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Grid (or comb) states are an interesting class of bosonic states introduced by Gottesman, Kitaev, and Preskill
[D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310 (2001)] to encode a qubit into an oscillator.
A method to generate or “breed” a grid state from Schrödinger cat states using beam splitters and homodyne
measurements is known [H. M. Vasconcelos, L. Sanz, and S. Glancy, Opt. Lett. 35, 3261 (2010)], but this method
requires postselection. In this paper we show how postprocessing of the measurement data can be used to entirely
remove the need for postselection, making the scheme much more viable. We bound the asymptotic behavior of
the breeding procedure and demonstrate the efficacy of the method numerically.

DOI: 10.1103/PhysRevA.97.022341

I. INTRODUCTION

Grid (or comb) states are a class of bosonic states with
various interesting possible applications. Grid states were in-
troduced in [1] as simultaneous eigenstates of two commuting
displacement operators. In this scheme grid states can be used
to encode a qubit (or qudit) into an oscillator or bosonic mode
so that small displacement errors can be corrected. As outlined
in [1], universal quantum computation can be achieved using
grid states: Clifford gates can be implemented via linear optics
while one may invoke magic-state-distillation techniques to
get to universality. Grid states also play a crucial role in
fault-tolerant continuous-variable computation using cluster
states [2].

It has also been shown that grid states can be used to gener-
ate maximal violations of Clauser-Horne-Shimony-Holt–type
inequalities [3,4]. In recent work, we have shown that a grid
state can be used to determine the two parameters of a small
displacement accurately and simultaneously [5], going beyond
squeezed or coherent states.

First proposals to generate grid states use, e.g., the coupling
between a micromirror and an optical mode [1], the oscillatory
motion of a trapped atom [6,7], or a Kerr interaction between
two bosonic modes [8]. Recent ideas on generated grid states
in an atomic ensemble using squeezed light can be found in [9],
while an optical breeding protocol for cat states was considered
in [10]. In earlier work, we have shown how grid states can be
generated without postselection using phase estimation and a
qubit-bosonic mode coupling of the form Za†a [11], focusing
on a circuit-QED setting. Very recent experiments [12,13]
show how a grid state can be constructed in the motional mode
of an ion using postselection.

In the linear optics setting, Vasconcelos et al. [14] and Etesse
et al. [4] have independently developed a breeding protocol to
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generate grid states from Schrödinger cat states, using linear
optics and homodyne postselection [14]. A similar breeding
protocol, used to generate Schrödinger cat states from Fock
states, has been demonstrated in an experiment by Etesse et al.
[15]. However, the protocol has an important drawback: The
success probability of postselection diminishes rapidly with
the number of rounds.

In this paper, we show that classical postprocessing can be
used to correct the grid state generated by a breeding protocol.
This allows the use of any state generated by breeding,
independent of the measurement results, showing that no
postselection is necessary. Our understanding of the protocol
is formed by showing that a breeding protocol has identical
action as a phase estimation protocol of multiple rounds, with
specific (known) feedback phases and measurement results.
Through this identification the breeding protocol implements
a particular phase estimation protocol which by definition
gradually projects onto a grid state (since one is gradually
learning bits of the phase). The feedback phases used and bits
obtained in phase estimation inform us about the grid state that
we have obtained, namely, the information gives us an estimate
of the eigenvalues of the commuting displacement operators,
thus fixing the eigenstate.

By describing a toy model, the so-called slow breeding
protocol, we can show how breeding can be related to phase
estimation. However, this slow breeding protocol is nonoptimal
in its requirement for very large cat states. We then examine
an efficient breeding protocol, which is the protocol in [14],
and show how the measurement record can be used to correct
any final state to a good grid state. Proving convergence of
this breeding protocol towards a good grid state by invoking
phase estimation is not simple. Instead, by using a class of
approximate grid states which is closed under the efficient
breeding step, we can bound the asymptotic behavior of the
protocol. Finally, we confirm the performance of the protocol
with numerics.
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We will first review some background concepts concerning
grid states, squeezing parameters, and phase estimation in
Sec. II. In Sec. III we show how a breeding protocol can be
mapped onto a phase estimation scheme, giving some intuition
of how a protocol works without postselection. Then we focus
on analyzing the efficient breeding protocol by Vasconcelos
et al. [14] without postselection. In Sec. IV we introduce a
very useful class of approximate grid states and present some
bounds on the probability of improving the state in a breeding
round using these approximate states. We close the paper with
a numerical simulation of the breeding protocol in Sec. V and
a discussion (Sec. VI).

II. BACKGROUND

In this section, we give a short review of previous results
and the formalism needed in the rest of this paper. We start
in Sec. II A with a short introduction of grid states, following
mostly the paper by Gottesman et al. [1]. In Sec. II B, we review
the effective squeezing parameters, a versatile metric for the
quality of a grid state which we introduced in [5]. In Sec. II C,
we introduce a formalism which enables the construction of
a map between breeding and phase estimation in an efficient
manner.

A. Grid states

Consider a bosonic mode with dimensionless quadra-
ture operators q̂ = 1√

2
(a + a†) and p̂ = i√

2
(a† − a) obeying

[q̂,p̂] = i. A grid state in this mode is a simultaneous, approxi-
mate, +1 eigenstate of two commuting displacement operators
Sp = eiup̂ and Sq = eivq̂ where u · v mod 2π = 0 ensures
commutativity of Sp and Sq . Note that it is not necessary that
the displacements Sp,Sq form a square lattice in phase space. In
fact, grid states can be defined on any two-dimensional lattice
where the area of the unit cell is a multiple of 2π [1].

In this paper, we will investigate grid states with a symmetric
choice u = v = ξ . For example, for the choice ξ = √

2π , the
space fixed by Sp = +1,Sq = +1 is one-dimensional. This
state will be referred to as the sensor state [5].

Whenever a choice for ξ is necessary (e.g., for the numerical
analysis or the Wigner function of a state), we investigate
protocols generating this sensor state. In case of the choice
ξ = 2

√
π the +1 eigenspace of Sp and Sq is two-dimensional

and thus encodes a qubit [1]. From here on, we will refer to
ξ as the spacing of a grid state. For both the wave function in
quadrature space and the Wigner function of a grid state, the
spacing corresponds to the distance between the sharp peaks in
these functions. We use the notation for displacement D(α) =
exp(αa† − α∗a) so that Sp = D(

√
π ) for the sensor state.

Spacing ξ thus corresponds to the action of a displacement
with coherent amplitude ξ/

√
2.

Since a perfect eigenstate of these displacement operators,
i.e., an ideal grid state, has infinite energy, it is only possible to
generate approximate grid states. One possible approximation
is a grid state of the form

|�〉 ∝
∞∑

t=−∞
e−πκ2t2

St
pS(�) |vac〉 , (1)

where St
p corresponds to the displacement D(tξ/2) and

S(�) is the squeezing operator which has the action

q̂ → q̂�,p̂ → p̂/� [so that 〈vac| S†(�)Var(q)S(�) |vac〉 =
�2 〈vac| Var(q) |vac〉 = �2

2 ]. The squeezing parameter � < 1
and the width of the Gaussian envelope can be chosen to be
the same, i.e., κ = � [1].

In this form, the squeezed vacuum can be understood as an
approximate +1 eigenstate of Sq , while the weighed sum over
powers of Sp is an approximation of the projector onto the +1
eigenspace of Sp. Essentially, the ideal grid state is invariant
under the two translations Sp and Sq (and their inverses) in
phase space, hence a +1 eigenstate of these operators. Any
finite-photon number version of this state occupies a bounded
volume in phase space and cannot be fully translationally
invariant, but a Gaussian envelope allows the nontranslational
invariance of the tails to play a relatively small role.

B. Effective squeezing parameters

In order to characterize the quality of an approximate grid
state we have introduced so-called effective squeezing param-
eters for both quadratures in [5]. A “squeezing” parameter
can be generally used for capturing how well a state ρ is
an approximate eigenstate of a unitary operator U . The idea
is based on the fact that a state ρ is an eigenstate of the
operator U iff | Tr ρU | = 1. For such a state the mean phase
θ ∈ [−π,π ) equals θ (ρ) = arg(Tr Uρ). Because of the 2π

periodicity of the phase, the variance should not be taken to be
the standard variance, but can be chosen as a phase variance
equal to Var(ρ) = ln(| Tr Uρ|−2) [5]. This variance is identical
to the more commonly used Holevo phase variance [16] for
small | Tr Uρ|.

