

Delft University of Technology

Know when to listen
SDN-based protocols for directed IoT networks
Alves, Renan; Borges Margi, Cintia; Kuipers, Fernando A.

DOI
10.1016/j.comcom.2019.12.023
Publication date
2020
Document Version
Accepted author manuscript
Published in
Computer Communications

Citation (APA)
Alves, R., Borges Margi, C., & Kuipers, F. A. (2020). Know when to listen: SDN-based protocols for directed
IoT networks. Computer Communications, 150, 672-686. https://doi.org/10.1016/j.comcom.2019.12.023

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comcom.2019.12.023
https://doi.org/10.1016/j.comcom.2019.12.023

Know when to listen: SDN-based protocols for directed IoT networksI,II

Renan Cerqueira Afonso Alvesa,1,∗, Cintia Borges Margia, Fernando A. Kuipersb

aUniversidade de São Paulo – São Paulo, Brazil
bDelft University of Technology – Delft, The Netherlands

Abstract

Low-power wireless networks are an integral part of the Internet of Things, composed of resource-

constrained devices harvesting ambient information. The appearance of unidirectional links is characteristic

of low power wireless networking due to physical effects, device heterogeneity and manufacturing imperfec-

tions. Despite the prevalence of unidirectional links, most routing and radio duty cycling protocols designed

for these networks do not account for such links. We provide unidirectional-link-capable protocols and study

the impact of using such links on network performance indicators, such as the data delivery ratio, delay and

energy consumption. Our protocols are flexible and flooding-free, leveraging centralized knowledge provided

by the Software-Defined Networking paradigm. Our experiments reveal that, while unidirectional links must

be detected, using them for routing enhances network performance only if the unidirectional links are long.

Keywords: Radio Duty Cycling, Software-Defined Networking, Unidirectional Links, Wireless Sensor

Networks

1. Introduction

The Internet of Things (IoT) is a term used to

describe the trend of inter-connecting everyday ob-

jects and sensors via the internet [3]. It spans sub-

IThis paper is an extension of work originally presented at

the 15th Wireless On-demand Network systems and Services

Conference (WONS 2019) [2].
IIThis study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior - Brazil

(CAPES) - Finance Code 001.
∗Corresponding author
Email addresses: renanalves@usp.br (Renan

Cerqueira Afonso Alves), cintia@usp.br (Cintia Borges

Margi), f.a.kuipers@tudelft.nl (Fernando A. Kuipers)
1Renan C. A. Alves is supported by grants

#2016/21088-1 and #2018/11295-5, São Paulo Research

Foundation (FAPESP)

topics such as agriculture automation, smart cities,

and eHealth.

Low-power wireless networks are expected to play

a key role in realizing the IoT, since devices oper-

ating on batteries or harvesting energy require effi-

cient wireless communication to save on scarce en-

ergy resources.

Homogeneous low-power wireless networks are

prone to the existence of unidirectional links, which

occur spontaneously due to non-isotropic anten-

nas, multipath fading, and variations during the

radio/antenna manufacturing process [30]. The

occurence of unidirectional links is even higher

in heterogeneous networks, due to inherent differ-

Preprint submitted to Elsevier August 15, 2019

© 2019 Manuscript version made available under CC-BY-NC-ND 4.0 license https://
creativecommons.org/licenses/by-nc-nd/4.0/

ences in transmission power across device types,

or through purposely increasing the transmission

power of nodes plentiful in energy.

Despite the ubiquity of unidirectional links, net-

work protocols tailored to low-power wireless com-

munication are not aware of unidirectional links.

This is in spite of the large amount of research ef-

fort into low-power routing and media access con-

trol (MAC). Some protocols blacklist unidirectional

links (e.g. AODV [27]), while other protocols may

not operate correctly in the presence of such links.

As far as media access control and radio duty

cycling (RDC) are concerned, unidirectional links

pose the challenge of operating without link-layer

acknowledgements. In particular, asynchronous

RDCs use acknowledgment packets to reduce the

average duty cycle [11]. Bidirectional links are

needed to negotiate a moment in which both

sender and receiver are awake and able to com-

municate. For example, the classic S-MAC pro-

tocol [38] requires that neighboring nodes ex-

change their wake-up schedules, in addition to us-

ing a Request-To-Send/Clear-To-Send (RTS/CTS)

scheme for medium access.

From the routing-layer perspective, the challenge

in leveraging unidirectional links comes from ef-

ficiently computing routes that include unidirec-

tional links. This computation is not simple; it

involves disseminating the outbound neighborhood

information to the sender endpoint of the unidirec-

tional link.

The outbound neighborhood of a network node A

comprises all the other nodes that can directly re-

ceive messages from A. Analogously, the inbound

neighborhood of network node A is formed by all

the other nodes that can directly send messages

to A. Take the network depicted in Figure 1 as an

example. Node 2’s inbound and outbound neigh-

borhoods are composed of the same nodes, while

node 3’s outbound neighborhood contains nodes 2

and 7 only, but the inbound neighborhood also in-

cludes node 6.

Figure 1: Network with unidirectional links. How can node

4 know it reaches 7?

On the one hand, the inbound neighbors are dis-

covered by simply receiving messages. On the other

hand, the outbound neighbors are the ones used for

packet forwarding, although this information is not

as easily obtained. If the link is unidirectional, the

outbound neighbor needs to advertise its existence

back to the sender through a multihop path. Two

questions arise at this point: 1) are the unidirec-

tional links useful; and 2) how should the reverse

path to the inbound neighbor be calculated.

Considering the example in Figure 1, the link

from node 4 to node 7 reduces the path length by

three hops in comparison to the fully bidirectional

path. Therefore, unidirectional links potentially re-

duce the overall energy consumption in a wireless

network. But to use the 4→7 unidirectional link,

node 7 needs to advertise the link existence through

nodes 3, 2, and 1. How could node 7 obtain this re-

verse path?

In other words, our goal is to use the unidirec-

tional links to enhance overall performance on low

2

power wireless networks. The problems that must

be addressed to achieve this goal are producing both

an efficient means of route calculation and of dis-

semination of reachability information, and design-

ing a radio duty cycling algorithm able to handle

unidirectional links.

We argue that centralization of network control

is a simple and effective solution for using unidi-

rectional links in low-power wireless networks. In

terms of network architecture, control-plane cen-

tralization matches the Software-Defined Network-

ing (SDN) paradigm. If network control is central-

ized, network nodes are exempted from discover-

ing their outbound neighborhoods, since the cen-

tralized entity (or the controller, in SDN jargon) is

responsible for calculating forwarding routes. The

inbound neighborhood information is enough to en-

able the controller to calculate routes containing

unidirectional links. Additionally, the centraliza-

tion eases the wake-up phase negotiation process

for radio duty cycling protocols.

This paper provides the auxiliary protocols

needed for implementing the SDN paradigm in di-

rected low-power wireless networks.

One of the protocols is the controller discovery

protocol described in Section 2.3, whose objective is

to provide a communication channel between every

node in the network and the controller. This proto-

col is needed because there is no dedicated control

channel in wireless networks (out-of-band control)

as is the case in wired SDN (in-band control).

The other protocol is the neighbor discovery pro-

tocol, responsible for collecting inbound neighbor-

hood information. Each node collects neighbor-

hood information and sends it to the network con-

troller. The protocol described in Section 2.2 in-

cludes mechanisms to curb overhead, to estimate

link quality, and to detect neighbor departure.

We specify an asynchronous radio duty cycling

protocol in Section 2.1. To the best of our knowl-

edge, it is the first optimized RDC able to cope with

unidirectional links. It uses the SDN controller to

disseminate synchronization information.

Section 3 contains our experimental method, in-

cluding simulation tools, protocol parameters and

network topologies. The experiments were designed

towards answering the question, “What are the

gains from exploring unidirectional links in low-

power networks?”.

The results are presented in Section 4, organized

by each evaluated metric, namely data delivery,

link discovery rate, data delay, energy consumption

and control overhead. The results show that using

long-range unidirectional links is beneficial for de-

lay, while the additional control overhead does not

payoff in large topologies.

We present related work in Section 5, and our

conclusions in Section 6.

2. SDN-based solution for using unidirec-

tional links

This section describes the protocols designed to

support unidirectional links, namely, the radio duty

cycling, neighbor discovery and controller discovery

algorithms.

2.1. Controller-aided radio duty cycling

Energy efficiency is a key performance indicator

for Wireless Sensor Networks (WSN) and IoT. Since

3

the main source of energy consumption in such net-

works comes from radio communication [31], radio

duty cycling (RDC) mechanisms have been devised

to reduce the amount of time the transceiver is ac-

tive (in transmitting or receiving states).

