
Transferable Reinforcement Learning in Forex Trading
Cross-Currency Adaptation Techniques for EUR/USD and GBP/USD

Yavuz Hancer
Supervisor(s): Neil Yorke-Smith, Antonis Papapantoleon, Amin Kolarijani

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Yavuz Hancer
Final project course: CSE3000 Research Project
Thesis committee: Neil Yorke-Smith, Antonis Papapantoleon, Amin Sharifi Kolarijani, Julia Olkhovskaya

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This paper investigates the effectiveness of trans-
fer learning techniques for accelerating the train-
ing of deep reinforcement learning (RL) agents in
the foreign exchange (Forex) market. Specifically,
the transfer of policies learned on the EUR/USD
currency pair to the GBP/USD pair is the focus.
Four transfer learning approaches are systemati-
cally compared: zero-shot transfer, full fine-tuning,
partial fine-tuning, and reward-function transfer. A
modular pipeline was developed, incorporating si-
nusoidal and trend/momentum-based market fea-
tures, stepwise agent-specific metrics, and deep Q-
network (DQN) architectures from the Stable Base-
lines 3 framework. Agent performance is evaluated
through cumulative reward and Sharpe ratio met-
rics.
Experimental results demonstrate that partial fine-
tuning accelerates initial learning by preserv-
ing generic market features acquired from the
EUR/USD pair. However, our results indicate that
directly training on the target currency pair yields
superior ultimate performance, highlighting the nu-
anced limitations and potential benefits of cross-
currency transfer learning in algorithmic trading.

1 Introduction
The Foreign Exchange (Forex) market is the world’s largest
and most liquid financial marketplace, with daily volumes ex-
ceeding $6 trillion [2]. Its price series exhibit high noise,
nonstationarity (statistical properties changing over time),
and frequent regime shifts (trending vs. ranging periods),
which make automated policy learning particularly challeng-
ing. Traditional supervised learning methods train on histori-
cal data but can not adapt online to new market dynamics.

Reinforcement learning (RL) offers a different paradigm:
an agent interacts sequentially with an environment modeled
as a Markov Decision Process (MDP) [15], observes state st,
takes action at, receives reward rt, and updates its policy to
maximize cumulative return

∑
t rt. Key deep RL algorithms

include:

• Deep Q-Networks (DQN): approximate the action-
value function Q(s, a) with a neural network and update
via temporal-difference learning [10].

Applied to single-instrument trading, these methods have
shown promise but often require thousands of episodes to
converge and generalize poorly when deployed on a differ-
ent currency pair or under novel volatility regimes.

1.1 Transfer Learning in Reinforcement Learning
Transfer learning in RL aims to reuse knowledge (network
weights or learned representations) from a source task to ac-
celerate learning in a target task. In robotics and gameplay-
ing, transfer reduced sample complexity and improved per-
formance across related tasks. In financial markets, a hand-
ful of studies explored cross-time or cross-asset transfer, but

lacked a systematic comparison of different transfer modali-
ties.

The most widely traded pairs (EUR/USD and GBP/USD)
are the focus, and it was hypothesized that a DQN policy pre-
trained on EUR/USD could provide a strong initialization for
GBP/USD. Four transfer techniques were examined:

1. Zero-Shot Transfer: directly applying the pretrained
policy without further training.

2. Full Fine-Tuning: continuing gradient updates on the
target data for all network layers.

3. Partial Fine-Tuning: freezing early layers and fine-
tuning only deeper layers.

4. Reward-Function Transfer: retraining with a new cus-
tom reward (risk-adjusted return) while reusing the pre-
trained policy.

These were compared against a From-Scratch baseline that
was trained only on GBP/USD.

To support reproducibility, a modular pipeline is to built
that:

• engineered market features (sin-cos seasonal encodings,
classic trend/momentum indicators) and agent features
(cash-exposure, trade duration);

• instantiated discrete-action DQN agents with Stable
Baseline 3;

• ran different transfer learning techniques on the same
model on a different currency;

• logged cumulative reward, Sharpe ratio, and training
time.

1.2 Research Question
This study seeks to answer the following primary question:

Primary Question:
How effectively can transfer learning techniques reduce
training time and improve the performance of RL agents

when applied to new currency pairs?

To break this down, these sub-questions are asked:

• Sub-question 1: How do these strategies compare in
terms of final trading performance, as measured by cu-
mulative reward and Sharpe ratio, relative to training an
agent from scratch?