For a displacement D := D(ueiφ) with φ,u ∈ R, the vari-
ance should be rescaled by u, i.e., we define the mean phase
θD and the effective squeezing parameter �D as

θD := arg(Tr Dρ), �D := 1

u

√
ln(| Tr Dρ|−2). (2)

As grid states are defined with respect to the displacement
Sp (Sq) along the real (imaginary) axis in phase space, it is
convenient to use the short-hand �p := �Sp

and �q := �Sq

for the two effective squeezing parameters. The squeezing
parameters of an approximate grid state as defined in Eq. (1)
are �q = �, �p ≈ κ . For a squeezed vacuum state S(�) |vac〉,
one has �q = � = 1/�p. The effective squeezing parameter
and mean phase have a very natural relation to grid states:

Protocols to generate an approximate eigenstate of Sp and
Sq will produce a state ρ with certain values for θp := θSp

,
θq := θSq

, �p, and �q . The effective squeezing parameters
then give a direct measure of the quality of the state ρ. In case
of the sensor state, they directly relate to the measurement
precision that can be achieved using ρ as a sensor [5]. In case
of the Gottesman-Kitaev-Preskill (GKP) code, the probability
of a logical X (or Z) error in the encoding can be bounded as
Perror < 2�

π
e−π/(4�2) with � = �q ≈ �p [1].

The mean values θp and θq which are extracted from
the protocol can be used to correct the resulting state by
displacing this state by Dcorrect, i.e., ρ → ρ ′ = DcorrectρD

†
correct

such that θp(ρ ′) ≈ θq(ρ ′) ≈ 0. For example, to shift the mean
phase θp back to zero we choose α in Dcorrect = exp(iαq̂)
such that SpDcorrect = exp(−iθp)DcorrectSp. A simple visual
representation of this procedure is that the positive parts of
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FIG. 1. An example of breeding of the approximate +1 eigenstate
of Sp = ei

√
2πp̂ and Sq = ei

√
2πq̂ (sensor state). Top row: Panels (a)

to (d) show the Wigner functions of states generated by, respectively,
N = 1,2,3,4 measurement operators M [as in Eq. (4) with some
particular choice of phases ϕj which provide a good illustration of how
the grid is shifted] where the horizontal axis is the q coordinate and the
vertical axis is the p coordinate. (a) The initial state is a squeezed cat
state with squeezing parameter � = 0.2. The grid state is gradually
built by displacements (translations) to the left and right with S−1/2

p

and S1/2
p . For the state with N = 4 in panel (d), we show the same

state after applying the correction Dcorrect in panel (e). Bottom row:
Shown are the same Wigner functions, zoomed in around the origin.
The yellow dots mark the “center” of the state; for a +1 eigenstate of
Sp it lies at the origin.

the Wigner function form a grid in phase space for grid states
and this grid is aligned with the p = 0,q = 0 axes for a +1
eigenstate of Sp,Sq (see Figs. 1 and 4).

The final state is then an approximate +1 eigenstate of
Sp and Sq . However, it is not necessary to perform such a
correcting displacement if one uses the concept of a phase or
displacement frame [11] (in analogy with a Pauli frame for
qubits).

Clearly, approximate grid states are not unique. For exam-
ple, two grid states of which the grid envelope is displaced or
translated one unit cell over, can have the same values for θp,θq

and �p,�q , but contain a different mean number of photons.
Similarly, one can note that the corrective displacement is not
unique: in practice one may opt for the smallest displacement
shifting the grid envelope to the correct position [see Fig. 1(e)].

C. Adaptive phase estimation

Phase estimation refers to a whole class of algorithms that
measure the eigenvalue of a unitary operator U . A recent
overview of some of these schemes can be found, e.g., in [17].
All phase estimation procedures, including textbook phase
estimation [18], Kitaev’s phase estimation [19], and variants
thereof, can be executed in an iterative form with a single qubit
applying controlled-Uk gates. An in-depth analysis of some
adaptive schemes can be found in works by Berry et al. [20].
We are interested in the case where the unitary operator to be
measured is some displacement and we consider performing
such measurement by repeating a circuit of the form of Fig. 3.

A convenient formalism to describe such adaptive phase
estimation uses the following “measurement” operator:

M(ϕ,α) := 1 + eiϕD(α), (3)

Bosonic mode D(α)

qubit |+〉 • RZ(φ) X

FIG. 2. Single round of an adaptive phase estimation protocol
which estimates the eigenvalue of D(α). The output state goes back
into the next round of the protocol and the feedback phase φ can be
chosen depending on earlier rounds. The collection of bits obtained,
together with the chosen feedback phases, will gradually project the
input state onto an approximate eigenstate of D(α) as the approximate
eigenvalue is learned.

where ϕ ∈ [0,2π ) and α is a coherent amplitude. In what
follows we focus on breeding an approximate eigenstate of
Sp = D(ξ/

√
2) and assume that α is real, but the same method

can be used for complex α.
With this operator, a squeezed Schrödinger cat state has the

form D(−α/2)M(0,α)S(�) |vac〉, i.e., a single application of
the measurement operator onto a squeezed vacuum state, plus
an additional displacement.

One can also see that the circuit shown in Fig. 2 acts on an
input state |�0〉 as M(φ + πx,α) |�0〉 where x ∈ {0,1} is the
measurement result, i.e., it applies one additional measurement
operator to the initial state. Thus any state generated by a
sequence of N of these circuits is of the form

|�〉 ∝
N∏

j=1

M(ϕj ,αj ) |�0〉 , (4)

where |�0〉 is the initial state and ϕj = φj + xjαj with mea-
surement outcome xj , feedback phase φj of round j , and αj

possibly varying per round.
It can be observed that the class of states which is described

by fixing the outcome to be x = 0 and letting the feedback
phase vary captures all states in Eq. (4) since φj ∈ [0,2π ) can
be freely chosen. We will show that the state obtained by a
breeding protocol is identical to a state obtained by such a phase
estimation protocol with all outcomes xj = 0 and with varying
φj = ϕj . A (trivial) example is that a squeezed Schrödinger cat
state is equivalent to a single round of phase estimation with
x = φ = 0 applied to a squeezed vacuum state. This map gives
some intuition of why breeding gives rise to a grid state. Using
the form of the state allows one to estimate the mean phase and
the effective squeezing parameters of the state using Eq. (2).

As was mentioned before, even given θp and �p, a grid state
is not unique since it can be shifted by any Sp without affecting
these parameters. Thus to place the grid state symmetrically
around the vacuum state and minimize photon number, it is
better to perform a predisplacement by D(−α/2) in each phase
estimation round in Fig. 2 and similarly use the measurement
operator D(−α/2) + eiϕD(α/2). Since our analysis does not
depend on these shifts, we have opted to not include them.

III. BREEDING

Breeding protocols refer to a procedure where a grid state
is gradually constructed from input (squeezed) Schrödinger
cat states. One can view these input states as a very poor
approximation [Fig. 1(a)] to a grid state and the goal is to
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N1
j=1 M (ϕj , αj) |Φ0

50:50 BS

N1+N2
j=1 M (ϕ̃j , α̃j) |Φ0

N2
j=1 M (ψj , βj) |Φ0 p

FIG. 3. Single round of a breeding protocol. The round takes
approximate grid states defined by N1 and N2 measurement operators
M as inputs. It returns an approximate grid state with N1 + N2

(possibly changed) measurement operators. The second output port is
subject to a homodyne measurement of the p̂ quadrature. The initial
state |�0〉 is chosen to be invariant under the action of a beam splitter,
e.g., a squeezed vacuum state.

gradually improve these states. The circuit in Fig. 3 shows
a single round of breeding. We will denote the number of
breeding rounds by M , while N , which is a function of M ,
refers to the number of measurement operators acting on some
initial state as in Eq. (4). In a single breeding round partially
bred grid states that will be of the same form as Eq. (4)
are fed into a beam splitter. After the beam splitter, the p

quadrature of one of the states is measured (for breeding of
a Sp eigenstate). For N2 = 1 in Fig. 3, the input of the bottom
port (port 2) plays the role of a squeezed cat state modulo the ad-
ditional predisplacement, i.e., [D(−β/2) + D(β/2)] |�0〉 =
D(−β/2)M(0,β) |�0〉. The aim of the Breed operation is to
map the measurement operators in port 2 to port 1, i.e., the
state at the output port is still of the form of Eq. (4), but with
N1 + N2 measurement operators.

Since we would like to produce a state which is an ap-
proximate eigenstate of both Sp and Sq , we choose the input
state |�0〉 as a squeezed vacuum state |�0〉 = S(�) |vac.〉
providing an approximate eigenstate of Sq . It is important
that the effective squeezing parameter �q is approximately
preserved under the breeding operation so that the outgoing
state is an approximate eigenstate of both Sp and Sq : we will
verify this at the end of Sec. III B.

The rounds of this breeding procedure could be repeated
in at least two ways. In the first manner, which we call slow
breeding, we always use a squeezed cat state at input port 2
and input port 1 contains the state that came out of port 1 in
the previous breeding round. This protocol can be seen as a
toy model in that it has several drawbacks, but we describe its
functionality in order to understand how breeding works and
how it maps onto phase estimation. In Sec. III B we describe
a parallelized distillation protocol in which 2M squeezed cat
states are fed into beam splitters, leading to 2M−1 output states,
which are subsequently used to produce 2M−2 states, etc.,
eventually extracting one grid state after M breeding rounds,
i.e., the setting proposed in [4,14]. Then, we will show how a
map to phase estimation can be constructed for this protocol,
removing the need for postselection.

