
Wesley Jay Baartman

Towards Automatic Test Suite
Generation for Functional Programming
Assignments using Budgeted
Compositional Symbolic Execution

Towards Automatic Test Suite
Generation for Functional Programming
Assignments using Budgeted
Compositional Symbolic Execution
Wesley Jay Baartman

Towards Automatic Test Suite
Generation for Functional

Programming Assignments using
Budgeted Compositional Symbolic

Execution
by

W.J. Baartman
born in Hoofddorp, the Netherlands

to obtain the degree of Master of Science in Computer Science
at the Del� University of Technology,

to be defended publicly on Wednesday October 26, 2022 at 13:00.

Student number: 4603524
Project duration: October 25, 2021 – October 26, 2022
Thesis committee: Prof. dr. A. van Deursen, TU Del�, supervisor

Prof. dr. E. Visser†, TU Del�, supervisor
Dr. C.B. Poulsen, TU Del�, daily supervisor
Dr. S. Dumančić, TU Del�

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Programming Languages Group
Department of So�ware Technology

Faculty EEMCS, Del� University of Technology
Del�, the Netherlands

www.ewi.tudelft.nl

http://repository.tudelft.nl/
www.ewi.tudelft.nl

Preface

This thesis focuses on automatically generating test suites for functional programming language
from a reference implementation and a set of potentially faulty student solutions in order to be
used for grading. This project was conducted within the Programming Languages Group1 at the
Del� University of Technology. The daily supervision was provided by Assistant Professor Casper
Bach Poulsen of the Programming Languages Group. The role of responsible supervisor of this
project was originally fulfilled by Professor Eelco Visser of the Programming Languages Group.
However, a�er his extremely unfortunate and unexpected passing, this role was taken over by
Professor Arie van Deursen of the So�ware Engineering Research Group at the TU Del�. The third
observing committee member is Assistant Professor Sebastijan Dumančić of the Algorithmics
Group at the TU Del�.

The source code and evaluation scripts are digitally available2.

1https://pl.ewi.tudelft.nl/
2https://github.com/CptWesley/AutomatedDifferentialTestingOfDefinitionalInterpreters

https://pl.ewi.tudelft.nl/
https://github.com/CptWesley/AutomatedDifferentialTestingOfDefinitionalInterpreters

Acknowledgements

I would like to thank many people that have supported me over the years in order to reach this
point in my career, and perhaps even more important, in my life. However, I would like to thank
certain people in particular that have lead or have indirectly contributed to the work presented
in this document.

First of all I want to thank Casper Bach Poulsen for igniting the spark for my interests in
programming languages during his bachelor course "Concepts of Programming Languages".
And who now many years later supervised this master thesis from start to end, even when I
stopped believing in my myself and all communication felt di�icult for me.

Second of all I would like to thank the late Eelco Visser, who originally shaped the aforemen-
tioned bachelor course later taught by Casper. And who further embolstered my passion for
programming languages with his master courses on compiler construction. I will never forget
that he took time to talk to me about my personal situation when times were hard during the
covid lockdowns. Even though I have never been able to express this gratitude in person, it was
very meaningful to me.

Thirdly I would like to thank my friends for supporting me throughout this journey. In
particular I would like to thank Andra Popa, Paul van der Stel, Luc Everse, Taico Aerts and Caro
Brandt for allowing me to bounce o� ideas, and vent my frustrations, and also for proof reading
(parts of) my thesis, and who believed in me a�er I stopped believing in myself. I would also
like to thank all my other friends and acquaintances who have also been subject to either my
pitching of ideas or frustration venting regarding my thesis over the last year. Furthermore, I
would also like to thank Paul van der Stel again for creating the cover page of this thesis, a�er I
told him I was jealous of his own thesis cover page.

W.J. Baartman
Del�, September 2022

ii

Abstract

In this thesis, we have defined a symbolic execution technique to automatically generate test
suites for programs written in functional programming languages that can find the behavioural
di�erences between a reference implementation and a set of potentially di�erent implemen-
tations. Our symbolic execution technique uses a constraint solver in order to find a model
that satisfies all constraints that together represent an execution path through the program.
Furthermore, our technique utilises manually defined budget constraints to guide the symbolic
execution to more interesting areas of the programs. These budget constraints define an initial
budget that dictates when the symbolic execution terminates, and a set of costs associated to
certain operations such as calling (specific) functions or performing (specific) pattern matches.
This allows the symbolic execution to deplete budgets faster when it explores functions or
branches of a program that are deemed "unlikely to be interesting". This results in less system
resources being used on exploring these uninteresting execution paths, and instead allows for
exploration of deeper paths in more interesting areas of the programs. Our budget constraint
optimisation strategy works alongside other well-known optimisation strategies for symbolic
execution such as early branch pruning and reusing intermediate results, more commonly known
in the field of symbolic execution as compositioning.

In order to perform our symbolic execution on functional programs, we have defined a
variation of Control Flow Graphs (CFG) for functional programming languages which allow
modelling the execution flow between the di�erent expressions that form the body of functions
in functional programming. Additionally, our technique uses a constraint solver in order to find
what paths through the program are feasible and to generate inputs that will lead to the execution
of said paths. To allow us to specify these constraints on a higher-level, we have defined an
intermediate Domain Specific Language (DSL), which can be transformed into a lower-level
language understood by the constraint solver. We refer to this DSL as our Intermediate Constraint
Language (ICL). Our ICL supports working seamlessly with type systems that allow inheritance,
rather than only supporting Algebraic Data Types (ADT).

Furthermore, we have developed a symbolic execution engine for programs written in a
pure and functional subset of the Scala programming language. This symbolic execution engine
implements our proposed symbolic execution technique alongside the other described optimi-
sation techniques. We have used this implementation in order to measure the e�ectiveness of
our symbolic execution technique. In order to do this, we have used our technique in a scenario
to automatically generate test suites for real student submissions of introductory assignments
to functional programming. We have performed a comparison between the obtained branch
coverages and mutation scores with our technique and the manually written test suites that have
been used for multiple years. Finally, we have reflected on the feasibility of using this approach
in practice by looking at the execution time and the number of inquiries to the constraint solver,
required to generate test suites that are able to find an adequate number of errors.

iii

Contents

Preface i

Acknowledgements ii

Abstract iii

Contents iv

List of Figures vi

1 Introduction 1

2 Motivating Examples 3
2.1 The Problem . 3
2.2 The Solution . 5

3 Supported Scala Subset 9
3.1 The Scala Language . 9
3.2 Implementation Limitations . 10

4 Building the Control-Flow Graph 12

5 Intermediate Constraint Language 16
5.1 Encoding the Type System . 16
5.2 Encoding the Evaluation Semantics . 19

6 Symbolic Execution 23
6.1 Summaries . 23
6.2 Compositional Analysis . 25
6.3 Early Branch Pruning . 28
6.4 Budget Constraints . 28
6.5 Further Optimisations . 29

7 Test Suite Generation 31

8 Evaluation 33
8.1 Metrics . 33
8.2 Setup . 34
8.3 Results . 35
8.4 Limitations . 44

9 Related Work 45
9.1 Program Equivalence . 45
9.2 Random Testing . 45
9.3 Test Suite Generation . 46
9.4 Symbolic Execution . 46

10 Future Work 48

11 Conclusion 50

References 51

iv

A Student Data Set 59
A.1 Lists . 59
A.2 Binary Search Trees . 62

B Interpreter Data Set 64
B.1 Type Definitions . 64
B.2 Reference Solution . 64
B.3 Faulty Solutions . 65

C Extra Results 71

v

List of Figures

2.1 Example implementations of a function that computes the length of Lists. . . 3
2.2 Example implementations of a simple interpreter. 4
2.3 Example of a test case that would reveal the error in figure 2.2c. 4
2.4 Incorrect implementation of the same interp function as given in figure 2.2b,

where the case for Add is too specific and does not allow for nested arithmetics. 5
2.5 Example of symbolic execution of a function which computes the absolute value

of an integer. Constraints of the n variable are provided at di�erent points in the
execution. 5

2.6 Modified version of figure 2.1d that makes control flow more explicit. 6
2.7 Example of a potential test suite generated by our framework for the program

given in figure 2.5. 7
2.8 Example of a potential test suite generated by our framework for the program

given in figure 2.6. 8
3.1 Backus-Naur Form of the Scala syntax which is supported in the concept imple-

mentation. 11
4.1 Control flow graphs for the programs in figure 2.1 which compute the length of a

List. 15
5.1 Scala equivalent of the type definitions of the Exp type provided in figure 2.2a. 16
5.2 Type definitions which represent concrete values and subtyping relationships

for the programs shown in figure 2.2. 18
5.3 Backus-Naur Form grammar for the Intermediate Constraint Language. 20
5.4 Transformation rules to transform expressions of the EICL to equivalent expres-

sions in the CICL. 20
5.5 Hoisting implicit constraints. 21
5.6 Implicit constraint generation for constructs defined by figure 5.3a. 21
6.1 Annotated CFG for the abs function given in figure 2.5. 24
7.1 A diagrammatic representation of our test suite generation pipeline. Each node

indicates what chapter explains the step represented by the node. Each edge
indicates the inputs and outputs used by the various steps in the process. . . . 32

8.1 Evaluation results of the Lists data set. 39
8.2 Evaluation results of the Binary Search Tree data set. 41
8.3 Evaluation of test suit generation for simple interpreters with seeded errors. (

RQ2b) . 43
10.1 Example programs implementing a subtraction function. 48
A.1 Lists assignment template and description. 59
A.2 Lists assignment reference implementation. 60
A.3 Lists assignment manually written test suite. 61
A.4 Binary Search Trees assignment template and description. 62
A.5 Binary Search Trees assignment reference implementation. 62
A.6 Binary Search Trees assignment manually written test suite. 63
B.1 Type definitions shared for all interpreters. 64
B.2 Reference implementation of a simple interpreter. 64
B.3 Faulty implementation which uses the local environment to interpret the body

of a closure. 65
B.4 Faulty implementation which first uses the local environment, then the closure

environment to interpret the body of a closure. 65
B.5 Faulty implementation which first uses the closure environment, then the local

environment to interpret the body of a closure. 66

vi

B.6 Faulty implementation which uses the empty environment to interpret the body
of a closure. 66

B.7 Faulty implementation which uses the closure environment to interpret the
argument of a function application. 67

B.8 Faulty implementation which first uses the closure environment, then the local
environment to interpret the argument of a function application. 67

B.9 Faulty implementation which first uses the local environment, then the closure
environment to interpret the argument of a function application. 68

B.10 Faulty implementation which uses the empty environment to interpret the argu-
ment of a function application. 68

B.11 Faulty implementation which does not interpret the arguments of addition before
adding them. 69

B.12 Another faulty implementation which does not interpret the arguments of addi-
tion before adding them. 69

B.13 Faulty implementation which has a malicious extra case for additions. 70
C.1 Number of Z3 inquiries of di�erent budget constraint configurations for di�erent

interpreter implementations. 71
C.2 Number of generated tests of di�erent budget constraint configurations for dif-

ferent interpreter implementations. 72

vii

1 Introduction

In education, we like to evaluate the progress that our students have made using assignments.
In our field, this is o�en done by means of programming exercises. When grading student
submissions, we would ideally like to make sure that they have created an implementation that
produces the correct output for any given input. O�en, we create a reference solution for these
exercises, which provides a correct implementation of the exercise. We can also say: We want
to make sure the submissions are behaviourally equivalent to our reference implementation.
However, it is known that solving this equivalence problem for programs is a variant of the
halting problem and is thus undecidable in the general case [1]. Therefore, we have to resort to
non-complete solutions. There are generally two approaches: manual grading and automated
grading. Manual grading allows for more fine grained feedback that is relevant to the student,
but is prone to human errors and is not scalable in terms of student numbers and assignment
complexity. Automated solutions, on the other hand, are more scalable, systematic and allow
for shorter feedback cycles.

We will focus on automated grading using automated (unit) testing. This entails running
submissions against a set of test cases to detect incorrect behaviour in the implementation.
Manually finding the right set of test cases, that can detect most of the student errors, can
be quite tricky. Consider this incorrect Haskell implementation of an interpreter for a small
function programming language:

1 interp :: Exp -> Environment -> Value
2 interp (Num n) _ = NumV n
3 interp (Add e1 e2) nv = case ((interp e1 nv), (interp e2 nv)) of
4 ((NumV n1), (NumV n2)) -> NumV (n1 + n2)
5 _ -> error "Operands not numbers"
6 interp (Var n) nv = find nv n
7 interp (Lambda n b) nv = Closure nv n b
8 interp (Apply e1 e2) nv = case interp e1 nv of
9 (Closure cnv n b) -> interp b (Entry n (interp e2 nv) nv)

10 _ -> error "Not a function"

Here, the error is that the current environment is being used to evaluate the body of the closure
instead of the environment stored in the closure, causing dynamic scoping rather than the desired
lexical scoping. Finding a test case that would catch this small error is probably even less evident:

1 ((lambda x
2 ((lambda z
3 (x 3)
4) 2)
5) (lambda y z))

Our goal is to automatically generate a test suite for grading purely functional programs given a
reference implementation. As a benchmark, we have focused on generating test suites to detect
common errors made by students that we have observed in a second year bachelor’s course on
functional programming, including the scoping error shown above.

To this end, we explore symbolic execution [2] for programs written in a purely functional
subset of Scala as an approach for automatically generating test cases. Symbolic execution is
a technique, which, in contrast to the classical concrete execution of a program, uses symbolic
inputs to execute all feasible paths in a program [3], rather than just a single path. However,
this technique is infamous for su�ering from the path explosion problem, due to the number of
feasible paths through a program growing exponentially and in most real world scenarios being
infinite, due to existence of unbounded loops and recursion [4].

Previously, techniques based on compositional analysis have been developed [5–9] to miti-
gate the path explosion problem. These compositional symbolic execution approaches achieve
this by eliminating redundant constraint solver invocations. These approaches use so-called
summaries to capture pre- and post-conditions of the symbolic values obtained by analysing
smaller portions of the full program. These summaries can be reused when analysing a bigger
portion of the program which contain these smaller portions.

1

We aim to further mitigate the path explosion problem by introducing budget constraints
to compositional symbolic execution. These budget constraints indicate the total budget and
the costs of taking certain paths through the program, which allow the user of the framework to
direct the symbolic executor towards parts of the program in which we expect more errors to
exist. This allows exploring fewer less interesting paths and thereby saving time.

We present the following technical contributions:

• We describe a budgeted symbolic execution-based framework for automatically generat-
ing a test suite for submissions of introductory functional programming assignments in
chapters 4 to 7 based on some example programs described in chapter 2. This framework
aims to e�iciently explore all feasible paths through a program that do not violate a set of
manually predefined budget constraints. The path explosion problem is further mitigated
by employing optimisation strategies such as pruning infeasible branches, compositional
analysis [5–9] and budget constraints to guide the symbolic execution. For each of the
explored paths, it generates a set of inputs that would cause the execution of the pro-
gram to follow that path. It then adds a test case to the test suite with given inputs and
the expected output found by concretely executing the reference solution with the found
inputs.

• We define a special annotated variant of control flow graphs [10] in chapter 4. This variant
is used to model the execution flow within the expressions that form the function bodies
of pure functional programs.

• In order to properly represent the type-relations present in the Scala language, we de-
fine our intermediate constraint language, which serves as a domain specific language
which encodes the semantics of a pure functional language with a type system which sup-
ports inheritance as algebraic data types in order to ensure type safety in the SMT solver
in chapter 5.

• We evaluate the e�ectiveness of the implemented framework (chapter 8) by looking at
di�erent aspects. Using a large set of student submissions and a collection of anecdotal
programs of commonly occurring bugs, we evaluate the e�ects of di�erent budget con-
straints on the run time of the symbolic execution and the quality of the generated test
suite in terms of capability of finding the inserted bugs, the structural code coverage and
the mutation coverage.

The remainder of this thesis is structured as follows: Chapter 2 further concretises the prob-
lem with more detailed examples and provides intuition for the proposed solution. The following
sections will then provide a technical description of the implemented solution. Chapter 3 pro-
vides an overview of the Scala subset which is supported by the current implementation and
provides suggestions of how support can be extended in the future. An explanation of how
we transform abstract syntax trees into our special annotated variant of control flow graphs is
provided in chapter 4. We then present our intermediate constraint language which we use to
encode the Scala type system within the SMT solver in chapter 5. Next, chapter 6 then provides a
detailed explanation of how our implementation performs symbolic execution, including how we
defined our summaries, how we define budget constraints, and how we perform composition of
those summaries, taking into account the budget constraints. Chapter 7 concludes the technical
sections by explaining how the entire pipeline can be utilised to generate an entire test suite
given a reference implementation and a set of input programs. We then evaluate and reflect on
the e�ectiveness and limitations of our approach in chapter 8. We then discuss related work in
chapter 9. Next, we provide suggestions for improvements that can be made in future work in
chapter 10. Finally, we summarise this thesis in chapter 11.

2

2 Motivating Examples

In order to explain the workings of the proposed framework, we will explain the di�erent steps
using a number of examples. The examples provided throughout this thesis are written in
the Haskell programming language, rather than our target language Scala, due to the more
widespread familiarity of the Haskell language in the academic literature. The concepts we
will discuss are applicable to pure functional programming concepts in general. We will first
demonstrate an example with an evident error and will then demonstrate an example with a less
evident error. A�erwards, we will explain how performing an analysis using symbolic execution
can aid us in finding the aforementioned errors.

1 data List = Nil
2 | Cons Int List

(a) Type definitions used for all examples.

1 len :: List -> Int
2 len Nil = 0
3 len (Cons _ t) = 1 + (len t)

(b) Correct implementation using recursion.

1 len’ :: List -> Int
2 len’ xs = lenAcc xs 0
3
4 lenAcc :: List -> Int -> Int
5 lenAcc Nil n = n
6 lenAcc (Cons _ t) n = lenAcc t (n + 1)

(c) Correct implementation using tail recursion.

1 len’’ :: List -> Int
2 len’’ (Cons _ Nil) = 1
3 len’’ (Cons _ t) = 1 + (len’’ t)

(d) Incorrect implementation where the empty
list is not considered.

Figure 2.1: Example implementations of a function that computes the length of Lists.

2.1 The Problem

For the first example (figure 2.1) we will consider a data type definition (figure 2.1a) of a LISP-like
cons list named List. List has two possible constructors: Nil, representing the empty list
and Cons head tail, where head represents an element in the list and tail represents
the rest of the list. We describe three programs that were intended to count the length of the
provided List. Figure 2.1b represents a straightforward and correct implementation using Nil
as its base case. Figure 2.1c represents an implementation that uses a helper function lenAcc
to employ an accumulator to compute the final value. This helper function also uses the empty
list as its base case. The third program (figure 2.1d) however, does not use the empty list as its
base case, but instead uses a list containing a single element as its base case. It is evident that
this len’’ function will result in an error when an empty list is provided as input, but will result
in the correct result for any other input. This means that we should at the very least expect Nil
to be used as input in one of our generated test cases in order to catch this error. This is in line
with the commonly used testing technique of boundary value analysis, where values for test
cases are taken that are on either side of boundary values [11], where an empty list is a boundary
value for the length of a list.

3

1 data Exp = Num Int
2 | Add Exp Exp
3 | Lambda String Exp
4 | Apply Exp Exp
5 | Var String
6
7 data Value = NumV Int
8 | Closure Environment String Exp
9

10 data Environment = Empty
11 | Entry String Value Environment
12
13 find :: Environment -> String -> Value
14 find Empty _ = error "Variable not found in environment"
15 find (Entry n1 v t) n2 = if n1 == n2 then v else find t n2

(a) Type definitions and helper functions used for all examples.

1 interp :: Exp -> Environment -> Value
2 interp (Num n) _ = NumV n
3 interp (Add e1 e2) nv = case ((interp e1 nv), (interp e2 nv)) of
4 ((NumV n1), (NumV n2)) -> NumV (n1 + n2)
5 _ -> error "Operands not numbers"
6 interp (Var n) nv = find nv n
7 interp (Lambda n b) nv = Closure nv n b
8 interp (Apply e1 e2) nv = case interp e1 nv of
9 (Closure cnv n b) -> interp b (Entry n (interp e2 nv) cnv)

10 _ -> error "Not a function"

(b) Correct implementation.

1 interp :: Exp -> Environment -> Value
2 interp (Num n) _ = NumV n
3 interp (Add e1 e2) nv = case ((interp e1 nv), (interp e2 nv)) of
4 ((NumV n1), (NumV n2)) -> NumV (n1 + n2)
5 _ -> error "Operands not numbers"
6 interp (Var n) nv = find nv n
7 interp (Lambda n b) nv = Closure nv n b
8 interp (Apply e1 e2) nv = case interp e1 nv of
9 (Closure cnv n b) -> interp b (Entry n (interp e2 nv) nv)

10 _ -> error "Not a function"

(c) Incorrect implementation where the current environment nv is used to evaluate the body
of the closure instead of the environment of the closure cnv (line 9).

Figure 2.2: Example implementations of a simple interpreter.

1 ((lambda x
2 ((lambda z
3 (x 3)
4) 2)
5) (lambda y z))

Figure 2.3: Example of a test case that would reveal the error in figure 2.2c.

For the second example (figure 2.2) we will take a look at a more insidious programming error
we find in student interpreters. We first define the used data types and some helper functions
for them in figure 2.2a. We consider a very simple language that only supports integers, addition
and functions. Figure 2.2b and figure 2.2c represent a correct and incorrect implementation of
closures respectively. Closures are intended to ensure the static scoping of a program [12]. A test
case that exposes this incorrect behaviour is more complex. To be precise, it requires a situation
where a function application gets evaluated with an environment that holds a di�erent value
for a variable than the value that is stored inside the closure. One example of such an input is
shown in figure 2.3. For the correct implementation interp, the result will be an error, because
the variable z is not defined in the environment in the closure of (lambda y z). While in the
incorrect implementation interp’, the result will be 2, due to the fact that z is bound to 2 in
current environment when (lambda y z) gets applied.

As can be seen from the second example, it can be hard to spot small errors and find a
suitable test case for them. This task is very time consuming, especially when trying to find
suitable test cases for multiple of such errors. The error we just showed related to using the local

4

environment rather than the closure environment when evaluating the body of the function,
but there are many more ways in which students create undesired scoping behaviour, such
as by using various combinations of the local and closure environments. However, scoping
behaviour is not the only place where errors can be made. Other common errors are usually
the result of implementing (incorrect) behaviour for cases that are either too specific, or not
specific enough. An example of such an incorrect implementation is given in figure 2.4. Here
the implementation for interpreting Add expressions matches a pattern which is too specific,
which leads to valid inputs such as (Add (Add (Num 1)(Num 2))(Num 3)) to result in
an error. Thus, (partially) automating this task of finding all these test cases that can uncover all
such errors could reduce the amount of time spent manually looking for these scenarios.

1 interp :: Exp -> Environment -> Value
2 interp (Num n) _ = NumV n
3 interp (Add (Num e1) (Num e2)) nv = NumV (e1 + e2)
4 interp (Var n) nv = find nv n
5 interp (Lambda n b) nv = Closure nv n b
6 interp (Apply e1 e2) nv = case interp e1 nv of
7 (Closure cnv n b) -> interp b (Entry n (interp e2 nv) cnv)
8 _ -> error "Not a function"

Figure 2.4: Incorrect implementation of the sameinterp function as given in figure 2.2b, where
the case for Add is too specific and does not allow for nested arithmetics.

2.2 The Solution

Our proposed solution is based on the intuition that if a program can exhibit some erroneous
behaviour, we can make it exhibit this erroneous behaviour by executing every single path
through the program with all possible inputs that guides the program through those paths and
observing whether or not the output matches the output given by the reference program with
the same inputs. In order to execute all these paths, we will utilise the technique of symbolic
execution [2, 3].

Regular concrete execution uses concrete values as inputs to be given to a program, which
then executes a single path through the program. Symbolic execution on the other hand, uses
symbolic variables which do not yet have a particular value, but instead have (mathematical)
constraints assigned to them along the di�erent execution paths. Whenever during symbolic ex-
ecution we reach a branching point, such as an if-then-else or a match expression, the execution
forks and continues in all branching paths at the same time, while updating all symbolic values
with the relevant constraints.