• Sub-question 2: What are the trade-offs between run-
time efficiency and policy effectiveness when deploy-
ing transfer learning techniques in forex trading envi-
ronments?

2 Background
2.1 Reinforcement Learning
Reinforcement Learning (RL) views trading as a sequence of
decisions made by an agent interacting with a market environ-
ment. This is modeled as a Markov Decision Process (MDP)
[16], defined by:

(S,A, P,R, γ),
where:



• S is the set of possible market states (recent price vec-
tors, technical indicators, current position);

• A is the set of trading actions (long, short, hold);
• P (s′ |s, a) governs how the market transitions from state
s to s′ when action a is taken;

• R(s, a) is the immediate reward—typically the profit or
loss (P&L) resulting from that action;

• γ ∈ [0, 1) is the discount factor, balancing immediate
versus future P&L.

The agent’s objective is to learn a policy π(a |s) that max-
imizes the expected sum of discounted rewards:

J(π) = Eπ

[ ∞∑
t=0

γt rt

]
,

where rt = R(st, at) is the P&L at step t. Rather than writ-
ing out full Bellman equations here, it is noted that the central
insight is: good actions are those that not only yield imme-
diate profit but also lead to future states where further profits
are likely.

2.2 Deep-Q Networks
Deep Q-Networks (DQN) extend classic Q-learning to high-
dimensional inputs (price time-series) by approximating
the action-value function Q(s, a) with a neural network
Q(s, a; θ) [18]. Rather than maintaining a table of values,
the agent learns parameters θ so that Q(s, a; θ) predicts the
expected future P&L when taking action a in state s.

A key innovation in DQN is the use of a target network and
experience replay:

• Target network: a separate copy Q(s, a; θ−) of the Q-
network whose weights θ− are held fixed for several up-
dates, stabilizing learning.

• Experience replay buffer D: stores past transitions
(s, a, r, s′). During training, minibatches are sampled
uniformly fromD to break temporal correlations and im-
prove data efficiency [9].

At each training step, the DQN minimizes the temporal-
difference (TD) error δ:

δ = r + γ max
a′

Q(s′, a′; θ−) − Q(s, a; θ),

and updates its weights via stochastic gradient descent:

θ ← θ + α δ∇θQ(s, a; θ).

For exploration, DQN agents commonly use an ε-greedy
policy: with probability ε select a random action to dis-
cover new market behaviors, and with probability 1−ε select
argmaxaQ(s, a; θ) to exploit current knowledge. In non-
stationary markets like Forex, annealing ε over time or adopt-
ing Boltzmann (softmax) exploration, sampling actions with
probability proportional to exp(Q(s, a)/τ), can yield more
robust performance.

By combining neural-network function approximation
with these stability mechanisms, DQN provides a practical
framework for learning trading policies directly from histor-
ical price data, balancing immediate profit (P&L) with the
exploration of profitable patterns.

2.3 Transfer Techniques
In the remainder of this subsection, four principal paradigms
for transferring across currency pairs are therefore reviewed.
These principles range from direct, zero-shot deployment of
a pretrained policy to various fine-tuning strategies that se-
lectively adapt different parts of the network to new market
dynamics.

1. Zero-Shot Transfer. Evaluate the source policy
πS(s) = argmaxaQθS (s, a) directly on MT without
further learning:

πZS
T (s) = πS(s).

Zero-shot transfer is included as the strictest test of
cross-currency generalization: can a policy trained on
EUR/USD be deployed immediately on GBP/USD with-
out any further adjustment? By evaluating πS(s) di-
rectly in the target environment, it is probed whether the
low-level feature representations and action preferences
learned on one major FX pair capture universal market
structure that transfers “out of the box.” A near-zero or
negative Sharpe ratio under zero-shot highlights domain
mismatch and motivates more sophisticated adaptation,
while any positive performance would signal surpris-
ingly robust feature reuse.

2. Full Fine-Tuning. Initialize θ(0)T = θS and continue
updating all parameters on target samples:

θ
(k+1)
T = θ

(k)
T − α∇θLMT

(θ
(k)
T ).

It simply continues gradient descent on all layers using
GBP/USD data. This mode is chosen to quantify how
much faster (if at all) it converges to a higher performing
policy compared to training from scratch, and whether
catastrophic forgetting[5] (the loss of previously learned
representations when adapting to new data) of generic
features undermines adaptation. In particular, full fine-
tuning tests whether the inductive biases encoded in the
entire network give us a head start, or whether they in-
stead block learning by locking the agent into source
specific characteristics.

