynamics parameters are common to the datasets, and for each

dataset there are 2 additional parameters for the initial conditions.

We fitted the model to each dataset separately and to the two datasets together; Fig 4 shows

the data and the posterior predictive distributions. The model can adequately describe these

datasets, both separately and jointly, as evidenced by the good overlap of the posterior predic-

tive distribution and the observed data.

Fig 5A–5C shows several aspects of the posterior obtained after seeing the lynx data. The

posterior distribution appears to be unimodal (Fig 5A) and there are correlations between

some of the parameters (Fig 5B). The distribution also deviates from a Gaussian distribution as

shown by the bivariate scatter plot for two of the parameters (Fig 5C).

We then tested by cross-validation how well the approximations can describe the posterior

distribution of the two datasets (see Fig 5D). For the lynx dataset, mixtures of factor analyzers

give the best performance; while for the hare dataset Gaussian mixtures and vine copulas with

mixture marginals also give good cross-validation performance (Spearman correlation ρ� 0.9

and the lowest root mean square error).
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Sequential inference

Having obtained reasonably accurate approximations of the posterior densities, we can test

how they perform in sequential inference. To do this, we approximated the posterior from the

lynx dataset with all methods using 1,000 samples, and use these approximations as prior for

inference with the hare dataset. If the approximations are accurate, the resulting posterior of

the second inference should give the same result as a joint inference with the two datasets

together.

Fig 6A shows the marginal probability density of one of the parameters, βkill, from the data-

sets separately, the true joint, and with two approximation methods (importance reweighting

and a gaussian mixture). As expected, importance reweighting provides a very poor approxi-

mation; a single sample receives almost all of the weight and the true joint posterior cannot be

accurately estimated from essentially one sample. The Gaussian mixture approximation on the

other hand provides a sequential posterior that is visually almost indistinguishable from the

true joint. To quantify the performance, we calculated the Kolmogorov-Smirnov statistic for

the marginal distribution of each of the parameters, based on the marginal empirical cumula-

tive distributions (see Fig 6B and 6C). Both Gaussian mixtures and vine copulas give sequential

posteriors that are closest to the true joint. Gaussian processes and the KD approximation per-

form worse, as expected given their poorer cross-validation performance.

Marginal likelihood estimation

We can use the posterior distribution approximations to obtain an estimate of the marginal

likelihood directly from the Monte Carlo samples (see Methods section). Table 1 shows the

estimates obtained from three dedicated marginal likelihood estimation algorithms, compared

to the estimates obtained directly from the samples using the posterior approximations. The

Fig 4. Lynx-hare datasets and posterior predictive distributions. The lynx data provides an estimate of lynx density (number of

animals per surface area) and the hare data provides an estimate of hare density and natality. Black dots indicate the data, the thick

blue line is the median and the shaded blue area the 90% confidence interval of the posterior predictive.

https://doi.org/10.1371/journal.pone.0230101.g004
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posterior approximations that performed well in cross validation and sequential inference also

provide accurate marginal likelihood estimates.

Bounded priors

In practical applications, it is often the case that the prior probability distribution has a

bounded domain, due to known constraints in any of the variables of interest. Some of the

approximation methods can handle bounded distributions directly. Alternatively, the variables

can be transformed to an unbounded domain (see Methods section). To test these options, we

take the same predator-prey model, now inferring the parameters on natural scale and with

uniform priors, thus resulting in hard bounds on both the prior and the posterior distribution.

