
 
 

Delft University of Technology

An Empirical Approach to Reinforcement Learning for Micro Aerial Vehicles

Junell, Jaime

DOI
10.4233/uuid:32765560-5fde-4c86-a778-decdc3eb5294
Publication date
2018
Document Version
Final published version
Citation (APA)
Junell, J. (2018). An Empirical Approach to Reinforcement Learning for Micro Aerial Vehicles. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:32765560-5fde-4c86-a778-
decdc3eb5294

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:32765560-5fde-4c86-a778-decdc3eb5294
https://doi.org/10.4233/uuid:32765560-5fde-4c86-a778-decdc3eb5294
https://doi.org/10.4233/uuid:32765560-5fde-4c86-a778-decdc3eb5294


ISBN: 978-94-6186-965-4

On Monday
10 December 2018

at 10:00

Jaime Junell

will defend her thesis 
entitled:

An Empirical Approach to An Empirical Approach to 
Reinforcement Learning 
for Micro Aerial Vehicles

in the Senaatszaal of the Aula, 
Delft University of Technology,

Mekelweg 5, Delft

At 09:30,
there will be a short there will be a short 

presentation about the 
thesis work.

A reception will be held 
after the defense.

You are cordially invited to 
attend.

 
A

N
 E

M
P

IR
IC

A
L A

P
P

R
O

A
C

H
 TO

 R
E

IN
FO

R
C

E
M

E
N

T LE
A

R
N

IN
G

FO
R

 M
IC

R
O

 A
E

R
IA

L V
E

H
IC

LE
S

JA
IM

E
 JU

N
E

L
L





AN EMPIRICAL APPROACH TO REINFORCEMENT

LEARNING FOR MICRO AERIAL VEHICLES





AN EMPIRICAL APPROACH TO REINFORCEMENT

LEARNING FOR MICRO AERIAL VEHICLES

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties

in het openbaar te verdedigen op maandag 10 december 2018 om 10:00 uur

door

Jaime Lin JUNELL

Master of Science in Mechanical Engineering,
Oregon State University, USA

geboren te Clackamas, Oregon, USA



Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:
Rector Magnificus, voorzitter
Prof. dr. ir. M. Mulder Technische Universiteit Delft, promotor
Dr. Q.P. Chu Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. A. Zolghadri Université de Bordeaux
Prof. dr. ir. R. Vingerhoeds Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse
Prof. dr. E.K.A. Gill Technische Universiteit Delft
Dr. ir. G.H.N. Looye Deutsches Zentrum für Luft und Raumfahrt (DLR)
Dr. G.C.H.E de Croon Technische Universiteit Delft
Prof. dr. ir. D.A. Abbink Technische Universiteit Delft, reservelid

Dr. ir. E. van Kampen heeft in belangrijke mate aan de totstandkoming van het proef-
schrift bijgedragen.

Keywords: reinforcement learning, micro aerial vehicles, quadrotor, policy-
iteration, hierarchical RL, state abstraction, transfer learning

Printed by: Ipskamp Printing
Front & Back: design by Jessica Louie

Copyright © 2018 by Jaime L. Junell

ISBN 978-94-6186-965-4

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


To make a prairie it takes a clover and one bee,–
One clover, and a bee,

And revery.
The revery alone will do

If bees are few.

Emily Dickinson
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SUMMARY

The use of Micro Aerial Vehicles (MAVs) in practical applications, to solve real-world
problems, is growing in demand as the technology becomes more widely known and
accessible. Proposed applications already span a wide berth of fields like military, search
and rescue, ecology, artificial pollinators, and more.

As compared to larger Unmanned Aerial Systems (UAS), MAVs are specifically desir-
able for applications which take advantage of their small size or light weight – whether
that means being discreet, having insect-like maneuverability, operating in small spaces,
or being more inherently safe with respect to injury towards people. In some cases, MAVs
work under conditions where autonomy is needed.

The small size of MAVs and the desire for autonomy combine to create a demand-
ing set of challenges for the guidance, navigation, and control (GNC) of these systems.
Limitations of on-board sensors, difficulties in modeling their complex and often time-
varying dynamics, and limited on-board computational resources, are just a few exam-
ples of the challenges facing MAV autonomy.

One approach to address these GNC challenges is reinforcement learning (RL) – a
subset of machine learning and artificial intelligence. Reinforcement learning is based
on the concept that humans and animals learn via rewards and/or penalties obtained
through interaction with the world. When an action results in a positive experience, an
individual will learn from that experience and will be more likely to take the same action
in the future. Likewise, if a negative experience is had, the person will be less likely to
take that action in the future.

Reinforcement learning is a promising framework for autonomous MAV tasks, which
call for intelligent decision making in previously unexplored or changing environments.
This is due to the ability of RL methods to be model-free and adaptive to changing cir-
cumstances in the system or environment. However, many disadvantages in reinforce-
ment learning also exist, making it an active field in research to mitigate the known dis-
advantages while still maintaining the benefits of the algorithmic approach. This obser-
vation leads to the primary research question:

How can reinforcement learning contribute towards the goal of autonomous flight
for micro aerial vehicles?

This thesis addresses the challenges associated with reinforcement learning as it per-
tains to autonomous MAVs. An empirical approach is adopted by first identifying the
problems which hold back RL from being successfully applied to MAVs; second, des-
ignating existing RL approaches which address those challenges; and lastly designing
and conducting experiments on a quadrotor guidance or control task in simulation and
within the TU Delft Cyber Zoo flight arena. This approach adds to the RL research com-

xi
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munity by focusing on the real-life application of RL approaches which were previously
rarely seen outside of a simulated environment.

This thesis uses several different RL approaches to address the identified issues; with
each chapter focusing on one approach that addresses one or more of the issues. The
identified issues which are addressed in this thesis are:

• Slow learning due to tabula rasa learning,

• Curse of dimensionality,

• MAV limited resources, and

• MAV complex dynamics.

The designated reinforcement learning approaches are:

• “Classic” temporal difference reinforcement learning from tabula rasa,

• Hierarchical reinforcement learning over options,

• Hierarchical reinforcement learning with state abstraction,

• Self-tuning gains through policy gradient RL, and

• Transfer learning.

The first approach sets the stage with a look into the classic temporal difference rein-
forcement learning (TDRL) method from tabula rasa, applied to an MAV quadrotor, and
using a camera sensor to detect reward states. The “honeybee task” is introduced as
the main thematic problem – which is revisited in different variants throughout the the-
sis. This task is a sequential, multi-dimensional, optimization problem, formalized as
a Markov decision process (MDP) which can be approached with or without a priori
knowledge and can be scaled to represent different sized state spaces. Value function
TDRL is shown to converge to an optimal solution for the honeybee task. The flight test
gives a proof of concept for the use of vision-based rewards. Furthermore, “slow learn-
ing” is identified as one of the main limiting factors for RL – especially as it applies to
MAVs whose flight time limitations are even more limited than ground-based applica-
tions or larger fixed-wing UAS, due to weight restriction on power sources.

The next approaches are based on hierarchical reinforcement learning (HRL) over
options with Q-learning and explored in simulation. The methods are used to solve an
obstacle-rich maze task where rewards are only collected when the end goal is reached.
Because the reward only comes at the end, learning can be especially delayed in large
scale problems since there are no organizational methods for random exploration with
“flat” Q-learning. Using HRL incorporates temporal abstraction via extended actions
(options). The result is that, even before learning, the agent requires about five times less
timesteps to find the goal in the first epoch (1 epoch = 1 trip to goal). Finding the goal
faster allows for the Q-function to be learned quicker; however, the better performance
early on in the training of the agent comes at the cost of performance related to the
convergence to the optimum. The HRL method converges more often to a suboptimal
solution, while the flat Q-learning method converges, on average, more quickly to the
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optimum. Therefore, this known trade-off should be considered when designing an HRL
approach.

In certain MAV tasks, the vehicle will not have an “absolute” GPS-based location
state. Cameras are considered one of the most information-rich, cheap, and light on-
board sensors available for MAVs. Computer vision techniques are quickly becoming
more advanced in order to interpret camera information in useful ways. Based on this,
state abstraction is explored in the context of the HRL maze task. The state is repre-
sented “relative” to the MAV perspective and is therefore limited to the field of view of
the vehicle. Since the maze is obstacle-rich, a state can be determined via the distance
to obstacles at several angles within the field of view. This state can theoretically be
achieved with a camera and computer vision techniques or with a sonar. This kind of
state abstraction leads to several physical locations which have the same state vector –
we call this state ambiguity. Though the state is now ambiguous, the state space size
is effectively capped at the number of relative states, no matter how large the physical
environment becomes. State abstraction is therefore one way to address the curse of
dimensionality. The results with the relative state representation show that the tempo-
ral abstraction is vital for successful learning within the maze problem. Flat Q-learning
with the relative state representation learns poorly within the large maze tasks. HRL with
options uses extended actions to overcome the state ambiguity, and the combination of
state and temporal abstraction performs better than temporal abstraction alone.

Many MAVs, such as flapping-wing MAVs, have complex flight dynamics which are
not fully understood and are therefore difficult to model. This reality leads to models
which are expensive, inaccurate, or both. Using a reinforcement learning approach can
add adaptability to the model and by so doing, embrace the inaccurate model as a “good
enough” starting point. From there, adjustments can be made via knowledge acquired
through interactions with the environment. Using policy gradient reinforcement learn-
ing, the gains of an inaccurate model controller are tuned to optimize the performance
metric. Gradient-based methods in simulation guide the direction of policy improve-
ment so that there can be relatively few trials on the actual MAV. The gains of an F-16
are tuned using a high-fidelity model simulation as the “true model” and a less accurate
model as the “inaccurate model”. Results show that the method is effective; however,
certain control tasks require careful attention to prevent instability. The PID gains of a
quadrotor take-off task are tuned using a simple Newtonian model as the “inaccurate
model” and the actual quadrotor as a “true model”. On average, only three trial take-offs
are needed to find the local optimum. However, the limitation is that the gradient-based
method will only find local optima, so the starting policy is an important factor.

One of the greatest advantages of reinforcement learning over other methods is the
ability to learn through interaction with the environment without any need for prior
knowledge. Therefore, tabula rasa (blank slate) learning is at once both an attractive fea-
ture and also one of the main causes of slow learning speeds, since the agent must train
with random actions until each state or state/action has been sampled a sufficient num-
ber of times. Transfer learning is an obvious solution if prior knowledge is available. For
MAVs learning via RL, the most costly time is the time spent in-flight exploring the envi-
ronment (most likely performing actions of unknown efficacy or safety). Cutting down
on the in-flight exploration phase of learning can therefore be an attractive approach if
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prior knowledge can be obtained in a more favorable scenario, with enough accuracy to
act as a starting point. The last experiment in this thesis is the accumulation of all the
techniques, with the addition of and focus on transfer learning. The honeybee task is ex-
panded in state space and made non-Markov through the addition of a hidden state. The
optimization guidance problem is implemented on a quadrotor in the Cyber Zoo flight
arena. The Q-function for a set of HRL options is learned via simulation with controlled
inaccuracies of the hidden state – affecting the state transitions. The results show that
prior knowledge from a “source domain”, even with inaccuracies in the state transitions,
can be beneficial in certain metrics and under certain conditions when transferred to
the “target domain”. The prior knowledge improves the initial performance in the first
several iterations of training within the target domain; however in certain cases, the “bad
habits” learned in the source domain can prove to take longer to unlearn than to learn
tabula rasa, when it comes to finding the optimal behavior.

Based on the obtained results, several recommendations can be made in terms of
the direction for reinforcement learning research, and the autonomous flight of MAVs in
general. This thesis has addressed a broad range of reinforcement learning techniques
for realistic problems which fall outside the theoretical convergence guarantees of the
RL framework. Many empirical studies do the same. A theoretical framework which
includes more practical applications within its influence could give more focus to the RL
research community. Further, studies into a more systematic approach for parameter
tuning, reward shaping, and state abstraction could make reinforcement learning more
accessible and successful.

While there has been much research into autonomy for MAV flight, less has been
attempted in actual flight tests. Applications meant to be in the real-world must as often
as possible, be conducted in the real world. There is no other way to know and learn
from the true challenges that arise outside the artificial comfort of simulation.

Lastly, the possible MAV applications and the resulting societal impacts must be dis-
cussed by ethically responsible scientists and engineers. With so many areas of appli-
cation for MAVs, the repercussions must be addressed and carefully considered. It is
in the best interest of humanity and the earth in general to ensure that MAVs – or any
technology – are designed and operated in a safe and ethical way; promoting privacy,
antipollution, and conservation of nature.
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De vraag naar microvliegtuigen (micro-air-vehicles, of MAVs) voor het oplossen van prak-
tische problemen in de echte wereld, is sterk groeiende. Dit aangezien de technologie
steeds bekender en toegankelijker wordt. De voorgestelde toepassingen omvatten reeds
vele domeinen, waaronder defensie en veiligheid, met haar zoek- en reddingsmissies,
en de landbouw, zoals bijvoorbeeld het gebruik van MAVs als kunstmatige bestuivers. In
vergelijking tot de grotere onbemande luchtvaartsystemen (unmanned aerial systems,
of UAS), zijn MAVs specifiek wenselijk voor toepassingen waarbij een zeer klein formaat
en/of zeer licht gewicht belangrijk is. Voorbeelden hiervan zijn de behoefte aan een
grote, insect-achtige manoeuvreerbaarheid, het vliegen in kleine ruimtes en het veili-
ger opereren rondom mensen. Vaak worden MAVs in situaties waar een hoog niveau van
autonomie vereist is gebruikt.

De wens naar hoge autonomie, in combinatie met het kleine formaat van MAVs, leidt
tot grote uitdagingen betreft de begeleiding, navigatie en besturing (guidance, naviga-
tion and control, of GNC) van deze systemen. Voorbeelden van deze uitdagingen zijn de
beperkingen van zowel de sensoren als de rekenkracht aan boord en moeilijkheden bij
het modelleren van de complexe en vaak tijds-variërende dynamica.

Een methode om deze GNC uitdagingen aan te pakken staat bekend als de reinfor-
cement learning, RL (conditionering), een onderdeel van machine learning (machinaal
leren) en artificial intelligence (kunstmatige intelligentie). Reinforcement learning is ge-
baseerd op het concept dat mensen en dieren leren van beloningen en straffen die wor-
den verkregen door interactie met de wereld. Wanneer een actie resulteert in een po-
sitieve ervaring, dan zal een entiteit (of ‘agent’) leren van die ervaring en dezelfde actie
eerder nogmaals ondernemen in de toekomst. Evenzo zal een agent bij een negatieve
ervaring minder geneigd zijn om de ondernomen actie in de toekomst te herhalen.

Reinforcement learning is een kansrijke methode voor autonome MAV-taken die vra-
gen om intelligente besluitvorming en adaptieve capaciteiten. De RL-methoden veelal
“model-vrij” zijn en zich kunnen aanpassen aan (onverwachte) veranderen situaties.
Klassieke RL technieken hebben echter ook een aantal nadelen. Op dit moment wordt
dan ook veel onderzoek gedaan naar het vinden van oplossingen voor deze nadelen, en
dit zonder de voordelen van de algorithmen te verliezen. Deze observatie leidt tot de
centrale onderzoeksvraag van dit proefschrift:

Hoe kan reinforcement learning bijdragen aan het doel van autonoom vliegen met
microvliegtuigen?

Dit proefschrift behandelt de uitdagingen die verband houden met RL toegepast op au-
tonome MAVs. Een empirische benadering wordt gevolgd door eerst de specifieke pro-
blemen vast te stellen die op dit moment verhinderen dat RL met succes wordt toe-
gepast op MAVs. Vervolgens worden bestaande RL-benaderingen die deze uitdagin-
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gen aanpakken uitgelicht, waarna experimenten worden ontworpen en uitgevoerd op
een quadrotor platform die veelvoorkomende GNC-taken uitvoert, zowel in simulatie
als in de ‘Cyber Zoo’ vliegarena van de TU Delft. Deze benadering draagt bij aan de
RL-onderzoekgemeenschap door zich te richten op echte-wereld toepassingen van RL-
methoden, die voorheen zelden buiten een gesimuleerde omgeving zijn gezien. Dit
proefschrift gebruikt een aantal verschillende RL-methoden om de geïdentificeerde pro-
blemen aan te pakken. Hierbij richt elk hoofdstuk van dit proefschrift zich op één me-
thode die één of meer van de problemen aanpakt.

De volgende vier geïdentificeerde problemen worden onderzocht:

• Langzaam leren door tabula rasa learning(het leren met ‘schone lei’ beginnen),

• De “Curse of dimensionality”(de vloek van het snel groeiende aantal dimensies),

• De bovengenoemde beperkte middelen aan boord van MAVs, en

• De complexe dynamica van MAVs.

De vijf aangewezen RL-methoden die worden toegepast zijn:

• ‘Klassieke temporal difference reinforcement learning’ vanaf tabula rasa,

• Hiërarchisch RL over options,

• Hiërarchisch RL met ‘state abstraction’,

• ‘Self-tuning gains’ door ‘policy gradient’ RL, en

• ‘Transfer learning’.

Deze veelal Engelse begrippen worden hieronder kort besproken.

De eerste benadering omvat de klassieke ‘temporal difference reinforcement learning’
(TDRL) methode vanaf tabula rasa. Deze methode wordt toegepast op een MAV-quadrotor
en maakt gebruik van een camerasensor om beloningstoestanden te detecteren. De “ho-
ningbijtaak” wordt geïntroduceerd als het belangrijkste thematische probleem; variaties
op deze taak worden door dit volledige proefschrift heen gebruikt. De honingbijtaak
is een sequentieel en multidimensionaal optimalisatieprobleem, geformaliseerd als een
Markov decision proccess (MDP), wat kan worden benaderd met of zonder voorkennis en
kan worden geschaald om toestandsruimtes (‘state spaces’) van verschillende grootte te
vertegenwoordigen. Er wordt eerst aangetoond dat de ‘value function’ TDRL convergeert
naar een optimale oplossing voor de honingbijtaak. De uitgevoerde vluchttest verschaft
een ‘proof of concept’ voor het gebruik van op het zicht gebasseerde beloningen. Boven-
dien wordt het langzame leren geïdentificeerd als één van de belangrijkste beperkende
factoren voor RL, vooral wanneer toegepast op MAVs met rotors of flappende vleugels,
omdat hier de vliegtijden vanwege de gewichtsbeperking op stroombronnen veel be-
perkter zijn dan bij niet-vliegende toepassingen of grotere vaste-vleugel (‘fixed wing’)
UAS systemen.

De daaropvolgend toegepaste methoden zijn allen gebaseerd op hiërarchisch rein-
forcement learning (HRL) over options met ‘Q-learning’ en worden vooral verkend in
computersimulaties. De methoden worden gebruikt om een hindernisrijke doolhoftaak
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op te lossen, waarbij beloningen alleen worden verkregen bij het bereiken van het eind-
doel. Het uitreiken van de beloning aan het einde kan het leren vertragen, in het bijzon-
der in grootschalige problemen, omdat er geen organisatorische methoden beschikbaar
zijn voor willekeurige verkenningen met “platte” Q-learning. Het gebruik van HRL be-
vat ‘temporal abstraction’ (abstractie in de tijd) door middel van uitgebreide acties (ook
wel de ‘options’ genoemd). Het resultaat is dat de agent, zelfs voordat enig leereffect
heeft plaatsgevonden, ongeveer vijf keer minder tijdstappen nodig heeft om het doel in
het eerste tijdvak te vinden (waarbij één tijdvak staat voor één reis naar het doel). Door
het doel sneller te vinden kan de ‘Q-function’ sneller worden geleerd; echter, het betere
resultaat in het begin van de training van de agent gaat ten koste van een suboptimale
convergentie naar het optimum. De HRL methode convergeert vaker naar een subop-
timale oplossing, terwijl de platte Q-learning methode, gemiddeld, sneller tot een opti-
mum komt. Daarom moet deze (overigens welbekende) afweging worden gemaakt bij
het ontwerpen van een HRL-methode.

Bij bepaalde MAV taken heeft het voertuig geen “absolute” GPS-gebaseerde locatie-
kennis. Camera’s worden beschouwd als één van de meest informatierijke, goedkope en
lichte sensoren die beschikbaar zijn voor aan boord een MAV. Computer vision technie-
ken om visuele informatie op nuttige manieren te interpreteren worden tegenwoordig
snel meer en meer geavanceerd. Op basis hiervan wordt ‘state abstraction’ (abstractie in
de toestandsruimte) verkend in de context van de HRL doolhof-taak. De toestand wordt
vertegenwoordigd vanuit het “relatieve” (camera-)perspectief van de MAV en is daarom
beperkt tot het gezichtsveld van het voertuig. Omdat het doolhof obstakelrijk is, kan een
MAV-toestand worden bepaald vanuit de afstand tot obstakels op verschillende plek-
ken binnen het gezichtsveld. Deze toestand is theoretisch bereikbaar met een camera
in combinatie met computer vision technieken, of met een sonar. Dit soort toestands-
abstractie leidt tot de situatie waarbij verschillende fysieke locaties exact dezelfde toe-
standsvector kunnen hebben: we noemen deze toestand ambiguïteit (‘state ambiguity’).
Alhoewel de toestand ambigu is, wordt de grootte van de toestandsruimte effectief be-
perkt tot het aantal relatieve toestanden, ongeacht hoe groot de fysieke omgeving wordt.
Toestandsabstractie is daarom een manier om de ‘curse of dimensionality’ aan te pak-
ken. Resultaten met de relatieve toestand laten zien dat tijdsabstractie cruciaal is om
succesvol te leren binnen het doolhof probleem. Platte Q-learning met de relatieve toe-
stand leert beperkt in de grote doolhof taken. HRL met options maakt gebruik van uit-
gebreidere acties om de toestandsambiguïteit te overbruggen en we concluderen dan
ook dat de combinatie van toestands- en tijdabstractie beter presteert dan tijdabstractie
alleen.

Veel MAVs, zoals MAVs met flappende vleugels, hebben een complexe vliegdynamica
die niet volledig wordt begrepen en die daarom moeilijk te modelleren is. Dit leidt tot
modellen die duur zijn, onnauwkeurig, of beide. Het gebruik van RL kan aanpassings-
vermogen aan het model toevoegen en daarmee het onnauwkeurige model gebruiken als
een “goed genoeg” beginpunt. Vanaf dat punt kunnen aanpassingen aangebracht wor-
den met behulp van kennis die is opgedaan door interactie met de omgeving. Door het
gebruik van ‘Policy gradient reinforcement learning’ (een gradiënt-gebaseerde methode)
worden de instellingen (‘gains’) van een in het begin relatief onnauwkeurig regelsysteem
afgestemd om een prestatiemetriek te optimaliseren. Door gradiënt-gebaseerde metho-
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den toe te passen op de modelsimulatie wordt de policy-verbetering gericht gestuurd,
zodat er relatief weinig testen nodig zijn met de werkelijke MAV. Als voorbeeld worden
de instellingen van een F-16 regelsysteem afgestemd met behulp van een waarheidsge-
trouwe modelsimulatie als het “echte model” en een minder accuraat model als het “on-
nauwkeurige model”. Resultaten tonen aan dat de methode effectief is, al vereisen be-
paalde taken zorgvuldige aandacht om, mogelijk plotseling optredende, instabiliteiten
te voorkomen. De PID-instellingen van een quadrotor opstijg-taak worden vervolgens
afgestemd met behulp van een eenvoudig Newtoniaans model als het “onnauwkeurige”
model en de werkelijke quadrotor als het “echte model . Het blijkt dat er gemiddeld
slechts drie proeftesten nodig zijn om het lokale optimum te vinden. Een beperking van
de gradiënt-gebaseerde methode is echter wel dat deze ook tot lokale optima zal kunnen
convergeren, hetgeen de initiële instelling een belangrijke factor maakt.

Eén van de grootste voordelen van RL ten opzichte van andere methoden is het ver-
mogen om te leren door interactie met de omgeving zonder dat er voorkennis nodig
is. Dit leren vanaf tabula rasa (met een schone lei beginnen) is een aantrekkelijk ken-
merk, maar het is ook één van de hoofdoorzaken van de soms zeer langzame leersnel-
heden, omdat de agent met willekeurige acties moet trainen totdat elke toestand of toe-
stand/actie een voldoende aantal keren is geprobeerd. ‘Transfer learning’ is een evi-
dente oplossing als er voorkennis beschikbaar is. Voor MAVs is de vluchttijd waarin
acties met onbekende doeltreffendheid of veiligheid uitgevoerd worden erg duur. Het
verkorten van de verkenningsfase tijdens de vlucht kan daarom een aantrekkelijke aan-
pak zijn als voorkennis kan worden verkregen in een minder kostbaar scenario, met
voldoende nauwkeurigheid om als vertrekpunt te fungeren. Het laatste experiment in
dit proefschrift integreert alle technieken, met toevoeging van – en focus op – trans-
fer learning. De toestandsruimte van de honingbijtaak wordt uitgebreid en wordt bo-
vendien ‘niet-Markov’ door de toevoeging van een verborgen toestand (‘hidden state’).
Het optimalisatie-begeleidingsprobleem wordt geïmplementeerd op een quadrotor in
de Cyber Zoo vluchtarena. De Q-function voor een set van HRL options wordt geleerd
in simulaties met gecontroleerde onnauwkeurigheden van de verborgen toestand – die
van invloed zijn op de toestandstransities (‘state transitions’). De resultaten tonen aan
dat voorkennis van een ‘source domain’ (brondomein) voordelig kan zijn voor de over-
dracht naar het ‘target domain’ (doeldomein), zelfs met onnauwkeurigheden in de toe-
standstransities. De voorkennis verbetert de initiële prestaties tijdens de eerste iteraties
van het trainen in het target domain. Desalniettemin kan het in bepaalde gevallen ook
langer duren in vergelijking met tabula rasa, omdat in deze gevallen de “slechte gewoon-
ten” aangeleerd in het brondomein moeten worden afgeleerd in het doeldomein, althans
wanneer het gaat om het vinden van het optimale gedrag.

Op basis van de gevonden resultaten kunnen verschillende aanbevelingen worden
gedaan wat betreft de richting van toekomstig RL-onderzoek en autonoom vliegende
MAVs in het algemeen. Dit proefschrift heeft een breed scala aan RL-technieken behan-
deld voor realistische problemen, die buiten de theoretische convergentie-garanties van
het RL-kader vallen. Een breder theoretisch kader dat meer praktische toepassingen on-
dervangt kan de RL-onderzoekgemeenschap een specifiekere focus geven. Verder zou-
den studies naar een meer systematische benadering voor parameterafstemming, belo-
ningsvormgeving en toestands-abstractie, de RL toegankelijker en succesvoller kunnen
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maken. Hoewel er veel onderzoek is gedaan naar de autonomie van MAV vluchten, is er
tot op heden minder bereikt in echte vliegtesten. Toepassingen die bedoeld zijn voor ge-
bruik in de echte wereld moeten zo vaak mogelijk in de echte wereld worden uitgevoerd.
Er is namelijk geen andere manier om begrip te vergaren van de echte uitdagingen die
zich buiten het kunstmatige comfort van de simulatie voordoen.

Ten slotte moeten de mogelijke MAV-toepassingen, en de daaruit volgende maat-
schappelijke effecten, worden besproken door ethisch verantwoorde wetenschappers
en ingenieurs. Het scala aan mogelijke toekomstige toepassingen voor MAVs is groot en
dus moeten de negatieve gevolgen worden aangepakt en zorgvuldig worden overwogen.
Het is in het belang van de mensheid en de aarde in het algemeen om ervoor te zorgen
dat MAVs – of welke technologie dan ook – op een veilige en ethische manier worden
ontworpen en uitgebaat, zodat deze de privacy bevorderen, vervuiling tegengaan, en de
natuur in stand houden.





1
INTRODUCTION

A UTONOMOUS flight for Micro Aerial Vehicles (MAVs) is appealing for a number of
reasons. Small flying vehicles have the ability to survey indoor and outdoor areas,

patrol streets, film aerial movie shots, inspect bridges, deliver mail, or get to areas not
accessible by humans or land-based vehicles.

Autonomy for any type of Unmanned Aerial System (UAS) has the advantage of ful-
filling tasks without the need of constant human monitoring and/or interference. These
are often tasks which humans do not want to do, where there are communication limita-
tions, or where computer decision making is more optimal than human input. In cases
where human interaction is not possible, such as indoors or during space missions, it is
necessary for the vehicle to make intelligent decisions autonomously, especially when
the environment is unknown or changing over time.

The small size of MAVs 1 has the benefit of fitting into smaller areas such as indoor en-
vironments or cluttered outdoor areas. Furthermore, smaller vehicles are stealthier and
can be used for missions where low visibility is required. Several MAVs have also been
developed which focus on maneuverability that cannot be obtained with fixed wing plat-
forms. Flapping wing MAVs such as those in the DelFly series 2 (Figure 1.1), for example,
aim to mimic the incredible agility and maneuverability of insects in flight [33]. Quadro-
tors, likewise, are highly maneuverable, strong in stationary hover flight, and affordable
on the commercial market.

An MAV in real-life applications will encounter unforeseen and unpredictable situa-
tions which calls for fast and intelligent decision making. When a human is not available
as the decision maker, a reliable, adaptable, and autonomous method must be in place
for the mission to succeed.

1Within the scope of this thesis, MAVs are defined as < 1kg in weight
2www.delfly.nl
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Figure 1.1: The DelFly Micro weighs only 3 grams and is equipped with a camera (photo source: delfly.nl)

1.1. MOTIVATION FOR AUTOMATION AND AUTONOMY OF MAVS
Automation of robotics has become one of the greatest human time-saving accomplish-
ments in the last half-century. In the aerospace and aviation industry, automation is
deeply ingrained in almost every sector from aircraft control to air traffic management.
The vision for the MAV branch within the industry follows suit and goes even further into
aspirations for autonomy.

Discussions on the difference between automation and autonomy in robotics eas-
ily become confusing due to the nearness of the two definitions and the inconsistent
or interchangeable use of the two terms [20, 22, 76, 97, 99]. Terminology related to au-
tonomous systems will emerge regularly within this thesis; Therefore, for the sake of clar-
ity, the following definitions are distinguished as:

Automated or automatic systems use limited-to-no human interaction to perform a
task. Automation can incorporate limited logic or feedback to react accordingly to
a number of predetermined circumstances, but cannot make decisions in unantic-
ipated scenarios (hence, the warning messages on a number of appliances which
calls for human-operated troubleshooting).

Autonomous systems are a distinct though overlapping concept related to automated
systems. The confusion comes because autonomy, in its traditional definition,
implies independence from some entity; and by that definition, automation in-
creases the level of autonomy for systems by removing reliance on humans. As
defined in this thesis, the concept of autonomy can incorporate forms of automa-
tion, but an autonomous system must additionally allow for decision making in cir-
cumstances that the designer has not explicitly accounted for – or be able to find
solutions that the designer has not predetermined or preprogrammed. Autonomy
can therefore be accomplished by automation with aspects of learning or adaptive
features to address unanticipated circumstances in a more intelligent way.
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Motivation to limit or remove human decision making from a system comes from a
number of accompanying benefits. Automation in industrial and manufacturing pro-
cesses flourished because machines could more efficiently, safely, and cheaply accom-
plish the monotonous tasks of assembly line workers [17, 108]. The same argument can
be applied to many other industries, including the aviation industry which incorporates
automation in the form of autopilots onboard all major commercial aircraft [77, 90].

For MAVs, there are many tasks that only require an automation level of autonomy,
while other tasks will call for truly autonomous systems with learning or adaptive fea-
tures. For example, quadrotors or other MAVs can assist with the current and projected
high demand for pollination in agriculture, by acting as “artificial pollinators” for plants
and crops [26, 115]. An automated task could be to fly over predetermined locations
in an indoor greenhouse, using the down-wash of the rotors to blow on self-pollinating
plants. A task which requires autonomy beyond automation would be to find the loca-
tions of the plants in an uncharted area and cross-pollinate by visiting many plants one
after another: as bees do.

The uses for autonomous MAVs are numerous and expanding everyday as the tech-
nology becomes more accessible and widely known. Achieving full autonomy for MAVs
in the real world is an interdisciplinary challenge involving not only engineering fields
like vehicle design, control, and human factors; but also expertise in certification or soci-
etal impact, for example. Each in her own field must do her part and there is little doubt
that one of the most important fields enabling the technology for autonomous flight is
the field of Guidance, Navigation, and Control.

1.2. AUTONOMY VIA GUIDANCE, NAVIGATION, AND CONTROL
At the heart of autonomous flight is the field of Guidance, Navigation, and Control (GNC).
In other words, GNC systems provide the functions which give an aerial vehicle its level
of autonomy from humans. As a whole, GNC systems can be described as the process
that occurs between sensing and actuation of a system; however, attributing domain to
each of the three branches can be inconsistent, even within the same discipline.

For the purpose of this thesis, each component is defined below and visually illus-
trated as a system in Figure 1.2.

Navigation Acquisition, extraction and inference of sensor information to determine
information about the vehicle’s state and its environment. The resulting state in-
formation will be largely dependent on the sensors available, which can include:
cameras, GPS, accelerometers, barometers, sonars, and many other possibilities.
MAVs are usually restricted to light-weight sensors.

Guidance Using the state information from the navigation system, guidance determines
the planning, behavior laws, or decision making, to achieve some goal in a (prefer-
ably) optimal manner. This can include short term goals like avoiding an obstacle
and longer term goals like reaching a goal state.

Control Execution of the commands from the guidance system. This includes manip-
ulating the inputs to the vehicle’s actuators so that the desired maneuver is per-
formed efficiently and safely.
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Figure 1.2: GNC concept diagram

Since GNC is a broad field, the focus in this thesis is on guidance and control, espe-
cially within decision-making and adaptability for MAV platforms. Therefore, the state is
assumed to be known in simulation and only robust methods of navigation are used in
the real-life test flights.

1.2.1. CHALLENGES IN MAV GUIDANCE AND CONTROL

The challenge in autonomous guidance and control for MAVs comes from inherent prop-
erties of small light-weight aircraft, as well as from the types of tasks which are desired
of them. Compared to their larger counterparts, small vehicles are more affected by
environmental disturbances, such as wind gusts. Likewise, they are also impacted by
changes in the system brought on by damage to the vehicle or changes over time in prop-
erties, such as battery life or material loss of elasticity. Certain MAVs, like the Delfly, are
built in small numbers. The manufacturing process therefore results in small differences
in every vehicle. These differences are a modeling challenge since no two vehicles are
alike. In order to fly, smaller vehicles are inherently limited in weight and therefore light-
weight sensors and other hardware are desirable [33]. Compared to bigger or heavier
versions, these sensors often have less accuracy and more uncertainty in the informa-
tion obtained. Additionally, MAVs are highly desirable for complex tasks which require
agile movement and/or navigation through unknown environments [72, 136].

Several taxonomies within research literature describe the current challenges for au-
tonomous flight and roadmaps attempt to find gaps in knowledge and set an action plan
for future direction of studies. Broad examples include the United States Department
of Defense reports and roadmaps to help guide future military plans for the technol-
ogy of interest: technologies such as military UAS [95–97]. The American Institute of
Aeronautics and Astronautics (AIAA) holds workshops and publishes roadmaps for cer-
tain fields of technology in aerospace research, including one for Intelligent Systems in
2016 with one of the key focuses on autonomy, broadly on a systems level, and within
GNC efforts [3, 4]. Overviews which are more recent and specific to MAVs include a sur-
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vey by Kumar et al. which discusses the challenges of MAVs (≤ 1 kg) and the pros and
cons with respect to these challenges for different vehicles such as fixed-wing, quadro-
tors, ducted-fan, and flapping wing aircraft [72]. The dissertation of S. Tijmons, gives a
general overview of state-of-the-art MAVs and a complete taxonomy of the advances in
control automation for flapping-wing UAVs in recent years [136]. The study focuses on
control for platforms which are particularly difficult to model.

We specifically look at the challenges of autonomy on two levels: guidance and con-
trol. The sensitivity of MAVs to disturbances and changes to the system predicates the
desire for control which is adaptive and robust. Sensor limitations establish that deci-
sions will have to be made using limited or possibly inaccurate resources. A desire for
agile movement of the MAV means that the dynamics can be complex and difficult to
model in mathematical terms. Finally, tasks in unknown environments will require in-
telligent ways to efficiently explore and fulfill objectives.

GUIDANCE

Addressing autonomous guidance through unknown environments is novel since com-
mercial and recreational uses of MAVs usually still require a human pilot to make deci-
sions, even if remotely piloted [25]. Figure 1.3 shows examples of commercially available
vehicles with various degrees of autonomy in guidance. The small toy drone from Cheer-
son company (left) only flies under control of a human pilot and therefore has no auton-
omy. The Roomba® vacuum cleaner (right) is almost fully autonomous once activated –
even returning to the charging station on its own [68]. However, it is a land-based robot
which is not in the scope of this thesis but still acts as an exemplary example for auton-
omy. The image of the Parrot® Bebop 3(middle), illustrates an off-the-shelf recreational
quadrotor MAV. It is the closest example to the class of drone of interest in the scope
of this thesis. Hobbyists remotely pilot the quadrotor using GPS and a smartphone or
tablet as the controller, but it also has some automated features for taking off, landing,
and navigation to a home location. The predecessor to the Parrot® Bebop is the Parrot®

AR-Drone 2 which is the platform of choice for the research detailed in this thesis. The
Parrot quadrotors are convenient as a research platform due to its ease in being over-
written with customized onboard GNC, allowing for greater automation and autonomy.

Moving from a piloted outdoor scenario to an autonomous, GPS-denied, unknown
environment is not a trivial matter. Just as with a human pilot (but without the cognitive
advantage), exploration of the previously unknown (unmapped) environment would be
necessary. Mapping an environment as the vehicle explores its surroundings is possi-
ble, such as with the case of SLAM (Simultaneous Localization and Mapping) [92]. This
allows for acquisition of previously unknown knowledge. However, sensors needed for
this approach which estimate distances to walls and obstacles, are either heavy or in-
accurate. Laser-ranging systems are the most accurate but also the heaviest. Camera
based systems are lightest but require idealized conditions to get accurate readings. Fur-
thermore, the computational cost of SLAM becomes substantial in large spaces since it
aims to map the entire space with high uncertainty [9, 55, 140]. Once the map is created
and the goal state is known, it is simple for the agent to find its way again. Less popular

3http://www.parrot.com/products/bebop-drone/
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Figure 1.3: Commercially available vehicles with different degrees of autonomy. (left) the Cheerson CX drone
is an inexpensive toy quadrotor only able to fly with human piloting (photo source: www.cheersonhobby.com)
(middle) Off-the-shelf quadrotor for recreational use: Parrot® bebop remotely piloted with a tablet with
some automated features (photo source: www.parrot.com), (right) Roomba autonomous vacuum cleaner,
once activated can vacuum within a home and return autonomously to the recharging station (source:
www.irobot.com)

than SLAM, others have approached the challenge by developing sophisticated sensor
systems to enable mapping with only cameras [58] or other light weight sensors [93].

CONTROL

To address complexity in dynamics and system changeability on a control level, model-
ing of the system dynamics with adaptable parameters has been shown to be useful. Ad-
vanced control methods such as Model Reference Adaptive Control (MRAC) [63], Incre-
mental Nonlinear dynamic Inversion (INDI) [117, 120], Backstepping [141], and dynamic
inversion with neural networks [65], are all promising model-based methods which can
handle non-linear systems and which have adaptive functionality to account for model
inaccuracies. However, these methods still require a model of the system with varying
degrees of model accuracy. Where model accuracy can be sacrificed for sensor-based
feed-back, as in INDI, problems can arise with sensor delay [117, 120]. Therefore, no
perfect control method currently exists for complex, non-linear systems.