RDCs are classified as either synchronous or

asynchronous. Synchronous protocols rely on

TDMA and require a setup phase to compute the

transmission schedule. Conversely, asynchronous

RDCs operate without prior scheduling and do not

require tight global clock synchronization.

Therefore, we focus on adapting asynchronous

RDCs for unidirectional links. ContikiMAC [11]

is a state-of-the-art asynchronous protocol. It uses

the preamble sampling technique, in which a sender

transmits a preamble with the objective of warning

the receiver of the upcoming packet transmission.

Receivers, in turn, periodically check the medium

for ongoing transmissions.

ContikiMAC enhances the basic preamble sam-

pling technique, reducing the preamble duration

and, consequently, overall energy consumption.

The main techniques employed by ContikiMAC are

preamble packetization, early acknowledgement and

phase lock.

Preamble packetization consists of strobing mul-

tiple copies of the packet instead of transmitting a

long preamble without useful information. Packeti-

zation enables the receiver to send an early acknowl-

edgement, thus shortening the preamble stream.

In addition, the sender can register the time at

which it received the acknowledgement, calculate

the phase shift between sender and receiver wake-up

times and delay the start of preamble transmission.

Figure 2 exemplifies packet transmissions with

two RDCs: ContikiMAC and a simple preamble

sampling protocol with long preambles. The first

packet transmission terminates earlier in Contiki-

MAC due to an early acknowledgement, while the

second preamble is shorter due to the phase lock

mechanism. It is noteworthy that the radio is ac-

tive for a shorter amount of time in ContikiMAC.

However, ContikiMAC’s improvements rely on

the existence of a bidirectional link; without the

receiver sending acknowledgements, the improve-

ments do not work.

We leverage the centralized control provided by

SDN to work around the lack of acknowledgements.

The preamble packets are timestamped, so the re-

ceiver is able to calculate the wake-up phase shift

from the sender. The receiver informs the controller

about the phase shift, which, in turn, informs the

sender. In the next transmission, the sender trans-

mits only the preamble packets at the moment the

receiver is expected to be listening. Figure 3a shows

a transmission before the phase lock, in which the

packet is strobed throughout the whole listening in-

terval. Packet number 3 is received, and the re-

ceiver informs the controller about the calculated

phase shift. In Figure 3b, the sender is already

aware of the phase shift, and transmits only packet

number 2, which works as a wake-up tone, and

packet number 3, which is the one actually received.

The timestamp value encoded in the strobed

packets is the time elapsed since the sender last

woke up for medium checking. The receiver is only

able to register the moment a packet is successfully

received, thus the phase shift PS is calculated as

PS = Ts−(Tr +∆p), where Ts is the time stamped

in the received packet (in the sender time base), Tr

4

Sender

Receiver

(a) ContikiMAC

Sender

Receiver

(b) Long preamble

Idle listening Sending preamble Receiving preamble Sending data Receiving data

(c) Color code

Figure 2: Examples of preamble sampling techniques. ContikiMAC uses techniques to reduce energy footprint.

Sender

Receiver

0 1 2 3 4 5
Inform

controller

(a) Previous to phase lock

Sender

Receiver

2 3
TX

request

(b) After phase lock

Figure 3: Unidirectional RDC: the controller informs the

sender when it should start preamble transmission.

is the end-of-reception time in the receiver and ∆p

is the packet duration in milliseconds.

In subsequent transmissions, the sender uses the

phase shift information to transmit the first packet

(wake-up tone) at the moment the receiver is check-

ing the medium for transmissions. The sender

transmits at time t = PS − ∆p+2∗CCA+∆CCA
2 ,

where CCA is the time it takes to perform a clear

channel assessment and ∆CCA is the time between

two consecutive CCAs.

This choice of transmission time increases ro-

bustness against clock drifts, since, if the drift is

zero, the receiver will wake up in the middle of

the probe packet. If the receiver detects that the

phase shift changed to an extent that is threaten-

ing successful packet transmissions, it should send

the updated phase shift to the controller or di-

rectly to the sender. The phase shift update is

triggered when the difference between the calcu-

lated value and last informed phase shift exceeds a

given threshold. Complementarily, the sender could

use successive phase shift updates to estimate the

clock drift and automatically recalculate the cur-

rent phase shift estimation, but this feature is not

included in our implementation.

If the clock drift is too large, the receiver may

miss packets from the sender, which would not be

aware of the problem due to the lack of link-layer

acknowledgements. One way to alleviate this is-

sue is to include timestamps in broadcast packets,

for which the early acknowledgement and phase lock

techniques are not used. Therefore, broadcast pack-

ets can be used for resynchronization.

5

If too many packets are lost, the sender will even-

tually be removed from the receiver’s neighbor ta-

ble. Consequently, the controller will instruct the

sender to no longer use the receiver as a relay.

Note that, in the case of communication over

bidirectional links, the RDC should operate as the

original ContikiMAC protocol.

2.1.1. Implementation details

This section contains implementation details and

enhancements needed for the unidirectional RDC

deployment.

The radio driver provides a function to load pack-

ets in the radio memory and a function to actu-

ally transmit a previously loaded packet. In the

original ContikiMAC implementation, a packet is

loaded to the radio only once before a sequence of

strobes, while the transmit function is called repeat-

edly. However, the unidirectional RDC requires to

load the packet before every strobe transmission,

since the phase value has to be updated in the

transceiver’s memory.

The load function takes a non-negligible amount

of time, therefore it is not feasible to load the packet

immediately before the packet transmission while

guaranteeing the timing constraints of the proto-

col. The workaround is to load the packet to the

radio right after issuing a transmission. As a conse-

quence, the packets contain the phase of the previ-

ously transmitted strobe packet, and the time cal-

culations have to be adjusted accordingly.

The precision of the phase shift needs to be at

least 0.1 milliseconds, since a 50-byte packet takes

approximately 1.6 ms to be transmitted. In our im-

plementation, we use msp430 clock ticks to measure

the phase shift, which provides a precision of ≈ 0.03

ms.

The packets containing phase information are not

provided with end-to-end reliability. To make sure

the phase information has reached its final destina-

tion, the sender uses a bit in the packet header to

inform the receiver that it knows the phase. The

receiver retransmits the phase information if it re-

ceives unacknowledged unicast packets without the

known phase bit set.

To increase robustness against clock drifts, we

use the standard ContikiMAC guard time to send

more strobe packets instead of only two (the wake-

up tone and the received packet).

2.2. Improved neighbor discovery

The classic technique to perform Neighbor Dis-

covery (ND) is to broadcast beacon packets at con-

stant intervals and to assume the beacon sender is

reachable by the receiver. However, due to the cen-

tralized nature of SDN, this assumption is unnec-

essary.

Advantages of the beacon broadcasting approach

are the simplicity of the protocol and the asyn-

chronous operation. Unfortunately, this simplicity

also leads to a wasting of resources since beacon

packets do not serve any other purpose and increase

medium congestion.

By leveraging overhearing (Section 2.2.1) and

non-constant beacon intervals (Section 2.2.2), we

decrease the use of discovery packets at the expense

of a small increase in complexity.

In Section 2.2.3, we describe how to integrate the

task of neighbor discovery with link quality estima-

tion. Furthermore, since discovery algorithms of-

6

ten focus on adding nodes in the neighbor tables

and neglect node departure detection, we describe

a scheme for detecting node unreachability consid-

ering unidirectional links in Section 2.2.4.

2.2.1. Neighbor discovery by overhearing

Neighbor discovery by overhearing, also known

as passive neighbor discovery, is an inexpensive way

of detecting surrounding nodes [37, 5]. However it

may yield inconsistent discovery delays and hinder

node departure detection. Therefore, we propose

to jointly use passive and active discovery. The

purpose of beacon packets is to advertise sender

existence. However, this can be achieved by any

broadcast packet, as long as the neighbor discov-

ery protocol is informed of the reception and the

addressing information is correct.

Unicast packets may also be used for discovery

due to the broadcast nature of a wireless medium.

However if the network uses an RDC, unicast pack-

ets are unlikely to be overheard by all neighbors,

thus unicast packets cannot be used as a substitute

for ND beacons.

Relying solely on overhearing increases the un-

certainty of the discovery delay, as there are no

guarantees of packet transmission by other proto-

cols or applications. To overcome this drawback, a

node should send periodic beacons in the absence

of other packet transmissions. To achieve the de-

sired behavior, each node sets a timer to transmit

a beacon packet according to the default interval.