Fig 5. Lynx and hare dataset posterior approximation. (A) Marginal posterior densities after seeing the lynx data, the

graphs are constructed using kernel density estimation with plug-in bandwidth selection. (B) Correlations between the

parameters in the lynx posterior. (C) Scatter plot of the samples for one parameter combination. (D) Approximation

accuracy as a function of sample size. Spearman correlation and root mean square error were calculated by comparing

the approximation with another 1,000 MCMC samples from the target.

https://doi.org/10.1371/journal.pone.0230101.g005
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Fig 6. Sequential inference performance. (A) Marginal density of one of the parameters (for clarity, only the GM

approximation and importance reweighting result is shown). The dashed lines indicate the posterior of the two

datasets separately, and the black line is the true joint. Other colors are the same as in C. (B) Empirical cumulative

distribution of the same parameter, showing all approximation methods. The colors are the same as in C. (C)

Kolmogorov-Smirnov statistics for the comparison of the marginal distributions of the true joint to the marginals of

the posterior obtained after sequential inference with each of the approximation methods. Each dot indicates one of

the parameters.

https://doi.org/10.1371/journal.pone.0230101.g006

Table 1. Log marginal likelihood estimates (± estimation variance if available).

Method Lynx data Hare data

Thermodynamic integration 0.46±0.92 −34.7±1.4

Sequential Monte Carlo 0.57±0.42 −34.7±0.36

Nested sampling 0.77±0.65 −34.4±0.64

Kernel density estimate 4.60 −29.1

Gaussian mixture 0.80 −34.5

Vine copula—mixture 1.20 −34.3

Gaussian process—SE 5.19 −28.8

https://doi.org/10.1371/journal.pone.0230101.t001
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As before, the prior is chosen such that only the correct oscillation with a period of 10 years is

obtained.

Fig 7A–7C shows several aspects of the posterior distribution of the lynx data, as before in

the log-transformed setting. It is clear that the bounds on the prior distribution leads to a large

discontinuity in the posterior probability distribution at the bounds for most parameters. The

sequential inference test (Fig 7D) shows that for KDs and GMs, it is beneficial to specifically

handle these boundaries; either by variable transformation or using truncated Gaussians in

the case of Gaussian mixtures. For vine copulas, the marginal transformations can handle

bounded domains, but the performance is nevertheless worse than in the unbounded situation

before.

Fig 7. Sequential inference with bounded priors. (A) Marginal posterior densities after seeing the lynx data; compare

with Fig 5A. (B) Correlations between the parameters in the lynx posterior. (C) Scatter plot of the samples for one

parameter combination. (D) Sequential inference accuracy; same as in Fig 6, with the addition of transformed and

truncated variations.

https://doi.org/10.1371/journal.pone.0230101.g007
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Efficiency of sequential versus joint inference

One of the motivations for using posterior approximations and sequential inference was that it

may allow a computationally faster evaluation of the joint posterior. For evaluating the poste-

rior of a first dataset, the likelihood of the second dataset does not need to be evaluated and

vice versa. More importantly, some of the parameters may only be relevant for one of the data-

sets and could thus be dropped from the inference, thereby reducing the dimensionality of the

inference.

To test this, we compared the accuracy of the posterior obtained from a joint inference to

the posterior obtained by sequential inference, given a fixed total number of model evalua-

tions. These posteriors are in turn compared to a “ground-truth” obtained from the joint infer-

ence with 100-fold more model evaluations. As test system we used the unbounded Lotka-

Volterra system described above. In this case the two separate inference steps in the sequential

inference route contain only 7 parameters (5 kinetic parameters + 2 initial conditions),

whereas the joint inference has 9 parameters (5 kinetic parameters + 2 × 2 initial conditions),

so the sequential inference should have an advantage in sampling efficiency due to the lower

dimensionality. We used Gaussian mixtures as posterior approximations.

Fig 8 shows the mean and standard deviation of the joint posterior distribution of the five

kinetic parameters obtained in 10 separate runs. Each run was entirely separate; in each run

new sampling was done from the first posterior (including new starting points for the MCMC

chains and the hyperparameters of the sampling algorithm were optimized separately). New

approximations were then fitted to these samples, and the approximations are used as prior for

a new round of sampling with the second dataset. From Fig 8, it is clear that sequential infer-

ence by sample reweighting introduces a large bias and variance and is not a viable means of

obtaining the joint posterior. Using a Gaussian mixture approximation after the first inference

greatly improves the accuracy compared to sample reweighting. Nevertheless, the posterior

obtained from sequential inference is less accurate than the posterior obtained from joint

inference. For example, for the parameter βkill, the sequential inference introduces either more

variance (when the lynx dataset is used first), or a slight bias (when the hare dataset is used

