

Delft University of Technology

Automating Proof Steps of Progress Proofs
Comparing Vampire and Dafny
Grewe, Sylvia; Erdweg, Sebastian; Mezini, Mira

Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings of the 3rd Vampire Workshop

Citation (APA)
Grewe, S., Erdweg, S., & Mezini, M. (2016). Automating Proof Steps of Progress Proofs: Comparing
Vampire and Dafny. In L. Kovacs, & A. Voronkov (Eds.), Proceedings of the 3rd Vampire Workshop (pp. 33-
45). (EPIC Series in Computing; Vol. 44). EPIC 2009.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Automating Proof Steps of Progress Proofs:
Comparing Vampire and Dafny

Sylvia Grewe1, Sebastian Erdweg2, and Mira Mezini1,3

1 TU Darmstadt, Germany
2 TU Delft, Netherlands

3 Lancaster University, UK

Abstract

Developing provably sound type systems is a non-trivial task which, as of today, typically
requires expert skills in formal methods and a considerable amount of time. Our Veritas [3]
project aims at providing support for the development of soundness proofs of type systems
and efficient type checker implementations from type system specifications. To this end, we
investigate how to best automate typical steps within type soundness proofs.
In this paper, we focus on progress proofs for type systems of domain-specific languages.
As a running example for such a type system, we model a subset SQL and augment it with
a type system. We compare two different approaches for automating proof steps of the
progress proofs for this type system against each other: firstly, our own tool Veritas, which
translates proof goals and specifications automatically to TPTP [13] and calls Vampire [8]
on them, and secondly, the programming language Dafny [6], which translates proof goals
and specifications to the intermediate verification language Boogie 2 [5] and calls the
SMT solver Z3 [9] on them. We find that Vampire and Dafny are equally well-suited for
automatically proving simple steps within progress proofs.

1 Motivation
Consider developers or researchers who want to specify a programming language along with a
type system for statically catching type errors in programs. To make sure that their type system
works as intended, they want to formally prove the soundness of their type system. Let us say
that as soundness criterion they choose the standard syntactic approach of proving progress
and preservation, which was first described by Wright and Felleisen [14] and is formalized and
explained in detail in Pierce’s TAPL [11]. Let e → e′ denote that an expression e evaluates in
a single small step to an expression e′. Furthermore, let Γ ` e : T denote a typing judgment
which says that an expression e of the program is typable with type T under typing environment
Γ which assigns variables to types. Then progress and preservation are defined as follows:

Definition 1 (Progress). If an expression e is not a value and ∅ ` e : T holds for a type T ,
then there is an expression e′ such that e → e′.

Definition 2 (Preservation). If Γ ` e : T holds for an expression e and a type T and if there is
an e′ such that e → e′, then Γ ` e′ : T holds.

Intuitively, progress says that a well-typed program expression, which is not yet fully
evaluated, can always take at least one other step, while preservation says that evaluation
steps preserve the type of expressions. Together, progress and preservation say that well-typed
programs do not get stuck.

What can our developers/researchers now do in order to formally prove these two properties
for their type system? Obviously, they could choose the classical approach and develop proofs

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

on paper. The effort of applying this approach varies: Our developers/researchers can choose
themselves how many details of the proof they want to develop. However, independent of the
level of details chosen, human errors in proofs are very common, and it is generally hard to
check whether a proof on paper is correct.

To help with the matter of correctness checks, our developers/researchers could mechanize
their proofs using an existing verification tool. Excellent verification tools include for example
Isabelle/HOL [10], Coq [2], Dafny [6] , and Twelf [1]. Isabelle/HOL and Coq are tools for general-
purpose verification. Dafny and Twelf specialize on verification of programs and programming
languages. They offer varying degrees of automation and support for proof development.
However, all of these tools require that our developers translate their specification into the
respective input language of the tool and then develop proofs using the respective language and
concepts offered by the tool. The available tools offer good automation for some simple proof
tasks, but typically cannot automatically prove properties whose proofs require any form of
higher-order reasoning: In general, the proofs of inductive properties require applying the cut
rule, which makes the space for proof search infinitely large [12]. The proofs of our progress and
preservation properties from above also require induction and the application of the cut rule
using various auxiliary lemmas. Hence, formalizing them these proofs in existing verification
tools requires laying out the proof steps in detail, which typically is a very time-consuming task.