A. Slow breeding

Using that the action B of the beam splitter is given by

q̂1 → (q̂1 − q̂2)/
√

2, p̂1 → (p̂1 − p̂2)/
√

2,

q̂2 → (q̂1 + q̂2)/
√

2, p̂2 → (p̂1 + p̂2)/
√

2,

one can show that the output state of a breeding round in Fig. 3
equals

N1∏
j=1

N2∏
k=1

M̃1(ϕj ,αj )M̃2(ψk,βk)B |�0,�0〉 . (5)

Here M̃i(ϕ,α) = BMi(ϕ,α)B†. For the input states
|�0,�0〉 we use the invariance under beam splitting, i.e.,
BS1(�)S2(�) |vac,vac〉1,2 = S1(�)S2(�) |vac,vac〉1,2. For
real α we have M̃1(ϕ,α) = I + eiϕD1(α/

√
2)D2(−α/

√
2)

and M̃2(ψ,β) = I + eiψD1(β/
√

2)D2(β/
√

2). When mode
2 is then measured via homodyne measurement of p̂ with
outcome p, we can replace D2(α) by e−iα

√
2p (for real α).

This implies that the output state of the protocol is as claimed
in Fig. 3, i.e.,

N1∏
j=1

N2∏
k=1

M1(ϕ̃j ,α̃j )M1(ψ̃k,β̃k) |�0〉 , (6)

ϕ̃j = ϕj + αjp, α̃j = αj√
2
, ψ̃k = ψk − βkp, β̃k = βk√

2
.

The probability to find outcome p for the homodyne measure-
ment depends in detail on the state of the form Eq. (4) that
goes into the beam splitter, but the variance of this probability
distribution in p scales as ∼1/�2. Hence the more the input
state |�0〉 is squeezed in q (by �), the large the spread of
measured values for p will be and hence the greater the need
for not using postselection on the outcome p = 0.

Consider now the slow breeding case where the state at
input 2 is always a squeezed cat state, i.e., N2 = 1, and the
output state is fed into port 1 of the next round. In order to
breed a grid state we take α1 = β1 = α and ϕ1 = ψ1 = 0 for
the first breeding round, meaning that the inputs in both ports
are squeezed cat states.

In the second breeding round one takes β2 = α/
√

2,ψ2 = 0
and in the Mth round βM = α/

√
2M−1,ψM = 0 so that the

final state has spacing ξ = α/
√

2M−1. The evolution of mode
1 under the slow breeding protocol without postselection and
M = 3 rounds is shown in Figs. 1(a)–1(d).

By postselecting the measurement result onto p = 0, it
is apparent from this choice for the βi and Eq. (6) that M

rounds of this procedure generate a binomial distribution of
displacements, since all the phases are zero. Thus, clearly,
when we postselect on outcome p = 0, one obtains a grid state
with a binomial envelope (similar to the protocols shown in
[4,14]).

From Eq. (6) it follows immediately that M rounds of
breeding in this setup with a final spacing ξ = α/

√
2M−1

can be mapped to N = M + 1 rounds of phase estimation
with the choice ϕm = α(

∑M
k>m 2−k/2pk − 2−m/2pm) for the

feedback phase and measurement result xm = 0, where pm

is the homodyne measurement result of p̂2 in round m =
1, . . . ,M and p0 = 0 to fix the initial state (m = 0) to the
squeezed cat state ∝ [I + D(α)] |�0〉. It is noteworthy that
the feedback phase depends on the outcomes of many “later”
rounds: One can thus only construct the corresponding phase
estimation protocol after the last homodyne measurement is
done. This suggests that instead of postselecting on p = 0,
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one can simply process the measurement information to infer
the values of θp in Eq. (2) of the final state. This correction is
demonstrated in Fig. 1(e), where a correcting displacement is
applied to the final state of the protocol.

However, the slow breeding protocol suffers from a different
problem. To get a grid state with final spacing ξ = √

2π after
M rounds, the number of photons in the squeezed cat state used
in the first round n̄cat � 2Mπ . This is exponentially larger than
the mean photon number of the final grid state which scales as
n̄grid ∼ M [1,11], i.e., the procedure is inefficient in its use of
photons.

B. Efficient breeding

A much better scheme is to use a partially bred grid state in
the ancilla mode as proposed in [4,14], effectively performing
a grid state distillation scheme. In this scheme, one starts with
two cat states (N1 = N2 = 1), leading to a state with Nout = 2.
Then one takes two such states (N1 = N2 = 2) and feeds them
into the beam splitter to get a state with Nout = 4, etc. With
Eq. (6), one can see that we have N = 2M for M repetitions of
this scheme.

In this scheme one will always have βj = αj for the two
input ports, but the phases can vary depending on measurement
results and do not need to be the same for both inputs. This
parallelization leads to a much faster buildup of the grid state.
For a final grid state with N = 2M applications of M, one
requires M rounds of beam splitters in sequence.

For the final grid state to have spacing ξ one starts the
protocol with cat states with amplitude ξ2(M−3)/2 = ξ

√
N

2
√

2
, thus

n̄cat ∼ n̄grid ∼ N . For example, generating a sensor state with
M = 2 rounds would require n̄cat = π

2 + n̄sq photons, where
n̄sq is the additional number of photons due to squeezing.

In order to estimate the effective squeezing after M rounds
as well as the phase θp, one needs to describe the final state in
terms of the measurement outcomes. A concise description of
the output state of an M-round protocol is as follows. We label
all 2M ingoing modes of the protocol with a bit string x[M]
of length M . Two modes x1 . . . xM−1xM and x1 . . . xM−1xM

which differ only on the last bit xM will enter into one beam
splitter and so the outgoing single mode can be labeled by
the remaining M − 1 bit string x1.. . . . xM−1 = x[M − 1]. The
outcomes of these 2M−1 measurements of the first round form
a vector p1 with 2M−1 entries p1

x[M−1] which are labeled by
the bit strings x[M − 1]. The final measurement in round M

is then pM with a single entry labeled by a bit string of length
zero. An example of this labeling can be seen in Fig. 4. With
this notation the initial state is thus a product state proportional
to

∏
x[M] Mx[M](0,2(M−1)/2ξ ) |�0〉x[M].

Similarly, the state of the system after the first round of
breeding is the product state

∏
x[M]

Mx[M−1]
(
ξ (−1)xM 2

M−2
2 p1

x[M−1],2
M−2

2 ξ
) |�0〉x[M−1] ,

where each state now gets two measurement operators applied
to it since we are taking the product over all bit strings of length
M . After all 2M − 1 measurements, the final state is given by

FIG. 4. Left side: Efficient breeding protocol as proposed in
[4,14], with M = 2 rounds but without postselection. The labeling
of modes is according to the scheme introduced in Sec. III B: The
initial 2M = 4 Schrödinger cat states are labeled by the two-bit strings
{00,01,10,11}. Those are put pairwise into beam splitters, resulting
in the states and measurement results labeled by the one-bit strings
{0,1}. The phases and final state of the corresponding phase estimation
setup are determined using Eq. (7); the correcting displacement is then
obtained with Eq. (2). Right side: Shown are the Wigner functions of
modes {00,0,Final} and the final state after applying the correction,
zoomed in around the origin. The yellow crosses mark the “center”
of the state; for a +1 eigenstate of Sp they lie at the origin.

2M measurement operators acting on a single mode, i.e.,

|�out(p1, . . . pM )〉

=
∏
x[M]

Mx[0]

⎛
⎝ξ

M∑
j=1

(−1)xj 2
j−2

2 p
M−j+1
x[j−1] ,

ξ√
2

⎞
⎠ |�0〉x[0] ,

(7)

with normalization P(p1, . . . ,pM ) = 〈�out| �out〉.
In order to evaluate θp = arg〈�out |Sp |�out〉

〈�out |�out〉 for a given series

of outcomes pall := p1, . . . ,pM , it is convenient to write
down the initial state as a wave function in p and use
that Sp |p〉 = eiξp |p〉. The effect of this correction is shown
in Fig. 4. Similarly, one can evaluate the average 〈�p〉 =∑

pall
P(pall)�p(pall). Note that, if minimizing the run time of

this procedure is crucial (e.g., for feedback in an experiment),
the mean phases could be approximated using the mode of the
probability distribution in p corresponding to the final state.

While the map between breeding and phase estimation
derived in the previous section suggests that 〈�p〉 will decrease
rapidly with breeding rounds, it is in fact not simple to
use this mapping to analytically prove this. The difficulty is
that, since the phases can vary per round (depending on the
homodyne measurement outcomes), arguments which use laws
of large numbers, which apply when identical experiments are
repeated, are not directly applicable.
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In order to understand the outgoing state in terms of the
initial squeezing, we note that the final state of the breeding
protocol after M rounds consists of applying powers of
Sp = D(ξ/

√
2) (with phases) to the initial state |�0〉 and Sq

commutes with Sp. However, the input state is not an exact
eigenstate of Sq . Furthermore, the full description of the unitary
evolution involves the beam splitter and the measured ancilla
modes and the full action does not commute with Sq .