One solution which addresses these issues is reinforcement learning (RL). This type of
machine learning algorithm models itself after the way humans learn: by interacting
with its environment and learning the desirable behavior using feedback it receives from
the environment and a reward or penalty structure. Reinforcement learning methods
allow for model-free learning, which means that it can learn without any a priori knowl-
edge of the system. This approach is applicable to a large span of problems because it
needs minimal to no information, is adaptable, and can learn complex behavior from a
simple reward structure.

1.3. REINFORCEMENT LEARNING
Reinforcement learning is a machine learning algorithm which draws its inspiration from
the way humans or animals learn [130]. Learning can be defined as the ability of an agent
to improve upon its performance via experience within its environment. In the context
of this dissertation, the learning aspect from reinforcement learning is what separates
an automated robot from an autonomous one.
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Learning to walk: an analogy

A baby is not born with a mathematical formula describing the mech-
anism of walking, nor is she immediately able to walk. She is, how-
ever, in possession of an innate will to go places: An internal reward
structure which causes humans and animals to take steps in favor of
survival. Through practice, the child will learn the muscle activation
sequence necessary to walk. She will fall many times, and with every
fall will learn from it. The process of learning to walk on one level of
muscle control can be described in engineering terms as such: A child
finds herself in a state where the left leg is forward with the weight on
back leg. What is the correct action to take? We know from experience
that the child should shift the weight to the forward leg, and then move
the right leg to the forward position. From that initial state, the child
who has never tried to walk before will adopt a policy to try many ac-
tions at random. Actions which end in falling will receive the penalty of
pain from the fall. Actions which result in movement toward a desired
destination will result in a reward. This reward structure will cause the
child who finds herself again in that same state, more likely to try the
rewarding action and less likely to try the penalizing action. Her pol-
icy has changed to take advantage of her new experience. Eventually,
after enough successes and failures, she will have encountered all the
important states and know what actions need to be taken from there.
She will have learned to walk.

The principle of reinforcement learning in a simple form is visualized in Figure 1.4,
where the agent, represented by an MAV, chooses an action which then interacts with
the environment. From that interaction, the agent will collect some sort of feedback in
the form of a reward or penalty and perceive its new state. This iterative processes gives
the agent a basis to learn rewarding behavior. The mathematical approach is further
discussed in Chapter 2.

Reinforcement learning is a promising tool for making intelligent decisions toward
autonomous flight. Like the child in the walking analogy, Micro Aerial Vehicles (MAVs)
are not always created with inherently stable and controlled flight and the mathematical
model can be very difficult and expensive to obtain [6, 24]. Furthermore, the tasks de-
sired of MAVs are often complex and cannot be solved by traditional linear controllers
or rule-based decision makers. Model-free reinforcement learning approaches, like a
child learning to walk, only need to gain experience to improve upon the behavior of an
agent. Therefore, this learning approach is well suited for tasks within uncertain envi-
ronments, decision making with sequential solutions, and where adaptation to changing
conditions is required. MAVs would specifically benefit from this approach since they
are often used in tasks within unknown environments where learning from experience
without a human supervisor will be necessary.
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state

reward
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Figure 1.4: Visualization of the reinforcement learning (RL) algorithmic principle where the agent interacts
with the environment to learn behavior which will return the greatest reward. In this representation, the en-
vironment represents a recurring theme in this thesis where a quadrotor agent is used to imitate a honeybee
visiting flowers. The recharging station illustrates the unavoidable need for a quadrotor to recharge its battery
in order to be fully autonomous in this artificial pollinator type scenario.

1.4. CHALLENGES IN REINFORCEMENT LEARNING
There are still many limitations of RL which have created the need for continued re-
search on the topic. The search for improvements in scalability (curse of dimension-
ality) [13, 125], safety [15, 80, 81], partial observability [98, 135, 146], the continuous
domain [38, 52, 114], and convergence guarantees [16], continue within the machine
learning community.

In this thesis, the challenge of slow learning speed is specifically addressed since that
is one of greatest limiting factors for MAVs. To improve the speed of learning, two limit-
ing factors are addressed:

Slow learning speed due to tabula rasa learning: Tabula rasa learning (learning from
scratch) is time consuming since nothing is known a priori and much exploration
is needed to train the agent. Most tasks for real robotic systems have time-sensitive
aspects which constrain this sort of large time commitment.

The curse of dimensionality: Real-life systems function in the continuous domain where
there are an unlimited number of states and actions. Discretization of the state/action
space for reinforcement learning purposes leads to large value function matrices
which can either surpass memory limits or become intractable.

Several approaches have been investigated to address these open-ended problems.
To battle the curse of dimensionality, approximations for a continuous domain have
been made using function approximators such as radial basis functions and neural net-
works [23, 38, 52, 114]. In discrete cases, the state/action space can be reduced by de-
creasing the number of state inputs through state abstraction [27, 36], or by making sub-
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tasks through task decompositions within a hierarchical structure [13, 37]. To speed up
learning, parameter tuning and reward shaping have been used for improved conver-
gence performance[53, 91]. Furthermore, although one of the most touted benefits of
RL is its ability to be model-free, a model for simulation can be used to support faster
learning by an iterative process [2] or to provide a better starting point through trans-
fered knowledge [75, 133].

Great progress has been made toward remedying some of these limitations within
RL, however it should be noted that it is most often only in simulation, where an idealized
world does not capture the true unpredictability of real-life. General mistrust of non-
conventional control and a lack of validation methods have kept industry from certifying
RL and other learning methods [42, 64].

The goal of this dissertation is to provide empirical proof-in-practice for reinforce-
ment learning on real-life flying platforms and to identify further challenges.

1.4.1. MICRO AERIAL VEHICLE RELATED CHALLENGES FOR RL
The aforementioned efforts in the reinforcement learning research community all aim
to contribute toward one end-goal: Reinforcement learning in real-world applications.
A considerable section of that effort is toward robotics in general, including applications
like Robocup soccer [110, 126] or obstacle avoidance [86]. There are substantially fewer
works specifically toward flight of MAVs, and even fewer which go past simulation into
real-life flight tests. Since MAVs have their own set of characteristics, it is worth exploring
the challenges of the reinforcement learning method within the context of MAV flight.

The small size of an MAV is its defining and most advantageous feature, but is also
the cause of many unique challenges which other UAS do not encounter [72, 136]. The
reinforcement learning method will also be subject to these restrictions in real-life ap-
plications.

Most research in reinforcement learning subscribes to the standard practice to first
simulate; and for one reason or another, 4 it often ends there. However, there are a num-
ber of notable studies where machine learning has been applied to MAVs.

Figure 1.5 demonstrates just some of the MAV platforms which have recently been
used for research in learning methods. The quadrotor [121] and the ducted-fan [65] in
Figure 1.5(c) and Figure 1.5(d), respectively, each use a form of Artificial Neural Networks
as an adaptive feature for a model-based controller. There are only a few examples of re-
inforcement learning used on an MAV platform. The helicopter in Figure 1.5(a) was used
with reinforcement learning to learn aerial acrobatic maneuvers [1]. The quadrotor in
Figure 1.5(b) was created custom at Stanford as a testbed and was used to improve upon
classical linear stabilization control with RL as compared to Integral Sliding Mode [143].
Another study (photo not available) used a quadrotor to learn stable hover without a
model [18].

In this thesis, the reinforcement learning approach takes MAV limitations and task-
specific conditions into consideration and tries to mitigate some of these challenges,
specifically focusing on:

4Some reasons a researcher may only simulate an RL application include: necessary resources are not avail-
able, its not applicable to physical systems, or waiting for advancement in the technology of other disciplines.
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(a) (b)

(c) (d)

Figure 1.5: MAV research platforms used with learning and adaptive approaches. (a) Helicopter for aerial acro-
batics in [1]. (b) Stanford STARMAC platform using RL for hover stabilization in [143]. (c) Quadrotor learning
obstacle avoidance in forest with deep neural networks [121]. (d) Ducted-fan with adaptive control using dy-
namic inversion and neural networks [65].

Limited resources: Weight restrictions limit many aspects of MAV hardware, including:
sensors, computational resources, battery size, and actuators.

Complex dynamics and time-varying properties: The small size of the vehicle results
in faster dynamics which can be easily influenced by external disturbances. Fur-
thermore, properties of the vehicle might change over time.

Designers of micro aerial vehicles are challenged to keep the vehicle as light as pos-
sible but still have the necessary hardware specifications to fulfill its purpose. Relative
to other kinds of robots, the MAV is limited in its sensing capability by the number and
quality of the sensors that the vehicle can carry. The setup of each experiment in this
thesis takes into consideration the limitations of MAVs by working toward state repre-
sentations which would be available via the sensors of most MAV platforms. Cameras
can be placed on some of the lightest MAVs – such as the Delfly – and they are informa-
tion rich [34]. The burgeoning field of computer vision has some promising solutions for
extraction of state information, but still faces many challenges [34, 84]. Additionally, GPS
is often available on quadrotor style MAVs. For this reason, GPS-style position tracking
is also used within this thesis as a viable resource.

The fast dynamics and time-varying properties of the MAV make it challenging to
model these vehicles. Small vehicles are, in general, more susceptible to environmental
disturbances, such as wind gusts. Time-varying properties of the system create the need
for adaptability. Such properties include: the blades of the quadrotor wearing out over
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several hours of use, or the delicate wing of the Delfly stretching to result in different
aerodynamic properties. Detailed modeling of each individual vehicle can be used to
account for these intricacies [6, 24], however every model will have inaccuracies. Adapt-
ability built into the system would be an invaluable asset to combat model inaccuracies
and time-varying properties.

It is the intention of this thesis to show that reinforcement learning can work within
– and even make improvements to – the guidance and control of the aircraft under these
limitations.

1.5. RESEARCH QUESTIONS
With the big picture aim of fully autonomous intelligent MAVs, and a recognition that
reinforcement learning can play an important role, the primary research question of this
thesis is formulated:

Primary Research Question

How can reinforcement learning contribute towards the goal of autonomous
flight for micro aerial vehicles?

There are a wide variety of ways in which reinforcement learning can be used to im-
prove the autonomy of a vehicle. This thesis focuses on autonomy via RL learned intelli-
gent decision making. Specifying further, the primary question can be decomposed into
sub-questions which address challenges from two sources: 1) the inherent limitations
of MAVs, and 2) the inherent limitations of reinforcement learning as applied to real-life
systems.

The research sub-questions can then be formulated as:

Research sub-questions

What RL methods are available to overcome the following practical challenges
associated with reinforcement learning in real-life flight of micro aerial vehicles?

Q1. Slow learning due to tabula rasa learning (Ch. 3, 4, 5, & 6)

Q2. Curse of dimensionality (Ch. 3 & 4)

Q3. MAV limited resources (Ch. 2, 4, & 6)

Q4. MAV complex dynamics (Ch. 5)

Each of the sub-questions is addressed in one or more chapters in this thesis, as de-
noted above. There is considerate overlap in several chapters because, by design, each
method or task usually addresses more than one of the challenges.

As previously discussed, there is a full field for adaptive non-linear controllers for
lower level control which has had great successes in recent years. Reinforcement learn-
ing can also contribute to this field. One way is by addressing the uncertainty in the
dynamics of complex systems by using a simple model and RL policy improvement to
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improve the ease of gain tuning for a PID controller.
The greatest way that RL can help autonomy is, arguably, in decision making for

guidance tasks in unknown environments where other deterministic methods lack the
adaptability, and humans lack the ability to be calculative. Therefore, RL will have most
impact to improve autonomous flight by learning to find near-optimal guidance solu-
tions in previously unknown environments while using only the sensors available on the
vehicle.

1.6. RESEARCH APPROACH AND CONTRIBUTIONS
Reinforcement learning techniques could expand the capabilities of MAVs in making
intelligent decisions in tasks which call for autonomy. However, the shortcomings of
reinforcement learning (RL) have limited its usefulness in real-life applications. This
thesis aims to progress RL techniques to real-life micro aerial vehicles.

This thesis tests some of the RL approaches which are meant for real-life application,
and will reveal that the promise shown by simulated RL can be transitioned to the real
world. The result of this thesis is a series of experiments which substantiates the appli-
cability of the RL approach, as well as a guide of recommendations for what sort of tasks
RL is well-suited for, and where it is currently not well-suited.

The contributions resulting from this series of experiments will now be laid out with
respect to the four research sub-questions stated above.

SLOW LEARNING DUE TO TABULA RASA LEARNING

Learning speed, in the sense which we want to improve it, is the time in-flight it takes to
learn a near-optimal solution for the task. Since MAVs have a limited battery life, learn-
ing speed is an important aspect for RL. To speed up learning from tabula rasa (blank
slate), we have taken the approach of hierarchical reinforcement learning (HRL). Tem-
poral abstraction in the form of extended actions (options [129]) are able to bypass some
of the time involved with taking random actions to explore the state space. Chapters 3
and 4 show that the use of HRL options, drastically speeds up learning early on in Q-
learning training, but at the cost of optimality later on.

The speed of learning can also be improved by NOT starting from tabula rasa. In
Chapter 5, an inaccurate model is used to give a starting point for an RL policy, and then
iteratively use the model to find the direction to change the policy. This cuts down on
the number of in-flight trials needed for the task. In Chapter 6, tabula rasa learning is
circumvented by solving for an initial state/action value function in a simulated “source”
domain and then implemented in the real-world “target” domain. Depending on the
commonality between the source and target domain, the agent can have a jumpstart in
the greedy performance and an improved learning speed.

CURSE OF DIMENSIONALITY (SCALABILITY )
As the state space increases, the problem can quickly become intractable for discrete
methods. Rather than turning to the continuous domain, hierarchical approaches (as in
Chapters 3 and 4) can make large state spaces manageable with temporal abstraction.
The benefits of HRL are shown for large state spaces by comparing the HRL method
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against a conventional flat Q-learning RL approach in three different sized mazes. The
benefits are greater as the maze size increases.

Furthermore, scalability is also addressed in Chapter 4 with state abstraction. If one
state representation scales up quickly with the problem, this representation can be re-
placed by a new state representation which has a smaller state space. However, this new
smaller representation will not provide the same level of state accuracy or specificity.
Ambiguity in the state is introduced and can be a problem for flat reinforcement learn-
ing. Chapter 4 shows that HRL can reduce the disadvantages of ambiguity, even in cases
where flat RL is unable to learn.

MAV LIMITED RESOURCES
In Chapters 2 and 6, vision-based rewards are used in order to demonstrate the func-
tionality of reinforcement learning with a light-weight sensor such as a camera with a
color filter. However, the position state knowledge is still used to determine location.
From there, resources are further limited in Chapter 4 by completing a maze guidance
task in a GPS-denied environment where only a relative vision-based state representa-
tion can be known. Hierarchical reinforcement learning is used to leverage the ability of
extended actions (options) to overcome the ambiguity introduced by the relative state in
a large maze.

COMPLEX DYNAMICS OF MAVS
Complex dynamics of an MAV can be difficult and expensive to model accurately; how-
ever, a “bad" or inaccurate model, is relatively easy to come by. The approach of Chap-
ter 5 is to use reinforcement learning policy improvement to iteratively calculate a bias
for the inaccurate model by using feedback from interactions with the real world, which
in turn iteratively improves the performance of the task by tuning the gains of a PID con-
troller along a gradient until it converges to the local optimum. The tuning is guided by
experience with the environment which means the self-tuning gains will be specifically
adapted to this vehicle. This is an especially attractive capability in the case of MAVs
with small manufacturing differences. If a relatively accurate model and optimal gains
can be found for one vehicle, this same controller can be used for a vehicle with slight
manufacturing flaws and the differences can be accounted for using the reinforcement
learning policy improvement method.

1.7. SCOPE AND LIMITATIONS
The subject of reinforcement learning application on MAVs is cross-disciplinary and ex-
ists within, and in association with, broad fields such as: GNC, artificial intelligence, ma-
chine learning, computer vision, and others. In order to focus on the questions stated in
Section 1.5, the scope of this thesis is reasonably restricted.

1.7.1. THEORETICAL NOVELTY
This thesis focuses on empirical application of RL methods to real-life flying platforms
and those associated challenges. Algorithmic novelty is not part of the contribution of
this thesis. The researchers who contributed and published these methods are cited in
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the text and in the bibliography. However, the reinforcement learning approaches cited
are adjusted for the tasks which they must execute and this work does contribute to the
understanding of the existing RL algorithms in respect to MAV tasks.

1.7.2. CONVERGENCE GUARANTEES
Reinforcement learning can guarantee learning convergence to an optimal policy un-
der certain conditions [37, 130]. However, as soon as these conditions are no longer met
(which often happens in practical situations), convergence can no longer be guaranteed.
The goal of the research in this thesis is from a practical standpoint and therefore takes
an engineering approach as compared to a mathematical one. Learning convergence is
an important aspect of RL, and therefore steps are taken to converge to the optimal solu-
tion, such as slowly ramping up the epsilon in the ε-greedy policy. Furthermore, conver-
gence is discussed in the results section of each chapter – just not from the standpoint of
mathematical guarantees.

1.7.3. SAFETY IN REINFORCEMENT LEARNING
The challenges for reinforcement learning with MAVs addressed in this thesis are de-
noted in Section 1.4.1. A prominent challenge for RL which is not a focus in this thesis is
safety. The random actions often used for exploration can lead to dangerous behavior for
some real-life tasks. Others have researched safe exploration techniques to mitigate the
risks of “blind” exploration required when an environment is unknown a priori [48, 81].

Though safety is not in the expressed focus of thise thesis it is also not fully ignored.
In guidance, hitting walls is not allowed as the agent is hard-coded to stay in the current
state and receives a penalty for Chapters 2, 3, 4, and 6. In control of a system, safety
can be addressed in terms of stability. In Chapter 5, instability is discussed as a possible
disadvantage of reinforcement learning use with controllers and is explored in the ap-
plication of PID tuning using policy-gradient reinforcement learning around regions of
sharp instability transitions.

1.7.4. NAVIGATION
Guidance, Navigation, and Control are often lumped together as they work closely to-
gether. By the definitions given in Section 1.2, the scope of this thesis focuses on guid-
ance and control; though, navigation may be implied in a camera-based state represen-
tation such as in Chapter 4. In that chapter, we assume that the navigation state based
on GPS or camera-based vision is working reliably. In real-life applications, this will of
course not always be the case. Computer vision is quickly improving and is one of the
technological catalysts for the growing MAV research field. Because there is already a
large effort towards navigation enhancing sensors like pinpoint global positioning and
computer vision techniques, the scope of this thesis has focused on having a reliable
navigation source and focuses its efforts on guidance and control.

1.8. OUTLINE OF THESIS
The outline of this thesis is visualized in Figure 1.6. In Chapter 2, a reinforcement learn-
ing task is performed using a quadrotor platform and camera-based rewards. By obtain-
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Figure 1.6: Visual outline of thesis.

ing reinforcement through its own sensors, the quadrotor can autonomously learn an
optimal guidance law to complete its task. This chapter gives an introduction to one of
the most fundamental forms of reinforcement learning which is still used as a founda-
tion for many branches of RL research. Likewise, this chapter functions as a foundational
starting point for the rest of the thesis.

In Chapters 3 and 4, hierarchical reinforcement learning (HRL) is demonstrated as a
promising approach for decision making in large state spaces; and therefore a potential
method to combat the curse of dimensionality and slow learning. Chapter 3 begins with
the introduction of HRL and temporal abstraction to improve learning speed early in the
training stages. Chapter 4 then expands on the utility of hierarchical methods by explor-
ing the use of state abstraction. The state representation used is that of a completely
isolated MAV in a GPS-denied environment. Therefore better representing the situation
where intelligent decision making is most vital for MAV applications.

In Chapter 5, locally optimal gains of a PID controller are learned using reinforce-
ment learning with a simple model of the dynamics to speed up learning. Using a PID
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controller is desirable since it is currently the standard in industry. Using RL to tune the
gains gives the low level controller better adaptability to changing conditions. By using a
simple model to aid in learning, a vehicle with complex dynamics can still be efficiently
and autonomously controlled with a well-tuned PID controller.

In Chapter 6, the cumulative efforts of the previous chapters are compiled onto a
quadrotor platform to perform a “honeybee” guidance task in a larger and more com-
plex environment than what is seen in the initial example in Chapter 2. Vision-based
rewards from Chapter 2 are extended upon, and hierarchical methods with options from
Chapters 3 and 4 are further explored in a different type of task. Gains tuned in Chap-
ter 5 for the vertical loop control are used during flight test (but do not influence the
results since it is a guidance task in the horizontal plane). The chapter builds upon those
methods further with the addition of transfer learning and a brief analysis into the effect
of hidden states. The addition of transfer learning introduces the use of a “source” do-
main in which to find a good starting point for the state/action value function, which can
have a jumpstart and learning speed benefit over tabula rasa learning in the real-world
“target” domain.



2
HONEYBEE TASK: TEMPORAL

DIFFERENCE REINFORCEMENT

LEARNING WITH VISION-BASED

REWARDS

Achieving autonomous flight of Unmanned Aerial Vehicles (UAVs) within unknown or
uncertain environments involves many guidance and control challenges. This chapter
demonstrates the utility of reinforcement learning for UAV high-level guidance decision
making with an example of a honeybee task where the bee gathers nectar from flowers
to bring back to the hive. The task is first performed in simulation and is then extended
to a real-life quadrotor platform where learning occurs online and rewards are recog-
nized via the camera and vision-based identification. Through exploration of the envi-
ronment and a well selected reward structure, it is shown that an optimal policy can be
found within a previously unknown environment. Results demonstrate the important
considerations of reinforcement learning such as: reward structure design, policy selec-
tion, and parameter selection. The basic algorithmic principles and the resources used
for the real-life test set a foundation for the work in the rest of this thesis.

Parts of this chapter have been published in:

J. Junell, E. van Kampen, C. C. de Visser, and Q. P. Chu. Reinforcement Learning Applied to a Quadrotor
Guidance Law in Autonomous Flight. In AIAA Science and Technology Forum: Guidance, Navigation and
Control Conference, Kissimmee, Florida, USA, 2015. [67]
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2.1. INTRODUCTION
Autonomous guidance and control of Unmanned Aerial Vehicles(UAVs) and Micro Aerial
Vehicles (MAVs) is challenging for many reasons. Dynamics of the system can be diffi-
cult to model, the vehicles are often susceptible to unforeseen disturbances, and there
are on-board sensor and actuator limitations. One method to address these problems
is to create learning or adaptive controllers. Reinforcement learning (RL), for example,
enables an agent to learn the right actions to take with little or no a priori knowledge
of its dynamics or environment and can adapt to changing conditions [130]. For these
reasons, RL has become a promising tool for improving autonomous flight in many dif-
ferent types of UAVs and MAVs. This chapter will focus on learning an optimal mission
path using Reinforcement Learning for a Parrot® AR-drone 2 quadrotor. Furthermore, it
will demonstrate how this technology is becoming more accessible by using an inexpen-
sive platform and an open source autopilot.

When trying to achieve autonomous UAV flight, there are many levels of control to
consider. In lower level control, the vehicle must be able to adjust its control surfaces or
thrusters for rate or angle control. In the case of a quadrotor, it is simply to adjust the
power to each individual engine for the desired attitude and accelerations. There have
been many advances in lower level MAV control in recent years, both with model-based
controllers, learning control and a mixture of the two [1, 18, 113, 143]. Reinforcement
learning has been implemented on a real quadrotor platform and compared to non-
linear control methods for accurate hover [18] and improved vertical control [143] during
non-linear disturbances. Other types of learning have been used to fine tune acrobatic
maneuvers of quadrotors [104] within a well equipped flight arena [59] that provides in-
formation from a camera system. Expanding to other types of MAVs, a small helicopter
was successfully controlled with RL in more difficult maneuvers by using a trained hu-
man pilot during the learning phase [1]. Finally, a quadrotor has used RL to hover and
track a defined trajectory [113].

For higher level control and guidance, an autonomous vehicle must make intelligent
decisions in order to achieve its objective. High level control using reinforcement learn-
ing for real life ground robots has been explored to learn good behaviors of an E-Pet [61].
Finding an optimized path is of utmost importance when the vehicle is limited in battery
life or mission time. Vehicles can also operate in an unknown environment where there
is not enough information available to calculate the ideal path to their objective. This is
a case where reinforcement learning can be effectively implemented.

Quadrotors are relatively straight-forward to model for non-aggressive maneuvers
and therefore can have fairly accurate lower level control with a PID controller in this
flight regime. Reinforcement learning can be used effectively in the high level decision
making to result in an optimized path for the UAV despite limited knowledge of the envi-
ronment. The goals of this chapter are to 1) Introduce the basics of reinforcement learn-
ing, 2) demonstrate an application of a real-life quadrotor as a reinforcement learning
agent, and 3) create a foundation for further research with greater autonomy and capa-
bility to adapt to unforeseen environmental and vehicle changes.

The experiment presented is set up to mimic just one of the many possible real-world
application that could benefit from a learning or adaptive controller. The quadrotor task
is analogized to a honeybee task of collecting nectar from flowers and bringing it to the
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hive. The reinforcement learning aspect of the agent is driven by interaction with it’s
environment in the form of GPS obtained locations state and vision-based reward de-
tection. It is also easy to think of many other tasks where such a learning agent would
be beneficial; for example, a reconnaissance task in a disaster scenario where MAVs are
taking pictures of collapsed or damaged buildings and bringing the images back to head-
quarters. In any case, reinforcement learning can be used to learn desirable behavior.

This chapter presents a simulation of the honeybee RL decision process in an un-
known gridworld and then applies it to a real-life quadrotor in the TU Delft Cyber Zoo 1.
The Cyber Zoo is a space outfitted with OptiTrack 2 optical tracking system, where ground
robots and aerial vehicles can be employed in experiments using one or more agents.
Lower level control of the quadrotor is supplied by Paparazzi [21, 109], an open source
autonomous control software that provides a flexible autopilot system for fixed wing and
multi-copter vehicles.

A background of Temporal Difference reinforcement learning is outlined in Section 2.2.
The simulation setup and results will first be presented in Section 2.3 before the appli-
cation setup and results in Section 2.4. An overview of all the results and conclusions is
discussed in Section 2.5.

2.2. REINFORCEMENT LEARNING PRELIMINARIES

2.2.1. MARKOV DECISION PROCESSES (MDPS)
The basic framework of reinforcement learning [130] consists of a learning agent and
its interaction with a discrete-time, finite, Markov decision process (MDP). This means
that the problem setup must satisfy the Markov property stating that the policy is only
dependent on the current state and not on a history of states. The MDP is a 5-tuple
M=<S ,A,P ,R,γ>. Let S and A be defined as finite sets of states and actions, respec-
tively. Pa

ss′ is the state transition probability from state s ∈S to s′ given action a ∈A,

Pa
ss′ = Pr {st+1 = s′|st = s, at = a} (2.1)

andR is the reward function describing under what conditions the agent will be awarded
or penalized. The policy, π, is a mapping between states and actions. Finally, γ ∈ [0,1]
defines the discount-rate parameter. The expected one-step reward is described as:

Ra
s = E {rt+1|st = s, at = a} (2.2)

The value function, V π(s), represents the value of being in state s given that policy
π is being followed. To solve the MDP, the agent must gain information about V π(s) for
each state using interaction with the environment in order to then deduce an optimal
policy from which to determine desirable actions. The value represents how “good” it
is to be in a particular state and is calculated by the discounted expected returns from
being in that state. The following equation defines V π(s) mathematically as the sum of
all future expected rewards.

1TU Delft Robotics Institute. http://robotics.tudelft.nl
2OptitrackTM. http://www.naturalpoint.com
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V π(s) = E {rt+1 +γrt+2 +γ2rt+3 + ... |st = s,π} (2.3)

A similar value can be calculated for each state-action pair, which indicates how good it
is to take an action, a, given the agent is in state, s. This is called the Q function, Qπ(s, a)
and will come into play in the next chapter.

Qπ(s, a) = E {rt+1 +γrt+2 +γ2rt+3 + ... |st = s, at = a,π} (2.4)

The V or Q functions will be initialized and then updated as the agent explores the envi-
ronment. The update is characterized by the iterative Bellman equation:

V π(s) =
∑
a
π(s, a)

∑
s′
Pa

ss′ [R
a
s +γV π(s′)] (2.5)

and results in an update rule:

V (s) ←V (s)+α(r +γV (s′)−V (s)) (2.6)

until V π converges to its optimum, V π∗.
The policy used during exploration of the state space, π, will determine to what val-

ues the value function or state-action function converges to. Given that the value func-
tion is converged to V π∗ then the optimal policy is a greedy policy which always selects
the action with the highest resulting value or the highest state-action value.

2.2.2. ACTION POLICY
In reinforcement learning, the policy (π) decides what actions the agent will take. Intro-
duced below are the policies implemented in this thesis.

Random Every action has an equal probability of being selected.

Greedy The “best” action will be chosen every time; where the best is defined by the
action which leads to the highest valued V (s′), or the state-action pair which has
the highest value Q(s, a).

ε-greedy Takes the greedy action, ε percent of the time. Otherwise, a random action is
taken (where the greedy action can still possibly be selected at random). We can
calculate the probability that the greedy action,P a

g r eed y , will be selected (Eq. (2.7)),

or any other action, P a
other , will be taken (Eq. (2.8)), where Na is the number of

possible actions.

P a
g r eed y = ε+ 1−ε

Na
(2.7)

P a
other =

1−ε

Na
(2.8)



2.3. SIMULATION

2

21

After an infinite number of iterations, the V-function of the policy, V π, will converge
to V π∗

. The difference between different policies is due to the action probabilities asso-
ciated to the policy. Note that ε = 0 is just a random policy and ε = 1 is a greedy policy.
Since a higher valued action will be chosen more often with higher ε, the boundaries will
be randomly hit less, the rewards will be found more frequently, and consequently the
values in the fully converged V π will be higher.

A full analysis of how the policy effects value function convergence can be found in
the Results section.

2.2.3. TEMPORAL DIFFERENCE REINFORCEMENT LEARNING
In Temporal Difference reinforcement learning, a Markov property is assumed. That
is, the agent doesn’t need to know any of its past actions to make its next action. the
agent, therefore only needs minimal information to inform its decision. Those pieces
of information being: The agents current state, the Value Function, and the transition
probability.

The value function, V π(s), represents the value that is assigned to each state, s. The
honeybee task in this chapter, consists of 216 states and so the value function is embod-
ied by 216 associated values. With each move the agent makes, it experiences part of the
environment and can adjust the value function to learn what states are more desirable
to visit.

The value function is updated by the Bellman Equation, Eq. (2.9). Where Eπ is the
expected reward in a state given a policy, π. Eq. (2.10) shows the update rule for tem-
poral difference RL used in this chapter. Design of the reward function, r , and tuning of
parameters such as the step size, α, and the discount factor, γ, are topics of great impor-
tance to reinforcement learning and have their own fields of research which are not the
focus of this thesis. Further detail of the reward function and parameter design for this
task are explained in Section 2.3.

V π(s) = Eπ{Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}
(2.9)

V (s) ←V (s)+α(s)(r +γV (s′)−V (s)) (2.10)

Each state that is visited will be updated based on the rewards that it receives at that
state, and the value of the next state it visits. This recursive property makes it possible
to propagate a reward from one state to the states that surround it, and therefore make a
transparent path of increasingly higher values to the reward states. The visual appeal of
this property can be seen in the simulation results section, embodied in Figure 2.4.

2.3. SIMULATION
This section will describe how a reinforcement learning problem can be set up to imitate
a honeybee collecting nectar for the hive.

There are many real world applications that this kind of reinforcement learning con-
cept could be used for. This experiment is set up to demonstrate a honeybee with a
mission to search for and collect nectar from the flowers (reward states). For each flower
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nectar
stateX-Y location state

Figure 2.1: Flower reconnaissance RL concept: This figure demonstrates a discrete 6x6x6 grid world where the
agent’s location state is described by its x-y location in the grid and its nectar state is represented by the bar
on the right. The bee changes its nectar state by visiting flowers or the hive and can change location state by
moving about the grid to adjacent squares(ie. 8 possible actions).

it visits, some nectar is collected and carried with the bee. The bee can carry a limited
amount of nectar, so as the bee becomes weighed down, it must return to the hive to
drop off the nectar. Then it starts over collecting nectar.

2.3.1. PROBLEM SETUP

Using a reinforcement learning decision process, a honeybee agent is simulated within a
grid world where 3 flowers and a hive exist. The bee gets rewards for visiting flowers until
its figurative nectar state is full. The more nectar the agent has collected, the greater the
reward will be for visiting the hive. The bee is set in a grid world that satisfies the Markov
property.

The bee’s physical world consists of a 6×6 discrete grid with the hive located at [x y] =
[6 6] and the flowers located at [1 3; 4 5; 6 1]. The environment is visualized in Figure 2.1.
The boundaries of the grid world are not accessible.

STATE SPACE

The state of the agent is defined by 2 state values: Location state and nectar state.
The nectar state is an integer between 1 - 6 that represents how much nectar the bee

is carrying on his body. This state is visually represented with the nectar state bar along
side the x-y grid in Figure 2.1. The nectar state initially starts at 1 meaning the bee has
collected no nectar. With each flower visited, the nectar state value increases by 1 until
the bee is at maximum nectar capacity at nectar state = 6.

The current setup leads to a 6×6×6 three-dimensional (or a 36×6 two-dimensional),
matrix of states with a total of 216 states. The grid size and the nectar value maximum
were arbitrarily chosen and could be adjusted as desired. However, as total number of
states increases, so does the computational expense.
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ACTION SPACE

The agent can move to any adjacent square, including diagonal, for a total of 8 actions.
Figure 2.1 shows the grid world set up as well as the possible actions. If the agent hits
a boundary limit with the action, the agent will incur a penalty and stay in the same
location state as the previous state.

REWARD FUNCTION

The reward states are the flowers and the hive. The agent gets penalized with a negative
reward value for hitting the boundaries.

Regarding the reward values, a balance should be struck between the rewards for
hitting the boundary, visiting a flower, and visiting the hive. Initial values were selected
from an experienced guess and then tuned by trial and error for better performance. A
normal movement produces 0 reward.

Going out of bounds gives a ‘−1’ penalty. The flower’s reward is a constant of 8 at all
states until nectar state 6.

1 2 3 4 5 6
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25

nectar state

re
w

ar
d

Figure 2.2: The reward at the hive location state is a second order function of the nectar state

Below is a description of the special states, their associated rewards, and the conse-
quent automatic actions:

Hive The agent receives a reward defined by the function in Figure 2.2, the nectar state is
returned to 1, and the agent is randomly relocated on the grid. Note: When the bee
is full of nectar, there is no point to visit more flowers so there is no reward. There-
fore, visiting the hive should be overwhelmingly more rewarding at nectar state 6
than any of the previous nectar states. Furthermore, the hive should progressively
be more rewarding as the bee has more nectar to bring back.

Flower If the agent is in nectar state 1-5, it receives a reward of 8, increases the nectar
state +1, and is randomly relocated on the grid. Random relocation is necessary,
otherwise the agent would continually go to the same flower if in a greedy policy.
If the nectar is full, then the reward is 0 (zero) and the next action is chosen by the
current policy.
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Out of bounds The agent is penalized by −1 and stays in the same state.

PARAMETER SELECTION

The discount factor, γ, is set to 0.9 to allow for quick propagation of the reward values
through the states. The greater the value, the more future rewards will effect the current
states value function update. This value was not varied for the simulation.

The step size parameter, α(s), in Eq. (2.10), is used to create an average value at each
state. It decreases for a state each time it is visited so that α(s) = 1/Ns , where Ns is the
number of times that state has been visited.

POLICY SELECTION

When the agent is first introduced to the environment, it will have no knowledge of the
surroundings so it must first explore. Once it has identified the locations of some of the
reward states it can begin to exploit that knowledge. A scheduled ε-greedy policy allows
for more exploration (low ε values) early in the learning stages and more exploitation
(higher ε values) as the agent has gained more experience.

Figure 2.3 shows how ε is scheduled based on the change of the V-function (∆V is
calculated as the summed difference of all V-values after 100 iterations). The ε is stepped
up after it meets the condition ∆V ≤ 1e−3. At the switch in policy, the learning step size
α(s) = 1/Ns is reset by reseting Ns to 1, since it is a new policy and will therefore converge
to a new V π∗

. For example, an ε = 0.8 policy starts converging anew, but with an initial
V-function that resulted from an ε= 0.6 policy. The final policy is stopped when an error
condition of ∆V ≤ 5e−4 is satisfied. This condition was chosen as a balance between
accuracy and evaluation time.

The scheduled ε-greedy policy is used for the practical reason that although a fully
greedy policy is the optimal policy, during the learning phase it prevents certain states
from being explored, which often results in poor convergence. The scheduled approach
is a good fit for the honeybee example in that it allows for more exploration in the be-
ginning in order to find the flowers. As time goes by, it will want to exploit the locations
where flowers are known to have nectar, and so a more greedy policy will result in more
nectar retrieval which will be reflected in a higher valued V π∗

.

2.3.2. SIMULATION RESULTS
The simulation results show that V π for a greedy policy is nearly converged to the op-
timal V π∗

as it satisfies the ∆V ≤ 5e−4 condition. In Figure 2.4, the final value function
and greedy-policy map is plotted in the left and right columns, respectively. In the rows
of the figure, the grid world is shown for nectar states 1(top), 5(middle), and 6(bottom).
In nectar state 1, the bee will get no reward for going to the hive so its greedy action is to
go toward the nearest flower. In nectar state 6, the nectar is full and therefore the agent
will only get a reward to go to the hive. Every nectar state in between shows a blend of
the two. Memory state 5 is important in that it should still get nectar at the flowers, but
if the agent is nearby the hive it is also a good action to go there.

Using the policy map with the arrows(right column), it is easy to see from any loca-
tion where the agent will go given a greedy-policy. Just follow the arrows. In some cases,
it seems like an indirect path is taken. However, it must be considered that each square in
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Figure 2.3: This scheduled ε-greedy policy increases ε as errors converge. The α value within the update equa-
tion (Eq. (2.10))is then reset, resulting in temporarily larger learning step sizes and therefore higher∆V (errors).

the grid is considered one step. To move diagonally is indeed physically more distance,
but the problem setup is not considering this as a longer path because the algorithm only
considers number of states to the reward. In reality, there is more than one optimal path.
The arrows only show one greedy direction, but there are often scenarios where adjacent
states have a very similar value. If the value function were fully converged the values of
the two or three contending states would be exactly the same. However, full convergence
requires iterations t →∞, and will therefore always have some error. It is worth while to
note that full value function convergence is not necessary to have the optimized policy.
An optimal policy-map can result in much fewer iterations than is necessary to converge
to V π, and this will be seen in the flight test results in Section 2.4.4

2.4. FLIGHT TESTS
This section explains the setup and results of the flight tests with a real quadrotor per-
forming the reinforcement learning task described in Section 2.3. First, the resources
used in the experiment will briefly be explained. Then the setup of the experiment will
detail how all these components interact together to recreate a real life version of the
simulation. Lastly, the results from the flight tests will be presented and briefly dis-
cussed.

2.4.1. RESOURCES

Formerly, to work with a quadrotor platform, researchers often used in-house quadro-
tor designs which were often time intensive to model and tune [59, 107]. Since design-
ing and building a quadrotor is not the main research intention for this thesis, it is very
welcome to have a commercial quadrotor available which makes this research not only
more convenient for this project but also more accessible to other researchers in the
field. This benefit is the same for the other resources discussed; such as open source
software. The uses and benefits of these resources in the context of this research will
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Figure 2.4: V π and policy map at nectar states 1,5, and 6 for a scheduled policy that converges to a near optimal
V ∗.

now be discussed3.