In earlier work, we proposed the design of Veritas [3], a tool which aims at providing as
much support as possible for the development of mechanized progress and preservation proofs
and the implementation of efficient type checker implementations from provably sound type
system specifications. The verification part of Veritas aims at exploiting domain knowledge
about the structure of progress and preservation proofs to break down the proofs to steps which
can be solved by existing automated theorem provers. To this end, we investigate which typical
steps that occur in progress and preservation proofs can be automatically proven by existing
automated theorem provers.

In this paper, we focus on progress proofs. We model a type system for a typed subset of SQL
as a running example in two different systems, which can automate steps in proofs, and informally
compare the two systems to each other: As first system, we choose Vampire [8] (versions 3.0
and 4.0), which is an automated theorem prover for first-order logic. We use our prototype
of Veritas to automatically translate from a specification language for language specifications
(SPL) to TPTP [13]. As second system, we choose Dafny [6], which is a programming language
with a high degree of support of automated verification that translates to Boogie 2 [5] and the
SMT solver Z3 [9] in the background for proof tasks.

Disclaimer Our comparison is not intended to be a general comparison between the two
systems and their capabilities. Rather, we aim at comparing the two systems from a user’s
perspective for a very specific task, namely steps in progress proofs of type systems.

2 Example specification: Typed SQL
As a running example, we model a subset of SQL, a language for querying data bases. Tradi-
tionally, SQL is not statically typed. Hence, SQL queries can, for example, fail at run time if a
query attempts to access a non-existent attribute of a table in the data base. We model a type
system for SQL which is supposed to statically catch such errors. The subset of SQL we focus
on consists of row selection based on simple selection predicates, projection on a single table,
union, intersection, and difference of two tables.

We separately model our subset of SQL in Veritas and in Dafny.

2

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

2.1 Specification in Veritas
In Veritas, we use a specification languages for language specifications called SPL. We im-
plemented SPL in the language workbench Spoofax [7]. Our prototype of Veritas translates
SPL specifications automatically to TPTP. We described part of our encoding in previous
work [4]. Since then, we added additional constructs to SPL and improved some of the en-
codings. Notably, we added a translation to tff, the TPTP format for typed first-order logic,
and improved the encodings of SPL types. We explain these changes using excerpts of our
running example. The full code of our example and the implementation of Veritas is available
at https://github.com/stg-tud/type-pragmatics/tree/master/Veritas.

Tables We model tables in SPL as lists of lists of rows. Since neither SPL nor Vampire
supports lists directly, we use constructors of the form “nil” and “cons” to model lists with
different element types.

open data Name // attribute and table names
data AttrL = aempty | acons(Name, AttrL) // attribute list

open data Val // cell values
data Row = rempty | rcons(Val, Row) // row of cell values
data RawTable = tempty | tcons(Row, RawTable) // list of rows
data Table = table(AttrL, RawTable) // header and body of a table

We model underspecified types via the keyword “open data”, which we introduced into SPL
since [4]. For open data types, we explicitly assume that their domain is infinite. To this end,
our translation to tff/TPTP adds additional axioms which specify that an open data type is
isomorphic to natural numbers. For the open data type Name, this looks as follows:

∀n : Name. initName 6= enumName(n)
∀n1 : Name, n2 : Name. enumName(n1) = enumName(n1) =⇒ n1 = n2

For data types which are not open, we assume closedness, i.e. that all terms that are of
the given type have to be specified via one of the given constructors. To this end, we add an
additional domain axiom to the TPTP translation. For example, for the type AttrL:

∀a : AttrL. a = aempty() ∨ (∃n : Name, a′ : AttrL. a = acons(n, a′))

Next, we model auxiliary functions on tables. They define low level operations on tables,
such as projecting as retrieving a particular column out of the table, attaching a column to the
front of a table, etc. For example:

function
attachColToFrontRaw : RawTable RawTable -> RawTable
attachColToFrontRaw(tempty(), tempty()) = tempty
attachColToFrontRaw(tcons(rcons(f, rempty), rt1), tcons(r, rt2)) =

tcons(rcons(f, r), attachColToFrontRaw(rt1, rt2))
attachColToFrontRaw(rt1, rt2) = tcons(rempty, tempty)

This function blindly assumes that it is given one RawTable that consists of just a single
column, and another one that has as many rows as the first one. If the arguments are indeed
like that, it the function will return a correct table where the first argument was attached to the
front of the second. Otherwise, it will return a “broken” RawTable, where the given rows do not
all have equal length. It is the responsibility of the caller to make sure that attachColToFrontRaw
is called with the proper arguments.