3. Partial Fine-Tuning. Decompose θ = (ϕ, ψ) into
feature-extractor weights ϕ and decision-layer weights
ψ, then freeze ϕ:

ϕT = ϕS ,

ψ
(k+1)
T = ψ

(k)
T − α∇ψLMT

(ϕS , ψ
(k)
T ).

Partial fine-tuning strikes a middle ground: freeze the
lower “feature-extractor” layers (seasonal encodings,
feature filters) learned on EUR/USD and retrain only the
higher decision layers on GBP/USD. This technique is
included to isolate the impact of preserving generic mar-
ket representations while allowing adaptation where the
target’s volatility, liquidity, or price dynamics diverge.
The goal is two-fold: reduce sample complexity and sta-
bilize early learning by retaining broadly applicable en-
codings, yet still tailor the agent’s positions and timing
to the characteristics of the new currency pair.



4. Reward-Function Transfer. Reuse θS under a mod-
ified reward objective R′

T (e.g., risk-adjusted return)
without changing representations:

θ
(0)
T = θS , θT learns under R′

T .

This shifts optimization from raw PL to metrics like
r′t = ∆Equity/σ(∆Equity), testing robustness of the
pretrained Q-mapping. This approach tests whether
transferring incentives, the shape and scale of the re-
ward signal that guided robust, risk-aware behavior on
the source, can accelerate convergence even if the pol-
icy’s weights are suboptimal. By reusing the pretrained
Q-mapping under a new objective, it is sought to deter-
mine if aligning target-domain exploration with a cali-
brated Sharpe-ratio criterion reduces the need for per-
pair hyperparameter tuning of the reward function.

5. Training From Scratch. As a baseline, initialize ran-
domly θ(0)T ∼ N (0, I) and train solely on MT :

θ
(k+1)
T = θ

(k)
T − α∇θLMT

(θ
(k)
T ).

This requires maximal sample complexity but involves
no mismatch risk from source initialization. As a com-
plementary baseline, this identical DQN architecture is
trained from random initialization solely on GBP/USD.
This “no-transfer” mode quantifies the full sample com-
plexity and ultimate performance achievable without any
source knowledge.

In our experiments, each mode: (i) cumulative reward∑
t rt, (ii) Sharpe ratio E[r]/std(r), and (iii) training time

were reported, thereby quantifying trade-offs between sam-
ple efficiency, performance, and computational cost.

3 Methods
In this section, the datasets, feature pipelines, trading environ-
ment, agent configuration, transfer methodologies, and evalu-
ation protocol used in the experiments are described in detail.

3.1 Data Acquisition and Preprocessing
Fifteen-minute OHLCV data for two currency pairs were ob-
tained from the Dukascopy repository.

• Source Domain (EUR/USD): Data spanning January 2,
2022 at 22:00 through June 30, 2023 at 20:45 (approxi-
mately 37 440 records) were collected.

• Target Domain (GBP/USD): Data spanning January 1,
2023 at 23:00 through December 29, 2023 at 21:45 (ap-
proximately 24 888 records) were collected.

Timestamps were aligned and missing intervals were
forward-filled. Each series was then partitioned chronolog-
ically into a training set (70%) and an evaluation set (30%) to
prevent look-ahead bias [3].

The EUR/USD pretraining period was intentionally capped
at June 30, 2023 to enforce a strict causality boundary: all
knowledge transferred to GBP/USD originates from data that
entirely precedes the target training window. This cutoff also
coincides with a marked volatility regime shift in mid-2023,

allowing the assessment of transfer into a distinct market en-
vironment. Although more extensive history was available
for both pairs, this span was chosen to simulate realistic con-
straints on pretraining data and to ensure that no future in-
formation from the target domain could influence the source
model.

3.2 Feature Engineering
Two complementary feature sets were generated to character-
ize both market dynamics and the agent’s own state at each
decision point:

• Market Features:
– Seasonal Encodings: Sine and cosine transforms

of the intra-day (24 h) and intra-week (7 d) cycles
were applied to capture periodic patterns in liquid-
ity and volatility [8].