AR.DRONE 2.0 QUADROTOR

A quadrotor is an unmanned aerial vehicle consisting of 4 engines that spin indepen-
dently of each other. Adjusting the thrust produced by each engine gives the necessary

3Note that the nature of these resources are that they are ever changing. They have changed over the duration
of this dissertation project and will continue to evolve. See websites provided for the most current informa-
tion.
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control to perform general motion as well as other aggressive maneuvers [104]. The
Parrot® AR.Drone 2.0 4 as shown in Figure 2.5, is a commercially available quadrotor
intended for recreational use. The MAV weighs about 750grams and features forward
and bottom facing cameras, GPS, WiFi, and precision control. The AR.Drone 2.0 is also
promising for research and educational purposes [70] as it is relatively inexpensive, and
robust to damage. Most importantly for this project is that its built-in software can be
overwritten.

Figure 2.5: The AR.drone 2.0 is a relatively inexpensive quadrotor MAV that can be purchased for recreational
uses or for research. Picture credits by Parrot.com

TU DELFT CYBER ZOO

The TU Delft Cyber Zoo 5 was officially opened in March 2014 as a research and test
laboratory for ground robots and aerial vehicles. Its space consists of a floor area that is
10×10 meters and extends 7 meters high. The space is contained inside an aluminum
truss frame which holds nets to ensure the safety of people and surrounding equipment.
Also supported on the truss structure are 24 cameras. These cameras are part of the
Optitrack 6: Motive Tracker optical tracking system. The quadrotor “wears” a special
hull with reflective balls or stickers so that the cameras can track it. Within the Cyber
Zoo boundaries, up to 32 rigid bodies can be tracked with high precision accuracy. The
system can also be used as a simulated GPS. Therefore, as long as an experiment is not
using any feedback from the Cyber Zoo, everything done indoors can be translated to an
outdoor environment.

This system is not the first of its kind being used for quadrotors [78]. ETH Zurich
has shown with their aerobatic quadrocopters how powerful a designated space with
tracking can be.

This flight test will use the tracking system only for simulated GPS and for evaluating
performance. Further capabilities including the high precision information from the
cameras for feedback are available but not currently used. Therefore, this experiment
is easy to move to an outdoor environment as long as GPS is available. The complete
system as it is used is illustrated in Figure 2.6. The computer running the OptiTrack
software has a wired connection to the laptop running Paparazzi and from there can
broadcast the GPS signal via WiFi to the quadrotor.

4Parrot AR.Drone 2.0 http://ardrone2.parrot.com/
5TU Delft Robotics Institute. http://robotics.tudelft.nl
6OptitrackTM. http://www.naturalpoint.com
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Figure 2.6: Cyber Zoo experimental setup: 24 cameras track the quadrotor. From this system, the quadrotor
receives a simulated GPS signal. That position is transmitted via WiFi between a laptop and the quadrotor.
Based on the location state and the nectar state, a waypoint command will be sent to the quadrotor for it to
execute.

PAPARAZZI OPEN SOURCE AUTOPILOT

Paparazzi 7 is a fully open source free autopilot for fixed wing and multi-copter UAVs [109].
A version of the software can be acquired freely at GitHub 8.

The quadrotor capabilities in Paparazzi include a model of a standard quadrotor that
is close enough to the AR.Drone to function as a good inner loop controller given good
tuning and standard non-aggressive maneuvers. Simulation of a flight plan in an intu-
itive GUI is available in addition to use as a Ground Control Station (GCS) for real flights.
An example of the Paparazzi GCS interface can be seen in Figure 2.7(left).

In the indoor setting, Paparazzi connects via WiFi to the quadrotor to give commands
and via a wired connection to the Cyber Zoo computer to receive the position of the
vehicle. In an outdoor situation, GPS would be picked up by the AR.Drone and used
there directly.

Paparazzi is a modular platform and therefore has made it easy to add functionality
by means of custom modules. Initializations, periodic and event functions can be added
without effecting the main autopilot software. This makes customization very flexible
and safe.

The high level position control of the quadrotor is controlled by the flight plan. Way-
points and commands involving these waypoints are written into the flight plan. The
autopilot software and the flight plan is compiled and uploaded onto the quadrotor com-
puter. Once uploaded, the names and numbers of the waypoints and types of commands
cannot be changed; however, the location of the waypoints can be modified at any time.
Therefore, it is important to plan the method for which the waypoints will be used. In

7Paparazzi Free Autopilot. http://wiki.paparazziuav.org
8Paparazzi GitHub account. https://github.com/paparazzi/paparazzi
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this experiment, the method of use is shown in Figure 2.7(right). A new module was
created to move the waypoints based on reinforcement learning logic.

wp1

wp2

Figure 2.7: (left) Paparazzi GCS (Ground Control Station) is the main interface for the user. In the GUI it shows
a 2D map with a flight path (cyan line). The quadrotor status is shown in strips box (bottom-left) along with
some buttons for common commands. Commands such as “go p1” or “stay p2”, can be seen in the Flight Plan
tab in the Notbook box (bottom-middle). Commands that have been made are printed in the console box
(bottom-right).
(right) The quadrotor is commanded by paparazzi to go to a waypoint. Waypoints cannot be added online
but they can be moved. Therefore, after each action decision, the waypoint will be moved to the desired state.
Commands alternate between going to waypoint 1 and waypoint 2 from the other.

2.4.2. VISION-BASED REWARD DETECTION
As part of the autonomy-focused effort, the rewards of the reinforcement learner are only
granted to the agent when detected by the vision-based system.

Figure 2.9 demonstrates the vision of the agent. In this case, the flowers are repre-
sented by red paper on the floor. The bottom-facing camera of the AR drone scans the
floor using a color filter module in Paparazzi to detect only colors within a range on the
YUV space. The color filter algorithm works with the YUV images coming from the cam-
era. The filter checks, pixel by pixel, if the three channels (Y represents the brightness
and U+V the color) lie in the intervals defining the color range. Figure 2.8 demonstrates
an example range interval of the color to detect. The actual values for the range were cal-
ibrated based on the paper color within the lighting of the Cyber Zoo. When the number
of pixels of this particular color surpasses some threshold, a reward state is considered
to be detected.

Figure 2.9 shows how all other colors are made gray scale, while the color within the
specified YUV range, is highlighted. This particular image is the view from the agent’s
camera over a “flower”. Since a pixel threshold was used, it was necessary to calibrate
the threshold beforehand based on the height of flight and the size of the paper. Since
computer vision techniques are not the main focus of this thesis, it was deemed suffi-
cient to have a simple and reliable vision-based method for detecting the reward states.

One thing that is necessary to monitor with vision-based detection is the possibility
of false negative and false positives. Computer vision is never fully reliable in that it may
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see a reward where there is none (false positive), or fail to detect enough red pixels when
it is actually in the flower state (false negative). This can happen for a number of reasons;
for example if the quadrotor’s pitch or roll makes the camera tilt anywhere other than
straight down, if the filtered color shows up somewhere other than at the flowers, or if it
flies too fast past the flower state and fails to detect it. After some testing and calibration,
it turns out that the color filter method is very robust, resulting in no false positives and
no false negatives in a 1000 iteration run.

Figure 2.8: The color filter module in paparazzi isolates a range of colors in the YUV color space [137].

Figure 2.9: View of bottom-facing camera over a “flower”, represented by red colored paper.

2.4.3. SYSTEM SETUP
The aforementioned components now come together into a comprehensive system setup.
The controller consists of the Paparazzi autopilot with a reinforcement learning module.
Once the software is uploaded to the quadrotor computer, the user can send commands



2.4. FLIGHT TESTS

2

31

from the GCS flight plan via WiFi to the quadrotor. By calling the RL module function
from the flight plan, the RL algorithm in the module chooses the next state based on the
current position. The next state is translated to a waypoint position for Paparazzi to un-
derstand. If the quadrotor is currently at waypoint 1 (wp1), then wp2 will move to the
next position. This concept of moving waypoints and then going to it is shown in Fig-
ure 2.7(right). Paparazzi’s inner loop controller, which is already uploaded onboard, will
translate the waypoint command to specific low level control commands.

Input and output to the quadrotor computer is possible by use of a usb flash drive
that must be plugged into the AR-drone.

2.4.4. RESULTS
Two flight tests will now be explained and the results presented. Due to time and battery
limitations, the quadrotor is not able to perform millions of iterations like is possible in
simulation. The lifespan of a battery lasts about 200 iterations, or 10 minutes. However,
an external wired power source is also available for longer runs.

The flight test is split into two separate tests that demonstrate the important rein-
forcement learning concepts in a smaller number of iterations.

TEST 1: EXPLORATION AND LEARNING

The first flight test demonstrates the exploration phase of reinforcement learning. To
better visualize the results, this test was limited to a 6×6 grid of 36 states instead of the
normal 6×6×6 grid of 216 states. The nectar state was kept at 1, where there is no reward
for visiting the hive.

The agent successfully moved to its randomly initialized spot on the grid within the
Cyber Zoo and continued to randomly choose actions and execute them.

Figure 2.10(left column) shows the resulting value function after 100, 200, and 400
iterations from one flight. The right column shows the greedy-policy map and the red
“x’s” are states where the greedy policy is not the optimal policy.

The result from this test flight as seen in the Value function shows that after 100 it-
erations, several states, including one of the flowers, had not yet been updated. By 200
iterations, each of the flowers had been visited at least once, yielding a reward at that
state. The reward propagates to some of the neighboring states. The boundary was hit
several times as can be seen by the negative values in border states. With more iterations,
more of the states have been visited and the value function better approximated.

Looking at the greedy policy map in Figure 2.10, we see that even though the value
function is not even close to being converged,the optimal policy is being converged on.
After 100 iterations, there are 8 states which have no information in neighboring states
in which to guide a decision, and 6 states where the greedy policy is non-optimal. By
iteration 200, there are only 2 states which would make a non-optimal greedy action;
and by iteration 400, one of the optimal greedy policies has been found. This means,
that if a greedy policy were implemented at this point, the agent would always find a
direct path to the nearest reward spot.

In Figure 2.11, the value function convergence for Test 1 is shown over a run of 1000
iterations. On the Y-axis, ∆V is calculated as the summed difference of all V-values after
every 10 iterations. The variability of the value function encompassed in ∆V decreases
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Figure 2.10: The V π (left column) and policy map(right column) at nectar state 1 for a after training with
random actions after 100, 200, and 400 iterations in actual flight.

after more experience, as expected.

TEST 2: EXECUTING A GREEDY POLICY FROM AN IMPORTED VALUE FUNCTION

The second flight test demonstrates the ability to upload an existing value function and
follow a non-random policy determined by that value function. In this case, the quadro-
tor loaded a nearly-converged value function from 5e7 iterations of ε-greedy simulation.
Test flight 2 follows a fully greedy policy. The result is shown in Figure 2.12. There is
nothing surprising with these results. It follows the greedy path as desired.

Figure 2.12 shows the grid world at each of the nectar states. In nectar state 1, it is
randomly relocated in state [1 1] and it takes the most direct path to the nearest reward
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Figure 2.11: Convergence of V-function with random policy (one test run for 1000 iterations).

state. Each time it reaches a reward state it randomly relocates onto the grid in the next
nectar state. The random relocation spot is shown by a solid red circle. The path it takes
is shown with black arrows, and the final reward spot it navigates to is a dashed circle.
Following the circles and arrows shows us the expected greedy behavior.

ns= 1 ns= 2 ns= 3

ns= 4 ns= 5 ns= 6

Figure 2.12: The imported value function at each nectar state and the actions chosen by the agent with a greedy
policy. The solid red circle shows the location in that nectar state that the agent was randomly generated in.
The arrows show the path the greedy policy the agent followed, and the dashed red circle is the reward sport it
found before beginning at a random location in the next nectar state.
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2.5. CONCLUSIONS
This chapter presents the first step toward greater autonomy in guidance decision mak-
ing for a quadrotor task in an unknown environment. By learning from interactions with
the environment, the reinforcement learning approach works towards more adaptive
and robust decision making for autonomous MAVs.

A simulated honeybee task of collecting nectar and bringing it to the hive, allowed
an agent to learn a near optimal value function using a scheduled ε-greedy policy. After
convergence of the simulation, the agent chooses an optimal mission path through the
grid world. Once the simulation was successful, a real-life quadrotor experiment was
conducted using vision for reward state detection. The results show that the quadrotor
can learn and implement a policy as well as the simulation but is limited in the number
of iterations it can perform. However, since the optimal greedy policy is discovered long
before the value function fully converges, it is therefore not necessary to converge the
value function over millions of iterations to such a small error. This can make learning
in-flight more feasible.

The flight tests show a hybrid approach where learning a value function is initiated
in flight, converged over many iterations in simulation, and then is used again in a flight
test. This is one approach to solve the conflict between limited battery life and the need
for many iterations. The test flights also demonstrated the successful use of vision-based
rewards. Vision therefore shows promise as a reliable tool to increase the autonomy of a
real-life agent.

Not only does this chapter present a successful implementation of a reinforcement
learning task, it also is a demonstration of an inexpensive and accessible means of re-
search by using a commercially available quadrotor and an open source autopilot.

As the resources used for flight tests and the algorithmic approach in this chapter lay
the foundation for the rest of this thesis, the limitations in state space size and the need
for extensive training also act as a guide. Success within this limited example lends itself
to more opportunities of autonomy such as further vision-based detection and identi-
fication of different types of rewards(Chapter 6) for more complex scenarios, or vision-
based (relative) state representations(Chapter 4) which can be useful in expanding to
larger, more realistic domains.
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HIERARCHICAL REINFORCEMENT

LEARNING FOR GUIDANCE IN

LARGE FULLY OBSERVABLE STATE

SPACES

In the previous chapter, a guidance task inspired by a honeybee was presented. The task
was solved with temporal difference reinforcement learning (TDRL). The optimal solu-
tion was found, however, there are some limitations with this approach: 1) Full state
knowledge is necessary, and 2) for the real-life experiment, learning until convergence
is not possible because time and battery life does not allow for the many timesteps re-
quired. We desire to work within even larger environments where the curse of dimen-
sionality makes the reinforcement learning approach prohibitive.

In this chapter, a hierarchical reinforcement learning (HRL) approach is used to ad-
dress these issues. The approach is tested within a large, obstacle-rich gridworld maze.
It is shown that learning can be sped up with a hierarchical approach by decomposing
the problem into subtasks.
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3.1. INTRODUCTION
Reinforcement learning is a machine learning approach which is promising for finding
optimal decision strategies with little or no a priori knowledge of the environment. Using
only interaction with the environment and a reward structure, an agent can learn desir-
able behavior. In Q-learning, this is done by assigning values to state-action pairs and
continuously updating the values as they are visited. However, as the state space of the
environment increases, so does the number of state-action pairs which must be visited
in order to be updated to find a desirable policy. Therefore, scaling up can quickly make
the problem intractable for a reinforcement learning solution since the time it would
take to visit all state-action pairs would be too great for most real-world applications.
The ultimate goal of this thesis is to use reinforcement learning techniques in real-world
guidance applications, and therefore solutions to the problem of scalability must be ex-
plored.

The “curse of dimensionality", as it is commonly known in the reinforcement learn-
ing field, is a well researched problem with no one-size-fits-all solution. One approach
for high-dimensional problems is to move to the continuous domain, which represents
the real world more accurately. With this approach, a function approximation method
such as radial basis functions or neural networks is used to approximate either the value-
function and/or the policy [23, 38, 52]. However, research in the discrete domain re-
mains popular because, for example, convergence guarantees proven in the discrete re-
inforcement learning do not always extend to the continuous counterpart, especially
with nonlinear approximation functions. While keeping within the well-known and easy-
to-implement discrete case, there are also several ways to battle the curse of dimension-
ality.

In this chapter, a hierarchical reinforcement learning (HRL) approach is used to ad-
dress the reinforcement learning limitation associated with exploring large state spaces.
The approach is tested within the large state space of the Parr’s maze: a 86×86 obstacle-
rich gridworld developed as a benchmark to test problems related to large discrete en-
vironments. Learning can be sped up with a hierarchical approach by decomposing the
problem into subtasks. That is, primitive action decisions (such as “go right" or “go left")
are not made every timestep, but higher level decisions (such as “move forward until a
wall is reached" or “turn 180◦") are made with less frequency. The method options is one
of the branches of HRL and was first developed by Sutton et al.[129].

The term flat Q-learning is used throughout this chapter and the following chapter
to describe the traditional discrete non-hierarchical Q-learning with primitive actions.

The goals of this chapter are threefold:

1. To observe and quantify the benefit of the HRL options approach against the flat
Q-learning approach in different sized environments; including a benchmark prob-
lem which has not been used before for this specific methodology.

2. To compare how different user-defined optionsets can affect the benefit of the HRL
options approach and therefore make conclusions about how to design effective
optionsets in the first place.

3. To be used as a stepping block for the state-abstraction HRL chapter, Chapter 4.
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In the next section, the necessary background into hierarchical reinforcement learn-
ing is introduced. In Section 3.3, the setup for the experiments will be described, includ-
ing the simulation environment and the chosen parameters. In Section 3.4 the results
will be presented and observations made. Finally, Section 3.5 will conclude the chapter
with a discussion of the results and a look into the next chapter.

3.2. BACKGROUND
A number of works lay a foundation for the experiments performed in this chapter. It is
assumed that the reader is familiar with Markov Decision Processes (MDPs) and Tempo-
ral Difference reinforcement learning from Chapter 2.2 or from another source (eg. [130]).
The remaining prerequisites will now be presented; beginning with an introduction to
Q-learning and semi-Markov Decision Processes.

3.2.1. Q-LEARNING: STATE-ACTION VALUE
In Chapter 2, temporal difference reinforcement learning was introduced using V π and
its corresponding update laws to find a solution for a honeybee task. MDPs can also
be extended from a state defined function such as V (s) where values for each state is
learned, to a state-action defined function Q(s, a), where values for each state-action
pairs are learned. The Q-function is beneficial because it does not require access to the
one-step action models (Ra

s and Pa
ss′ ) to follow a greedy policy as a V-function policy

does [130].
There are 2 popular approaches for updating state-action value functions Qπ; namely,

SARSA(Eq. (3.1)) and Q-learning(Eq. (3.2)).

Q(s, a) ←Q(s, a)+α
[
r +γQ(s′, a′)−Q(s, a)

]
(3.1)

Q(s, a) ←Q(s, a)+α
[

r +γ max
a

Q(s′, a)−Q(s, a)
]

(3.2)

SARSA is an on-policy update method as it uses the actual states and actions taken
at timesteps t and t + 1 for the update of Q(s, a). Q-learning is off-policy since it uses
the max argument over all possible actions from state s for the update. In this chapter
we use Q-learning and extend the ideas of “flat” Q-learning to a hierarchical approach
described later in this section.

3.2.2. SEMI-MDPS
The semi Markov Decision Process (semi-MDP) maintains much of the same structure
as an MDP, however it expands to a variable timestep. In this way, semi-MDPs work as
a framework to practice reinforcement learning with temporal abstraction, allowing the
agent to take temporally extended series of actions [13, 37, 100, 106, 129].

Let, τ denote the (positive) variable time it takes to take action a from state s.
While an MDP requires the Markov property “historylessness", a semi-MDP can in-

corporate actions which take τ> 1 number of timesteps and therefore within that action
does not satisfy the Markov property. The state transition probability can be stated as
P(s′,τ|s, a) and the expect reward as R(s′,τ|s, a) [37]. The value function from the flat
case as in Eq. (3.2) can therefore be rewritten as:
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Figure 3.1: Visualization of MDP vs semi-MDP. An MDP chooses a primitive action at every iteration, while
an semi-MDP can choose an option which executes several primitive actions before needing to make a new
choice. Source: Sutton et. al[129].

V µ(s) =
∑
o
µ(s,o)

[
Ro

s +
∑
s′,τ

Po
ss′V

µ(s′)

]
(3.3)

where µ denotes the policy and o is a temporally extended action (option) where o ∈O.

For state-action pairings, the expected value is:

Qµ(s,o) =Ro
s +

∑
s′,τ

Po
ss′

∑
o
µ(s′,o′)Qµ(s′,o′) (3.4)

The benefit of semi-MDPs is its ability for temporal abstraction; meaning that it mod-
els temporally-extended courses of action [129]. This is a requirement for many of the
various HRL approaches. Figure 3.1 (source: [129]), visualizes the concept of the semi-
MDP (SMDP) and specifically options. The same actions are ultimately being executed,
however each decision made in the MDP results in one action where one timestep is
taken before a new decision must be made. Each decision made in the semi-MDP ac-
counts for several primitive actions over an extended course of time.

3.2.3. APPROACHES TO HIERARCHICAL RL
The heart of hierarchical RL is in the semi-MDP structure and accompanying concept of
temporal abstraction. Though several researchers have independently developed vari-
ous formalizations using the HRL concept, the most popular ones all use temporal ab-
straction (see Section 3.2.2). The differences of these approaches lie in the hierarchical
structure of the building blocks and the movement between them.

There are three main approaches which have gained attention in the HRL research
community as described by Barto et. al [13]: MAXQ, Hierarchies of Abstract Machines(HAMs)
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and options. In this research it was ultimately decided to follow the options structure.
Therefore brief descriptions of MAXQ and HAMs will now be given along with a more in-
depth description of options and the literature which has extended on that framework.

It should be noted for clarity that the following overviews of the methods will use the
terminology native to the method. On a basic conceptual level, the “machines" of HAMs,
the “subtasks" of MAXQ, and the “options" of options, are all the same building blocks of
the hierarchy and in many ways fulfill the same general function with slightly differing
functionality.

HIERARCHIES OF ABSTRACT MACHINES

Hierarchies of Abstract Machines(HAMs) [101], was first introduced by Parr [100] and
Parr and Russell [101]. Their study resulted in “significant speedup in decision-making
and learning" for a maze environment.

The HAMs approach is a two layer hierarchy with the core MDP on the top layer and
on the second layer a collection of stochastic finite-state machines, denoted

{
Hi , H j , Hk , ....

}
.

Each abstract machine “can be viewed as a constraint on policies". That is, when operat-
ing within a machine, only a subset of all the possible actions are allowed. Constraining
the policy-space in a meaningful way is made intuitive by the “HAM language". Abstract
Machines can then represent any level of behavior using the HAM language, such as,
“only move south and east" or “follow the wall". By using this language associated with
the machine, a user can see the end solution and verbally explain the optimal behavior
for solving the core MDP, M.

A machine is defined by Hi = 〈Mi , Ii , δi 〉, where Mi is the MDP framework of the
machine, Ii is a stochastic function which sets the initial state of Mi , Ii (s) = Si , and δi

is the stochastic transition function. The machine can be in one of 4 possible states:
action, call, choice, or stop. As paraphrased from Parr and Russell [101]: Action states,
execute an action within the environment; call states execute another HAM (ie. H j ) as
a subroutine; choice states nondeterministically select a next machine state; and stop
states halt execution of the machine and return control to the previous call state.

While HAMs can function the same as options, the benefit of the formalization of
HAMs over options is additional functionality. Each HAM is its own separately defined
MDP and can also call another HAM as a subroutine, making a lateral move in the hier-
archy, instead of always having to move up in the hierarchy to a parent decision maker.
Therefore, HAMs is more customizable than options. However, this added functionality
also adds further complexity which translates to further complexity in design and imple-
mentation. Furthermore, since HAMs keep track of the state within the HAMs MDP as
well as the core MDP, the state-action space is larger. Q-learning updates will update the
function Q([s,m] , a), where a is the action taken, s is the state of the core MDP, and m is
the state of the current machine [13].

MAXQ VALUE FUNCTION DECOMPOSITION

MAXQ Value Function Decomposition [37], or simply MAXQ, is an HRL approach using
hierarchical decomposition of tasks. According creator T. Dietterich, MAXQ is an ap-
proach “ based on decomposing the target MDP into a hierarchy of smaller MDPs and
decomposing the value function of the target MDP into an additive combination of the
value functions of the smaller MDPs."
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As opposed to options or HAMs, this approach is true task decomposition instead of
just reducing the problem to one semi-MDP. MAXQ can be designed with as many layers
of hierarchy as the designer wants. The overall value function for a policy consists of a
collection of value functions of the decomposed subtasks.

The MAXQ subtask is defined as Mi = 〈Ti , Ai , Ri 〉, where Ti is the termination pred-
icate which determines when the subgoal has been reached and the subtask can be ex-
ited; Ai is the set of actions for the subtask, where the actions can be primitive actions
or executing a child subtask; and Ri (s′) is the pseudo-reward function, a user defined
reward structure local to the subtask.

The advantages seen for MAXQ is that both state and temporal abstractions can be
realized within the subtasks which can lead to much faster learning by effectively spend-
ing less time in the state space which is unimportant to the task at hand. Furthermore,
when subpolicies for the subtasks are learned, that knowledge can be easily transfered
to a different core task which uses the same subtask. However, this method is also a
source of suboptimality called recursive optimality; where the optimal solution for the
core MDP results in suboptimal solutions in the children subtasks. Furthermore, this
approach is structurally complex in that the design is multi-layered and meaningful sub-
tasks with corresponding subgoals must be selected.

OPTIONS

Hierarchical reinforcement learning with options was introduced by Sutton et. al [129].
The hierarchy consists of 2 layers where the top layer is the core MDP and the second
layer consists of the options. The core MDP is defined as in Section 2.2.1, with the tu-
ple M =< S ,A,P ,R,γ >. The options method follows the same concept as flat rein-
forcement learning except that instead of selecting single timestep actions, an option is
chosen which takes a variable amount of time. The formalization of options is closer
to normal reinforcement learning than either HAMs or MAXQ and is therefore easier to
implement.

Each option is defined by oi = 〈Ii , πi , βi 〉, where Ii is the input set I ⊆S from which
states the option is allowed to be initiated; π is the policy of the options; and β is the
termination predicate which determines under what conditions the option terminates.
An example of an option in simple language could be:

Ii : Option oi may be initiated from any state within the NorthEast quadrant of the maze

πi : Go forward 3 steps

βi : Terminate when the 3 steps are finished or a wall is hit

The whole option structure can also be simplified to a flat scenario where there exists
an option to represents each single step primitive action in the core MDP action set, A,
and each can be initiated in any state withinS , and is always terminated after 1 timestep.

Extending the formalization of flat reinforcement learning to options is simple. Where
the Markov policy over actions was formerly denoted, π in order to update the value or Q
function Qπ(s, a), the semi-Markov policy over options, denoted µ, is used instead. Fol-
lowing from the flat Q-learning update and the new formalization from the semi-MDP
bellman equation in Eq. (3.2), the Q-learning over options update is:
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Q(s,o) ←Q(s,o)+α

[
r +γ max

o∈Os′
Q(s′,o)−Q(s,o)

]
(3.5)

Many works have furthered the concept of options, including a look into automatic
identification of subgoals or optionsets [71, 118, 124, 131, 138]. Applications of options
are most notably the robo soccer keepaway task studied by Stone and Sutton [125, 126].

Options was selected as the base method for this chapter’s work because it is the
closest to the basic principles of flat reinforcement learning and also has the largest mass
of successfully implemented follow-up research. With the end goal of implementation
on a quadrotor task, simplicity and transparency of the method is the safest route.

3.3. EXPERIMENTAL SETUP
The experiments in this chapter make comparisons between multiple state-space sizes,
optionsets, and a few training policy schemes. These configurations will now be ex-
plained along with selected parameters and other details of the experimental setup.

3.3.1. MAZE ENVIRONMENTS
Three different mazes were used to gather results. The “Parr’s maze" was chosen because
it has previously been used as a benchmark for HRL problems [100] and is an interesting
and challengingly large environment. The small and medium mazes were created for
this study for many reasons. The smaller mazes are useful for visualizing the results
which help to understand how the methods work. Furthermore, with 3 different sized
mazes, patterns in results can be observed with regards to the state-space size effect on
learning rate and convergence rate. Finally, smaller mazes were used in order to analyze
the methods faster, since the Parr’s maze is large and requires a larger computational toll.

In Figure 3.2, the mazes are shown. The grid states which the agent can move through
freely are white, and the walls and obstacles are black. The goal states are in yellow la-
beled with a “G" for goal. The small and medium sized mazes were created for this study
and therefore were given a similar structure as the Parr’s maze in order to be a stepping-
block for the larger sized state-space. The obstacles are similar in shape to the Parr’s
maze, and the location and proportion of the goal states are similar.

G
GG

(a) (b) (c)

Figure 3.2: test mazes: small, medium, and Parr’s (large) mazes
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Table 3.1: maze state space and state/action pairing sizes

Maze sizes
Small Medium Parr’s (Large)

# valid grid states 19 75 3690
# states (total) 76 300 14760
# state/action pairings: flat (3 actions) 228 900 44280
# state/option pairings: 4 options 304 1200 59040

3.3.2. STATE REPRESENTATION AND AGENT MOVEMENT

The agent which moves through the maze, occupies one grid state which is defined by
its [x, y] coordinate. Within that grid state, it can have one of four headings: North, East,
South, or West (NESW). Therefore, the full state of the agent consists of the grid state and
the heading state. The agent cannot be inside a wall or obstacle, therefore, the number
of valid states is not merely the height × width of the maze. The state-space size for each
maze is shown in Table 3.1. Valid grid states is the number of white grid states which the
agent is allowed to enter. The total number of states is equal to ‘# grid states×4 headings’.

In flat Q-learning, the agent can choose from one of three primitive actions: 1) turn
left, 2) turn right, or 3) go forward one step. Q-learning updates a table for state/action
pairs. Therefore, the number of state/action pairs is also shown in Table 3.1. With HRL
options, there can be any number of options in the optionset. As an example, an option-
set with 4 options is shown in the table. Note that the # of state/action pairings or the #
of state/option pairings is the size of the Q-function to be stored and updated. The ta-
ble gives some intuition into how quickly the state-space increases when the maze gets
bigger or when additional state information is added or if more actions are available. It
becomes more computationally taxing to visit each state/action pairing enough times to
converge to a reliable Q-function.

3.3.3. OPTIONSET CONFIGURATIONS

In Table 3.2, the configurations of the different optionsets are described. The flat Q-
learning configuration consists of 3 possible actions. These are the primitive actions:
turn left, turn right, and go forward 1 step. The action always takes 1 discrete timestep, t,
and then terminates.

The optionset 1 series, includes the primitive actions and then adds another option
to go forward for τ = 2 timesteps (optionset 1a), τ = 3 timesteps (optionset 1b) and for
optionset 1c, the last option will direct the agent forward until a wall or obstacle is 2 or
less gridblocks in front of it. This option takes a variable time duration.

The optionset 2 series uses a different approach where the primitive actions are not
part of the optionset. Instead, forward movement is encouraged by forcing a step for-
ward after each turn. In order for there still to be a chance to find an optimal path to the
goal, there is also an option for simply going forward 1 step and turning 180◦. Optionsets
2b and 2b follow the same logic as 1b and 1c, in that there are options for going forward
for a temporally extended time.

While optionsets 1a, 1b, 2a, and 2b all terminate after a pre-defined number of timesteps,
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Table 3.2: Configurations of flat Q-learning and HRL Optionsets.

flat Option sets
(primitive) 1a 1b 1c 2a 2b 2c

turn left left left left [left + fwd] [left + fwd] [left + fwd]
turn right right right right [right + fwd] [right + fwd] [right + fwd]

fwd×1 fwd×1 fwd×1 fwd×1 fwd×1 fwd×1 fwd×1
- fwd×2 fwd×3 fwd until* 180o turn 180o turn 180o turn
- - - - - fwd×3 fwd until*

τ, the termination predicate for optionset 1c and 2c, relies on extra information about the
environment. It assumes that a sensor is available to see how close in front an obstacle
is.

It is important to note that a fully converged flat Q-table, can always find the opti-
mal solution since it consists of only the primitive actions. It is, however, possible that
an optionset could be designed such that the optimal solution is impossible or difficult
to find. The optionset configurations tested in this study were selected such that the
optimal solution is a viable solution.

3.3.4. TRAINING AND EVALUATION

A training epoch starts with the placement of the agent in a random state in the maze.
The epoch ends when the agent has reached the goal and updated the Q-function. The
training run follows a random or ε-greedy policy, where the ε is either kept constant
throughout all the training epochs, as in Figure 3.3(a) or the ε is scheduled as in Fig-
ure 3.3(b) to allow for sufficient random action exploration in the beginning and then
ramp up to take more greedy action later in the training. All mazes, despite the size were
trained for 200 epochs. The small and medium mazes were trained using the ramp, since
the early epochs of random exploration were enough to visit most of the states. However,
further random exploration is needed for the larger Parr’s maze, and therefore a constant
ε is used. A short study for the flat case is performed to find the best training policy.

0 20 40 60 80 100 120 140 160 180 200
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ǫ
ǫ(a)

(b)

Figure 3.3: ε-greedy training schemes. (a) constant ε for training, (b) scheduled ε for training.
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Table 3.3: Reward structure

reward type small/med maze Parr’s maze

timestep −1 −1
hit wall −5 −10
goal 10 100

Every 5 epochs an evaluation run is performed and recorded. The evaluation run
starts each time at the furthest (North-West)corner of the maze, facing south. The run
uses a fully greedy policy and the most recent Q-function. The Q-function is updated
temporarily within the evaluation run to avoid endless loops. The maximum number
of timesteps allowed is 200, 400, and 100000 for the small, medium, and Parr’s maze,
respectively.

The whole training and evaluation is a stochastic process and consequently differs
widely by run. Therefore, the whole event is run 100 times for statistical significance. A
study into into the number of statistical samples can be found in Appendix A.

3.3.5. PARAMETER SELECTION
The parameters for Q-learning updates were selected from experience. The stepsize, α
is held constant at 0.9. The discount rate, γ is also 0.9. The reward structure will now be
described.

REWARD STRUCTURE

The reward structure was set in place to drive the agent toward the goal and to penal-
ize hitting the wall to discourage this sort of damaging behavior. A penalty of −1 each
timestep is implemented to encourage use of the fastest route to the goal. The reward
structure was designed based on experience and did not require fine-tuning. The small
and medium sized mazes required different values than the Parr’s maze. Since the Parr’s
maze is so much larger, it needs a larger reward to more quickly propagate out to the
far-away states. With a larger positive reward comes the possibility that a wall hit will, by
random chance, land on a high-valued state, and therefore the wall hit penalty was also
increased, to reinforce the discouraging effect for wall hits. See Table 3.3 for a summary.

Within the option, forward movement is not given a timestep penalty in the case that
it is a τ > 1 option. However, every option which does not reach the goal is penalized
by at least −1. This rule supports the selection of options which takes multiple steps
forward and therefore promotes movement about the gridworld, especially during the
exploration phase when the environment is still very unknown.

3.4. RESULTS
This section first shows the results from the small and medium sized mazes which were
used as a proof of concept before graduating to the Parr’s maze where substantial com-
putational time is needed to perform the statistical analysis. After the analysis is dis-
played and analyzed for the small and medium maze environments, the Parr’s maze re-
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Figure 3.4: Converged Q-table for the small maze after 200 epochs - flat Q-learning using 3 primitive actions.

sults are demonstrated and compared to the smaller mazes. A comparison between state
space size and HRL options performance against the flat Q-learning case is then made.

Table 3.4: optimal number of steps to goal during evaluation run

Small Medium Parr’s (Large)
9 18 162

3.4.1. SMALL AND MEDIUM SIZED MAZES
The utility of the small and medium sized mazes was explained in Section 3.3. Since
easily comprehended visualizations and extensive analysis are more accessible with a
smaller state space, the results for the small and medium results will be compared and
discussed first.

For 200 epochs, each of the mazes is explored by the agent. Figures 3.4 and 3.5 are
examples of the end result for the flat Q-learning configuration and the Optionset 2a
configuration, respectively. At the end of the 200 epochs in the small maze, the Q-table is
converged and is demonstrated showing the state-action Q-values in the location on the
maze, and the heading described as North, East, South, or West on the top of the column.
The action is made known at the left of the row. With this visualization, the Q-value of
every state-action pair can be seen to an accuracy of one decimal point. The action with
the highest value in that state is circled and would therefore be chosen in a greedy policy
scenario. In each case demonstrated in the figures, the Q-values have converged to an
optimal solution. The solution can be said to be optimal if the agent with a fully greedy
policy would arrive to the goal in minimum number of steps. Some of the states have
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Figure 3.5: Converged Q-table for the small maze after 200 epochs - HRL with options using option set 2a.

more than one optimal actions and therefore the Q-values are very similar, but only one
of the actions is circled. Besides the values printed in the grid square, the color of the
square also denotes the value with warmer purple colors are higher value and the cooler
blue color is lower values. The same colorbar can also be seen in Figure 3.6.

The full Q-table is difficult to visualize with larger state spaces; therefore, a more
compact representation is shown in Figure 3.6. This result from a flat Q-learning run
shows the “Value" of that location state averaged over all the heading states and possi-
ble actions; therefore, signifying how generally “good" it is to be in that location over all
headings(NESW) and actions(based on policy, π). An arrow is displayed if, given that
location and that heading state, the greedy action would choose to move forward. In
the results of the small and medium mazes, we can see in the figures that the optimal
forward-moving policy has been found. With this visualization of Q, full optimality can-
not be concluded since there is no way of showing, for example, that an optimal left turn
is taken instead of turning right 3 times. Therefore, an evaluation method is needed to
demonstrate Q-function effectiveness and compare the quality of the learned Q-tables
from different configurations.

Given enough time and enough random exploration, the flat Q-learning will always
find the optimal solution[cite]. Logically,that can also be said for HRL options if all the
primitive actions are included in the optionset. To see if there is a benefit in conver-
gence speed to the optimal path to the goal, an evaluation run was performed every 5
epochs to track the performance. An evaluation run counts how many iterations it takes
to reach the goal from the corner furthest from the goal (top, left square facing south).
The results from the evaluation runs are shown in Figure 3.7 for the small maze, and



3.4. RESULTS

3

47

G
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V

Figure 3.6: Local value-function and foward policy of the small and medium mazes. The “Local Value-
Function" represents the Q-table values summed over all actions and headings in that locale, where the
warmer colors are more desirable states to be in. The arrows indicate “forward policy" i.e. if the greedy ac-
tion is to go forward in that state with that heading.

in Figure 3.8 for the medium maze. These figures plot the average number of steps to
reach the goal during an evaluation run which always starts at the same initial state. To
find the average and standard deviation of the data, the simulation was run 100 times.
For clarity, the standard deviation errorbars are omitted from these figures, but can be
found in Appendix A.3. Note that in discussion of these plots, results will be discussed
using the average values. It is, however, duly noted that the standard deviations are of-
ten large and small differences in the performance between the optionsets may not be
completely accurate and will certainly vary by individual run. However, with 100 statis-
tical sample runs, the trends are valid so it is fair to make conclusions with the averaged
values as plotted. A study to defend the number of statistical sample size was conducted
and is displayed in Appendix A.2.

In Figure 3.7 we see that the agent in the small maze is quick to find the optimal path
(9 steps) regardless of the optionset or flat Q-learning. The state space is small and it
is easy to find the goal. Some of the optionsets are more inclined toward exploration
which means that even with the initial zero Q-table at epoch 0 it is, on average, faster at
finding the goal. Optionsets which go forward more often are, on average, quicker to find
the goal when there is no Q information. This is shown at epoch 0 in Figure 3.7. Even
so, some of the sample runs do not find the optimal path. Optionset 2a, in 100 sample
runs doesn’t always find the optimal solution in 200 epochs. The average performance is
around 11 steps. The other optionsets find the optimal path in 100% of the sample runs
within 70 epochs. For the small maze, the flat case finds the optimal path 100% of the
time by epoch 20; faster than any of the optionsets. However, up until epoch 10, all the
optionsets besides 2a, are performing better on average than the flat case, and it is not
until epoch 15 that the flat case “catches up".