1 abs :: Int -> Int
2 abs n =
3 if
4 n < 0 -- {}
5 then
6 -n -- {n < 0}
7 else
8 n -- {n >= 0}

Figure 2.5: Example of symbolic execution of a function which computes the absolute value of
an integer. Constraints of the n variable are provided at di�erent points in the execution.

In order to give an example of how symbolic execution works, we will first take a look at the
very simple program given in figure 2.5. Here a simple function abs is given which computes the
absolute value of an integer. In concrete execution, we would have to assign a concrete value to
the variable n in order to execute abs. When we execute the function with n assigned to the
concrete value -5, the program first evaluates the expression n < 0. This expression evaluates
to true, since we know that n has the value -5 and -5 < 0 is true. This causes the execution

5

to move to the then branch. Substituting the value of n into the expression -n results in --5,
which evaluates to 5, which is consequently also the return value of the function.

With symbolic execution on the other hand, we do not yet assign any value to n when we
start executing the function. The constraints that are known at each point of the evaluation are
added as comments to the code in figure 2.5. When we execute the function, we first encounter
the expression n < 0 in the condition of the if-then-else construct. The execution now forks
into two di�erent executions: one that continues in the then branch and one that continues in
the else branch. Since the then branch can only be entered when n < 0 holds, it is added to the
set of constraints. Similarly, when the else branch is entered, it cannot hold that n < 0, thus
the negation of the condition (n >= 0) is added to the set of constraints. When the function
has finished executing for all forks, we end up with two sets of constraints: {n < 0} and
{n >= 0}. For each of these constraint sets we could now generate all possible values for n
for which the constraints hold. This would give us the following two input sets: {n | n < 0}
and {n | n >= 0} respectively.

We can use this approach to find the fault present in the example given by figure 2.1d. To
keep things simple we will ignore the handling of function calls for now. To make things more
clear, we will first rewrite the example to make the order of evaluation more explicit. Since the
order of evaluation of pattern matching happens top-down, we convert the pattern matching
expression into a chain of pattern matches. Furthermore, since the patterns in the example are
not exhaustive, we will also insert an extra pattern which leads to aborting the program using
the error function. The result of this rewrite can be found in figure 2.6.

1 len :: List -> Int
2 len xs = case xs of -- {}
3 (Cons _ Nil) -> 1 -- {xs matches (Cons _ Nil)}
4 _ -> case xs of -- {xs does not match (Cons _ Nil)}
5 (Cons _ t) -> 1 + (len t) -- {xs does not match (Cons _ Nil), xs matches (Cons _ t)}
6 _ -> error "no match" -- {xs does not match (Cons _ Nil), xs does not match (Cons _ t)}

Figure 2.6: Modified version of figure 2.1d that makes control flow more explicit.

As before, we included the set of constraints on the value of xs at di�erent points in the
program. The symbolic execution now forks twice: once a�er line 2 and once a�er line 4. We
can observe that there will be three di�erent sets of constraints when the analysis finishes:

1 {xs | xs matches (Cons _ Nil)}
2 {xs | xs does not match (Cons _ Nil) ^ xs matches (Cons _ t)}
3 {xs | xs does not match (Cons _ Nil) ^ xs does not match (Cons _ t)}

If we can find a value for xs which satisfies the third set of constraints, we have found an
input which leads to the program aborting. The only value that satisfies these constraints is
Nil. If we perform a concrete execution of the correct implementation in figure 2.1b with Nil
as input, we find that the function returns 0. This means we have found di�erence in behaviour
for the input Nil between the example in figure 2.1d and the example in figure 2.1b.

However, performing such an analysis in practice presents two major complications. The first
one being that obtaining full path coverage by executing all possible paths is impossible for most
real programs. This is due to the fact that there might be an infinite number of paths through a
program, if the program contains loops or recursion [13]. This problem is also present in both
of the examples we have provided. In the functions given in figure 2.6 a recursive call happens
whenever a Cons with a non-Nil tail is encountered. Previously, we ignored this recursive call,
but in order to make the symbolic execution complete, we would need to continue our symbolic
execution in the called function. There are however no limitations on how many times a Cons
can occur inside another Cons, therefore there can be an infinite number of di�erent amounts
of nested Cons values, causing an infinite number of possible paths through the programs.
The same problem can be observed with the recursive handling of Add and Apply values in

6

the functions given in figure 2.2. Therefore, we have to settle for only analysing a subset of all
possible paths, in order to make the analysis feasible. As a result, we can no longer guarantee
that all faulty behaviour will be uncovered. However, as can be seen from the analysis provided
earlier, for some faults it is not necessary to analyse very deep paths to uncover them. Our
evaluation in chapter 8 will provide some insight into how many errors can be found for di�erent
depths.

The second complication arises from the fact that, ideally, for each path we want to cover, we
want to cover all possible values that guide the execution through this path. However, for many
real programs, the number of possible inputs can be larger than is realistically feasible to test or
can even be infinite. If we take another look at figure 2.5 and we want to find all inputs for the
then-branch, we have to find all values of typeIntwhich are smaller than0. If this was a Haskell
program, identical to the example, then there would be 229 such inputs. If this was a Scala
program, this number would be even larger, namely 231. Similarly, we find an equal number
of inputs for the else branch. We can rationalise that it is very likely that any value within these
domains has the same observable behaviour as any other value within this domain, therefore
it might be su�icient to test only a single or small number of inputs from each domain. If we
only select a single input from each domain, we can reduce our required number of test cases
from 230 or 232 (depending on the language) to 2. However, this does mean that the solution
becomes subject to cases where the output is correct, but for the incorrect reasons [11]. Our
solution makes this trade-o� and only selects a single input set for each found execution path. In
chapter 10 we discuss the possibility of extending the current implementation in order to select
multiple input sets for each execution path.

Our proposed solution automatically generates a test suite for a given program using sym-
bolic execution as described above. An example of the test cases that our solution finds for a
program such as figure 2.5, are shown in figure 2.7.

1 assert ((abs -1) == 1)
2 assert ((abs 1) == 1)

Figure 2.7: Example of a potential test suite generated by our framework for the program given
in figure 2.5.

In order to limit the number of explored paths, the user can provide the framework with
budget constraints that control which paths the symbolic executor will explore. These budget
constraints dictate the original starting budget and associate costs of performing certain actions
during the symbolic execution. When the budget is depleted along a certain execution path, the
symbolic execution along that path terminates. When no more branching paths are available
where the budget has not yet been depleted, the overall symbolic execution will terminate. An
example of such a cost association is assigning a cost to performing a function call. These costs
can be assigned to all function calls or to calls to specific functions in order to give a lower priority
to exploring certain functions. Additionally, costs can be assigned to matching specific patterns
in pattern match expressions. More detailed explanations on how these budget constraints work
are provided in chapter 6.4.

We have evaluated the feasibility and the e�ectiveness of the generated test suites when
using di�erent budget constraints for various scenarios. Additionally, we have also explored
what budget constraints are necessary in order to detect the error present in figure 2.2c and
various other errors. The findings of these evaluations can be found in chapter 8.3.

An example of a test suite generated by our framework for the program in figure 2.6, is given
in figure 2.8. Here the only configured budget constraint is that each function deducts 1 from
the remaining budget. The comments denote the minimum required initial budget for this test
case to appear in the generated test suite. In the following sections we will provide a detailed
description of each step in our solution.

7

1 assert ((len Nil) == 0) -- budget >= 0
2 assert ((len (Cons 0 Nil)) == 1) -- budget >= 0
3 assert ((len (Cons 0 (Cons 1 Nil))) == 2) -- budget >= 1
4 assert ((len (Cons 0 (Cons 1 (Cons 2 Nil)))) == 3) -- budget >= 2
5 assert ((len (Cons 0 (Cons 1 (Cons 2 (Cons 1 Nil))))) == 4) -- budget >= 3
6 ...

Figure 2.8: Example of a potential test suite generated by our framework for the program given
in figure 2.6.

8

3 Supported Scala Subset

First, we will provide an overview of the Scala subset that is supported by our framework. We
will do this, by first providing a brief description of the Scala language and how it di�ers from
more traditionally used functional programming languages in chapter 3.1. We will then give an
overview of the further limitations imposed by our current implementation, and suggestions on
how these limitations can be resolved in chapter 3.2.

3.1 The Scala Language

The Scala programming language is a high-level general-purpose programming language which
combines the concepts of object-oriented programming (OOP) and functional programming [14].
This, as a consequence, means that Scala is in many ways more similar to high-level OOP
programming languages, such as Java [15] and C# [16], than it is to more classical examples of
functional programming languages such as Haskell [17] and Standard ML [18].

However, as mentioned earlier, the subset of Scala which is supported by our framework is
pure and functional. We define the purity of a language as lacking any state or mutability and
therefore functions can not have any side-e�ects associated with them. We classify a language
as being functional if it allows treating functions as values. Thus we have ignored most of the
imperative and impure features of the Scala language for this study.

Nevertheless, there are still various OOP features present in this functional subset. The most
important of those features relate to the type system: classes, traits and objects. OOP languages
organise their source code using classes [19]. A class defines a type which encapsulates data as
fields, similar to structs in languages such as C, and the functions that operate on those data as
methods. A value of such a class type is referred to as an instance.

Furthermore, in order to promote reusability, it is possible for a class to extend another
pre-existing class. This is referred to as inheritance between a parent class and a child class.
Inheritance also allows for child classes to override methods that were previously defined in
their parent class. The specific form of inheritance supported by the Scala language can be
classified as hierachical multilevel single inheritance. This means that classes are only allowed
to inherit from a single other class, which may also inherit from a single other class, but multiple
classes may inherit from the same parent class [20]. An instance of a child class can always be
used in places where an instance of the parent class is expected. Additionally, it is also possible
for a class to be not fully defined yet. When this is the case, the class is considered abstract. This
makes it impossible to create an instance of this class. Instead, instances can only be made of
child classes.

Additionally, to bridge the gap between functional programming and OOP, Scala also o�ers
syntactic sugar to define classes in a manner that is more akin to functional programming. This
is done using so-called case classes [21], which are comparable to record types with immutable
fields [22].

Furthermore, Scala allows class composition through the usage of one or more mixins in the
form of traits [23]. Adding a trait to a class allows that class to expose the functionalities provided
by said trait, similarly to how interfaces work in other Object Oriented languages such as Java or
C#. Therefore, the Scala type system allows you to use a class that has a certain trait if the type
signature expects that same trait. This means it is possible to simulate multiple-inheritance while
partially mitigating the diamond problem [24], where ambiguity arises when a class inherits from
two classes which share a common ancestor [25].

Moreover, due to the presence of inheritance and mixins, it is necessary to find the correct
implementation of a method during run time, when the method of an instance is invoked. Since
it might not always be possible to determine which implementation of the method to use during
compilation time. This is also known as dynamic dispatch [26].

9

Finally, Scala also allows for the creation of classes which can only have a single instance, or
singleton, by defining a class as an object [27]. This is similar to the static keyword present
in Java and C#, where all fields, methods and classes marked with the static keyword exist
independent of any instances of the class in which they are defined [19].

3.2 Implementation Limitations

We shall now discuss the further limitations which our implementation imposes on the pro-
posed framework. It must be noted that these limitations are not theoretical limitations on the
approach, but rather on the current implementation of the approach. The limitations serve as
a way of maintaining the simplicity of the proof of concept of our approach. We will therefore
also provide a possible way of resolving each of these limitations a�er describing the respective
limitation.

Firstly, our analysis only limits itself to source code, meaning that any definitions provided
by external libraries (including the standard library of both Scala and Java), are not usable
by our analysis. However, this can be circumvented by including (equivalent) relevant source
code sections of those definitions in the framework. As a consequence, this also means that
many commonly used types, such as tuples and lists, are not supported. However, some Scala
types such as Any, AnyVal, Object, Int, Bool and String have built-in support in the
framework.

Secondly, in the current implementation the object-oriented programming concepts that are
part of Scala are supported in limited capacity. Types have to be defined as either abstract classes
or case classes. The primary reason for this is to ensure the purity of the supported subset. Traits
[23] are not fully supported in the current implementation, however, the definitions provided
in chapter 5 do consider the usage of traits. Parametric polymorphism, better known in Java
and Scala as generics [23], is also not supported. Support for this can be extended in a fairly
straightforward fashion if type-inference would be added as an extra step when performing
the symbolic execution. All function definitions currently have to be defined in an object,
meaning that they cannot depend on an instance of a class. However, it is possible to extend
the support for this by modeling member functions in the same way as these static functions
with an extra parameter. This extra parameter should have the type of the object and when the
function is called, the provided argument to that parameter should be the object instance on
which the function operates. Then, some logic should be introduced to decide which function
implementation will be used, depending on the di�erent possible input types.

Furthermore, the current implementation attempts to resolve all functions from a global
scope. This means that any function which is passed around as a value can not be resolved
back to its definition. Introducing an extra resolution step during the symbolic execution could
allow finding the correct function definition along the execution path. This would mean that all
static functions need to be inserted into the global scope and all local definitions or aliases need
to be inserted into their respective scopes. Extra care should be taken during the resolution
to ensure that local name definitions should take proper priority over names definitions in
outer scopes. Thus, this would li� this limitation. Consequently, lambdas, better known in
Scala as anonymous functions [28], are also not supported. However, it is possible to extend the
aforementioned solution by allowing the resolution step to also resolve the local variables that
are bound inside the anonymous function in order to be able to perform symbolic execution of
anonymous functions. One way of achieving this could be to turn all anonymous functions into
named functions that require an extra parameter for each variable referenced inside the body of
the anonymous function that is defined outside of the anonymous function.

Finally, most of the remaining commonly used pure language features are supported. This
means that while it is not possible to reassign a new value to a variable defined using var or
use for- or while-loops, it is possible to use most other language features such as pattern
matching (and subtyping), recursion and exception throwing. A grammar in Backus-Naur Form

10

(BNF) [29] of the supported Scala syntax is provided in figure 3.1.

1 <id> ::= <letter> | <id> <letter> | <id> <digit>
2 <type-name> ::= <id>
3 <natural-number> ::= <digit> | <digit> <natural-number>
4
5 <args> ::= <exp> | <args> "," <exp>
6 <param> ::= <id> ":" <type-name>
7 <params> ::= <param> | <param> "," <params>
8
9 <type-def> ::= "abstract class" <id> "(" <params> ")"

10 | "case class" <id> "(" <args> ")"
11 <func-def> ::= "def" <id> "(" <params> "):" <type-name> "=" <exp>
12
13 <integer> ::= <natural-number> | "-" <natural-number>
14 <bool> ::= "true" | "false"
15 <val-ref> ::= <id>
16 <val-def> ::= "val" <id> "=" <exp>
17 | "val" <id> ":" <type-name> "=" <exp>
18 <func-call> ::= <exp> "(" <args> ")"
19
20 <add> ::= <exp> "+" <exp>
21 <sub> ::= <exp> "-" <exp>
22 <mul> ::= <exp> "*" <exp>
23 <div> ::= <exp> "/" <exp>
24
25 <if> ::= "if (" <exp> ")" <exp> "else" <exp>
26 | "if (" <exp> ")" <exp>
27 <exp-chain> ::= "" | <exp>
28 | <exp> <new-line-character> <exp-chain>
29 | <exp> ";" <exp-chain>
30 <block> ::= "{" <exp-chain> "}"
31
32 <patterns> ::= <pattern> | <pattern> "," <patterns>
33 <pattern> ::= <bool> | <integer> | "_"
34 | <type-name> "(" <patterns> ")"
35 <cases> ::= <case>
36 | <case> <new-line-character> <cases>
37 | <case> ";" <cases>
38 <case> ::= "case" <pattern> "=>" <exp>
39 | "case" <pattern> "if" <exp> "=>" <exp>
40 <match> ::= <exp> "match {" <cases> "}"
41
42 <exp> ::= "(" <exp> ")"
43 | <integer> | <bool> | <val-ref> | <val-def> | <func-call>
44 | <add> | <sub> | <mul> | <div>
45 | <if> | <block> | <match>

Figure 3.1: Backus-Naur Form of the Scala syntax which is supported in the concept implemen-
tation.

11

4 Building the Control-Flow Graph

As the first step of our analysis, we use the abstract syntax tree (AST) of the program to construct
an annotated control-flow graph (CFG) for each function in the program which is being analysed.
These CFGs provide an intermediate abstraction of the program that allows us to more easily
reason about the di�erent execution paths through the functions. In chapter 6 we will use these
CFGs to generate constraints in order to perform symbolic execution.

The CFGs which we construct are di�erent in form from the CFGs originally described by
[10]. The sole reason for this di�erence is that classic CFGs use graph nodes to represent basic
blocks of instructions that are executed consecutively [10], while the language class that we are
dealing with, namely functional languages, does not have a notion of instructions. Instead, our
CFGs represent the evaluation order of the expressions inside their respective functions. Since
pure functional programs do not contain any loop constructs such as goto, for or while, and
because function calls have not been expanded, a constructed CFG will therefor always be a
Directed Acyclic Graph (DAG).

It is important to mention that when building the CFG, we consider pattern matching con-
structs as a sequence of nested if-then-else constructs where the matching happens as the
condition and potential variables are bound in the then branch. We build the CFG in such a way
that every node in the CFG represents an expression in the AST, taking into account the aforemen-
tioned implicit conversion of pattern matching constructs. Every edge in the CFG represents the
evaluation going from one expression to the next and can be bound by conditions imposed by
expressions that have diverting control flow, such as if-then-else expressions or pattern match-
ing. Furthermore, we keep track of extra information such as which nodes correspond to return
values, which nodes are function calls, which nodes are arguments to those function calls and
which nodes are the last nodes required to evaluate a larger expression (e.g. the last operands
of an operation). We will explain how this extra information is used for our symbolic execution
technique in chapter 6.

The final CFGs of all example programs given in figure 2.1 are provided in figure 4.1. Here
we let #i denote the i-th argument to the function. In order to make things more concrete, a
step-by-step example of converting the program provided in figure 2.1b into its corresponding
CFG follows:

Legend:

returned expression function applicationcondition expression
argument

expression

last node
last node

last node

1. Since pattern matching happens top-to-bottom, we consider the pattern matching as a sequence
of nested if-then-else constructs and thus we first try to match the input with the pattern Nil
and we mark this initial node as the return value:

len Nil = 0

#1 matches: Nil

#1 does not match: Nil

12

2. If the input matches the pattern Nil, the next evaluated expression is 0, which also happens to
be the last expression in this branch, so we are finished with this branch:

len Nil = 0

0#1 matches: Nil

#1 does not match: Nil

3. If the input does not match the pattern Nil, we then try to match the input with the pattern
(Cons _ t):

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil
#1 matches: (Cons _ t)

#1 does not match: (Cons _ t)

4. Since the evaluation of both expressions a�er the currently marked return node happen se-
quentially, in contrast to happening as part of evaluating the expression in the node, we push
the return value marking down both branches:

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil #1 matches: (Cons _ t)

#1 does not match: (Cons _ t)

5. If the input matches the pattern (Cons _ t), the program returns 1 + (len t) and we
push the return value marking into the branches (as described by step 4):

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil
1 + (len t)#1 matches: (Cons _ t)

#1 does not match: (Cons _ t)

6. Evaluating 1 + (len t) requires to first evaluate 1 and then evaluate len t. And since
these evaluations happen as parts of evaluating 1 + (len t), we do not push the return
value markings further into the branch. Furthermore, we observe that len t is a function
application and thus mark it as such:

n < 0 n 0

last node

-nn < 0 holds

n

n < 0 does not hold

n
last node

7. Since the evaluation of 1 doesn’t require any further evaluations, we link the node to the evalu-
ation of len t:

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil
1 + (len t)#1 matches: (Cons _ t)

#1 does not match: (Cons _ t)

1 len t

last node

13

8. Evaluating len t, does require evaluating its argument t first, thus we append that evaluation
to the branch, mark it as the argument to len t and we push the last node marking of len t
deeper. We are now also done with this branch:

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil
1 + (len t)#1 matches: (Cons _ t)

#1 does not match: (Cons _ t)

1 len t t

last node

last node

argument

9. Finally if the input didn’t match(Cons _ t) in step 3, no behaviour is specified in the program
and the execution aborts:

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil

1 + (len t)#1 matches: (Cons _ t)

abort

#1 does not match: (Cons _ t)

1 len t t

last node

last node

argument

It should be noted that this procedure omits examples of handling certain language features
such as sequential execution, real if-then-else expressions and pattern matching guards. Dealing
with these features is relatively straight forward: For sequential execution, we simply connect
the expressions being executed sequentially with an edge and push the return value marking or
last node marking to the last sequential expression if the first expression was marked as either a
return value or last node respectively. For if-then-else expressions, we simply use its condition
and the negation of that condition as the edge conditions leaving the expression. For guards we
create an extra node that represents the condition a�er the pattern is matched. The edge for
which the condition holds connects to the node to which the pattern match originally pointed
to. The edge for which the negation of the condition holds connects to the same node as the
edge leaving the pattern match for which the pattern was not matched.

As we have seen in the provided examples, these CFGs encode all possible evaluation orders
for all expressions in the AST of a function. This means that any path through a CFG encodes
a full execution of that function. Finding all paths through a CFG means finding all possible
execution paths through the function. In chapter 6 we will use the nodes and edges of the CFGs
in order to generate a constraint set that represents an execution of the corresponding execution
paths.

14

len Nil = 0

0#1 matches: Nil

len (Cons _ t) = 1 + (len t)

#1 does not match: Nil

1 + (len t)#1 matches: (Cons _ t)

abort

#1 does not match: (Cons _ t)

1 len t t

last node

last node

argument

(a) Control flow graph for the correct len program in figure 2.1b.

len' xs = lenAcc xs 0 lenAcc Nil n = n

lenAcc xs 0

#1 matches: xs

abort

#1 does not match: xs

xs

argument

0

argument last node

n

#1 matches: xs

lenAcc (Cons _ t) n = lenAcc t (n + 1)

#1 does not match: xs

lenAcc t (n + 1)

t

argument

n + 1

argument

n

1

last node

last node

(b) Control flow graph for the correct len’ program in figure 2.1c.

len'' (Cons _ Nil) = 1

1#1 matches: (Cons _ Nil)

len'' (Cons _ t) = 1 + (len'' t)

#1 does not match: Nil
1 + (len'' t)#1 matches: (Cons _ t)

abort

#1 does not match: (Cons _ t)

1 len'' t t

last node

last node

argument

(c) Control flow graph for the incorrect len’’ program in figure 2.1d.

Figure 4.1: Control flow graphs for the programs in figure 2.1 which compute the length of a
List.

15

5 Intermediate Constraint Language

In order to perform symbolic execution of a program, we first need a way to transform an
execution path through a program as a set of constraints that can be solved by a constraint
solver. To that end we first define our Intermediate Constraint Language (ICL) used to encode
execution paths as a set of constraints. This ICL forms an intermediate step between Scala, our
source language, and Z3 [30], the SMT solver we have used. The ICL is an abstraction over the raw
Z3 constraints, which has a larger similarity with the Scala language. It is therefore important
that this ICL is capable of faithfully representing both the type relations and evaluation semantics
that are present in the Scala language. Therefore, we will first describe the type systems of Z3
and Scala and provide an explanation of how Scala’s type system can be encoded using Z3.
A�erwards, we will explain the other language constructs present in our ICL.

5.1 Encoding the Type System

In order to perform our symbolic execution technique, it is necessary to use a constraint solver to
solve constraint sets. For this study, we have used Microso�’s Z3 [30] SMT solver as our constraint
solver. This particular choice should not a�ect the theory regarding our symbolic execution
technique and could relatively easily be replaced by any other SMT solver, such as cvc5 [31],
given they provide similar ways of formulating constraints. We will now first describe Scala’s
type system and a�erwards explain the problems that arise when trying to encode that type
system in Z3’s type system.

As we mentioned earlier in chapter 3.1, the Scala language has support for inheritance and
mixins in the form of traits. Both inheritance and mixins are a form of subtyping. We first define a
non-reflexive and non-transitive relation between two types: A <| B, which only holds if type
A is a direct subtype of type B. This e�ectively means that either class B is the direct parent of
class A or that class A has trait B. We also define a reflexive and transitive relation between two
types: A <: B, which holds if type A and B are equal (reflexivity), if A <| B or if there exists a
typeC for which it holds thatA <| C andC <: B (transitivity). This subtyping is both nominal
and inclusive. Nominal meaning that two types are only considered subtypes if their definition
specifies them to be [32]. And inclusive meaning that if A <: B holds, that any instance of type
A is also an instance of type B and can therefore be used in contexts where an instance of type B
is expected [33].