Every time any broadcast packet is transmitted, the

timer is reset, postponing the beacon transmission.

This ensures a minimum packet transmission rate,

guaranteeing continuous discovery while avoiding

unnecessary beacons.

2.2.2. Adaptive beacon interval

Maintaining a constant beacon transmission rate

is hardly the optimal strategy for saving network

resources. A node should transmit more often at

boot to enforce quick detection by peer nodes, while

fewer packets may need to be transmitted when the

network connections are stable. Therefore varying

the timer interval decreases initial discovery delay

and further decreases the number of discovery pack-

ets. By default, we set the initial interval to 10 sec-

onds plus a random value based on the node id, to

avoid repeated collisions. Every time a beacon is

transmitted, the interval is doubled up to a maxi-

mum value (set to 2 minutes).

Using adaptive beacon intervals integrates almost

seamlessly with overhearing. The only consequence

being, as the transmission timer is increased when

a beacon is transmitted and the overhearing mech-

anism avoids beacon transmission, that it may take

longer to reach the maximum beacon interval.

2.2.3. Link quality estimation (LQE)

To the best of our knowledge, there has been

hardly any work on link quality estimation over

unidirectional links. Most packet reception ratio

(PRR)-based estimators are based on acknowledged

messages and calculate the metric at the transmit-

ter (such as ETX [9], F-ETX [6], and EAR [20]).

An alternative to PRR-based estimators are the

hardware-based estimators, such as LQI and RSSI.

However, such estimators are hardware-dependent

and inaccurate [4].

ETF (Expected number of Transmissions over

7

Forward links) estimates the delivery at the re-

ceiver by the ratio of received probe packets over

the transmitted probe packets [30]. However, im-

plementation details are not provided, for example,

how a node knows the number of transmitted probe

packets, what triggers a metric calculation, and how

to estimate the time window.

We provide an LQE that estimates the link qual-

ity at the receiver and does not rely on link-layer

acknowledgements, as ETF. Moreover, it does not

rely on probes and employs a Moving Average al-

gorithm similar to Woo and Culler [36].

The receiver node maintains the status history

(success or failure) of the last n messages from each

inbound neighbor. However, the history is updated

only when successfully receiving a message, as lost

messages are not detectable.

The number of lost messages between success-

ful receptions are calculated according to sequence

numbers. A sender maintains individual sequence

numbers for each outbound neighbor and for the

broadcast address. Receivers calculate the number

of lost packets as the difference between the current

and the last received sequence number minus one.

The link quality is estimated as the number of

losses over the number of entries in the history. The

loss rate is preferred over the success rate to provide

an additive routing metric.

The history size is a key parameter, as it di-

rectly influences the estimator reactivity, stability

and granularity. Also, in the context of Software-

Defined Wireless Sensor Networking (SDWSN),

LQE is also responsible for triggering the ND algo-

rithm to send a neighbor report packet to the con-

troller due to differences between the last reported

link quality estimate and the current estimate.

We have performed experiments to understand

the effect of history size on the tradeoff between es-

timation error and reactivity. We have also studied

the threshold to send updates to the controller.

Table 1 shows the mean absolute error (MAE)

and the maximal error obtained from filling a his-

tory buffer from a Bernoulli distribution with the

given success probabilities (p). The values are ex-

tracted from 100k samples, the MAE was extracted

from all observable samples, while the maximum er-

ror was assessed only after filling the history buffer.

Success probability (p)

N 0.2 0.4 0.7 0.9

MAE

8 0.131 0.144 0.131 0.084

16 0.086 0.101 0.114 0.060

32 0.059 0.069 0.073 0.042

Max

error

8 0.675 0.600 0.575 0.650

16 0.487 0.537 0.387 0.338

32 0.331 0.350 0.325 0.275

Closest

value

8 0.25 0.375 0.75 0.875

16 0.25 0.375 0.6875 0.875

32 0.1875 0.40625 0.6875 0.90625

MAE

to last

value

8 0.137 0.137 0.139 0.061

16 0.083 0.098 0.091 0.047

32 0.057 0.076 0.065 0.048

TX per

100 pkg

8 25.31 21.10 12.14 2.69

16 11.58 10.47 5.79 1.12

32 7.24 6.22 3.41 0.85

Table 1: Influence of history size on LQE metrics.

As expected, a larger history yields less errors:

doubling the history size causes a reduction of ap-

proximately 30% in the mean absolute error. Maxi-

mum error values are not as consistent, but an over-

all decrease is observed.

8

In the context of SDWSN, the neighbor discovery

algorithm is responsible for keeping the controller

up-to-date with the link qualities in the network.

The decision to send an update packet to the con-

troller is based on the difference between the last

reported link quality estimate and the current esti-

mate. The controller is updated if the difference ex-

ceeds a certain threshold. A larger threshold results

in less packets sent to the controller, at the cost of

requiring more data to achieve a significant change

in the link quality. Therefore, there is a trade-off

between overhead and information freshness.

We analyze this trade-off by studying binomial

distribution properties. The parameters of a bino-

mial distribution are the success probability p and

number of trials n. The distribution is defined for

integer values k ∈ [0, n]. Considering p = 50%, as

it yields the largest variance for binomial distribu-

tions, we calculate the values of k around the distri-

bution average (pn = n
2), such that their probabili-

ties sum up to 80%. This calculation gives k ∈ [3, 5]

for n = 8, k ∈ [6, 10] for n = 16 and k ∈ [13, 19] for

n = 32, representing a threshold of 12.5 percentage

points for n = 8 or n = 16, and 9.375 percentage

points for n = 32.

Based on these thresholds, the mean absolute er-

ror to the last transmitted value is measured as ex-

hibited in Table 1. We observe that the error is

in the same order of magnitude as the local mean

error. Also in the table, we show the number of up-

dates triggered at every 100 samples, which can be

interpreted as the amount of unnecessary neighbor

reports caused by statistical noise. The amount of

reports is larger for low delivery probability and for

smaller n.

Table 2 shows experiments regarding the reac-

tivity by changing the success probability during

the sampling experiment. The crossing value repre-

sents the average number of trials until the reported

value is within 12.5% of the new probability, while

the first report represents the average number of

trials until a neighbor report is issued.

Transitions

0.9 to 0.8 to 0.3 to 0.2 to

N 0.8 0.9 0.2 0.3

Crossing

value

8 8.5 3.6 15.2 10.8

16 10.2 4.4 19.2 7.7

32 6.0 6.8 14.4 7.0

First

report

8 10.3 10.8 17.4 10.0

16 20.6 23.5 29.4 16.2

32 36.2 45.5 44.7 23.8

0.9 to 0.2 to 0.6 to 0.4 to

0.2 0.9 0.4 0.6

Crossing

value

8 17.7 7.7 9.6 4.8

16 25.5 13.8 13.2 7.4

32 36.3 26.9 20.7 16.0

First

report

8 7.8 2.3 8.5 5.0

16 9.1 3.2 15.5 9.2

32 10.8 4.2 20.4 14.4

Table 2: Reactivity study.

The crossing value is smaller when the success

probability suffers little variations in comparison to

when large variations occur. The reason is that

the last reported value is probably already close or

even already within the 12.5% range of the new

probability.

If the probability changes abruptly (e.g. tran-

sition 0.2 → 0.9) the results show that the his-

tory buffer needs to be overwritten to achieve a

9

good estimation. On the other hand, the first re-

port occurs quicker, meaning that the estimator de-

tects a change in the probability, but avoids abrupt

changes in the estimation.

Observing all values, we chose 16 as history size

as the experiments indicate a balance between ac-

curacy and reactivity.

2.2.4. Node Unreachability Detection

Detecting node departure is a tricky task as both

false positives and false negatives lead to dire con-

sequences for the established flows, causing route

recalculations and decreasing the network packet

delivery rate.

If a node knows it is moving or its battery is low,

it could send a message advertising this informa-

tion to the neighborhood (active departure detec-

tion). However, devices are usually not provided

with appropriate hardware to obtain such informa-

tion. Also, the cause of the link failure is often

oblivious to the node, e.g., due to environmental

changes. Therefore, we focus on passive node de-

parture detection. The periodic beacon transmis-

sion is the baseline for the detection, as it sets a

minimum packet transmission rate.

A receiving node knows at least one packet was

lost if it has not received messages from a given

neighbor for a time interval greater than the cur-

rent beacon interval. As the beacon interval is not

constant, the interval must be included within the

packets, increasing the beacon packet size.