The medium maze is bigger, and therefore takes more steps to explore the environ-
ment. The results are shown in Figure 3.8 in the same manner as the small maze. In
Zoomview-A we see the benefit of the HRL options; most of the optionsets perform bet-
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Figure 3.7: Evaluation results for small maze.

ter than the flat case from the start and continue to perform better until around epoch 35
when the flat case starts to outperform half of the optionsets. By epoch 45, the flat case is
outperforming all the HRL cases as can be seen in Zoomview-B. The flat case converges
first to the minimum number of steps (18), optionset 1a converges to the optimal solu-
tion (100% of the time) by epoch 180, and the other optionsets converge to a suboptimal
solution, on average.

With the small and medium mazes it is shown in two separate environments that the
benefits of HRL is faster learning in the early exploratory epochs, but the weakness as
compared to the flat case, is that options may find suboptimal solutions. The larger the
environment, the more epochs that the HRL options holds onto its benefit.

There are 6 different optionsets used in this comparison. For the medium maze, op-
tions 1c and 2c which have the option to move forward until a wall is in sight 2 squares
in front, perform best in the earliest epochs but also settle more often on suboptimal
solutions. Optionsets 1b and 2b which each have an option to go forward 3 times, per-
form about the same in the middle of the other configurations. Optionset 2a performs
the worst. This could be because it has the least proportion of forward moving actions.
Which means that with a random policy, it is often choosing to turn which leads to slow
progress towards the goal. When another option is added to increase forward motion
(optionset 2b), the performance already improves. The optionset which acts the most
like the flat case is optionset 1a. This is because the options consists of the primary ac-
tions of the flat case plus one option which goes forward twice. Because of this additional
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Figure 3.8: Evaluation results for medium maze.

option, it is better performing in the early epochs, but learns the optimal solution slower
than the flat case.

Optionsets 1a-c (in cool colors), all contain the primitive actions as part of the op-
tionset. Therefore, it is surprising that in the medium maze that these optionsets do not
eventually find the optimal path in the evaluation. This can be because of the training
schedule. The training schedule starts with completely random actions for the first third
epochs, then ramps up the ε of the ε-greedy action policy, and settles for the last third of
the training epochs on ε= 0.8. Flaws in the Q-table can occur due to unequal visitation
of all the state-action pairs. If the training is not random enough, the flaws may not be
fixed in a timely manner because certain actions are being selected much more often
and the better options are not getting the chance to update. This problem is exacerbated
when the state space gets larger unless more random training epochs are added to ac-
count for size increase. In the case that time is restrictive, a quickly-learned, suboptimal
solution may be preferable to a slowly-learned optimal solution. This comes into play
much more with extremely large environments such as the Parr’s maze, for which the
results will now be discussed.

3.4.2. PARR’S MAZE
In Figure 3.9, after 200 epochs the Q-table is not fully converged but a general trend is
clearly seen. The gradient of the colormap shows that the local value-function is higher
at states near the goal and lower further away from the goal. Furthermore, local states
near walls and obstacles are valued less than interior states. This is due to the penalized
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Figure 3.9: Q function represented as a V function by averaging over all possible actions. 200 epochs completed.

actions which run into walls. From this visualization, it can be said that an agent can
utilize the information to find the goal more quickly than random-action, and especially
will have better information the closer it is to the goal.

Figure 3.11 shows one example, for the flat case, of the evaluation runs over the
course of its training. It shows the evaluation runs after epoch 0(no training), epoch 25,
50, 100, 150, and 200. Not every epoch improves the performance of the evaluation run
but it is clear thatthe training is producing better policies starting near the goal and then
extending outward as expected. In the last evaluation run, most of the path is optimal.

Figure 3.12 shows an evaluation example from optionset 2c. Over the epochs, the
evaluation improves as with the flat case, but what is more interesting to see is the ex-
ploration. There are more long lines of forward movement covering more distance. With
a random policy, of course, the agent may go a far distance just to randomly turn around
and go back, but it is consistently faster to the goal in the early training epochs. However,
in the later epochs, the solution looks to be converging to something non-optimal.

The evaluation results in Figure 3.10 shows the averages over 100 sample runs. The
training for all these simulations was fully random. With a zeroed Q-table at epoch 0, all
the optionsets, except 2a, perform find the goal significantly faster than the flat configu-
ration. Optionsets 1c and 2c which encourage long stints of forward movement improve
faster than the other optionsets. The flat configuration improves quickly in epochs 1-30,
but slows its progress and only catches up to the performance of the “c" configurations
at epoch 175.
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The results of the Parr’s maze environment coaberate the results of the small and
medium maze in that options can lead to better performance with less training, but if
enough training can be had, then flat Q-learning will still result in a closer-to-optimal
solution.
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Figure 3.10: Evaluation results for Parr’s maze.
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Figure 3.11: Evaluation paths to goal: flat case

epoch 0 epoch 25 epoch 50

epoch 100 epoch 150 epoch 200

# steps = 37835 # steps = 8419 # steps = 5368

# steps = 4878 # steps = 2292 # steps = 460

Figure 3.12: Evaluation paths to goal: optionset 2c
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3.5. CONCLUSIONS
The findings in this chapter have shown that there are both benefits and disadvantages
regarding the use of hierarchical reinforcement learning over a standard flat Q-learning
approach. By evaluating the learned Q-function of several different configurations, we
are able to observe the performance of a goal-seeking agent in an unmapped environ-
ment and make comparisons between flat Q-learning as well as different pre-defined
optionsets in the HRL options method.

The results of a guidance task in three different sized environments show that HRL
methods have the greatest advantages early in the learning process of an unknown envi-
ronment. The results showed that in the largest maze environment, the best performing
optionset was almost 5 times faster to find the goal than the flat Q-learning case at epoch
0 (before any learning). It was only after 175 epochs that the flat case could, on average,
outperform this optionset. In the smaller mazes, the HRL methods have benefit over the
flat case for less time, therefore demonstrating how temporal abstraction is specifically
useful against the curse of dimensionality.

The disadvantage of the HRL method is that, given enough time to train, the flat case
surpasses the performance of the HRL method and in every environment converges to
the optimal solution fastest. Furthermore, the results show that not all optionsets work
equally well. Some optionsets are not well suited for every task and so care must be taken
to design an effective options configuration or to make automatically trim optionsets or
subgoals [71, 83, 124].

Many learning parameters and different features were explored to find a good version
of the flat Q-learning case. For example, eligibility traces and ε-greedy training variations
were explored (see Appendix A). However, parameter tuning was not performed for the
HRL configurations and therefore, the benefit could be greater than what is shown in the
results.

The findings in this chapter demonstrate the strengths and weaknesses of the HRL
method and set a base for the further work with a hierarchical approach. In application,
this chapter represents a guidance task where GPS is available and in some optionsets a
crude obstacle detection sensor is also available. As the end goal is to implement this for
a UAV guidance task where minimal information and minimal sensors are available, the
next step will be to strip the vehicle of all sensors but a camera.





4
HIERARCHICAL REINFORCEMENT

LEARNING: RELATIVE STATE

REPRESENTATION –
A STATE ABSTRACTION APPROACH

In the previous chapter, a hierarchical reinforcement learning (HRL) approach was used
to address the curse of dimensionality found with temporal difference reinforcement
learning in large state spaces. An expansion of options [129] HRL was explored for a
large maze guidance task. The hierarchical approach was able to improve upon “flat”
Q-learning by introducing temporal abstraction to the available actions.

In this chapter, state abstraction is added to the hierarchical approach, to better rep-
resent the state-knowledge of a vision-based GPS-denied MAV. This can also be benefi-
cial to combat the curse of dimensionality by limiting the growth of the state space as
the environment size increases.
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4.1. INTRODUCTION
The core concept of Reinforcement Learning is to learn desirable behavior for an agent
using interaction with the environment. The ability of any decision maker to choose
successful behaviors depends not only on the quality of the decision process, but also
on the quality of the information on which the decision will be made. In the case of
reinforcement learning, that is the state information. If the state information is irrelevant
to the task at hand or too difficult to interpret, then the decision maker will not be able
to correlate that information into a meaningful behavior policy.

The ideal input to a decision maker is relevant and directly correlated to the desired
output behavior. Complexity of the real physical world and the limitations of current
sensing technology make this ideal difficult to attain; however, state abstraction meth-
ods take a step in this direction.

State abstraction is a method where state representation is designed around what
information is available and what information is deemed most useful for desired out-
comes. The desired outcome of a reinforcement learning Q-learning approach is to con-
verge (as quickly as possible) a Q-function so that the greedy policy is an optimal solu-
tion.

In Chapter 3, a hierarchical reinforcement learning (HRL) approach was used with
an absolute state representation. With this state representation, there is an assumption
that the location of the agent is aways known. Furthermore, scaling up the size of the
environment quickly grows the state space, making the problem intractable.

Real life agents, such as UAVs, function in a continuous (large scale) world and are
often limited in their sensing capabilities. Therefore, to reduce the challenges associated
with scalability and to better represent the state knowledge of a real-life UAV within the
reinforcement learning problem, a state abstraction approach is implemented in this
chapter.

A relative state representation is an abstraction using the state knowledge which can
be obtained from sensors such as cameras or ultrasonic sensors. Therefore, the state
information is relative to the view of the agent. In this way, the state space size is no
longer dependent on the size of the environment as there are a limited number of views
the agent can have (based on the discretization of the state space). The relative state
abstraction can be modified in many ways in order to design a state representation as
close to the ideal as possible: fully relevant and directly correlated to desired behavior.

In this chapter, the relative state representation is explored as a means to improve the
reinforcement learning approach of a maze guidance task by reducing the state space
size. Using the discretized distance from the agent to an obstacle, state representations
are paired with an HRL approach to learn navigation to a goal in the maze.

The most notable finding of the study is the effect of relative state ambiguity on learn-
ing. While the relative state abstraction creates challenges for convergence and is prone
to suboptimality, it is concluded that hierarchical reinforcement learning can effectively
mitigate these issues. Contributions for this chapter include an HRL approach with a rel-
ative state representation which can perform as well as an absolute state representation.
Another contribution is a set of guidelines for relative state abstraction design.

In the next section, previous work in reinforcement learning with state abstraction
is discussed. Next, a state abstraction approach is developed within the context of the
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large maze guidance task from the previous chapter. The simulation results will then be
presented showing a comparison between “Flat" Q-learning reinforcement learning and
the Hierarchical approach of options with several option sets. The results from Chapter 3
will also be re, followed by a comparison to the HRL results. This chapter concludes with
a discussion over the results as well as some insights related to the previous chapter.

4.2. RELATED WORKS
One of the indicators of intelligence is the ability to distinguish between relevant and
irrelevant information when making decisions. As humans, our senses inundate us with
information which we parse through and interpret to find what is relevant for the deci-
sion at hand. For example, a person is tasked to choose a coat for the evening. He has
the whole internet at his disposal, but knows that most of the content is irrelevant. The
relevant information is in the weather app, and most specifically he needs to know the
low temperature for his city. If he lives in a small town for which the weather forecast
is not available, he will likely make the connection that the weather in the most nearby
city is sufficient to make a decision on his coat selection. This is all logical for humans;
however, for machines with access to an excess of information, finding what is relevant
for a given task is not trivial.

Abstraction in the context of reinforcement learning is the selection of relevant in-
formation to represent the Markov Decision Process (MDP) framework 1. Abstraction
comes in several forms, each with its own benefits. The previous chapter introduces hi-
erarchical reinforcement learning (HRL) options which utilizes temporal abstraction to
create extended actions, therefore abstracting the action space. Another form of abstrac-
tion, is state abstraction.

STATE ABSTRACTION FOR REINFORCEMENT LEARNING
One of the earliest challenges identified within reinforcement learning, and Artificial In-
telligence in general, is the challenge of state and action space construction [7, 50].

State abstraction is the mapping of one state space to another in order to most ef-
fectively represent the MDP of a task. State abstraction, also known as feature selection
in the continuous domain, is usually employed in RL to ensure as small of a state space
as possible for quicker convergence of the value function [5, 27, 36]. Usually, the state
representation is determined by the designer.

One interesting class of research is automatic state abstraction, where irrelevant states
are automatically eliminated so as to reduce the state space size and therefore speed up
learning [27]. Others focus on automated feature selection for function approximation
in continuous state spaces [49, 119], and can include human demonstration for quicker
learning of correct feature [30].

STATE ABSTRACTION FOR VISION-BASED REPRESENTATION
When implementing reinforcement learning on a mobile robot there are other chal-
lenges related to state representation. Firstly, the only information is that which can
be sensed. Consider a GPS-denied robot with only a camera for input. Using a value

1See Section 3.2 for the background of semi-MDPs and HRL
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for every pixel in the camera view would result in a huge, intractable state space. Con-
sequently, state abstraction is almost always a requirement for a vision-based reinforce-
ment learning approach.

The effective state representation will depend largely on the task. For example, Michels
et al. abstracts a monocular vision system to estimate the depths of obstacles at high
speeds and learn to avoid collision[86]. Gaskett et al. uses a continuous actor-critic
framework with separate state abstractions for the subtasks of “wandering" and “ser-
voeing" [49]. These are just some examples of many.

COMBINATION STATE AND TEMPORAL ABSTRACTION TOWARDS REINFORCE-
MENT LEARNING

The most promising of the abstraction techniques is a combination of abstractions for
both state and actions (or critic and actor for continuous domain applications). A state
+ temporal abstraction approach has been very successful in reducing state space size
and tackling the challenge of high dimensionality.

Dietterich has taken his HRL MAXQ formalization [37] and expanded the idea to in-
clude state abstraction; where each subtask of the MDP uses its own relevant subset of
the state space. He outlines 5 conditions for the state abstraction which should be fol-
lowed to still guarantee convergence of the MAXQ-Q algorithm and applies the state ab-
straction to the taxi-domain problem[36]. With the same taxi domain problem, Andre et
al. demonstrates an increase in learning speed with guaranteed hierarchical optimality
using state abstraction in the programming language ALisp[5].

Asada et al.(1996) presents a vision-based reinforcement learning method with both
temporal and state abstraction. Learning is performed in simulation and the policy is
then tested on a real goal-shooting robot, where the focus is on the observation of the
reality gap. Automatic state construction for subtasks of the hierarchy was attempted
but was found to be the main challenge of the study [8].

THIS CHAPTER

The content of this chapter differs from other studies in that it is a combination of ab-
straction in the relative state space with a guidance task where the reward is only known
at the end. Vision-based state representation has been paired with reinforcement learn-
ing to learn behaviors such as obstacle avoidance or wandering, and state abstraction
has been used with reinforcement learning to learn end-goal guidance tasks. The task in
this chapter utilizes vision-based state representations with end-goal guidance, which
leads to the challenge of state ambiguity. 2

4.3. STATE ABSTRACTION SETUP
The same discrete grid-world mazes (Figure 4.1) from Chapter 3 are used as test environ-
ments for this chapter. The goal locations remain the same and the evaluation method
is also the same.

2Unlike Partially observable MDP’s, this study does NOT use the POMDP formal framework, instead using the
semi-MDP framework for HRL as described in Chapter 3
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In the previous chapter, the state of the agent in the maze is based on the ground
state, meaning it is represented by the location in X-Y cartesian coordinates in the maze.
In a practical sense, this state representation presumes GPS sensor information or an-
other kind of location estimation knowledge.

G
GG

(a) (b) (c)

Figure 4.1: Test environment mazes: small, medium, and Parr’s (large) mazes

Assuming the absolute state cannot be known or is an undesirable state represen-
tation, a different state representation can be used with a reinforcement learning ap-
proach. In this section we introduce a vision-based state representation designed to
resemble a discretized form of what an agent can see from on-board sensors. In other
words, a state from the perspective relative to the agent. For instance, there may be
one or 2 cameras on-board with a 180◦ field-of-view which can use computer vision
techniques to detect obstacles. A UAV may also carry lightweight ultrasonic sensors to
estimate distance from obstacles or walls [47]. We do not take into consideration the
strengths and weaknesses of the types of obstacle detection methods but assumes that
the method will be accurate for the purpose of state acquisition.

The different state representations used in this chapter are defined as follows:

Heading state The heading state, xh represents the heading the agent is facing from the
possibilities of North, East, South, and West.

Ground state The ground state, xg , of the agent is defined in terms of its X-Y cartesian
coordinates in the grid world.

Vision state The vision state, xv , is represented in terms of what is visible to the agent
in its own vicinity or field-of-view. The size of the vision state will depend on ds

and nd as described in Figure 4.2. Examples of the vision state array can be seen
in Figure 4.3.

Absolute state Consists of the ground state and heading. xa = [xg xh]

Relative state Consists of the vision state and heading. xr = [xv xh]

The research in this chapter investigates HRL effectiveness of relative state represen-
tations. as demonstrated in Figure 4.2. The vision state is an array of length nd , where
each element of the array represents the view of each division with respect to the forward
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Figure 4.2: The relative state representation is partially defined by the distance the sensor detect obstacles,
ds , and the number of divisions its field-of-view is divided into, nd . (a) nd = 3, (b) nd = 5. The default repre-
sentation used for this chapter is ds = 3, nd = 3

xv = [1 3 0] xv = [1 2 3 0 0]

agent
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11

33

2
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Figure 4.3: Vision state examples for relative state representation with (left) nd = 3 [left front right] and (right)
nd = 5, xv = [left diagonal-left front diagonal-right right]

facing orientation of the agent, starting from the left and going clockwise. The value of
each element is the distance (in discrete grid squares) from the agent to the nearest ob-
stacle. If, there are no obstacles within the maximum range of sight, ds , that is “no ob-
stacle” state. Examples for nd = 3 and nd = 5 are shown in Figure 4.3 ((left)and(right)
respectively). In practice, the field-of-view of a camera can be split into any number of
divisions, but in the discretized gridworld, it only makes sense to split it into 3 and 5,
where 5 divisions includes the diagonals. The last element of the relative state array is
the heading state, xh as North, East, South, or West.

STATE SIZE

The relative state size trends with respect to ds and nd can be seen in Figure 4.4. For
each maze, the number of absolute states is constant. Greater nd will also lead to more
information about the state when ds is held constant.

Although the state matrix of the relative state will get very large as ds increases, the
number of states possible to encounter within the maze will never surpass the number of
absolute states. Therefore, using relative state representation reduces the effective state
space.
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Figure 4.4: State size trends for each maze with respect to vision parameters nd and ds .

4.3.1. STATE AMBIGUITY

The relative state representation creates a new challenge. Using an absolute state repre-
sentation, every state is unique. That is, state s for all states s ∈S occurs only once in the
environment. Furthermore, taking action a from state s, will always result in a transition
to state, s′, assuming the transition probability for the MDP is 1, or P a

ss′ = 1. However,
a relative state can occur in multiple locations in a maze environment and therefore,
taking action a from state s may result in a different s′, affecting the Q-function conver-
gence. In such cases, the state is denoted as being ambiguous.

Figure 4.5 demonstrates the ambiguity found in the small maze. The values in the
grid represent how many times that relative state occurs in the absolute representation
of the maze. The rows show the different ambiguous states for values of ds = [2, 3, 4] (top
to bottom), demonstrating how expanding the field-of-view for the vision can decrease
the ambiguity. The columns represent the heading state. Take for example ds = 2 facing
south. There are 3 grid squares which occur 3 times within the maze. This is because for
all three squares, the left and right views have adjacent obstacles, and the front facing
view is in the “no obstacle” state since it can only see 2 squares ahead. As the vision
distance ds increases, the agent can see the southern wall earlier, and the ambiguity for
these states is removed if ds ≥ 4. As seen with some of the states in Figure 4.5, some of
the ambiguity will always exist with a relative state representation.

An analysis was made into the ambiguity levels of each of the mazes for varying rel-
ative state representations. The histogram equivalent of the small maze in the previous
figure can be seen in Figure 4.6 on the top row. The medium maze is analyzed in the
middle row at ds = [2, 4, 6]. The Parr’s maze analysis at ds = [3, 5, 10] is shown in the
bottom row. The histogram counts the ambiguity level which is the number of times
each relative state occurs in the maze. For example, the ambiguity level of a unique state
is 1, and any other value is classified as ambiguous to the degree of its value. With all
the mazes, the distribution of the state ambiguity moves toward becoming more unique
as ds increases. In the case of the Parr’s maze, the ambiguity histogram at ds = 3 shows
that there are 4 relative states which occur over 750 times in the maze and several occur
between 200-400 times. When ds is expanded to 10, the highest prevalence of a relative
state is around 125.

The trends of state ambiguity with respect to varying the state representation can
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Figure 4.5: Ambiguity levels in small maze with nd = 3 and varying ds . The value indicates how many times
that same relative state occurs in the maze. (top row) ds = 2, (middle row) ds = 3, (bottom row) ds = 4 .

be seen in Figure 4.7. The figure plots the ambiguity percentage trend for each maze at
nd = 3(solid lines) and nd = 5(dashed lines) as ds is varied on the x-axis. The ambiguity
percentage is the (number of absolute states which have a corresponding relative state
reapeated elesewhere in the grid) / (the total number of absolute states).

From Figure 4.4, we see that as ds increases, so does the number of relative states
within the maze. Therefore, it can also be noted that the ambiguity percentage decreases
as number of relative states increase.

4.4. REINFORCEMENT LEARNING ALGORITHMIC SETUP
The algorithmic approach for the flat and hierarchical reinforcement learning is the same
as in Chapter 3, with a few notable exceptions now presented.

4.4.1. HRL OPTIONSETS

In addition to the options described in Section 3.3, Table 3.2, two new options are added
for use with the relative representation. These options are called “go around - left(L)”
and “go around - right(R)”. They use the benefit of the vision state to go around obstacles
either on the right or left. For example, the option “go around - L” can be chosen, which
will cause the agent to turn left and keep going forward until there is no longer an ob-
stacle on it’s right side, then turn right and continue going forward until there is another
obstacle in the way. This option is more specifically targeted to this task and therefore,
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Figure 4.6: Histogram of ambiguity distribution over various maze sizes and ds . Constant nd = 3.

may not be as well suited for solving other guidance tasks. However, generalization and
effectiveness of the approach is often a trade-off.

The new optionset is summarized in Table 4.1. The descriptions of Option set series
1 and 2 are condensed “N∗” denotes going forward until an obstacle is detected 2 or less
spaces in front.

Table 4.1: Configurations of flat Q-learning and HRL optionsets.

flat Optionsets
(primitive) 1a-c 2a 2b-c 3

turn left left [left + fwd] [left + fwd] left
turn right right [right + fwd] [right + fwd] right

fwd×1 fwd×1 fwd×1 fwd×1 fwd×1
- fwd×(2/3/N∗) 180o turn 180o turn fwd×N∗

- - - fwd×(3/N∗) go around - R
- - - - go around - L
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4.4.2. PARAMETER TUNING
Tunable parameters in the Bellman equation and in the training policy have an effect on
the convergence and therefore on the performance of the final Q-function. For this rea-
son, two parameter schemes were developed to show how tuning can affect the learning
and the trends found within the various configurations. The first scheme, is simply the
same parameters as was found to be effective with the absolute state representation in
the previous chapter. To find a new parameter scheme more suited for the relative state
representation, a short study was conducted and the results can be found in Appendix B.

From the study into the ε value of the ε-greedy training in Appendix A, it was found
that ε = 0.2 resulted in a positive learning rate effect at the cost of having a less optimal
solution than a purely random training.

With the ambiguity present along with the relative state representation, convergence
can be an issue. While the first scheme uses constant α= 0.9, the second scheme uses a
variable α(s, a) which decreases over k visits to (s, a).

The two parameter schemes are defined as in Table 4.2.
The results analyzed in Section 4.6, use the parameters which were tuned for the

relative state representation (scheme 2).

4.5. RESULT PRELIMINARIES:
PLOT SELECTION AND ANNOTATION

4.5.1. PLOT SELECTIONS
In order to show clear and nonredundant results, only a representative selection of the
results are presented. A study into which results are most representative is given in
Appendix B. The studies determine which HRL optionsets to display as a comparison
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Table 4.2: Parameter schemes for absolute and relative state representations

parameter
Absolute state
representation

(scheme 1)

Relative state
representation

(scheme 2)

Bellman equation
γ 0.9 0.9
α 0.9 1/ 5pk
training policy
ε 0.0 (random) 0.2

against the flat case, as well as a determination of the parameter scheme.

4.5.2. CONFIGURATION NOTATION
For practical purposes the configuration names in the results section sometimes need to
be abbreviated.

State and configuration abbreviations used to label results in this chapter contain some
or all of the following information and may be abbreviated as indicated:

maze size small, medium (med), or Parr’s
state representation absolute(abs) or relative(rel), default: rel
optionset configuration optionset(set) or flat
vision state representation (ds /nd )
parameter tuning scheme scheme (sch) 1 or 2, default: sch. 2

example 1: med-abs-optionset1a (2/3) - sch.1
example 2: parrs-rel-set3 (3/5)

4.6. RESULTS
The aim of this section is to analyze performance trends within flat Q-learning and hier-
archical reinforcement learning relating to state representation and environment size.

For each test case, the performance is evaluated every 5 epochs with an evaluation
run. An evaluation run counts how many steps it takes to reach the goal from the corner
furthest from the goal (top-left facing south) using a greedy policy and the most recently
learned Q-function. The whole 200 epoch training is run multiple times using different
seeds to find an average and standard deviation over several sample runs (100 times for
the small and medium mazes, and 10 times for the Parr’s maze due to time constraints).

When analyzing the data, two values relating to the performance metric should be
kept in mind. The optimal number of steps in an evaluation run is the best performance
the evaluation can achieve. The “flat random” performance is the average number of
steps the evaluation run takes if a random policy of primitive actions were taken. De-
viating from this value over training epochs means that the Q-function is learning (for
better or worse). See Table 4.3 for these values specific to each maze.
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Table 4.3: Evaluation run performance: optimal # steps and average/standard deviation of random policy

Small Medium Parr’s (Large)

optimal # steps 9 18 162

flat random # steps
(mean± std)

160±57 352±91 75370±29031

The results of the evaluation runs are presented in Section 4.6.1 where a compara-
tive analysis aims to find the trends between differing relative state representation and
the subsequent performance. The results for the relative state representation are also
compared to that of the absolute state representation results from Chapter 3.

In Section 4.6.2, the performance of one run from each maze is shown in a visually
informative form. The path of the agent is plotted during the greedy evaluation through-
out the training and the final best path found by the reinforcement learning algorithms.

Finally, the trends and observations seen throughout Sections 4.6.1-4.6.2 will be crit-
ically discussed in Section 4.6.3.

4.6.1. STATE REPRESENTATION
In order to effectively use state abstraction to improve the performance of (hierarchical)
reinforcement learning, it is helpful to understand how different types of state represen-
tations affect the performance and why. This section presents the results of the various
relative state abstractions. The ways we can change the state representation (see Fig-
ure 4.2) include enriching the field-of-view by either 1) increasing the state space size
with a larger line-of-sight distance, ds , or 2) changing the state information structure by
increasing the number of division of the field-of-view, nd . Lastly, the performance of the
relative state representation is compared to that of the absolute state representation.

INCREASING STATE SIZE WITH SENSOR RANGE, ds

As the state space size increases, the ambiguity of the state in the maze is decreased.
Therefore, it is expected that as the state space grows by increasing the distance of the
sensor view range (represented as number of discrete squares), ds →∞, then the ambi-
guity will decrease to its minimum and the performance should improve. However, this
is not always the case.

Each maze environment is analyzed separately. The evaluation results from the small
maze are shown in Figure 4.8, the medium maze in Figure 4.9, and the Parr’s maze in
Figure 4.11. The plots are zoomed in to more conveniently view what is most important.
The flat case results are in the top plot and the results using HRL optionsets are shown
in the plots thereunder. Each plot will compare varying ds and keep the number of field-
of-view divisions constant at nd = 3.

For the small maze, the sensor view distance is varied as ds = {1,2,3,4}. For both flat
Q-learning and optionset 1b, ds = 1 performs the worst as there is not enough state in-
formation to make informed decisions. With ds = 1 there is about 91% ambiguity. Refer
to Figure 4.7 for ambiguity trends with respect to ds . For the optionset 1b configuration,
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Figure 4.8: small maze: Evaluation result trends varying ds for flat case(top), and optionset 1b configuration
(bottom). Averages over 100 sample runs.

state representations with ds = {2,3,4} all converge on average at more or less the same
speed to the same average number of steps to goal of between 9 and 9.25 over 100 sample
runs. This shows that given a certain level and quality of state information, the optionset
(as compared to the flat case of the same state space size) is able to most often find the
optimal solution within a small environment.

For the flat case, increasing ds = 1 → 2 and ds = 2 → 3 improves the performance
as expected. However, increasing from ds = 3 → 4, actually worsens the performance in
both convergence speed and average converged performance even though the ambigu-
ity is also reduced. This result is not intuitive.

With the medium maze, the same unintuitive result occurs for the flat case as seen
in Figure 4.9. Here, the state space representation explored is defined by varying ds =
{2,3,4,5}. For the flat case, increasing ds = 2 → 3 improves the performance, but increas-
ing ds = 3 → 4 and ds = 4 → 5 only hurts the performance even though the ambigu-
ity percentage is decreasing. Therefore, there is some aspect other than just ambiguity
percentage which influences the quality of the state representation. Furthermore, there
must also be an explanation that certain options are able to circumvent this limitation
and produce more optimal results with intuitive trends regarding state representation
and performance.

To analyze this unintuitive trend in the flat case, we must first recall what the per-
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Figure 4.9: medium maze: Evaluation result trends varying ds for flat case (top), and optionset 1c configura-
tion(bottom). Averages over 100 sample runs.

formance metric is. The goal of this reinforcement learning task is to learn a Q-function
which an agent can use to find the optimal path to the goal given a greedy policy. The
metric by which we measure the performance is “number of steps to the goal”. A full
explanation of the evaluation run is found in Section 3.3.4.

The evaluation run up until now has always initialized the agent in the top-left cor-
ner of the maze. Using the same initialization point for every sample run, a good perfor-
mance would be characterized by a convergence over training epochs to the minimum
number of steps to goal and a standard deviation which goes to zero. However, even with
such perfect behavior, starting from the same initial state means the performance being
evaluated is only that of a portion of the state space. Therefore, we can only conclude
that this unintuitive trend for the flat case is occurring in that portion of the state space
between the initial state and the goal. In Figure 4.10 other initial evaluation states are
explored.

Evaluation runs do not affect the Q-function learned from training, therefore the
same Q-function can be evaluated with the agent being initialized at different states.
Figure 4.10(a) is the default (and the same as Figure 4.9(top)), which uses the initial eval-
uation state in the top-left corner of the maze (facing south). Figure 4.10(b) shows the
results when evaluated from the initial state in the top-right (facing west). This evalu-
ation has the same optimal number of steps to the goal as Figure 4.10(a), 18 steps. For
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Figure 4.10(a) and (b), the stated initial state is used for all 100 sample runs. The aver-
ages are plotted without standard deviation for clarity in comparison. In the third case,
as shown in Figure 4.10(c), there is a different initial state used each sample run. The
initial states are randomly generated so it should evaluate a larger portion of the state
space; however the optimal number of steps to the goal in this case is unknown so the
performance metric is limited3.

Several conclusion can be drawn from Figure 4.10, which help to understand the
unintuitive trends for ds with the flat Q-learning case. In Figure 4.10(a) and (b), starting
from two different initial states which have the same optimal number of steps to the goal,
we see that evaluating different parts of the state space will result in different trends.
This is because the ambiguity has a different effect in different regions. Also, in certain
regions of the maze, certain ambiguous states have a beneficial effect. This is seen in
Figure 4.10(a) and (c). In the medium maze, as a whole, the ambiguity configuration of
the state representation ds = 4 results in a Q-function which makes a greedy agent more
prone to non-optimal paths than ds = 3. It should not be forgotten, however, that this is
only for the flat case, and the HRL approach is able to remedy this problem.

The state representations used for comparison within the Parr’s maze are defined by
ds = {3,5,11}. The larger maze is different from the other smaller environments in that
the flat case performance doesn’t learn over the training period. In Figure 4.11, the flat
case (top) shows no improvement over training epochs with any of the state represen-
tations. Furthermore, it is worth noting that a random primitive action selection would
result in a better performance (as stated in Table 4.3).

Using HRL optionset 1c there may be some learning in the largest state space size of
ds = 11 as can be seen in Figure 4.11(middle) that the evaluation performance improves
in the first 50 epochs and converges to a slightly faster path to the goal on average. How-
ever, the state reps defined by ds = {3,5} do not improve.

Optionset 3 has the longest and most complicated options. The Q-function is able
to learn and converge to a better solution than random. Although the averages of the
various ds converge to about the same number of steps to goal, the standard deviation
is smaller with larger ds , indicating that ambiguity leads to greater variance in the per-
formance. The final average performance over 10 sample runs is about 360 steps to the
goal, with the best evaluation performance found as 179 steps to goal.

3The limitation of the default evaluation is noted, however still defended as a good performance metric since
it is useful to know the quantifiable qualities of that run, such as the optimal or random performance. Eval-
uating from multiple intial locations would be best but also time consuming and would add unnecessary
convolution. Therefore, it was decided to stay with the default evaluation over a more all-encompassing ap-
proach.



4

70 4. HRL: RELATIVE STATE REPRESENTATION

0 50 100 150 200

0

50

100

150

200

250

300

350

400

0 50 100 150 200

0

50

100

150

200

250

300

350

400

0 50 100 150 200

0

50

100

150

200

250

300

350

400

st
ep

s
to

go
al

epochepochepoch

flat - ds = 2
flat - ds = 3
flat - ds = 4
flat - ds = 5

(a) (b) (c)

Figure 4.10: medium maze: Flat case results evaluating the number of steps to the goal from different initial
states. (a) initial evaluation state is the top-left state facing south (averaged over 100 sample runs), (b) initial
evaluation state is the top-right state facing west (averaged over 100 sample runs), (c) initial evaluation state is
different every sample, averaged over 100 sample runs.

0 50 100 150 200

1

2

3

×10
4

0 50 100 150 200

6

8

10

12

×10
4

0 50 100 150 200

0

2000

4000

6000

st
ep

s
to

go
al

st
ep

s
to

go
al

st
ep

s
to

go
al

epoch

flat - ds = 3

flat - ds = 5

flat - ds = 11

optionset 1c - ds = 3

optionset1c - ds = 5

optionset 1c - ds = 11

optionset 3 - ds = 3

optionset 3 - ds = 5

optionset 3 - ds = 11

Figure 4.11: Parr’s maze: Evaluation result trends varying ds for flat case (top), optionset 1c(middle) and op-
tionset 3 (bottom) configurations. Averages over 10 sample runs.



4.6. RESULTS

4

71

FIELD-OF-VIEW DIVISIONS, nd

In this section, state abstraction in another form is explored. Rather than increasing the
size of the state space, the structure of the state is changed by dividing the field-of-view
of the agent into nd = 3 and nd = 5 divisions (see Figure 4.2). In each maze, there is a
relative state representation of (ds = x/nd = 3) and (ds = y/nd = 5) which will have about
the same number of states. It is easy to visualize which state representations will have
similar number of states using Figure 4.4. The state representations which were chosen
to be compared are summarized in Table 4.4.

Table 4.4: State and ambiguity information on compared relative state representations for each maze

small maze medium maze Parr’s maze
nd = 3 nd = 5 nd = 3 nd = 5 nd = 3 nd = 5

ds 4 2 5 3 10 5
# relative states 71 71 261 252 2770 2767
% ambiguity 13 13 24 30 95 95

For the small maze, the flat case and optionset 1b are plotted with representations
(ds = 4/nd = 3) and (ds = 2/nd = 5) in Figure 4.12. Although there are the same num-
ber of states in each of the representations and the ambiguity percentage is also the
same, the two representations will have a different distribution of ambiguity as previ-
ously demonstrated in the histogram of Figure 4.6. The flat case shows a clear benefit
using the nd = 5 representation. The performance for optionset 1b is not as affected, but
shows that the nd = 5 rep is, on average, slightly faster to learn.

The same trends are observed for the medium maze, where the flat case and option-
set 1c are plotted with representations (ds = 5/nd = 3) and (ds = 3/nd = 5) in Figure 4.13.
In this case, the nd = 5 representation has less total relative states but still performs bet-
ter than the nd = 3 cases, on average. The “jumpy” behavior of optionset 1c-(3/5) can be
an indication that there are ambiguous states that have conflicting optimal actions. This
means the performance can differ epoch to epoch based on which states were randomly
visited in the trainings since the last evaluation run. A more detailed discussion of this
behavior is in Section 4.6.3.

For the Parr’s maze, the flat case, optionset 1c, and optionset 3 are plotted with repre-
sentations (ds = 10/nd = 3) and (ds = 5/nd = 5) in Figure 4.14. The flat case still does not
learn within the 200 training epochs, although the nd = 5 case inherently finds the goal
faster. The performance for flat-(10/3) fluctuates around an average of 82,465 steps, and
flat-(5/5) fluctuates around an average performance of 67,818 steps. Since the greedy
evaluation runs learn online in order to avoid getting stuck in loops, this means that
the Q-function learned online for flat-(10/3) is actually learning a greedy behavior worse
than random, and the Q-function learned online for flat-(5/5) is learning some behavior
which is marginally favorable over random.

For optionset 1c, both representations learn during the 200 training epochs. Al-
though both cases struggle to converge, as shown by the standard “jumpy” behavior,
it’s clear that the nd = 5 learns faster initially and converges to a fewer number of steps
to goal on average. Specifically, nd = 5 outperforms the nd = 3 case by an average of 3451
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Figure 4.12: small maze: Evaluation results with flat case and optionset 1b with (ds = 4/nd = 3) and (ds =
2/nd = 5) relative state representations. Averages over 100 sample runs.

steps in the first 50 epochs and once it converges, the performance is better by 3077 steps
on average in the last 50 epochs.

Optionset 3 is by far the best performing configuration. Between the representations
using nd = 3 or 5, they are close but nd = 3 outperforms nd = 5 by 462 steps on average
in the first 50 epochs, and a 69 step average in the last 50 epochs.
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ABSOLUTE VS. RELATIVE

Now that the various relative state representations have been examined, it is interesting
to see how even more fundamentally different state abstractions compare against each
other. In the last chapter, the hierarchical reinforcement learning problem was analyzed
using the absolute “ground” state. With absolute state representation, every state in the
environment is unambiguous. Due to this, the state space size increases as the maze
does and so learning speed also suffers. Therefore, the expectation is that as the mazes
get bigger the relative state representation will have some benefit in early learning speed
over the absolute state representations.

In this section, the absolute state results from the previous chapter are shown against
the evaluation performance of one of the relative state representations from this chapter.
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Figure 4.15: small maze: absolute vs relative state representation - (ds = 2/nd = 3). Averages over 100 runs.