As an example, we will consider the algebraic data type (ADT) Exp provided in figure 2.2a.
An equivalent representation in Scala would look similar to what is shown in figure 5.1. Here
both Exp and Add are considered types, where Add is a sub-type of Exp. We can write this
relation as: Exp <| Add. If no explicit parent class is provided in a class definition in Scala,
the class implicitly inherits from the Object class, which inherits from the Any class. Thus the
full subtype relation we find for the Add class is: Add <| Exp <| Object <| Any.

1 abstract class Exp();
2 case class Num(v: Int) extends Exp();
3 case class Add(e1: Exp, e2: Exp) extends Exp();
4 case class Lambda(n: String, b: Exp) extends Exp();
5 case class Apply(f: Exp, a: Exp) extends Exp();
6 case class Var(n: String) extends Exp();

Figure 5.1: Scala equivalent of the type definitions of the Exp type provided in figure 2.2a.

The first challenge appears as soon as we try to encode an object directly into Z3. Z3, along
with most other SMT solvers, only support very basic ADTs. These ADTs are defined as a data
type with multiple constructors [34], similar to Haskell’s data types. Where each constructor
represents a value of the given sort and where constructors can not be data types themselves.
For example, lets take a look at a possible way of encoding Num(1). The Simplest way would be

16

to define a data typeExpwith a constructorNumwith a single field of sortInt. This would allow
us to correctly encode a function which has a parameter of type Exp. However, this would not
allow us to encode a function which has a parameter of type Int, since Int is not a data type.
Furthermore, this would also not allow us to encode a function which has a parameter of type
Object, because Exp is a data type and not a constructor. Both of these impossibilities are
things that are possible in Scala. Therefore, this highlights the necessity for a way of encoding
these functions.

One possible solution would be type erasure, where we simply get rid of the di�erent types
and their type relations and consider all values to be of the same type. This could be realised by
defining a single over-arching data type and turning every type from our Scala program into a
constructor for that type. However, this leaves room for the SMT solver to create models that
violate the subtyping relations present in the original Scala program. For example, this would
mean thatNum(true)would become a valid value, because bothBoolean andIntwould be
a constructor for Any. This would be impossible in Scala, because the relation Bool <: Int
does not hold.

A better solution would require the present subtyping relations to not be violated. In order
to achieve this, we opted for encoding both types and type-relationships as sorts in the Z3
type system. Similar to the approach of composing types using coproducts proposed by [35].
We do this by creating constructors for parent types that each wrap a subtype. For illustration
purposes we will provide those definitions using Haskell syntax for defining data types. We start
by manually defining the sorts for the primitive types:

1 data Int’ = ...
2 data Boolean’ = ...
3 data String’ = ...

Here we use the su�ix ’ to di�erentiate between the sort representing the Scala type and
the built-in primitive sorts in Z3 itself. We then define the constructors for the string and primi-
tive types:

1 data Int’ = IntC Int
2 data Boolean’ = BooleanC Bool
3 data String’ = StringC String

The syntax here means that IntC is a constructor for the type IntS which has a single ar-
gument which is of the built-in Z3 sort Int. We use the su�ix C to di�erentiate between the
constructor of a type and the corresponding type itself.

We then define the constructors for all other concrete types. Concrete types are all types of
which instances can be created. In Scala this would be all classes that are not abstract. Let type
S be the concrete type for which we wish to create a constructor. Let F be an ordered list of Z3
sorts which represent the types of the fields present in type S. Note that this also includes the
fields of all types T for which it holds that S <: T. We now define a type and its corresponding
constructor as:

1 data <S> = <S>C <F*>

Here we use the angle bracket (<...>) notation to indicate that the variable inside should
be replaced with a specific value. Furthermore, since F is a list of types, we cannot use this
directly in our definitions. Hence, it is necessary to first syntactically expand the list. Here F*
represents the expansion of all types included in F. Doing this for all types defined in figure 5.1,
gives us the following definitions:

17

1 data Num = NumC Int’
2 data Add = AddC Exp Exp
3 data Lambda = LambdaC String’ Exp
4 data Apply = ApplyC Exp Exp
5 data Var = VarC String’

So far we have not defined any of our parent types. Most notably, the Exp type which we
have used above. We will now start defining the (abstract) parent types:

1 data Any = ...
2 data AnyVal = ...
3 data Object = ...
4 data Exp = ...

As we can see, these abstract types do not directly have their own constructors. Instead, we
define constructors that represent subtyping relationships, which wrap subtypes in their respec-
tive super types. This means that for any subtype relation S <| T, we introduce the following
definitions:

1 data <T> = ... | <T>$<S> <S> | ...

Doing this again for the types defined in figure 5.1 and the types used by these types from
the Scala standard library:

1 data Any = Any$AnyVal AnyVal
2 | Any$Object Object
3 data AnyVal = AnyVal$Int Int’
4 | AnyVal$Boolean Boolean’
5 | AnyVal$String String’
6 data Object = Object$Exp Exp
7 data Exp = Exp$Num Num
8 | Exp$Add Add
9 | Exp$Lambda Lambda

10 | Exp$Apply Apply
11 | Exp$Var Var

We can now combine these definitions into a full set of type definitions that encode both concrete
values and subtyping relationships. These combined definitions are shown in figure 5.2.

1 data Any = Any$AnyVal AnyVal
2 | Any$Object Object
3 data AnyVal = AnyVal$Int Int’
4 | AnyVal$Boolean Boolean’
5 | AnyVal$String String’
6 data Object = Object$Exp Exp
7 data Exp = Exp$Num Num
8 | Exp$Add Add
9 | Exp$Lambda Lambda

10 | Exp$Apply Apply
11 | Exp$Var Var
12 data Int’ = IntC Int
13 data Boolean’ = BooleanC Bool
14 data String’ = StringC String
15 data Num = NumC Int’
16 data Add = AddC Exp Exp
17 data Lambda = LambdaC String’ Exp
18 data Apply = ApplyC Exp Exp
19 data Var = VarC String’

Figure 5.2: Type definitions which represent concrete values and subtyping relationships for the
programs shown in figure 2.2.

If we take another look at the problematic encoding example of the value Num(1), we now
find multiple di�erent encoding possibilities. The simplest of these encodings is: NumC(Int’(1)).
The sort of this encoding is Num. However, we can also wrap this term into its parent type to
obtain a term of the Exp sort: Exp$Num(NumC(Int’(1))). We can continue doing this by
further wrapping it in the Object$Exp and then Any$Object constructors to obtain repre-

18

sentations of sorts Object and Any respectively.

5.2 Encoding the Evaluation Semantics

In order to encode the proper evaluation semantics of Scala, we defined numerous high-level
constraints that can later be converted into constraints that can be solved by an SMT solver.
We categorise these higher-level constraints into two groups: Extended Intermediate Constraint
Language (EICL) and Core Intermediate Constraint Language (CICL). The EICL serves as the first
layer to encode the semantics into a set of constraints that is still very similar to the Scala
language. The CICL is a proper subset of the EICL and is more similar to the Z3 constraints, while
still encoding the type system described in chapter 5.1. The reason for this distinction is that
the EICL allows for some specialized optimizations that are no longer possible with the CICL.
However, the CICL still provides a level of abstraction that is easier to work. Backus-Naur Form
grammars [29] for the expressions in the CICL and the EICL are provided in figure 5.3.

1 <cicl-expression> ::= "(" <expression> ")"
2 | <primitive> | <variable>
3 | <logic> | <arithmetic>
4 | <casting> | <objects>
5 <expression> ::= <cicl-expression>
6
7 <arguments> ::= "" | <expression> | <expression> ", " <arguments>
8 <id> ::= <letter> | <id> <letter> | <id> <digit>
9 <type-name> ::= <id>

10
11 <primitive> ::= <boolean> | <integer> | <string>
12 <boolean> ::= "true" | "false"
13 <integer> ::= <digit> | <digit> <integer> | "-" <integer>
14 <string> ::= """ <string-body> """
15 <string-body> ::= <character> | <character> <string-body>
16
17 <variable> ::= <id>
18
19 <logic> ::= <not> | <equals> | <lesser-than>
20 | <lesser-than-or-equals> | <greater-than>
21 | <greater-than-or-equals> | <and> | <or>
22 <not> ::= "!" <expression>
23 <equals> ::= <expression> "==" <expression>
24 <lesser-than> ::= <expression> "<" <expression>
25 <lesser-than-or-equals> ::= <expression> "<=" <expression>
26 <greater-than> ::= <expression> ">" <expression>
27 <greater-than-or-equals> ::= <expression> ">=" <expression>
28 <and> ::= <expression> "&&" <expression>
29 <or> ::= <expression> "||" <expression>
30
31 <arithmetic> ::= <minus> | <add> | <subtract> | <multiply> | <divide>
32 <minus> ::= "-" <expression>
33 <add> ::= <expression> "+" <expression>
34 <subtract> ::= <expression> "-" <expression>
35 <multiply> ::= <expression> "*" <expression>
36 <divide> ::= <expression> "/" <expression>
37
38 <casting> ::= <cast-up> | <cast-down> | <can-cast-down>
39 <cast-up> ::= <expression> "=<:" <type-name>
40 <cast-down> ::= <expression> "=:>" <type-name>
41 <can-cast-up> ::= <expression> "<:" <type-name>
42 <can-cast-down> ::= <expression> ":>" <type-name>
43
44 <objects> ::= <value> | <field-accessor>
45 <value> ::= <type-name> "(" <arguments> ")"
46 <field-accessor> ::= <expression> "[" <integer> "]"

(a) Grammar for the Core Intermediate Constraint Language.

19

1 <eicl-expression> ::= <cicl-expression> | <matching>
2 | <not-equals> | <cast> | <can-cast>
3 <expression> ::= <eicl-expression>
4
5 <matching> ::= <match> | <no-match>
6 <pattern> ::= <type-name> "(" <arguments> ")"
7 <match> ::= <expression> "?" <pattern>
8 <no-match> ::= <expression> "!?" <pattern>
9

10 <not-equals> ::= <expression> "!=" <expression>
11 <cast> ::= <expression> ":" <type-name>
12 <can-cast> ::= <expression> "=:" <type-name>

(b) Grammar for the additional constructs in the Extended Intermediate Constraint Language.

Figure 5.3: Backus-Naur Form grammar for the Intermediate Constraint Language.

We define transformation rules for transforming the EICL to CICL in figure 5.4. Here the
function signaturedesugar :: EExp -> CExp indicates that thedesugar function takes
as input an expression from the extended language EExp and returns an expression in the core
language CExp. We have le� out the desugaring of the pattern matching operator ? due to the
complexity of representing it without comprimising the comprehensivity of desugaring other
language constructs. The actual strategy used for desugaring this pattern matching is similar to
a naive interpretation strategy of pattern matching. This strategy (tries to) cast the expression
to the type being matched, a�er which the same strategy is applied recursively to all fields on
the matched type. Along the way, any encountered name bindings are inserted into the current
scope.

1 desugar :: EExp -> CExp
2 desugar (e1 + e2) = ((desugar e1) =:> Int) + ((desugar e2) =:> Int)
3 desugar (e1 - e2) = ((desugar e1) =:> Int) - ((desugar e2) =:> Int)
4 desugar (e1 * e2) = ((desugar e1) =:> Int) * ((desugar e2) =:> Int)
5 desugar (e1 / e2) = ((desugar e1) =:> Int) / ((desugar e2) =:> Int)
6 desugar (e1 < e2) = ((desugar e1) =:> Int) < ((desugar e2) =:> Int)
7 desugar (e1 <= e2) = ((desugar e1) =:> Int) <= ((desugar e2) =:> Int)
8 desugar (e1 > e2) = ((desugar e1) =:> Int) > ((desugar e2) =:> Int)
9 desugar (e1 >= e2) = ((desugar e1) =:> Int) >= ((desugar e2) =:> Int)

10 desugar (e1 && e2) = ((desugar e1) =:> Bool) && ((desugar e2) =:> Bool)
11 desugar (e1 || e2) = ((desugar e1) =:> Bool) || ((desugar e2) =:> Bool)
12 desugar (!e) = !((desugar e) =:> Bool)
13 desugar (-e) = -((desugar e) =:> Int)
14 desugar (e1 == e2) = ((desugar e1) =<: T) == ((desugar e2) =<: T)
15 where
16 T1 = (typeOf e1)
17 T2 = (typeOf e2)
18 T = (nearestCommonAncestor T1 T2)
19 desugar (e1 != e2) = !(((desugar e1) =<: T) == ((desugar e2) =<: T))
20 where
21 T1 = (typeOf e1)
22 T2 = (typeOf e2)
23 T = (nearestCommonAncestor T1 T2)
24 desugar (e ? p) = ...
25 desugar (e !? p) = !((desugar (e ? p)))
26 desugar e = e

Figure 5.4: Transformation rules to transform expressions of the EICL to equivalent expressions
in the CICL.

As an example, let us take a look at the constraint e1 == (e2 + 12) in our EICL. The first
desugaring rule we encounter is the rule regarding the == operator. Here we first have to find
the types of both operands e1 and (e2 + 12). Since we have no information about the type
of e1, we assign it type Any. For (e2 + 12) on the other hand, we can observe that the +
operator must indicate an Int type. We then find the nearest common ancestor for both Any
and Int. Since we know that Int <| AnyVal <| Any, we find that the nearest common
ancestor is Any. Thus we find the result of this desugaring step:

1 ((desugar e1) =:> Any) == ((desugar (e2 + 12)) =:> Any)

20

First solving (desugar e1) results in e1, since no desugaring rules can be applied. Now
solving (desugar (e2 + 12))we can apply the desugaring rule for the + operator. We find
that both sides of an addition are required to be an integer. Thus the result will be:

1 ((desugar e2) =:> Int) + ((desugar 12) =:> Int)

For both remaining desugaring operations we can not find any desugaring rules, thus bringing
everything back together gives us the following final CICL constraint:

1 (e1 =:> Any) == ((e2 =:> Int) + (12 =:> Int) =:> Any)

To make the semantics complete, we also have to define a (possibly empty) set of implicit
constraints to each expression in the CICL. These implicit constraints serve to ensure the correct-
ness of the types in the expressions. These implicit constraints will also need to be solved by the
SMT solver whenever a constraint that includes this expression needs to hold. Unfortunately this
means we can not simply find all the implicit constraints in our expression and add them to our
set of constraints, due to the possible inclusion of the disjunction connective (||). A disjunction
expression holds when the constraint and its implicit constraints of one branch holds. This
means that it is possible that in the one of the branches the implicit constraints do not hold.
Instead, we must hoist these implicit constraints to the nearest top-level logical connective
constraint (&& or ||). Pseudocode for this hoisting operation is provided in figure 5.5. Here the
getImplicits function finds the implicit constraints for expressions. Pseudocode for this
function is given in figure 5.6.

1 hoist :: CExp -> CExp
2 hoist (e1 && e2) = ((hoist e1) && (getImplicits e1)) && ((hoist e2) && (getImplicits e2))
3 hoist (e1 || e2) = ((hoist e1) && (getImplicits e1)) || ((hoist e2) && (getImplicits e2))
4 hoist (!e) = !((hoist e) && (getImplicits e))
5 hoist (e1 == e2) = ((hoist e1) == (hoist e2)) && (getImplicits e1) && (getImplicits e2)
6 hoist (e1 > e2) = ((hoist e1) > (hoist e2)) && (getImplicits e1) && (getImplicits e2)
7 hoist (e1 >= e2) = ((hoist e1) >= (hoist e2)) && (getImplicits e1) && (getImplicits e2)
8 hoist (e1 < e2) = ((hoist e1) < (hoist e2)) && (getImplicits e1) && (getImplicits e2)
9 hoist (e1 <= e2) = ((hoist e1) <= (hoist e2)) && (getImplicits e1) && (getImplicits e2)

10 hoist e = e

Figure 5.5: Hoisting implicit constraints.

1 getImplicits :: CExp -> CExp
2 getImplicits (e1 + e2) = (getImplicits e1) && (getImplicits e2)
3 getImplicits (e1 - e2) = (getImplicits e1) && (getImplicits e2)
4 getImplicits (e1 * e2) = (getImplicits e1) && (getImplicits e2)
5 getImplicits (e1 / e2) = (getImplicits e1) && (getImplicits e2)
6 getImplicits (-e) = (getImplicits e)
7 getImplicits (e =<: t) = (e <: t) && (getImplicits e)
8 getImplicits (e =:> t) = (e :> t) && (getImplicits e)
9 getImplicits e = true

Figure 5.6: Implicit constraint generation for constructs defined by figure 5.3a.

Using these functions we are now able to convert any constraint (boolean expression) written
in the EICL into a constraint in the CICL. We can do this by applying the desugar and hoist
functions sequentially as follows: (hoist (desugar e)), where e is a boolean expression
in the EICL. We will apply this combination of functions on each constraint in our constraint sets
before sending them to the SMT solver. In order to make things more clear, we will now take
another look at the result obtained in our desugaring example:

1 (e1 =:> Any) == ((e2 =:> Int) + (12 =:> Int) =:> Any)

21

Applying the hoist function to this constraint results in the following constraint:

1 (e1 =:> Any) == ((e2 =:> Int) + (12 =:> Int) =:> Any) &&
2 (e1 :> Any && true) &&
3 (e2 :> Int && true) &&
4 (12 :> Int && true) &&
5 (((e2 =:> Int) + (12 =:> Int)) :> Any && true)

Note that all true constraints are redundant and the constraint could be simplified. Further-
more, We briefly describe this simplification step in chapter 6.5. The resulting set of constraints
tells us a number of things, most notably: e1 has a value of e2 + 12, where e2 has to be a
value of type Int. The result of the addition will also be of type Int. However, because we are
not certain what the type of e1 is, both e1 and the result of the addition e2 + 12 are cast to
their nearest common ancestral type Any before being compared for equivalence.

22

6 Symbolic Execution

Now that we have discussed the building blocks that are required for our analysis, we will explain
how our analysis works exactly. Our analysis uses so-called summaries in order to represent
(intermediate) results of the exploration phase of the symbolic execution. We will explain the
intuition behind these summaries using an example. And we will provide a definition of the
type of summaries that we have used for our analysis in chapter 6.1. Secondly, we will provide
a detailed explanation of how we can combine these summaries in order to perform a more
e�icient form of symbolic execution in chapter 6.2. We will continue by explaining how we further
reduce the number of explored execution paths by using early branch pruning in chapter 6.3.
Furthermore, in chapter 6.4 we will refine our definition of summaries by introducing budget
constraints and explain how they a�ect the paths taken by the symbolic execution. Finally,
we give an overview of various other optimisation tactics that were applied on our analysis in
chapter 6.5.

6.1 Summaries

There are multiple reasons why it is useful for us to be able to have a data structure that allows
us to represent a (partially) explored path during and a�er performing the symbolic execution.
The most obvious reason is to simply have a set of constraints that can be solved by an SMT
solver in order to find a set of inputs that would satisfy all these constraints. These inputs can
then be used in concrete execution to concretely execute the same path through the program.
However, a more interesting reason is that it allows us to use these results for other purposes,
such as further optimisations as described in chapter 6.5, or reusing intermediate results in a
dynamic programming [36] approach in order to obtain more complicated results as described
in chapter 6.2.

Existing literature [5, 7, 8] uses summaries to encode these (intermediate) results. Originally
these summaries were used to represent a collection of pre- and their respective postconditions
for a function [5]. Here, the preconditions are a set of constraints that must hold for the input
values, while the postconditions are the constraints that will hold a�er executing the function.
Later works defined these summaries to only represent a single path through a (partial) function,
rather than all possible paths [7, 8]. We follow an approach similar to the latter definitions,
where we let a summary specify the pre- and postconditions of a single path through a complete
function. Since we are dealing with pure functions, meaning that calling a function can only
impact the return value, our postcondition will always be the equivalence of the return value to
some expressions, therefore we have decided to only keep track of the return value, rather than
a set of postconditions. We will start by defining our summaries as a pair of the preconditions
and the return value: xρpre, Ry, where ρpre represents the preconditions, a set of constraints
written in our EICL that we defined earlier in chapter 5, and R represents the return value, also
an expression in our EICL. We will further refine this definition in chapters 6.2 and 6.4. If we
now revisit our example in figure 2.5, we can rewrite the found input sets as summaries in the
following way:

• x{n < 0}, –ny

• x{!(n < 0)}, ny

However, in order to programmatically derive these summaries, we need to specify some
extra procedures. As a basis for finding these summaries, we use the annotated CFGs that were
described in chapter 4. The annotated CFG of the abs function is given in figure 6.1. Here we can
see that there exist two paths through the function and therefore we expect to find two di�erent
summaries. We start our exploration with the set of constraints that contain the constraints
that each input can be cast to the type specified by the signature. Since our type signature is

23

Int -> Int and our parameter name is n, we start with the set {n : Int}. Since each node
in the graph represents an expression, we can convert each node that we walk through into a
constraint which says something about the expression. If we do this for the three nodes prior to
the branching point, we obtain the constraint set consisting of:
{n : Int, e0 == (e1 < e2), e1 == n, e2 == 0}.

n < 0 n 0

last node

-nn < 0 holds

n

n < 0 does not hold

n
last node

Figure 6.1: Annotated CFG for the abs function given in figure 2.5.

When we reach the branching point in our program, we fork our exploration and continue
exploring both branches with distinct constraint sets. Both of these branch explorations initially
start with the constraint set that was obtained thus far. Since the condition n < 0 corresponds
to e0 in our constraint set, we can simply include e0 as a constraint in the constraint set of the
then branch and !e0 in the constraint set of the else branch. When we continue exploring the
then branch, we can convert the remaining two nodes into the following constraints: e3 == – e4
and e4 == n. We also find that in this branch, e3 is marked as the return value. Similarly, when
we continue along the else branch, we convert the remaining node into the constraint: e5 == n
and find that e5 is the returned expression. Thus we have found the following two summaries:

• x{n : Int, e0 == (e1 < e2), e1 == n, e2 == 0, e0, e3 == – e4, e4 == n}, e3y

• x{n : Int, e0 == (e1 < e2), e1 == n, e2 == 0 !e0, e5 == n}, e5y

Applying a simple unification algorithm to these summaries results in the same summaries that
we have found by simply rewriting the input sets. Note that the n : Int is redundant, due to the
implicit constraints introduced by the n < 0 constraint.

We can apply the same strategy to more complicated programs as well. If we do the same
with the example in figure 2.6, whose CFG is given by figure 4.1c, we find the following summaries:

• x{xs : List, e0 == xs, e0 ? (Cons _ Nil), e1 == 1}, e1y

• x{xs : List, e0 == xs, e0 !? (Cons _ Nil), e0 ? _, e2 == xs, e2 ? (Cons _ t),
e3 == e4 + e5, e4 == 1, e5 == (len e6), e6 == t}, e3y

• x{xs : List, e0 == xs, e0 !? (Cons _ Nil), e0 ? _, e2 == xs, e2 !? (Cons _ t),
e2 ? _, e7 == ”nomatch”}, e7y

Or the equivalent summaries a�er applying unification:

• x{xs : List, xs ? (Cons _ Nil)}, 1y
• x{xs : List, xs !? (Cons _ Nil), xs ? (Cons _ t)}, 1 + (len t)y
• x{xs : List, xs !? (Cons _ Nil), xs !? (Cons _ t)}, ”no match”y

We can make two observations: the second summary contains the unexpanded function call
(len e6) and the third summary does not actually return anything, but instead, it throws an
exception. These cases will require special treatment before sending their constraints to the
constraint solver. From this point on, we will refer to summaries that contain unexpanded func-
tion calls as partial summaries and we will refer to summaries that do not have any unexpanded
function calls as complete summaries. Thus in the previous example the first and last summaries
are complete summaries, while the second summary is a partial summary. For our test suite
generation, we will only consider complete summaries. We will further explain how we transform
partial summaries into complete summaries in the next section.

24

6.2 Compositional Analysis

As mentioned in the previous section, our found summaries might not be complete. This means
that we have constraints in the summary that have some form of reliance on one or more function
calls that are not expanded. This does not pose a direct problem if the result of this function call
only influences the return value of the function, but it does pose a problem if the outcome of
this call a�ects the execution path, either directly or indirectly.