A neighbor is removed from the neighbor table if

it fails to deliver messages for a period longer than

a multiple of the beacon interval, the unreachability

threshold t.

The threshold t is precalculated based on the cur-

rent estimated loss rate r (provided by the LQE).

Considering a maximum false negative rate of 1%,

the threshold t is calculated as the t such that

rt < 1%. The value of t is limited to a minimum

of 2, to avoid false positives, and to a maximum

of 8, to avoid extending the departure detection.

Threshold values and the corresponding false nega-

tive rate are shown in Table 3 considering all pos-

sibilities of a 16-bit estimation.

Loss rate estimate Threshold False negative rate

0.00% 2 0.00%

6.25% 2 0.39%

12.50% 3 0.20%

18.75% 3 0.66%

25.00% 4 0.39%

31.25% 4 0.95%

37.50% 5 0.74%

43.75% 6 0.70%

50.00% 7 0.78%

56.25% 8 1.00%

62.50% 8 2.33%

68.75% 8 4.99%

75.00% 8 10.01%

81.25% 8 18.99%

87.50% 8 34.36%

93.75% 8 59.67%

Table 3: Loss threshold to remove a neighbor from the neigh-

bor table.

2.3. Improved controller discovery

The controller discovery problem is inherent to

SDWSN and requires a global algorithm to solve

the general unidirectional link case. Particularly in

unidirectional circle topologies, such as illustrated

10

in Figure 4a, a global algorithm is required. For ex-

ample, the only way for node 7 to know it reaches

the controller directly is for that information to

propagate via node 1 throughout node 6.

(a) (b) (c)

Figure 4: a) Unidirectional circle. b) Network with unidirec-

tional links and a bidirectionally connected component. c)

Example network.

If the network graph contains a bidirectionally

connected component, that is, the topology graph

is still connected if all unidirectional links are re-

moved, as the example in Figure 4b, then controller

discovery can be solved by a local algorithm. We

believe it takes very specific radio and environmen-

tal conditions to result in a pure unidirectional net-

work. Therefore, the existence of a bidirectionally

connected component is plausible in practice.

With this assumption in mind, building a tree

rooted at the controller provides an efficient so-

lution to the problem, although nodes out of the

bidirectionally connected component are not able

to join the network. Since the route set by the con-

troller discovery is temporary, the algorithm does

not seek the optimal route in terms of link quality

and relies on hop count to build the tree.

The controller is initialized with the minimum

hop count value, while the other nodes are initial-

ized with the maximum value. The controller dis-

covery packets contain the current hop count to-

wards the controller and the set of known inbound

neighbors (obtained from the neighbor discovery

protocol), so the receivers can check if the link is

symmetric.

Each node checks its neighbor table size at ex-

ponentially increasing intervals (up to a maximum

value) and transmits controller discovery packets if

the number of neighbors increased. Upon receiv-

ing a controller discovery packet, the node checks if

there is a bidirectional link to the sender and if the

hop count is better than the current value. If both

conditions are true, the next hop towards the con-

troller and the hop count are updated and the SDN

layer is informed of the discovery. Also, a controller

discovery packet is scheduled for transmission, re-

gardless of neighborhood changes.

A node N1 also transmits a controller discovery

packet whenever it already knows how to reach the

controller and receives a controller discovery packet

with the maximum metric from node N2. This con-

dition indicates N2 still does not know a next hop

towards the controller and N1 is a next hop candi-

date. This procedure is intended to speed up the

discovery by late nodes and allow new nodes to join

the network after the initial bootstrap.

Although an individual node does not know

whether the other nodes have already obtained a

valid controller route, the controller discovery al-

gorithm eventually stops sending messages if the

network topology is stable and the nodes’ neigh-

borhoods remain constant.

Take the network of Figure 4c as an example.

First, the controller detects nodes 1, 2, and 3 as

inbound neighbors and transmits a controller dis-

covery beacon with this information. As the links

are bidirectional, these nodes can reach the con-

troller directly. In the next round, nodes 1, 2, and

11

3 transmit their own beacon with neighborhood in-

formation. Node 2 does not switch the next hop to

1 or 3, because it is a longer route. Node 4 sets the

next hop as node 3, since the beacon received from

node 2 does not contain its address, and transmits

a beacon to advertise its discovery. At this point,

controller discovery beacons are no longer transmit-

ted as 1) the topology is stable and the set of neigh-

bors does not change, and 2) none of the nodes will

change their next hop towards the controller.

3. Evaluation method

We designed experiments towards answering the

question, “What are the gains from exploring uni-

directional links in low-power wireless networks?”.

To this end, we test combinations of discovery al-

gorithms and radio duty cycling algorithms under

several scenarios with and without unidirectional

links.

Firstly, we analyze a set of simulations using a

pure CSMA/CA medium access scheme (i.e., with-

out duty cycling), aiming to assess the impact of ex-

ploring unidirectional links without the extra over-

head imposed by the RDC. We compare a tradi-

tional discovery algorithm used in the literature,

namely the Collect-based discovery [23], to two ver-

sions of our discovery algorithms: 1) using unidirec-

tional links, and 2) blacklisting unidirectional links.

This set of experiments is displayed in Section 4.1.

A second set of experiments studies the influ-

ence of radio duty cycling on exploring unidirec-

tional links. We deployed two versions of our RDC

protocol: 1) phase information is always sent to

the controller, and 2) phase information is directly

sent to the target node. As a comparison, we in-

struct the controller to calculate only bidirectional

paths and use the original ContikiMAC RDC proto-

col. In either case, we used a channel check rate of

8Hz. As a baseline, we also present the outcome of

the Collect-based discovery protocol combined with

ContikiMAC. Experiments with RDC are discussed

in Section 4.2.

Table 4 summarizes the combinations of algo-

rithms used in the performance evaluation.

Discovery algorithm RDC

Our – using unidir links CSMA/CA

Our – bidir links only CSMA/CA

Collect-based CSMA/CA

Our – send to controller Our

Our – send to node Our

Our – bidir links only ContikiMAC

Collect-based ContikiMAC

Table 4: Combinations of algorithms tested.

In addition to fully bidirectional networks, we

perform experiments in three unidirectional set-

tings: 1) random unidirectional links (15% of all

links), which emulate unidirectional links that nat-

urally emerge in homogeneous networks, 2) ran-

dom nodes with increased range (20% of all nodes

have double range), to represent heterogeneous net-

works, and 3) a special case for SDN, referred to as

“controller to all” in Section 4, in which the con-

troller is able to reach all nodes in the network

within one hop.

The number of nodes ranges from 16 to 100 nodes

(square numbers only) to check the algorithms be-

havior as the network gets larger. The nodes are

12

positioned to form square grids and random topolo-

gies. The controller is positioned at a grid corner,

while the data sink is placed at the grid midpoint.

The positioning of these nodes is random in the ran-

dom topologies. All nodes in the network transmit

CBR data, except the data sink and the controller

node. The data payload size is 10 bytes, transmit-

ted at 1 packet per minute.

For each parameter combination, ten 60-minute-

long simulation runs are executed to achieve statis-

tical significance. The graphs presented in the fol-

lowing section show 95% confidence intervals. Ev-

ery “statistically equal” or “statistically different”

statement in the results description (Section 4) cor-

responds to the outcome of a two-tailed Mann-

Whitney U-test considering α = 0.05.

A summary of the simulation parameters is pre-

sented in Table 5.

Simulation parameters

Number of nodes
16, 25, 36, 49,

64, 81, 100,

Topologies random, grid

Simulation duration 3600 s

Number of replications 10

Data payload size 10 bytes

Data transmission rate 1 packet/min

Node boot interval [0, 1] s

Data traffic start time [2, 3] min

ContikiMAC channel check rate 8 Hz

Energy consumption parameters

Radio module transmission power 0 dBm

Transmission current consumption 21.70 mA

Receiving current consumption 22.00 mA

Sleeping current consumption 0.18 mA

Operation voltage 3 V

Table 5: Simulation parameters.

3.1. Tools

All protocols are implemented on Contiki OS.

The SDN support for wireless networks is pro-

vided by IT-SDN [23], an SDWSN framework and

southbound protocol that allows for changing of

the discovery algorithms. IT-SDN is configured

to use end-to-end acknowledgements, source-routed

control packets, and neighbor table size of 10 en-

tries. The code used in the experiments is available

for download at http://www.larc.usp.br/users/

cbmargi/www/it-sdn/it-sdn_comcom.tar.gz.