The comparison of the small maze is shown in Figure 4.15. The flat case and op-
tionset 1b are plotted for the absolute state representation and the relative state (ds =
2/nd = 3) representation. The relative representation has 61 states to the absolute’s 76;
about 20% less states. While the benefit for relative representation is that there are less
states, the drawback is that the solution is less than optimal, on average. Absolute state
representation using flat Q-learning or optionset 1b will find the optimal solution 100
out of 100 times after 45 epochs. The relative state representation has no such guaran-
tee. As with all other results, the relative representation with flat learning is the poorest
performer and the HRL optionset learning method improves upon it greatly, in this case
cutting the number of needed steps to goal in half. Furthermore, the hierarchical ap-
proach with relative state representation finds the optimal at at least one evaluation run
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100 out of 100 times. This means, that an optimal Q-function is found at some point
and then further training causes it to become non-optimal due to the ambiguity and the
random nature of the training. In a practical application, the optimal Q-function could
thus be remembered and more effectively utilized if desired.

The comparison of the medium maze in Figure 4.16 plots the flat case and optionset
1c for the absolute state representation and the relative state (ds = 5/nd = 3) represen-
tation. The relative representation has 252 states to the absolute’s 300; about 16% less
states. The results for this maze just solidify that conclusion that the relative flat case
will not perform better than the absolute flat case, even in the early epochs where it was
predicted that the relative state representation could lead to faster learning rate. How-
ever for HRL, the optionset 1c does show a learning rate advantage over the absolute
state representations in the early epochs: from epoch 5-25. In convergence, the absolute
flat learning configuration finds the optimal path 100% of the time by epoch 60 while the
relative state representation finds it slower. Both absolute and relative representations
with optionset 1c configuration find the suboptimal path of 20 steps to goal.
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Figure 4.16: medium maze: absolute vs relative state representation (ds = 5/nd = 3). Averages over 100 runs.

The comparison of the Parr’s maze is shown in Figure 4.17. The flat case and op-
tionset 1c are shown for the absolute state representation and the relative state (ds =
5/nd = 3) representation; the same representation scheme as the medium maze dis-
played. Additionally, optionset 3 results are shown only for the relative state representa-
tion since the absolute state is assumed to not have the state information to run option
“go around”. The relative representation has 582 states to the absolute’s 14760; about
96% less states. The relative flat case and relative optionset 1c do not learn, as previ-
ously observed. The absolute flat case will always find the optimal given enough time
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and enough random exploration. At the end of the 200 epochs, the absolute flat case is
approaching the optimal of 163. However, for the first 175 epochs the absolute optionset
1c and the relative optionset 3 performs much better than the absolute flat; on average 5
and 22 times faster, respectively, in the first 50 epochs.

The relative HRL optionset 3 configuration has the advantage of containing the longest
extended action option. The options “Go around - Left” and “Go around - Right” are also
more customized toward this particular problem and only available using the relative
state representation. Nevertheless, Optionset 3 is consistently superior to all the other
configurations for the Parr’s maze. Even though the absolute flat case will eventually
reach the goal faster and more consistently than any of the relative representation con-
figurations, the HRL approach using optionset 3 will find the goal over 20 times faster in
the first 50 epochs, and will do it with only 4% of the states needed by the absolute state
representation.

More conclusions from these results will be discussed in Section 4.6.3.
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4.6.2. FINAL LEARNED PATHS
In this section, the results from a single run are presented for each maze. These figures
give a visually intuitive explanation of how the agent learning progresses throughout the
training. The markers on the images in Figures 4.18-4.20 (a), represent all location states
which were visited in select evaluation runs throughout the 200 epochs. The number of
steps to the goal for that evaluation are indicated in the figure. The arrows on the larger
(b) parts of the figures go into more detail by showing the direction of the heading. Each
(b) plot is the same as the final path at epoch 200. The initial evaluation state is always
in the top-left corner facing south.

(a) (b)

epoch 0 epoch 25 epoch 50

epoch 100 epoch 150 epoch 200

# steps = 28

# steps = 9# steps = 9# steps = 9

# steps = 9# steps = 9

Figure 4.18: Performance progression of a typical sample run in the Small maze with relative state representa-
tion - (ds = 3/nd = 3) - optionset 1b

(a) (b)

epoch 0 epoch 25 epoch 50

epoch 100 epoch 150 epoch 200

# steps = 127

# steps = 23

# steps = 23

# steps = 20# steps = 20

# steps = 20

Figure 4.19: Performance progression of a typical sample run in the Medium maze with relative state repre-
sentation - (ds = 3/nd = 3) - optionset 1c
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(a)

epoch 0 epoch 25 epoch 50

epoch 100 epoch 150 epoch 200

# steps = 3052 # steps = 4358 # steps = 1007

# steps = 408 # steps = 723 # steps = 179

(b)

Figure 4.20: Performance progression of the sample run with the best result (of 10 samples) in the Parr’s maze
with relative state representation - (ds = 5/nd = 5) - optionset 3
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4.6.3. RESULTS DISCUSSION
The trends and observations of relative state representation and this performance metric
are now discussed.

By evaluating the Q-functions which are learned given different state representa-
tions, several take-away points have been compiled in the following topics discussed
in this section:

• Understanding the (side)effects of relative state representation

• The trade-offs of relative state representation

• The benefits of Hierarchical approaches with relative state representation

• Guidelines for designing a relative state representation

EFFECTS OF RELATIVE STATE REPRESENTATION: NON-SMOOTH CONVERGENCE, AMBIGU-
ITY, AND SUBOPTIMAL SOLUTIONS

Using a relative state representation will result in a non-smooth convergence as seen in
the previous results. This “jumpy” behavior and a continued large standard deviation in
later epochs occurs because of ambiguity. The performance can differ epoch to epoch
based on which states were randomly visited in the trainings since the last evaluation
run.

Say there are two locations in the gridworld, x1 and x2. Both have the same rela-
tive state, xr , despite being geographically far away. The state, xr is ambiguous with a
level of 2. This kind of situation will happen easily in the large environment and not as
often in the small maze environment. State x1 is close to the goal and therefore no mat-
ter which primitive action is taken, the next state will have a relatively high maxQ(s, a)
value. State x2 is not very close to the goal, and therefore no matter what primitive ac-
tion is taken, the maxQ(s, a) value will not be as high. Even if it turns out both grid
locations have the same optimal action, the value in the Q-function will fluctuate de-
pending on which state-action pairs happen to be visited during that training. The value
of this state will also propogate its influence outward to the neighboring states as per
the RL update law (Eq. (3.2)). Extend this situation to a state space where several ground
states are represented by the same relative state and the optimal actions are conflicting.
The problem then compiles with several geographical locations influencing each other
in hard-to-predict ways.

This ambiguity arrangement will lead to not only “jumpy” behavior, but also to sub-
optimal convergence; where some states will give the correct greedy action and others
not. It will also be possible to be stuck in action loops (ie. turning right then left infinitely)
which will take time to accrue enough penalty to break out of this behavior when updat-
ing the Q-function during the evaluation. The more an ambiguous state-action value
has been influenced in a negative way, the longer it will take to accrue the necessary
penalty, all the while updating the Q-value in other locations which may be visited later
in the evaluation run. This explains why some of the configurations actually perform
worse than a random policy. The ambiguity arrangement of that state representation
and maze is prone to Q updates which cause action loops which take longer to break
than random choice. Getting trapped in an action loop is more likely in the larger mazes
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since the likelihood of the evaluation path taking the agent by many of these ambiguity
traps is also higher. In the Parr’s maze, the flat case results did not learn despite increas-
ing the state space size of the relative representation. It could be that increasing the state
space size further could have led to an improvement, however the time required in the
simulation was deemed too taxing.

Another observation which supports this claim of “ambiguity arrangement” impor-
tance, is that the nd = 5 representation tends to perform better in the small and medium
maze given the same state space size as the nd = 3 case. Therefore, the ambiguity ar-
rangement proves to be more favorable for the nd = 5 representation in the small, medium
maze, and optionset 1c in the Parr’s maze, and to not make much of a difference for op-
tionset 3 in the Parr’s maze.

Based on the results and this explanation, the conclusion can be drawn that ambi-
guity percentage is not the only influencing factor. If there is a particular representation
which has a more favorable ambiguity percentage but the ambiguous states are situated
in an unfavorable way, the convergence of the Q-function will be affected and the per-
formance will suffer. However, the flat Q-learning case is primarily influenced by this
negative trait of relative state representation.

ADVANTAGES AND CHALLENGES OF RELATIVE STATE ABSTRACTION WITHIN REINFORCE-
MENT LEARNING

As previously discussed, relative state representation is necessary when no other state
estimation can be obtained and advantageous in cases when an environment is too large
for absolute state representation and limited state space size is desired.

The advantage of relative representation and its associated smaller state space is
demonstrated in Section 4.6.1 with the comparison between relative and absolute state
representations. When used in combination with HRL options, the relative representa-
tion is able to learn with a fraction of the states needed for the absolute representation.
However, this comes at a cost.

The disadvantages of relative representation are the product of ambiguity, as dis-
cussed in the previous subsection. To combat these disadvantages, the challenge is to
find a representation which is least prone to the pitfalls as well as an appropriate option-
set for the task at hand. This challenge is not easy when applied to general problems
where environment is assumed to be unknown; however, if knowledge of the problem
task is available it can be used to guide the design of the approach.

EFFECTS OF HIERARCHY

For the relative state representation, the hierarchical reinforcement learning approach
is vital. With absolute representation, the flat Q-learning RL performs the best in terms
of final converged solution but with a trade-off of learning speed where HRL excels. It is
a trade-off. However, with relative representation, there is no trade-off; the results show
that the HRL options approach outperforms flat RL in every metric.

Optionset selection also proves to be an important aspect of relative as well as abso-
lute representation. In the Parr’s maze with certain state representations, the optionset
selected can make the difference between learning and not learning. For example, in Fig-
ure 4.11, the flat case doesn’t learn with any representation, optionset 1c can only learn
using the representation with the largest state space, and optionset 3 learns well with all
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the representations. In fact, optionset 3 performs better than any of the absolute rep-
resentations do for the first 175 epochs. However, claiming superiority for relative over
absolute state representation with optionset 3 is not a fair claim due to the “go around”
option being unavailable in the absolute case.

The consistent superiority of optionset 3 in the Parr’s maze infers that in large en-
vironments, the optionset with the longer extended actions performs the best. This is
likely because taking extended actions bypasses the action loop traps. The poor perfor-
manc of the flat cases show that taking only primitive actions compounds the problems
associated with ambiguity since updates are made at every time step. When actions
are extended, there are fewer decisions made and therefore fewer updates and fewer
chances for the Q-values of the state/action pairs to become obscured with its other am-
biguous states. Even so, the best solution for optionset 3 in the Parr’s maze (Figure 4.20)
gets caught in one action loop trap which can be seen by the extraneous turns before
continuing on the path towards the goal.

DESIGN GUIDELINES FOR A RELATIVE STATE REPRESENTATION

To overcome the challenges of relative state representation and still reap the benefits of
reinforcement learning, the following are suggestions for formulating the state represen-
tation:

Use hierarchical reinforcement learning: Use available knowledge of the problem to
create (or learn) helpful options. If the environment is large, longer extended-
action options are beneficial.

Choose the representation with favorable ambiguity arrangement: This will change from
task to task and may be hard to predict. In general, try to reduce the amount of ex-
treme “ambiguous state value separation”. For example, nd = 5 performed better
in most cases than the nd = 3 representation with of the same state space size.

4.7. CONCLUSIONS
The content of this chapter explored the effect of state abstraction and state ambiguity
on a guidance task solved with hierarchical reinforcement learning.

The extended action concept of options proved to be a capable approach for the task.
For the relative state representations there is a clear benefit over “flat” Q-learning in all
environments and all representations. However, HRL is not a perfect solution to am-
biguity. Performance of a relative state representation fluctuates due to the ambiguity,
never fully converging to a single solution. Sub-optimality depends on the ambiguity
arrangement associated with the state representation or if the optionset selected is not
equipped to overcome the ambiguity. Therefore, this chapter contributes a guideline for
designing a relative state representation and optionsets for specific tasks.

With a favorable relative state representation and optionset, and 96% less states, hi-
erarchical reinforcement learning can perform on par with or better than RL or HRL with
an absolute state representation in the Parr’s maze. The flat Q-learning absolute repre-
sentation is still the only configuration which, though slowly, finds the optimal solution.
However, for most applications the benefit of improved performance early in training
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outweighs the promise of optimality in the long run. In future work, a sensor suite could
be assumed which combines absolute and relative state knowledge. A combined state
abstraction or state/reward abstraction could prove to have benefits from both worlds.

This chapter concludes that state abstraction to a relative state representation cre-
ates an advantage of reduced state space but at the cost of the challenges associated
with ambiguity. These challenges, however, can be mitigated using carefully thought-
out state representation and hierarchical reinforcement learning with effective options
selection. The new guidelines for state representation design can be applied to a rein-
forcement learning quadrotor agent, in a large scale GPS-denied environment, for effec-
tive and adaptive decision making in a guidance task, using only camera sensors. The
end goal of implementation onto a UAV guidance task is now within reach and is the
subject of the upcoming chapter.



5
SELF-TUNING GAINS OF A

QUADROTOR USING POLICY

GRADIENT REINFORCEMENT

LEARNING

In the previous chapters, reinforcement learning was used to address problems within
the scope of high-level guidance. This chapter demonstrates one way in which to imple-
ment reinforcement learning into a low-level control of a quadrotor.

Model-free reinforcement learning needs time to explore states and actions in order
to find the best action for each state. When it comes to a low-level control policy, random
unconstrained exploration of actions would inevitably result in unsafe scenarios for a
quadrotor. Therefore, in this chapter a method is developed which uses a simple model
to intelligently direct exploration. A “tried and true" PID controller is implemented as a
low-level controller and reinforcement learning policy iteration is used to tune the gains.
First, this method is validated in simulation using an F-16 aircraft model as a platform.
The approach is then tested experimentally with a real quadrotor to self-tune the PID
gains of the vertical control loop during a take-off maneuver.

The content of this chapter has been published in:

J. Junell, T. Mannucci, Y. Zhou, and E. van Kampen. Self-tuning Gains of a Quadrotor using a Simple Model
for Policy Gradient Reinforcement Learning. In AIAA Science and Technology Forum: Guidance, Navigation
and Control Conference, San Diego, CA, USA, 2016. [66]
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5.1. INTRODUCTION
Autonomous flight of Unmanned Aerial Vehicles (UAVs) and, especially, Micro Aerial Ve-
hicles (MAVs) is challenging in the realm of control for many reasons. Dynamics of the
system can be difficult to model, the vehicles are often more susceptible to unforeseen
disturbances, and they can have sensor or actuator limitations due to weight and size
requirements. One method to address these problems is to create learning or adaptive
controllers. Reinforcement learning (RL), for example, can make a system learn desired
actions with little or no a priori knowledge of its dynamics or environment and can adapt
to changing conditions [130]. For these reasons, RL has become a promising tool for im-
proving autonomous flight in many different types of UAVs and MAVs [1, 18, 79, 139].
This chapter will focus on hybrid approach which uses a simple or incomplete model
of a system in order to decrease the number of real-life trials needed in reinforcement
learning policy improvement.

Policy improvement for a finite number of states and actions is an attractive method
for policy search since it guarantees convergence to the optimal policy, π∗ as well as an
optimal value function, V ∗ for all states [130]. However, sweeps of the whole state set
are required each iteration. Modern computers can now handle the computational load
of large state sets but of course there are limits and methods have been explored to cope
with high dimensionality [12, 73]. For continuous problems, function approximations
have been used with success [38, 128]. Guarantees of local optimum policies are still
present but a near-perfect model of a system is necessary. By using a crude model in
simulation to do some of the heavy computational work, it is possible to decrease the
number of real-life trials and still guarantee convergence to a locally optimal policy [2,
142].

This hybrid model-based approach is advantageous for vehicles which need local
tuning of gains, since it is guaranteed to find the local optimum but not the global. The
AR.drone 2 quadrotor, for instance, could benefit from this since the blades of the ro-
tors can become less efficient over time, therefore decreasing the maximum amount of
thrust available or adding additional actuator delay. An optimal policy can be found and
used by some means but will shift over time. By using the old optimal gains as a start-
ing point, the new optimum can be found with this approach. Another vehicle which
could benefit is a flapping-wing MAV such as the Delfly. 1 2 Efforts are being made to
model this complex system [6, 24], however inconsistencies in the manufacturing make
each individual vehicle unique. Hand tuning the gains of the controller gives desirable
performance, however it is time consuming work. This approach could use the finely
tuned gains from, say, vehicle A as a starting point, and as long as the newly manufac-
tured vehicle B is not too different from A, the optimal gains for this new vehicle should
be reachable with only a few real-life trials using a “good enough" model and policy gra-
dient RL.

A background of reinforcement learning policy iteration and other necessary algo-
rithmic information as it is applied to this problem is outlined in Section 5.2. The exper-
imental setup with regard to how the policy improvement algorithm will be applied to
the F-16 and quadrotor platforms is described in Section 5.3. The F-16 results and anal-

1TU Delft Robotics Institute. http://robotics.tudelft.nl
2http://www.delfly.nl/index.html
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ysis are in Section 5.4. The quadrotor simulation results are found in Section 5.5. The
setup and results from the real-life quadrotor flight tests are presented in Section 5.6. An
overview of all the results is discussed in Section 5.8.

5.2. BACKGROUND
Since PID controllers are heavily relied upon in industry, there has been no shortage of
methods which have tried to improve upon gain tuning. In this section, we take a brief
look into the background of gain tuning, policy improvement reinforcement learning,
and the hybrid approach which inspired this research.

5.2.1. PID GAIN TUNING

The performance of controllers for aircraft and other applications are often reliant on
the tuning of their gains. While PID controllers are prevalent in many fields due to its
simplicity and reliable performance, poorly tuned gains can detract from these benefits.
In order to improve upon this control strategy, researchers throughout the last several
decades have come up with a number of successful procedures or tools.

Rule-based gain tuning is one of the most simple approaches, where a set of rules are
determined which can easily be followed. One of the oldest and well-known approaches
is the Ziegler-Nichols method where gains can be calculated using measurements of the
step response of the plant [147]. In other methods, if the plant’s model is well known,
gains can be tuned based on performance and stability criteria. Traditional examples
include pole placement and designs based on gain and phase margin [31].

When an accurate model of the plant is not available, the options for gain tuning are
less well-known. If the hardware for the system is available and easily tested, a plant
model can be created using the input-output data from the tests and system identifi-
cation methods. With the created model, the gains can then be tuned by traditional
model-based methods. If the system cannot be tested, or is too complex to be easily
modeled with system identification, there has been some research into model-free gain
tuning and gain scheduling. A non-linear adaptive gain tuning method uses iterative
feedback tuning [82]. Another approach called “model-free control" uses“intelligent"
PID controllers (iPIDs) by replacing a complex mathematical model with what they call
an “ultra-local model" which uses a piecewise function approximator to estimate the
model dynamics [43].

The method proposed in this chapter is a hybrid approach which lies inbetween
model-dependent and model-free and will now be introduced.

5.2.2. GRADIENT POLICY ITERATION IN REINFORCEMENT LEARNING

The basic framework of RL consists of a learning agent and its interaction with a finite
Markov decision process (MDP). Let S and A(s) be defined as finite sets of states and
actions, respectively. P (s′|s, a) is the state transition probability from state s to s′ given
action a, and R is the reward function. The policy,π, is a mapping between states and ac-
tions. The value function, V π(s), represents the value of being in state s given that policy
π is being followed. The goal of reinforcement learning, in general, is to gain information
about V π using interaction with the environment in order to find an optimal policy from
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which to determine desired actions. Policy iteration, iteratively improves upon V π and

π in phases as seen in Eq. (5.1) [130]. Where
E→ denotes an evaluation phase of the policy

to obtain V π(s) for all s ∈ S, and
I→ denotes a policy improvement phase in which π(s) is

found for all s ∈ S.

π0
E→V π0 I→π1

E→V π1 I→π2
E→ ...

I→π∗ E→V ∗ (5.1)

Since V π(s) for every state in the finite state set is evaluated each iteration, this ap-
proach is guaranteed to converge to the global optimum, V ∗ and π∗. However, one can
see how a large state set can lead to an unmanageable amount of computation to reach
this optimum. Additionally, this guarantee only applies to discrete cases where as most
real world problems are in the continuous domain. Therefore, this concept can be used
with function approximation for the value prediction in order to alleviate the number of
necessary evaluation computations in a continuous state problem. A simple and widely
used parameter update method for function approximation is gradient-descent. In this
case, the policy, πθ is represented by parameters~θt = (θt (1),θt (2), ...θt (N )), and Vt is any
differentiable function of~θt .

Vt = f (~θt ) (5.2)

With this, one can setup a parameter update rule:

~θt+1 =~θt −α∇~θt
f (~θt ) (5.3)

Where α is the stepsize and ∇~θt
f (~θt ) denotes the partial derivative vector for any

function f ,

∇~θt
f (~θt ) =

(
δ f (~θt )

δθt (1)
,
δ f (~θt )

δθt (2)
, ...,

δ f (~θt )

δθt (N )

)
(5.4)

The function f can also be denoted as a performance measure, ρ. The performance
measure used for this research is the mean absolute error(MAE) evaluated at a fixed
timestep over the run. The derivative vector will point in the direction the error decreases
most rapidly.

This approach has been proven [128] to converge to a local optimal policy for the
performance measure. 3

Even though the local optimum is guaranteed, and even though it applies to contin-
uous space using a function approximation, the optimal policy is solved for the model
of the true system, with which the performance measure is evaluated. If the policy is
learned on a model and intended for use on a real system, the guarantee is no longer
valid unless the model is a perfect representation. Otherwise, the optimal policy can be
learned on the real system if that is an option, but to find a crude derivative vector will
require at least as many real-life trials as number of parameters in ~θt for each iteration.

3The step-size, α, must satisfy the stochastic approximation conditions
∞∑

k=1
αk =∞ and lim

k→∞
αk = 0.
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Since a perfect model doesn’t exist and even an adequate model is sometimes not
available, this method needs some adjustments in order to account for model inaccura-
cies. The policy iteration algorithm which works on continuous domain problems and
doesn’t require a perfect model is found in gradient decent policy improvement using
inaccurate models. The background for this approach will now be discussed.

5.2.3. POLICY IMPROVEMENT USING INACCURATE MODELS
The use of gradient policy iteration is promising in that it guarantees to find a locally op-
timal policy for some performance measure, ρ(πθ). However, this is only guaranteed if
a perfect representation of the process is known and the performance measure is differ-
entiable by the policy parameters,~θt . The derivatives found are then used to update the
policy parameters in the direction of steepest improvement. The computational cost ac-
crues from the derivative calculations and policy evaluation. Policy evaluation is just one
run per iteration to find the performance metric; however, the more policy parameters,
the more derivative calculations are necessary and so this part can make up a large por-
tion of the computation needs. Since only the direction of the derivatives is needed for
the update, it is possible to find the direction, ∇~θt

f (~θt ), using a model. Updates from the
derivatives, along with policy evaluation from real-life trials can converge in the same
way to a locally optimal policy with less real-life trials since the model has taken the
workload of the derivative calculations.

In Abbeel et al.(2006) [2], an approach is presented which learns near-optimal poli-
cies for a non-stationary MDP described by M = (S, A,T, H , s0,R), and its inaccurate
counterpart defined as M̂ = (S, A, T̂ , H , s0,R), where S and A are the state and action
sets, respectively, T and T̂ denotes the true and model-based process, respectively, H is
the number of time steps, and R is the reward function. They explain the algorithmic
approach using the following steps:

1. Initialize model for i = 0. T̂ (0) = T̂ .

2. Find a locally optimal policy πθ(0) for T̂ using a policy search algorithm.

3. Evaluate πθ(0) in the real MDP, M , and record the state-action trajectory and the
performance, ρ(πθ(0) ).

4. Construct a new model, T̂ i by adding a time-dependent bias term outside of the
control loop, so that the model outputs an estimated real system output from
which to calculate derivatives. Specifically set f̂ (i+1)

t (s, a) = f̂t (s, a)+s(i )
t+1− f̂t (s(i )

t , a(i )
t )

for all times, t .

5. Find the derivative vector∇~θt
ρ̂(πθ) such that the real performance measureρ(πθ(0) )

improves from the former iteration.

6. Solve for the next policy by a line search in the gradient direction. ~θ(i+1) =~θ(i ) −
α∇~θ(i )ρ(πθ). Use multiple step-sizes, α and choose the best performing policy as
policy πθ(i+1) .

7. If the line-search does not return an improved policy, then return the current pol-
icy and exit. Otherwise, i ← i +1 and continue at step 3.
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The steps are visualized in Figure 5.1, which shows the necessary experimental setup,
where the model plant is represented by the simulation model MDP, M̂ and the real/true
system is represented by the MDP, M . In this paper, M is called the true system if it is
a simulation or the real system if it is a real-life flight. The policy improvement analy-
sis uses the bias from the πθ(i ) evaluation flights along with many runs of the model at
varying policies to find the partial derivative vector used for policy updating.

policy improvement analysis

Maneuver results for πi

sim v. real

-plant-
simulation model

-plant-
real/true system

policy πi

(gains)
controller

x ′ = Ax +Bu
y =C x +Du

Figure 5.1: The policy,πi , is implemented in both the system model and the real-life process. The data from the
real-life trial will be used in collaboration with the mathmatical model to find a policy, πi+1 which improves
the performance of the real system.

The research in this chapter takes this concept and expands it to a real-life quadro-
tor application using a very simple model. The extreme simplicity of the model gives a
greater challenge to the approach as it may not capture the necessary derivatives of the
real dynamics.

5.3. EXPERIMENTAL SETUP
Three experiments are presented in this chapter. The first two are fully within simula-
tion and the last is with a real system. In this section, the descriptions of the mathe-
matical models and true systems for each of the experiments are described along with
controllers and explanations of the reasoning behind the decisions which were made.

5.3.1. NOTES ON NOTATION

To avoid symbol confusion between pitch angle θ and the parameters of the policy θ

(used in the theory presented in Section 5.2), the following nomenclature will be used
for the remainder of this chapter. The pitch angle for the F-16 will be denoted as θ, and
the policy parameters denoted as~k, since in this case all the parameters are gains. For
the F-16 four-gain controller,~k = [kq , kθ, kγ, kh], and for the quadrotor PID controller,
~k = [kp , ki , kd ]. The performance metric, ρ, is the mean absolute error calculated with a
sample time ∆T = 0.01s, over a 1 minute simulation for the F-16 reference tracking task
and ∆T = 0.04s over a 30 second run for the quadrotor takeoff task.
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5.3.2. F-16 IN SIMULATION
The first system explored as a proof of concept is a model of the F-16 jet fighter. The
choice to use this system was based on convenient access to a comprehensive non-linear
model of the aircraft.

As described in Section 5.2, a true system and an inaccurate model are needed for the
experiment. The model will be simulated thousands of times so that the real-life system
only needs a few trials. However, a real-life flying F-16 was not readily available, even for
a few trials. Therefore, it was decided that the F-16 non-linear model would serve as the
true system and the linearized state space model of the longitudinal dynamics would be
the mathematical model.

TRUE SYSTEM

The non-linear model used as the true system simulates the dynamics of an F-16 jet.
The low fidelity model 4 as explained in a manual by Stevens and Lewis [112, 123] was
simulated consistently while trimmed at 15000 ft altitude and 500 ft/s.

INACCURATE MODEL

The inaccurate model was created by linearizing the non-linear model flight dynamics
about a trim condition. A linear time-invariant state space model of the longitudinal dy-
namics of the F-16 was created with the states: altitude h [ft], pitch angle θ [rad], velocity
V [ft/s], angle of attack α [rad], and pitch rate q [rad/s]. The inputs are thrust FT [lbs],
and elevator deflection δel ev [deg]. The state space equations can be seen in Eq. (5.5).
Note that the actuator dynamics were not linearized and so a non-linear aspect in the
elevator and thrust saturations remains in the inaccurate model. The actuator model
from the F-16 model was implemented into the inaccurate model.

One aspect of interest about this policy improvement RL approach, is how inaccu-
racy of the mathematical model can affect the capabilities of the algorithm. To this end,
a few linearized models were created about different operating points. Since the non-
linear model true system is trimmed at 15,000/500 (altitude [ft] and velocity [ft/s] re-
spectively), the model was first linearized about the same conditions and then about
15,000/600 and 15,000/400. These state space models are denoted through the chapter
as ‘15000/400’, ‘15000/500’, and ‘15000/600’. The resulting state space models with the
values of their A and B matrices are listed in Appendix C.

~̇x = A~x +B~u where ~x = [
h θ V α q

]T
and ~u = [

FT δel ev
]T

(5.5)

CONTROLLER SETUP

To explore the capability of this approach on high dimensional problems, controllers of
2-gains, 3-gains, and 4-gains were created. The greater the number of gains to be tuned,
the higher the dimension of the optimization problem and therefore the more difficult it
is to tune by hand or with other methods.

A 2-gain pitch controller was created to control the elevator deflection. The desig-
nated task is to track the pitch angle, θ, which is set to be a sinusoidal-wave or block-
wave with respect to time. The relationship between states, outputs, and gains can be

4The low fidelity model (as opposed to the high fidelity model), does not include leading edge flaps
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seen in Figures 5.2-5.3. Though there are actually 3 gains, the velocity gain which regu-
lates the thrust is kept constant at kV =−50, while the policy parameters to be improved,
[kq kθ], control the elevator deflection, δel ev . The performance metric is the mean ab-
solute error (MAE) between the actual pitch angle and the reference over a 1 minute
simulation.

A 3-gain controller (Figure 5.17), tracks a reference flight path angle, γ. A 4-gain con-
troller (Figure 5.20), tracks an altitude reference. These controllers are displayed along
with the F-16 experimental results in Section 5.4.

kvVt dt
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s1

1

kVVtr i m
FT pl ant

V

h,θ,α, q

Figure 5.2: The velocity regulator, drives velocity towards its trim condition.kV is constant.
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Figure 5.3: The two gain controller tracks the pitch angle reference, θr e f

5.3.3. QUADROTOR IN SIMULATION AND REAL FLIGHT TESTS
One experiment in simulation and one on a real-life quadrotor are setup using a simple
model of vertical dynamics. Both use the Paparazzi autopilot software (see Section 2.4.1)
to control the true/real system. The quadrotor simulator built in to Paparazzi uses JSB-
sim, an open source Flight Dynamics Model, and is used as the true system in simulation.
The real-life flight experiment uses an AR.drone 2.0 quadrotor as the real system. In these
experiments, the quadrotor will perform a takeoff maneuver from the ground to an al-
titude of 3 meters. The details of the simple model created and the controller setup will
now be described.

QUADROTOR SIMPLE VERTICAL MODEL

The simple model of the quadrotor is very crude. The only forces considered are forces
of gravity downwards and the upward thrust (which is also the controller output). It is
assumed that all rotors give equal thrust and therefore no roll or pitch will develop to
tilt the lift vector. The state space matrices for the the plant model are derived from the
equations of motion in Eq. (5.6), where FT is the force of the thrust, m is the mass of the
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vehicle, and g is gravitational acceleration. z is the axis of altitude, therefore z̈ is vertical
acceleration with positive direction up.

∑
F = mz̈ = FT −mg (5.6a)

z̈ = FT
1

m
− g (5.6b)

(
ż

z̈

)
=

[
0 1
0 0

](
z

ż

)
+

[
0 0

1/m −g

](
FT

1

)
(5.7)

In a real flight there will be disturbances to the attitude of the quadrotor. Therefore,
the horizontal controller will remain active during the flight tests and only the vertical
loop gains will be tuned. The attitude angles should never get too big since the horizontal
loop controller will be actively eliminating it. However, there could be repercussions for
this omission in the model. For this approach to succeed, the simple quadrotor model
only needs to have similar derivatives with respect to the policy parameters, θ, to find
the direction of policy improvement for the vertical loop PID gains.

CONTROLLER SETUP

In order for the model to be effective at improving the policy parameters, the design of
the controller must be the same for the model simulation as it is for the true system.
Otherwise, the gains won’t represent the same thing in both controllers and the wrong
policy will be learned.

For the quadrotor experimental setup, the controller for the true system within the
Paparazzi autopilot software is recreated within Simulink. The details of the controller
can be found at the Paparazzi webpage 5 6

Since the simple model is only used for the vertical loop and assumes no attitude
disturbances, there may not be a guarantee that the gains found will be optimal once
horizontal movement is needed for other maneuvers. In future work, horizontal gains
can be added to the policy parameters for a full controller policy improvement.

IMPLEMENTATION: FROM SIMULATION TO REAL-LIFE TESTS

The benefit of the Paparazzi autopilot is that the same controller software runs with the
built-in simulator and the real-life flights. Switching from simulation to an actual flight
needs no changes. The learned gains will be different because the simulator is not ex-
actly the same as a real-life quadrotor, however experience shows the simulator to be an
accurate predictor of the AR.drone vertical takeoff behavior.

5.3.4. LINESEARCH METHOD
The linesearch method deserves special note because it has a large impact on how quickly
the optimal policy is learned and has not been described in detail in the method of

5Paparazzi Free Autopilot. http://wiki.paparazziuav.org
6To reproduce, use Paparazzi v5.4.2 stable version. vmode = “alt".
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Abbeel et. al’s version as described in step 6 of the algorithmic approach (Section 5.2.3).
Furthermore, in the results section we will see that the linesearch method will play a big
role in safety when it comes to learning policies for unstable systems.

For example, moving along the gradient line too conservatively, means more trials
will be needed to converge, while too aggressive movement might result in an overshoot
of the optimal solution or in a worst case: instability. A method should be used which
can find a balance.

A concept developed for this research is demonstrated in Figure 5.4. As described
in Section 5.2, the derivative direction, ∇~k ρ̂i (~k), over all the parameters, ~k, is found via

simulation of the inaccurate model, T̂i . The model changes each iteration since the bias
from the last true-system trial at ki is used to calculate the performance metric to deter-
mine the gradient.

Taking a pre-defined constant stepsize in that direction will lead to inefficiency since
we aim to reach the optimum in as few steps as possible. Therefore, a new linesearch
method is proposed where the gradient direction line is extended out until the error is
zero. The corresponding parameter value is called the zero-error gain, denoted in the
figure as kρ=0. Note that the example in the figure is simplified by making the policy, πk

only consist of one parameter,~k = k. Normally, this will be a multidimensional problem.

ρ̂
(π

k
)

ρ̂i (πki )

~k
ki k50% kρ=0

∇~ki
ρ̂i (~ki )

20%
30%

40%
50%

actual function

linear gradient extension

Figure 5.4: Example of the linesearch method. The concept developed for this research takes the gradient
direction, ∇~ki

ρ̂i (~ki ) for iteration i , and extends it out linearly until the error, ρ is equal to zero. A percentage

along that line will be chosen by the linesearch method and the corresponding parameter values, ~k are used
for iteration i + 1. Notation: ~k represents all the parameters in policy πki , but is shown here as a scalar for
simplicity.

Since the actual function is non-linear and a gain set resulting in ρ = 0 is not possible,
the next iteration’s parameter value should lie somewhere between the current value and
the zero-error gain value. How far to move along the line so as to not require too many
iterations, and to not overshoot the optimal point is a key challenge. To solve this chal-
lenge, two linesearch methods are used, depending on the faults of the model, the task
and the stability issues inherent in the task. A description of those linesearch methods
now follow.
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SIMULATION-BASED

The simulation-based linesearch method was developed for this problem to find the op-
timal solution as quickly as possible. It uses the advantage of the hybrid approach by
using the inaccurate model to simulate several policies along the gradient line, ∇~kρ(~k).
The policies to simulate are determined by percentage along the line with a higher den-
sity of simulations nearby the current policy since the model becomes less accurate the
further it goes, due to the bias term being calculated with policy πk1 .

In tasks where there are no safety risks for the true system, or if the inaccurate model
predicts the safety hazards of the true system with relative accuracy, then this simulation-
based linesearch method will decrease the amount of true system trials by taking bigger
steps toward the optimal solution. However, since the model is by definition inaccurate,
it is risky to follow its suggestions so far away on the line from the last policy. If safety is
an issue, a more conservative linesearch method should be used.

The simulation-based method was used for the quadrotor takeoff task (Sections 5.5-
5.6) and initially for the F-16 pitch angle tracking task (Section 5.4) before determining a
more conservative approach was needed.

STEPSIZE-BASED

Where the simulation-based linesearch can lead to quicker convergence, it can be dan-
gerous if the task has safety or instability issues. Therefore, a more conservative line-
search can be used. The stepsize-based linesearch moves a smaller percentage of the
line distance towards the zero-error gain and can use a consistent stepsize, or a stepsize
which decays over iterations. The initial stepsize and decay rate is a matter of tuning
which is a major pitfall of this method. The designer must choose between either a slow
convergence or a potential overshoot of the optimum which could mean danger.

For the F-16 task, a linear decay rate was used, meaning that each iteration of a true
system trial, the stepsize decreased by a constant rate. As a measure of insurance, the
model was simulated at the new gain set and if it appeared that the performance would
be significantly worse, then a smaller stepsize would be taken. The parameters of the
linear decay used will be discussed in the results section.

END CONDITIONS

In order for the policy improvement to eventually stop, some end conditions must be de-
termined. The desirable outcome is to stop exactly when the local optimum is reached
in the fewest amount of true system trials. However, it might be beneficial to stop the op-
timization before the optimum is found if the cost of the trials is greater than the added
benefit of the performance improvement.

For each task, the search stops if:

1. A local minimum has been reached. This is true if neither direction along the gra-
dient line results in a performance improvement.

2. The improvement rate is too slow. The last n trials have improved by less than
some task specific limit.

3. Other task specific conditions discussed further in the result sections.
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5.3.5. TABLE OF EXPERIMENTS
Table 5.1 summarizes the experiments which will be presented in the upcoming results
section.

The platform column indicates if it was a test with the F-16 or the Quadrotor plat-
form. Each test required an inaccurate or simple model which is indicated in the third
column.

For the F-16 experiments, descriptions such as ‘15000/500 sim’ specify a model where
the state space matrices were found by linearizing the non-linear true model about the
trim conditions 15,000 [ft] altitude and 500 [ft/s] velocity. The inaccurate models vary
in the velocity trim condition where as the true system of the F-16 is consistently repre-
sented by the nonlinear model with trim conditions 15000/500. Furthermore, there are 2
different types of control tasks performed and 3 controllers which informs the number of
policy(gain) parameters to be learned. Each time, 2 linesearch methods are compared.

Tests 5 and 6 for the quadrotor are the same except for the true system. A simple
model of the vertical dynamics was created to simulate a takeoff maneuver with a 3-gain
PID altitude controller. The only change was the true system, where the Test 5 uses the
built-in paparazzi (pprz) simulator and Test 6 uses a real-life AR.Drone2 quadrotor.

More details about all these parameters are described in Section 5.3.2 and Section 5.3.3
for the F-16 and AR.Drone2 quadrotor respectively. More information about the line-
search methods are found in Section 5.3.4.

Table 5.1: Table of experiments

no. Platform
Inaccurate

model
True

system Task
# of policy

parameters
Linesearch
method(s)

1 F-16 15000/400
sim

nonlinear
sim

sinusoid 2-gain
(θ-ctrl)

stepsize &
sim-based

2 F-16 15000/400
sim

nonlinear
sim

block-
wave

2-gain
(θ-ctrl)

stepsize &
sim-based

3 F-16 15000/500
sim

nonlinear
sim

block-
wave

3-gain
(γ-ctrl)

stepsize &
sim-based

4 F-16 15000/500
sim

nonlinear
sim

block-
wave

4-gain
(al t-ctrl)

stepsize &
sim-based

5 Quadrotor simple mdl pprz sim takeoff 3-gain(PID) sim-based

6 Quadrotor simple mdl AR.Drone takeoff 3-gain(PID) sim-based
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5.4. F-16 SIMULATION RESULTS
The first task we analyze for the F-16 is to track a reference sine wave in pitch angle, θ.
This task corresponds to the 2-gain controller introduced in Figure 5.3 of Section 5.3. For
the following results, a simulation based linesearch was used.