An example program where this problem can be seen is shown in figure 2.2. Here there are
three such cases: two recursive calls to interpwhen matching on an Add constructor and one
recursive call to interp when matching on the Apply constructor. We find that the partial
summary for the path that successfully performs an addition looks similar to:

• x{..., ex1 == (interp ey1 ez1), ex2 == (interp ey2 ez2), ...}, ery

For brevity we have omitted details that are not essential to our explanation. Here ey1 and ey2
would be unified with e1 and e2 respectively and both ez1 and ez2 would be unified with nv.
Since we have chosen the path which successfully performs the addition, we also know that
both ex1 and ex2 should be some value of theNumV constructor. Furthermore, er is an expression
which indirectly depends on the integer values stored in those NumV constructors. If we take the
same approach as we initially took in chapter 2.2 and simply ignore these constraints, there will
no longer be any constraint that relates the input parameters to ex1 , ex2 and therefore also er.
As a consequence, when we use the constraint set to generate input values, it is entirely possible
that the SMT solver will decide on input values that do not cause the recursive calls to return
values of type NumV, thus causing a di�erent execution path to be taken.

It is clear that this problem needs to be addressed. The most naive solution would be to
continue the exploration inside the called function whenever a function call is encountered.
Let pu1 and pv1 represent the two parameters of the first recursive call and let r1 represent the
return value. When we continue the exploration of this recursive call, we insert the constraints
that say the parameters are equal to the provided arguments: pu1 == ey1 and pv1 == ez1 . As
the exploration continues in the called function, the exploration may fork multiple times as
well. When each fork of the call finishes exploring, we insert another constraint which says that
the return value of the fork is equal to the expression that represented the call: ex1 == r1. This
approach would solve the aforementioned problem. However, this solution poses two new
issues:

The first problem is this exploration might go on indefinitely when a function is called re-
cursively. In order to prevent this, we need some form of stopping condition which ends the
exploration when some condition has been met. For now, we will ignore this problem. How our
implementation deals with this problem is described in chapter 6.4.

The second issue is that the number of paths which we need to explore will grow very rapidly.
This problem is also known as the path explosion problem [4]. We can observe that we are able to
make seven summaries for the di�erent implementations of interp in figure 2.2. One of these
summaries, more specifically the summary which does not match any of the input expressions,
is infeasible since the all possible patterns of the Exp type are covered. Furthermore we have
two complete and four partial summaries. If we were to only perform this further exploration
of function calls in the addition case, each function call would further split the summary into
seven summaries. Since the calls happen sequentially, this branching factor is multiplied, since
there can be 7 ˆ 7 di�erent combinations of paths taken in the called function. Out of these
49 summaries, only 9 of them are complete, while 40 of them are still partial. In general we
can observe that expanding these function calls results in a cartesian product-like growth of
potential paths through the program. When we take this another step further we end up with
961 summaries, out of which the vast majority is again partial. It is clear that this exponential
growth is problematic for the feasibility of using this approach.

25

However, it is possible to partially resolve this issue. We can consider exploring these function
calls as solving a sub-problem of solving our main problem. Furthermore, we can observe that
the exploration of each of these recursive calls is mostly identical. The seven paths found while
exploring each of these calls are the same, the only di�erences are the constraints that relate
the expressions of the calling function to those of the callees. Thus if we are able to reuse the
solutions found for these sub-problems, we can apply a dynamic programming approach [36]
in order to solve the main problem more e�iciently. Various studies [5–9] use earlier obtained
summaries as solutions to these sub-problems and recombine, or "compose" them in order to
find solutions for the main problem. We have taken the same approach in our implementation.

To make things more concrete, we will once again consider our interpreter programs. Con-
sidering we are interested in finding complete summaries, we will start with our three complete
summaries of the interp function as our base case. We then iteratively expand this set by
considering the partial summaries. For each function call, instead of exploring the function being
called again, we simply reuse the set of complete summaries that we have previously obtained
for that function. It must be noted that this does not necessarily decrease the total number of
paths that we are considering in our analysis, but rather obtains the same collection of paths in
a more e�icient manner. For the addition case that we looked at earlier, this e�ectively means
that each recursive call expands into the three complete summaries that we started with. Thus
our set of complete summaries, now contains twelve summaries: the original three summaries
and the cartesian product of those three paths in the addition case. We can now further enlarge
this set of summaries by repeating this process for the same and the other partial summaries
until we have reached the entry point of the execution or reached our stopping condition.

The example we just explained performs this composition in a bottom-up [36] fashion, where
we start with the smallest sub-problems, which are the complete summaries, and then find
solutions for the partial summaries exclusively using the solutions we found earlier. However, as
described by [5], this bottom-up approach is not ideal, because it builds summaries for functions
for all potential function arguments. The reality, however, is that not all of those arguments
can actually occur in functions if we start executing the program from a fixed entry point. This
approach can therefore lead to the computation of summaries that will be discarded later on in
the symbolic execution, e�ectively "wasting" computation time.

A solution to this issue is a top-down with memoization approach [36], which is also referred
to as a demand-driven top-down approach by [5]. Instead of starting at the complete summaries,
we now start at the function which serves as the entry point of the program and work our way
through functions when they are being called, much akin to our initial naive approach. Within
the context of performing the compositional step in our symbolic execution we will refer to a
combination of a function φ and the progress towards a stopping condition when that function
was called ψ as the calling context xφ, ψy. Thus we can say that we start our analysis with the
calling context consisting of the entry function and the initial progress. For example, if the depth
of the call stack is used as a stopping condition, the initial progress might be 0. During our
analysis we maintain a summary cache which holds the set of previously obtained summaries
for di�erent calling contexts.

We start our analysis by finding the initial sets of partial and complete summaries for each
function in the program that is being symbolically executed. We then continue with our com-
positioning by expanding the calling context of our entry function with our initial progress.
Whenever we expand a calling context, we consider all summaries that we have obtained in our
initial step. All of those summaries that are complete and do not satisfy the stopping condition
can be returned immediately. However, all function calls in the partial summaries need to be
expanded first. For each function call in the partial summaries, we define the calling context
using the function that is being called and the current progress towards the stopping condition.
We check if the calling context exists in the summary cache. If it does, we simply retrieve the
set of summaries from the cache and compose them in the same way as we described in the

26

bottom-up approach, discarding those that satisfy the stopping condition. If the calling context
does not have an entry in the cache, we first continue the expansion for that calling context
and await its results before performing the same composition with its returned summaries.
Whenever we are done expanding a calling context, we store the resulting set of summaries in
the summary cache.

To make things more concrete again, we will consider the same example. As our stopping
condition we will use a call stack depth greater than 1. We start with our initial calling context:
xinterp, 0y. Since our cache is empty, we have to start expanding this calling context. We find
that the interp function has seven summaries, as mentioned earlier. We will once again focus
on the addition case summary. This summary has two recursive calls. Firstly, we will consider
the first call and establish its calling context: xinterp, 1y. We check our cache and find it has
no entry for this calling context, thus we will continue by expanding this calling context first.
We once again find the seven summaries. However, we now have additional information: we
know that any partial summary will satisfy the stopping condition, since it would increase the
call stack depth above 1. Thus, we do not have to consider expanding the function calls in the
partial summaries. Instead, we can simply return the three complete summaries. Now that the
expansion of xinterp, 1y has finished, we can add an entry with its results to the cache. If we
then continue in the original expansion of xinterp, 0y, we look at the second function call and
find the same calling context as for the first function call: xinterp, 1y. When we try to find this
calling context in the cache the second time, we do find its summaries, thus we can simply use
those directly. We then proceed by combining the constraint sets and relating the arguments
and return values as described in the bottom-up example.

Now that we have explained how we can use composition to obtain the same summaries
that we would be able to find in the naive approach with normal execution flow, these is still one
unresolved problem that remains: exceptions. Exceptions are usually raised in order to indicate
some abnormality in the execution, such as invalid arguments being provided in a function call
[37]. Examples of this can be seen in our interp functions. When the input program attempts
to add two values which are not both numbers, an exception (or anerror in the Haskell code) is
raised. When an exception is raised, it causes the control flow to abruptly stop and return to the
nearest location where this exception is handled [37], or, if le� unhandled, cause the program
to crash. In our initial naive approach, dealing with this would have been easy, we can simply
stop the exploration and start tracing back to an exception handler whenever we encounter
a point in the program which raises an exception. However, in our top-down demand-driven
approach we can not directly apply the same strategy. The main issue occurs during composition
of a function call that can raise an exception. Without any special care, we might incorrectly
assign the exception value to the expression corresponding to the function call and even worse,
we might continue our symbolic execution a�er a function call raises an exception that is le�
unhandled by the current function.

In order to solve these issues, we must further refine our definitions of summaries. Rather
than storing a set of constraints ρpre, we store an ordered sequence σpre of CFG nodes and its
imposing constraints and the constraints imposed by its incoming edge xν, ρnodey, where ν
represents the CFG node and ρnode represents the constraint set of the node and its incoming
edge. Furthermore, we add an additional value ε to our summaries to indicate whether or not the
summary raises an unhandled exception. The resulting summaries can be written as xσpre, R, εy.

We can now alter our compositioning to instead of taking the union of both constraint sets,
insert its constraint sequence of the callee into the constraint sequence of the caller at the right
location. When an unhandled exception was raised in the callee and it is not handled by the
caller, we change the return value to be equal to the return value of the callee that raised the
exception, furthermore we drop the remainder of the sequence of the caller that appeared a�er
the function call and set the ε flag to true. This results in the symbolic execution being properly
terminated when it encounters an unhandled exception and the exception being propagated

27

to any other function that might call the current function. However, when the current function
does provide logic to handle the exception, we instead have to insert a constraint which says
that the exception value is equal to the expression that binds the exception in the exception
handler. In this situation, we do not have to drop the remainder of the sequence either, because
the normal execution flow will continue.

6.3 Early Branch Pruning

We can further reduce the number of explored paths significantly based on two observations:
The first observation is that many execution paths we find are in reality impossible to reach.
The second observation is that adding additional constraints to a constraint set that is already
unsatisfiable, can never make it satisfiable.

An example of the former can be found in our interpreter examples in figure 2.2. In the
previous section we have established that initially we can find 7 di�erent summaries for the
interp function. The implicit execution path corresponding to the summary which raises an
exception because the given expression does not match any of the patterns in the function can
never actually be executed, because all of the possible patterns of the Exp type are covered
by the function. This, as a consequence, implies that the corresponding constraint set of that
summary is actually unsatisfiable. This is, however, not the only example of an occurrence of an
impossible path in this program. Another example can be found in successful case of interpreting
the Add expression. When we symbolically execute this path, we assume that the results of the
recursive calls were some object of typeNumV. However, due to the way we previously described
our composition, it is entirely possible that the actual result type is something completely
di�erent, such as Closure.

Given the second observation, we can also conclude that any summary containing a sub-path
with an unsatisfiable set of constraints, will also have an unsatisfiable set of constraints. Thus we
can safely stop exploring and discard the current summary whenever the set of constraints has
become unsatisfiable, without losing any satisfiable summaries in our final exploration results.
Doing so can drastically reduce the number of summaries that require solving in the end. As
an example, we can consider the Add case in the interpreters again. Previously, we determined
that there are 7ˆ 7 or 49 possible unique combinations of summaries for this case, without fully
expanding all partial summaries. Since we know that only 6 of those summaries are satisfiable,
we now only have to consider 6ˆ 6 or 36 di�erent combinations.

However, checking whether or not a set of constraints is satisfiable, requires an expensive
call to the SMT solver. Thus, we should limit the places where we check this satisfiability. Since
the primary purpose of pruning unsatisfiable summaries is to reduce the branching factor of
the symbolic execution, it is natural that we perform this satisfiability check right a�er each
branching point in the function. Furthermore, since the compositioning of various summaries in
a function call can also introduce unsatisfiable summaries, we also perform this satisfiability
check a�er expanding function calls. Whenever the satisfiability check fails, we simply discard
the summary.

This idea of pruning branches as early as possible can also be found in [38]. There each
branching condition is checked whether or not it is always true, always false or can be either
along the current execution path. Based on this result, the then or else branch can be disregarded
for further exploration.

6.4 Budget Constraints

As we have hinted at before, without a stopping condition symbolic execution would continue
indefinitely in many real world examples. Thus it is necessary to define a stopping condition.
A very simple example of such a stopping condition is setting a time limit for the symbolic
execution [4]. This allows the user to make sure that the symbolic execution does not take longer

28

than the provided time. However, it is also entirely possible that this strategy does not yield the
intended results, thus di�erent stopping conditions can be considered as well. We previously
used a di�erent, yet still simple stopping condition when explaining our compositional analysis
in chapter 6.2. There we used the call stack depth as a stopping condition. This ensured that
we explored all paths that only made a maximum number of nested function calls. However,
as a trade-o�, this did not put a limit on the maximum amount of time spent on the symbolic
execution.

Furthermore, while we previously showed how we can reduce the amount of necessary
computations by reusing summaries via composition, we have not reduced the total number of
considered paths. While this might be a desirable trait, it is not purely beneficial. Having a large
number of summaries still comes at a high cost in terms of execution time and memory usage
when trying to generate input values and storing these summaries in memory. Thus reducing
this number of summaries in order to improve feasibility, at the cost of potentially missing some
bugs, can be beneficial.

When we reduce the number of summaries, we want to minimise the potential loss in error-
detecting capabilities. Thus we wish to only eliminate the summaries which are the least likely
to detect any errors. Doing this requires some insight regarding the problems that the students
are solving with their implementations. An example of this can be observed in the interpreter
examples in figure 2.2. Here the interpreting of Add expressions leads to the largest number
of execution branches, while su�iciently testing the correctness of the implementation is not
likely to require many di�erent test cases. On the other hand, properly interpreting Apply
expressions are far more likely to be implemented incorrectly and require far more di�erent test
cases in order guarantee the correctness of the implementation. However, simply using the call
stack depth as a stopping condition, will result in the vast majority of generated test cases being
some form of nested Add expressions.

Thus we propose the technique of using budgeted symbolic execution in order to eliminate
"uninteresting" parts of a program from being thoroughly explored. For this, we will introduce a
new stopping condition: the budget. We also introduce the concept of budget constraints which
associate costs with performing certain operations in our symbolic execution. An example of
such a budget constraint is the cost of calling functions. We can consider this budgeted symbolic
execution approach as a generalisation of the previously used example of maximum call stack
depth, where the budget is set to the maximum call stack depth and the costs associated with
all function calls is equal to 1.

However, we may also associate costs with performing other operations, such as matching
patterns. Thus, if we go back to our example, it is now possible to associate a cost larger than zero
with matching an Add expression. This would mean that matching Add expressions depletes
the budget more rapidly than matching other expressions. Thus whenever an Add expression
is matched, the exploration will terminate earlier, and consequently will result in a smaller
number of summaries that follow execution paths through the interpretation of (nested) Add
expressions. Furthermore, it might also be beneficial to associate an extra cost with matching
on Num expressions, in order to reduce the number of simple summaries that do not mix many
di�erent expression types instead of nesting more interesting di�erent types of expressions.

Additionally, we may also associate di�erent costs for calling specific functions. An example
of utilising this could be to decrease the cost of calling the find function. Doing so would allow
for larger environments to be considered while searching for variables, while not allowing the
interpreter to consider deeper nested expressions. This allows for more fine-grained control
over the way that the symbolic execution will explore the presented programs.

6.5 Further Optimisations

Besides the aforementioned improvements to the feasibility of our approach, we have also
implemented a number of linear improvements. The most significant improvement here is

29

multi-threading of as many parallel operations as possible at any time. For example, during
the compositioning of various summaries, we perform the budget constraints check and the
satisfiability check of each of those resulting compositions in parallel.

Additionally we also perform an adaption of the unification algorithm proposed by [39] on
the constraint sets before being sent to the SMT solver. Here all input expressions are considered
as constants, in order to prevent them from completely disappearing during unification. This
reduces the number of constraints which the SMT solver will need to solve, slightly improving its
solving speed.

Furthermore, we also eliminate any trivial tautologies and tautologies caused by redundancy
in order to further reduce the size of the constraints set. Examples of such a trivial tautologies are
A && A andA && true, where A is any arbitrary constraint. Here the secondA and the true
do not add any new constraints that were not already implied by the first A and can thus be
omitted. An example of a redundancy is e :> Int && e :> Any, where e is any arbitrary
expression. Here, e :> Any does not add any new information that is not already implied by
e :> Int. This is the case, because we know that Int <: Any, thus any value of type Int,
must also be of type Any.

30

7 Test Suite Generation

Now that we have described all the necessary steps to perform our symbolic execution, we can
put everything together and generate a test suite. This chapter describes how our framework
generates a test suite for a reference solution and a set of potentially faulty programs.

First the user of our framework establishes a set of budget constraints, as described in
chapter 6.4. This budget should steer the symbolic execution towards the more interesting
cases. For each program, including the reference solution, we perform all the steps of our
pipeline: We parse the source code of the program into its respective abstract syntax tree. Then,
we convert the abstract syntax tree of each function in the program into a special control flow
graph, as described in chapter 4. We proceed by using those control flow graphs to generate
summaries for each function, as described in chapter 6.1, by using constraints defined in our
intermediate constraint language, which is described in chapter 5. We then combine these
summaries to obtain summaries that represent deeper execution paths in the program, as
described in chapter 6.2. We keep performing this composition step until we can no longer
create new summaries that do not violate the set budget constraints. Finally, for each of the
obtained summaries that are complete, meaning they don’t have any unexpanded function calls
inside their path, we use the constraint solver to solve the path constraints. The constraint solver
then provides us with inputs for each summary. Having obtained these inputs, we then feed
these inputs into the reference solution to find out the expected output values.

Each of these combinations of inputs and their expected output form a test case [40]. Having
found all test cases of each program, we can eliminate any duplicate test cases that have been
found in order to reduce the total number of test cases. This results in a test suite which executes
all feasible paths in any of the given programs, within the provided budget constraints, at least
once. Finally, these test cases are then converted into source code, so that they can be used for
testing or grading, similarly to the resulting test suites obtained in figures 2.7 and 2.8.

A diagrammatic representation of our full test suite generation pipeline is shown in figure 7.1.
This diagram also shows the steps of our symbolic execution pipeline and their respective inputs
and outputs.

31

Abstract Syntax Tree (AST)

Parser

Annotated Control Flow Graphs (CFG)

CFG Builder
(Chapter 4)

Partial Summaries

Summary
Builder

(Chapter 6)

Reference Solution
Source Code

Submission 1
Source Code ... Submission n

Source Code

ICL Constraints
Complete Summaries

Composition
Engine

(Chapter 6)

Feasible/Infeasible

Constraints
Constraint
Translator
(Chapter 5)

Budget Constraints Budget

Test Generator
(Chapter 7)

Reference Solution
Binary

Test Suite

ICL Constraints

Inputs

Constraint
Solver

Figure 7.1: A diagrammatic representation of our test suite generation pipeline. Each node
indicates what chapter explains the step represented by the node. Each edge indicates the
inputs and outputs used by the various steps in the process.

32

8 Evaluation

In order to evaluate the e�ectiveness of our symbolic execution technique, we applied the tool
on a number of di�erent data sets, consisting of di�erent implementations of a programming
problem. The metrics used for this evaluation are described in chapter 8.1. The so�ware and
hardware used to collect these metrics are described in chapter 8.2, alongside the description of
the di�erent data sets. For this evaluation we were interested in answering a number of research
questions (RQ). These questions can be divided in two categories:

• RQ1: (Quantitative) How does the e�ectiveness of automatically generated test suites
compare to hand written test suites?

a) Can the technique be applied within a realistic amount of time?
b) Can a higher branch coverage be achieved?
c) Can a higher mutation score be achieved?
d) Can more behavioural di�erences be found?

• RQ2: (Qualitative) Can automatically generated test suites detect a certain set of planted
bugs?

a) Can the technique be applied within a realistic amount of time?
b) What budget constraints are necessary to find them?

The results of this evaluation are discussed in chapter 8.3. Finally we discuss the limitations of
our symbolic execution technique in chapter 8.4.

8.1 Metrics

When evaluating our tool we are concerned with the following things: how e�ective the generated
tests are at findings errors and whether we can run the tool in a realistic amount of time. We use
a variety of metrics to evaluate the results obtained with our tool.

In order to evaluate the e�ectiveness of the generated test suite we looked at two classes
of metrics: branch coverage and mutation score. Branch coverage is a form of code coverage
which measures the percentage of branches in a program which have been executed by a test
suite [13]. Branches are the places in a program where the control-flow of the program can
conditionally divert. An example of such branching points are if-then-else expressions, which
create two branches: one where the condition is true and one where the condition is false.
However, numerous studies have shown that this metric is not a good indicator for the error-
detection capabilities of a test suite [41, 42]. Therefore we strictly interpret this metric as an
indication of how much of the program is covered by our generated tests.

A better metric for estimating the quality of a test suite is the mutation score obtained through
strong mutation testing, as shown by various studies [43, 44]. Strong mutation testing involves
inserting faults into the program and verifying if these faults cause a test in the test suite to fail
[45]. A program which contains one of these introduced faults is called a mutant. If one of the
test cases in a test suite fails when running the suite on a mutant, the mutant is said to have been
killed, otherwise it survived. The mutation score is then computed by taking the percentage of
killed mutants. These faults can be inserted automatically using so-called mutation operators.
Mutation operators are transformation rules that are applied to the original program in order to
automatically create a mutant [45]. An example of such a mutation operator would be a mutation
operator that replaces additions (+) with subtractions (-). For each place in the program where
such a mutation operator can be applied, it creates a new mutant, leaving all other parts of the
program unchanged.

33

Furthermore, we measured the total amount of time spent on performing the analysis of
each program in each data set, in order to get an impression of the feasibility of using this
technique in practise. Because the time spent is partially bound by the hardware which is used
to perform the analysis, we have also measured the number of inquiries to the SMT solver. This
number is interesting to look at, because as mentioned earlier, these inquiries are relatively
long operations, thus giving us a measurement that will be the same, regardless of the hardware
used to perform the analysis.

8.2 Setup

In order to collect the aforementioned metrics, we have used various pieces of so�ware. We have
chosen to use version 1.8.0 of Pitest [46] as our mutation testing framework. Pitest is the industry
standard mutation testing framework for the Java programming language. However, both Scala
and Java are executed on the Java Virtual Machine and Pitest is therefore also able to perform
analysis on Scala projects with some minor workarounds. This choice was made, because at the
time of writing, Pitest is more mature and supports a larger number of mutation operators [47]
than Stryker4s [48], the most popular mutation framework for Scala. The group of used mutation
operators was configured to ALL, which applies all mutation operators that are available in
the framework. Because the workaround to use Pitest for Scala code required a Java test suite
project, we have also opted to use a Java library for measuring code coverage. More specifically,
we have used version 0.8.8 of JaCoCo [49] to measure branch coverage. Furthermore, the specific
Z3 version used for the constraint solving is 4.8.17. Finally, all evaluations are performed using
Scala version 2.13.2 and the OpenJDK runtime version 1.8.0_322.

The system which was used for performing the evaluation has an AMD Ryzen 2700X processor
with a clock speed of 3.7 GHz, 8 physical cores and 16 logical processors. The memory of the
used system is 32 GB with a clock speed of 2800 MHz. The operating system of the system is
Microso� Windows 10.

Our evaluation cab be divided in two di�erent parts: A quantitative part corresponding to
RQ1 and a qualitative part corresponding to RQ2 . The first part of the evaluation (RQ1) uses real
anonymised student submissions of a second year Computer Science course which introduces
students to the concepts of functional programming. This set consists of roughly 550 submissions
for two introductory assignments. For each of these submissions which only use the supported
Scala syntax, we have generated a test suite using various budget constraints. Note that because
of the simplicity of the submissions, we have primarily tweaked the total available budget and
not the costs of matching certain patterns. We have collected the code coverage and mutation
score metrics for di�erent combinations of test suites: using only the test suite generated for the
reference solution (Reference), using only the test suite generated for that specific submission
(Self), using both the test suites for the reference implementation and the solution (Ref + Self)
and using the combined test suite of using all submissions including the reference solution
(All). A description of the assignments and the used reference implementations can be found in
appendix A. We compared these results for each submission to the code coverage and mutation
score that was obtained by the manually written tests that were used to grade students during the
course, in order to compare the thoroughness of the generated test suites to the thoroughness
of the manually written test cases.