The algorithms are benchmarked with the

COOJA WSN simulator/emulator tool [26], us-

ing sky mote binaries and Directed Graph Radio

Medium (DGRM) to model the radio links. DGRM

enables defining unidirectional links, opposed to the

other available radio medium models. Each link

is individually defined as an ideal communication

channel.

The controller software runs on the host machine

and connects with the network through the COOJA

serial server extension. It calculates the best routes

according to link quality values provided by the

neighbor discovery protocol.

The random topologies are generated with the

NPART software [25], using the default parameters

for Berlin networks.

3.2. Metrics

We have considered the following performance

metrics:

• Data delivery : the global percentage of data

packets that successfully reached their desti-

nation.

13

• Data delay : the average time between the

data packets transmission and reception (at

the application layer, therefore queuing and

flow setup delays are included).

• Control overhead : the total number of non-

data packets transmitted within the network,

which is related to the discovery algorithm’s

efficiency.

• Energy consumption: the total amount of

energy spent by the radio transceiver of all

network nodes, considering three radio states

(transmitting, receiving, and off). We have

used Energest [12] (a tool from Contiki OS)

to obtain the amount of time spent in each

state. The energy consumption is calculated

as E = V (ItTt + IrTr + IiTi), where V ,

T , and I are the voltage, time spent in each

state, and current drawn in each stage; the sub-

scripts t, r and i refer to transmitting, receiv-

ing and idle states, respectively. Drained cur-

rent values have been taken from the CC2420

datasheet [34] and replicated in Table 5.

• Link discovery rate: the percentage of existing

links that the neighbor discovery algorithm was

able to detect throughout the simulation. The

discovery rate is measured at the controller,

considering its global representation.

4. Results and discussion

The results are organized as follows: each metric

is presented as a set of four graphs, one for each

link type (i.e. fully bidirectional, controller to all,

nodes with increased range, and random unidirec-

tional links). Within the graphs, each line repre-

sents a combination of three simulation parame-

ters: 1) neighbor discovery algorithm (i.e. collect

or this work); 2) radio duty cycling protocol (i.e.

pure CSMA, ContikiMAC, or this work); and 3)

topology type (i.e. random or grid).

4.1. Pure CSMA results

This section contains experiment results for non-

duty-cycled pure CSMA networks, performed with

the objective of assessing the impact of using uni-

directional links for routing without the influence

of radio duty cycling. For brevity, we include only

data delivery and data delay results.

Figure 5 displays data delivery results. In fully

bidirectional networks, our discovery algorithms

perform as good as the Collect-based approach, pre-

senting statistically equivalent results in most net-

work sizes (Figure 5b). However, our algorithms

perform worse if unidirectional links are blacklisted

(between 5% and 30% worse), although this is only

statistically significant in the grid topology. The

reason behind these results is that each direction of

the link is informed separately, creating temporary

unidirectional links in the controller representation

that cannot be used for routing.

In fact, we can observe an increased packet deliv-

ery rate when using unidirectional links in the other

scenarios. Enabling the use of unidirectional links

yields at least 90% delivery, while not using these

links can drop the delivery into the realm of 80%.

We can notice a larger impact in the “controller to

all” and “random unidirectional links” topologies.

The delivery rate is statistically different when us-

14

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Da
ta

 d
el

iv
er

y
[%

]

Collect + CSMA - Random
Our ND/CD (bidirectional routes only) - Random

Our ND/CD - Random
Collect + CSMA - Grid

Our ND/CD (bidirectional routes only) - Grid
Our ND/CD - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(e) Random unidirectional links

Figure 5: Pure CSMA: Data delivery results.

ing and not using unidirectional links for all sce-

narios with unidirectional links, except for 16-node

and 81-node random topologies with random uni-

directional links.

It is notable that some curves do not present a

monotonic delivery decrease as the number of nodes

increases, especially in Figure 5e. The reason be-

hind that is the randomness in topology and uni-

directional link placement. Particularly, these two

factors may be combined in such a way that the re-

maining bidirectional links become bottlenecks. As

such, as the results show, using unidirectional links

increases robustness.

The Collect-based algorithm performs poorly in

the presence of unidirectional links, regardless of

link and topology type, presenting statistically dif-

ferent results from our solution.

The “controller to all” topology provides the

15

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Da
ta

 d
el

iv
er

y
[%

]

Collect + CSMA - Random
Our ND/CD (bidirectional routes only) - Random

Our ND/CD - Random
Collect + CSMA - Grid

Our ND/CD (bidirectional routes only) - Grid
Our ND/CD - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(e) Random unidirectional links

Figure 6: Pure CSMA: Data delay results.

largest delay improvement when unidirectional

links are employed (Figure 6c). The improvement is

at least 30% on large topologies, presenting statis-

tically different results for most topology sizes (ex-

ceptions are 15-node and 100-node random topolo-

gies, and the 25-node grid). The unidirectional

links from the controller enable a fast flow setup

on all nodes. Conversely, the presence of unidirec-

tional links, even if not used, increases link layer

contention.

For the other link scenarios presented in Figure 6,

the unidirectional links tend to decrease the aver-

age delay and standard deviation. Nonetheless, the

delay metric is sensitive to the initial network tran-

sient, provoking standard deviation intervals over-

lap in many cases, which hinders the drawing of

further conclusions.

The conclusion drawn from these results is that

16

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a

ta
 d

e
liv

e
ry

 [
%

]

Collect + ContikiMAC - Random

Our ND/CD + ContikiMAC - Random

Our ND/CD/RDC -- to nodes - Random

Our ND/CD/RDC -- to controller - Random

Collect + ContikiMAC - Grid

Our ND/CD + ContikiMAC - Grid

Our ND/CD/RDC -- to nodes - Grid

Our ND/CD/RDC -- to controller - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a
ta
 d
e
liv
e
ry
 [
%
]

(e) Random unidirectional links

Figure 7: Duty cycled: Data delivery results.

using unidirectional links positively effects packet

delivery and tends to decrease the average data de-

lay.

4.2. Duty cycling results

Data delivery results are displayed in Figure 7.

The fully connected topology (Figure 7b) is useful

for demonstrating the cost of supporting unidirec-

tional links in comparison to solutions that do not

support them. We observed that, in some of the

simulation runs for large networks, a fraction of the

links were initially detected as unidirectional, since

the inbound and outbound components of a link

are informed separately to the controller. As a con-

sequence, if receivers are configured to send phase

information directly to the sender, the controller

sets and maintains control routes for communicat-

ing that phase information. This extra overhead

degrades performance.

The addition of a link from the controller to each

17

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a

ta
 d

e
liv

e
ry

 [
%

]

Collect + ContikiMAC - Random

Our ND/CD + ContikiMAC - Random

Our ND/CD/RDC -- to nodes - Random

Our ND/CD/RDC -- to controller - Random

Collect + ContikiMAC - Grid

Our ND/CD + ContikiMAC - Grid

Our ND/CD/RDC -- to nodes - Grid

Our ND/CD/RDC -- to controller - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

Li
n
k
d
is
co
v
e
ry
 r
a
te
 [
%
]

(e) Random unidirectional links

Figure 8: Duty cycled: Link discovery rate.

other node (Figure 7c) causes the Collect-based dis-

covery protocol to fail, since it cannot correctly

handle long-distance unidirectional links. There

is no statistical difference between using our RDC

and ContikiMAC, except in the case of large grid

networks, wherein the send-to-nodes version of our

RDC presented lower data yield.

If device heterogeneity causes some nodes to

reach further than others, the RDC does not influ-

ence the delivery rate in small networks (Figure 7d).

In large networks, the overhead of maintaining the

phase information hinders rather than helps, as we

observe a degradation in performance. For this type

of topology, using the unidirectional link typically

saves only one hop in the routing path, compared

to the many hops that are saved in the “controller

to all” topology.

The “send to controller” version of our RDC

yields small gains (≈ 3%) in the random unidirec-

tional links with random topology scenario (Fig-

18

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a

ta
 d

e
liv

e
ry

 [
%

]

Collect + ContikiMAC - Random

Our ND/CD + ContikiMAC - Random

Our ND/CD/RDC -- to nodes - Random

Our ND/CD/RDC -- to controller - Random

Collect + ContikiMAC - Grid

Our ND/CD + ContikiMAC - Grid

Our ND/CD/RDC -- to nodes - Grid

Our ND/CD/RDC -- to controller - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta
 d
e
la
y
 [
m
s]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta
 d
e
la
y
 [
m
s]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta
 d
e
la
y
 [
m
s]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

2000

4000

6000

8000

10000

D
a
ta
 d
e
la
y
 [
m
s]

(e) Random unidirectional links

Figure 9: Duty cycled: Data delay results.

ure 7e), although the results are statistically dif-

ferent only for the 100-node network. The algo-

rithm version that sends phase information directly

to nodes tends to perform worse, presenting a sta-

tistically inferior data yield for the grid topology.