This means that a few steps are required to show that
the expectation value of Sq of the output state is close to
the expectation value of Sq of the input state. The output
state of any breeding protocol will be |�out〉 = A |�0〉 and
A = ∑∞

j=−∞ αjS
j
p (where the number of nonzero coefficients

αj ∈ C is determined by the protocol). We can compute the
normalization of |�out〉 by writing the initial squeezed state as
a wave function in |q〉:

〈�out| �out〉

=
∞∑

j,k=−∞

αjα
∗
k√

π�2

∫∫
dq dq ′ e

− q2

2�2 e
− [q′−(j−k)ξ ]2

2�2 〈q|q ′〉

=
∑
j,k

αjα
∗
k√

π�2

∫
dq e

− [q−(j−k)ξ/2]2

�2 e
− ξ2(j−k)2

4�2

=
∑
j,k

αjα
∗
k e

− ξ2(j−k)2

4�2 .

For small � � 0.5, the last term vanishes for j 
= k (ξ is at
least

√
2π ), i.e.,

∑
j |αj |2 ≈ 〈�out|�out〉 = 1. Using the same

method one obtains

〈�out| Sq |�out〉

=
∑
j,k

αjα
∗
k√

π�2

∫
dq eiξqe

− [q−(j−k)ξ/2]2

�2 e
− ξ2(j−k)2

4�2 ,

=
∑
j,k

αjα
∗
k√

π�2
e
− ξ2(j−k)2

4�2 e− i(j−k)ξ2

2

∫
dq eiξqe

− q2

�2 ,

=
∑
j,k

αjα
∗
k e

− ξ2(j−k)2

4�2 e− i(j−k)ξ2

2 〈�0| Sq |�0〉 ≈ 〈�0| Sq |�0〉 ,

where we used the normalization condition obtained be-
fore. This implies that �q(�out) ≈ �q(�0) = � for initial
squeezing � � 0.5 (which corresponds to large squeezing
in q). The effective squeezing parameter of a squeezed
Schrödinger cat state ∝ [D(−√

π/2) + D(
√

π/2)] |�0〉 is√
�2 − 2

π
ln[tanh( π

4�2 )], which differs from a squeezed vac-

uum state |�0〉 by O(10−17) for � = 0.2. This is also expected,
as �q = � for a squeezed vacuum state and �q ≈ � for an
approximate grid state as defined in [1].

IV. ASYMPTOTIC BEHAVIOR

In this section we derive probability bounds for the breed-
ing protocol showing how the effective squeezing parameter
changes round by round. The known class of approximate
grid states which are described by a perfect grid state to
which a Gaussian distribution of shift errors is applied [1]
is not closed under a round of breeding; the same holds for

squeezed Schrödinger cat states. Thus, analyzing the effect of
the breeding map for many rounds is a nontrivial problem when
using either class of states.

In order to solve this issue, we introduce a class of approxi-
mate grid states which is closed under the breeding operation,
enabling an analytical discussion. Since the breeding protocol
changes the spacing of an approximate grid state round by
round, the spacing of these states is round dependent. To this
end, we first define scale-dependent shifted grid states as

|u,v,m〉 =
√

smξ

2π
e
i v

smξ
p̂
ei

smξu

2π
q̂ |�m〉 , (8)

where u,v ∈ [−π,π ). The parameter sm is some scale parame-
ter that we will choose below, ξ is the spacing of the final grid
state, and |�m〉 ∝ ∑∞

s=−∞ |p = sξsm〉. With the choice sm =
1,ξ = 2

√
π , one obtains the shifted code states introduced by

Glancy and Knill in the context of the GKP code [21]: these
states above can be viewed as an extension of this concept. For
any choice of m and smξ , it can be verified that the class of states
|u,v,m〉 forms an orthonormal basis of the whole Hilbert space
of the oscillator, i.e., 〈u,v,m|u′,v′,m〉 = δ(u − u′)δ(v − v′)
and

∫ π

−π
du

∫ π

−π
dv |u,v,m〉 〈u,v,m| = I (see Appendix A).

For our application in the breeding protocol we will choose
sm =

√
2m−M and one can confirm that this choice yields a

shifted grid state with spacing ξ for m = M . Note that |�m〉
is a +1 eigenstate of the rescaled operators Ssm

q and S
2π/(ξ 2sm)
p ,

i.e., the spacing of the states is rescaled round by round since
each beam splitter will change the spacing by

√
2. We can

see this by writing |�m〉 ∝ lim�→0 �S
sm
q =1S(1/�) |vac〉 since

lim�→0 S(1/�) |vac〉 = |p = 0〉 and �S
sm
q =1 ∝ ∑∞

t=−∞ Stsm
q

is the projector onto the +1 eigenspace of Ssm
q .

In general, a basis of shifted grid states can be used to write
down an approximate code state as a Gaussian superposition
of states with different shifts [1,11]. Here, we will similarly
use these states but the filter for the quadrature on which we
apply the breeding will not be Gaussian but determined by a
von Mises probability distribution. We thus define the class of
approximate shifted grid states (for general ξ ) as

|Vκ,μ,m〉 := 1

N

∫ π

−π

du

∫ π

−π

dv V (u − μ)κ

×
∞∑

s=−∞
eiusG(v + 2πs)sm� |u,v,m〉 , (9)

V (u − μ)κ := 1√
2πI0(κ)

exp

(
κ

2
cos(u − μ)

)
,

G(v)σ := 1√
σ
√

π
exp

(
− v2

2σ 2

)
. (10)

In the limit of large initial squeezing � � 1, the normalization
constant N goes to 1. Note that Pσ (v) = G(v)2

σ is a Gaussian
distribution with mean zero and standard deviation σ/

√
2 so

that when m = M the standard deviation of P�sm
(v) is �/

√
2.

The choice of probability distribution on u and v is different
because the breeding protocol acts differently on the p̂ and q̂

quadratures of the initial states. This choice ensures that the
class of states |Vκ,μ,m〉 is closed under breeding [see Eq. (12)].
The probability distribution Pκ (u − μ) = V (u − μ)2

κ is the
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von Mises distribution and Iν(κ) is the modified Bessel
function of the first kind of order ν. The von Mises distri-
bution Pκ (u − μ) which models a Gaussian distribution for
a circular phase variable u has mean μ. In the limit κ � 1
the probability distribution becomes Gaussian by approxi-
mating exp[κ cos(u − μ)] ≈ exp[−κ(u − μ)2/2] exp(κ) with
standard deviation 1/

√
κ .

The index m = 0, . . . ,M will refer to the number of breed-
ing rounds applied to the initial state, with m = 0 the initial
state and m = M,sM = 1 the final state. Note that the shift
error distribution in v gets rescaled each round: the standard
deviation of G(v)2

�,m=0 is increasing in each round, but given
a v the shift induced in each round in Eq. (8) gets smaller, so
that effectively the spread in p stays the same. Thus �q ≈ �

where � is the initial squeezing.
For the final state with m = M , i.e., |Vκ,μ,M〉, the mean

phase θp is simply the mean μ of the distribution while the
effective squeezing parameter �p equals

�p =
√

ln
[
I 2

0 (κ)/I 2
1 (κ)

]
/π, (11)

which for large κ becomes 1/
√

πκ , hence directly connecting
to the standard deviation of the Gaussian distribution.

Using the formula for linear combinations of trigonometric
functions with a phase shift, one can show that the distribution
over u of the outgoing state after a round of breeding is again
a von Mises distribution (see, e.g., [22,23] in the context of the
convolution of von Mises distributions). Using the convolution
property of Gaussian distributions, one can show the same for
the v shifts. Combining these two properties, one can show that
a round of breeding with measurement outcome pout maps two
input states of this form with label m onto an output state of
the same form with label m + 1:∣∣Vκ1,μ1,m

〉 ∣∣Vκ2,μ2,m

〉 breeding→ ∣∣Vκout,μout,m+1
〉
,

κ2
out = κ2

1 + κ2
2 + 2κ1κ2 cos(μ1 − μ2 − 2p̃),

μout = −atan2[κ1 cos(μ1 − p̃) + κ2 cos(μ2 + p̃),

κ1 sin(μ1 − p̃) + κ2 sin(μ2 + p̃)], (12)

with p̃ = 2π
ξsm+1

pout. The details of this derivation can be found
in Appendix B.