3

https://github.com/stg-tud/type-pragmatics/tree/master/Veritas

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

data Exp = constant(Val) | lookup(Name) // constants and attr. lookup
data Pred = ptrue | and(Pred, Pred) | not(Pred) // predicates

| eq(Exp, Exp) | gt(Exp, Exp) | lt(Exp, Exp)
data Select = all() | some(AttrL) // select all or some specific attributes
data Query = tvalue(Table) // table values
| selectFromWhere(Select, Name, Pred) // select from where
| union(Query, Query) | intersection(Query, Query) // set ops
| difference(Query, Query)

Figure 1: Part of the abstract syntax of SQL specified in SPL.

We translate functions like attachColToFrontRaw like we described in our previous work [4]:
We translate every function equation to an axiom in TPTP. Furthermore, we add an inversion
axiom, which is typically very helpful in progress and preservation proofs.

SQL Syntax Figure 1 shows how we model the syntax of our subset of SQL in SPL. Constructor
selectFromWhere models projection of all or some attributes of a named table, where each row is
filtered using the predicate of the where-clause. We translate this syntax to TPTP as indicated
above for the constructs that define tables.

SQL Reduction semantics. Figure 2 shows an excerpt of our the dynamic semantics of for
our subset of SQL, along with the signatures of the most important auxiliary functions. We
modeled the dynamic semantics as a small-step structural operational semantics. The reduction
function reduce takes a query and a table store (TStore), which maps table names to tables
(Table). The reduction function proceeds by pattern matching on the query.

A table value is a normal form and cannot be further reduced. A selectFromWhere query is
processed in three steps:
1. From-clause: Lookup the table referred to by name in the query. Since the name may be

unbound, the lookup yields a value of type OptTable. Reduction is stuck if no table was
found. Otherwise, we receive the table through getTable(mTable).

2. Where-clause: Filter the table to discard all rows that do not conform to the predicate
pred. We use the auxiliary function filterTable whose signature is shown at the bottom of
Figure 2. We modeled filtering such that it always yields a RawTable and cannot fail: We
discard a row if the evaluation of pred fails. The type system will ensure that this can never
actually happen within a well-typed query.

3. Select-clause: Select the columns of the filtered table in accordance with the selection
criteria sel, using auxiliary function selectTable. We modeled selection such that it fails if
a column was required that does not exist in the table. Also here, the type system will
ensure that this cannot happen within a well-typed query.

For union queries, reduce defines one contraction case and two congruence cases. For the union of
two table values, we use the auxiliary function rawUnion that operates on header-less tables and
constructs the union of the rows. In the two congruence cases of union, we try to take a step
on the right and left operand, respectively. The reduction of intersection and difference queries is
defined analogously to union.

When translating reduce to tff/TPTP, we first translate let and if as described in our previous
work [4]: We translate a let as an implication, where the equation of the binding becomes a
premise, and the body of the let a conclusion. Each if is translated as two axioms: one for the

4

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

function reduce : Query TStore -> OptQuery
reduce(tvalue(t), ts) = noQuery
reduce(selectFromWhere(sel, name, pred), ts) =

let mTable = lookupStore(name, ts) in
if (isSomeTable(mTable))
then let filtered = filterTable(getTable(mTable), pred) in

let mprojected = projectTable(sel, filtered) in
if (isSomeTable(mprojected))
then someQuery(tvalue(getTable(mprojected)))
else noQuery

else noQuery
reduce(union(tvalue(table(al1, rt1)), tvalue(table(al2, rt2))), ts) =

someQuery(tvalue(table(al1, rawUnion(rt1, rt2))))
reduce(union(tvalue(t), q2), ts) =

let q2’ = reduce(q2, ts) in
if (isSomeQuery(q2’))
then someQuery(union(tvalue(t), getQuery(q2’)))
else noQuery

reduce(union(q1, q2), ts) =
let q1’ = reduce(q1, ts) in
if (isSomeQuery(q1’))
then someQuery(union(getQuery(q1’), q2))
else noQuery