The unidirectional links enable a larger number of

possible routes in the network, alleviating link-layer

congestion bottlenecks. This effect is more pro-

nounced in the random network topology, since it

contains more bottleneck nodes.

Figure 8 shows link discovery rate results. Our

discovery protocols present consistent behavior in

terms of detecting all links, regardless of the unidi-

rectional link type. Eventually, links go undetected

if the number of links exceeds the neighbor table

capacity, which is caused by memory scarceness in

network nodes.

Regarding the Collect-based discovery protocol,

the link discovery rate is greatly impacted by uni-

directional links. This discovery protocol may mis-

19

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

1000

2000

3000

4000

5000

Da
ta
 d
el
ay

 [m
s]

(e) Random unidirectional links

Figure 10: Duty cycled: Data delay after convergence results.

takenly assume that a unidirectional links is bidirec-

tional, causing heavy losses in the network. Nodes

farther from the controller might not be able to

join the network, and therefore do not report their

neighborhood status.

The most noticeable result for the data delay

metric is observed with the “controller to all” topol-

ogy (Figure 9c). Using long unidirectional links al-

lows for faster initial route setup, decreasing the

overall data delivery delay. The maximal improve-

ment is 54.9%, for both grid and random topolo-

gies, although there is enough statistical evidence

for only 49 and 81-node networks.

It is not possible to draw conclusions with respect

to the other link scenarios. The delay metric is sen-

sitive to the initial network setup, meaning that

small differences in the packet ordering and colli-

sions at this stage can have great influence on the

average delay. Such circumstances account for the

large standard deviation values, since some simula-

20

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a

ta
 d

e
liv

e
ry

 [
%

]

Collect + ContikiMAC - Random

Our ND/CD + ContikiMAC - Random

Our ND/CD/RDC -- to nodes - Random

Our ND/CD/RDC -- to controller - Random

Collect + ContikiMAC - Grid

Our ND/CD + ContikiMAC - Grid

Our ND/CD/RDC -- to nodes - Grid

Our ND/CD/RDC -- to controller - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

0

5000

10000

15000

20000

25000

30000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

(b) Full

16 25 36 49 64 81 100
Number of nodes

0

5000

10000

15000

20000

25000

30000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

0

5000

10000

15000

20000

25000

30000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

0

5000

10000

15000

20000

25000

30000

C
o
n
tr
o
l
o
v
e
rh
e
a
d
 [
#
 p
a
ck
e
ts
]

(e) Random unidirectional links

Figure 11: Duty cycled: Control overhead results.

tions contain packets with a very high delay. This

observation is confirmed by comparing the average

to the delay median, the latter being significantly

smaller in most cases. Nonetheless, there is a trend

indicating that, while random topologies present a

larger average delay in small networks, they are

faster than grids in networks with more nodes.

To provide better understanding of the delay

metric, we analyzed the delay of data packets trans-

mitted after network convergence, shown in Fig-

ure 10. The convergence criterion is the time at

which every node has successfully transmitted at

least one data packet to the sink.

It is noticeable that the average delay after con-

vergence is significantly smaller than the delay con-

sidering all packets, reassuring that the initial flow

configuration has a great impact on this metric.

Additionally, the confidence intervals are nar-

rower, indicating a consistent steady state behav-

ior. Nonetheless, our approach that sends phase

21

16 25 36 49 64 81 100
Number of nodes

0

20

40

60

80

100

D
a

ta
 d

e
liv

e
ry

 [
%

]

Collect + ContikiMAC - Random

Our ND/CD + ContikiMAC - Random

Our ND/CD/RDC -- to nodes - Random

Our ND/CD/RDC -- to controller - Random

Collect + ContikiMAC - Grid

Our ND/CD + ContikiMAC - Grid

Our ND/CD/RDC -- to nodes - Grid

Our ND/CD/RDC -- to controller - Grid

(a) Legend

16 25 36 49 64 81 100
Number of nodes

1000

4000

7000

10000

13000

E
n
e
rg
y
 [
m
J/
n
o
d
e
]

(b) Full

16 25 36 49 64 81 100
Number of nodes

1000

4000

7000

10000

13000

E
n
e
rg
y
 [
m
J/
n
o
d
e
]

(c) Controller to all

16 25 36 49 64 81 100
Number of nodes

1000

4000

7000

10000

13000

E
n
e
rg
y
 [
m
J/
n
o
d
e
]

(d) Random nodes with increased range

16 25 36 49 64 81 100
Number of nodes

1000

4000

7000

10000

13000

E
n
e
rg
y
 [
m
J/
n
o
d
e
]

(e) Random unidirectional links

Figure 12: Duty cycled: Energy usage results.

information directly to nodes still presents large

dispersion in large networks, as some packets are

occasionally delayed after many seconds even after

convergence.

The control overhead metric results are shown

in Figure 11. On small and medium networks (up

to 64 nodes), the combination of our ND and our

RDC (send to controller variation) presents less

overhead than the combination of our ND and Con-

tikiMAC. The difference reaches 40% in some sce-

narios, mainly in the “controller to all” topology.

This occurs due to the usage of unidirectional links,

which decreases average route size. Shorter routes

require fewer flow setup packets and are less prone

to link layer errors (reducing retransmissions).

This advantage is less prominent in larger net-

works (81 and 100), due to the increased number of

control messages used to keep the phase informa-

tion of unidirectional link up-to-date.

Our RDC variation that sends phase information

22

directly to the nodes does not perform as good as

the other variation. Nodes request control routes

even for links temporarily detected as unidirectional

at network start up. Even if these routes are not

further used throughout the experiment, the con-

troller keeps updating the routes according to varia-

tions of link quality, increasing the overall overhead.

The larger the network, the more pronounced this

effect.

The Collect-based approach is only more efficient

in terms of control overhead in large fully connected

topologies. It performs poorly in other link config-

urations, mostly due to low control packets delivery

ratio and consequent retransmissions.

We expected that our RDC would reduce over-

all energy consumption, since using unidirectional

links reduces the average path length. However,

gains from shortening the average length path are

ultimately negated by the extra overhead of main-

taining control routes and sending phase informa-

tion.

For most scenarios, there are no significant differ-

ences (less than ±5%) in energy consumption be-

tween our ND combined with ContikiMAC and our

ND combined with our RDC. Collect-based discov-

ery combined with ContikiMAC also stays in that

range when considering the topology with only bidi-

rectional links. In large topologies, the large num-

ber of control packets raises the average energy con-

sumption of both the Collect-based approach and

our RDC variation that sends phase information di-

rectly to the nodes.

5. Related work

We review related work in three categories: 1)

routing over unidirectional links; 2) discovery in

Software-Defined WSN; and 3) radio duty cycling.

Routing over unidirectional links. Some re-

searchers adopted the strategy of reducing the scope

of the problem, yielding a solution that works only

under specific conditions [8, 19]. Another strategy

is to find an alternative path to the unidirectional

link by flooding the network [29, 18].

Chen et al. proposed a probabilistic routing al-

gorithm focused on many-to-one traffic [8]. The

network is sliced into concentric stripes centered at

the destination. Nodes transmit every packet mul-

tiple times, and the receivers forward with a certain

probability. A node closer to the sink may overhear

a packet and opportunistically transmit it to the

sink, even if the link is unidirectional. The main

drawbacks of this work are a restriction of appli-

cability to many-to-one traffic and a wasting of re-

sources due to multiple transmissions of the same

packet [8].

Kim et al. assume a network with a single sink

able to reach any node in the network in one hop,

although most nodes cannot reach the sink in one

hop. The objective is to provide efficient and re-

liable downward data transmission. However, the

main assumption is difficult to generalize to a case

where any link could be unidirectional [19].

Bidirectional Routing Abstraction (BRA) pro-

vides full support for unidirectional links by search-

ing through the network for multihop reverse paths

to the unidirectional links. It uses a Distributed

Bellman–Ford algorithm, which floods the network

23

with distance vector information. To curb the con-

trol overhead, the maximum length of the reverse

path is limited. The simulation results, based on

the IEEE 802.11 standard, show that the AODV

protocol performs better with BRA than when us-

ing the traditional blacklisting mechanism [29].