Thus, if the two states fed into round m have the error model
of Eq. (9), the outgoing state is of the same type, with new
parameters κout,μout which depend on measurement outcome
pout and the round m. Since the ingoing states are normalized,
the probability of finding outcome pout can be obtained by
evaluating the norm of the outgoing state, see Appendix B,
and we obtain the oscillatory function

P(pout) = �I0(κout)N 2
out√

πξI0(κ1)I0(κ2)N 2
1 N 2

2

e
− p2

out�
2

ξ2 . (13)

Defining the variable x = μ1 − μ2 − 2p̃ mod 2π gives a
concise description of the effect of one breeding round. The
probability P(x) can be simplified in the limit of large initial
squeezing, sm� � 1 from Eq. (13). Since x is 2π -periodic,
we can use that the limit of a wrapped normal distribution with
large variance is simply a circular uniform density of 1/(2π ).
Together with the fact that the normalization constants Ni all

go to 1 for large initial squeezing, one obtains

κout(x) =
√

κ2
1 + κ2

2 + 2κ1κ2 cos(x) = (κ1 + κ2)λ,

P(x) = I0(κout)

2πI0(κ1)I0(κ2)
,

where we defined λ := λ(x,κ1,κ2) with 0 � λ � 1.
Not surprisingly the growth of κ (or shrinking of �p) with

the number of rounds is upper bounded as κM � 2Mκ0 for any
protocol with M rounds and initial states all with equal κ0.

To get insight into the probabilistic behavior we would like
to bound the probability that λ � 1 − ε for some ε assuming
κ1 � 1/(1 − ε) and κ2 � 1/(1 − ε) in a given round m.

Let A = {x|λ � 1 − ε}, i.e., the set of all events for which
λ � 1 − ε. Then

P(λ � 1 − ε) =
∫
A

dx
I0[(κ1 + κ2)λ]

2πI0(κ1)I0(κ2)

� I0[(κ1 + κ2)(1 − ε)]

I0(κ1)I0(κ2)
,

where we used that I0(x) < I0(y) for x < y.
It has been shown by Pal’tsev that 1√

2πκ
eκ− 1

2κ � I0(κ) �
1√
2πκ

eκ+ 1
2κ , where the lower bound holds for κ > 0 and the

upper bound was only proved for κ > (
√

7 + 2)/3 [24]. The
range for the upper bound is limited because Pal’tsev derived
the bounds for Iν(κ) with ν,κ ∈ R+

0 . In the special case of
I0(κ), it is simple to show that the bound holds for all κ > 0:

1√
2πκ

eκ+ 1
2κ is minimal for κ = 1 and I0(κ),0 � κ � (

√
7 +

2)/3 is maximal for κ = (
√

7 + 2)/3. The bound holds because
1√
2π

e
3
2 > I0[(

√
7 + 2)/3]. Using these bounds, we get

P[κout � (κ1 + κ2)(1 − ε)] � δ (14)

with

δ ≡ 1 −
√

2πκ1κ2

(κ1 + κ2)(1 − ε)
exp

(
− ε(κ1 + κ2 + 1) + 5

4

)
.

(15)

For any choice of ε > 0, this probability is exponentially
close to 1 for large κ1 or κ2. As a simple example of this bound
one can take κ1 = κ2 = κin and ε = 1/2. Then we have

P(κout � κin) � 1 −
√

2πκin exp

(
− κin + 3

4

)
.

What we see in these bounds is that for sufficiently large κin the
protocol produces states with larger κout with high probability.
For example, the probability that κout � κin is at least 0.92 for
κin = 5 (squeezing parameter roughly � ≈ 0.25). For κin =
10, the probability that κout � 3

2κin is at least 0.88.
Alternatively, one can phrase Eq. (14) for large κ , hence

Gaussian-distributed states, in terms of the variance of the
Gaussian distribution of shift errors: In this case, we have that
with probability larger than δ in Eq. (15) the variance of the
outgoing state obeys

Varout � Var1,inVar2,in

(1 − ε)(Var1,in + Var2,in)
. (16)

022341-7



DANIEL J. WEIGAND AND BARBARA M. TERHAL PHYSICAL REVIEW A 97, 022341 (2018)

For a grid state with Gaussian distributed shift errors and
spacing ξ , one has �p ≈ Var/ξ so we can see how Eq. (16) ex-
presses the stochastic improvement of the effective squeezing
parameter per round.

These bounds are not tight; the probability δ scales more
favorably in practice than these bounds would suggest. In the
next section we examine how the mapping of the von Mises
distributed states works out numerically as compared to an
actual simulation of the protocol with squeezed cat states.

V. SIMULATION

To demonstrate the use of classical postprocessing we
simulate the breeding of a grid state numerically. All the
simulated breeding protocols aim to generate an eigenstate
of Sp = D(

√
π), using M rounds with the efficient breeding

protocol. The breeding is simulated by sampling each measure-
ment result randomly from the state generated by the previous
rounds. This is done for protocols with M = 0, . . . ,6 rounds,
each protocol leading to an approximate grid state with the
required spacing

√
2π (M = 0 means just having a squeezed

cat state).
In Fig. 5 we show the mean and standard deviation of the

effective squeezing parameter �p over 1000 repetitions of
this procedure. In this figure, the line “Breeding” shows the
efficient breeding protocol using finitely squeezed Schrödinger
cat states, with �q ≈ � = 0.2. This corresponds to states
with n̄ ≈ 2Mπ/2 + 25 photons in all rounds [where 25 is the
contribution from initial squeezing by S(�)].

In addition, we simulate the same protocol using the von
Mises states [with infinite squeezing, corresponding to lim�→0

in Eq. (9)] as initial states, starting at a κ and μ = 0 which gives

0 1 2 3 4 5 6
M

0.05

0.1

0.5

1

Δp

Breeding

von Mises

Post-select

Lower

FIG. 5. Simulated breeding of a sensor state [Sp = D(
√

π)] with
initial squeezing � = 0.2. Shown is the (dimensionless) effective
squeezing parameter �p (averaged over the homodyne measurement
outcomes) vs the number of rounds M of the protocol. “Post-select”
refers to the protocol by Vasconcelos et al. [14], with squeezed
Schrödinger cat states as input and postselected onto the result pi = 0
for all measurements. “Breeding” refers to the efficient breeding
protocol without postselection. “von Mises” is the same efficient
breeding protocol, but with von Mises distributed initial states [see
Eq. (9)]. The error bounds in both “von Mises” and “Breeding” are
asymmetric, i.e., both the variance of all the data above the mean
as well as the variance on all the data below the mean are plotted
separately. “Lower” is the lower bound for the effective squeezing
parameter, namely, at round M �(κM ) = �(2Mκ0) where �(κ) is
given in Eq. (11).

the same �p as the squeezed cat states in the real protocol. For
comparison, we also show the effective squeezing achieved by
postselecting onto p = 0 (“Post-select”) and the lower bound
(“Lower”) on the decrease in the squeezing parameter for the
von Mises states as follows from κout � κ1 + κ2. Since the
lower bound has been derived only for von Mises distributed
states and not for squeezed cat states as initial states it does
not necessarily hold for the latter. However, it gives a good
estimate for the asymptotic behavior, as grid states and the von
Mises distributed states get arbitrarily close for small �p.

As can be seen the effective squeezing which is achieved
on average is lower both for breeding and the von Mises dis-
tributed states than for the postselected protocol. Furthermore,
the two lines are almost parallel after some rounds, showing
that the von Mises error model is a good approximation after
a small number of rounds. All lines show similar scaling with
M which we asymptotically expect to be ∼2−M (this scaling
is hard to verify for M � 6).

VI. DISCUSSION

In this paper we have shown that classical postprocessing,
combined with the breeding protocol by Vasconcelos et al.
[14], yields an efficient method to generate grid states. By
providing a map between breeding and phase estimation, we
have argued that any state generated by breeding results in an
approximate eigenstate of the commuting displacement oper-
ators, i.e., a grid state with an additional known displacement.
We have introduced a class of approximate grid states which
are mapped onto themselves by the application of breeding
and allow one to bound the success of the stochastic process
implemented by breeding. In numerical simulations, we could
confirm that the protocol discussed in this paper generates
grid states reliably, showing scaling close to the asymptotic
behavior, even for a small number of rounds.

As we have observed, the action of each round of beam
splitting reduces the spacing of the grid, requiring one to use
cat states with large spacing at the beginning of the protocol.
An alternative solution is to squeeze the outgoing mode after
each beam splitter so one does not lose a

√
2 factor in each

round; see, e.g., the use of beam splitting and
√

2 squeezing in
[21]. However, this precisely counteracts the initial squeezing
in the q quadrature, and hence requires more initial squeezing
by �. We thus expect that the average number of photons in
the initial squeezed cat states scales the same in this alternative
protocol, making it a slightly different but not necessarily better
alternative.

In any real setup the measurement of the p quadrature will
have some variance, determined, for example, by the duration
of the measurement. Using the mapping onto phase estimation
one can understand this as a spread or uncertainty in the circuit
which has been applied to the state, leading to uncertainty of
an estimate for the eigenvalue phase. In the efficient breeding
protocol, the spread in p also leads to the preparation of a noisy
state which contains additional shift or displacement errors.