...

function filterTable : Table Pred -> Table
function projectTable : Select Table -> OptTable
function rawUnion : RawTable RawTable -> RawTable

Figure 2: Part of the reduction semantics of SQL.

then-branch, and one for the else-branch. Each of these two axioms is an implication, where the
guard of the if (respectively, its negation) becomes a premise and the content of the branch the
conclusion. We apply this translation exhaustively, i.e. the second equation of reduce in Figure 2
translates to 3 different axioms.

Typing. The static semantics of our variant of SQL ensures that well-typed queries do not get
stuck but evaluate to table values. We define the type of an SQL query as the type of the table
that the query evaluates to. The type of a table TT is a typed table schema that associates
field types to attribute names. Type checking uses a table-type context TTC, which maps table
names to table types.

Figure 3 shows an excerpt of the typing rules of SQL and the most important auxiliary
functions used. The semantics of the inference-like notation is the semantics of an implication:
Each new line represents part of a conjunction. The premises of the implication are above the
line, the conclusion(s) below.

A table value has table type TT if both define the same attribute list and all rows in the
table adhere to the table schema as checked by welltypedRawTable, which is a function from a
RawTable to Boolean. A selectFromWhere query is well-typed if the table name tn is bound to

5

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

judgment tcheck(TTContext, Query, TT)

matchingAttrL(TT, al)
welltypedRawTable(TT, rt)
---------------------------- T-tvalue
TTC ` tvalue(table(al, rt)) : TT

lookupContext(tn, TTC) = someTType(TT)
tcheckPred(p, TT)
projectType(sel, TT) = someTType(TT2)
-------------------------------------- T-selectFromWhere
TTC ` selectFromWhere(sel, tn, p) : TT2

TTC ` q1 : TT
TTC ` q2 : TT
------------------------ T-union
TTC ` union(q1, q2) : TT

...

function matchingAttrL : TType AttrL -> Bool
function welltypedRawTable : TType RawTable -> Bool
function tcheckPred : Pred TType -> Bool
function projecttType : Select TType -> OptTType

Figure 3: Part of the typing rules of typed SQL.

TT in the table-type context TTC, the predicate pred is well-typed for TT, and the attribute
selection selectType succeeds. Like the other set operations, a union query is well-typed if both
subqueries have the same type. The typing rules for intersection and difference queries are defined
analogously.

Naturally, we translate the inference rules from Figure 3 to implications in TPTP, where the
meta-variables used in the inference rules become universally quantified variables.

2.2 Specification in Dafny

We specify our typed subset of SQL similarly in Dafny. We show excerpts of our specification
in this section - the full specification is available at https://bitbucket.org/cygne_noir/
sql-dafny/. Occasionally, we use some convenience features that Dafny supports, but Veritas/-
Vampire does not - just like a Dafny user would. For example, we use the construct and helper
functions for sequences that Dafny provides.

Thus, we specify for example tables as follows in Dafny:

type AttrL = seq<string>
datatype Val = N(int) | S(string)
type Row = seq<Val>
type RawTable = seq<Row>

datatype Table = table(getAL: AttrL, getRaw: RawTable)

6

https://bitbucket.org/cygne_noir/sql-dafny/
https://bitbucket.org/cygne_noir/sql-dafny/

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

function reduce(q: Query, ts: TStore): Option<Query>
{

match q
{

case tvalue(t) => none
case selectFromWhere(sel, ref, pred) =>

if |ref| == 1 //currently, no Cartesian product supported
then if lookupEnv(ref[0], ts).some?

&& projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).some?
then some(tvalue(projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).get))
else none

else none
case union(q1, q2) => if q1.tvalue? then

if q2.tvalue?
then some(tvalue(table(q1.getTable.getAL,

rawUnion(q1.getTable.getRaw, q2.getTable.getRaw))))
else if reduce(q2, ts).some? then some(union(q1, reduce(q2, ts).get)) else none

else if reduce(q1, ts).some? then some(union(reduce(q1, ts).get, q2)) else none
...

}
}

Figure 4: SQL reduction semantics in Dafny

We do not bother with using Dafny’s generic constructs for parametrizing over the concrete
type for attribute names or values of tables. Rather, we use Dafny’s built-in type string for
attribute names, and define a small algebraic datatype for table values. In the proofs later,
we will not have to reason about these types anyway. For lists of values and lists of rows,
we use Dafny’s sequences. When specifying tables, Dafny allows us (optionally), to directly
specify destructors for the constructor arguments. Hence, we use destructors instead of the get...
functions which we defined in our SPL specification of SQL.

Using Dafny’s sequences and the functions defined on them, we model the attachColToFrontRaw
function in Dafny as follows:

function attachColToFrontRaw(rt1: RawTable, rt2: RawTable): RawTable
{

if |rt1| == 0 && |rt2| == 0
then []

else if |rt1| > 0 && |rt1[0]| == 1 && |rt2| > 0
then [[rt1[0][0]] + rt2[0]] + attachColToFrontRaw(rt1[1..], rt2[1..])

else [[]]
}

For modeling the syntax of SQL in Dafny, we also use Dafny’s datatype notation, so that
Dafny version of our SQL syntax looks almost like the SPL version from Figure 1. We define
the semantics of SQL via a function and match-construct in Dafny (see Figure 4). The latter
allows us to write case distinctions on the different constructors of our algebraic datatype for
the syntax of SQL queries.

Dafny does not provide notation for inference rules like SPL in Veritas, hence we model the
type system for our subset of SQL via a predicate typable, which takes a table type context, a

7

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

predicate typable(ttc: TTContext, q: Query, tt: TType)
{

match q
{

case tvalue(t) => welltypedtable(tt, t)
case selectFromWhere(sel, refs, p) => |refs| == 1 && lookupEnv(refs[0], ttc).some?
&& tcheckPred(p, lookupEnv(refs[0], ttc).get)
&& projectType(sel, lookupEnv(refs[0], ttc).get) == some(tt)

case union(q1, q2) => typable(ttc, q1, tt) && typable(ttc, q2, tt)
...

}
}

Figure 5: SQL type system in Dafny

query, and a type as an argument. We show an excerpt in Figure 5.

3 Progress proof
Next, we attempt to prove a progress theorem for SQL in both Veritas with Vampire and Dafny.
Here, we do not focus on obtaining a complete proof, but rather on individual steps which are
necessary in the proof, and whether the two systems can automatically prove them or not.

Here is the progress theorem for SQL which we investigate in SPL notation:

goal
!isValue(q)
TTC ` q : TT
StoreContextConsistent(TS, TTC)
==================================== SQL-Progress
exists qo

reduce(q, TS) = someQuery(qo)

Here, predicate StoreContextConsistent specifies that the table store and the table type context
involved need to contain the same table names, and that each table in the table store has to be
well-typed with regard to the corresponding table type from the table type context.

In Dafny, we write the theorem in a slightly different way, which is semantically equivalent:

lemma progress(ttc: TTContext, ts: TStore, q: Query)
requires StoreContextConsistent(ts, ttc)
requires exists tt :: typable(ttc, q, tt)
ensures isValue(q) || reduce(q, ts).some?

Dafny treats lemmas similarly to functions: A proof of the lemma may call the lemma itself
recursively, which corresponds to applying an induction hypothesis in an inductive prove. This
is why the lemma uses parameters.