Fig 8. Accuracy of joint versus sequential inference. Each point represents the mean and standard deviation of the marginal

posterior distribution from one run. Each run has the same total number of model evaluations (1.8 million). The dashed line

indicates the mean and standard deviation of the posterior from a joint inference run with 100-fold more model evaluations.

https://doi.org/10.1371/journal.pone.0230101.g008
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first). During sequential inference, the increased sampling efficiency in the individual infer-

ence steps does not outweigh the error introduced by the intermediate posterior

approximation.

Time complexity

The approximation methods differ in the computational cost of training and evaluation.

Table 2 lists the time complexity of each method.

Typically, the number of Monte Carlo samples N will be (much) larger than the

dimensionality D. Since Gaussian mixtures and vine copulas with mixture marginals do not

depend on the number of samples during evaluation, they can achieve the fastest perfor-

mance when a large number of evaluations are needed in the sequential inference. Kernel

density estimates, Gaussian processes and vine copulas with empirical marginals do depend

on the number of samples and can thus be significantly slower when a large number of sam-

ples is used.

Gaussian processes have cubic scaling with respect to the number of samples for the train-

ing, which severely limits the number of samples that can be used. While there are approxima-

tion methods available for GPs with large input sizes [11], the use of GPs for posterior

approximation appears to be best suited for low N and D.

Failure case

To illustrate the present limits of this approach to sequential inference, we also discuss a case

where the approximations fail to provide an accurate posterior.

A more challenging test case is given by a model of biological signaling in cancer cells. The

goal here is to explain how different breast cancer cell lines respond to kinase inhibitors by

modeling how the signal arising from oncogenic driver mutations is propagated through a sig-

naling network. These models are constructed using feedback-Inference of Signaling Activity

and are described in more detail in [5, 36]. Here we will use a small test model, which is shown

graphically in Fig 9A and the resulting equations are given below. Briefly, the model contains

four observed variables, namely the ERBB2 amplification status, PIK3CA mutation status and

phosphorylation of AKT and PRAS40 (represented by m, n, p and q respectively). The amplifi-

cation and mutation status is known with certainty, so the variables are directly set to 1 if the

amplification or mutation is present and 0 otherwise. The remaining three variables, PI3K acti-

vation, AKT activation and PRAS activation (represented by x, y and z respectively) are latent

variables, and the inhibitor concentration w is given.

Table 2. Time complexity of training and evaluation of the approximation methods. Evaluation is the cost of evaluating one new sample. N = number of Monte Carlo

samples used for the estimation, D = dimensionality, G = number of mixture components. The training time gives the number of seconds required to fit a 10-dimensional

approximation on 1,000 samples using mvdens. For mixture fitting, the time for fitting a 5-component model is reported; optimizing the number of components will grow

linearly with the number of components considered.

Method Training Evaluation Training time (s)

Kernel density estimate N2D ND <1

Gaussian mixture G2ND3 GD2 4

Truncated Gaussian mixture G2ND3 GD2 2521

Mixture of factor analyzers G2ND3 GD2 21

Vine copula—ecdf N2D + ND2 ND + D2 104

Vine copula—mixture G2ND + ND2 GD + D2 168

Gaussian process N3 + D ND 370

https://doi.org/10.1371/journal.pone.0230101.t002
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Fig 9. Sequential inference in the breast cancer signaling model. (A) Signaling model in Systems Biology Graphical Notation

format. (B) Data and posterior predictive distributions. Black dots indicate the data and the blue shaded area is the 90% confidence

interval of the predictive mean. “p-Akt_S473” is the measurement of p and “p-PRAS40_T246” is the measurement of q. (C)