The second part of our evaluation (RQ1) comprises of a qualitative evaluation where we
have manually seeded common errors that we have observed students make into a reference
solution. For this analysis, we have used a simplified version of a more complex assignment
provided in a later stage of the same second year course. This assignment required students
to implement a definitional interpreter for a simple functional programming language. This
interpreter has to be able to deal with integers, additions, lambda functions binding a single
variable and their applications. The interpreters have to be implemented using environments
and closures, rather than substitution.

34

During the course we have observed that the largest struggle for most students is under-
standing when to use what environment in situations where there are multiple environments.
Using the wrong environment in the wrong place, causes the scoping of variables to be incorrect.
An example of such an error was previously given in figure 2.2.

Another observed obstacle for many students is properly dealing with recursive pattern
matching. When interpreting expressions such as additions, it is paramount that both arguments
of the addition are first interpreted, before being validated as being integers and added together.
If this does not happen, but instead the arguments are validated immediately, this will not allow
the nesting of addition inside additions.

Thus we have created a number of implementations in which we seeded various variations
of the aforementioned errors. These implementations can be found in appendix B. For each
implementation we have generated test suites using di�erent budget constraints and observed
whether or not the faults were discovered.

8.3 Results

The results of the evaluation on the student submission data sets are presented in figure 8.1
(corresponding to the assignment described in appendix A.1) and figure 8.2 (corresponding to
appendix A.2).

The first table in both figures (figures 8.1a and 8.2a) gives an overview of the total number of
student submissions for that assignment, how many of those submissions were written using
only the allowed Scala subset. Furthermore the table also provides the number of submissions
using the supported Scala subset for which at least one test failed in the manually written test
suite.

The following pair of boxplots (figures 8.1b and 8.1c and figures 8.2b and 8.2c) show the
distributions of the execution time and the number of Z3 inquiries of using the framework to
generate a test suite for each individual submission in the test set that uses the supported
language subset. These results provide an answer to RQ1a . We observe that both figures
increase in a similar manner when the budget of the test suite generation is increased. We
also observe that in figure 8.1b while the majority of submissions, between the first and third
quartile, seem to increase their execution time almost linearly, there are a few submissions for
which either their execution time increases much more rapidly or does not increase at all. The
former can be explained due to some students potentially implementing solutions with a higher
branching factor than the majority of other students did. A higher branching factor leads to a
larger number of summary combinations that can occur in the composition stage, as described
in chapter 6.2. This in turn leads to more computations, including inquiries to the constraint
solver, and can also lead to a larger set of summaries being available for the next composition
step. Which in turn leads to a more exponentially shaped increase of run time. The observation
that the minimum execution time and minimum number of constraint solver inquiries stays
constant can be explained by the fact that it is possible that students submitted (more than
likely) incorrect code which does not call any other functions from the assignment functions.
Because the budgets constraints are only configured with costs for making function calls, the
initial budget does not matter for such submissions. Furthermore, in figure 8.2b we can see that
for the second assignment, the relation between the execution time and the budget increases
in an exponential fashion for all submissions. However, we can still observe that the minimum
execution time remains constant.

The next pair of boxplots (figures 8.1d and 8.1e and figures 8.2d and 8.2e) represent the
distributions of the branch coverage and mutation score for the various test suite configurations.
These boxplots provide answers to RQ1b and RQ1c respectively. It must be noted that while
the previous boxplots consist of data points of all supported submissions, these boxplots do not.
This is due to the fact that Pitest and JaCoCo are unable to collect their metrics when a unit test
in the test suite fails. Therefore, each boxplot only consists of the data points of the submissions

35

that passed all unit tests in the test suite. Overall, we can observe that the branch coverage
in each test suite is higher than the respective mutation scores. We do see that there is some
correlation between the measured branch coverage and mutation score. However, we can also
observe that while the branch coverage in figure 8.1d seems to not be significantly influenced by
the budget, the mutation score in figure 8.1e does experience a noticeable increase going from a
budget of one to a budget of two for the Reference, Self and Ref + Self test suites.

Furthermore, we can observe that there appears to be an upperbound for both the branch
coverage and the mutation score, which is notably lower than a 100%. A possible explanation for
this is the that it is possible that there are a number of branches and mutations that are unable
to be covered under any circumstances. The number of these impossible to cover branches
and mutations may be inflated due to the way that the Scala source code is converted into
Java bytecode by the Scala compiler. The tools we used to obtain metrics are not aware of the
underlying Scala source code and solely consider the Java bytecode. Examination has shown
that there are instances where the Scala compiler emits a function call to an empty function
without any return values, while one of the mutators used by PITest attempts to remove function
calls without return values. This means that each of those empty function calls results in a
mutation where that call is removed. However, due to the fact that the body of that function is
empty, removing the call does not actually change the behaviour of the program, therefore this
mutation will always remain undetectable.

The final table (figures 8.1f and 8.2f) in each figure gives an overview of comparing the mea-
surements of individual submissions between the manually written tests and the generated
test suites. This table provides an answer to RQ1d . The Higher Branch Coverage and Lower
Branch Coverage columns respectively indicate the number of submissions for which a higher
branch coverage and lower branch coverage was measured compared to the branch coverage
measured for the manually written test suite. For the same reason as mentioned earlier, only the
submissions which passed all tests in both the manually written test suite and the respective test
suite are taken into consideration. Similarly, the Higher Mutation Score and Lower Mutation Score
columns represent the the di�erences in measured mutation scores. Finally, the More Di�erences
Found and Fewer Di�erences Found column compare the behavioural-di�erence finding capa-
bilities of the various test suite configurations to the manually written test suite. Thus, a values
larger than zero in the More Di�erences Found column indicate the number of submissions for
which at least one unit test failed, while the submission passed all tests in the manually written
test suite. Similarly, a value larger than zero in the Fewer Di�erences Found column indicate the
number of submissions that failed at least one unit test in the manually written test suite, but
passed all tests in the respective generated test suite.

Overall, we can conclude that for these particular data sets, increasing the initial budget
rapidly leads to diminishing returns. We do not expect that further increasing the budgets will
significantly influence the measurements. Ideally, when looking for a test suite which is most
accurate at checking behavioural equivalence, we would opt for using a configuration which
has the highest number of improvements and the fewest number of deteriorations compared
to the manually written test suite as shown in (figures 8.1f and 8.2f). However, one also has to
take into consideration the availability of the input programs and the time required to generate
such a test suite. It is quite clear overall that using the Self configuration by itself is not enough
to guarantee that a submission is tested adequately enough, due to the very low minimum
branch coverage and mutation score. We observe that Reference configuration performs a lot
better than the Self configuration, however, as is visible in figure 8.1f, there are a few instance
of incorrect submission that were caught by our manually written tests, but not with the test
suites that were generated using our Reference configuration. On the other hand, we can observe
that in figure 8.2f, for any budget larger than our generated test suite performs better than the
manually written one. We found that using the All configuration with any budget has the best
prospects. However, generating this test suite requires access to a large number of submis-

36

sions and therefore also takes a longer time to generate, and might therefore be less suited for
providing instantaneous feedback to students when they submit their code, for example using
a platform such as described by [50]. This problem can be mitigated if a set of submissions
is available beforehand, such as when a course has used the same assignments previously. If
this instantaneous feedback is necessary and no data sets exists prior to the grading, we can
observe that using the Ref + Self configuration with budget 2 either improves or obtains the
same measurements as the manually written test suite for all submissions, while only taking a
few seconds to generate. This is especially the case for the results shown in figure 8.2f, where
the e�ectiveness of Ref + Self are near identical to those of All, while only having a small fraction
of the required computation time. This makes this configuration more suitable for providing
instantaneous feedback to students.

All submissions 561
Submissions in supported syntax 388
Behavioural di�erences detected by manually written tests 69

(a) Specifications of submission numbers.

1 2 3 4 5 6

0

1

2

3

Initial budget

Ti
m

e
(s

)

(b) Distributions of the time in seconds re-
quired to generate a test suite for a single so-
lution for di�erent budgets. (RQ1a)

1 2 3 4 5 6
0

200

400

600

Initial budget

Nu
m

be
ro

fZ
3

in
qu

iri
es

(c) Distributions of the number of Z3 inquiries
required to generate a test suite for a single so-
lution for di�erent budgets. (RQ1a)

37

Manual

Reference (1)

Reference (2)

Reference (3)

Reference (4)

Reference (5)

Reference (6)

Self (1)

Self (2)

Self (3)

Self (4)

Self (5)

Self (6)

Ref + Self (1)

Ref + Self (2)

Ref + Self (3)

Ref + Self (4)

Ref + Self (5)

Ref + Self (6)

All (1)
All (2)

All (3)
All (4)

All (5)
All (6)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Combination of test suites (with given budget)

Br
an

ch
co

ve
ra

ge
(p

er
ce

nt
ag

e)

(d) Distributions of the branch coverage of di�erent test suites and di�erent budgets in parenthesis.
(RQ1b)

Manual

Reference (1)

Reference (2)

Reference (3)

Reference (4)

Reference (5)

Reference (6)

Self (1)

Self (2)

Self (3)

Self (4)

Self (5)

Self (6)

Ref + Self (1)

Ref + Self (2)

Ref + Self (3)

Ref + Self (4)

Ref + Self (5)

Ref + Self (6)

All (1)
All (2)

All (3)
All (4)

All (5)
All (6)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Combination of test suites (with given budget)

M
ut

at
io

n
sc

or
e

(p
er

ce
nt

ag
e)

(e) Distributions of the mutation score of di�erent test suites and di�erent budgets in parenthesis.
(RQ1c)

38

Test
Suite Budget

Higher
Branch

Coverage

Lower
Branch

Coverage

Higher
Mutation

Score

Lower
Mutation

Score

More
Di�erences

Found

Fewer
Di�erences

Found

Reference

1 295 4 257 4 16 1
2 300 0 289 0 17 1
3 300 0 289 0 17 1
4 300 0 289 0 17 1
5 300 0 289 0 17 1
6 300 0 289 0 17 1

Self

1 255 23 204 23 39 28
2 255 16 245 16 40 20
3 262 14 247 14 40 19
4 262 13 248 13 40 19
5 264 13 249 13 40 19
6 265 12 248 12 40 19

Ref + Self

1 275 2 264 2 40 1
2 276 0 268 0 41 0
3 277 0 268 0 41 0
4 277 0 268 0 41 0
5 277 0 268 0 41 0
6 277 0 268 0 41 0

All

1 116 0 116 0 203 0
2 116 0 116 0 203 0
3 116 0 116 0 203 0
4 116 0 116 0 203 0
5 116 0 116 0 203 0
6 116 0 116 0 203 0

(f) Comparison of branch coverage, mutation score and behavioural equivalence verdicts of di�erent test
suites compared to the manually written test suite. Each cell indicates the number of solutions for which
the criteria apply. (RQ1d)

Figure 8.1: Evaluation results of the Lists data set.

All submissions 558
Submissions in supported syntax 479
Behavioural di�erences detected by manually written tests 58

(a) Specifications of submission numbers.

1 2 3 4 5

0

2

4

6

8

Initial budget

Ti
m

e
(s

)

(b) Distributions of the time in seconds re-
quired to generate a test suite for a single so-
lution for di�erent budgets. (RQ1a)

1 2 3 4 5

0

500

1,000

1,500

Initial budget

Nu
m

be
ro

fZ
3

in
qu

iri
es

(c) Distributions of the number of Z3 inquiries
required to generate a test suite for a single so-
lution for di�erent budgets. (RQ1a)

39

Manual

Reference (1)

Reference (2)

Reference (3)

Reference (4)

Reference (5)

Self (1)

Self (2)

Self (3)

Self (4)

Self (5)

Ref + Self (1)

Ref + Self (2)

Ref + Self (3)

Ref + Self (4)

Ref + Self (5)

All (1)
All (2)

All (3)
All (4)

All (5)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Combination of test suites (with given budget)

Br
an

ch
co

ve
ra

ge
(p

er
ce

nt
ag

e)

(d) Distributions of the branch coverage of di�erent test suites and di�erent budgets in parenthesis.
(RQ1b)

Manual

Reference (1)

Reference (2)

Reference (3)

Reference (4)

Reference (5)

Self (1)

Self (2)

Self (3)

Self (4)

Self (5)

Ref + Self (1)

Ref + Self (2)

Ref + Self (3)

Ref + Self (4)

Ref + Self (5)

All (1)
All (2)

All (3)
All (4)

All (5)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Combination of test suites (with given budget)

M
ut

at
io

n
sc

or
e

(p
er

ce
nt

ag
e)

(e) Distributions of the mutation score of di�erent test suites and di�erent budgets in parenthesis.
(RQ1c)

40

Test
Suite Budget

Higher
Branch

Coverage

Lower
Branch

Coverage

Higher
Mutation

Score

Lower
Mutation

Score

More
Di�erences

Found

Fewer
Di�erences

Found

Reference

1 0 422 0 422 0 6
2 66 1 12 1 330 0
3 66 1 12 1 330 0
4 67 0 92 0 330 0
5 68 0 92 0 330 0

Self

1 2 414 3 414 2 18
2 63 35 46 35 7 15
3 63 25 46 25 16 7
4 65 23 277 23 16 7
5 65 20 277 20 17 7

Ref + Self

1 2 413 5 413 3 6
2 66 0 13 0 332 0
3 61 0 13 0 341 0
4 61 0 81 0 341 0
5 61 0 80 0 342 0

All

1 60 0 79 0 343 0
2 59 0 78 0 344 0
3 59 0 78 0 344 0
4 59 0 78 0 344 0
5 59 0 78 0 344 0

(f) Comparison of branch coverage, mutation score and behavioural equivalence verdicts of di�erent test
suites compared to the manually written test suite. Each cell indicates the number of solutions for which
the criteria apply. (RQ1d)

Figure 8.2: Evaluation results of the Binary Search Tree data set.

The results of our second evaluation using manually seeded errors are presented in figure 8.3.
For this evaluation we have selected a number of di�erent configurations in order to try and
detect manually inserted bugs. We have given each configuration two hours to finish. Figure 8.3a
provides an overview of the time it took to generate the respective test cases and the number of
times the constraint solver was called. When test suite generation for a particular configuration
was unable to complete within the allotted time, its entries in the table are marked as ’Timeout’.
This table provides an answer to RQ2a . Additionally, we have provided similar tables that
show the number of constraint solver inquiries and total number of generated test cases in
figure C.1 and figure C.2 respectively. Furthermore, figure 8.3b gives an overview of which
faults were detected by the test suites that were generated using the various budget constraints
configurations and di�erent combinations of test suites. When an error was detected, the cell in
the table contains an ’X’ marking. When an error was not detected, the mutation score is given
in order to give an idea of how well the remainder of the program is covered. We have chosen to
only consider the Ref + Self and All configurations, due to the fact that the previous data sets
showed that the other combinations were significantly less e�ective overall. This table provides
an answer to RQ2b .

41

Reference
B.2

Body
Local

B.3

Body
Local

+ Closure
B.4

Body
Closure
+ Local

B.5

Body
Empty

B.6

Argument
Closure

B.7

Argument
Closure
+ Local

B.8

Argument
Local

+ Closure
B.9

Argument
Empty

B.10

Structural
Matching 1

B.11

Structural
Matching 2

B.12

Extra Case
B.13

Budget: 1
Call cost: 1 74 33 30 31 31 40 35 36 35 33 67 83

Budget: 2
Call cost: 1 214 149 134 138 127 145 139 136 165 113 237 183

Budget: 3
Call cost: 1 660 512 518 521 533 534 557 542 537 271 425 1050

Budget: 4
Call cost: 1 2108 1881 1757 1716 1895 1904 1698 1719 1856 889 3139 4246

Budget: 5
Call cost: 1 6406 6253 5362 5277 6220 6172 5268 5255 6396 2744 11424 15266

Budget: 6
Call cost: 1 20999 20313 15797 15659 20505 21143 15981 15745 20090 6878 28778 60182

Budget: 7
Call cost: 1 79595 82810 49817 49994 81680 81574 50515 50359 89462 21043 270314 971885

Budget: 8
Call cost: 1 Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 7
Call cost: 1

Match "AddC" cost: 1
19833 19781 12184 12163 20210 20461 12200 11929 19119 12320 16980 26307

Budget: 8
Call cost: 1

Match "AddC" cost: 1
82397 90600 33870 33527 87551 85864 34225 31997 81493 45333 65708 147801

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 8
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

36362 38738 21865 22362 38092 37771 21228 20999 35165 17716 19180 48493

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

212624 291639 64227 63926 278336 249159 64137 77872 203051 79048 84659 384767

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

135543 174796 55640 58534 148255 167681 59553 54408 110084 53077 49183 192182

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

(a) Execution times in milliseconds of di�erent budget constraint configurations for di�erent interpreter
implementations. (RQ2a)

42

Body
Local

B.3

Body
Local

+ Closure
B.4

Body
Closure
+ Local

B.5

Body
Empty

B.6

Argument
Closure

B.7

Argument
Closure
+ Local

B.8

Argument
Local

+ Closure
B.9

Argument
Empty

B.10

Structural
Matching 1

B.11

Structural
Matching 2

B.12

Extra Case
B.13

Budget: 1
Call cost: 1

Ref +
Self 0.28 0.22 0.22 0.27 0.27 0.22 0.22 0.27 0.44 0.69 X

All 0.44 0.35 0.35 0.43 0.43 0.35 0.35 0.43 X 0.69 X
Budget: 2

Call cost: 1
Ref +
Self 0.29 0.23 0.23 0.28 0.28 0.23 0.23 0.28 0.45 0.69 X

All 0.45 0.36 0.36 0.44 0.44 0.36 0.36 0.44 X 0.69 X
Budget: 3

Call cost: 1
Ref +
Self 0.45 0.36 0.36 0.44 0.44 0.36 0.36 0.44 0.45 0.69 X

All 0.45 0.36 0.36 0.44 0.44 0.36 0.36 0.44 X 0.69 X
Budget: 4

Call cost: 1
Ref +
Self 0.6 0.56 0.56 0.6 0.6 0.56 0.56 0.61 0.63 0.77 X

All 0.6 0.56 0.56 0.6 0.6 0.56 0.56 0.61 X 0.77 X
Budget: 5

Call cost: 1
Ref +
Self 0.76 0.69 0.69 0.77 0.77 0.69 0.69 0.77 X 0.85 X

All 0.76 0.69 0.69 0.77 0.77 0.69 0.69 0.77 X X X
Budget: 6

Call cost: 1
Ref +
Self 0.78 0.7 0.7 0.78 0.78 0.7 0.7 0.78 X X X

All 0.78 0.7 0.7 0.78 0.78 0.7 0.7 0.78 X X X
Budget: 7

Call cost: 1
Ref +
Self X X X X X X X X X X X

All X X X X X X X X X X X
Budget: 7

Call cost: 1
Match "AddC" cost: 1

Ref +
Self X X X X X X X X X X X

All X X X X X X X X X X X
Budget: 8

Call cost: 1
Match "AddC" cost: 1

Ref +
Self X X X X X X X X X X X

All X X X X X X X X X X X
Budget: 8

Call cost: 1
Match "AddC" cost: 1

Match "NumC" cost: 1

Ref +
Self X X X X X X X X 0.81 0.86 X

All X X X X X X X X X 0.86 X
Budget: 9

Call cost: 1
Match "AddC" cost: 1

Match "NumC" cost: 1

Ref +
Self X X X X X X X X X X X

All X X X X X X X X X X X
Budget: 9

Call cost: 1
Match "AddC" cost: 1

Match "NumC" cost: 2

Ref +
Self X X X X X X X X 0.83 0.69 X

All X X X X X X X X X 0.69 X

(b) Mutation score of generated test suites of finding seeded errors in di�erent faulty interpreters. An ’X’
indicates that the inserted bug was found.

Figure 8.3: Evaluation of test suit generation for simple interpreters with seeded errors. (RQ2b)

We can observe that low starting budgets can be e�ective at finding relatively simple errors,
such as those provided by figures B.11 to B.13. However, finding more complicated errors,
such as figures B.3 to B.10 requires a higher budget. Consequently, this requires significantly
more time to compute if budget constraints are not added to help guide the symbolic execution
towards these cases.

We can observe this when we look at the configuration with a budget of 7 and no additional
budget constraints. This is the first configuration where all errors are detected, as is shown in
figure 8.3b. When we introduce an extra budget constraint that makes exploring additions more
expensive, we can observe that we were still able to detect all errors, while the time required to
generate the test suites was reduced by a factor 4, as shown by figure 8.3a. However, we can
observe that if we keep increasing the costs associated to various pattern matches, we are no
longer able to detect the simpler errors in figures B.11 and B.12 without further increasing the
total budget.

Furthermore, we can also see that for a number of implementations, we are unable to detect
certain errors using the Ref + Self combination at lower depths, while we were able to detect
them using the All combination. This can be explained by the fact that the test cases necessary
to detect these errors are present in the test suites generated for other implementations. Thus,
when all combined test suites are used in the All configuration, the error is still detected.

From these observations we can conclude that this technique is capable of generating
test suites for introductory functional programming exercises that are capable of competing

43

with manually written test suites. This approach produces the best results when the set of
input programs is varied, due to the significant improvements that the All configuration has in
figures 8.1 to 8.3. However, this improvement comes at the cost of longer execution times.

8.4 Limitations

There are some limitations that could prevent us from applying this technique in an actual
course setup. The first and foremost concern is the resource cost. While we have seen that the
technique is e�ective at generating a test suite for relatively simple assignments, we have seen
that while the branching factor of solutions increases linearly, the required time to generate a test
suite which finds all "interesting" errors increases exponentially. This problem can be partially
mitigated by using a well-configured set of budget constraints. However, carefully configuring
such a set of budget constraints could take a lot of time, especially since there is no clear strategy
yet of how to e�ectively define budget constraints in such a way that it finds the test cases we are
interested in. As of yet, there is no way of estimating the projected execution time or coverage
with a given set of budget constraints, prior to performing the symbolic execution. This means
a user might make a configuration which will either not terminate or not lead to meaningful
results. Conversely, if the budget is depleted too rapidly along certain paths, errors might not be
found. This does not fully rule out the usefulness of this approach however. Our technique can
still be used to generate a basic set of test cases that cover the simple errors, allowing for more
time to manually write more interesting test cases. Additionally, the technique is also capable of
generating more complex test suites if the right budget constraints are provided.

Furthermore, as we mentioned earlier in chapter 3, not all language features are currently
supported. Even though the assignments we considered for the evaluation were relatively
simple, there were still a significant number of students for which our tool did not work, as
can be seen in figures 8.1a and 8.2a. Assignments with a higher degree of complexity will also
likely require using more language features, increasing the chance that student submissions will
not be able to be processed by our tool. This means that in order for the tool to be able to be
used on more complex assignments, more language features need to be supported. We provide
suggestions of how this can be done in chapter 3.2.

Finally, upon further inspection, we found that a large number of di�erences found in stu-
dent submissions were caused by an underspecification of certain behaviour in the assignment
description. An example of this in the Binary Search Trees assignment is how the program should
deal with malformed trees, that is, trees that are not binary search trees. This primarily leads to
implementation di�erences surrounding the contains function. Here the reference imple-
mentation always searches both branches for the value, while many student implementations
only searches the le� branch if the value is lower than the value of the current node and only
search the right branch if the value is higher. This leads to di�erent behaviour when a malformed
tree for example has a value which is lower inserted into its right branch, rather than the le�
branch. Since the assignment did not specify how to treat malformed search trees, one could
argue that the student implementations are also correct, while they are still behaviourally di�er-
ent from our reference implementation. These instances must therefore be taken into account
when using this technique.

44

9 Related Work

There are various frequently applied techniques for automatically testing the correctness of
programs. Most of these techniques can be classified as a form of one of the following: program
equivalence, random testing, test suite generation, or symbolic execution. We will now briefly
discuss these techniques and how they relate to our approach.

9.1 Program Equivalence

Ideally we would like to determine whether two programs are equivalent. However, this problem
is equivalent to the halting problem, since solving this would allow us to determine whether or
not a program is equivalent to one that halts. This means that in the general case, determining
the equivalence of two programs is undecidable [1].