While generating optical squeezed Schrödinger cat states
on demand is a hard task, squeezed cat states with sufficient
amplitude to generate the sensor state have been experimen-
tally demonstrated in [15,25]. The amplitudes of cat states
demonstrated there are sufficiently large for one to two rounds
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of breeding with beam splitters only. Multiple rounds could
be possibly achieved using additional squeezing in between
rounds as suggested in the previous paragraph above. It might
also be of interest to analyze the concrete implementation of
this scheme for microwave cavities coupled to superconducting
qubits where all components, i.e., the preparation of cat states
[26,27], beam splitters, and homodyne measurement readout
are readily available. The scheme would lend itself well to a
setup in which cat states are prepared in microwave cavities
and are then released [28,29] onto transmission lines which
couple via beam splitters and allow for homodyne readout.
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APPENDIX A: ORTHONORMALITY AND COMPLETENESS OF SHIFTED GRID STATES

Recall that the shifted grid states are defined as [see Eq. (8)]

|u,v,m〉 =
√

smξ

2π

∞∑
s=−∞

exp
(

iv

(
s + u

2π

)) ∣∣∣∣p = smξ

(
s + u

2π

)〉
, (A1)

with u,v ∈ [−π,π ), sm ∈ (0,1] and m ∈ N0. In this section we show that this class of states forms an orthonormal basis. The
proof will be split in two parts, showing orthonormality first and completeness afterwards (see the lemmas below).

If we extend the definition of these basis states so that u → x,v → y with x,y ∈ R, then we can observe that |x + 2π,y,m〉 =
|x,y,m〉 and |x,y ± 2π,m〉 = e±ix |x,y,m〉. In Appendix B we will only consider states of the form

|�〉 =
∫ π

−π

du

∫ π

−π

dv �(u,v) |u,v,m〉 ,

where the function �(x,y) is such that �(x + 2π,y) = �(x,y) and �(x,y ± 2π ) = e∓ix�(x,y). For such choice we observe
that �(x,y) |x,y,m〉 is 2π periodic in both arguments, allowing us to write∫ π

−π

dx

∫ π

−π

dy �(x,y) |x,y,m〉 =
∫ π+zx

−π+zx

dx

∫ π+zy

−π+zy

dx �(x,y) |x,y,m〉 (A2)

for any zx and zy .
Lemma A1. The class of shifted grid states as defined in Eq. (A1) is orthonormal, i.e., it holds that 〈u′,v′,m|u,v,m〉 =

δ(u − u′)δ(v − v′).
Proof. From the definition of shifted grid states [Eq. (A1)] and the orthonormality of the momentum eigenstates it follows that

〈u′,v′,m|u,v,m〉 = smξ

(2π )2

∞∑
s,t=−∞

exp
(

iv

(
s + u

2π

)
− iv′

(
t + u′

2π

))
δ

(
smξ

(
s − t + u − u′

2π

))
.

The difference u − u′ needs to be an integer multiple of 2π for the Dirac delta distribution to be nonzero. Since u,u′ ∈ [−π,π ),
i.e., u − u′ ∈ (−2π,2π ), the only solution is u = u′ and s = t . With δ(x) = |a|δ(ax) and δ(x) = 1

2π

∑∞
s=−∞ exp(isx) the claim

follows:

〈u′,v′,m|u,v,m〉 = 1

2π

∑
s

exp
(

i(v − v′)
(

s + u

2π

))
δ(u − u′),

= δ(v − v′)δ(u − u′).

�
To complete the proof that the shifted grid states form an orthonormal basis, we also show their completeness. We do this by

showing
∫

du
∫

dv|u,v,m〉〈u,v,m|p〉 = |p〉 for any momentum eigenstate |p〉.
Lemma A2. The class of shifted grid states as defined in Eq. (A1) is complete, i.e., it holds that

∫
du

∫
dv |u,v,m〉〈u,v,m| = I .

Proof. The wave function of a momentum state in the shifted grid state basis is

〈u,v,m|p̂ = p〉 =
√

smξ

(2π )2

∞∑
s=−∞

exp
(

− iv

(
s + u

2π

))
δ

(
ξsm

(
s + u

2π

)
− p

)
.

Since u ∈ [−π,π ), the Dirac delta distribution is only nonzero for a specific value s = s̃ with p̃ := p − ξsms̃,p̃ ∈ [−π,π ). Using
δ(x) = |a|δ(ax), we can simplify the wave function of a momentum state in the basis of shifted grid states to

〈u,v,m|p̂ = p〉 =
√

1

ξsm

exp
(

− iv

(
s̃ + u

2π

))
δ

(
u − 2π

ξsm

p̃

)
.
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Using the definition of a shifted grid state [see Eq. (A1)] and the wave function of a momentum state in the basis of shifted grid
states, we obtain ∫∫

du dv |u,v,m〉 〈u,v,m|p̂ = p〉 =
√

1

ξsm

∫∫
du dv e−iv(s̃+ u

2π
)δ

(
u − 2π

ξsm

p̃

)
|u,v,m〉

= 1

2π

∫
dv

∑
s

eiv(s−s̃) |p̂ = smξs + p̃〉

= |p̂ = smξ s̃ + p̃〉 = |p̂ = p〉 .

In the second step, we used the integral representation of the Kronecker delta, 1
2π

∫ 2π

0 dx exp [ix(n − m)] = δmn. �

APPENDIX B: ANALYTIC DISCUSSION OF BREEDING

In this appendix, we discuss the breeding protocol analytically and show that the class of states used as initial states in Sec. IV
is closed under the breeding operation. To this end, we first analyze the action of breeding on a superposition of shifted grid states
|u,v,m〉 in Appendix B1, and simplify the state obtained after measurement. Then, we show in Appendix B2 that the action of
breeding on the v shifts is that of a convolution of the ingoing wave functions, and that a Gaussian error model for these shifts is
preserved under breeding. There, we also see that the action on the u shifts is that the ingoing wave functions of these shifts are
multiplied. Finally in Appendix B3, we show that for the u shifts an error model using the von Mises distribution is preserved
under breeding, yielding the states used in Sec. IV.

1. Breeding shifted grid states

The action B of a beam splitter is given by

q̂1 → (q̂1 − q̂2)/
√

2, p̂1 → (p̂1 − p̂2)/
√

2,

q̂2 → (q̂1 + q̂2)/
√

2, p̂2 → (p̂1 + p̂2)/
√

2, (B1)

where mode 1 is the target mode and mode 2 is the control mode.
Using conjugation one can see that two shifted grid states are transformed as

B |x1,y1,m〉1 |x2,y2,m〉2 = B smξ

(2π )2

∑
s,t

ei[y2(s+ x2
2π

)+y1(t+ x1
2π

)]eiq̂2ξsm(s+ x2
2π

)eiq̂1ξsm(t+ x1
2π

)B†B |p = 0〉1 |p = 0〉2

= smξ

(2π )2

∑
s,t

ei[y2(s+ x2
2π

)+y1(t+ x1
2π

)]e
i

q̂1+q̂2√
2

ξsm(s+ x2
2π

)
e
i

q̂1−q̂2√
2

ξsm(t+ x1
2π

) |p = 0〉1 |p = 0〉2

= smξ

(2π )2

∑
s,t

ei[y2(s+ x2
2π

)+y1(t+ x1
2π

)]

∣∣∣∣p = ξsm√
2

(
t + s + x2 + x1

2π

)〉
1

∣∣∣∣p = ξsm√
2

(
s − t + x2 − x1

2π

)〉
2

.

The invariance of the formal state |p = 0〉1 |p = 0〉2 under beam splitting can be understood from writing lim�→0 S(1/�) |vac〉 =
|p = 0〉 and conjugating the squeezing operators by beam splitters.