Unidirectional Link Counter (ULC) is actually a

cross-layer protocol, as it mixes functionality from

medium access and routing layers. The protocol is

similar to AODV in the sense that Route Request

and Route Response messages are used to discover

routes, i.e., it is a flooding-based protocol. In ad-

dition, these messages are used to perform link dis-

covery. If a link is unidirectional, the forwarding

node relegates the forwarding task to its neighbors,

expecting that at least one of them is able to detour

the unidirectionality and find a reverse path. Both

simulations and testbed results show performance

enhancements when compared to AODV [18].

It is noteworthy that BRA and ULC are focused

on MANETs and use flooding-based messages. In

the context of WSN, it is desirable to avoid flooding

in order to diminish the number of control packets

throughout the network.

Our solution leverages the SDN paradigm to

overcome the limitations of the previous work by

providing a general-purpose and flooding-free pro-

tocol.

Discovery in Software-Defined WSN. Al-

though several Software-Defined Wireless Sensor

Networking frameworks exist in the literature, the

neighbor discovery process is not detailed in most of

them. The earlier proposals were adaptations of the

Openflow protocol [24] to WSN, namely FlowSen-

sor [22] and Sensor Openflow [21]. Neither of these

two mentions the discovery process, although one

could infer that they use a variation of the Link

Layer Discovery Protocol (LLDP), since it is the

OpenFlow default protocol.

TinySDN is a southbound protocol specification

based on flow labeling, built on top of TinyOS Ac-

tiveMessage component [10]. Neighbor and con-

troller discovery are relegated to the Collection Tree

Protocol (CTP) [15], which in turn builds a tree

rooted at the controller. Link quality is obtained

from the TinyOS 4-bit link estimator, requiring

bidirectional links. The authors do not detail the

criteria for transmitting neighborhood information

to the controller due to link quality variations.

IT-SDN is based on TinySDN, but with the goal

of being OS-independent and to allow for replace-

able discovery algorithms [23]. The default config-

uration is to use a CTP-like protocol for neighbor

discovery, which is similar to TinySDN and presents

the same drawbacks. A node sends topological in-

formation to the controller if the CTP link quality

estimation differs more than 20% from the last re-

ported value.

In a previous work, we introduced the naive

neighbor and controller discovery algorithms for

networks with unidirectional links [1]. We fixed the

scalability issues, added a link quality estimation

and neighbor unrechability detection [2]. We fur-

ther detailed these mechanisms in Section 2.2.

SDN-Wise executes controller and neighbor dis-

covery as a single operation by implementing its

own topology discovery protocol [14]. The (possi-

bly) multiple controllers start the construction of

a tree by transmitting Topology Discovery pack-

ets. The tree is rebuilt periodically to obtain fresh

24

topology information. Nodes transmit topology in-

formation to the controller based on a fixed peri-

odic interval. The authors analyzed the overhead

of shortening this interval.

The four main shortcomings of the SDN-Wise

discovery protocol are: 1) assuming links are bidi-

rectional; 2) the unnecessary transmission of con-

trol packets due to the lack of adequate criteria to

send topological information to the controller; 3) a

fixed Topology Discovery transmission interval; and

4) the use of RSSI as link metric (hardware depen-

dent). Hieu et al. introduced variable interval for

topology discovery in SDN-Wise [16].

Theodorou and Mamatas proposed two discov-

ery protocols, which they called “neighbor adver-

tisement” and “neighbor request” [35]. The con-

troller is responsible for starting either algorithm

by transmitting a unicast message to its neighbors,

which in turn broadcasts a discovery packet. In the

“neighbor advertisement”, each receiving node ad-

vertises the discovered link to the controller, while,

in the “neighbor request”, each receiving node an-

swers back to the sender, which is responsible for

reporting to the controller about the links. The

controller subsequently transmits a unicast packet

to the newly detected nodes, until all network nodes

have been discovered. The researchers, however, do

not specify how to perform the link quality assess-

ment, how the controller discovery process occurs

and how to deal with unidirectional links. In addi-

tion, their paper focuses only on the initial discov-

ery phase and does not discuss when to re-collect

the neighborhood information.

Our work improves on the existing neighbor dis-

covery algorithms for SDWSN. We employ tech-

niques to reduce the overall overhead associated

with the task, while we properly support discov-

ery of unidirectional links. We have also integrated

link quality assessment and node departure detec-

tion, providing details on how to calculate the ETF

and a criterion to send new topology update mes-

sages to the controller. Table 6 summarizes the

main features of the discovery algorithms found in

SDWSN frameworks.

Radio duty cycling. There exist two classes

of RDC protocol: synchronous and asynchronous.

Synchronous RDC requires a negotiation phase to

allocate slots, elect cluster heads or keep tight

clock synchronization, making it inherently com-

plex. Furthermore, unidirectional links restrict

such negotiations. This approach is recommended

for high data rates or to meet Quality of Service

requirements, but it has not been explored for uni-

directional links. An example of synchronous RDC

is the TSCH mode from IEEE 802.15.4e [17].

Asynchronous RDCs are further categorized into

receiver initiated and sender initiated. Receiver

initiated protocols are immediately discarded for

supporting unidirectional links since they require

a bidirectional interaction between sender and re-

ceiver. RI-MAC is the first work on receiver initi-

ated RDCs [32], while other protocols built upon

that same foundation [13, 33].

Basic sender initiated RDCs do not rely on a

bidirectional links to work, but instead use long

preambles which are not energy efficient. Enhance-

ments were introduced [28, 7], with ContikiMAC

being considered the state-of-the-art sender ini-

tiated RDC implementation, featuring packetized

preambles, early acknowledgements and phase lock

25

Work Approach
Unidir

link
LQE

Criteria

to controller

Neighbor

departure

[10] Collect No ETX Undisclosed Long timer

[23] Collect No ETX ETX variation Long timer

[14] Periodic No RSSI Periodic
Periodic

recollection

[35] Controller No RSSI Undisclosed Undisclosed

[1] Periodic Yes Hop New nodes Undisclosed

This

work

Periodic +

overhearing
Yes ETF LQE variation

Based

on LQE

Table 6: SDWSN neighbor discovery comparison.

capability [11].

Nonetheless, to the best of our knowledge, there

are no efficient RDCs suitable for networks with

unidirectional links. The existing optimizations

for asynchronous RDCs rely on acknowledgements,

while synchronous RDCs require tight synchroniza-

tion and a negotiation phase.

We have filled a dearth in the previously available

literature by introducing an efficient asynchronous

RDC that copes with unidirectional links. The so-

lution leverages the SDN controller’s global view

of a network to distribute directionality and phase

information.

6. Conclusion

The pervasiveness of unidirectional links in low-

power wireless networks calls for a routing proto-

col that is able to cope with such links. In fact,

beyond merely coping, the routing protocol could

use the unidirectional links, potentially shortening

route path lengths and saving resources. There-

fore, we posed the following question: “What are

the gains from exploring unidirectional links in low-

power wireless networks?”.

To answer this question, we provided an SDN-

based centralized solution, including appropriate

discovery protocols, and an asynchronous radio

duty cycling protocol. This SDN-based solution

deals with the two limitations found in previous

work: a limited scope and the use of flooding. To

the best of our knowledge, our RDC is the first

asynchronous protocol tailored for unidirectional

links.

We simulated a variety of network configurations,

and have reached several conclusions. At minimum,

unidirectional links must be detected and black-

listed, otherwise the packet delivery ratio drops sig-

nificantly. Leveraging unidirectional links for rout-

ing bestows benefits if the unidirectional links are

long, the greatest improvement being seen in the

metric of packet delay. Minor data delivery gains

were observed for short-ranged unidirectional links

in medium-sized duty-cycled networks. In large

duty-cycled networks, the additional control over-

26

head negates the effect of most achievable gains, to

the extent where we did not observe any significant

performance improvement. Conversely, non-duty-

cycled networks always benefit from unidirectional

links.

References

[1] R. C. A. Alves and C. B. Margi. Discovery protocols

for SDN-based Wireless Sensor Networks with unidi-

rectional links. In XXXV Simpósio Brasileiro de Tele-

comunicações e Processamento de Sinais (SBrT), São

Pedro, Brazil, 2017. Sociedade Brasileira de Telecomu-

nicações.

[2] R. C. A. Alves, C. B. Margi, and F. A. Kuipers. No

way back? An SDN protocol for directed IoT networks.

In 15th Wireless On-demand Network systems and Ser-

vices Conference. IEEE, jan 2019.