Performance in sequential inference when the data is split by first using the measurement of p and then q (i.e. first use the data

shown in the top two graphs in (B), and then the bottom two). (D) Performance in sequential inference when the data is split by pre-

treatment and on-treatment (i.e. first use the data shown in the left two graphs shown in (B), and then the right two). (E) Density of

one of the parameters as inferred by joint inference (black line) and through sequential approximation split by treatment (colored

lines). The grey lines indicate the separate posteriors of the pre-treatment and on-treatment data. (F) Contour plot of the bivariate

posterior density of two of the parameters obtained from either dataset alone or the true joint.

https://doi.org/10.1371/journal.pone.0230101.g009
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The model is described by the equations

x ¼ f ðb1 þ a1mþ a2nÞ � gðwÞ

y ¼ f ðb2 þ a3xÞ

z ¼ f ðb3 þ a4yÞ

PðpjyÞ ¼ tðpjm ¼ y; s ¼ 0:2; n ¼ 3Þ

PðqjzÞ ¼ tðqjm ¼ z; s ¼ 0:2; n ¼ 3Þ;

where

f ðxÞ ¼ 1:0=ð1:0þ exp ð� 9:19024ðx � 0:5ÞÞÞ

gðwÞ ¼ kþ ð1 � kÞ=ð10sðw� hÞ þ 1Þ

and t is Student’s t-distribution with fixed ν = 3 and σ = 0.2. The remaining 10 variables are

parameters to be inferred. The strength parameters a are estimated on a log-10 scale with a

uniform prior and the remaining parameters are estimated on a regular scale, also with a uni-

form prior [36]. The measurements have been normalized to take values between 0 and 1.

To test whether the sequential inference gives a good approximation also in this setting, we

study sequential inference by incorporating parts of a dataset sequentially. The dataset con-

tains measurements of protein phosphorylation without drug treatment (referred to as the

pre-treatment data), as well as after 30 minutes of drug treatment (referred to as the on-treat-

ment data), in eight cell lines (see Fig 9B). The drug concentration w is 0 in the pre-treatment

setting and 1 μM in the on-treatment setting.

We first test sequential inference in the same way as for the lynx-hare model, by splitting

the data by observable. That is, we first infer the posterior with observations of p, and subse-

quently update the posterior with observations of q. As can be seen in Fig 9C, sequential infer-

ence performs well in this case. The observations of q are correlated with p, and so the first

posterior is only slightly refined by the further inclusion of q (in most dimensions).

A potentially more useful sequential inference would be to split the dataset in a pre-treat-

ment and on-treatment set. That is, we would first use the observations of both p and q for

w = 0 and then for w = 1. The accuracy of the sequential inference when split in this way is

shown in Fig 9D. Unfortunately, none of the approximation methods gives posterior distribu-

tions that agree with the joint inference. For several parameters the resulting empirical distri-

butions always have a large discrepancy. Fig 9E shows this in more detail for one of the

parameters. When investigating this poor performance, we found that this is due to the pre-

and on-treatment parts of the data inducing widely different posteriors. As shown in Fig 9F,

the pre- and on-treatment data are essentially contradictory for the parameters b2 and a3: the

on-treatment data indicates low values for both parameters, whereas the pre-treatment data

indicates higher values. The model can still reconcile these data, as the joint inference shows

that a high strength a3 is favored when both datasets are included. To recover this joint poste-

rior using approximations would require that the approximations are highly accurate in the

tails of the posterior of the pre-treatment data. But standard Monte Carlo methods, and by

extensions the approximation methods based on them, are typically not well suited for estimat-

ing the tails of a distribution, since most samples will be concentrated in the body of the distri-

bution. Sequential inference with posterior approximations therefore seems to be unsuitable

when the separate datasets give rise to strongly divergent posterior distributions.
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Discussion

When using sequential Bayesian inference in combination with Monte Carlo sampling, we are

restricted to using samples from a first inference as prior for a second inference. This can be

done by directly reweighting the samples, or by approximating a functional form of the poste-

rior distribution from the Monte Carlo samples. We have explored the use of several such

approximation methods, and we found that they can allow more accurate sequential inference

than direct sample reweighting.