However, less strict notions of equivalence can be (automatically) proven for two arbitrary
programs. One such notion is partial equivalence, which states that two programs are equivalent
if, when given the same inputs, the programs produce the same outputs if they terminate
[51]. One study looked into developing an automatic partial equivalence prover for student
submissions of Java assignments which did not su�er from limitations imposed by previous
approaches [52]. Other studies have shown that it is possible to automatically prove a stronger
notion of equivalence known as full equivalence, in which two programs are fully equivalent if
their execution paths either both diverge or end up in equivalent states [51].

Di�erent studies have also used heuristics to perform di�erent forms of equivalence checking.
One recent study employed aligning program semantics in order to simplify the equivalence proof
[53]. A di�erent recent study used recursion structure similarity and behavioural equivalence
in functional programs to cluster student submissions for manual feedback. This reduced the
number of submissions that needed to be provided with feedback, since the feedback given to a
single submission, could be given to all students within the same cluster [54].

However, many of these techniques come with very strict limitations imposed on the pro-
grams that are being compared. Furthermore these techniques generally do not provide in-
formation about how the programs are di�erent if they are found to be di�erent. However,
our approach has no theoretical limitations on the type of functional programs that are be-
ing compared and is able to provide counter examples in the form of test cases to disprove
equivalence.

9.2 Random Testing

Random testing is a form of automated testing in which input data is randomly generated
and supplied to the function under test, a�er which the correctness of the resulting output is
verified. Over the years, many di�erent forms of random testing have been developed. The most
prominent ones will now be discussed.

Fuzzing [55] is perhaps the oldest, but still commonly applied [56] practice of supplying
random input to a program and seeing if it crashes. More advanced forms of fuzzing have been
developed, such as coverage guided fuzzing, where code coverage information is obtained during
fuzzing and used when generating new inputs, in order to improve the e�ectiveness of finding
bugs [57]. A popular approach to this is using evolutionary algorithms to modify existing test
cases to find new interesting test cases that increase the coverage. An example of this is the
popular AFL framework [58]. Fuzzing has also successfully been applied to Roslyn, Microso�’s
.NET Compiler [59], finding behavioural di�erences between the binaries produced for di�erent
target platforms [60]. More recently, fuzzing has also been used in order to automatically provide
feedback regarding implementation correctness of student submissions [61].

More advanced approaches of random testing exist. One of these techniques is Adaptive
Random Testing (ART), where the next tried test case will be the one furthest away from the

45

already executed test cases, which causes a better distribution of input data. This was shown to
significantly speed up bug-finding [62]. The primary challenges in this technique lie in finding an
e�icient algorithm to properly spread the input data [63] and dealing with non-numeric inputs
[64]. As such, many di�erent techniques have been developed that deal with these challenges
in various ways [63].

Another more advanced form of random testing is Property Based Testing (PBT). This tech-
nique was originally introduced by the random testing framework QuickCheck [65] for the Haskell
programming language. Using this technique the test engineer has to specify properties that
must hold for a function under test [65], rather than specifying input and their expected output
values. Similarly to ART, PBT attempts to uniformly sample the input space in order to more
e�ectively uncover errors in a program [65]. A�er having found an errorous input, shrinking can
be applied to the input to create a simpler input which exposes the same errorous behaviour [66].
More recently, the technique has been combined with other testing techniques such as coverage
guided fuzzing [67] and combinatorial testing [68]. Additionally, the technique has also been
applied to various di�erent domains, such as multi-agent systems [69] and quantum computing
[70]. Furthermore, PBT with shrinking has also recently been utilised to provide automatic
feedback to students working on C programming exercises [71].

These random testing approaches are easy to employ, but provide little guarantees due to
their random nature. Additionally, applying these techniques directly to student submissions,
rather than generating a test suite that validates the correctness of the submissions, could lead
to unfairness in grading if di�erent students are graded using a di�erent set of tests. On the other
hand, our approach guarantees that all feasible paths that do not violate the budget constraints
are tested. Furthermore, since our approach does not rely on randomness, di�erent students
with equivalent solutions will not be assigned di�erent grades.

9.3 Test Suite Generation

Besides our symbolic execution based technique to generate test suites, various other tech-
niques exist to generate test suites that can be used for reproducible testing. The most common
approach is search-based so�ware testing, where search heuristics are used to generate a test
suite that optimises some heuristic. The most commonly used heuristics are coverage metrics
such as line coverage, branch coverage or mutation coverage [72]. Initially most studies used
evolutionary algorithms as their search technique in order to incrementally improve their pro-
duced test suite [73]. The most notable example of this approach is the EvoSuite [73] test suite
generator.

More recently, several studies have been conducted to evaluate the e�ectiveness of di�erent
variations of this approach. Most notably a study looking into the e�ectiveness of generating
multiple test suites using di�erent optimisation goals compared to generating a single test suite
optimizing for multiple goals at the same time [72]. Another study looked into the e�ectiveness
of di�erent search algorithms that have been proposed in more recent years [74].

9.4 Symbolic Execution

In our work we focused on applying the optimisation techniques of early branch pruning, compo-
sitional analysis [5] and budget constraints to a relatively simple symbolic executor for functional
programs in order to generate a test suite. However, various other symbolic execution-based
techniques and optimisations have also been developed.

A technique called di�erential symbolic execution [75] has been developed, which uses sym-
bolic execution combined with equivalence checking techniques to find which areas of two
programs are equivalent. When two programs are considered nonequivalent, it provides in-
puts that show a di�erence in behaviour. This approach is mainly aimed at regression testing

46

throughout di�erent versions of the same so�ware and therefore relies on the notion that both
programs are mostly identical.

A di�erent notable technique which combines symbolic execution with concrete execution
is concolic execution. Concolic execution, popularised by the CUTE [76] framework, is one such
technique. The CUTE framework performs its analysis by initially performing a concrete execution
with concrete inputs. During this execution, path constraints are collected along the concretely
executed path. When a symbolic value cannot be determined, the concrete value is used in its
place. One of the path constraints is then negated and the system of constraints is solved in
order to obtain a new concrete input that will lead to the execution of a di�erent path. This
process is then repeated. This technique has also been used to improve the e�ectiveness of
search-based test suite generation. In particular, it has been used to improve the e�ectiveness
of EvoSuite [77]. A recent study has also combined concolic execution with fuzzing [78, 79] in
order to improve the performance of fuzzing.

A slightly di�erent approach which combines symbolic execution and concrete execution is
Execution-Generated Testing (EGT), popularised by the KLEE [38] framework. The KLEE frame-
work performs its analysis by performing symbolic execution and determining along the way
what symbolic values are e�ectively concrete (i.e. the symbolic value can only have a single
possible value). Those values are then computed and marked as concrete. When all arguments
to a function execution are marked as concrete, the function will be executed concretely, rather
than symbolically [80]. Di�erent studies have also combined this approach together with fuzzing
(the AFL framework in particular) in order to improve e�ectiveness [81, 82].

Furthermore, recently e�orts have been made to improve the performance of symbolic exe-
cution by compiling the symbolic execution rather than interpreting it from some intermediate
language [83, 84].

47

10 Future Work

In order to improve the e�ectiveness of our tool, we make a number of suggestions for im-
provements for future research. These improvements aim to improve various aspects of the
tool.

The first potential improvement is increasing the supported language subset. The specific
areas of the language which can be improved upon and suggestions of how to add support for
each particular feature has been previously described in figure 3.1. Solving these issues would
allow the tool to be used for a broader range of di�erent assignments and allow for considering
more student submissions for the test suite generation.

1 subtract_correct :: Int -> Int -> Int
2 subtract_correct a b = a - b
3
4 subtract_incorrect :: Int -> Int -> Int
5 subtract_incorrect a b = a + b

Figure 10.1: Example programs implementing a subtraction function.

Secondly, in chapter 2.2 we described that ideally we wanted to cover all inputs through
each path. However, in our solution we have sacrificed this ideal by only finding a single set of
inputs for each explored path. This can however lead to test cases being generated that do not
actually properly validate the correctness of the program. Figure 10.1 shows a small example
of a correct and incorrect program that would lead to the generation of a single input set. If
this input set has the value of b set to 0, these programs will produce the same output, even
though the subtract_incorrect is trivially incorrect. These problems could be prevented
by generating multiple di�erent input sets for each summary. This operation can be done
relatively easily by adding constraints to the resulting summaries that prevent the input types
and values to be equal to the types and values of all previous inputs that were generated for that
summary.

Thirdly, in chapter 8.4 we noted that there were instances of student submissions being
behaviourally di�erent from our reference implementation, while they were in fact correct given
the assignment specification. One way this problem can be mitigated is by adding the possibility
of selecting multiple solutions as reference solutions. This would require either implementing
multiple reference solutions or using correct student submissions as reference solutions. Instead
of comparing the output value against the output of the one reference solution, it could be
compared to the output of multiple reference solutions and the test should pass if the output
matches one of them.

Additionally, we have observed that, while the generated test cases can detect errors, it can
be relatively hard to understand what behaviour the test cases are testing. Therefore, it would
be useful if the generated test cases could be automatically classified or explained in human
language. This could provide valuable insights for both the people responsible for the grading
and for the students receiving the grades.

Furthermore, di�erent pre-existing improvements to the usability of symbolic execution,
such as those described in chapter 9.4, could be incorporated with our technique. An example
of such a technique that could be incorporated into our tool which could improve the run time
of our analysis is EGT. This technique only serves to replace symbolic execution with concrete
execution whenever possible [80] and does therefore not sacrifice the completeness of our
analysis. Another potential technique that could be incorporated to reach deeper paths is some
form of (adaptive) random testing to replace some or all summaries of function calls. This
has the benefit of allowing errors in very deep execution paths to be uncovered [81], without
exponentially increasing the number of paths that need to be explored. This has a disadvantage
that the generated test suite might not be consistent between di�erent executions of the tool,

48

due to the introduction of randomness to the system.
Moreover, it would be valuable to perform evaluations to determine the e�ectiveness of our

symbolic execution technique in other related problem domains. For this study, we have only
considered grading student submissions as the use case of our technique. However, it is also
theoretically possible to apply the same technique to other problems where it is necessary to
establish the equivalence of two programs with a certain degree of confidence. One example of
such a problem is determining whether a code change due to refactoring has resulted in a be-
havioural di�erence. Another example would be determining whether multiple implementations
of the same algorithm in di�erent programming languages are behaviourally equivalent.

Finally, improvements could be made in the way that budget constraints are configured.
Adding support for associating costs with a more varied set of operations than function calls and
pattern matches alone could allow for more advanced configurations. However, as mentioned
in chapter 8.4, the problem also remains that there is currently no obvious way of configuring
the budget constraints. Assisting the user with configuring these budget constraints could be
very helpful. A potential way of doing this would be to provide a way of estimating the run time
or coverage metrics for a given program and a given set of budget constraints. Another way the
system of budget constraints could be improved is by finding a way to dynamically fine-tune
the budget constraints during the symbolic execution. Knowledge obtained by performing the
symbolic execution on other submissions for the same assignment could be used for this.

49

11 Conclusion

To summarise, in this thesis we have presented a technique to automatically generate test
suites for student submissions of programming assignments in pure functional programming
languages. This technique utilises symbolic execution in order to build summaries for all paths
through a program that are bounded by a set of budget constraints. Each of these summaries
consists of a set of constraints that can be solved in order to obtain a set of inputs which cause
the path corresponding to the summary to be executed.

In order perform this symbolic execution, we have shown a way of converting abstract syntax
trees of functional programs into a special type of control-flow graphs that can be used to more
easily rationalise about the execution flow of the program. Additionally, we have provided a
definition of a language which serves as an intermediate representation for constraints, which
allows us to more easily define constraints in a way that respects the semantics of the Scala type
system.

Finally, we have shown that the test suites generated by this technique are more e�ective at
finding errors than our manually written test suites for simple introductory assignments. We
have also shown that the technique can be used to generate a basic test suite for more complex
assignments which is capable enough to catch some errors. However, we have discovered
that this technique as-is is not suitable for fully replacing manually written test suites for more
complex assignments, due to the high resource costs of generating an adequate enough test
suite that can catch all major errors. We have provided a number of ways that the technique can
be improved upon in order to make it more suitable for complex assignments.

50

References

[1] V. A. Zakharov, “The equivalence problem for computational models: Decidable and un-
decidable cases,” in Machines, Computations, and Universality, M. Margenstern and Y. Ro-
gozhin, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 133–152, ISBN:
978-3-540-45132-7. DOI: 10.1007/3-540-45132-3_8. [Online]. Available: https:
//link.springer.com/chapter/10.1007/3-540-45132-3_8.

[2] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19, no. 7, pp. 385–
394, Jul. 1976, ISSN: 0001-0782. DOI: 10.1145/360248.360252. [Online]. Available:
https://dl.acm.org/doi/10.1145/360248.360252.

[3] ——, “A new approach to program testing,” in Proceedings of the International Confer-
ence on Reliable So�ware, Los Angeles, California: Association for Computing Machinery,
1975, pp. 228–233, ISBN: 9781450373852. DOI: 10.1145/800027.808444. [Online].
Available: https://dl.acm.org/doi/10.1145/800027.808444.

[4] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic
execution techniques,” ACM Computing Surveys (CSUR), vol. 51, pp. 1–39, 2018. DOI: 10.
1145/3182657. [Online]. Available: https://dl.acm.org/doi/10.1145/
3182657.

[5] P. Godefroid, “Compositional dynamic test generation,” in Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL ’07,
Nice, France: Association for Computing Machinery, 2007, pp. 47–54, ISBN: 1595935754.
DOI: 10.1145/1190216.1190226. [Online]. Available: https://dl.acm.org/
doi/10.1145/1190215.1190226.

[6] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven compositional symbolic execu-
tion,” in Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 367–
381, ISBN: 978-3-540-78800-3. DOI: 10.1007/978-3-540-78800-3_28. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-540-
78800-3_28.

[7] Y. Lin, T. Miller, and H. Søndergaard, “Compositional symbolic execution using fine-grained
summaries,” in 2015 24th Australasian So�ware Engineering Conference, 2015, pp. 213–
222. DOI: 10.1109/ASWEC.2015.32. [Online]. Available: https://ieeexplore.
ieee.org/document/7365810.

[8] Y. Lin, T. Miller, and H. Søndergaard, “Compositional symbolic execution: Incremental
solving revisited,” in 2016 23rd Asia-Pacific So�ware Engineering Conference (APSEC), 2016,
pp. 273–280. DOI: 10.1109/APSEC.2016.046. [Online]. Available: https://
ieeexplore.ieee.org/document/7890598.

[9] J. F. Santos, P. Maksimovic, G. Sampaio, and P. Gardner, “Javert 2.0: Compositional sym-
bolic execution for javascript,” Proceedings of the ACM on Programming Languages, vol. 3,
pp. 1–31, 2019. DOI: 10.1145/3290379. [Online]. Available: https://dl.acm.
org/doi/10.1145/3290379.

[10] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7, pp. 1–19, Jul. 1970, ISSN:
0362-1340. DOI: 10.1145/390013.808479. [Online]. Available: https://dl.acm.
org/doi/10.1145/390013.808479.

[11] R. M. Hierons, “Avoiding coincidental correctness in boundary value analysis,” ACM Trans.
So�w. Eng. Methodol., vol. 15, no. 3, pp. 227–241, Jul. 2006, ISSN: 1049-331X. DOI: 10.
1145/1151695.1151696. [Online]. Available: https://dl.acm.org/doi/10.
1145/1151695.1151696.

51

https://doi.org/10.1007/3-540-45132-3_8
https://link.springer.com/chapter/10.1007/3-540-45132-3_8
https://link.springer.com/chapter/10.1007/3-540-45132-3_8
https://doi.org/10.1145/360248.360252
https://dl.acm.org/doi/10.1145/360248.360252
https://doi.org/10.1145/800027.808444
https://dl.acm.org/doi/10.1145/800027.808444
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://dl.acm.org/doi/10.1145/3182657
https://dl.acm.org/doi/10.1145/3182657
https://doi.org/10.1145/1190216.1190226
https://dl.acm.org/doi/10.1145/1190215.1190226
https://dl.acm.org/doi/10.1145/1190215.1190226
https://doi.org/10.1007/978-3-540-78800-3_28
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_28
https://link.springer.com/chapter/10.1007/978-3-540-78800-3_28
https://doi.org/10.1109/ASWEC.2015.32
https://ieeexplore.ieee.org/document/7365810
https://ieeexplore.ieee.org/document/7365810
https://doi.org/10.1109/APSEC.2016.046
https://ieeexplore.ieee.org/document/7890598
https://ieeexplore.ieee.org/document/7890598
https://doi.org/10.1145/3290379
https://dl.acm.org/doi/10.1145/3290379
https://dl.acm.org/doi/10.1145/3290379
https://doi.org/10.1145/390013.808479
https://dl.acm.org/doi/10.1145/390013.808479
https://dl.acm.org/doi/10.1145/390013.808479
https://doi.org/10.1145/1151695.1151696
https://doi.org/10.1145/1151695.1151696
https://dl.acm.org/doi/10.1145/1151695.1151696
https://dl.acm.org/doi/10.1145/1151695.1151696

[12] S. Krishnamurthi, “7 functions anywhere,” in Programming Languages: Application and In-
terpretation. 2012. [Online]. Available: http://cs.brown.edu/courses/cs173/
2012/book/.

[13] H. Zhu, P. A. V. Hall, and J. H. R. May, “So�ware unit test coverage and adequacy,” ACM
Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec. 1997, ISSN: 0360-0300. DOI: 10.1145/
267580.267590. [Online]. Available: https://dl.acm.org/doi/10.1145/
267580.267590.

[14] École Polytechnique Fédérale Lausanne (EPFL) Lausanne, The scala programming lan-
guage. [Online]. Available: https://www.scala-lang.org/.

[15] Oracle, Java so�ware. [Online]. Available: https://www.oracle.com/java/.

[16] Microso�, .NET. [Online]. Available: https://dotnet.microsoft.com/en-us/.

[17] Haskell Organization, Haskell language. [Online]. Available: https://www.haskell.
org/.

[18] SMLFamily, Standard ml family. [Online]. Available: https://smlfamily.github.
io/.

[19] A. K. Quentin Charatan, Java In Two Semesters, 3rd ed. McGraw-Hill Education, 2009, ISBN:
13 978-0-07-712267-6.

[20] A. Snyder, “Encapsulation and inheritance in object-oriented programming languages,” in
Conference Proceedings on Object-Oriented Programming Systems, Languages and Appli-
cations, ser. OOPSLA ’86, Portland, Oregon, USA: Association for Computing Machinery,
1986, pp. 38–45, ISBN: 0897912047. DOI: 10.1145/28697.28702. [Online]. Available:
https://dl.acm.org/doi/10.1145/28697.28702.

[21] École Polytechnique Fédérale Lausanne (EPFL) Lausanne, Case classes. [Online]. Available:
https://docs.scala-lang.org/tour/case-classes.html.

[22] T. Pape, V. Kirilichev, C. F. Bolz, and R. Hirschfeld, “Record data structures in racket: Usage
analysis and optimization,” SIGAPP Appl. Comput. Rev., vol. 16, no. 4, pp. 25–37, Jan. 2017,
ISSN: 1559-6915. DOI: 10.1145/3040575.3040578. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3040575.3040578.

[23] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid, S. Micheloud,
N. Mihaylov, M. Schinz, L. Spoon, E. Stenman, and M. Zenger, “An overview of the scala
programming language second edition,” École Polytechnique Fédérale Lausanne (EPFL)
Lausanne, 2006. [Online]. Available: http://scala-lang.org/docu/files/
ScalaOverview.pdf.

[24] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black, “Traits: A mechanism for
fine-grained reuse,” ACM Trans. Program. Lang. Syst., vol. 28, no. 2, pp. 331–388, Mar. 2006,
ISSN: 0164-0925. DOI: 10.1145/1119479.1119483. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1119479.1119483.

[25] H. Bretthauer, T. Christaller, and J. Kopp, “Multiple vs. single inheritance in object-oriented
programming languages,” Microprocessing and Microprogramming, vol. 28, no. 1, pp. 197–
200, 1990, ISSN: 0165-6074. DOI: 10.1016/0165- 6074(90)90173- 7. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
0165607490901737.

[26] S. B. Lippman, Inside the C++ Object Model, 3rd ed. Addison-Wesley, 1996, ISBN: 0-201-
83454-5.

[27] École Polytechnique Fédérale Lausanne (EPFL) Lausanne, Singleton objects. [Online].
Available: https://docs.scala-lang.org/tour/singleton-objects.
html.

52

http://cs.brown.edu/courses/cs173/2012/book/
http://cs.brown.edu/courses/cs173/2012/book/
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590
https://dl.acm.org/doi/10.1145/267580.267590
https://dl.acm.org/doi/10.1145/267580.267590
https://www.scala-lang.org/
https://www.oracle.com/java/
https://dotnet.microsoft.com/en-us/
https://www.haskell.org/
https://www.haskell.org/
https://smlfamily.github.io/
https://smlfamily.github.io/
https://doi.org/10.1145/28697.28702
https://dl.acm.org/doi/10.1145/28697.28702
https://docs.scala-lang.org/tour/case-classes.html
https://doi.org/10.1145/3040575.3040578
https://dl.acm.org/doi/10.1145/3040575.3040578
https://dl.acm.org/doi/10.1145/3040575.3040578
http://scala-lang.org/docu/files/ScalaOverview.pdf
http://scala-lang.org/docu/files/ScalaOverview.pdf
https://doi.org/10.1145/1119479.1119483
https://dl.acm.org/doi/10.1145/1119479.1119483
https://dl.acm.org/doi/10.1145/1119479.1119483
https://doi.org/10.1016/0165-6074(90)90173-7
https://www.sciencedirect.com/science/article/pii/0165607490901737
https://www.sciencedirect.com/science/article/pii/0165607490901737
https://docs.scala-lang.org/tour/singleton-objects.html
https://docs.scala-lang.org/tour/singleton-objects.html

[28] ——, Anonymous functions. [Online]. Available: https://docs.scala-lang.org/
scala3/book/fun-anonymous-functions.html.

[29] J. W. Backus, “The syntax and semantics of the proposed international algebraic language
of the zurich acm-gamm conference,” in IFIP Congress, 1959.

[30] L. de Moura and N. Bjørner, “Z3: An e�icient smt solver,” in Tools and Algorithms for the
Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 337–340, ISBN: 978-3-540-78800-3.

[31] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M.
Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli,
and Y. Zohar, “Cvc5: A versatile and industrial-strength SMT solver,” in Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022,
Held as Part of the European Joint Conferences on Theory and Practice of So�ware, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, D. Fisman and G. Rosu, Eds.,
ser. Lecture Notes in Computer Science, vol. 13243, Springer, 2022, pp. 415–442. DOI:
10.1007/978-3-030-99524-9_24. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-030-99524-9_24.

[32] A. Kennedy and B. C. Pierce, “On decidability of nominal subtyping with variance,” in
International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD), Jan. 2007. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/on-decidability-of-nominal-subtyping-
with-variance/.

[33] K. Crary, “Typed compilation of inclusive subtyping,” in Proceedings of the Fi�h ACM SIG-
PLAN International Conference on Functional Programming, ser. ICFP ’00, New York, NY,
USA: Association for Computing Machinery, 2000, pp. 68–81, ISBN: 1581132026. DOI: 10.
1145/351240.351247. [Online]. Available: https://dl.acm.org/doi/10.
1145/351240.351247.

[34] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of haskell: Being lazy with
class,” in Proceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages, ser. HOPL III, San Diego, California: Association for Computing Machinery,
2007, 12–1–12–55, ISBN: 9781595937667. DOI: 10.1145/1238844.1238856. [Online].
Available: https://dl.acm.org/doi/10.1145/1238844.1238856.

[35] W. Swierstra, “Data types à la carte,” Journal of Functional Programming, vol. 18, no. 4,
pp. 423–436, 2008. DOI:10.1017/S0956796808006758. [Online]. Available:https:
//www.cambridge.org/core/journals/journal- of- functional-
programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.
MIT Press Ltd., 2009, ISBN: 978-0-262-03384-8.

[37] J. B. Goodenough, “Exception handling: Issues and a proposed notation,” Commun. ACM,
vol. 18, no. 12, pp. 683–696, Dec. 1975, ISSN: 0001-0782. DOI: 10 . 1145 / 361227 .
361230. [Online]. Available: https://dl.acm.org/doi/10.1145/361227.
361230.