– Trend and Volatility Indicators:
* Average True Range (ATR) over a 14-bar win-

dow, quantifying recent volatility [19].
* Moving Average Convergence Divergence

(MACD) calculated with 12/26/9 settings, cap-
turing trend momentum and signal crossovers
[1].

* Relative Strength Index (RSI) over 14 periods,
measuring overbought/oversold conditions [19].

– Lagged Observations: A 20-bar rolling look-
back was computed over all raw and engineered
columns, providing the agent with delayed signal
histories and enabling the network to infer short-
term temporal dependencies.

Feature Selection: ATR, MACD, and RSI were se-
lected due to their widespread empirical success in the
FX markets [11], while sinusoidal time encodings follow
recent reinforcement learning work on temporal aware-
ness [17].

• Agent-State Features:
Stepwise metrics were maintained to reflect the portfo-
lio’s instantaneous condition:

– Cash Exposure: The fraction of total equity held
in cash (uninvested), updated after each action to
inform the agent about remaining buying power.

All feature transformations were applied in sequence and
then standardized (zero mean, unit variance) based on the
training partition. This ensured that inputs to the learning
algorithm remained numerically stable and free of scale dis-
parities across different feature types.

3.3 Trading Environment
The trading problem was modeled as a finite-horizon decision
process in which an agent interacts with the market at 15-
minute intervals [4]. At each step:

• State (S): A feature vector comprising both market
indicators (momentum, volatility, seasonal encodings,
lagged history) and the agent’s current uninvested cap-
ital (cash exposure). All features were normalized (zero
mean, unit variance) based on the training data.



• Actions (A): {-1, 0, +1}, corresponding to entering a
short position, holding the current position, or entering
a long position. At any time, the full available capital
is deployed according to the chosen action (no partial
positions or leverage).

• Reward (R): Under the default scheme, the instanta-
neous reward is the profit or loss realized over the 15-
minute bar, computed as the action multiplied by the
percentage price change of the base currency. For the
risk-adjusted variant, this reward is divided by a short-
term measure of volatility (an exponential moving stan-
dard deviation over recent bars) to encourage more sta-
ble performance.

• Episode Horizon: An episode begins at the first evalu-
ation timestamp and proceeds step by step until the last
available bar. No intermediate resets occur; the agent
experiences the entire out-of-sample period in one con-
tinuous run.

• Transaction Costs and Constraints: Transaction costs
were set to zero to focus purely on strategy efficacy. No
margin or leverage was allowed, positions are always
sized to consume at most the available cash.

• Initial Conditions: Each episode starts with $10 000 in
cash and zero open positions.

This environment design ensures a clear mapping between
the agent’s decisions and realized trading performance, while
the optional risk-adjusted reward provides an alternative ob-
jective that explicitly penalizes volatility. By fixing transac-
tion costs at zero and disallowing leverage, the results reflect
the pure impact of the learned policy on profitability and risk.

3.4 Agent Architecture and Hyperparameters
A Deep Q-Network with a feed-forward policy network was
employed in all experiments. The network consisted of two
hidden layers containing 20 and 10 units, respectively. Hy-
perparameters were held constant across all training regimes:

• Learning rate: α = 1× 10−3

• Replay buffer size: 1 000 transitions (with a 1 000-step
warm-up period)

• Target network update frequency: every 500 gradient
steps

• Discount factor: γ = 0.99

• Exploration schedule: ϵ-greedy decayed from 1.0 to 0.05
over the first 30% of training

• Random seed: 42 (for reproducibility)

Hyperparameter Selection: All hyperparameters (learn-
ing rate, replay buffer size, network architecture) were cho-
sen via preliminary grid searches over a small subset of the
EUR/USD training data. Specifically, learning rates and
batch sizes were varied to select the combination that max-
imized the early cumulative reward over training steps. This
procedure yielded our default values like α = 1× 10−3.

Model Selection: While our experiments focus on DQN-
based transfer, actor-critic methods such as Proximal Pol-
icy Optimization (PPO) and Soft Actor-Critic (SAC) offer
compelling advantages, particularly in continuous control and
sample efficiency, and have shown strong performance in fi-
nancial RL tasks [12]. We chose DQN to maintain a discrete-
action framework aligned with the simple long/short/hold de-
cision set and to leverage stable baselines implementations.
However, exploring PPO or SAC in future work could enable
smoother policy updates and more robust exploration, espe-
cially when extending to leverage or partial-position environ-
ments.