The approximation methods have different strengths and weaknesses. Gaussian processes

are highly efficient in low dimensionality, but they deteriorate in higher dimensions, at least

when using isotropic kernels. Both Gaussian mixtures and vine copulas can give good approxi-

mations also in higher dimensions. Vine copulas do not work well for multimodal distribu-

tions however. Kernel density estimation appears to be less efficient than the other methods.

Finally, none of the approximation methods we tested are adequate in the far tails, although

this is more likely to be a limitation of the Monte Carlo sampling rather than the approxima-

tion methods, as by definition the tail only contains a small part of the Monte Carlo samples.

In this work we have focused on models with relatively low dimensionality, with examples

and test cases containing up to 10 dimensions. In many cases of applied Bayesian analysis

models with significantly more dimensions are considered [2, 3, 5], and in future work it

would be important to explore how the approximation methods extend to higher dimensional-

ity. If the trends observed in the examples with known target distributions extend beyond 10

dimensions, we would expect that methods which employ dimensionality reduction, like factor

analyzers or methods based on them, would be most useful in higher dimensional settings.

Many further extensions to the posterior approximation methods can be considered. Using

mixtures of t-distributions could improve upon Gaussian mixtures in estimating the tails of

the distributions [37, 38]. For vine copulas, the approximation of the marginal distributions

can have a strong effect on the accuracy. Further improvements for marginals using Pareto

tails could be achieved by estimating an optimal Pareto tail threshold instead of using a fixed

value, and estimating the body and tail distributions together [39, 40]. Given the good perfor-

mance of Gaussian process regression in lower dimensions, it would be interesting to explore

how this can be better extended to higher dimensions. Using anisotropic kernels will likely be

beneficial, but this introduces additional parameters that need to be optimized during the

regression. To make this computationally feasible it would be necessary to use approximations

to the GP, e.g. [11, 41]. For kernel density estimates, sparse covariance matrices merits explora-

tion as well, for example the method proposed by Liu et al. [42]. For copulas, it would also be

interesting to explore multimodal extensions, such as the method proposed by Tewari et al.
[43].

An alternative approach could be to use variational inference rather than Monte Carlo sam-

pling. In the present context of sequential inference it would make sense to estimate a func-

tional form of the posterior directly during inference (i.e., do variational inference), rather

than first sampling and then estimating a functional form of the posterior from the samples.

There has been recent progress in variational inference with Gaussian mixtures with full

covariance matrices [44, 45]. Given that Gaussian mixtures can provide good approximations

in our test cases, this would be an interesting avenue to explore further, although the matrix

computations involved in these variational inference methods still pose challenges in higher

dimensions.

There are various reasons why it might be useful to do sequential inference. Sequential

inference can be conceptually appealing: all information relevant for the model is stored in the

posterior distribution, allowing the modeler to discard a dataset after the inference.
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Additionally, sequential inference allows us to update the posterior of an existing model when

new data or samples become available, even when the initial data is no longer available. This

can also be useful when an inference task was computationally demanding, in which case it

may be impractical to redo a joint inference when additional data becomes available.

Nevertheless, sequential inference using intermediate posterior approximations from

Monte Carlo samples is an approximation to the joint inference which can introduce bias or

additional variance in the joint posterior estimates. In our Lotka-Volterra test case the poste-

rior obtained from sequential inference was accurate, but a joint inference was still more effi-

cient. In the test case of signaling in cancer cells, sequential inference introduced a large bias

and hence resulted in wrong joint posterior estimates. Whenever Monte Carlo sampling is

used for inference with multiple datasets, joint inference appears to be preferable over sequen-

tial inference.

Supporting information

S1 File.

(TSV)

Author Contributions

Conceptualization: Bram Thijssen, Lodewyk F. A. Wessels.

Data curation: Bram Thijssen.

Formal analysis: Bram Thijssen.