Now, we can easily compute the action of a measurement of mode 2 with result pout:

〈p̂2 = pout|B |x1,y1,m〉1 |x2,y2,m〉2

= smξ

(2π )2

∑
s,t

ei[y2(s+ x2
2π

)+y1(t+ x1
2π

)]δ

(
pout − ξsm√

2

(
s − t + x2 − x1

2π

)) ∣∣∣∣p = ξsm√
2

(
t + s + x2 + x1

2π

)〉
1

. (B2)

As a warmup, we consider the effect of the breeding step on two input modes both in a state of the form

|�in〉 =
∫ π

−π

du V (u) |u,v,m〉 ,

where V (u) is a wave function with normalization
∫ π

−π
du |V (u)|2 = 1 that will be chosen in Appendix B3. Switching to variables

x and y, using Eq. (B2), and substituting x̃2 = x2 − 2π
√

2pout

ξsm
, breeding then gives the output state:

|�out〉 = smξ

(2π )2

∫ π+z

−π+z

dx̃2

∫ π

−π

dx1 V1(x1)V2

(
x̃2 + 2π

√
2pout

ξsm

)∑
s,t

e
i[y2(s+ x̃2

2π
+

√
2pout
ξsm

)+y1(t+ x1
2π

)]

× δ

(
ξsm√

2

(
s − t + x̃2 − x1

2π

)) ∣∣∣∣p = ξsm√
2

(
t + s + x̃2 + x1

2π

)
+ pout

〉
1

,
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where z = 2π
√

2pout

ξsm
. We can move the integration region for x̃2 back as described in Eq. (A2). Then, note that the Dirac delta

distribution is only nonzero if s = t and x̃2 = x1: After moving the integration region back, x̃2 − x1 ∈ (−2π,2π ). The solutions
x̃2 − x1 = ±2π are a nullset; after applying the Dirac delta distribution, the second integral vanishes for these two solutions.
Using δ(x) = |a|δ(ax) we obtain

|�out〉 =
√

2

2π

∫ π

−π

dx̃2

∫ π

−π

dx1 V1(x1)V2

(
x̃2 + 2π

√
2pout

ξsm

)

×
∑

s

e
i[y2(s+ x̃2

2π
+

√
2pout
ξsm

)+y1(s+ x1
2π

)]
δ(x̃2 − x1)eipout q̂

∣∣∣∣p = ξsm√
2

(
2s + x̃2 + x1

2π

)〉
1

=
√

2

2π

∫ π

−π

dx1 V1(x1)V2

(
x1 + 2π

√
2pout

ξsm

) ∑
s

e
i[(y2+y1)(s+ x1

2π
)+y2

√
2pout
ξsm

]
eipout q̂

∣∣∣∣p = ξsm√
2

(
2s + 2x1

2π

)〉
1

.

With sm+1 = √
2sm, we finally have

|�out〉 =
√

2

2π

∫ π

−π

dx1 V1(x1)V2

(
x1 + 4πpout

ξsm+1

)∑
s

e
i[(y2+y1)(s+ x1

2π
)+y2

2pout
ξsm+1

]
eipout q̂

∣∣∣∣p = ξsm+1

(
s + x1

2π

)〉
1

. (B3)

2. Choice of wave function �(u,v)

We now take the input states in both modes with a wave function �(x,y) (obeying the conditions set forth previously), namely,
we choose

�(u,v) = 1

N V (u)
∞∑

s=−∞
eiusGsm�(v + 2πs), (B4)

where V (u) is again the normalized wave function to be chosen in Appendix B3, and Gsm� is a Gaussian distribution:

G�(v) = 1√
�

√
π

exp

(
− v2

2�2

)
.

The wave function’s dependence on v is thus that of a wrapped Gaussian distribution and the eius factor in Eq. (B4) is required
for the 2π periodicity of the states as explained below Eq. (A1). The normalization constant N is given by

N 2 =
∫ π

−π

du

∫ π

−π

dv |V (u)|2
∞∑

s,t=−∞
eiu(s−t)Gsm�(v + 2πs)Gsm�(v + 2πt)

=
∫ π

−π

du |V (u)|2
∞∑

s,t=−∞

1

2
eiu(s−t)e

− π2(s−t)2

(sm�)2

(
erf

(
π

sm�
(s + t + 1)

)
− erf

(
π

sm�
(s + t − 1)

))
sm��1−−−−→ 1. (B5)

In the limit sm� � 1, the exponential e
− π2(s−t)2

(sm�)2 enforces s − t = 0, while for the difference of error functions to be nonzero we
need s + t = 0, hence together one has s = t = 0. Note that sm ∈ (0,1], i.e., if � � 1, then also sm� � 1.

Using this wave function we can write the input state in one of the modes as

|�in〉 = 1

N

∫ π

−π

du

∫ π

−π

dv V (u)
∞∑

s=−∞
eiusGsm�(v + 2πs) |u,v,m〉 = 1

N

∫ π

−π

dx

∫ ∞

−∞
dy V (x)Gsm�(y) |x,y,m〉 .

We will assume that the Gaussian wave function of both modes has the same variance, and mean equal to zero. This choice is
justified if the outgoing Gaussians only depend on the round m, which we will show below.

From the result for breeding states with arbitrary superpositions of shifts in p̂, Eq. (B3), it follows that

|�out〉 =
√

2

2πN 2

∫ π

−π

dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 V1(x1)V2

(
x1 + 4πpout

ξsm+1

)
Gsm�(y1)Gsm�(y2)

×
∑

s

e
i[(y1+y2)(s+ x1

2π
)+y2

2pout
ξsm+1

]
eipout q̂

∣∣∣∣p = ξsm+1

(
s + x1

2π

)〉
,

=
√

2

2πN 2

∫ π

−π

dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 V1(x1)V2

(
x1 + 4πpout

ξsm+1

)
Gsm�(ỹ − y2)Gsm�(y2)

×
∑

s

e
i[ỹ(s+ x1

2π
)+y2

2pout
ξsm+1

]
eipout q̂

∣∣∣∣p = ξsm+1

(
s + x1

2π

)〉
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=
√

2sm+1�
√

π

2πN 2
e
− p2

out�
2

2ξ2

∫ π

−π

dx1

∫ ∞

−∞
dỹ V1(x1)V2

(
x1 + 4πpout

ξsm+1

)
Gsm+1�(ỹ)

×
∑

s

e
i[ỹ(s+ x1

2π
)+ỹ

pout
ξsm+1

]
eipout q̂

∣∣∣∣p = ξsm+1

(
s + x1

2π

)〉
.

Here, we used sm+1 = √
2sm and the substitution ỹ = y1 + y2 to write the integral over y2 as a convolution of Gaussian wave

functions. Comparing this state with the definition of shifted grid states, Eq. (A1), we see that the outgoing state has a “simple”
expression in terms of the shifted grid states with extended parameters:

|�out〉 =
√

2�
√

π√
ξN2

e
−( pout�

ξ
√

2
)2

∫ π

−π

dx1

∫ ∞

−∞
dỹ V1(x1)V2

(
x1 + 4πpout

ξsm+1

)
Gsm+1�(ỹ)

∣∣∣∣x1 + 2πpout

ξsm+1
,ỹ,m + 1

〉
.

With x̃ = x1 + 2πpout

ξsm+1
and Eq. (A2), we finally have

|�out〉 =
√

2�
√

π√
ξN 2

e
−( pout�

ξ
√

2
)2

∫ π

−π

dx̃

∫ ∞

−∞
dỹ V1

(
x̃ − 2πpout

ξsm+1

)
V2

(
x̃ + 2πpout

ξsm+1

)
Gsm+1�(ỹ) |x̃,ỹ,m + 1〉 (B6)

=
√

2�
√

π√
ξN 2

e
−( pout�

ξ
√

2
)2

∫ π

−π

du

∫ π

−π

dv V1

(
u − 2πpout

ξsm+1

)
V2

(
u + 2πpout

ξsm+1

) ∞∑
s=−∞

eiusGsm+1�(v + 2πs) |u,v,m + 1〉 . (B7)

Hence we conclude that the outgoing state has the same wave-function dependence in v as the ingoing states. The only change
is sm → sm+1. From this last equation we can also immediately see the action of breeding on the wave function V (u), i.e.,
V (u) → V (u + 2πpout

ξsm+1
)V (u − 2πpout

ξsm+1
).

3. Choice for wave function V (u)

As can be seen in Eq. (B7), the output state depends on a product of the form V1(u)V2(u). For some choices for the ingoing
wave functions, one can simplify V1(u)V2(u) = Vout(u), where all Vi are in the same class of functions. One such class of functions
is the set of von Mises distributions, which is closed under multiplication. Let

V (x − μ)κ = exp
[

κ
2 cos(x − μ)

]
√

2πI0(κ)
. (B8)

Assuming a von Mises wave function in u and a wrapped (signed) Gaussian wave function in v, the initial state of the system
is thus chosen as

|�in〉 = 1

N

∫ π

−π

du

∫ π

−π

dv Vκ (u − μ)
∞∑

s=−∞
eiusGsm�(v + 2πs) |u,v,m〉 = 1

N

∫ π

−π

dx

∫ ∞

−∞
dy Vκ (x − μ)Gsm�(y) |x,y,m〉 ,

(B9)

where Vκ (u) is the distribution defined in Eq. (B8). The normalization constant N has the same form as Eq. (B5), with the von
Mises wave function defined above taking the role of V (x). This is also the initial state used in the main text [see Eq. (9)]. Using
the result for a Gaussian error model in q̂ and an arbitrary wave function for p̂, Eq. (B6), the state after measurement is

|�out〉 =
√

2�
√

π√
ξN2N1

e
−( pout�

ξ
√

2
)2

∫ π

−π

dx̃

∫ ∞

−∞
dỹ Vκ2

(
x̃ + 2πpout

ξsm+1
− μ2

)
Vκ1

(
x̃ − 2πpout

ξsm+1
− μ1

)
Gsm+1�(ỹ) |x̃,ỹ,m + 1〉 , (B10)

where N1,N2 are the normalization constants of the initial state of modes 1 and 2, respectively. This expression can be simplified
with the following lemma.