3.1 General structure
The general structure of the proof of the progress theorem from above is a representative of the
structure typical progress proofs: The proof proceeds by structural induction on the structure

8

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

of a program expression, i.e. in this case, an SQL query.
This yields five induction cases:
1. tvalue(t): trivial (is a value)
2. selectFromWhere(sel, refs, p): most difficult case of the proof; directly requires 4 auxiliary

lemmas, whose prove requires induction and further 7 auxiliary lemmas
3. union(q1, q2): proof via case distinction on the three different cases of union in the semantics,

two of which are proved by simply applying the induction hypotheses
4. intersection(q1, q2): like union case
5. difference(q1, q2): like union case

In Veritas, we specify manually the five different induction cases, by simply copying the theorem
5 times, and adding a premise to each case which requires q to be of the desired shape. For the
last 3 cases (the set operations), we add the induction hypotheses as axioms. Here, we fix the
induction variables locally so that the hypotheses do not directly correspond to the theorem
that we want to prove (which would be uncorrect!). For example, the union case looks like this
in Veritas:

local {
consts q1 : Query

q2 : Query
TS : TStore
TTC : TTContext
TT : TType

axiom
!isValue(q1)
TTC ` q1 : TT
StoreContextConsistent(TS, TTC)
==================================== SQL-Progress-T-Union-IH1
exists qo

reduce(q1, TS) = someQuery(qo)

axiom
!isValue(q2)
TTC ` q2 : TT
StoreContextConsistent(TS, TTC)
==================================== SQL-Progress-T-Union-IH2
exists qo

reduce(q2, TS) = someQuery(qo)

goal
q == Union(q1, q2)
!isValue(q)
TTC ` ∼q : TT
StoreContextConsistent(TS, TTC)
==================================== SQL-Progress-T-Union
exists qo

reduce(q, TS) = someQuery(qo)

}

Dafny provides support for automatically applying induction, which often works well for

9

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

simple lemmas. However, for our progress theorem, Dafny does not seem to be able to figure
out the induction scheme on its own (probably, because auxiliary lemmas need to be applied in
the selectFromWhere case), which is why we have to specify induction manually here as well:

match q
{

case tvalue(t) =>
case selectFromWhere(sel, refs, p) =>

if |refs| == 1
{ ... }
else {}

case union(q1, q2) =>
case intersection(q1, q2) =>
case difference(q1, q2) =>

}

3.2 The easy steps
Both Vampire and Dafny naturally prove the tvalue(t) case immediately automatically, since it
only requires applying the definition of isValue.

The last three cases (the set cases) are proven automatically by Dafny. Vampire 4.0 in CASC
mode also proves these three cases automatically, but requires between 76 and 83 seconds for
the proof of each case1. Vampire 3.0 cannot prove the cases (given timeout was 120 seconds).
If we manually split each set case into the three sub-cases given by the reduction semantics,
Vampire 3.0 can prove each subcase separately: Interestingly, Vampire 3.0 takes longest to solve
the first case that does not require the application of an induction hypothesis (between 60 and
70 seconds). The other two cases always need below 5 seconds to be solved.

3.3 The more difficult steps
The selectFromWhere case is the most difficult case of the proof. Dafny can only prove it if we
define and prove four additional auxiliary lemmas:

lemma successfulLookup(ttc: TTContext, ts: TStore, ref: string)
requires StoreContextConsistent(ts, ttc)
requires lookupEnv(ref, ttc).some?
ensures lookupEnv(ref, ts).some?

lemma welltypedLookup(ttc: TTContext, ts: TStore, ref: string)
requires StoreContextConsistent(ts, ttc)
requires lookupEnv(ref, ttc).some?
requires lookupEnv(ref, ts).some?
ensures welltypedtable(lookupEnv(ref, ttc).get, lookupEnv(ref, ts).get)

lemma projectTableProgress(s: Select, tt: TType, t: Table)
requires welltypedtable(tt, t)
requires projectType(s, tt).some?
ensures projectTable(s, t).some?

lemma filterPreservesType(tt: TType, t: Table, p: Pred)

1We used a MacBook Pro late 2012 with 2,9 GHz Intel Core i7 and 8GB RAM.

10

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

requires welltypedtable(tt, t)
ensures welltypedtable(tt, filterTable(t, p))

Within the selectFromWhere case, we then have to apply these four lemmas in the correct
order, instantiating them as the proof requires:

case selectFromWhere(sel, refs, p) =>
if |refs| == 1
{

successfulLookup(ttc, ts, refs[0]);
welltypedLookup(ttc, ts, refs[0]);
var t := lookupEnv(refs[0], ts).get;
var tt := lookupEnv(refs[0], ttc).get;
filterPreservesType(tt, t, p);
projectTableProgress(sel, tt, filterTable(t, p));

} ...