In Figure 5.5, the results show that the policy improvement algorithm is working as
it should. The arbitrarily chosen initial gains of~k = [kq , kθ] = [−10, 10] produce a non-
optimal response which is then iteratively improved upon until the locally optimal gains
are found. The figure shows that the response has been improved so that it matches
more closely with the reference sine wave. However, when the results are more closely
scrutinized, we see that some undesirable behavior has occurred.

In Figure 5.6 we can see the run history of the gains and the performance metric as it
converges to its locally optimal value. The optimal gains found were from the 5th true-
system trial and the policy improvement algorithm finished after the 8th trial since it
wasn’t improving significantly anymore. As seen in the top plot, the performance metric,
ρ, calculated as the Mean Absolute Error (MAE), is not consistently improving. On trials
number 2, 4, and 6, the ρ of the true system increases to a very large error while the
inaccurate model still improves from the previous trial.

Even though in the end, the approach works to find a good policy, this kind of behav-
ior is not desirable because the exploration process should also be safe to test. In order
to explain this behavior, an in-depth analysis of the responses with the 2-gain controller
was performed.
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Figure 5.5: Time response of the policy improvement algorithm run on the true system for the initial gains of
~k0 = [−10, 10] and the optimized gains. ((left)) full 60 second run, ((right)) zoomed-in to see tracking improve-
ment.

5.4.1. ANALYSIS OF THE 2-GAIN PITCH ANGLE CONTROLLER
The first step to analyze the policy improvement results is to see what is happening in the
true system trial when it is responding with a high error. Trial number 2, with the high
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Figure 5.6: Performance and gain history of the policy improvement algorithm run from the initial gains of
~k0 = [−10, 10]. The gradient of the inaccurate model is driving the gains toward a policy where the true system
has an unstable response.

error as seen in Figure 5.6, has a time response as seen in Figure 5.7. The gains for this
run are~k = [−22.7, 29.0]. We can see from the response that the true-system response is
unstable while the inaccurate model is still able to track the reference signal well.
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Figure 5.7: Time response of inaccurate model and true system with gains of Trial # 2 of the policy improvement
algorithm history shown in Figure 5.6.

It can be concluded that the true system becomes unstable at gains which do not
cause instability in the inaccurate model. To validate this conclusion and to learn to what
extent this is a problem, a few approaches were used. Simulations were run through
whole sweeps of gain values for both models and plotted as surface plots. Figures 5.8 -
5.9, show the results. For the range kq = [−500, 0) and kθ = (0, 50], a simulation was run
and the performance metric plotted. In total, each model was simulated 5,151 times to
find the relationship between policy and performance. The error is depicted in a color
gradient from 0 to 0.05 so that the gradient can be seen in the low-error region.

The orthogonal view is seen in Figure 5.8. Here we see clearly an “instability cliff"
where the error increases significantly due to an unstable response. The inaccurate
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Figure 5.9: Top view of surface plot with lines overlaid representing the “cliffs" of the inaccurate models lin-
earized about 400ft/s, 500ft/s, and 600ft/s respectively. (right) zoomed view

model doesn’t actually become unstable, but has a sharp transition to a generally bad
performance. The simple model does not become unstable due to the model inaccura-
cies incurred during linearization. The true-system does become unstable and the sim-
ulation must stop. In the cases that the simulation was stopped due to instability, the
performance metric value is no longer meaningful and is therefore plotted in the surface
plot as a value just above the highest error value.

In Figure 5.9(left), we see the top view of the same data showing more clearing where
the “unstable zone" begins for the true system model. As a general trend, the error de-
creases with increasing kθ , until it reaches a point where the controller leads to unstable
behavior. The lines overlaid on the plot represent the “cliff" of the inaccurate models
which were linearized about different trim conditions: 15000ft altitude and a velocity of
400ft/s, 500ft/s or 600ft/s. We can see that the “cliff" is reached at a different point by
each of the inaccurate models and the true model. The points where the true system
becomes unstable at an earlier gain than the inaccurate model are where the problem
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lies.
Since the optimization is gradient-based using the inaccurate model, the policy im-

provement algorithm will suggest to move to the edge of the cliff where the error is low-
est, even though the true model has already transitioned off the cliff to instability. Fig-
ure 5.9(right) is a zoomed in version to show that none of the inaccurate models are a
perfect representation of the true model regarding the “cliff" location. Even the model
which was linearized about 500ft/s (the same as the true model trim condition), has a
gain region where it will have an excellent performance and the true system will be un-
stable. This conflict results in the gradient of the inaccurate model advising the wrong
direction for an improved policy.

PROPOSED SOLUTION

For this method to be effective, the inaccurate model cannot have an inaccuracy which
leads the policy to instability. One possible solution could be to impose a stability mar-
gin condition and calculate it with the inaccurate model. However, depending on how
inaccurate the model is, it will not guarantee stability of the true system. Furthermore,
it could impose unnecessary restrictions which can prevent the optimal solution of the
true system from being explored.

Another solution could be to decrease the step size when changing the policy along
the gradient line. In that way, logic can be implemented to stop the policy iteration when
the improvement becomes negligible, or if the error has already reached a desired limit
set a priori. The policy improvement run from the results above, would then find its final
gain set in only 2 or 3 trials.

BLOCK WAVE TASK

Not all tasks will have the same problem as the sinusoid tracking task. Only tasks where
the performance gradient pushes the policy towards instability and where the true sys-
tem transitions to instability earlier than the inaccurate system.

The block wave task is the second task looked into for this algorithm. The time re-
sponse of the block wave is shown in Figure 5.10 for the true system as well as the inaccu-
rate models linearized about 15000ft altitude and velocity 500ft/s or 400ft/s. The block
wave is only one period so as to demonstrate response to a step up and a step down.
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Figure 5.10: Block wave task time response of the true system and 2 inaccurate models using gains of [-50, 2]
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We analyze the surfaces plots of the block wave task in Figure 5.11, in the same way as
with the sinusoid. The left figure is the orthogonal view and the right is the top view with
superimposed lines representing the transition “cliff" of the inaccurate models. There is
indeed still a distinct cliff, but it is more gradual than with the sinusoid, therefore cre-
ating a valley where a gradient-based optimization will perform better. Furthermore,
even the worst case gains are still marginally stable for the true-system as can be seen in
Figure 5.12 where the time response of the worst case gains (in this gain range) is plotted.

0

20

0.1

15 0

0.2

-50

0.3

10

0.4

-100
5

-150

0 -200 -200 -150 -100 -50 0

2

4

6

8

10

12

14

16

18

20

0

0.01

0.02

0.03

0.04

0.05

ρ
(k

)

kq
kq

k
θ

kθ

orthogonal view top view
true sys error
cliff line- 400ft/s
cliff line- 500ft/s
cliff line- 600ft/s

Figure 5.11: Block wave task surface plots. (left) orthogonal view, (right) top view
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Figure 5.12: Block wave task time response with the worst gain policy found during the gain sweeps shown in
Figure 5.11. For the block task, even the worst run remains stable. gains~k = [−180, 20]

In the remainder of the F-16 simulation results sections, the sinusoid task results will
be presented for the 2-gain scenario only since it has already been shown that this task is
not a good case study for this algorithmic approach. The 2-gain results are maintained to
show how possible solutions can be used to make this approach still tangible. The block
wave task results for the policy improvement algorithm will be presented for a 2-gain,
3-gain and 4-gain controller.
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5.4.2. RESULTS: 2-GAIN PITCH ANGLE CONTROLLER
The 2-gain controller was used on two tasks: to track a sinusoid and to track a block
wave. The results that follow show the ability of the reinforcement learning policy im-
provement algorithm to improve the gain policy of the controller for the two tasks.

For each task, results are shown for different linesearch methods and starting from
different initial gain conditions. Since the algorithm finds only a local –and not a global–
optimum, the initial policy will have a great effect on the final results. The policy for the
pitch angle controller consists of the gains ~k = [kq , kθ], as seen in the controller block
diagram in Figure 5.3. The initial gains are found by hand-tuning and in the 2-gain case
the surface plots could also be used for guidance. For demonstration purposes in this
paper, the initial gains shouldn’t have a response which is too good or there will be no
room for improvement, but it also must be a stable solution for the algorithm to succeed
in learning.

For the pitch angle sinusoid task, the initial gains are~k0 = [−10, 10] and~k0 = [−10, 5].
For the pitch angle block wave task, the initial gains~k0 = [−10, 5] and~k0 = [−50, 2] were
selected. These gains were used since they all resulted in a reasonable performance;
however, one of the policies is closer to instability than the other, therefore giving the
opportunity to show how initial conditions can pose challenges for linesearch properties
which must balance a desire to reach the optimum quickly without overshooting it or
risking instability.

The 15000ft-400ft/s inaccurate model is used to produce the results shown. This is
used because it is slightly more inaccurate than the 500ft/s model and therefore is more
of a challenge.

SINUSOID TASK

The previous section already discovered the limitations with the sinusoid task. One pro-
posed method to help avoid an unstable trial is to use a more conservative linesearch
method, or use a priori knowledge of the system to determine an end condition based
on the desired performance metric.

Figure 5.13 shows the error and policy history results of the policy improvement al-
gorithm when using a stepsize-based linesearch and starting from different initial policy
conditions. The stepsize-based linesearch will approach the (local) optimum point more
slowly and conservatively, however it still does not guarantee that the optimal will not be
overshot to the instability zone. Figure 5.14 shows a comparison of linesearch methods
starting from the same initial gain. In the figure and in the data in Table 5.2, we ascertain
that the stepsize-based linesearch takes 4-6 steps to reach the performance which was
reached in the first step of the simulation-based linesearch. However, the simulation-
based linesearch also tries an unstable policy much earlier. The stepsize based line-
search for initial policy ~k0 = [−10, 10] eventually has an unstable trial, but the initial
policy~k0 = [−10, 5] does not. The reason for this is that the later is further away from the
“cliff" and written into the linesearch properties is an inherent slowing down after several

trials and an end condition which stops the run when the improvement rate dρ
d t reaches

a limit.
Any of the linesearches can be tuned so that it stops when it reaches a performance

metric which has been determined to be sufficient a priori. As an example, see Table 5.2



5.4. F-16 SIMULATION RESULTS

5

101

0 1 2 3 4 5 6 7 8 9 10 11

-30

-20

-10

0 1 2 3 4 5 6 7 8 9 10 11

0

20

40

0 1 2 3 4 5 6 7 8 9 10 11

0

0.01

0.02

0.03

0.04

0.05

true system trials

ρ
(k

)
k

q
k
θ

~k0 = [−10, 5]
~k0 = [−10, 10]

Figure 5.13: Performance and gain history of policy improvement algorithm run using the stepsize-based line-
search method. Comparing different initial gain policies.

Table 5.2: Number of true system trials in the policy improvement algorithm run and the resulting performance
metric given different linesearch methods and end conditions. 4 indicates a run which became unstable.

initial policy
Case ρ∗(ave) [−10, 10] [−10, 5]

w/o threshold
sim-based 0.0068 94 64

stepsize-based 0.0071 104 11

w/ threshold
sim-based 0.0079 2 3
stepsize-based 0.0092 5 8

where the results have been compiled with and without such a threshold. Without a

threshold, an end condition of dρ
d t ≤ 0.001 was used to end the run. Runs which had any

unstable true system trials are denoted with a triangle next to the number of trials in the
run. If a user decides that a threshold of ρ ≤ 0.01 is sufficient as a stopping condition,
then none of the trial runs from the results above would have become unstable. Further-
more, the number of true system trials would be dramatically decreased. Most of the im-
provement is won in the first few iterations anyway, especially with the simulation-based
linesearch. The performance improvement stagnates when it approaches the local opti-
mum, so the performance benefit is usually small in the last trial runs. In the table, we
see that the average best performance, ρ∗(ave), is still good when the run is stopped at
the threshold.
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Figure 5.14: Performance and gain history of policy improvement algorithm run for the sinusoid pitch angle
tracking task. Comparison of the 2 different linesearch methods. (left) Initial gains, ~k0 = [−10, 5] and (right)
Initial gains,~k0 = [−10, 10].

It is not very useful to use this threshold concept as a possible solution since knowl-
edge of the system was used to generate the threshold value. In most cases, we assume
that the desired performance metric is not known a priori. The result is presented be-
cause it demonstrates that using knowledge of the system can help with the effectiveness
of this approach.

BLOCK WAVE TASK

The same policy improvement trials were conducted with a block wave task. The same
improvement rate end condition was used as with the sinusoid task. No performance
threshold as an end condition was implemented (only improvement rate related end
conditions) since instability was shown to not be present in the state space explored for
the surface plots.

The results in Figure 5.15 show the performance metric and gain histories of each
of the runs. For initial gains ~k0 = [−10, 5], both linesearch methods have the greatest
improvement in the first step and then improves slightly over the next trials. The initial
gains ~k0 = [−50, 2] start out with a better performance and after the improvement in
the first step the simulation-based linesearch is unable to find a better solution. The
stepsize-based linesearch also struggles to find a better solution after the first step but
finds a policy slightly better. This means that the initial policy was near a local optimum.
The results are summarized in Table 5.3.

The initial and resulting optimal time response from the initial gains [−50, 2] and
simulation-based linesearch can be seen in Figure 5.16. From the plot we can see that
the solution which optimizes the performance metric based on the mean absolute error
(MAE) may not necessarily be desirable. The optimized policy indeed results in a smaller
MAE, but with more overshoot, which may not be the most desirable solution for a real
application. This result demonstrates the importance of a well-defined performance
metric for the task.
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Figure 5.15: Performance and gain history of policy improvement algorithm on the 2-gain pitch angle block-
wave task using inaccurate model linearized about 15000ft/s altitude and 400ft/s velocity. Comparison of 2
different linesearch methods from 2 different initial gain policies. (left) Initial gains, ~k0 = [−10, 5]. (right)
Initial gains,~k0 = [−50, 2].

Table 5.3: Results of policy improvement algorithm with block wave task comparing different linesearch meth-
ods and initial gain policies.

initial policy
Case ρ∗(ave) [−10, 5] [−50, 2]

w/o threshold
sim-based 0.0089 6 5
stepsize-based 0.0181 8 10
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Figure 5.16: Initial and optimized time response of the 2-gain pitch angle controller block-wave task using the
policy improvement algorithm with simulation-based linesearch. ~k0 = [−50, 2].

5.4.3. RESULTS: 3-GAIN FLIGHT PATH ANGLE CONTROLLER
Controllers with higher dimensions become more difficult to tune by hand since each of
the gains influence the others. Therefore, it is important to test this approach on tasks of



5

104 5. SELF-TUNING GAINS

higher dimensions.

The first example is of a 3-gain flight path angle controller which tracks the flight
path angle, γ. See the controller block diagram in Figure 5.17. The controller is similar
to the 2-gain controller with one additional feedback loop for γ. The flight path angle is
calculated using known states with: γ= θ−α.

g g del_el

os

s3

s2

s1

g kqkθkγ
γr e f δelev

γ

plant

h,V

θ

q

α

Figure 5.17: The three gain controller tracks the flight path angle reference, γr e f
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Figure 5.18: Performance and gain history of policy improvement algorithm run on 3-gain flight path angle
tracking task using an inaccurate model linearized about 15000ft/s altitude and 500ft/s velocity. Comparison
of 2 different linesearch methods from 2 different initial gain policies (left) Initial gains,~kA = [−50, 1, 5]. (right)
Initial gains,~kB = [−1000, .05, 100].

Once again, the results from two linesearch methods and two initial policy cases are
presented. The initial policies are ~kA = [−50, 1, 5] (Case A) and ~kB = [−1000, .05, 100]
(Case B) and were found through hand-tuning to find two cases where the policies were
in a different gain envelope region, stable, and had room for improvement.

Figure 5.18(left) shows that there was a small improvement from both initial policies.
The region of policy~kA has a gradual gradient with kγ as the most prominent influence.
The algorithm stopped due to a slow improvement rate end condition being met. The
increases in error indicate that the region around policy~kB is most likely near a point of
disagreement between the true system and inaccurate model.
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Figure 5.19: Initial and optimized time response of the 3-gain flight path angle tracking block task using the
policy improvement algorithm with simulation-based linesearch. (left) Initial gains, ~kA = [−50, 1, 5]. (right)
Initial gains,~kB = [−1000, .05, 100].

Figure 5.19 shows that from the initial gains~kA , the direction of improvement corre-
sponds to an increase in the overshoot of the step response and an effort to decrease the
steady state error. There is obviously further room for improvement in case A, however
it is a limitation of the algorithm that it will not find the global optimum. The local op-
timum for Case A is different than the local optimum in Case B, and therefore it is not
surprising that the optimized policy for Case A is not even as good as the initial policy for
Case B. Furthermore, the policy was still improving in Case A when it was stopped, but it
was improving too slowly.

From the initial gains ~kB , the direction of improvement corresponds to a decrease
in the overshoot of the step response. The example shows an already good initial policy
and how the algorithm is good for finding a small local improvement

5.4.4. RESULTS: 4-GAIN ALTITUDE CONTROLLER
Exploring one dimension higher, a 4-gain altitude tracking task was examined. See the
controller block diagram in Figure 5.20. Once again, a feedback loop was added for alti-
tude, h.
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Figure 5.20: The four gain controller tracks the altitude reference, hr e f

Again, the results from two linesearch methods and two initial policy cases are pre-
sented. The initial policies are~kA = [−100, 2, 0.1, 0.005] (Case A) and~kB = [−500, 0.5, 0.01, 0.1]
(Case B) and were found through hand-tuning to find two cases where the policies were
in a different gain envelope region, stable, and had room for improvement.

Figure 5.21(left) and Figure 5.22(left), Case A, shows a good response, which may be
overdamped, is optimized to increase its rise time but also its overshoot for a better MAE
performance. However, an average passenger (or pilot in the case of the F-16) would
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Figure 5.21: Performance and gain history of policy improvement algorithm run on block-wave 4-gain altitude
tracking task using inaccurate model linearized about 15000ft/s altitude and 500ft/s velocity. Comparison of 2
different linesearch methods from 2 different initial gain policies (left) Initial gains,~kA = [−100, 2, 0.1, 0.005].
(right) Initial gains,~kB = [−500, 0.5, 0.01, 0.1].
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Figure 5.22: Initial and optimized time response of block-wave 4-gain altitude tracking task using the policy
improvement algorithm with simulation-based linesearch. (left) Initial gains,~kA = [−100, 2, 0.1, 0.005]. (right)
Initial gains,~kB = [−500, 0.5, 0.01, 0.1].

prefer the initial policy. This again highlights the importance of a relevant performance
metric in which to optimize.

In Case B, shown in Figure 5.21(right) and Figure 5.22(right), the initial policy gives
a step response with large oscillations. Even though the error did not improve by much,
the optimized solution response is quite different. It has a slower rise time but is more
damped and would also be a more comfortable flight for the passenger.
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5.5. QUADROTOR SIMULATION RESULTS
The results for the quadrotor simulation policy improvement will now be presented. The
simulator used to produce data for the true system trials, is that of JSBsim within the
Paparazzi autopilot software. Therefore, it is vital that the Simulink controller which is
used for analysis of the derivatives is exactly the same as the controller implemented
in Paparazzi. The validation of the simulink controller against the Paparazzi vertical-
loop controller will be presented first, followed by the results for the policy improvement
based self-tuning gains.

5.5.1. SIMULINK CONTROLLER VALIDATION AGAINST

PAPARAZZI AUTOPILOT
Before implementing the policy improvement algorithm, it must first be ensured that
the simulink controller (with which the gradient is found) is the same as the Paparazzi
controller which controls the real-life trials. The full simulink model of the vertical loop
controller and the simple quadrotor model can be seen in Figure 5.24.

Since we cannot validate the model with the simple quadrotor model inside the closed
loop, we must validate the controller in sections. The inputs and feedback signals were
taken from a Paparazzi trial, so as to confirm that the simulink model will have the same
outputs out of the reference model as well as the feedforward and feedback commands.
The validation of same outputs can be seen in Figure 5.23.

Small disagreements between the Paparazzi and simulink model are due to differ-
ences in sample times and round off error. The larger disagreement at the beginning
of the feedback command ( f bcmd ) plot is due to the summed error integrator not being
initialized with the value from Paparazzi. Over time, the plots merge and the discrepancy
doesn’t effect the performance of the policy improvement algorithm.
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Figure 5.23: Validation that simulink controller produces the same outputs as Paparazzi. The simulink model
was validated using known inputs from a Paparazzi trial. The Paparazzi trial started with its takeoff command
at 21.4 seconds. note: positive z is downward. The units for these plots are from bitwise operations and there-
fore do not represent a physical value. That the two outputs match is the only important take away.



5

108
5

.S
E

L
F-T

U
N

IN
G

G
A

IN
S

1
s

Kp

Ki

Kdz_sp

z_ref

zd_ref

zdd_ref

g

thrust cmd

z

zd

n

bias

Kp

Ki

Kd

zr e f
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5.5.2. POLICY IMPROVEMENT
The successful policy improvement to a local optimum is demonstrated in Figure 5.25
and the corresponding tables in Table 5.4. The figures and tables show the results from
2 different initial gain sets. The plot on the left starts with Trial 1, where the policy is the
default gains used within the Paparazzi software for the AR.drone. The take off response
is far from optimal as it overshoots its intended altitude and then slowly descends to its
setpoint, zsp ,. After each iteration of policy improvement, the gains move toward the lo-
cally optimal policy and settle with the policy in Trial 5. The ending criteria is met when
the performance fails two iterations in a row to improve by greater than 5% from the pre-
viously best solution, or if 7 true system/real-life trials have been performed. The plot
on the right shows what can be considered a near global optimal. First, the optimal pol-
icy solution for the model is found using the Nelder-Mead simplex search. These gains
are used as an initial policy, Trial 1. The solution found with Nelder-Mead is a very good
solution with only 0.04m of overshoot and quick settling time. The error is calculated
against the altitude setpoint, zsp , however the controller follows the reference trajectory,
a 2nd order system. The altitude reference has an error of 0.0913m and therefore, we can
expect this error to be the best possible performance. The best policy found with our
policy improvement algorithm, Trial 3, results in an error of 0.0940m.

Table 5.4: Gains used in each iteration of the policy improvement results. These values correspond to the
plots in Figure 5.25. (left) Initial trial uses default Paparazzi gains. (right) Initial trial uses resulting gains from
Nelder-Mead simplex search solution.

Trial # error(m) kp ki kd

Trial 1 0.3775 283 13 82
Trial 2 0.2006 285 44 82
Trial 3 0.1596 286 102 82
Trial 4 0.1733 499 177 42

Trial 5 0.1521 324 116 75

Trial # error(m) kp ki kd

Trial 1 0.1006 1624 1356 195
Trial 2 0.0988 1644 1365 155

Trial 3 0.0940 1649 1365 175
Trial 4 0.0946 1652 1365 195
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Figure 5.25: Take off trajectory of true system flights using policy improvement in Paparazzi simulation. The
figures correspond to the values from Table 5.4. (left) Initial trial uses default Paparazzi gains [283, 13, 82].
(right) Initial trial uses resulting gains from a Nelder-Mead simplex search solution [1624, 1356, 195]. Zoomed-
in to overshoot.
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5.6. QUADROTOR FLIGHT TEST RESULTS
In the flight test, the quadrotor performs a takeoff maneuver from the ground to an al-
titude of 3 meters. The performance metric to be minimized is the mean absolute error
of the altitude against the altitude setpoint. The necessary state information is collected
from the Cyber Zoo simulated GPS estimate. Paparazzi, an open source autopilot, is used
for the control with the policy parameters represented by the gains of the vertical loop
PID controller. Data from the flights is used to run the policy improvement algorithms
offline.

The resources used in this process, including the AR.drone 2.0, the TU Delft Cyber
Zoo, and Paparazzi autopilot, can be reviewed in Section 2.4.1 and can also be found in
Junell et al. [67].

The results of the flight test experiment are now presented.

5.6.1. FLIGHT TEST RESULTS
The results for the quadrotor policy improvement with real-life flights will now be pre-
sented.

Table 5.5: Gains used in each iteration of the policy improvement results. These values correspond to the plots
in Figure 5.26. (left) Initial trial uses default Paparazzi gains. (right) Initial trial uses the resulting gains from a
Nelder-Mead simplex search solution.

Trial # error(m) kp ki kd

Trial 1 0.5102 283 13 82
Trial 2 0.2537 286 60 81

Trial 3 0.2265 301 133 65
Trial 4 0.2652 301 135 59
Trial 5 0.2483 301 134 62

Trial # error(m) kp ki kd

Trial 1 0.1218 1624 1356 195
Trial 2 0.1249 1599 1366 130
Trial 3 0.1278 1612 1361 163
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Figure 5.26: (left) Policy improvement starting from initial policy of default Paparazzi gains [283, 13, 82]. The
little peak in Trial 4, is not physically possible and is likely a small glitch in the tracking system where perhaps
tracking was momentarily lost. (right) Policy improvement starting from gains optimized by Nelder-Mead
search [1624, 1356, 195]. Zoomed-in to overshoot.

The structure of the test setup and the results are the same as the quadrotor simula-
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tion. Policy improvement with a simple model and real-life trials was performed starting
from 2 different initial policies, πθ(0) . The first series of flights started from the default
gains for the AR.drone in the Paparazzi autopilot software. The second series of flights
used an initial policy which was found by the Nelder-Mead simplex search to be the opti-
mal policy for the simple model. The results of these two series are shown in Figure 5.26,
and the corresponding table, Table 5.5.

Compare the takeoff trajectory of the default Paparazzi gains, Trial 1, in real-life flight
(Figure 5.26(left)) to that of the same flight in simulation (Figure 5.25(left)) and the same
kind of behavior is seen. The quadrotor overshoots its setpoint and then slowly descends
towards it. After one iteration of the policy improvement algorithm, a new policy is
found. Trial 2 performs with about half the error as Trial 1 in both the simulation and
real-life case. Trial 3 shows improvement but not as substantial. Trial 4 is not an im-
provement, which means the step size along the derivative direction was too large. So
far, the simulation and the real-life flights show the same progression. At Trial 5, they dif-
fer. Trial 5 is along the same derivative line as Trial 4, just not as far. For the simulation,
it was an improvement but for the real-life trial it is again not as good as Trial 3.

The reason that Trial 5 doesn’t perform as well as Trial 3 could possibly be because
Trial 3 is already the local optimum, too large of a step size was taken and Trial 5’s policy
is indeed not as good, or external influences have influenced the results. To take a look
at the last possibility, an experiment was conducted to see what effects the battery life
and variability have on the performance metric. This variability can be inherent in the
quadrotor or from external disturbances.
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Figure 5.27: Multiple takeoff maneuvers were performed successively with the same gains during the life of a
single battery on the quadrotor. Tests were performed at the default Paparazzi gains [283, 13, 82] (top) and the
Nelder-Mead solution gains [1624, 1356, 195] (bottom). The results of this test shows that 1) the battery level
does not influence the performance of the takeoff, and 2) the standard deviation of the performance metric
depends on which gains are being used and can be used to find the statistical significance of the real-life tests.

Multiple takeoff maneuvers were performed successively with the same gains during
the life of a single battery on the quadrotor. Tests were performed at the default Paparazzi
gains [283, 13, 82] Figure 5.27(top) and the Nelder-Mead solution gains [1624, 1356, 195]
Figure 5.27(bottom). The results show that the battery life does not have an affect on the
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performance metric. Since the real-life experiment is non-deterministic, it is benefi-
cial in the analysis of the results to know the standard deviation of a takeoff maneuver.
The standard deviation of the takeoff performance with the default paparazzi gains is
0.0141m and the standard deviation with the Nelder-Mead gains is 0.0066m. Therefore,
it can also be concluded that fine-tuning of the gains on a real-life system is rather diffi-
cult with this method given the variability.

While this approach is able to improve the policy from the default paparazzi gains, it
fails to improve upon the Nelder-Mead optimized gains. However, in Table 5.5(right) it is
shown that the trials after the initial trial are all within the standard deviation of a takeoff
maneuver. The initial policy is likely already too good of a performer and therefore, is
not able to improve by an amount greater than the variability.

5.7. RESULTS OVERVIEW
The final results from all the policy improvement experiments have been compiled in
Table 5.6. The percent improvement of the performance metric from the initial gainset
to the optimized gainset is shown for each of the experiments.

Reference the corresponding no. in Table 5.1 for a full description of the experimental
setup. An expanded table of results can be found in Appendix C.
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Table 5.6: Compiled results

no. initial gains,~k0 linesearch improvement(%)

1 F-16: θ-ctrl, sinusoid
[−10 5] sim 86

stepsize 85
[−10 10] sim 73

stepsize 73

2 F-16: θ-ctrl, block-wave
[−10, 5] sim 29

stepsize 25
[−50, 2] sim 26

stepsize 27

3 F-16: γ-ctrl, block-wave
[−50, 1, 5] sim 12

stepsize 2
[−1000, 0.05, 100] sim 26

stepsize 26

4 F-16: altitude-ctrl, block-wave
[−100, 2, 0.1, 0.005] sim 27

stepsize 28
[−500, 0.5, 0.01, 0.1] sim 7

stepsize 5

5 quadrotor: takeoff simulation
[283, 13, 82] sim 60
[1624, 1356, 195] sim 7

6 quadrotor: takeoff real-life
[283, 13, 82] sim 56
[1624, 1356, 195] sim 0

5.8. CONCLUSIONS
Learning through interaction with the environment is one of the key features of model-
free reinforcement learning but can be time consuming or dangerous when learning
from scratch on a real system.

This chapter has presented a hybrid approach which is not completely model-free
but which utilizes a simple model in a way which assumes model inaccuracies and com-
pensates accordingly. Simulation of the simple model takes on much of the computa-
tional burden in order to quickly converge to a good policy with only a few real-life trials.
This method has been shown to be particularly effective with policy improvement where
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the policy consists of the gain set of a real-life quadrotor. A local optimum can be found
within 1-3 real-life trials and further improvement is only limited by the variability in-
herent in a real-life application.

The policy improvement approach has been implemented on an F-16 model in sim-
ulation as well as an AR.drone 2 quadrotor in simulation and in real-life.

The experimental results from the F-16 simulation show that for a 60 second sim-
ulated run, the algorithm is able to improve upon the initial policy. Improved policies
produce a time response with a better performance metric for a sinusoid wave and a
block wave reference. In this case, the performance metric is the mean absolute error
between the reference and the response. Tracking a sinusoid for the pitch angle, θ, can
be improved upon by up to 80% depending on the initial policy and the tracking of a
block-wave for pitch angle can be improved by up to 29%, based on the experimental
results.

The number of true system (real-life) trials that are needed depend on how strict the
end conditions of the algorithm are. Having strict end criteria means that the policy
will converge closer to the local optimum, but will take more trials to get there. Easily
satisfied end criteria means that less trials will be run, but the final solution may be short
of the optimal.

From the F-16 results of the sinusoid tracking task, a problem arises which gives in-
sight into an important limitation of this approach. The policy improvement algorithm
can be driven to policies which lead to instability as a result of the model inaccuracies.
Such safety implications will limit the use of this approach for certain applications where
instability cannot be tolerated. In this case, some knowledge of the system is required.
Knowledge of the system can be used in different ways to prevent unstable policies from
being selected. For example, performance thresholds, or system stability criteria can
guide restrictions in the linesearch for safe exploration. Conservative exploration may
lead to a suboptimal policy, but the results in this chapter indicate that most of the im-
provement is gained in the first

Two linesearch methods are proposed and compared: One which conservatively moves
in small stepsizes along the gradient, and another which uses simulation results of the
inaccurate model to determine the next policy. Moving along the line conservatively
means more trials are needed to converge; while aggressive movement might lead quickly
to overshooting the optimal solution and possibly to instability. Furthermore, the con-
servative approach still doesn’t guarantee stability. The balance of this trade-off should
be determined by the needs of the task.

If instability is not an issue for the task or if an unstable trial can be tolerated, the
simulation-based linesearch is the best and fastest option to find a (locally) near-optimal
solution in only a few trials, usually with the largest part of the improvement in only one
trial after the initial one. This is using the inaccurate model to its fullest potential for the
fastest learning.

The simulation and real-life quadrotor take-off experiments also shows promising
results and draws its own conclusions. The performance metric of mean absolute error
over a 30 second run of a takeoff maneuver is improved by the reinforcement learning
policy improvement algorithm.

By starting from two different initial gain sets, it is shown that a locally optimal pol-
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icy can be found for both and that the initial gain set effects the performance of the final
policy since it is only optimized locally using a gradient descent based method. The
Nelder-Mead simplex search on the simulated simple model provides a starting policy
with a better performance than the default gains from Paparazzi: reducing the initial
performance metric by 4 times in the real-life trial and therefore proving to be an ef-
fective method for finding an initial policy from which to start the policy improvement
algorithm. When starting in the convex region of the global optimum, it is guaranteed
that the near-optimal solution will be found. How near it settles to the optimum depends
on the ending criteria.

The initial policy will also effect the ability of the algorithm to improve the perfor-
mance. Policies which have more room for improvement, can benefit more from this
method. The simulated quadrotor which started from the default paparazzi gains im-
proved the performance by 60% while the quadrotor which started from the Nelder-
Mead optimized gains improved by only 7% upon its initial performance. For the real-life
quadrotor, the algorithm improved the performance by 56% starting from the paparazzi
default gains, and was not able to improve the performance at all when starting from the
Nelder-Mead optimized gains. This is due to the initial policy being so close to the opti-
mum that the difference may likely lies within the variability from external disturbances.

From the results of the real-life quadrotor, an end criteria for the algorithm can be de-
termined. Fine-tuning of the gains on a real-life system are shown to be non-beneficial
since the performance can be more affected by externally influenced variability than by
the gains used. By finding the standard deviation of the task in question, an end con-
dition in the form of improvement rate limits can be calculated and extraneous trials
eliminated. Taking this into account, the best policy solution is found for the quadrotor
task after only 1-3 real-life trials.

Even though the conclusions of this approach imply some limitations, there are still
many applications where this approach would be useful. The original vision for this type
of local optimization was to fine-tune the gains of the Delfly flapping wing MAV. Every
Delfly vehicle is slightly different due to small variations in manufacturing and what is an
optimal gainset for one may be slightly different for another. As long as the gains found to
be optimal for Vehicle A are within the same convex region as those of Vehicle B, it should
give a good enough starting point for the optimal gains of Vehicle B to be found within
3-5 trials. Furthermore, there will be some knowledge of the attainable performance
of the vehicle and that knowledge can be used to guide the linesearch and the ending
conditions of the policy improvement algorithm. Therefore, the original vision for this
approach is still intact.
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TRANSFER LEARNING OF A

QUADROTOR –
FOR A NON-MARKOV TASK

The previous chapters demonstrated the learning and optimization capabilities of various
reinforcement learning approaches in order to address the challenges within autonomous
guidance or control in real-life flight. This chapter combines those separate approaches
onto a single quadrotor platform in order to test reinforcement learning knowledge trans-
fer within a non-Markov honeybee task.
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6.1. INTRODUCTION
The use of MAVs in real-life applications, to solve real-world problems, is growing in
demand as the technology becomes more widely known and accessible. The field of
machine learning in robotics is more popular than ever as a potential pathway to auton-
omy; however, despite the desire to ultimately apply these algorithms, flights conducted
with reinforcement learning (RL) are rare. The limitation is due, in part, to the extensive
time commitment for tabula rasa learning – that is, learning from scratch with no a priori
knowledge of the environment. While many RL methods focus on speeding up the learn-
ing rate of tabula rasa learning, several other methods have been developed which focus
on reducing only the amount of in-flight training time necessary in reinforcement learn-
ing; acknowledging that simulations, though imperfect representations, can be used to
take on the time burden of training. One such framework is transfer learning.

Transfer in reinforcement learning is the study of transferring knowledge learned in
a source domain or task, to a different target domain or task. Learning first in the source
domain can result in improved speed of convergence in the target domain, over tabula
rasa learning. Different types of RL-based knowledge can be transferred, such as value
function or policy [133]. Understandably, the two domains must be related to some de-
gree in order for the transferred knowledge to have a benefit in the target domain; but
how much commonality is needed is not well formalized or easily generalized as most
examples within robotics are empirical in nature [75, 103, 133].

For MAV applications, the target domain is in a real-world environment under the
setting specific to the task at hand. The source domain can also be in the real world and
still benefit the overall mission. The source domain can, for example, be in a safer or
more controlled environment than the intended target environment. More often, the
source domain is in simulation and the target domain is in the real world. This approach
can reduce the amount of total flight time needed to learn a near optimal behavior and
in some cases help to avoid dangerous scenarios [1, 32].

In this chapter, a new honeybee task is defined to be tested in the TU Delft Cyber
Zoo flight testing facility. The honeybee’s mission is to collect nectar from flowers and
bring it back to the hive as efficiently as possible. The task is designed to fit in the limited
space available, yet still be high-dimensional to maintain its applicability to large-scale
discrete problems. As a departure from the standard Markov decision process (MDP)
formalization – from which the other chapters in this dissertation and most RL research
are structured – this task is non-Markov with one hidden state in order to limit the size of
the state space. Real-world tasks are often non-Markov which makes this problem setup
a more realistic representation of the world as it is not always possible to ascertain all
relevant state knowledge.

The honeybee task is addressed by a reinforcement learning approach which incor-
porates methods from each previous chapters; including an extension of vision-based
rewards from Chapter 2, and hierarchical methods with options from Chapters 3 and
4 1. This chapter builds upon those methods with the addition of transfer learning and
a brief analysis into the effect of hidden states (which is also compared to a similar MDP
task). With the non-Markov task, learned solutions of the honeybee task show that in

1Gains tuned in Chapter 5 for the vertical loop control are used during flight test, but do not have an influence
on the RL methods of this chapter.
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most situations, transferred knowledge from a source task improves the speed of conver-
gence for the target task. However, as the commonality between the source and target
domains decreases, the benefit of transfer learning over tabula rasa learning instead be-
comes a trade-off. One result shows that initializing with inaccurate knowledge can give
an initial advantage over tabula rasa, but will hinder the learning speed of the training so
that the performance advantage is lost later in the training period.

In Section 6.2 a more in-depth introduction to transfer learning and non-Markov
tasks for MAVs and robotics in general is presented and the contributions of this chapter
are put into the context of recent advances in the field. In Section 6.3, the experimental
designs of the honeybee task for both simulation and flight tests are defined. The results
of a substantial simulation study are then presented in Section 6.4. The flight test results
are presented in Section 6.5, followed by a discussion of the results and conclusions.

6.2. BACKGROUND AND RECENT ADVANCES

This chapter integrates the methods from previous chapters and builds upon those meth-
ods with a transfer learning approach. Furthermore, a look into the effectiveness of these
method on systems with a hidden state is explored. It is assumed that the reader is in-
formed on temporal difference reinforcement learning (TDRL), Q-learning, and hierar-
chical reinforcement learning (HRL) from previous chapters or external sources. This
section will give an introduction to methods which address hidden states for reinforce-
ment learning problems, transfer learning methods, and the state-of-the-art in transfer
learning for MAVs and robotics.