3.5 Transfer Learning Methodologies
Five training regimes were compared on the GBP/USD target
domain:

1. Zero-Shot Transfer: The policy pre-trained on
EUR/USD was directly evaluated on GBP/USD without
further updates.

2. Full Fine-Tuning: All network weights were further
trained for 100 000 steps on GBP/USD.

3. Partial Fine-Tuning: The first hidden layer was frozen
to preserve low-level feature extractors, and the remain-
ing parameters were trained for 100 000 steps.

4. Reward-Function Transfer: The EUR/USD pre-
trained policy was fine-tuned on GBP/USD using the al-
ternate risk-adjusted reward signal for 100 000 steps.

5. From-Scratch Baseline: A randomly initialized net-
work was trained for 100 000 steps on GBP/USD.

3.6 Evaluation Protocol
After training or loading each model, sample evaluations
were performed on the held-out GBP/USD data. The follow-
ing metrics were recorded:

• Cumulative Reward: Sum of per-step returns during
the evaluation period.∑

t rt over all evaluation steps.
• Sharpe Ratio: Mean per-step return divided by its stan-

dard deviation (with a small constant added to avoid di-
vision by zero). [13]

Sharpe =
E[rt]√

Var(rt) + 10−8
.

• Training Time: Wall-clock duration required for the
100 000-step training run.

These metrics enabled comparison of sample efficiency, risk-
adjusted performance, and computational cost across transfer
learning strategies.

4 Results
This section presents the empirical evaluation of five rein-
forcement learning strategies applied to the GBP/USD trad-
ing task. All agents were trained for 100,000 steps and eval-
uated using three metrics: cumulative reward, Sharpe ratio
(risk-adjusted return), and training time. Table 1 summarizes
the numerical results, and Figures 1, 2, and 3 visualize final
agent performance using each metric.



4.1 Quantitative Comparison

Mode Sharpe Reward Train Time
Zero-Shot −0.0061 −233.3 8.2
Full Fine-Tuning −0.0151 −13.0 36.5
Partial Fine-Tuning +0.0057 214.5 32.8
Reward-Function −0.0162 −1.5 38.3
From Scratch +0.0268 749.9 37.3

Table 1: Performance comparison of different transfer learning
modes on GBP/USD after 100k steps.

Figure 1: Final cumulative reward across 100k training steps for
each method, as reported in Table 1. From-Scratch performs best.
Partial Fine-Tuning provides moderate gains. All other transfer
strategies yield negligible or negative reward.

Figure 2: Final training runtime across 100k training steps for each
method, as reported in Table 1. Zero-Shot Transfer is by far the
fastest due to no additional training, while all other methods, re-
gardless of transfer modality, require roughly 32–38 seconds to com-
plete.

Figure 1 offers a visual summary of cumulative reward.
The From-Scratch agent significantly outperforms all oth-
ers, achieving a final reward of 749.9. In contrast, the Zero-
Shot Transfer agent performs the worst, suggesting that un-
adapted source policies do not generalize to new currency
regimes.

4.2 Performance Trends and Observations
From Table 1, Figure 1, Figure 2, and Figure 3, the following
insights emerge:

Figure 3: Final Sharpe ratios after 100k training steps for each
method, as reported in Table 1. Only the From-Scratch baseline
achieves a positive Sharpe, Partial Fine-Tuning yields a modest pos-
itive ratio, and all other transfer strategies finish negative.

• From-Scratch learning achieves the best overall per-
formance, reaching a positive Sharpe ratio and the high-
est reward, despite requiring the most steps to con-
verge. This suggests that a randomly initialized policy
can eventually learn useful behavior on GBP/USD given
enough exploration and gradient updates.

• Partial Fine-Tuning provides a partial benefit: the
agent reaches a positive reward and Sharpe ratio, but
substantially lags the from-scratch baseline. This sug-
gests that freezing low-level layers may stabilize train-
ing, but at the cost of adaptability.

• Full Fine-Tuning underperforms and is unstable:
while it benefits from reuse of a pre-trained model, it
ends with a net negative reward and Sharpe, possibly due
to catastrophic forgetting or overfitting to early random
behaviors [6].

• Reward-Function Transfer fails to guide learning ef-
fectively: although it slightly improves over Full Fine-
Tuning in raw reward, it still finishes with a negative
Sharpe and negligible gains, indicating that reward shap-
ing alone was insufficient.