If we add the four lemmas as axioms in the selectFromWhere case in Veritas, neither Vampire
3.0 nor Vampire 4.0 can prove the case automatically (with a timeout of 120 seconds). Even
adding the instantiations of the four lemmas which are needed as axioms does not help.

As for the proofs of the auxiliary lemmas itself, the ones that do not require induction or only
require applying one additional other lemma can easily be proved by both Dafny and Vampire.
For instance, the proof of lemma filterRowsPreservesTable requires one additional lemma. As soon
as this lemma is given, both Vampire 3.0/4.0 and Dafny prove filterRowsPreservesTable in under
one second.

4 Discussion

For the simple and routine step in our example progress proof, Vampire and Dafny are comparable
regarding proof automation - even despite the fact that Dafny and Boogie 2 internally apply
several custom reasoning techniques before calling Z3, which we do not apply in Veritas. Also,
as opposed to Dafny, Veritas currently does not attempt the application of axiom selection
strategies.

If the reasoning gets more complicated and requires auxiliary lemmas, Dafny strictly requires
not only the auxiliary lemmas themselves, but also applying these lemmas in the correct
instantiation and in the correct order to prove a goal. We had hoped that in this regard,
applying Vampire for the steps in question could be superior to using Dafny, i.e. that the
strategies in Vampire are able to prove a case if all necessary lemmas are given, even if the
concrete instantiation of the lemmas and the order in which they have to be applied are not
clear. So far, we could not find such a case - but this may also be due to the fact that we did
not attempt to pre-select axioms.

5 Conclusion and Future Work

For solving simple routine steps in progress proofs automatically, Vampire and Dafny appear
equally well-suited – even if one does not apply any particular optimization strategies to the
input problem. Simple routine steps seem to include steps that only require the application of
one or two auxiliary lemmas or induction hypotheses or that can directly be solved by applying
a definition. For all other cases, both Vampire and Dafny require user interaction.

11

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

It would be interesting to apply further optimizations in our translations from SPL to TPTP,
which for example apply typical case distinction steps or axiom selection strategies before passing
input problems to Vampire. Furthermore, it would be interesting to do comparisons such as the
one we presented also for preservation proofs, for more complicated type systems, and using
other systems to compare Vampire against.

References
[1] The Twelf project. http://twelf.org/, 2014.
[2] Cop development team. The Coq proof assistant reference manual, version 8.4pl5. https://coq.

inria.fr/distrib/current/refman/, 2014.
[3] Sylvia Grewe, Sebastian Erdweg, Pascal Wittmann, and Mira Mezini. Type systems for the masses:

Deriving soundness proofs and efficient checkers. In Proceedings of International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (ONWARD), pages 137–150.
ACM, 2015.

[4] Sylvia Grewe, Sebastian Erdweg, Pascal Wittmann, and Mira Mezini. Using vampire in soundness
proofs of type systems. In Proceedings of Vampire Workshop. EPiC, 2015.

[5] K. Rustan M. Leino. This is Boogie 2. Technical report, June 2008.
[6] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings

of Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 348–370. Springer,
2010.

[7] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In Proceedings of Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 444–463. ACM, 2010.

[8] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Proceedings of
International Conference on Computer Aided Verification (CAV), pages 1–35. Springer, 2013.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 337–340. Springer, 2008.

[10] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[11] Benjamin C. Pierce. Types and programming languages. MIT press, 2002.
[12] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning, Chapter

13. Elsevier and MIT Press, 2001.
[13] Geoff Sutcliffe. The TPTP problem library and associated infrastructure: The FOF and CNF

parts, v3.5.0. Automated Reasoning, 43(4):337–362, 2009.
[14] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information

and Computation, 115(1):38–94, 1994.

12

http://twelf.org/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/

	Motivation
	Example specification: Typed SQL
	Specification in Veritas
	Specification in Dafny

	Progress proof
	General structure
	The easy steps
	The more difficult steps

	Discussion
	Conclusion and Future Work