6.2.1. HIDDEN STATE TASKS AND NON-MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are the formal foundation for reinforcement learn-
ing; however, it is not hard to find applications where the Markov property does not hold
true. Micro aerial vehicles, depending on the size and class, may not be able to carry all
the sensors needed for a complete or accurate state representation. A state which is rele-
vant to the decision process but is not represented in the state input vector is called a hid-
den state. Formalizations for Partially observable Markov decision processes (POMDPs)
handle non-Markov tasks by trying to estimate the missing state [19, 87]. POMDP ap-
proaches have had successes applied to navigation tasks on ground robots [44, 45, 51,
135]. Another method is to predict the value for the missing state in the Q table, such as
with recurrent neural networks (RNN) [10, 56, 114].

Not all hidden state tasks require state estimation or value function prediction. In
some cases the non-Markov task can still be solved with standard temporal different RL
or Q-learning, or can be aided in hierarchical methods; as in Chapter 4 where “ambigu-
ity” in the relative state representation is one way a system can be partially observable.
In this chapter, the reinforcement learning algorithms solve a honeybee MDP and then a
non-Markov version of the task with an added hidden state. A hierarchical reinforcement
learning over options approach is able to solve both version, but is on average slower to
learn the non-Markov task.
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6.2.2. TRANSFER LEARNING
Transfer learning for reinforcement learning is an extensive field of study. The field is
defined, generally, as methods which take advantage of knowledge learned in a source
task in order to gain some benefit when that knowledge is used in a different, but related,
target domain. Lazaric [75] defines a taxonomy which classified each transfer learning
approach based on 3 main dimensions: the setting, the transferred knowledge, and the
objective. One interpretation can be visualized as in Figure 6.1. Taylor and Stone [133]
created a slightly different classification in their survey. Both taxonomies will be refer-
enced in this section.2

source domain target domain

settingsetting

knowledge

objectiveagentagent

environmentenvironment

Figure 6.1: A visualization of the taxonomy of transfer learning in 3 main dimensions: the setting, the trans-
ferred knowledge, and the objective.

Due to the large range of different transfer approaches that exist, the setting is de-
fined by several elements which define the nature of the task(s) to be solved; the features
and formulations that define the setting include the state or action space [54, 69], reward
structures [74, 85], transition function [102, 105], start state and/or goal state [41] of the
task, among others. Any one of these elements may be changed between the source
tasks and target tasks. In some cases, a single agent in the target domain can receive
knowledge gathered from multiple agents in the source domain [98, 132]. Lazaric cat-
egorized settings into 3 groups: Transfer from source task to target task with fixed do-
main, Transfer across tasks with fixed domain, and Transfer across tasks with different
domains. Taylor and Stone name it transfer dimensions and categorize the methods into
5 classification groups defined according to how the source and target domains differ
from each other: Same state variables and actions, Multi-Task learning, Different state
variables and actions with no explicit task mappings, Different state variables and ac-
tions with inter-task mappings, and Learning inter-task mappings.

The transferred knowledge is the information which is learned in the source domain
and transferred to the target domain. The type of knowledge which can be transferred
include: Q value functions [11], policies [40, 41], action or option sets [85, 116], task fea-
tures [54, 74], among others. Lazaric further generalizes the types into: Instance transfer,

2This section gives only a brief introduction to transfer learning. For a more complete look into transfer learn-
ing, the two referenced surveys are highly recommended. Taylor and Stone (2009) [133], give an in-depth
look into the transfer learning algorithms implemented as well as a classification into the types of informa-
tion that can be transfered from source to target domain; and Lazaric (2012) [75] focuses on a taxonomy of
transfer learning within the broader scope of reinforcement learning research.
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Figure 6.2: The main objectives of transfer learning as described by Lazaric [75]. The contribution of each
learning objective is identified by the dashed circle.

Representation transfer, and Parameter transfer.
The objective is defined by the metric(s) with which one can determine the bene-

fit (if any) of the transfer learning method over tabula rasa. The ways which the per-
formance can be improved can be measured in different ways. Figure 6.2 displays the
different metrics as described by Lazaric. The jumpstart demonstrates an improved per-
formance at the start of training in the target domain. The learning speed is the rate
in which the performance improves, and the asymptotic improvement is the amount
by which the transfer method improves the convergence of the final learned behavior.
Taylor and Stone add that the total reward (the area under the curve), can be used as a
metric; and with that, a transfer ratio can be calculated equal to the total reward of the
transfer method over the total reward accumulated by the tabula rasa learning.

According to the above classification scheme, this study can be categorized as hav-
ing a setting where the transition function of the task is changed. The state and ac-
tion/option spaces are unchanged. The transferred knowledge is the Q-function for HRL
options. The main objective metrics referenced are the convergence to the optimum (if
or when it converges), the learning speed, and the jumpstart improvement – all analyzed
over 50 sample runs.

RECENT ADVANCES IN APPLICATION

While it is interesting and useful to classify the vastly different algorithmic approaches
of transfer learning, we are also interested in the applications where these methods are
beneficial for the improvement of reinforcement learning. Without a well-established
theoretical foundation, empirical studies are the main driving force behind transfer learn-
ing for RL [133].

Transfer learning has been successfully applied to physical robots in the robosoc-
cer [126] keepaway benchmark problem, by learning inter-task mappings from a simple
source domain in simulation to the more complex keepaway domain [122, 134] or with
“Q-reuse” and SARSA where the source domain is a reduced version of the target domain;
both on a physical humanoid robot [11]. Recently, inverse dynamics of neural networks
have been learned on a simulation in order to generate actions for the target domain of a
Fetch robotic arm in a continuous domain task [28]. A multi-stage deep reinforcement
learning agent consisting of a camera sensor and robotic arm uses transfer learning to
more quickly identify and pick up specific objects [57].
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Due to the time commitments needed for training there are less physical applica-
tions for UAVs and MAVs. One study trained a neural network policy for a quadrotor
stabilization control task in a simple simulation and successfully transferred the policy
to a quadrotor; testing the stabilization by throwing it in the air and by waypoint naviga-
tion [62]. Another study with a quadrotor, learned obstacle avoidance through forest in
the summer and then transferred the policy to a target domain in the winter in different
weather conditions (snow) [32].

In this study aims to demonstrate RL transfer learning on a non-Markov task using a
quadrotor and vision-based rewards. The detailed setup for the experiment will now be
explained.

6.3. EXPERIMENTAL SETUP
A new reinforcement learning “honeybee” task was designed for the experiment pre-
sented in this chapter. The reinforcement learning methods from the previous chapters
are consolidated onto a single platform in order to give a demonstration of a real-life
robotic system utilizing reinforcement learning to learn a guidance and control appli-
cation. In this section, details and motivation are given for the design of the task and
solution methods, as well as a description of the setup of the simulation and real-life
flight tests.

6.3.1. HONEYBEE TASK DESIGN
A new honeybee task is defined for the purposes of this experiment. The task is mod-
ified from the design in Chapter 2 to be more realistic, higher dimensional, and more
complex, yet still be spatially compact so as to fly in the space of the Cyber Zoo. This
section will discuss the state representation of the new task, as well as the physical rules
of the world the bee is operating in. There are two world designs: one which maintains
the properties of a Markov decision process (MDP) but is not a realistic depiction of real-
life, and another which incorporates a “hidden state", resulting in a loss of the Markov
property and is a more realistic model of the real world but more difficult to solve.

STATE REPRESENTATION

In order to create a more challenging and relevant task, a new state representation was
necessary. In Chapter 2, the agent had no knowledge of visitation history and a non-
realistic feature had to be added to prevent the bee from continuously visiting the same
flower. After each visit to a point of interest (a flower or the hive), the agent was regen-
erated randomly within the grid world, thus the agent learned, in effect, how to get from
its current location to the nearest reward spot. This simplification is not realistic, but
requires less states and therefore was used as an intermediary step.

To remedy this unrealistic characteristic of the problem setup, new information is
introduced which incorporates a limited amount of historical knowledge in the state, so
that the bee knows which point of interest (POI) was most recently visited. This change is
added to reflect the reality that nectar will not be immediately available at the last visited
flower. The optimal solution will involve a sequence of visited flowers, and knowing
which flower was visited last will be instrumental in learning this sequence.
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Figure 6.3: New honeybee task concept: The new honeybee task is based on the task from Chapter 2, with
extended state space to incorporate the knowledge of the last-visited point of interest.

The new state representation can be seen in Figure 6.3. The location state is repre-
sented in X-Y coordinates within a discrete 6× 6 gridworld. The nectar state indicates
how many nectar units the bee is carrying. The bee can carry a maximum of 3 nectar
units. The POI state represents the POI which was last visited: the hive, or one of the
3 flowers. With 36 location states, 4 nectar states and 4 POI states, there are 576 total
states. However, since there are certain states which will never occur, for example the
nectar state must be zero if the hive was the last visited POI and the nectar state can not
be zero if a flower was last visited, the effective number of states is actually 360 states.

BEEWORLD 1
In Beeworld 1, nectar cannot be retrieved from the same flower twice in a row. Nectar
is not available at last visited flower (known by POI state). As soon as another POI is
visited, nectar is assumed to be available again. The criterion for nectar availability is
directly represented in the state, therefore maintaining the Markov property.

The rules of this MDP world are, however, unrealistic since the amount of nectar
available at a flower doesn’t have to do with visiting other flowers in the meantime, but
rather many factors including: the species of flower, how old the bloom is, and many
other unknown factors [35]. Therefore, this Beeworld domain only serves as a demon-
stration of learning the task as an MDP. In reality, there will be many unknowable hidden
states which cause the problem to be non-Markov.

BEEWORLD 2
Beeworld 2 is more realistic, at the expensive of losing the Markov property. Nectar is
depleted at a flower when the agent visits, but the nectar regenerates after tnr timesteps.
There is a counter for each flower tracking the timesteps since it was last visited, however
this information is not known to the agent. This sort of non-Markov task is known as a
“hidden state” task [144]. It is left as a hidden state since the required increase in state
space would be prohibitive for learning, and also because in real-life there are instances
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Figure 6.4: Evaluation metrics: Several aspects of the performance can be evaluated to determine the benefits
of one method over another. In this case, the performance goal is to minimize the number of evaluation steps.

where a state can not be known. This study aims to demonstrate that the task can still be
learned with reinforcement learning techniques.

The nectar regeneration time, tnr , in this task will determine the optimal path se-
quence between the flowers. If the nectar regenerates quickly, it is beneficial to visit only
the flowers nearby the hive. As it takes longer to regenerate the nectar, it becomes more
beneficial to travel and collect the nectar at further flowers.

The task is sequential, but can also have more than one optimal path. For example, if
the optimal solution is to loop through all three flowers and return to the hive, the agent
can go either:

• counter clockwise, as in: hi ve → F1 → F2 → F3 → hi ve

• clockwise, as in: hi ve → F3 → F2 → F1 → hi ve

Optimal evaluation scores and the corresponding path(s) as a function of tnr , can be
seen in Table 6.4 (Section 6.4).

PERFORMANCE EVALUATION

The evaluation of a learned value function is determined by how many iterations it takes
to get 12 nectar units to the goal using a greedy policy(ε = 1). Each evaluation run is
capped at 120 steps.

As discussed in Section 6.2, benefits of one method over another can be measured
in several ways. In this study, the performance as measured in number of discrete steps,
is to be minimized. The metrics which will be analysed and discussed in the results are
shown as they apply to this problem setup in Figure 6.4.

The jumpstart demonstrates an improved performance from the very beginning of
training. This can be achieved, for example, by the transferred Q-function or from an
optionset well-suited to the problem (such as shown in Chapters 3 and 4). The learning
speed is the rate in which the performance improves. The rate can be defined as the slope
of the line, so the learning speed is changing throughout the learning and can be com-
pared to the learning speed of the tabula rasa line. A more compact metric is the time to
threshold. In many applications, the optimal performance cannot be known, so a thresh-
old performance is defined in order to compare the time it takes for different methods
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to reach it. For this study the optimum is known so observations of the time to the opti-
mal behavior are made. The convergence metric of the method describes the asymptotic
behavior or the performance at the end of the training period. For the purposes of this
study, we are interested in the convergence to the optimum and how consistently it finds
the optimum over 50 sample runs.

6.3.2. REINFORCEMENT LEARNING METHODS

The reinforcement learning methods used in this experiment have been described in
previous chapters.

The value function temporal difference RL update law from derivations in Section 2.2,
was originally introduced in Eq. (2.6). In this chapter, this method is referred to as V-
TDRL. The “flat” Q-learning update law from derivations in Section 3.2, was originally
introduced in Eq. (3.2). The hierarchical reinforcement learning (HRL) Q-learning over
options update law from derivations in Section 3.2, was originally introduced in Eq. (3.5).

The state space or state/action space sizes depend on the RL method used and the
number of primitive actions or options available. A summary is below:

V-TDRL 360 states

Q-learning 1440 state/action pairs

HRL 2880 state/option pairs (with 8 options)

HRL OPTIONSET

The design of the optionset is informed by the lessons learned from Chapters 3 and 4
and the nature of this task.

Table 6.1: Configurations of flat Q-learning and HRL optionsets.

flat HRL
(primitive) options

North (N) N+E
East (E) E+S

South (S) S+W
West (W) W+N

- N ×3
- E ×3
- S ×3
- W ×3
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Figure 6.5: Hive reward: The reward at the hive POI is a function of nectar state. r = nsz . The value z = 3.5 was
tuned for this task.

REWARD STRUCTURE

Designing an effective reward structure is vital for most forms of reinforcement learning.
The reward structure for this task is as follows:

−1−1−1 Penalty for each timestep

−3−3−3 Penalty for state-action resulting in a wall hit

f (ns)f (ns)f (ns) The reward at the hive as a function of the nectar state (Figure 6.5).

To learn the sequential path between flowers in this task, the main positive reward
must come from the hive at the higher nectar states. The reward is only collected at the
end once the nectar is brought to the hive and therefore has to propagate through the Q-
function’s multiple dimensions, where visiting flowers is the only way to transition to the
next nectar state. The hive reward, as in Figure 6.5, was tuned by trial and error against
Beeworld 2 with tnr = 12 so that Path C (from Figure 6.9) could be found.

6.3.3. PARAMETER SELECTION
Observation of training runs indicated sensitivity to: the learning rate, α, the discount
factor, γ, and the greediness factor, ε, of an ε-greedy policy.

To ensure a fair comparison between the various configurations, a parameter search
was conducted using 50 simulated runs for statistical significance and observing the
convergence behavior. The resulting parameters for each configuration are shown in
Table 6.2. The discount factor, γ, was found to be best at γ= 0.90 consistently, and so is
left out of the table. A more detailed analysis is shown in Appendix D.

The results of the parameter study for the MDP of Beeworld 1, showed that the solu-
tion is robust to a large range of parameters and learns very easily within that range.

The results of the parameter study for the non-Markov Beeworld 2 showed that the
performance of the RL task is sensitive to each of the parameters varied; however, the
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Table 6.2: Summary of parameter selection for each configuration

bee-world 1 bee-world 2
parameter V Q HRL V Q HRL

ε 0.6 0.6 0.6 0.8 0.8 Scheduled
α 0.2 0.3 0.3 0.3 0.2 1/ 4pk

discount factor γ and the learning rate, α are consistently reliable in the same range of
values for each of the configurations. While a constant α was usually sufficient, there
were some occasions where a variable α improved convergence greatly. These cases will
be further discussed in the results sections.

The study into the parameter ε of the ε−greedy policy had surprising results for Bee-
world 2. Fully random exploration resulted in poor learning, signifying that greediness is
needed to overcome the presence of the hidden state since it adds time as a factor. The
HRL approach benefited from scheduling of the greediness over the course of its train-
ing. Since there are infinite ways to schedule the ε-greedy policy, a few profiles were tried
and the resulting schedule was selected (see Appendix D).

6.3.4. FLIGHT TEST SETUP
Two flight tests are performed using the resources available in the Cyber Zoo. A position
tracking system is used for location state estimation for the grid world as well to collect
the takeoff position for the self-tuning gains. The points of interest are represented by
colored paper on the ground of the arena. They are detected use a color-based vision ca-
pability as already described in Chapter 2; however there are now 4 colors to detect, with
each color indicating a different POI. Figure 6.6 gives an overhead view of the Cyberzoo
setup, where the yellow paper represents the hive, and the red, blue, and purple papers
represent flowers 1, 2, and 3, respectively.

Figure 6.6: Overhead view of Cyber Zoo with quadrotor and color-based vision features
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The flight tests are conducted for the hierarchical reinforcement learning method in
Beeworld 2 in order to demonstrate the transferability of the simulation learned guid-
ance policy to a real-world target task. The task is slightly changed, by way of changing
the nectar regeneration time, tnr . The first flight test has the quadrotor agent learn a
Q-function in a simulated source domain with tnr = 5 and transfers that knowledge to
the Cyber Zoo with target domain of tnr = 12. In the second flight test, the Q-function is
learned via a simulated source domain with tnr = 12 and is transferred to a tnr = 5 target
domain in the Cyber Zoo. In each case within the target domain, the training remains at
an ε-greedy policy of ε= 0.8.

6.3.5. TABLE OF EXPERIMENTS
Table 6.3 summarizes the experiments which will be presented in the upcoming results
section.

Table 6.3: Table of experiments

# Domain Qi ni t Methods Figure

Simulation
1 Beeworld 1 tabula rasa V-TDRL

Q-learning Figure 6.7
HRL

2 Beeworld 2 tabula rasa V-TDRL
tnr = 12 Q-learning Figure 6.10

HRL

3 Beeworld 2 transfer HRL Figures 6.12 - 6.13
various tnr see Table 6.5

Flight test
4 Beeworld 2 transfer HRL Figures 6.18 - 6.15

various tnr see Table 6.6

6.4. SIMULATION RESULTS
Simulation is used in this chapter in two ways: First, as a representation of the real-
world in order to predict the behavior of a learning agent when learning from tabula
rasa; second, as a tool to learn knowledge of the simulated source environment in order
to transfer the knowledge to the real-life target environment and possibly benefit from
the prior knowledge (Flight test results in Section 6.5).

The results of learning from tabula rasa are presented first in the Beeworld 1 MDP
(Experiment 1) and then in the non-Markov Beeworld 2 (Experiment 2). Results are
shown for the 3 RL methods: Value function temporal difference RL (denoted as V-TDRL),
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Q-learning, and hierarchical reinforcement learning (HRL) over options. The main inter-
est is in the HRL method, of which the benefits and limitations are described in detail in
Chapters 3 and 4. The V-TDRL method requires a transition model for action selection,
and therefore has limited applications; however, it is kept in the study as a visualization
aid since the larger dimensionality of Q-learning and HRL is difficult to visualize. “Flat”
Q-learning is presented for comparison purposes.

Results of the Q-table transferability study are presented only for Beeworld 2 using
HRL over options (Experiment 3). Knowledge transfer necessitates that there exist two
different domains: the source and the target. For knowledge transfer to be beneficial over
tabula rasa, the source and target domains must be similar enough that the knowledge
gained in the source domain is still useful in the target domain. For this study, the source
and target domains differ in the nectar regeneration time, tnr . The contribution of this
parameter to the “hidden state” means that the change will not be reflected in the state
input vector and will therefore only be learned by interaction with the target domain
environment.

6.4.1. BEEWORLD 1
The Beeworld 1 MDP is easily learned by each of the methods. The performance – the
number of steps it takes to get 12 nectar units to the hive during a greedy evaluation run
– of each method over training iterations is shown in Figure 6.7. The average of 50 runs
is plotted. The standard deviations are not shown, but each of the methods’ average
performance reaches the optimum, meaning that the standard deviation goes to zero.
The V-TDRL approach is the fastest to learn since it has, by far, the least number of states
it must explore. The HRL option/action space has twice as many values to learn as the
flat Q-learning, but still finds the optimal solution faster (with standard deviation of 0,
over 50 runs). This task is still small in its physical space, therefore the V-TDRL is the best
approach but with a larger physical space it is likely that the HRL approach would gain
the advantage.

To demonstrate the learned value function, the V-function table learned by V-TDRL is
shown in Figure 6.8 along with notation (in yellow) showing the resulting optimal path of
a fully greedy evaluation run. Each square grid represents the discrete gridworld within
the “plane” of the indicated nectar state/POI state. The solid yellow circle denotes the
starting location within the plane, the arrow is the path it will take to the next flower or
hive denoted by a dashed-line circle, which will in turn transition it to a different nectar
state/POI state “plane”. Q-learning and HRL over options, results in approximately the
same path, but visualization of the Q-function would take N times as many “planes” to
plot, where N is the number of actions or options.

The greedy evaluation run will result in the path: hi ve → F1 → F2 → F1 → hi ve (Fig-
ure 6.9-Path B). The furthest flower is not part of the optimal path with this setup and
cannot be without adding additional state variables and new rules about nectar avail-
ability.

6.4.2. BEEWORLD 2
Beeworld 2 introduces the non-Markov property and the “hidden state” property as de-
scribed in Section 6.3. The effect of the hidden state will first be discussed, followed by
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Figure 6.7: Experiment 1: comparison of performance for V-TDRL, Q-learning, and HRL approaches
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Figure 6.8: Experiment 1: Value function (numbers) and greedy path (yellow path)
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the results from the tabula rasa learning of each of the RL methods and the results of the
transferability study with the HRL approach.

HIDDEN STATE EFFECT ON OPTIMAL PATH

The hidden state in the form of time-sensitive state transition makes the optimal path
dependent on the nectar regeneration time, tnr . For this specific task, the ranges of tnr

and the corresponding optimal paths are noted in Table 6.4. The resulting paths, are
visualized in Figure 6.9.

Certain ranges of tnr will have the same optimal path but with a higher number of
evaluation steps than other ranges. This is because the agent will wait around that flower
until the nectar is regenerated. In certain ranges of tnr , a “wait around” sort of policy is
faster than making the trip to a further flower.

x2

nectar
state

Path A Path B Path C1

Path C2 (reverse)

0

1

2

3

Figure 6.9: Beeworld 2: Possible learned paths

Table 6.4: Beeworld 2: nectar regeneration time ranges and corresponding optimal path (with primitive actions
and no wall-hits)

tnr
evaluation

optimal # steps
path description

0 ≤ tnr < 2 40 Path A hi ve → F1 → F1 → F1 → hi ve

2 ≤ tnr < 4 56 Path A hi ve → F1 → F1 → F1 → hi ve

4 ≤ tnr < 6 64 Path B hi ve → F1 → F2 → F1 → hi ve

6 ≤ tnr < 10 76 Path B hi ve → F1 → F2 → F1 → hi ve

10 ≤ tnr < 20 80 Path C1 hi ve → F1 → F2 → F3 → hi ve
or

Path C2 hi ve → F3 → F2 → F1 → hi ve
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RL METHODS COMPARISON

A comparison of the RL methods is shown in Figure 6.10 using tnr = 12 so that the opti-
mal path will be either path C1 or path C2, circling through each of the flowers in either a
clockwise or counter-clockwise direction, respectively. The direction will be determined
by the random actions taken. The parameters chosen for each of the methods were sum-
marized in Table 6.2 and help to understand the results, especially regarding the sched-
uled ε value used for the HRL methods.

The V-TDRL approach finds the optimal path consistently after about 150,000 itera-
tions. Q-learning has a slower learning rate, and after 180,000 iterations still has 2 runs
out of 50 which don’t converge to the optimum. The HRL with options approach per-
forms on average worse on all metrics, with a slower learning rate, and converges to a
solution slightly worse than optimum (but still within 1 step of the optimum on aver-
age). The results from Chapter 3 showed that the benefit of the temporally extended
options only became apparent in the largest maze. Therefore, it is likely that the option-
set chosen is not well suited for the size of the discrete gridworld since the Q-learning
with only primitive actions can perform better. However, given that the benefits for HRL
were already discussed in Chapters 3 and 4, we can hypothesize that the HRL method
will surpass the flat Q-learning method as the problem scales up.
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Figure 6.10: Experiment 2: Comparison of performance for V-TDRL, Q-learning, and HRL approaches
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Figure 6.11: Experiment 2: Value function (numbers) and greedy path (yellow path) – Path C1
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6.4.3. TRANSFERABILITY STUDY
To study the transferability of the HRL Q-table initialized from the source domain and
executed within a target domain, the two domains are defined as having different tnr .
The tests are described in Table 6.5. The source domain provides a converged Q−table
to use as an initial Qi ni t for the target domain. The alternative to using a sourced Qi ni t

is learning tabula rasa, in other words from a blank slate with the Q-table initialized to
all zeros as already explored in the previous sections.

The tests from Table 6.5 are selected such that learning of the target domain starts
from a variety of source Qi ni t ’s. The target domains of tnr = 5 and tnr = 12 are selected
based on Table 6.4. They result in different optimal paths, Path B and Path C, respec-
tively, so that experiments can be set up which approach the target domain from various
degrees of commonality for the setting. Target domain tnr = 5 corresponds to optimal
Path B and is initialized with source value functions which correspond to Path C1 (3b),
Path B(3c ), and Path A(3d ). Target domain tnr = 12 corresponds to optimal Path C and
is initialized with source value functions which correspond to Path C (3x ), Path B(3y ),
and Path A(3z ). The transfer learning evaluation results are also compared to tabula rasa
learning (3a and 3w ). It is hypothesized that transfer can be highly beneficial over tabula
rasa learning in all of the metrics described in Figure 6.4; however, it is also hypothesized
that there will be some point where the source and target domains are too different and
transfer can become detrimental for certain metrics in the way that “bad habits” can be
harder to break than learning from scratch.

Table 6.5: Experiment 3: Simulation transferability study–Figure descriptions

# tnr

(source)
tnr

(target)
optimal paths
source → target

Figure 6.12
3a tabula rasa 5 → Path B
3b 12 5 Path C1 → Path B
3c 9 5 Path B → Path B
3d 3 5 Path A → Path B

Figure 6.13
3w tabula rasa 12 → Path C
3x 15 12 Path C → Path C
3y 5 12 Path B → Path C
3z 3 12 Path A → Path C

The evaluation results for the transfer experiment with target domain tnr = 5 (tests
3a−d ) are plotted in Figure 6.12, averaged over 50 runs. The dashed grey line is the opti-
mal number of evaluation steps for the target domain. Each source is represented by a
different color, where the diamond (to the left of iteration 0) is the optimal performance
of Qi ni t in the respective source domain, and the solid line is the performance starting
with Qi ni t at iteration 0, and evaluated as it is trained in the target domain. The results
show that RL transfer is beneficial over tabula rasa learning, within some limitations.
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Figure 6.12: Experiment 3a−d : transfer study at tnr = 5 with Qi ni t from source domains at tnr = {12, 9, 3}.
Compared with tabula rasa learning. The figure plots the number of steps in the greedy evaluation run aver-
aged over 50 runs.
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Figure 6.13: Experiment 3w−z : transfer study at tnr = 12 with Qi ni t from source domains at tnr = {15, 5, 3}.
Compared with tabula rasa learning. The figure plots the number of steps in the greedy evaluation run aver-
aged over 50 runs.
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The jumpstart improvement by transfer learning is in each case highly beneficial. Test 3c

immediately starts and maintains the optimum. The one metric which is not better than
the tabula rasa results is test 3d , where the source has a lower number of optimal steps.
Initially, the agent is operating in the target domain as if it were still in the source do-
main. The previously rewarding path (Path A) results in flowers without nectar available
and it has to wait to take enough random actions to find Path B, and reinforce that path
through continuous interaction with the new environment. This can take time to over-
ride the previously known knowledge within the value function and as a result it takes
longer than tabula rasa to find the value function which leads to the optimal path.

The evaluation results for the transfer experiment with target domain tnr = 12 (tests
3w−z ) are plotted in Figure 6.13, averaged over 50 runs. The benefits of transfer learning
again show in the jumpstart and in a faster learning rate, early in the training. The one
exception is again with source domain tnr = 3 (test 3z ) where it learns at a faster rate than
tabula rasa early on in training, but then slows while the tabula rasa learning finds the
optimal path earlier, on average. An interesting result from test 3x , indicates that even
though the source and target domains share the same optimal path (Path C → Path C),
the transfer learning introduces opportunities to stray from a Q-function which results in
an optimal path. This is contrary to test 3c , where the “Path B → Path B” transfer contin-
ued to be optimum for the whole course of training in the target domain. One difference
between the results seen in Figure 6.12 and the results in Figure 6.13 is the noise. When
the optimal path is Path C for the target domain, there is more noise in convergence
because there is more than one optimal route which gives conflicting state/option up-
dates. The greedy performance is most stable when one option is clearly the best choice
for a given state and is reflected as such in the values of the Q-function. However, when
several options give similarly high-valued expected returns, it only takes a few random
actions during training to give an unfavorable value function update which results in a
non-optimal decision during a greedy evaluation. Because the learning rate parameter
α = 1/ 4

√
k(s,o), 3 and k(s,o) is reset to zeros at the beginning of training in the target

domain, the relatively larger bellman update stepsize will increase the occurrences of
these temporary deviations from the optimal performance. As the α decreases, the per-
formance converges again toward the optimum. This explains the general noisiness of
the evaluation performance for target domain tnr = 12, as well as the temporarily worse
performance of test 3c .

6.5. FLIGHT TEST RESULTS
Flight tests were performed for two transfer scenarios as described below in Table 6.6.
The flight tests, Tests 4a and 4b , have the same configurations as the simulation tests 3b

and 3y , respectively(see Table 6.5). Therefore, the result is expected to be similar with
two differences: 1) The flight test presented in this section will be a single run instead
of an average over 50 runs, and 2) Due to time constraints, the run will only last for
about 4500 iterations ( 3.25 hours) – as compared to the 180,000 iterations in simulation
– which means it is likely that there will be noticeable learning, but may not converge
to the optimal in that time. In Chapter 2, we saw that a near-optimal greedy evaluation

3α= 1/ 4
√

k(s,o), where k(s,o) is the number of times each state/option is visited
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could be found within the battery life of the AR-drone 2.0 (10-12 minutes) and long be-
fore the value function was completely converged. This honeybee task is larger in scale
and uses transfer learning and HRL methods to combat this larger scale. Results from
simulation show how many iterations it will take on average (over 50 runs); the flight
tests presented in this section provide insight about what those results mean in real time
on a real-life platform, and the associated challenges.

Table 6.6: Experiment 4: Flight test transferability study–Figure descriptions

# tnr

(source)
tnr

(target)
optimal paths
source → target

Figure Figure
description

4a 12 5 Path C1 → Path B Figure 6.15 evaluation results
Figure 6.17 tracked flight

4b 5 12 Path B → Path C Figure 6.16 evaluation results
Figure 6.18 tracked flight

The results are shown in two different formats. The evaluation results as in Fig-
ure 6.15 and Figure 6.16 are familiar from the simulation results section. In the flight
tests, the Q-function was saved and evaluated every 10 iterations. The tracks shown
in Figure 6.14, Figure 6.17 and Figure 6.18 show the position tracking of the quadrotor
throughout the flight tests. The flights in Figure 6.17 and Figure 6.18 have been divided
into “rounds” groupings for clarity. Each round, as numbered in the figure, consists of
the path starting from the hive with no nectar, and ending at the hive when it delivers
the nectar there. The early portion of the round is dark blue and over time transitions
in color to yellow. These figures are from training with ε= 0.8, and therefore 80% of the
actions are greedy and 20% of the actions are random. Figure 6.14 shows examples of a
greedy evaluation using the Q-function from the source domains of Tests 4a and 4b .

We will first discuss the results from transfer learning Test 4a , as seen in Figure 6.15.
The source domain is represented by tnr = 12, results in the optimal Path C and 80
steps is the optimal evaluation performance (Figure 6.14(a)). The 80 step optimal for
the source domain is visualized as the red diamond left of the line at iteration 0. The
target domain tnr = 5 has an optimal Path B and 64 steps is the optimal evaluation per-
formance, which is visualized by the grey dashed-line. The training within the target
domain begins at iteration 0 using ε = 0.8 throughout the whole training period. The
Qi ni t provided is a product of the source domain learning and will therefore choose an
action consistent with Path C1, 80% of the time, as per the ε-greedy training policy. This
behavior for the training can be seen in Figure 6.17, where Path C1 is followed with the
exception of a few random option selections. For example, Rounds 1, 3, and 13 have
completed the round in the minimum number of iterations, while the other rounds took
some random actions in order to explore. In Round 12, the agent explores with a series
of random actions which find Path B, the new target domain path.

For this test, the critical juncture is at the hive with 0 nectar, where the agent chooses
an option which either moves toward the purple flower (as was the optimal state/option
from the source domain), or moves towards red flower (which is the desired path in the
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target domain). When the agent takes the target domain desired path, it has an effect
of increasing those state/option values in the Q-function, as compared to taking Path C.
The greedy action is taken 80% of the time, and 20% of the time one of the 7 remain-
ing options will be taken. Therefore, it is only a matter of when the right option will be
taken and how many times that option needs to be selected for its state/option value to
overtake the previously greedy option’s value which was reinforced in the source domain.
This effect can be seen in Figure 6.15. The initial Q function is the biggest influence to the
greedy evaluation until around iteration 1720, where one of the state/options was up-
dated enough that the associated value became larger than the option which moved the
agent to the purple flower. This resulting greedy path, included an option which resulted
in a wall hit but was still valued higher than the Path C option. This has some safety im-
plications, and indicates that the wall hit penalty should be greater. Again, around itera-
tion 4400, another option was sampled enough to overtake the wall hit option. It results
in more greedy evaluation steps, but doesn’t not hit the wall at any point so it ended up
having a higher value. The optimal option was still not sampled enough within the 4500
iterations; however this result for a single run is consistent with the trends seen in the
simulation results in Figure 6.12 where 50/50 runs found the optimal after about 50,000
iterations.

Since tnr is a hidden state which directly influences the nectar availability, and there-
fore the state transitions, the agent won’t “know” that the domain has changed unless
there are some indications when the agent visits a flower. That is to say, when the tar-
get domain tnr is lower than the source domain tnr , as in Test 4a , the greedy path can
be followed and the updates of those state/option values will be small. The state transi-
tions and Q-values continue as they did in the source domain, so the only way to find the
quicker path in the target domain is through random exploration to find the state/option
values which are different from the source domain. Figure 6.15 demonstrates this behav-
ior, as the source domain path is continually executed during the greedy evaluation and
only after several opportunities of the right random actions does it find a better policy.

If the target domain tnr value is higher than the source domain tnr value, as in Test 4b ,
there will be implications for the state transitions of the greedy path since flowers which
previously had nectar after 5 timesteps, will not have nectar for an addition 7 timesteps.
This change in the hidden state explains the results for Test 4b as presented in Figure 6.16
and Figure 6.18. The agent tries to follow Path B, but at the flowers finds that there is no
nectar and therefore no state transition. The agent is then “stuck” in that nectar state
plane until if finds another flower which can transition it to the next nectar state, or
until enough time has past that the original flower has run out the clock and has nectar
again. In the short term, the agent will perform the latter, since the source Q-function
is leading the agent to that flower. The result of this behavior is large updates to the
Q-table on the state/option values which have state transitions affected by the change
in the hidden state – that is, around the flower location states, and eventually all the
surrounding states.

As a comparison between the two test configurations, say∆Qi =
∑ |Qi −Qi+10|; where

i is the iteration at each evaluation which occurs in increments of 10, and
∑

is the sum
over all the elements in the matrix. Then ∆Q represents the total changes in the Q-
function made by updates over the span of 10 iterations. The average ∆Q for flight test
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Figure 6.14: Experiment 4a and 4b : The tracked path of the greedy evaluation at the start of (a) Test 4a , resulting
in Path C2 and (b) Test 4b resulting in Path b.

4a was 3.4, while the ∆Q for flight test 4b was 11.1; which reflects how the 4b transfer
configuration instigates more active value function updating. While the critical juncture
for Test 4a was to find the better option during the random actions, the critical juncture
for Test 4b is to either find the better option through random action, or keep penalizing
all the other options until the best option is the highest value by process of elimination.

In the position tracking in Figure 6.18, Rounds 4 and 6 look on first glance like they are
following Path B perfectly, but a close look shows that it has to double back on top of its
own tracks in order to wait for the red flower to regenerate nectar. The active updating of
the value function is demonstrated in the greedy evaluation runs shown in the noisiness
of Figure 6.16. In training, the greedy options are taken 80% of the time, so the greedy
state/options values will be the first to significantly deviate from the values of the source
domain Q-table. In this case, the values will decrease until a different option from a
given state has a greater state/option value. This change in the greedy option causes the
large jumps in the evaluation performance. Eventually, the purple flower is visited and
Path C discovered. With enough samples, the value function will be updated enough to
reinforce the new path. In the 4,500 iterations which were performed, there is already
an improvement seen (on average).

Since there is also more than one optimal route for Path C (clockwise or counter-
clockwise), the Q-function gets some contradictory updates, which is why the evaluation
results are noisy, even in the simulation results where it was averaged over 50 runs. The
result in the flight test run proves to be representative what was seen in simulation.
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Figure 6.15: Experiment 4a : Flight test greedy evaluation performance results.
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Figure 6.16: Experiment 4b : Flight test greedy evaluation performance results.
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Figure 6.17: Experiment 4a : Flight test training position tracking for the first 300 iterations.
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Figure 6.18: Experiment 4b : Flight test training position tracking for the first 300 iterations.
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6.6. CONCLUSIONS
This chapter presented a new reinforcement learning task which imitates a bee collect-
ing nectar from flowers and returning it to the hive, in perpetuity. The task was designed
so as to culminate all the approaches studied in previous chapters and to be tested on
a quadrotor in the TU Delft Cyber Zoo facility. Furthermore, a new feature of reinforce-
ment learning was explored in a real-life application by transferring knowledge from a
source domain within simulation to a target domain via a quadrotor test flight.

The results first show the relative ease of learning within a Markov decision process
(MDP), where all states are known and observable. However, in the real-world there are
many scenarios where one or more states cannot be obtained, resulting in a “hidden
state”. Literature indicates that non-Markov properties can result in the necessity for
more complex solutions, but the results show that in this task it is still solvable by the RL
methods explored throughout this dissertation.

The hidden state changed between domains was the time variable, tnr , which repre-
sents the time it takes to regenerate nectar at a flower. By changing this variable, but hid-
ing its influence on the state vector, the effectiveness of reinforcement learning transfer
in non-Markov hidden state domains was explored. This study showed that reinforce-
ment learning Q-table knowledge transfer has benefits over learning tabula rasa on a
non-Markov task using HRL with options. However, this benefit holds true only until a
certain point when the source and target domain become too different from each other.
If the source domain results in a substantially different optimal path than the target do-
main, it can be time consuming to “unlearn” the knowledge embedded in the value func-
tion from the source domain.

Another notable conclusion from the transfer study, is that transfer is more beneficial
when going from a higher valued tnr to a lower valued; that is, if the sourced behavior
can still function well in the target domain, there will be greater benefit in the jumpstart
performance metric, and similar benefit in time to a near optimal solution. Therefore,
for a task like this one, it is prudent when choosing parameters for the source domain
to err on the side of the more complex or more easy to adapt from, before deploying the
agent into the real-world target domain.

The real-life flight tests built on the results from Chapter 2 by increasing the scale of
the environment, and by applying the HRL methods from Chapter 3 and 4 and the trans-
fer learning method from this chapter. The real-life flights are similar to the simulation
transferability study, but give further insight by identifying the challenges associated in
the real-world. Designing the simulation study involved making decisions on several pa-
rameters including: the number of iterations to train, the scheduling for ε, α, and many
other parameters. It is easy to plan for a simulation which requires millions of training
iterations and for which the parameters and rewards are tied to simulated cues; how-
ever, implementing in real-life inevitably guides these design decisions in directions not
previously considered. For example, a better way to implement the discrete steps of an
option in the flight test would be to execute the option in one smooth command and
stop only if a point of interest (POI) is spotted. However, as it was simulated and knowl-
edge transferred, a diagonal move might miss the POI where it would have been “seen”
in the simulation. This could have led to better design or better implementation of the
options within the HRL algorithm.
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Further improvement with transfer learning against tabula rasa learning might have
been accomplished with the transfer of a different hierarchical RL approach. Further
subdivisions of the task, such as in HRL HAMs [101], might have further sped up the
learning within the target task.