[38] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs,” in Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, ser. OSDI’08, San Diego, California:
USENIX Association, 2008, pp. 209–224. DOI: 10.5555/1855741.1855756. [Online].
Available: https://dl.acm.org/doi/10.5555/1855741.1855756.

53

https://docs.scala-lang.org/scala3/book/fun-anonymous-functions.html
https://docs.scala-lang.org/scala3/book/fun-anonymous-functions.html
https://doi.org/10.1007/978-3-030-99524-9_24
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_24
https://link.springer.com/chapter/10.1007/978-3-030-99524-9_24
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://doi.org/10.1145/351240.351247
https://doi.org/10.1145/351240.351247
https://dl.acm.org/doi/10.1145/351240.351247
https://dl.acm.org/doi/10.1145/351240.351247
https://doi.org/10.1145/1238844.1238856
https://dl.acm.org/doi/10.1145/1238844.1238856
https://doi.org/10.1017/S0956796808006758
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/data-types-a-la-carte/14416CB20C4637164EA9F77097909409
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/361227.361230
https://dl.acm.org/doi/10.1145/361227.361230
https://dl.acm.org/doi/10.1145/361227.361230
https://doi.org/10.5555/1855741.1855756
https://dl.acm.org/doi/10.5555/1855741.1855756

[39] A. Martelli and U. Montanari, “An e�icient unification algorithm,” ACM Trans. Program.
Lang. Syst., vol. 4, no. 2, pp. 258–282, Apr. 1982, ISSN: 0164-0925.DOI:10.1145/357162.
357169. [Online]. Available: https://dl.acm.org/doi/10.1145/357162.
357169.

[40] “Iso/iec/ieee international standard - systems and so�ware engineering–vocabulary,”
ISO/IEC/IEEE 24765:2017(E), pp. 1–541, 2017.DOI:10.1109/IEEESTD.2017.8016712.
[Online]. Available: https://ieeexplore.ieee.org/document/8016712.

[41] Y. Wei, B. Meyer, and M. Oriol, “Is branch coverage a good measure of testing e�ective-
ness?” In Empirical So�ware Engineering and Verification: International Summer Schools,
LASER 2008-2010, Elba Island, Italy, Revised Tutorial Lectures, B. Meyer and M. Nordio, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 194–212, ISBN: 978-3-642-25231-
0. DOI: 10.1007/978-3-642-25231-0_5. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-642-25231-0_5.

[42] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite e�ectiveness: Empirical
study with real bugs in large systems,” in 2015 IEEE 22nd International Conference on So�-
ware Analysis, Evolution, and Reengineering (SANER), 2015, pp. 560–564. DOI: 10.1109/
SANER.2015.7081877. [Online]. Available: https://ieeexplore.ieee.org/
document/7081877.

[43] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical study on mutation,
statement and branch coverage fault revelation that avoids the unreliable clean program
assumption,” 2017 IEEE/ACM 39th International Conference on So�ware Engineering (ICSE),
pp. 597–608, 2017. DOI: 10.1109/ICSE.2017.61. [Online]. Available: https:
//ieeexplore.ieee.org/document/7985697.

[44] A. Parsai and S. Demeyer, “Comparing mutation coverage against branch coverage in an
industrial setting,” International Journal on So�ware Tools for Technology Transfer, vol. 22,
pp. 365–388, 2020. DOI: 10.1007/s10009- 020- 00567- y. [Online]. Available:
https://link.springer.com/article/10.1007/s10009-020-00567-
y.

[45] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”
IEEE Transactions on So�ware Engineering, vol. 37, no. 5, pp. 649–678, 2011. DOI: 10.
1109/TSE.2010.62. [Online]. Available: https://ieeexplore.ieee.org/
document/5487526.

[46] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit: A practical mu-
tation testing tool for java (demo),” in Proceedings of the 25th International Symposium
on So�ware Testing and Analysis, ser. ISSTA 2016, Saarbrücken, Germany: Association
for Computing Machinery, 2016, pp. 449–452, ISBN: 9781450343909. DOI: 10.1145/
2931037.2948707. [Online]. Available: https://dl.acm.org/doi/10.1145/
2931037.2948707.

[47] Pitest Team, Mutation operators. [Online]. Available:https://pitest.org/quickstart/
mutators/.

[48] Stryker Team, Supported mutators. [Online]. Available:https://stryker-mutator.
io/docs/mutation-testing-elements/supported-mutators/.

[49] Eclemma, JaCoCo Java Code Coverage Library. [Online]. Available: https://www.
eclemma.org/jacoco/.

54

https://doi.org/10.1145/357162.357169
https://doi.org/10.1145/357162.357169
https://dl.acm.org/doi/10.1145/357162.357169
https://dl.acm.org/doi/10.1145/357162.357169
https://doi.org/10.1109/IEEESTD.2017.8016712
https://ieeexplore.ieee.org/document/8016712
https://doi.org/10.1007/978-3-642-25231-0_5
https://link.springer.com/chapter/10.1007/978-3-642-25231-0_5
https://link.springer.com/chapter/10.1007/978-3-642-25231-0_5
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1109/SANER.2015.7081877
https://ieeexplore.ieee.org/document/7081877
https://ieeexplore.ieee.org/document/7081877
https://doi.org/10.1109/ICSE.2017.61
https://ieeexplore.ieee.org/document/7985697
https://ieeexplore.ieee.org/document/7985697
https://doi.org/10.1007/s10009-020-00567-y
https://link.springer.com/article/10.1007/s10009-020-00567-y
https://link.springer.com/article/10.1007/s10009-020-00567-y
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://ieeexplore.ieee.org/document/5487526
https://ieeexplore.ieee.org/document/5487526
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://dl.acm.org/doi/10.1145/2931037.2948707
https://dl.acm.org/doi/10.1145/2931037.2948707
https://pitest.org/quickstart/mutators/
https://pitest.org/quickstart/mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://stryker-mutator.io/docs/mutation-testing-elements/supported-mutators/
https://www.eclemma.org/jacoco/
https://www.eclemma.org/jacoco/

[50] T. v. d. Lippe, T. Smith, D. Pelsmaeker, and E. Visser, “A scalable infrastructure for teaching
concepts of programming languages in scala with weblab: An experience report,” in Pro-
ceedings of the 2016 7th ACM SIGPLAN Symposium on Scala, ser. SCALA 2016, Amsterdam,
Netherlands: Association for Computing Machinery, 2016, pp. 65–74, ISBN: 9781450346481.
DOI: 10 . 1145 / 2998392 . 2998402. [Online]. Available: http : / / resolver .
tudelft.nl/uuid:bab45902-284f-4f6b-9362-be5b3df7ff20.

[51] Ş. Ciobâcă, D. Lucanu, V. Rusu, and G. Roşu, “A language-independent proof system for
full program equivalence,” Form. Asp. Comput., vol. 28, no. 3, pp. 469–497, May 2016,
ISSN: 0934-5043. DOI: 10.1007/s00165-016-0361-7. [Online]. Available: https:
//dl.acm.org/doi/10.1007/s00165-016-0361-7.

[52] Q. Zhou, D. Heath, and W. Harris, Completely automated equivalence proofs, 2017. eprint:
arXiv:1705.03110. [Online]. Available: https://arxiv.org/pdf/1705.
03110.pdf.

[53] B. Churchill, O. Padon, R. Sharma, and A. Aiken, “Semantic program alignment for equiva-
lence checking,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, ser. PLDI 2019, Phoenix, AZ, USA: Association for Com-
puting Machinery, 2019, pp. 1027–1040, ISBN: 9781450367127.DOI:10.1145/3314221.
3314596. [Online]. Available: https://dl.acm.org/doi/10.1145/3314221.
3314596.

[54] J. Clune, V. Ramamurthy, R. Martins, and U. A. Acar, “Program equivalence for assisted
grading of functional programs,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020.
DOI: 10.1145/3428239. [Online]. Available: https://dl.acm.org/doi/10.
1145/3428239.

[55] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix utilities,”
Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990, ISSN: 0001-0782. DOI: 10.1145/
96267.96279. [Online]. Available: https://dl.acm.org/doi/10.1145/
96267.96279.

[56] R. Guo, “Mongodb’s javascript fuzzer: The fuzzer is for those edge cases that your testing
didn’t catch.,” Queue, vol. 15, no. 1, pp. 38–56, Feb. 2017, ISSN: 1542-7730. DOI:10.1145/
3055301.3059007. [Online]. Available: https://dl.acm.org/doi/10.1145/
3055301.3059007.

[57] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo, The art,
science, and engineering of fuzzing: A survey, 2018. DOI: 10.48550/ARXIV.1812.
00140. [Online]. Available: https://arxiv.org/abs/1812.00140.

[58] M. Zalewski, American fuzzy lop. [Online]. Available: https://lcamtuf.coredump.
cx/afl/.

[59] .NET Foundation, Roslyn The .NET Compiler Platform. [Online]. Available: https://
github.com/dotnet/roslyn.

[60] J. B. Nielsen, C. Schmidt, and J. Larsen, Fuzzlyn, Jun. 2018. [Online]. Available: https:
//github.com/jakobbotsch/Fuzzlyn.

[61] P. Ortegat, B. Vanderose, and X. Devroey, “Towards automated testing for simple program-
ming exercises,” in Proceedings of the 4th International Workshop on Education through
Advanced So�ware Engineering and Artificial Intelligence (EASEAI ‘22), 2022.DOI:10.1145/
3548660.3561334. [Online]. Available:https://xdevroey.be/publication/
ortegat-2022/ortegat-2022.pdf.

55

https://doi.org/10.1145/2998392.2998402
http://resolver.tudelft.nl/uuid:bab45902-284f-4f6b-9362-be5b3df7ff20
http://resolver.tudelft.nl/uuid:bab45902-284f-4f6b-9362-be5b3df7ff20
https://doi.org/10.1007/s00165-016-0361-7
https://dl.acm.org/doi/10.1007/s00165-016-0361-7
https://dl.acm.org/doi/10.1007/s00165-016-0361-7
arXiv:1705.03110
https://arxiv.org/pdf/1705.03110.pdf
https://arxiv.org/pdf/1705.03110.pdf
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://dl.acm.org/doi/10.1145/3314221.3314596
https://dl.acm.org/doi/10.1145/3314221.3314596
https://doi.org/10.1145/3428239
https://dl.acm.org/doi/10.1145/3428239
https://dl.acm.org/doi/10.1145/3428239
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://dl.acm.org/doi/10.1145/96267.96279
https://dl.acm.org/doi/10.1145/96267.96279
https://doi.org/10.1145/3055301.3059007
https://doi.org/10.1145/3055301.3059007
https://dl.acm.org/doi/10.1145/3055301.3059007
https://dl.acm.org/doi/10.1145/3055301.3059007
https://doi.org/10.48550/ARXIV.1812.00140
https://doi.org/10.48550/ARXIV.1812.00140
https://arxiv.org/abs/1812.00140
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://github.com/jakobbotsch/Fuzzlyn
https://github.com/jakobbotsch/Fuzzlyn
https://doi.org/10.1145/3548660.3561334
https://doi.org/10.1145/3548660.3561334
https://xdevroey.be/publication/ortegat-2022/ortegat-2022.pdf
https://xdevroey.be/publication/ortegat-2022/ortegat-2022.pdf

[62] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Advances in Computer
Science - ASIAN 2004. Higher-Level Decision Making, M. J. Maher, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 320–329, ISBN: 978-3-540-30502-6. DOI: 10.1007/
978-3-540-30502-6_23. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-540-30502-6_23.

[63] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey, and X. Xia, “A survey on adaptive random
testing,” IEEE Transactions on So�ware Engineering, vol. 47, no. 10, pp. 2052–2083, 2021.
DOI: 10.1109/TSE.2019.2942921. [Online]. Available: https://ieeexplore.
ieee.org/document/8846002.

[64] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel, and G. Rothermel, “A cost-e�ective
random testing method for programs with non-numeric inputs,” IEEE Transactions on
Computers, vol. 65, no. 12, pp. 3509–3523, 2016. DOI: 10.1109/TC.2016.2547380.
[Online]. Available: https://ieeexplore.ieee.org/document/7442567.

[65] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random testing of haskell
programs,” SIGPLAN Not., vol. 35, no. 9, pp. 268–279, Sep. 2000, ISSN: 0362-1340. DOI:
10.1145/357766.351266. [Online]. Available: https://dl.acm.org/doi/
10.1145/351240.351266.

[66] J. Hughes, “Experiences with quickcheck: Testing the hard stu� and staying sane,” in
A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, S. Lindley, C. McBride, P. Trinder, and D. Sannella, Eds.
Cham: Springer International Publishing, 2016, pp. 169–186, ISBN: 978-3-319-30936-1.
DOI: 10.1007/978-3-319-30936-1_9. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-319-30936-1_9.

[67] L. Lampropoulos, M. Hicks, and B. C. Pierce, “Coverage guided, property based testing,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. DOI: 10.1145/3360607.
[Online]. Available: https://dl.acm.org/doi/10.1145/3360607.

[68] H. Goldstein, J. Hughes, L. Lampropoulos, and B. C. Pierce, “Do judge a test by its cover,”
in Programming Languages and Systems, N. Yoshida, Ed., Cham: Springer International
Publishing, 2021, pp. 264–291, ISBN: 978-3-030-72019-3. DOI: 10.1007/978-3-030-
72019-3_10. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-030-72019-3_10.

[69] C. Benac Earle and L.-Å. Fredlund, “A property-based testing framework for multi-agent
systems,” in Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, ser. AAMAS ’19, Montreal QC, Canada: International Foundation for
Autonomous Agents and Multiagent Systems, 2019, pp. 1823–1825, ISBN: 9781450363099.
DOI: 10.5555/3306127.3331931. [Online]. Available: https://dl.acm.org/
doi/10.5555/3306127.3331931.

[70] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing of quantum pro-
grams in q#,” in Proceedings of the IEEE/ACM 42nd International Conference on So�ware
Engineering Workshops. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 430–435, ISBN: 9781450379632. DOI:10.1145/3387940.3391459. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3387940.3391459.

[71] P. Vasconcelos and R. P. Ribeiro, “Using Property-Based Testing to Generate Feedback for
C Programming Exercises,” in First International Computer Programming Education Con-
ference (ICPEC 2020), R. Queirós, F. Portela, M. Pinto, and A. Simões, Eds., ser. OpenAccess
Series in Informatics (OASIcs), vol. 81, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, 28:1–28:10, ISBN: 978-3-95977-153-5. DOI: 10.4230/
OASIcs.ICPEC.2020.28. [Online]. Available: https://drops.dagstuhl.
de/opus/volltexte/2020/12315.

56

https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-3-540-30502-6_23
https://link.springer.com/chapter/10.1007/978-3-540-30502-6_23
https://link.springer.com/chapter/10.1007/978-3-540-30502-6_23
https://doi.org/10.1109/TSE.2019.2942921
https://ieeexplore.ieee.org/document/8846002
https://ieeexplore.ieee.org/document/8846002
https://doi.org/10.1109/TC.2016.2547380
https://ieeexplore.ieee.org/document/7442567
https://doi.org/10.1145/357766.351266
https://dl.acm.org/doi/10.1145/351240.351266
https://dl.acm.org/doi/10.1145/351240.351266
https://doi.org/10.1007/978-3-319-30936-1_9
https://link.springer.com/chapter/10.1007/978-3-319-30936-1_9
https://link.springer.com/chapter/10.1007/978-3-319-30936-1_9
https://doi.org/10.1145/3360607
https://dl.acm.org/doi/10.1145/3360607
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1007/978-3-030-72019-3_10
https://link.springer.com/chapter/10.1007/978-3-030-72019-3_10
https://link.springer.com/chapter/10.1007/978-3-030-72019-3_10
https://doi.org/10.5555/3306127.3331931
https://dl.acm.org/doi/10.5555/3306127.3331931
https://dl.acm.org/doi/10.5555/3306127.3331931
https://doi.org/10.1145/3387940.3391459
https://dl.acm.org/doi/10.1145/3387940.3391459
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://drops.dagstuhl.de/opus/volltexte/2020/12315
https://drops.dagstuhl.de/opus/volltexte/2020/12315

[72] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed investigation of the e�ectiveness
of whole test suite generation,” Empirical So�ware Engineering, vol. 22, no. 2, pp. 852–893,
Apr. 2017, ISSN: 1573-7616. DOI: 10.1007/s10664-015-9424-2. [Online]. Available:
https://link.springer.com/article/10.1007/s10664-015-9424-2.

[73] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for object-oriented
so�ware,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of So�ware Engineering, ser. ESEC/FSE ’11, Szeged, Hungary:
Association for Computing Machinery, 2011, pp. 416–419, ISBN: 9781450304436. DOI:
10.1145/2025113.2025179. [Online]. Available: https://dl.acm.org/
doi/10.1145/2025113.2025179.

[74] M. Khari, A. Sinha, E. Verdú, and R. G. Crespo, “Performance analysis of six meta-heuristic
algorithms over automated test suite generation for path coverage-based optimization,”
So� Computing, vol. 24, no. 12, pp. 9143–9160, Jun. 2020, ISSN: 1433-7479.DOI:10.1007/
s00500-019-04444-y. [Online]. Available: https://link.springer.com/
article/10.1007/s00500-019-04444-y.

[75] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pundefinedsundefinedreanu, “Di�erential
symbolic execution,” in Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of So�ware Engineering, ser. SIGSOFT ’08/FSE-16, Atlanta, Georgia: Associa-
tion for Computing Machinery, 2008, pp. 226–237, ISBN: 9781595939951. DOI: 10.1145/
1453101.1453131. [Online]. Available: https://dl.acm.org/doi/10.1145/
1453101.1453131.

[76] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” SIGSOFT
So�w. Eng. Notes, vol. 30, no. 5, pp. 263–272, Sep. 2005, ISSN: 0163-5948. DOI: 10.1145/
1095430.1081750. [Online]. Available: https://dl.acm.org/doi/10.1145/
1081706.1081750.

[77] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test suite generation with
dynamic symbolic execution,” in 2013 IEEE 24th International Symposium on So�ware Reli-
ability Engineering (ISSRE), 2013, pp. 360–369.DOI:10.1109/ISSRE.2013.6698889.
[Online]. Available: https://ieeexplore.ieee.org/document/6698889.

[78] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C.
Krügel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execution,”
Network and Distributed System Security Symposium, 2016. DOI: 10.14722/ndss.
2016.23368. [Online]. Available: https://doi.org/10.14722/ndss.2021.
24118.

[79] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical concolic execution engine
tailored for hybrid fuzzing,” in 27th USENIX Security Symposium (USENIX Security 18), Balti-
more, MD: USENIX Association, Aug. 2018, pp. 745–761, ISBN: 978-1-939133-04-5. [Online].
Available: https://www.usenix.org/conference/usenixsecurity18/
presentation/yun.

[80] C. Cadar and K. Sen, “Symbolic execution for so�ware testing: Three decades later,”
Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013, ISSN: 0001-0782. DOI: 10.1145/
2408776.2408795. [Online]. Available: https://dl.acm.org/doi/10.1145/
2408776.2408795.

[81] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner, “Improving function coverage
with munch: A hybrid fuzzing and directed symbolic execution approach,” in Proceed-
ings of the 33rd Annual ACM Symposium on Applied Computing, ser. SAC ’18, Pau, France:
Association for Computing Machinery, 2018, pp. 1475–1482, ISBN: 9781450351911. DOI:
10.1145/3167132.3167289. [Online]. Available: https://dl.acm.org/doi/
10.1145/3167132.3167289.

57

https://doi.org/10.1007/s10664-015-9424-2
https://link.springer.com/article/10.1007/s10664-015-9424-2
https://doi.org/10.1145/2025113.2025179
https://dl.acm.org/doi/10.1145/2025113.2025179
https://dl.acm.org/doi/10.1145/2025113.2025179
https://doi.org/10.1007/s00500-019-04444-y
https://doi.org/10.1007/s00500-019-04444-y
https://link.springer.com/article/10.1007/s00500-019-04444-y
https://link.springer.com/article/10.1007/s00500-019-04444-y
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://dl.acm.org/doi/10.1145/1453101.1453131
https://dl.acm.org/doi/10.1145/1453101.1453131
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
https://dl.acm.org/doi/10.1145/1081706.1081750
https://dl.acm.org/doi/10.1145/1081706.1081750
https://doi.org/10.1109/ISSRE.2013.6698889
https://ieeexplore.ieee.org/document/6698889
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2021.24118
https://doi.org/10.14722/ndss.2021.24118
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://dl.acm.org/doi/10.1145/2408776.2408795
https://dl.acm.org/doi/10.1145/2408776.2408795
https://doi.org/10.1145/3167132.3167289
https://dl.acm.org/doi/10.1145/3167132.3167289
https://dl.acm.org/doi/10.1145/3167132.3167289

[82] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and J. Sun, “Safl: Increasing and
accelerating testing coverage with symbolic execution and guided fuzzing,” in Proceedings
of the 40th International Conference on So�ware Engineering: Companion Proceeedings,
ser. ICSE ’18, Gothenburg, Sweden: Association for Computing Machinery, 2018, pp. 61–
64, ISBN: 9781450356633. DOI: 10.1145/3183440.3183494. [Online]. Available:
https://dl.acm.org/doi/10.1145/3183440.3183494.

[83] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t interpret, compile!”
In 29th USENIX Security Symposium (USENIX Security 20), USENIX Association, Aug. 2020,
pp. 181–198, ISBN: 978-1-939133-17-5. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity20/presentation/poeplau.

[84] ——, “Symqemu: Compilation-based symbolic execution for binaries,” Network and Dis-
tributed System Security Symposium, 2021. DOI: 10.14722/ndss.2021.24118.
[Online]. Available: https://www.ndss- symposium.org/ndss- paper/
symqemu-compilation-based-symbolic-execution-for-binaries/.

58

https://doi.org/10.1145/3183440.3183494
https://dl.acm.org/doi/10.1145/3183440.3183494
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://doi.org/10.14722/ndss.2021.24118
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/

A Student Data Set

A.1 Lists

1 object Solution {
2 /**
3 * We will now define a slightly less trivial case class,
4 * representing a list structure containing integers.
5 *
6 * Any list can be one of two types:
7 * it can be empty, or it can be an element joined to the remaining list.
8 *
9 * Notice that the structure of these case classes is recursive.

10 */
11 sealed abstract class IntList
12 case class Empty() extends IntList // The empty list, often called Nil
13 case class Element(n: Int, tail: IntList) extends IntList // Element is usually called Cons
14
15 /**
16 * As an example, let’s create a function that lists descending integers from n to 1.
17 */
18 def listFrom(n: Int): IntList = {
19 if (n == 0) Empty()
20 else Element(n, listFrom(n-1))
21 }
22
23 /**
24 * EXERCISE:
25 * Implement the function sumIntList(xs).
26 * It should take an IntList, and return the sum of all it’s elements.
27 * Use pattern matching!
28 */
29 def sumIntList(xs: IntList): Int = throw new RuntimeException("Not yet implemented")
30
31 /**
32 * EXERCISE:
33 * Implement the function head(xs).
34 * It should return the first element in a list.
35 * If the list is empty, throw a NoSuchElementException.
36 */
37 def head(xs: IntList): Int = throw new RuntimeException("Not yet implemented")
38
39 /**
40 * EXERCISE:
41 * Define the function tail(xs).
42 * It should accept an IntList and return the same IntList, but without the first element.
43 * If the list is empty, throw a NoSuchElementException.
44 */
45 def tail(xs: IntList): IntList = throw new RuntimeException("Not yet implemented")
46
47 /**
48 * EXERCISE:
49 * Define the function concat(xs, ys).
50 * It should concatenate two IntLists.
51 */
52 def concat(xs: IntList, ys: IntList): IntList = throw new RuntimeException("Not yet

implemented")
53
54 /**
55 * EXERCISE:
56 * Define the function take(n, xs).
57 * It should return the first n elements of xs.
58 * This function should never throw an exception.
59 */
60 def take(n: Int, xs: IntList): IntList = throw new RuntimeException("Not yet implemented")
61
62 /**
63 * EXERCISE:
64 * Define the function drop(n, xs).
65 * It should return the list xs, without the first n elements.
66 * This function should never throw an exception.
67 */
68 def drop(n: Int, xs: IntList): IntList = throw new RuntimeException("Not yet implemented")
69 }

Figure A.1: Lists assignment template and description.