Lemma B1. For a product of von Mises wave functions as defined in Eq. (B8) it holds that

Vκ1 (x − μ1)Vκ2 (x − μ2) =
√

I0(κ)

2πI0(κ1)I0(κ2)
Vκ (x − μ),

with

μ = −atan2(κ1 cos(μ1) + κ2 cos(μ2),κ1 sin(μ1) + κ2 sin(μ2)), κ2 = κ2
1 + κ2

2 + 2κ1κ2 cos(μ1 − μ2).

Proof. We can use the properties of linear combinations of trigonometric functions to show that the set of von Mises distributions
is closed under multiplication. We have

V (x − μ1)κ1V (x − μ2)κ2 = exp
[

κ1
2 cos(x − μ1) + κ2

2 cos(x − μ2)
]

2π
√

I0(κ1)I0(κ2)
.
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For the exponent on the right-hand side it holds that

κ1 cos(x − μ1) + κ2 cos(x − μ2) = [κ1 cos(μ1) + κ2 cos(μ2)] cos(x) + [κ1 sin(μ1) + κ2 sin(μ2)] sin(x)

=
√

κ2
1 + κ2

2 + 2κ1κ2 cos(μ1 − μ2) cos(x − μ) := κ cos(x − μ)

with μ,κ as in the claim. In the first step, we used cos(x − y) = cos(x) cos(y) + sin(x) sin(y). In the second step, we used
a cos(x) + b sin(x) = √

a2 + b2 cos[x + atan2(a,b)]. �
Using this lemma, the outgoing state is given by

|�out〉 =
√

I0(κ)�√
πI0(κ1)I0(κ2)ξN 2

2 N 2
1

e
− p2

out�
2

2ξ2

∫ π

−π

du

∫ π

−π

dv Vκ (u − μ)
∞∑

s=−∞
eiusGsm+1�(v + 2πs), |u,v,m + 1〉

with

μ = −atan2
(

κ2 cos

(
μ2 − 2πpout

ξsm+1

)
+ κ1 cos

(
μ1 + 2πpout

ξsm+1

)
, κ2 sin

(
μ2 − 2πpout

ξsm+1

)
+ κ1 sin

(
μ1 + 2πpout

ξsm+1

))

κ2 = κ2
2 + κ2

1 + 2κ2κ1 cos

(
μ2 − μ1 − 4πpout

ξsm+1

)
.

This state is not yet normalized. However, we can use Eq. (B5) to obtain Nout and both normalize this state and obtain the
probability distribution of measurement results pout as written in the main text.

[1] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310
(2001).

[2] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
[3] J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and P.

Grangier, Phys. Rev. A 67, 012105 (2003).
[4] J. Etesse, R. Blandino, B. Kanseri, and R. Tualle-Brouri, New J.

Phys. 16, 053001 (2014).
[5] K. Duivenvoorden, B. M. Terhal, and D. Weigand, Phys. Rev. A

95, 012305 (2017).
[6] S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, Eur. Phys.

J. D 37, 283 (2006).
[7] B. Travaglione and G. J. Milburn, Phys. Rev. A 66, 052322

(2002).
[8] S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, Europhys.

Lett. 68, 323 (2004).
[9] K. R. Motes, B. Q. Baragiola, A. Gilchrist, and N. C. Menicucci,

Phys. Rev. A 95, 053819 (2017).
[10] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards,

I. A. Fedorov, and A. I. Lvovsky, Nat. Photonics 11, 379 (2017).
[11] B. M. Terhal and D. Weigand, Phys. Rev. A 93, 012315 (2016).
[12] C. Fluehmann, Preparation of grid state qubits by sequential

modular position measurements of trapped ions motion, Talk
and poster at QEC 2017 (unpublished).

[13] D. Kienzler, H.-Y. Lo, V. Negnevitsky, C. Flühmann, M.
Marinelli, and J. P. Home, Phys. Rev. Lett. 119, 033602 (2017).

[14] H. M. Vasconcelos, L. Sanz, and S. Glancy, Opt. Lett. 35, 3261
(2010).

[15] J. Etesse, M. Bouillard, B. Kanseri, and R. Tualle-Brouri, Phys.
Rev. Lett. 114, 193602 (2015).

[16] H. Wiseman and G. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, England,
2010).

[17] K. M. Svore, M. B. Hastings, and M. Freedman, Quant. Inf.
Comp. 14, 306 (2014).

[18] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information, Cambridge Series on Information and the Natural
Sciences (Cambridge University Press, Cambridge, England,
2000).

[19] A. Y. Kitaev, arXiv:quant-ph/9511026.
[20] D. W. Berry, H. M. Wiseman, and J. K. Breslin, Phys. Rev. A

63, 053804 (2001).
[21] S. Glancy and E. Knill, Phys. Rev. A 73, 012325 (2006).
[22] K. Mardia, Z. Birnbaum, and E. Lukacs, Statistics of Directional

Data (Elsevier, New York, 2014).
[23] S. R. Jammalamadaka and A. Sengupta, Topics in Circular

Statistics (World Scientific, Singapore, 2001).
[24] B. V. Pal’tsev, Math. Notes 65, 571 (1999).
[25] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw,

F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong, R. Filip, O.
Morin, and J. Laurat, Phys. Rev. Lett. 115, 023602 (2015).

[26] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
Science 342, 607 (2013).

[27] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B.
Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mir-
rahimi, M. H. Devoret, and R. J. Schoelkopf, Nature (London)
536, 441 (2016).

[28] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold, L.
Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Nat.
Phys. 13, 882 (2017).

[29] Y. Yin, Y. Chen, D. Sank, P. J. J. O’Malley, T. C. White, R.
Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C.
Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland,
and J. M. Martinis, Phys. Rev. Lett. 110, 107001 (2013).

022341-13

https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevLett.112.120504
https://doi.org/10.1103/PhysRevA.67.012105
https://doi.org/10.1103/PhysRevA.67.012105
https://doi.org/10.1103/PhysRevA.67.012105
https://doi.org/10.1103/PhysRevA.67.012105
https://doi.org/10.1088/1367-2630/16/5/053001
https://doi.org/10.1088/1367-2630/16/5/053001
https://doi.org/10.1088/1367-2630/16/5/053001
https://doi.org/10.1088/1367-2630/16/5/053001
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1140/epjd/e2005-00306-3
https://doi.org/10.1140/epjd/e2005-00306-3
https://doi.org/10.1140/epjd/e2005-00306-3
https://doi.org/10.1140/epjd/e2005-00306-3
https://doi.org/10.1103/PhysRevA.66.052322
https://doi.org/10.1103/PhysRevA.66.052322
https://doi.org/10.1103/PhysRevA.66.052322
https://doi.org/10.1103/PhysRevA.66.052322
https://doi.org/10.1209/epl/i2004-10203-9
https://doi.org/10.1209/epl/i2004-10203-9
https://doi.org/10.1209/epl/i2004-10203-9
https://doi.org/10.1209/epl/i2004-10203-9
https://doi.org/10.1103/PhysRevA.95.053819
https://doi.org/10.1103/PhysRevA.95.053819
https://doi.org/10.1103/PhysRevA.95.053819
https://doi.org/10.1103/PhysRevA.95.053819
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1038/nphoton.2017.57
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1103/PhysRevLett.119.033602
https://doi.org/10.1103/PhysRevLett.119.033602
https://doi.org/10.1103/PhysRevLett.119.033602
https://doi.org/10.1103/PhysRevLett.119.033602
https://doi.org/10.1364/OL.35.003261
https://doi.org/10.1364/OL.35.003261
https://doi.org/10.1364/OL.35.003261
https://doi.org/10.1364/OL.35.003261
https://doi.org/10.1103/PhysRevLett.114.193602
https://doi.org/10.1103/PhysRevLett.114.193602
https://doi.org/10.1103/PhysRevLett.114.193602
https://doi.org/10.1103/PhysRevLett.114.193602
http://arxiv.org/abs/arXiv:quant-ph/9511026
https://doi.org/10.1103/PhysRevA.63.053804
https://doi.org/10.1103/PhysRevA.63.053804
https://doi.org/10.1103/PhysRevA.63.053804
https://doi.org/10.1103/PhysRevA.63.053804
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1007/BF02743167
https://doi.org/10.1007/BF02743167
https://doi.org/10.1007/BF02743167
https://doi.org/10.1007/BF02743167
https://doi.org/10.1103/PhysRevLett.115.023602
https://doi.org/10.1103/PhysRevLett.115.023602
https://doi.org/10.1103/PhysRevLett.115.023602
https://doi.org/10.1103/PhysRevLett.115.023602
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.1243289
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/nphys4143
https://doi.org/10.1038/nphys4143
https://doi.org/10.1038/nphys4143
https://doi.org/10.1038/nphys4143
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1103/PhysRevLett.110.107001