• Zero-Shot Transfer is consistently harmful: lacking
any domain-specific adaptation, it performs the worst
across all metrics and illustrates that transferring a static
policy across unrelated tasks can degrade returns.

4.3 Takeaways and Reflections
The combined analysis of performance and runtime suggests
that not all transfer learning is efficient or beneficial in finan-
cial domains. While transfer methods often aim to reduce
sample complexity or convergence time, this study finds that
ineffective adaptation strategies may consume similar com-
putational resources without yielding meaningful improve-
ments.

These results reinforce the following lessons:

• Transfer learning strategies must be carefully matched
to the domain and pretrained model quality.

• Training from scratch remains competitive in both run-
time and performance when resources permit.



• Evaluating both reward and runtime reveals important
trade-offs between efficiency and effectiveness.

The experimental results confirm that transfer learning
must be applied with caution in financial RL. In this study,
only one transfer method (Partial Fine-Tuning) offered mod-
est benefits, and it did not even surpass the from-scratch base-
line. More aggressive forms of transfer—like full fine-tuning
or reward-only transfer, introduced volatility and instability,
while zero-shot transfer performed worst.

Ultimately, the findings reinforce the following.

• Fine-tuning needs to be structured to avoid destructive
overwriting of knowledge.

• Stable learning from scratch remains viable when time
and data permit.

• Visualizing outcomes with cumulative metrics helps re-
veal true agent behavior beyond a single score.

5 Discussion
5.1 Summary of Findings
This research systematically evaluated the effectiveness of
transfer learning techniques for reinforcement learning (RL)
agents in forex trading, specifically when transferring knowl-
edge from EUR/USD to GBP/USD. The empirical results
highlight a clear hierarchy of effectiveness among the tested
transfer methods. Contrary to initial expectations, training the
agent from scratch on GBP/USD yielded the highest cumula-
tive reward (749.9) and Sharpe ratio (0.0268), significantly
outperforming all transfer-based methods. This strongly in-
dicates that the GBP/USD-specific dynamics necessitate tai-
lored training strategies, and generalized knowledge from
other currency pairs is insufficient for achieving optimal per-
formance without substantial adaptation.

5.2 Zero-Shot Transfer
The zero-shot transfer approach, involving direct application
of a policy trained on EUR/USD to GBP/USD without addi-
tional tuning, showed particularly poor performance, result-
ing in negative cumulative reward (-233.3) and Sharpe ratio
(-0.0061). These outcomes emphasize the substantial differ-
ences in underlying market behavior between currency pairs,
indicating that even closely related forex markets possess dis-
tinct characteristics that cannot be ignored. Thus, direct pol-
icy transfer without adaptation appears severely inadequate.

5.3 Full Fine-Tuning Transfer
Interestingly, full fine-tuning, which adapts all network lay-
ers from the pre-trained model, failed to improve results sig-
nificantly, yielding negative metrics (Sharpe ratio of -0.0151,
cumulative reward of -13.0). The challenges observed likely
stem from catastrophic forgetting, where previously acquired
general features are overwritten during training, compromis-
ing the agent’s ability to generalize effectively to the new
currency pair. This result highlights the risks of extensive
re-optimization without careful control over layer adaptation.

5.4 Partial Fine-Tuning Transfer
Partial fine-tuning, which involves freezing lower-level net-
work layers and adapting only higher-level decision-making
layers, provided modest but positive results (Sharpe ratio of
0.0057 and cumulative reward of 214.5). This suggests that
early network layers successfully retain transferable repre-
sentations of general market features (such as trends and mo-
mentum), thereby stabilizing training and enabling moderate
improvements in learning efficiency. However, despite these
benefits, partial fine-tuning did not surpass the performance
of training from scratch, underscoring a trade-off between
quick adaptation and ultimate policy effectiveness.

5.5 Reward-Function Transfer
Reward-function transfer, which reuses pre-trained policies
with a modified reward objective, performed comparably
poorly (Sharpe ratio of -0.0162, cumulative reward of -1.5).
This outcome highlights a critical insight: simply adjust-
ing incentives without addressing underlying representational
mismatches between currency pairs does not substantially en-
hance performance. Thus, a more comprehensive approach
involving structural adaptations of the policy appears essen-
tial.