59

1 object Solution {
2 sealed abstract class IntList
3 case class Empty() extends IntList // The empty list, often called Nils
4 case class Element(n: Int, tail: IntList) extends IntList // Element is usually called Cons
5
6 def listFrom(n: Int): IntList = {
7 if (n == 0) Empty()
8 else Element(n, listFrom(n-1))
9 }

10
11 def sumIntList(xs: IntList): Int = xs match {
12 case Empty() => 0
13 case Element(n, tail) => n + sumIntList(tail)
14 }
15
16
17 def head(xs: IntList): Int = xs match {
18 case Empty() => throw new NoSuchElementException
19 case Element(n, _) => n
20 }
21
22 def tail(xs: IntList): IntList = xs match {
23 case Empty() => throw new NoSuchElementException
24 case Element(_, t) => t
25 }
26
27 def concat(xs: IntList, ys: IntList): IntList = xs match {
28 case Empty() => ys
29 case Element(n, ts) => Element(n, concat(ts, ys))
30 }
31
32 def take(n: Int, xs: IntList): IntList = xs match {
33 case Element(e, ts) if n > 0 => Element(e, take(n-1, ts))
34 case _ => Empty()
35 }
36
37 def drop(n: Int, xs: IntList): IntList = xs match {
38 case Element(_, ts) if n > 0 => drop(n-1, ts)
39 case _ => xs
40 }
41 }

Figure A.2: Lists assignment reference implementation.

60

1 import org.scalatest.FunSuite
2 import Solution._
3
4 class SpecTest extends FunSuite {
5 test("Sum IntList") {
6 def sumIntList(xs: IntList): Int = xs match {
7 case Empty() => 0
8 case Element(n, tail) => n + sumIntList(tail)
9 }

10
11 val list = listFrom((Math.random * 40 + 10).asInstanceOf[Int])
12 assert(Solution.sumIntList(Empty()) == 0)
13 assert(sumIntList(list) == Solution.sumIntList(list))
14 }
15
16 test("Concat empty lists") {
17 assertResult(Empty()) {
18 concat(Empty(), Empty())
19 }
20 }
21
22 test("Concat with one empty list") {
23 assertResult(Element(3, Empty())) {
24 concat(Element(3, Empty()), Empty())
25 }
26 }
27
28 test("Concat") {
29 assertResult(Element(3, Element(6, Empty()))) {
30 concat(Element(3, Empty()), Element(6, Empty()))
31 }
32 }
33
34 test("Concat more elements") {
35 assertResult(Element(34, Element(3, Element(6, Empty())))) {
36 concat(Element(34, Element(3, Empty())), Element(6, Empty()))
37 }
38 }
39
40 test("Head empty") {
41 intercept[NoSuchElementException] {
42 head(Empty())
43 }
44 }
45
46 // tail(xs): return the tail of the list
47
48 test("Tail") {
49 assertResult(Element(3, Empty())) {
50 tail(Element(34, Element(3, Empty())))
51 }
52 }
53
54 // take(n, xs): take the first n elements
55
56 test("take 10") {
57 assertResult(Element(34, Element(3, Element(6, Empty())))) {
58 take(10, Element(34, Element(3, Element(6, Empty()))))
59 }
60 }
61
62 test("take 2") {
63 assertResult(Element(34, Element(3, Empty()))) {
64 take(2, Element(34, Element(3, Empty())))
65 }
66 }
67
68 test("take 1") {
69 assertResult(Element(3, Empty())) {
70 take(1, Element(3, Element(34, Element(6, Empty()))))
71 }
72 }
73
74 test("take 0") {
75 assertResult(Empty()) {
76 take(0, Element(34, Element(3, Empty())))
77 }
78 }
79
80 // drop(n, xs): drop the first n elements
81
82 test("drop 0") {
83 assertResult(Element(34, Element(3, Element(6, Empty())))) {
84 drop(0, Element(34, Element(3, Element(6, Empty()))))
85 }
86 }
87
88 test("drop 1") {
89 assertResult(Element(3, Element(6, Empty()))) {
90 drop(1, Element(34, Element(3, Element(6, Empty()))))
91 }
92 }
93
94 test("drop 10") {
95 assertResult(Empty()) {
96 drop(10, Element(34, Element(3, Element(6, Empty()))))
97 }
98 }
99 }

Figure A.3: Lists assignment manually written test suite.
61

A.2 Binary Search Trees

1 object Solution {
2 /**
3 * EXERCISE:
4 * Define the case classes for Tree.
5 * A tree can be a Leaf, or a Node with a value and two child trees.
6 * The height function serves as an example for how the tree structure should be organized
7 */
8
9 def height(tree: Tree): Int = tree match {

10 case Leaf() => 0
11 case Node(elem, left, right) => 1 + Math.max(height(left), height(right))
12 }
13
14 /**
15 * EXERCISE:
16 * Define the following functions.
17 *
18 * Do not worry about rebalancing the tree.
19 *
20 * Hint:
21 * Pattern matches can be made more specific with arbitrary conditions:
22 * ‘case A(n) if n>3 => print("n is greater than 3!")‘
23 */
24 def insert(e: Int, t: Tree): Tree = throw new RuntimeException("Not yet implemented")
25
26 def contains(e: Int, t: Tree): Boolean = throw new RuntimeException("Not yet implemented")
27
28 def size(t: Tree): Int = throw new RuntimeException("Not yet implemented")
29 }

Figure A.4: Binary Search Trees assignment template and description.

1 object Solution {
2 sealed abstract class Tree
3 case class Leaf() extends Tree
4 case class Node(elem: Int, left: Tree, right: Tree) extends Tree
5
6 def insert(i: Int, t: Tree): Tree = t match {
7 case Leaf() => Node(i, Leaf(), Leaf())
8 case Node(e, l, r) if i > e => Node(e, l, insert(i, r))
9 case Node(e, l, r) if i < e => Node(e, insert(i, l), r)

10 case _ => t
11 }
12
13 def contains(i: Int, t: Tree): Boolean = t match {
14 case Leaf() => false
15 case Node(e, _, _) if e == i => true
16 case Node(_, l, r) => contains(i, l) || contains(i, r)
17 }
18
19 def size(t: Tree): Int = t match {
20 case Leaf() => 0
21 case Node(_, l, r) => 1 + size(l) + size(r)
22 }
23 }

Figure A.5: Binary Search Trees assignment reference implementation.

62

1 import Solution._
2 import org.scalatest.FunSuite
3
4 class SpecTest extends FunSuite {
5 test("testSizeSkel") {
6 assertResult(3) {
7 size(Node(1, Node(0, Leaf(), Leaf()), Node(2, Leaf(), Leaf())))
8 }
9 }

10
11 test("testSize1") {
12 assertResult(0) {
13 size(Leaf())
14 }
15 }
16
17 test("testSize2") {
18 assertResult(1) {
19 size(Node(0, Leaf(), Leaf()))
20 }
21 }
22
23 test("testSize3") {
24 assertResult(3) {
25 size(Node(0, Node(1, Leaf(), Leaf()), Node(2, Leaf(), Leaf())))
26 }
27 }
28
29 test("testSize7") {
30 assertResult(7) {
31 size(Node(4,
32 Node(2, Node(1, Leaf(), Leaf()), Node(3, Leaf(), Leaf())),
33 Node(6, Node(5, Leaf(), Leaf()), Node(7, Leaf(), Leaf()))))
34 }
35 }
36
37 test("testInsert1") {
38 assertResult (Node(5,Node(4,Node(3,Leaf(),Leaf()),Leaf()),Leaf())) {
39 insert(3, insert(4, insert(5, Leaf()))) }
40 }
41
42 test("testInsert2") {
43 assertResult (Node(5,Node(4,Leaf(),Leaf()),Node(52,Leaf(),Leaf()))) {
44 insert(52, insert(5, insert(4, insert(5, Leaf()))))
45 }
46 }
47
48 test("testInsert3") {
49 assertResult (Node(10,Node(4,Node(3,Leaf(), Leaf()),Node(5,Leaf(),Leaf())),Node(12,Node(11,

Leaf(),Leaf()),Leaf()))) {
50 insert(3, insert(5, insert(11, insert(12, insert(4, insert(10, Leaf()))))))
51 }
52 }
53
54 test("testFind0") {
55 assertResult(false) {
56 contains(3, Leaf())
57 }
58 }
59
60 test("testFind1") {
61 assertResult(true) {
62 contains(3, insert(5, insert(9, insert(1, insert(3, Leaf())))))
63 }
64 }
65
66 test("testFind2") {
67 assertResult(false) {
68 contains(7, insert(5, insert(9, insert(1, insert(3, Leaf())))))
69 }
70 }
71 }

Figure A.6: Binary Search Trees assignment manually written test suite.

63

B Interpreter Data Set

B.1 Type Definitions

1 abstract class ExprC
2 case class NumC(value: Int) extends ExprC
3 case class AddC(e1: ExprC, e2: ExprC) extends ExprC
4 case class FdC(param: Int, body: ExprC) extends ExprC
5 case class IdC(id: Int) extends ExprC
6 case class AppC(f: ExprC, arg: ExprC) extends ExprC
7
8 abstract class Environment
9 case class EmptyEnvironment() extends Environment

10 case class EnvironmentNode(name: Int, value: Value, tail: Environment) extends Environment
11
12 abstract class Value
13 case class NumV(value: Int) extends Value
14 case class ClosV(env: Environment, param: Int, body: ExprC) extends Value

Figure B.1: Type definitions shared for all interpreters.

B.2 Reference Solution

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = {
9 e match {

10 case NumC(v) => NumV(v)
11 case AddC(e1, e2) => interp(e1, nv) match {
12 case NumV(v1) => interp(e2, nv) match {
13 case NumV(v2) => NumV(v1 + v2)
14 case _ => throw InterpretException()
15 }
16 case _ => throw InterpretException()
17 }
18 case IdC(id) => find(nv, id)
19 case FdC(n, b) => ClosV(nv, n, b)
20 case AppC(f, a) => interp(f, nv) match {
21 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), cnv))
22 case _ => throw InterpretException()
23 }
24 case _ => throw InterpretException()
25 }
26 }
27 }

Figure B.2: Reference implementation of a simple interpreter.

64

B.3 Faulty Solutions

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = e match {
9 case NumC(v) => NumV(v)

10 case AddC(e1, e2) => interp(e1, nv) match {
11 case NumV(v1) => interp(e2, nv) match {
12 case NumV(v2) => NumV(v1 + v2)
13 case _ => throw InterpretException()
14 }
15 case _ => throw InterpretException()
16 }
17 case IdC(id) => find(nv, id)
18 case FdC(n, b) => ClosV(nv, n, b)
19 case AppC(f, a) => interp(f, nv) match {
20 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), nv))
21 case _ => throw InterpretException()
22 }
23 case _ => throw InterpretException()
24 }
25 }

Figure B.3: Faulty implementation which uses the local environment to interpret the body of a
closure.

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def concat(front: Environment, back: Environment): Environment = front match {
8 case EmptyEnvironment() => back
9 case EnvironmentNode(name, value, tail) => EnvironmentNode(name, value, concat(tail, back))

10 }
11 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
12 def interp(e: ExprC, nv: Environment): Value = e match {
13 case NumC(v) => NumV(v)
14 case AddC(e1, e2) => interp(e1, nv) match {
15 case NumV(v1) => interp(e2, nv) match {
16 case NumV(v2) => NumV(v1 + v2)
17 case _ => throw InterpretException()
18 }
19 case _ => throw InterpretException()
20 }
21 case IdC(id) => find(nv, id)
22 case FdC(n, b) => ClosV(nv, n, b)
23 case AppC(f, a) => interp(f, nv) match {
24 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), concat(

nv, cnv)))
25 case _ => throw InterpretException()
26 }
27 case _ => throw InterpretException()
28 }
29 }

Figure B.4: Faulty implementation which first uses the local environment, then the closure
environment to interpret the body of a closure.

65

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def concat(front: Environment, back: Environment): Environment = front match {
8 case EmptyEnvironment() => back
9 case EnvironmentNode(name, value, tail) => EnvironmentNode(name, value, concat(tail, back))

10 }
11 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
12 def interp(e: ExprC, nv: Environment): Value = e match {
13 case NumC(v) => NumV(v)
14 case AddC(e1, e2) => interp(e1, nv) match {
15 case NumV(v1) => interp(e2, nv) match {
16 case NumV(v2) => NumV(v1 + v2)
17 case _ => throw InterpretException()
18 }
19 case _ => throw InterpretException()
20 }
21 case IdC(id) => find(nv, id)
22 case FdC(n, b) => ClosV(nv, n, b)
23 case AppC(f, a) => interp(f, nv) match {
24 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), concat(

cnv, nv)))
25 case _ => throw InterpretException()
26 }
27 case _ => throw InterpretException()
28 }
29 }

Figure B.5: Faulty implementation which first uses the closure environment, then the local
environment to interpret the body of a closure.

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = {
9 e match {

10 case NumC(v) => NumV(v)
11 case AddC(e1, e2) => interp(e1, nv) match {
12 case NumV(v1) => interp(e2, nv) match {
13 case NumV(v2) => NumV(v1 + v2)
14 case _ => throw InterpretException()
15 }
16 case _ => throw InterpretException()
17 }
18 case IdC(id) => find(nv, id)
19 case FdC(n, b) => ClosV(nv, n, b)
20 case AppC(f, a) => interp(f, nv) match {
21 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv),

EmptyEnvironment()))
22 case _ => throw InterpretException()
23 }
24 case _ => throw InterpretException()
25 }
26 }
27 }

Figure B.6: Faulty implementation which uses the empty environment to interpret the body of a
closure.

66

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = e match {
9 case NumC(v) => NumV(v)

10 case AddC(e1, e2) => interp(e1, nv) match {
11 case NumV(v1) => interp(e2, nv) match {
12 case NumV(v2) => NumV(v1 + v2)
13 case _ => throw InterpretException()
14 }
15 case _ => throw InterpretException()
16 }
17 case IdC(id) => find(nv, id)
18 case FdC(n, b) => ClosV(nv, n, b)
19 case AppC(f, a) => interp(f, nv) match {
20 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, cnv), cnv))
21 case _ => throw InterpretException()
22 }
23 case _ => throw InterpretException()
24 }
25 }

Figure B.7: Faulty implementation which uses the closure environment to interpret the argument
of a function application.

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def concat(front: Environment, back: Environment): Environment = front match {
8 case EmptyEnvironment() => back
9 case EnvironmentNode(name, value, tail) => EnvironmentNode(name, value, concat(tail, back))

10 }
11 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
12 def interp(e: ExprC, nv: Environment): Value = e match {
13 case NumC(v) => NumV(v)
14 case AddC(e1, e2) => interp(e1, nv) match {
15 case NumV(v1) => interp(e2, nv) match {
16 case NumV(v2) => NumV(v1 + v2)
17 case _ => throw InterpretException()
18 }
19 case _ => throw InterpretException()
20 }
21 case IdC(id) => find(nv, id)
22 case FdC(n, b) => ClosV(nv, n, b)
23 case AppC(f, a) => interp(f, nv) match {
24 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, concat(cnv,

nv)), cnv))
25 case _ => throw InterpretException()
26 }
27 case _ => throw InterpretException()
28 }
29 }

Figure B.8: Faulty implementation which first uses the closure environment, then the local
environment to interpret the argument of a function application.

67

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def concat(front: Environment, back: Environment): Environment = front match {
8 case EmptyEnvironment() => back
9 case EnvironmentNode(name, value, tail) => EnvironmentNode(name, value, concat(tail, back))

10 }
11 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
12 def interp(e: ExprC, nv: Environment): Value = e match {
13 case NumC(v) => NumV(v)
14 case AddC(e1, e2) => interp(e1, nv) match {
15 case NumV(v1) => interp(e2, nv) match {
16 case NumV(v2) => NumV(v1 + v2)
17 case _ => throw InterpretException()
18 }
19 case _ => throw InterpretException()
20 }
21 case IdC(id) => find(nv, id)
22 case FdC(n, b) => ClosV(nv, n, b)
23 case AppC(f, a) => interp(f, nv) match {
24 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, concat(nv,

cnv)), cnv))
25 case _ => throw InterpretException()
26 }
27 case _ => throw InterpretException()
28 }
29 }

Figure B.9: Faulty implementation which first uses the local environment, then the closure
environment to interpret the argument of a function application.

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = e match {
9 case NumC(v) => NumV(v)

10 case AddC(e1, e2) => interp(e1, nv) match {
11 case NumV(v1) => interp(e2, nv) match {
12 case NumV(v2) => NumV(v1 + v2)
13 case _ => throw InterpretException()
14 }
15 case _ => throw InterpretException()
16 }
17 case IdC(id) => find(nv, id)
18 case FdC(n, b) => ClosV(nv, n, b)
19 case AppC(f, a) => interp(f, nv) match {
20 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a,

EmptyEnvironment()), cnv))
21 case _ => throw InterpretException()
22 }
23 case _ => throw InterpretException()
24 }
25 }

Figure B.10: Faulty implementation which uses the empty environment to interpret the argument
of a function application.

68

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = {
9 e match {

10 case NumC(v) => NumV(v)
11 case AddC(NumC(v1), NumC(v2)) => NumV(v1 + v2)
12 case IdC(id) => find(nv, id)
13 case FdC(n, b) => ClosV(nv, n, b)
14 case AppC(f, a) => interp(f, nv) match {
15 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), cnv))
16 case _ => throw InterpretException()
17 }
18 case _ => throw InterpretException()
19 }
20 }
21 }

Figure B.11: Faulty implementation which does not interpret the arguments of addition before
adding them.

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = {
9 e match {

10 case NumC(v) => NumV(v)
11 case AddC(NumC(v1), NumC(v2)) => NumV(v1 + v2)
12 case AddC(AddC(NumC(v1), NumC(v2)), NumC(v3)) => NumV(v1 + v2 + v3)
13 case AddC(NumC(v1), AddC(NumC(v2), NumC(v3))) => NumV(v1 + v2 + v3)
14 case AddC(AddC(NumC(v1), NumC(v2)), AddC(NumC(v3), NumC(v4))) => NumV(v1 + v2 + v3 + v4)
15 case IdC(id) => find(nv, id)
16 case FdC(n, b) => ClosV(nv, n, b)
17 case AppC(f, a) => interp(f, nv) match {
18 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), cnv))
19 case _ => throw InterpretException()
20 }
21 case _ => throw InterpretException()
22 }
23 }
24 }

Figure B.12: Another faulty implementation which does not interpret the arguments of addition
before adding them.

69

1 object Interp {
2 case class InterpretException(msg: String = null) extends Exception
3 def find(nv: Environment, n: Int): Value = nv match {
4 case EmptyEnvironment() => throw InterpretException()
5 case EnvironmentNode(name, value, tail) => if (name == n) value else find(tail, n)
6 }
7 def interpEntry(e: ExprC): Value = interp(e, EmptyEnvironment())
8 def interp(e: ExprC, nv: Environment): Value = {
9 e match {

10 case NumC(v) => NumV(v)
11 case AddC(NumC(i1), NumC(i2)) if (i2 < 0) => NumV(i1 - i2)
12 case AddC(e1, e2) => interp(e1, nv) match {
13 case NumV(v1) => interp(e2, nv) match {
14 case NumV(v2) => NumV(v1 + v2)
15 case _ => throw InterpretException()
16 }
17 case _ => throw InterpretException()
18 }
19 case IdC(id) => find(nv, id)
20 case FdC(n, b) => ClosV(nv, n, b)
21 case AppC(f, a) => interp(f, nv) match {
22 case ClosV(cnv, param, body) => interp(body, EnvironmentNode(param, interp(a, nv), cnv))
23 case _ => throw InterpretException()
24 }
25 case _ => throw InterpretException()
26 }
27 }
28 }

Figure B.13: Faulty implementation which has a malicious extra case for additions.

70

C Extra Results

Reference
B.2

Body
Local

B.3

Body
Local

+ Closure
B.4

Body
Closure
+ Local

B.5

Body
Empty

B.6

Argument
Closure

B.7

Argument
Closure
+ Local

B.8

Argument
Local

+ Closure
B.9

Argument
Empty

B.10

Structural
Matching 1

B.11

Structural
Matching 2

B.12

Extra Case
B.13

Budget: 1
Call cost: 1 24 24 27 27 24 24 27 27 24 22 31 39

Budget: 2
Call cost: 1 43 43 46 46 43 43 46 46 43 37 55 66

Budget: 3
Call cost: 1 111 111 114 114 111 111 114 114 111 63 93 201

Budget: 4
Call cost: 1 331 331 305 305 331 331 305 305 331 168 492 672

Budget: 5
Call cost: 1 999 999 861 861 999 999 861 861 996 430 1510 2285

Budget: 6
Call cost: 1 3051 3051 2438 2444 3049 3052 2438 2431 3025 977 3521 7910

Budget: 7
Call cost: 1 9432 9430 6980 7025 9412 9441 6985 6930 9254 2588 13226 27684

Budget: 8
Call cost: 1 Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 7
Call cost: 1

Match "AddC" cost: 1
2696 2694 1776 1807 2682 2702 1801 1764 2623 1675 2017 3524

Budget: 8
Call cost: 1

Match "AddC" cost: 1
7135 7120 4164 4283 7072 7161 4267 4123 6762 4192 5170 9656

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 8
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

4129 4120 2790 2850 4089 4153 2804 2722 3896 1934 1957 4334

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

10166 10126 6236 6449 9990 10249 6310 6024 9250 4411 4471 10730

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

8156 8122 5139 5303 8003 8238 5203 4971 7343 3312 3319 8217

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Figure C.1: Number of Z3 inquiries of di�erent budget constraint configurations for di�erent
interpreter implementations.

71

Reference
B.2

Body
Local

B.3

Body
Local

+ Closure
B.4

Body
Closure
+ Local

B.5

Body
Empty

B.6

Argument
Closure

B.7

Argument
Closure
+ Local

B.8

Argument
Local

+ Closure
B.9

Argument
Empty

B.10

Structural
Matching 1

B.11

Structural
Matching 2

B.12

Extra Case
B.13

Budget: 1
Call cost: 1 3 3 3 3 3 3 3 3 3 4 7 4

Budget: 2
Call cost: 1 8 8 8 8 8 8 8 8 8 8 14 10

Budget: 3
Call cost: 1 21 21 21 21 21 21 21 21 21 12 21 30

Budget: 4
Call cost: 1 58 58 51 51 58 58 51 51 58 29 71 91

Budget: 5
Call cost: 1 159 159 134 134 159 159 134 134 159 59 164 284

Budget: 6
Call cost: 1 446 446 344 344 446 446 344 344 446 106 310 913

Budget: 7
Call cost: 1 1286 1286 911 911 1286 1286 911 911 1286 289 1285 3039

Budget: 8
Call cost: 1 Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 7
Call cost: 1

Match "AddC" cost: 1
335 335 197 197 335 335 197 197 335 182 235 407

Budget: 8
Call cost: 1

Match "AddC" cost: 1
798 798 415 415 798 802 415 415 794 432 546 1056

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 8
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

430 430 258 258 430 431 257 257 429 190 197 454

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

967 967 516 514 967 971 505 508 961 385 401 1023

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 1

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Budget: 9
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

723 723 401 399 723 725 394 397 719 266 268 731

Budget: 10
Call cost: 1

Match "AddC" cost: 1
Match "NumC" cost: 2

Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

Figure C.2: Number of generated tests of di�erent budget constraint configurations for di�erent
interpreter implementations.

72

	Preface
	Acknowledgements
	Abstract
	Contents
	List of Figures
	Introduction
	Motivating Examples
	The Problem
	The Solution

	Supported Scala Subset
	The Scala Language
	Implementation Limitations

	Building the Control-Flow Graph
	Intermediate Constraint Language
	Encoding the Type System
	Encoding the Evaluation Semantics

	Symbolic Execution
	Summaries
	Compositional Analysis
	Early Branch Pruning
	Budget Constraints
	Further Optimisations

	Test Suite Generation
	Evaluation
	Metrics
	Setup
	Results
	Limitations

	Related Work
	Program Equivalence
	Random Testing
	Test Suite Generation
	Symbolic Execution

	Future Work
	Conclusion
	References
	Student Data Set
	Lists
	Binary Search Trees

	Interpreter Data Set
	Type Definitions
	Reference Solution
	Faulty Solutions

	Extra Results