[3] L. Atzori, A. Iera, and G. Morabito. The internet of

things: A survey. Computer Networks, 54(15):2787 –

2805, 2010.

[4] N. Baccour, A. Koubâa, H. Youssef, and M. Alves. Re-

liable link quality estimation in low-power wireless net-

works and its impact on tree-routing. Ad Hoc Networks,

27(C):1–25, Apr. 2015.

[5] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vet-

terli. The hitchhiker’s guide to successful wireless sen-

sor network deployments. In Proceedings of the 6th

ACM Conference on Embedded Network Sensor Sys-

tems, SenSys ’08, pages 43–56, New York, NY, USA,

2008. ACM.

[6] S. Bindel, S. Chaumette, and B. Hilt. F-ETX: An En-

hancement of ETX Metric for Wireless Mobile Net-

works. Communication Technologies for Vehicles,

9066:117–128, 2015.

[7] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-

MAC: A short preamble MAC protocol for duty-cycled

wireless sensor networks. In Proceedings of the 4th In-

ternational Conference on Embedded Networked Sensor

Systems, SenSys ’06, pages 307–320, New York, NY,

USA, 2006. ACM.

[8] X. Chen, Z. Dai, W. Li, and H. Shi. Performance

guaranteed routing protocols for asymmetric sensor net-

works. IEEE Transactions on Emerging Topics in

Computing, 1(1):111–120, June 2013.

[9] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris.

A high-throughput path metric for multi-hop wireless

routing. Wireless Networks, 11(4):419–434, July 2005.

[10] B. T. de Oliveira, C. B. Margi, and L. B. Gabriel.

TinySDN: Enabling multiple controllers for software-

defined wireless sensor networks. In LATINCOM, pages

1–6, Nov 2014.

[11] A. Dunkels. The ContikiMAC Radio Duty Cycling Pro-

tocol. Technical Report T2011:13, Swedish Institute of

Computer Science, Dec. 2011.

[12] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He.

Software-based on-line energy estimation for sensor

nodes. In Proceedings of the 4th workshop on Embedded

networked sensors, pages 28–32. ACM, 2007.

[13] P. Dutta, R. Musăloiu-e, I. Stoica, and A. Terzis. Wire-

less ACK collisions not considered harmful. In HotNets-

VII: The Seventh Workshop on Hot Topics in Net-

works, 2008.

[14] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo.

SDN-WISE : Design , prototyping and experimentation

of a stateful SDN solution for WIreless SEnsor net-

works. 2015 IEEE Conference on Computer Commu-

nications (INFOCOM), pages 513–521, 2015.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and

P. Levis. Collection tree protocol. In Proceedings of the

7th ACM Conference on Embedded Networked Sensor

Systems, SenSys ’09, New York, NY, USA, 2009. ACM.

[16] N. Q. Hieu, N. Huu Thanh, T. T. Huong, N. Quynh

Thu, and H. V. Quang. Integrating trickle timing in

software defined wsns for energy efficiency. In 2018

IEEE Seventh International Conference on Commu-

nications and Electronics (ICCE), pages 75–80, July

2018.

[17] IEEE. 802.15.4e-2012 - IEEE Standard for Local and

metropolitan area networks–Part 15.4: Low-Rate Wire-

less Personal Area Networks (LR-WPANs) Amendment

1: MAC sublayer, 2012.

[18] R. Karnapke and J. Nolte. Unidirectional link counter

- a routing protocol for wireless sensor networks with

many unidirectional links. In Ad Hoc Networking Work-

shop (MED-HOC-NET), 2015 14th Annual Mediter-

27

ranean, pages 1–7, June 2015.

[19] H.-S. Kim, M.-S. Lee, Y.-J. Choi, J. Ko, and S. Bahk.

Reliable and energy-efficient downward packet deliv-

ery in asymmetric transmission power-based networks.

ACM Transaction on Sensor Networks, 12(4):34:1–

34:25, Sept. 2016.

[20] K.-H. Kim and K. G. Shin. On accurate measurement

of link quality in multi-hop wireless mesh networks. In

Proceedings of the 12th Annual International Confer-

ence on Mobile Computing and Networking, MobiCom

’06, pages 38–49, New York, NY, USA, 2006. ACM.

[21] T. Luo, H.-P. Tan, and T. Q. S. Quek. Sensor open-

flow: Enabling software-defined wireless sensor net-

works. IEEE Communications Letters, 16(11):1896–

1899, 2012.

[22] A. Mahmud and R. Rahmani. Exploitation of openflow

in wireless sensor networks. In Computer Science and

Network Technology (ICCSNT), volume 1, pages 594–

600, 2011.

[23] C. B. Margi, R. C. A. Alves, G. A. N. Segura, and

D. A. G. Oliveira. Software-defined wireless sensor net-

works approach: Southbound protocol and its perfor-

mance evaluation. Open Journal of Internet Of Things

(OJIOT), 4(1):99–108, 2018. Special Issue: Proceedings

of the International Workshop on Very Large Internet

of Things (VLIoT 2018) in conjunction with the VLDB

2018 Conference in Rio de Janeiro, Brazil.

[24] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: Enabling innovation in

campus networks. SIGCOMM Comput. Commun.

Rev., 38(2):69–74, Mar. 2008.

[25] B. Milic and M. Malek. NPART - Node Placement Al-

gorithm for Realistic Topologies in Wireless Multihop

Network Simulation. In Proceedings of the 2Nd Interna-

tional Conference on Simulation Tools and Techniques,

Simutools ’09, pages 9:1–9:10, 2009.

[26] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and

T. Voigt. Cross-level sensor network simulation with

COOJA. In Proceedings. 31st IEEE Conference on Lo-

cal Computer Networks, Nov 2006.

[27] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-

Demand Distance Vector (AODV) Routing. RFC 3561,

IETF, July 2003.

[28] J. Polastre, J. Hill, and D. Culler. Versatile low power

media access for wireless sensor networks. In Proceed-

ings of the 2nd International Conference on Embedded

Networked Sensor Systems, SenSys ’04, pages 95–107,

New York, NY, USA, 2004. ACM.

[29] V. Ramasubramanian and D. Mosse. BRA: A Bidirec-

tional Routing Abstraction for asymmetric mobile ad

hoc networks. IEEE/ACM Transactions on Network-

ing, 16(1):116–129, Feb 2008.

[30] L. Sang, A. Arora, and H. Zhang. On link asymme-

try and one-way estimation in wireless sensor networks.

ACM Transactions on Sensor Networks, 6(2):12:1–

12:25, Mar. 2010.

[31] T. Shibata, R. de Azevedo, B. C. Albertini, and C. B.

Margi. Energy consumption and execution time charac-

terization for the SensorTag IoT platform. In XXXIV

Simpósio Brasileiro de Telecomunicações e Processa-

mento de Sinais (SBrT 2016), pages 55–59, Santarém,

Brazil, Aug. 2016.

[32] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: A

receiver-initiated asynchronous duty cycle MAC proto-

col for dynamic traffic loads in wireless sensor networks.

In Proceedings of the 6th ACM Conference on Embed-

ded Network Sensor Systems, SenSys ’08, pages 1–14,

New York, NY, USA, 2008. ACM.

[33] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson. PW-

MAC: An energy-efficient predictive-wakeup MAC pro-

tocol for wireless sensor networks. In 2011 Proceedings

IEEE INFOCOM, pages 1305–1313, April 2011.

[34] Texas Instruments. CC2420 2.4 GHz IEEE 802.15.4 /

ZigBee-ready RF Transceiver, 2004. (Rev. C).

[35] T. Theodorou and L. Mamatas. Software defined topol-

ogy control strategies for the internet of things. In

2017 IEEE Conference on Network Function Virtual-

ization and Software Defined Networks, (NFV-SDN),

Nov 2017.

[36] A. Woo and D. Culler. Evaluation of efficient link relia-

bility estimators for low-power wireless networks. Tech-

nical Report UCB/CSD-03-1270, EECS Department,

University of California, Berkeley, 2003.

[37] A. Woo, T. Tong, and D. Culler. Taming the under-

lying challenges of reliable multihop routing in sensor

28

networks. In Proceedings of the 1st International Con-

ference on Embedded Networked Sensor Systems, Sen-

Sys ’03, pages 14–27, New York, NY, USA, 2003. ACM.

[38] W. Ye, J. Heidemann, and D. Estrin. An energy-

efficient MAC protocol for wireless sensor networks.

In Proceedings.Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies,

volume 3, pages 1567–1576 vol.3, June 2002.

29