Funding acquisition: Lodewyk F. A. Wessels.

Investigation: Bram Thijssen.

Methodology: Bram Thijssen.

Resources: Lodewyk F. A. Wessels.

Software: Bram Thijssen.

Supervision: Lodewyk F. A. Wessels.

Validation: Bram Thijssen.

Visualization: Bram Thijssen.

Writing – original draft: Bram Thijssen.

Writing – review & editing: Bram Thijssen, Lodewyk F. A. Wessels.

References

1. Wang J, Ford EB. On the eccentricity distribution of short-period single-planet systems. Monthly Notices

of the Royal Astronomical Society. 2011; 418:1822–1833. https://doi.org/10.1111/j.1365-2966.2011.

19600.x

2. Xu TR, Vyshemirsky V, Gormand A, von Kriegsheim A, Girolami M, Baillie GS, et al. Inferring signaling

pathway topologies from multiple perturbation measurements of specific biochemical species. Science

signaling. 2010; 3(113):ra20. https://doi.org/10.1126/scisignal.2000517

3. Hug S, Raue A, Hasenauer J, Bachmann J, Klingmüller U, Timmer J, et al. High-dimensional Bayesian

parameter estimation: Case study for a model of JAK2/STAT5 signaling. Mathematical Biosciences.

2013; 246(2):293–304. https://doi.org/10.1016/j.mbs.2013.04.002 PMID: 23602931

4. Veitch J, Raymond V, Farr B, Farr W, Graff P, Vitale S, et al. Parameter estimation for compact binaries

with ground-based gravitational-wave observations using the LALInference software library. Phys Rev

D. 2015; 91:042003. https://doi.org/10.1103/PhysRevD.91.042003

PLOS ONE Multivariate posterior distribution function approximations

PLOS ONE | https://doi.org/10.1371/journal.pone.0230101 March 13, 2020 23 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230101.s001
https://doi.org/10.1111/j.1365-2966.2011.19600.x
https://doi.org/10.1111/j.1365-2966.2011.19600.x
https://doi.org/10.1126/scisignal.2000517
https://doi.org/10.1016/j.mbs.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23602931
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1371/journal.pone.0230101


5. Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, et al. Integrative model-

ing identifies key determinants of inhibitor sensitivity in breast cancer cell lines. Cancer Research. 2018;

78(15):4396–4410. https://doi.org/10.1158/0008-5472.CAN-17-2698 PMID: 29844118

6. West M. Approximating Posterior Distributions by Mixtures. Journal of the Royal Statistical Society:

Series B. 1993; 55(2):409–422.

7. Scott DW. Kernel Density Estimators. In: Multivariate Density Estimation—Theory, Practice and Visuali-

zation, 2nd edition. John Wiley & Sons; 2015. p. 137–213.

8. Everitt BS, Hand DJ. Finite Mixture Distributions. London: Chapman & Hall; 1981.

9. McLachlan G, Peel D. Mixtures of Factor Analyzers. In: Proceedings of the Seventeenth International

Conference on Machine Learning. Morgan Kaufmann; 2000. p. 599–606.

10. Joe H. Dependence Modeling with Copulas. Boca Raton: CRC Press; 2015.

11. Rasmussen CE, Williams CK. Gaussian Processes for Machine Learning. The MIT Press; 2006.

12. Schmidl D, Czado C, Hug S, Theis FJ. A vine-copula based adaptive MCMC sampler for efficient infer-

ence of dynamical systems. Bayesian Analysis. 2013; 8(1):1–22. https://doi.org/10.1214/13-BA801

13. Adams R, Murray I, MacKay D. The Gaussian Process Density Sampler. Advances in Neural Informa-

tion Processing Systems. 2008; 21:1–8.

14. Neiswanger W, Wang C, Xing E. Asymptotically Exact, Embarrassingly Parallel MCMC. Proceedings of

the Thirtieth Conference on Uncertainty in Artificial Intelligence. 2014; 1:623–632.
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