5.6 Methodological Reflections
The study adopted a rigorous and controlled methodologi-
cal approach, isolating transfer learning methods while keep-
ing other variables constant, such as model architecture and
training parameters. This control enabled clear insights into
the relative effectiveness of each transfer learning technique.
However, this approach might have constrained the adaptabil-
ity and optimization potential of the agents.

5.7 Limitations
A key limitation of this study is the baseline model chosen
for initial training on EUR/USD, which performed less effec-
tively than anticipated. Consequently, the transfer of subop-
timal policies inherently restricted the potential performance
gains achievable by subsequent adaptation techniques. Addi-
tionally, the computational constraints limited the complex-
ity and optimization of the models employed. Future stud-
ies should therefore investigate more robust baseline mod-
els with enhanced computational resources, potentially allow-
ing deeper neural networks, sophisticated architectures, and
richer feature sets. This could lead to improved baseline per-
formance and consequently more meaningful assessments of
transfer learning effectiveness.

Despite careful methodological control, this study was
constrained by limited computing resources and a tight time-
line, which led to running experiments with a fixed budget
and logging only the end metrics (final cumulative reward,
Sharpe ratio, runtime). The design choice prioritized clear
state comparisons of transfer vs. scratch performance over
capturing noisy intermediate steps. Consequently, the sample
efficiency or precise convergence behavior of each transfer
method can not be spoken under study, a gap that may ob-
scure differences in how quickly or stably agents learn.



5.8 Practical Implications
The findings illustrate nuanced limitations of transfer learn-
ing for forex RL scenarios, particularly emphasizing that
transfer learning should be applied cautiously and selectively.
While partial fine-tuning holds potential benefits by pre-
serving generic market knowledge, robust results ultimately
depend on extensive domain-specific training. Future re-
searchers should carefully consider the trade-offs between
faster convergence offered by transfer learning and the higher
absolute performance attainable through complete retraining
on target markets.

6 Responsible Research
6.1 Ethical Considerations
This research was conducted solely for academic purposes
and does not constitute investment advice or propose deploy-
ment of live trading strategies. All experiments were per-
formed on historical, publicly available data from Dukascopy,
specifically the EUR/USD and GBP/USD currency pairs, at
15-minute resolution. No personal, sensitive, or proprietary
data was used.

While reinforcement learning in financial domains has ex-
citing potential, the associated risks, including algorithmic
bias, market instability, and overfitting to historical condi-
tions were acknowledged. This work remains strictly within
a simulated environment and is not intended for direct finan-
cial use. Readers and future researchers are advised to exer-
cise caution and implement appropriate risk management and
regulatory safeguards if applying these methods in production
settings.

6.2 Use of Generative AI
OpenAI’s ChatGPT was used as an assistive tool throughout
the writing process, in accordance with TU Delft’s guidelines
for responsible academic use of generative AI. The model
supported tasks such as improving academic tone, rephras-
ing informal sentences, suggesting synonyms to reduce repe-
tition, generating LaTeX equations and tables, and providing
outline structures for some sections.

Specifically, ChatGPT was used for:

• Rewriting sentences to align with academic style (turn-
ing “the agent did kinda bad” into “the agent underper-
formed relative to baseline”).

• Offering alternatives to repetitive phrases and improving
clarity.

• Generating LaTeX syntax for tables, math expressions,
and formatting.

• Suggesting section headers and improving document
structure.

• Checking tone and consistency in complex or reflective
passages.

Example prompts used during development include:

• Can you tell me which words to rephrase to
keep the academic tone in this paragraph?

• Write a LaTeX table comparing Sharpe
ratios across five strategies with these
given data in hand.

• Suggest a more concise way to say the
reward function is changed but the policy
is fixed.

• Give me a professional way to say
zero-shot is the worst.

Importantly, ChatGPT was not used to generate scientific
content, design experiments, or interpret data. All technical
contributions, model implementations, and evaluations were
performed by the author. Generative AI was limited to edito-
rial and formatting assistance only.

6.3 Reproducibility
To promote transparency and repeatability, this project was
designed with reproducibility as a key principle. The com-
plete pipeline—including feature engineering, environment
setup, training, and evaluation—was implemented in a mod-
ular Python codebase using Stable Baselines3 and custom
Gym environments. Reproducibility was ensured through:

• Explicit reporting of all hyperparameters (learning rate,
gamma, exploration schedule) in Section 3.

• Fixed random seed (42) across training environments
and PyTorch for determinism.

• Chronological train-test data splits to avoid look-ahead
bias.

• Consistent evaluation metrics: Sharpe ratio, cumulative
reward, and runtime.

• Public availability of the scripts and the project structure
is available in our project repository.

This setup enables easy replication and extension by future
researchers.

7 Conclusions and Future Work
7.1 Conclusions
This research explored the potential of transfer learning in
reinforcement learning (RL) for algorithmic trading, specifi-
cally by transferring a DQN agent trained on EUR/USD to a
new market: GBP/USD. The study systematically compared
four transfer techniques—zero-shot transfer, full fine-tuning,
partial fine-tuning, and reward-function transfer—against a
baseline trained from scratch on the target domain.

The results show that training directly on GBP/USD
yielded the best outcomes in terms of cumulative reward and
Sharpe ratio. This underscores that financial markets, even
closely related ones, often possess distinct statistical prop-
erties that limit the direct generalizability of learned poli-
cies. Among the transfer methods, partial fine-tuning of-
fered the most encouraging performance, preserving some
useful low-level features while allowing higher-level adap-
tation. In contrast, both zero-shot and full fine-tuning ap-
proaches failed to deliver meaningful improvements, likely



due to poor cross-market alignment and catastrophic forget-
ting. Reward-function transfer, while conceptually appeal-
ing, proved insufficient in practice without concurrent policy
adaptation.

Overall, the findings highlight that while transfer learning
remains a promising paradigm for improving training effi-
ciency, its practical success in forex trading hinges on careful
method selection, the quality of the source model, and the
degree of structural similarity between source and target en-
vironments.

7.2 Limitations
Despite the careful design, several limitations constrain the
generality of this study. The source model trained on
EUR/USD was relatively simple and underperformed, likely
restricting the potential benefits of transfer. The environ-
ment design also involved idealized assumptions—such as
no transaction costs or slippage—that may limit real-world
applicability. Moreover, the analysis was restricted to only
two currency pairs and did not explore volatile regimes or
macroeconomic shocks.

Computational constraints further limited exploration of
larger architectures or longer training horizons, which may
be essential to fully unlock the advantages of transfer learn-
ing. These limitations call for caution in extrapolating the re-
sults and open space for more ambitious experimental setups
in future work.

7.3 Contributions
This thesis presents a reproducible and extensible RL pipeline
tailored to forex trading tasks. The implemented environ-
ment is fully compatible with the Gym API and includes
engineered market and agent-state features. The experimen-
tal framework allows for modular experimentation and clear
benchmarking of transfer learning strategies. Importantly, the
study offers a transparent comparison of transfer methods un-
der controlled conditions, contributing both conceptual in-
sights and practical tools to the financial RL research com-
munity.

7.4 Future Work
Several promising directions arise from this work. First, fu-
ture research could benefit from a stronger source model,
trained with deeper architectures, larger datasets, or more rig-
orous tuning, which may yield more transferable representa-
tions. Additionally, integrating domain adaptation techniques
could improve feature generalization across markets.
Critical Step: Extending the logging pipeline to record per-
episode (or per-step) metrics—cumulative reward, loss, Q-
value estimates, ϵ, and run each transfer mode across multi-
ple random seeds. Then, plotting average learning curves to
illustrate exactly how fast each method reaches, say, 50% of
its final reward and how stably it converges. This will expose
sample-efficiency trade-offs hidden by end-state tables.

Additionally, our fine-tuning strategy uses a fixed 100,000-
step schedule; adaptive schedules (progressively unfreezing
layers or using cyclical learning rates) may better balance re-
tention of source-domain features with adaptation to the tar-
get market [7][14]. Investigating these alternative algorithms

and dynamic fine-tuning schedules stands as a promising di-
rection for improving both convergence speed and final policy
performance.

Expanding the experimental scope to include a wider array
of assets—such as commodities, indices, or even multi-asset
portfolios—would allow testing transferability under broader
conditions. Introducing transaction costs, leverage, partial
observability, and real-time constraints would also enhance
realism and test the robustness of strategies. Moreover, in-
vestigating meta-learning frameworks or fine-tuning methods
designed for few-shot adaptation could enable more flexible
and sample-efficient agents.

In conclusion, while transfer learning in algorithmic trad-
ing presents non-trivial challenges, this thesis establishes a
practical foundation for future exploration and highlights key
considerations for building more scalable, adaptable, and in-
telligent trading systems.
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