7
CONCLUSIONS

Reinforcement learning is an ever expanding field of research with a wide breadth of
potential applications. Due to the algorithm’s notable utility in optimization with little
or no a priori information, the reinforcement learning approach is especially popular
with tasks where little or no information is known or where the information is unreliable
and adaptive behavior is needed. Such tasks are widely desired for unmanned aerial
systems (UAS) and micro aerial vehicles (MAVs) in particular, which have many uses for
autonomy in unknown environments. However, several inherent limitations arise with
tabula rasa learning that limit the practical usefulness of the approach for an MAV with
limited resources. This thesis aimed to address some of the practical challenges related
to using reinforcement learning within the scope of MAV guidance and control tasks.
This led to the primary research question stated in Chapter 1:

Primary Research question

How can reinforcement learning contribute towards the goal of autonomous
flight for micro aerial vehicles?

From this question, a number of reinforcement learning approaches for MAV appli-
cations were explored, with each chapter contributing a different approach. The final
experiment in Chapter 6 combined all the approaches onto one platform with the addi-
tional contribution of a transfer learning analysis; creating a quadrotor platform which
makes decisions using reinforcement learning in both guidance and control. The chal-
lenges and successes of the experiments guide this final chapter where the main find-
ings are summarized and discussed in Section 7.1. The contributions of this thesis are
put into context of the greater goal of MAV autonomous flight in Section 7.2, and finally,
recommendations for future work are proposed in Section 7.3.
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7.1. MAIN FINDINGS AND CONCLUSIONS
In Chapter 1, an approach was set out to answer the primary research question; first by
identifying the several challenges associated with reinforcement learning as they com-
bine with the physical limitations and desired applications of MAVs, and then by estab-
lishing how these challenges would fit into the scope of suitable guidance and control
experiments.

The resulting focus was determined to be the RL challenges of: Slow learning due to
tabula rasa learning, and the Curse of dimensionality; and the MAV challenges of: lim-
ited resources, and complex dynamics. Each chapter in this thesis presented a potential
solution to one or more of these categorical challenges, which will now be discussed.

7.1.1. SLOW LEARNING DUE TO TABULA RASA LEARNING

Q1. What RL methods are available to overcome the practical challenges associ-
ated with slow learning due to tabula rasa learning on an MAV?

One of the greatest advantages of reinforcement learning over other methods is to
learn through interaction with the environment without any need for prior knowledge.
Therefore, tabula rasa learning is at once both an attractive feature and also one of the
main causes of slow learning speeds since the agent must train with random actions until
each state or state/action has been sampled a sufficient number of times (sufficient to
form a reasonable estimate of the value function to result in acceptable behavior). This
thesis considers these as trade-off points and will further discuss the trade-offs made in
each of the approaches.

Since we are interested in physical systems which will take a fixed amount of time
to execute an action, we focus on decreasing the number of iterations (or timesteps)
needed to learn a task. And furthermore, the time spent in-flight is the most important
aspect when considering the major limitation of battery life of an MAV. Therefore, meth-
ods which take advantage of simulation can do so, in this respect, at little or no “cost”.

The most obvious way to speed up learning is to tune the parameters. This was done
by hand for each experiment in order to give the methods a good starting point. Since
optimal parameter tuning was not one of the focuses of this thesis, most of the parameter
tuning studies are done in the background, or presented in appendices when there was
an interesting or important finding.

One way to avoid the slow learning of tabula rasa, is by not learning tabula rasa. In
that case, some prior knowledge of the task or system must be available. By utilizing an
inaccurate model [2], Chapter 5 demonstrated that the policy gradient reinforcement
learning could iteratively improve upon a PID gain policy for a takeoff task of a quadro-
tor with just a few real-life trials. Due to safety concerns, it would not be advisable to
try a randomly generated policy, so this approach for gain tuning is one work-around
which shows that reinforcement learning can be used in a variety of ways. In this case,
the characteristic interaction with the environment comes in the form of real-life trials
which informs the inaccurate model of its own inaccuracy in order to calculate a bias
and therefore improve the model (locally). The gradient which advises the direction of
change for the policy is calculated in simulation of the model, and therefore does not
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add to the in-flight time cost. However, this method necessitates prior knowledge of the
system and it also has the disadvantage of using gradient-based improvement – which is
susceptible to local minima.

In Chapter 6, another method was explored which takes advantage of simulation
to learn a good starting point for a state/value Q-function; instead of using a zeroed,
tabula rasa Q-function. Transfer learning recognizes that as long as there is some com-
monality between two different domains, the knowledge learned in one can improve
the learning speed in the other by giving a “better than random” starting point. Again,
this method most often assumes that certain knowledge is known about the tasks, such
as, state transitions, where the reward states are, what actions will be available to take
with the agent. Requiring that this knowledge is known detracts from the goal of gen-
eralization for model-free, tabula rasa reinforcement learning; but in most cases some
knowledge of the task is known. It is shown in this chapter that utilizing task-specific
knowledge in a simulated “source” domain, can substantially reduce the training itera-
tions needed to find a near-optimal behavior in the in-flight “target” domain. Chapter 6
varied state transitions between the source and target domains to test how differences in
the model affected the learning in the target domain from the starting point Q-function
learned within the source domain. A set of metrics to analyze the performance improve-
ment was introduced including: jumpstart, learning speed, time to threshold, and con-
vergence By these metrics, the results of the best case showed that a similar source do-
main can result in the immediate optimal solution in the target domain, bypassing the
millions of iterations needed for training with tabula rasa techniques to find the opti-
mal evaluation performance. In the worst case studied, the learning speed was faster
than tabula rasa in the early stage of training, but in the later stages of training, the tab-
ula rasa method was faster and ultimately converged sooner to the optimal, on average.
This sort of result shows that transfer learning can sometimes transfer knowledge which,
like bad habits, can take longer to break than learning from scratch.

To keep the tabula rasa aspect of learning, Chapters 3 and 4 showed that tempo-
ral abstractions could be used to reduce the number of timesteps needed to find a goal
in a large maze. Temporal abstractions can be considered an approach to address slow
tabula rasa learning, but can also be considered a solution to address the curse of di-
mensionality. Therefore, these two chapters will be discussed in the next section.

7.1.2. CURSE OF DIMENSIONALITY

Q2. What RL methods are available to overcome the practical challenges associ-
ated with the curse of dimensionality on an MAV?

Addressing the curse of dimensionality for practical applications, ultimately, has the
intension to speed up the learning for large dimensional state or state/action spaces;
same as in Section 7.1.1. However, the classification of the research questions in Chap-
ter 1 categorizes it as a different challenge because the approach taken to address the
problem in this thesis is different from that of speeding up tabula rasa learning. The
curse of dimensionality is addressed here by temporal and state abstraction in order to
make the state space smaller or decomposed, instead of aiming to minimize the time
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commitment to random-action exploration.

Conclusions about the effect of temporal abstraction can be drawn from Chapter 3,
and the effect of state abstractions can be analyzed by comparing the results of Chap-
ter 3 against Chapter 4. In Chapter 3, hierarchical reinforcement learning over options
was used as a way to speed up tabula rasa Q-learning with an absolute state represen-
tation. Starting from a null Q-table in a large obstacle-rich maze where the only reward
is at the goal state, extended actions can find the goal much faster (i.e. in less iterations)
than flat Q-learning even at epoch 0, when no knowledge of the environment is known
because less of the state space needs to be sampled before finding the goal. For example,
in Chapter 3 with the absolute state representation, the best optionset in the large Parr’s
maze made it to the goal in almost 5 times less timesteps than the flat case and roughly
half the number of timesteps for the small and medium sized maze. The benefit depends
on three factors: 1) the optionset, 2) the size of the state space, and 3) the epoch of train-
ing (how long it has been learning). Some optionsets resulted in poorer performance in
all metrics (ie. learning speed, convergence) compared to the flat case. This shows that
the expert knowledge introduced into the problem within the design of these optionsets
is not fail-safe. Like with the reward structure, the designer of the optionset has an effect
on how well the RL algorithm will work. Furthermore, the benefit is not consistent over
all environments or throughout the training epochs. In the small maze, the performance
of the flat case quickly improves and can become more optimal than the optionsets in
a greedy evaluation. The analysis of the three factors described are best encompassed
in the evaluation performance shown in Figure 3.7 for the small maze, Figure 3.8 for the
medium size maze, and Figure 3.10 for the Parr’s maze.

In Chapter 4, state abstraction was introduced as a way to 1) better represent the lim-
itations of quadrotor camera-based state acquisition (discussed soon in Section 7.1.4),
and 2) use a state representation which is independent from the size of the environment.
Uncoupling the state space size from the size of the maze environment, directly breaks
the curse of dimensionality, but results in state ambiguity – where not every unique po-
sition has a unique representation in the abstracted state input. Several state represen-
tations were explored to find a relationship between representations and its effects on
convergence, ambiguity, and suboptimality. Comparing the absolute state representa-
tion of Chapter 3 to the relative state representation in Chapter 4, the relative state ab-
straction uses 96% less states to represent the large maze problem. Using this many less
states takes a toll on the performance of the flat Q-learning configuration, where the rel-
ative state abstraction fails to improve upon a random policy. However, once temporal
abstraction methods in the form of HRL options is added to the state abstraction meth-
ods, the improvement in terms of greedy evaluation performance is improved over the
absolute state representation across the whole learning time. This result is best seen in
the comparative plot of Figure 4.17.

7.1.3. MAV COMPLEX DYNAMICS

Q4. What RL methods are available to overcome the practical challenges associ-
ated with MAV complex dynamics?
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Chapter 5 demonstrated an RL approach that was both low on number of in-flight
trials (addressing the slow learning challenge as discussed in Section 7.1.1) and also fo-
cused on a solution for improving control performance of MAVs with complex, difficult
to model dynamics. Complex dynamics of an MAV can be difficult and expensive to
model accurately; however, a “bad" or inaccurate model, is relatively easy to come by.
The approach of policy improvement reinforcement learning in Chapter 5 was found to
be a good solution for fine-tuning gains, though not in all cases.

The policy improvement reinforcement learning approach was first shown to be ef-
fective on the simulation of an F-16 tracking task; however, concerns arose about stabil-
ity when the gradient decent method pushed the policy into areas which were stable for
the inaccurate model, but unstable for the real system. This phenomenon is best demon-
strated in Figures 5.8-5.9. A solution as found to minimize the possibility of choosing an
unstable policy by decaying the step size and choosing conservative end conditions. In
simulation several different tracking tasks were tested which involved 2, 3, or 4 gains; in
order to show that the approach works with larger dimensioned policies.

Lastly, the approach was applied to a quadrotor takeoff task using the PID gains for
the vertical control loop to minimize the mean absolute error (MAE) calculated against
the altitude setpoint. This task did not have the same kind of system dynamics which
would lead a gradient toward an instability and therefore was safe to use on a real quadro-
tor. The results showed that the number of trials taken until the end conditions were met
and the final solution, were dependent on the starting policy. Because the optimization
follows a gradient, the best policy which can be found is confined to local optima. In two
cases (starting from different starting policies), a local optimal was found within three
trial runs on the real quadrotor. This result can best be seen in Figure 5.26.

7.1.4. MAV LIMITED RESOURCES

Q3. What RL methods are available to overcome the practical challenges associ-
ated with MAV limited resources?

Ideally, all the experiments conducted would have been designed under the assump-
tion that only MAV outfitted sensors were available – with the quality or accuracy alloted
to the current day sensors. However, due to time and/or resource limitations some con-
cessions were made in the name of incremental progress. In order to demonstrate the
usefulness of RL methods within the context of an MAV with limited resources, the issues
were addressed one at a time in several experiments throughout this thesis.

Chapter 2 sets the stage for the challenges faced regarding MAVs and reinforcement
learning. A simple example is presented of a guidance task through learning of a tempo-
ral difference value function. Position of the state is commanded using waypoints and
the Optitrack position tracking system. The bottom-facing camera on-board the quadro-
tor was used to identify the locations of rewards by placing red paper at the reward states
and setting a red color filter threshold. The guidance task in an environment of reduced
size was learned using tabula rasa temporal different learning with random actions for
the amount of time of the battery life – about 10 min at the time of the experiment. Even
with the reduced size, there was not enough time to learn a converged value function.



7

152 7. CONCLUSIONS

However, when looking at the greedy policy map, we can see that the greedy policy is
optimal after 400 iterations; therefore demonstrating how improvement of the perfor-
mance does not necessitate full convergence. This result is shown best in Figure 2.10. In
Chapter 6, the premise for Chapter 2 is expanded with the vision-based rewards differ-
entiating between colors to determine which reward state it has just visited.

In Chapter 4, the relative state abstraction was designed based on one possible camera-
based state input. The input required the ability to estimate the distance to obstacles
within a 180◦ field of view. This state vector could be achieved through machine vision
techniques such as stereo vision [34, 84] or using light weight ultrasonic sensors, for ex-
ample.

7.2. MAIN CONTRIBUTIONS
This thesis aimed to address the goal of autonomous flight of MAVs through contribu-
tions of reinforcement learning experiments. The main contributions of this thesis to-
wards this purpose, will now be inferred from the above conclusions and itemized.

• For RL to be effective using tabula rasa learning, it is not necessary to fully con-
verge the value function to gain the benefits of an improved greedy policy (Ch. 2).

• The combination of state and temporal abstraction together outperforms either
one on their own for an obstacle-rich maze task (Ch. 3 & 4).

• Relative state representation is necessary when no other state estimation can be
obtained and advantageous in cases when an environment is too large for absolute
state representation and limited state space size is desired (Ch. 3 & 4).

• As far as state ambiguity affects the learning of a maze task, the distribution of the
ambiguous states can be more of a negative influence than the number of ambigu-
ous states (Ch. 4).

• Gradient-based policy improvement reinforcement learning can be used to good
effect for fine-tuning gains when starting from a reasonably good starting point,
but care should be taken to ensure the task is not prone to sharp transitions into
unstable regions within the policy-space (Ch. 5).

• Successful transfer of value function knowledge within reinforcement learning is
aided by (and sometimes predicated by) well-tuned learning parameters (Ch. 6).

• Including a priori knowledge with reinforcement learning is a double-edged sword:
It can aid in faster learning rate but undermines the benefits of RL as a tabula rasa
learning method, and can limit the freedom of the algorithm to find its own (pos-
sibly more optimal) solution (Ch. 6).

7.3. RECOMMENDATIONS AND FUTURE WORK
This thesis addresses the challenges of reinforcement learning for MAV autonomy by
conducting experiments within the research scope laid out in Chapter 1, and within
the limits of the time and resources available. This thesis contributed to several novel
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insights about how reinforcement learning can be used towards the autonomy of MAV
flight. However, studies are always ongoing, and answering some questions tends to lead
to many more.

This section presents a number of recommendations which follow from the lessons
learned in this thesis as they relate to the reinforcement learning, autonomy, and MAV
communities.

DIRECTION FOR REINFORCEMENT LEARNING RESEARCH
The methods presented in this thesis are all based in reinforcement learning which, un-
der certain conditions, has theoretical convergence guarantees; however, these guaran-
tees do not apply to any of the experiments used in this thesis. Steps are taken to foster
a setup which empirically tends to converge, but certain practical conditions which ex-
ist in the real-world just don’t fit into the box of the theoretical convergence criteria.
This has led to many empirical studies in RL working without guarantees. This is one
approach. With a large enough amassment of successful empirical studies, RL could be-
come commonplace enough to be a staple of intelligent decision-making for robotics.
However, theoretical frameworks which include more practical applications within their
influence could do even more to focus the research within the RL community.

Further, some important research in RL already aims towards generalization. Much
of the RL problem depends on choices made by the designer. A streamlined approach
for parameter tuning, reward shaping, and state abstraction could take away much of
the current guesswork for the problem setup and would make reinforcement learning
more accessible.

TOWARDS AUTONOMOUS FLIGHT FOR MAVS
The field of MAV guidance, navigation, and control focused towards MAV related phys-
ical and task-based demands is growing fast as the popularity of MAVs broadens and
diversifies. This thesis has focused on the application of reinforcement learning to real-
life platforms – something which is still rare as there are many more studies which only
use simulation methods. Discovering the unforeseen problems encountered in flight
tests created many of the biggest challenges and formed or limited the approaches which
could be accomplished. For reinforcement learning to form methods which are meant
for application, then those applications – not just a representation of them – must be
part of the process which molds them.

APPLICATIONS AND SOCIETAL IMPACT
Several applications for autonomous MAVs have been proposed in numerous fields (and
sometimes in literal fields). Fields of interest include farming [46], ecology [115], pest
control [88], rescue [111], and artificial pollinators [145], among others. With such a
large scope of possible applications, spanning a large amount of area over the earth,
there will need to be considerable discussion into the potential of societal, moral, and
natural repercussions. It is in the best interest of humanity and the earth in general to
ensure that MAVs – or any technology – are designed and operated in a safe and ethical
way; promoting privacy, antipollution, and conservation of nature.
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A
CHAPTER 3 SUPPORTING STUDIES

A.1. FLAT Q-LEARNING IMPROVEMENT
In Chapter 3, for a fair comparison against the hierarchical reinforcement learning re-
sults, a good faith effort was made to get the best result using flat Q-learning methodolo-
gies. We decided to explore different training policies and eligibility traces. These studies
will now be presented. The choices regarding which results were presented in the main
body of the chapter are also justified.

A.1.1. ε-GREEDY TRAINING POLICY
The training and evaluation methodologies of the various algorithms are described in
Section 3.3.4. The parameter ε, for the ε-greedy action policy, can drastically affect the
performance as we first saw in Chapter 2. Therefore, it was important to study the effect
of ε schedules for the training epochs.
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Figure A.1: ε-greedy training schemes. (a) constant ε for training, (b) scheduled ε for training.

For completeness, Figure 3.3 is repeated here as Figure A.1. This shows the different
ways we have scheduled ε in Chapter 3. There are innumerable ways to change the pa-
rameter, and so just a couple simple ways were explored. First, a constant ε was used as
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in Figure 3.3(a). Several values were looked at for the constant value. A ramp-scheme
was also explored as in Figure 3.3(b), where the policy is completely random for the first
third of the training (67 epochs), increasing for the next third, and then stays at ε= 0.8 for
the last third. This scheme is chosen because randomness is required to find the best so-
lution, but exploiting knowledge gained is beneficial for convergence speed and penalty
avoidance.

Figure A.2 shows the results for the analysis on the medium maze. The ε values that
perform the best are the fully random (constant ε = 0.0), and the ramp-scheme. The
medium maze is small enough that all the state-action pairs had been visited enough
within the first 67 random epochs to have a good policy. Therefore, the Q-function’s
will have different values, but the result of the greedy evaluation plotted here will be the
same. Added exploitation in the form of ε > 0 was not helpful. Therefore, for the small
and medium mazes, a ramp-scheme was chosen to be used.
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Figure A.2: ε parameter study: Medium maze. Evaluation results with different ε-greedy training schemes. All
cases are averaged over 25 statistical sample runs.

Figure A.3 shows the results using the Parr’s maze. With a larger environment, there
is a different trend. The fully random policy learns the slowest because it explores more
than it exploits, but also gets the best result at the end of the 200 epochs for the same
reason. All the cases where ε> 0.0, the performance improves faster, but doesn’t explore
enough to continue that improvement in the later epochs. The ramp-scheme for the
first third follows the results of the fully random scheme, as expected because they are
both fully random in these first epochs. In the second third, when the ε starts to ramp-
up, the performance improves quickly as it progressively exploits more of its knowledge.
However, since the ramp-scheme stops exploring so much, it also falls short of the fully
random performance at epoch 200. This is one of the standard RL trade-offs.

Comparisons (with standard deviations) are shown between the fully random case
and the ramp-scheme (Figure A.4) and the fully random case against the ε = 0.2 case
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Figure A.3: ε parameter study: Parr’s maze. Evaluation results with different ε-greedy training schemes. All
cases are averaged over 25 statistical sample runs.

(Figure A.5). Larger values of ε result in convergence to suboptimal solutions, but also to
less variability in the evaluation result.

CONCLUSION

The results shown in this section are interesting to note, but ultimately the goal is to
compare a flat Q-learning case with HRL techniques and not to have to do an exhaustive
analysis into parameter tuning. The ε-greedy parameter tuning explored for the flat case
can also be used for the HRL options, so while it is beneficial to compare the HRL results
to the best possible flat case, it is also reasonable to make comparisons using the same
parameters. Therefore, the main body of the chapter will use the fully random (ε = 0.0)
training scheme and the ε = 0.2 training scheme as comparison against the HRL methods
for the Parr’s maze.
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Figure A.4: ε parameter study: Parr’s maze. Evaluation results with standard deviation errorbars. ε-greedy
training schemes. All cases are averaged over 25 statistical sample runs.
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Figure A.5: ε parameter study: Parr’s maze. Evaluation results with standard deviation errorbars. ε-greedy
training schemes used for comparison in the main body of Chapter 3. Cases are averaged over 100 statistical
sample runs.
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A.1.2. ELIGIBILITY TRACES

Eligibility traces are explored for the possibility to improve the flat Q-learning case. The
final conclusion is that eligibility will not be used in the main body analysis because the
improvement is too small and unreliable. Information on eligibility traces can be found
in Sutton and Barto (1998) [130].

Update calculations on large matrices with eligibility is more computationally taxing
than without. Therefore, for the sake of time, only 10 statistical samples were ran.

Figure A.6 shows the comparison of the no-eligibility case with 10 and 100 sample
runs and the eligibility cases with 10 sample runs. The standard deviations are not plot-
ted for chart clarity. From this figure we see that eligibility traces with λ≤ 0.4 has a slight
benefit for the cases with 10 sample runs. However, when comparing to a no-eligibility
run of sample size 100, the improvement is all but gone. Furthermore, when λ≥ 0.5 the
performance is very poor. This is likely because the training is random and an increasing
λ increasingly rewards suboptimal actions.

0 50 100 150 200

0

2

4

6

8

10
×10

4

epoch

st
ep

s
to

go
al

λ= 0.0

λ= 0.0 (100)

λ= 0.1

λ= 0.2

λ= 0.3

λ= 0.4

λ= 0.5

λ= 0.6

Figure A.6: Eligability traces study: Evaluation results with several different λ values. All cases are averaged
over 10 statistical sample runs, except the one specified as (100) sample runs.

After this analysis it was decided to not make more runs for a better comparison
since, but to just do without eligibility traces in the main body of the chapter for several
reasons. Considering that large λ values result in poor or even unstable results, the slight
improvement is not worth the risk, especially considering the improvement is slight and
uncertain given the high standard deviations. Furthermore, The ε-greedy parameter for
training has a larger impact on the performance.



A

162 A. CHAPTER 3 SUPPORTING STUDIES

CONCLUSION

The conclusion is that eligibility traces with carefully selected λ values have a slight im-
provement over the case with no eligibility when run with 10 statistical samples. How-
ever, larger λ values cause a sharp decrease in performance. Furthermore, the trend of
the evaluation metric is the same with a small λ as it is with no eligibility at all, so adding
eligibility to the flat case doesn’t add much value when comparing to the HRL methods.
Because of the lack of added value, it is determined to not implement

A.2. STATISTICAL ANALYSIS SAMPLE SIZE
A study was performed to justify the statistical sample size used throughout Chapter 3.
To a certain extent, the number of sample runs is limited because simulation on large
environments is time consuming.

Figure A.7 (medium maze) and Figure A.8 (Parr’s maze) show the flat Q-learning per-
formance mean and standard deviation(std) with respect to the number of samples. The
different color data lines represent a particular epoch.

For the medium maze, the mean and std at epoch 200 converges immediately. Every
case finds the optimal solution by epoch 200. The earlier epochs are more variable and
due to time constraints, too many samples would be required to converge at every epoch,
especially for the Parr’s maze. Priorities must be decided. Standard deviations are not
that important in order to compare the performance of one approach to the other. As
long as the trends of the mean values at each epoch are in the correct order, the sample
size should be sufficient to draw conclusions when comparing the flat Q-learning to the
HRL methods. Therefore, based on the results in these figures, it was determined that
100 sample runs is sufficient.
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Figure A.7: Sample size analysis: Medium maze

A.3. STANDARD DEVIATIONS FROM STATISTICAL ANALYSIS
This series of charts, expand on the results from Section 3.4. Figures A.9- A.11 show the
results from the evaluation runs of the learned Q on small, medium and Parr’s mazes.
The average number of steps to reach goal is plotted with the standard deviation dis-
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Figure A.8: Sample size analysis: Parr’s maze

played as errorbars. The data consists of 100 statistical sample runs. The small and
medium mazes were trained with a “ramped" epsilon-greedy policy, and the Parr’s maze
was trained with completely random policy.

0 50 100 150 200

0

50

100

150

200

0 50 100 150 200

0

100

200

300

400

0 50 100 150 200

0

2

4

6

8
×10

4

st
ep

s
to

go
al

epochepochepoch

small maze medium maze Parr’s maze

Figure A.9: Flat Q-learning
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Figure A.10: HRL options with optionsets 1a(top row), 1b(middle row), 1c(bottom row)
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Figure A.11: HRL options with optionsets 2a(top row), 2b(middle row), 2c(bottom row)
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CHAPTER 4 SUPPORTING STUDIES

B.1. OPTIONSET SELECTION
In Chapter 4, seven optionset configurations and the flat Q-learning configuration were
tested on 3 different mazes with 2 different parameter schemes. From the analysis of the
results several take-away conclusions are determined but much of the data support re-
dundant conclusions and only serve to clutter the plots. In order to show clear and con-
cise results it was determined that one HRL options configuration would be sufficient to
represent the HRL approach against the flat case for the small and medium mazes. The
Parr’s maze, being a larger and more complex problem is sufficiently explained with 2
optionsets and the flat case.

Several arguments are made to select the representative optionsets. For example, an
optionset which performs well is obviously desirable as it is fair to show the best that HRL
has to offer. Furthermore, to accommodate a fair comparison against the absolute state
representation results from Chapter 3, a consistently good performer in both absolute
and relative state representations is selected. Rationale for the final selected optionsets
for each maze are found in Table B.1.
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Table B.1: Rationale for selected optionsets of each maze size

Maze
Reference
Figure(s)

rationale
selected

optionset(s)

general
trends

B.1-B.2 Set 2a is generally the worst of the option-
sets. Set 1 series includes all the primitive ac-
tions and is desirable over series 2 because it
is simpler to design and converges faster.

-

small B.1
3.7

Sets 1a and 1b have the best solutions for rel-
ative state. In absolute state, all configura-
tions perform well.

set 1b

medium B.2
3.8

Set 1c learns fastest and converges to the best
solution. Learns fast in absolute state rep.
but doesn’t converge to the optimal.

set 1c

Parr’s B.5
3.10

Bigger mazes work best with longer tempo-
rally extended options. Therefore, Set 3 was
especially made for Parr’s maze to tackle the
complex problem. Also select set 1c to com-
pare to other cases.

sets 1c & 3
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B.2. PARAMETER TUNING
In Chapter 3 with absolute state representation, the flat Q-learning and HRL configura-
tions learned well with a random training policy and a constant step-size, α in the bell-
man update equation. Using a relative state, particularly for the flat Q-learning config-
urations, the reinforcement learning approach is not as successful with these parameter
selections. When evaluating the benefit of Hierarchical RL over flat RL, it is important
that the flat configuration is not shown in a disadvantaged light. Therefore, in order to
present a more complete picture of the different representations and configuration abil-
ities, it was determined that it would be beneficial to tune the parameters to come up
with a parameter scheme for the relative state representation scenario.

The process to choose these values will now be explained. First, the parameters to
modify for a relative state representation (scheme 2) will be determined by starting from
the absolute state representation parameters (scheme 1) and modifying one parameter
at a time (Figure B.3). Then a comparison will be made for each maze between the two
schemes (Figures B.4-B.5).

The parameters used for absolute state representation and relative state representation
are as follows :

parameter
Absolute state
representation

(scheme 1)

Relative state
representation

(scheme 2)

Bellman equation
γ 0.9 0.9
α 0.9 1

5pk
training policy
ε 0.0 (random) 0.2

TRAINING ε-GREEDY POLICY

In Appendix A.1.1, the ε value of the ε-greedy training was studies for the absolute state
representation and it was found that ε = 0.2 resulted in a positive step-size effect at the
cost of having a less optimal solution than a purely random training. The same ε= 0.2 is
used as one of the tuned parameters to explore for the relative state case.

BELLMAN UPDATE PARAMETERS

From the study in Appendix A.1.2, it was found that adding eligibility traces was not de-
sirable. It would be even less likely to be helpful with a relative state space due to state
ambiguity.

With the ambiguity present along with the relative state representation, convergence
can be an issue. While the scheme 1 configuration uses constant α = 0.9, the scheme
2 configuration uses a variable α(s, a) which decreases over k visits to (s, a). Several RL
algorithms such as Policy Iteration RL, have convergence guarantees conditional on the
step-size where α should be positive and satisfy limk→∞αk = 0 and

∑
k αk = ∞ [128].
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Figure B.3: Evaluation performance of small maze with various parameter modifications: averaged over 100
sample runs. (top) flat Q-learning configuration, (bottom) optionset 1c configuration. (ds = 3/nd = 3)
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While there is no mathematical guarantee for convergence, one can see from the update
equation that if the step-size is constant, then all visits to the state-action pairing will
have equal influence on the Q-value and when a state can exist in several different loca-
tions in the maze, the Q-value will jump around and affect the performance in a sporadic
way. A desirable trend for step-size was determined to be given by αk = 1

5pk
.

B.2.1. RESULTS

DETERMINING PARAMETERS

The plots in Figure B.3 compare the small maze’s evaluation results of the absolute rep-
resentation parameters against parameters with modifications to ε, α and both. Each
figure plots the average evaluation response over 100 sample runs.

Figure B.3(top) takes results from the flat Q-learning configuration. The response
of scheme 1 learns a better Q-function quickly but converges on a suboptimal solution
around 19 steps, while the optimal is 9. Modifying ε and α separately improves upon the
performance of the scheme 1 parameters, and modifying both parameters gives the best
result. Though the optimal is still not found, on average.

Figure B.3(bottom) takes results from the optionset 1c configuration. Note that with
the small maze, optionset 1c performs worse than 1a and 1b, so it is not the strongest op-
tionset and therefore has room for improvement. The trends are the same as with the flat
case. Modifying ε and α separately improves upon the performance of the scheme 1 pa-
rameters, and modifying both parameters gives the best result; even finding the optimal
solution in all 100 sample runs for several evaluations epochs.

With the results of this short study it was determined to use both modified ε and α as
a configuration tuned for the relative state representation which could then show more
accurately the capabilities of this approach. Furthermore, since this parameter config-
uration improves the flat Q-learning response the most, it is also contributes toward an
honest comparison of HRL vs. flat capabilities.

EFFECT ON RESPONSE

Parameter scheme 2 for the relative state representation is used in a comparison against
scheme 1 to find the effect on each maze. Each plotted result is using the relative state
representation with (ds = 3/nd = 3).

In Figure B.4, the evaluation performance averaged over 100 sample runs are shown
for the small maze with flat and optionset 1b configurations(left), and the medium maze
with flat and optionset 1c configurations (right). Figure B.5 shows the results for the
Parr’s maze where the left side plot is with parameter scheme 1, and the right side uses
parameter scheme 2. In each case, the runs of the flat case and optionsets 1c, 2c, and 3
and is averaged over 10 sample runs.

In the small and medium sized mazes, the tuning of scheme 2 improves all the cases,
however it improves the flat case more than its HRL options counterpart. Furthermore,
the new tuned parameters only help to converge the solution closer to the optimal value;
it doesn’t improve upon the convergence speed and is slightly slower on average (though
not significantly within the standard deviation).

The performance within the larger environment of the Parr’s maze doesn’t easily
learn which makes the comparison different but still meaningful. The flat configuration
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doesn’t learn; as in, the performance doesn’t improve over the 200 training epochs. How-
ever it inherently converges (without learning) to some degree of poor performance and
that degree of “poorness” is different between optionsets and parameter schemes. The
flat case improves with scheme 2 by about 4,059 steps on average in the first 200 epochs.
Optionset 2c improves with scheme 2 by about 11,810 steps on average in the first 200
epochs. Optionset 1c improves by about 3,320 steps on average in the first 200 epochs.
Optionset 3 improves by about 968 steps on average in the first 200 epochs. Parameter
scheme 2 also appears to enable learning in optionsets 1c and 3. Where there was no
or very small improvement in the first 20 epochs for scheme 1, for scheme 2 there is a
marked improvement in the first 20 epochs and convergence to a range of values better
than at epoch 0.
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Figure B.4: Evaluation performance comparing scheme 1 and scheme 2. Average over 100 sample runs. Rela-
tive state representation (ds = 3/nd = 3) (left) small maze. (right) medium maze.
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B.2.2. CONCLUSION
The conclusion from this short study is that for the relative state representation, parame-
ter scheme 2 is overall a better fit than scheme 1, and switching to this set of parameters
results in better performance, without creating additional bias between the configura-
tions. It actually improves the flat case most, therefore aiding in an honest comparison
in the context of this research. Therefore, it is deamed appropriate to use parameter
scheme 2 for all the results in Chapter 4.
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C.1. STATE SPACE MATRICES FROM LINEARIZED F-16 MODEL
In Chapter 5, a non-linear F-16 model is linearized to obtain the state space matrices
about different trim conditions. The linearized model of these states take the form of
Eq. (5.5) from Section 5.3, which is repeated here:

~̇x = A~x +B~u where ~x = [
h θ V α q

]T
and ~u = [

FT δelev
]T

For each of the conditions, the C and D matrices are the same and are as follows:

C =


1.00 0 0 0 0

0 57.2958 0 0 0
0 0 1.00 0 0
0 0 0 57.2958 0
0 0 0 0 57.2958

 ; D =


0 0
0 0
0 0
0 0
0 0



The A and B matrices differ. The following are the A and B matrices for the stated trim
conditions.

Altitude: 15,000 ft, Velocity: 500 ft/s

A =


0 500 0 −500 0
0 0 0 0 1

0.0001 −32.17 −0.0133 −7.3259 −1.1965
0 0 −0.0003 −0.6398 0.9378
0 0 0 −1.5679 −0.8791

 ; B =


0 0
0 0

0.0016 0.0740
0 −0.0014
0 −0.1137
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Altitude: 15,000 ft, Velocity: 400 ft/s

A =


0 400 0 −400 0
0 0 0 0 1

0.0001 −32.17 −0.0184 −4.3245 −1.9977
0 0 −0.0004 −0.5128 0.9376
0 0 −0 −1.3756 −0.7532

 ; B =


0 0
0 0

0.0016 0.0186
−0 −0.0011
0 −0.0730



Altitude: 15,000 ft, Velocity: 600 ft/s

A =


0 600 0 −600 0
0 0 0 0 1

0.0001 −32.17 −0.0113 3.8334 −0.6570
0 0 −0.0002 0.7679 0.9396
0 0 −0 −2.2510 −1.0462

 ; B =


0 0
0 0

0.0016 0.1448
−0 −0.0016
0 −0.1642



C.2. SELF-TUNING GAINS COMPILED RESULTS
Table C.1 is a copy of Table 5.1 from Section 5.3.5, displayed here for easy reference.

Table C.1: Table of experiments

no. Platform
Inaccurate

model
True

system Task
# of policy

parameters
Linesearch
method(s)

1 F-16 15000/400
sim

nonlinear
sim

sinusoid 2-gain
(θ-ctrl)

stepsize &
sim-based

2 F-16 15000/400
sim

nonlinear
sim

block-
wave

2-gain
(θ-ctrl)

stepsize &
sim-based

3 F-16 15000/500
sim

nonlinear
sim

block-
wave

3-gain
(γ-ctrl)

stepsize &
sim-based

4 F-16 15000/500
sim

nonlinear
sim

block-
wave

4-gain
(al t-ctrl)

stepsize &
sim-based

5 Quadrotor simple mdl pprz sim takeoff 3-gain(PID) sim-based

6 Quadrotor simple mdl AR.Drone takeoff 3-gain(PID) sim-based



C.2. SELF-TUNING GAINS COMPILED RESULTS

C

179

The final results from all the policy improvement experiments have been compiled
in Table C.2. This is an expanded version of Table 5.6.

Units for ρ depend on the task. Pitch angle and flight path angle tracking tasks mea-
sure in radians (no. 1−3), the F-16 4-gain altitude tracker and the quadrotor takeoff tasks
are measured in meters (no. 4−6).

Table C.2: Compiled results

no. initial gains,~k0 linesearch ρ0 ρ∗ improve-
ment(%)

ρ∗

trial #
tot. #
trials

1 F-16 θ-ctrl sinusoid
[−10 5] sim 0.0495 0.0069 86 3 6

stepsize 0.0495 0.0069 85 11 11
[−10 10] sim 0.0248 0.0067 73 6 9

stepsize 0.0248 0.0067 73 7 10

2 F-16 θ-ctrl block-wave
[−10, 5] sim 0.0146 0.0104 29 6 6

stepsize 0.0146 0.0109 25 5 8
[−50, 2] sim 0.0098 0.0073 26 2 5

stepsize 0.0098 0.0072 27 7 10

3 F-16 γ-ctrl block-wave
[−50, 1, 5] sim 0.0127 0.0112 12 4 4

stepsize 0.0127 0.0124 2 4 4
[−1000, 0.05, 100] sim 0.0087 0.0064 26 6 9

stepsize 0.0087 0.0064 26 9 12

4 F-16 altitude-ctrl block-wave
[−100, 2, 0.1, 0.005] sim 33.20 24.12 27 2 5

stepsize 33.20 23.98 28 5 8
[−500, 0.5, 0.01, 0.1] sim 47.47 44.19 7 2 5

stepsize 47.47 45.21 5 4 4

5 quadrotor takeoff simulation
[283, 13, 82] sim 0.3775 0.1521 60 5 5
[1624, 1356, 195] sim 0.1006 0.0940 7 3 4

6 quadrotor takeoff real-life
[283, 13, 82] sim 0.5102 0.2265 56 3 5
[1624, 1356, 195] sim 0.1218 0.1218 0 1 3





D
CHAPTER 6 SUPPORTING STUDIES

D.1. PARAMETER TUNING
In Chapter 6, a comparison between reinforcement learning methods is made. To give a
fair comparison, each method should have parameters which result in a representative
performance. For that reason, a parameter study was conducted for each method.

It was observed by trial and error of single runs, that the performance is sensitive to
the parameters:

εεε The greediness factor for action policy

ααα The learning rate

γγγ The discount factor

The procedure for parameter selection went as follows:

1. Begin with default parameter values based on observations from single run trial
and error

2. Study statistical evaluation with various ε values (constant and varying)

3. Choose a default ε based on convergence performance

4. Use new default and perform statistical evaluation with constant and varying α

5. Choose a default α based on convergence performance

6. Use the new default ε and α and perform statistical evaluation with various γ val-
ues
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Table D.1: Summary of parameter selection after study

beeworld 1 beeworld 21

par ameter V Q HRL V Q HRL

ε 0.6 0.6 0.6 0.8 0.8 Scheduled
α 0.2 0.3 0.3 0.3 0.2 1/ 4pk
γ 0.90 0.90 0.90 0.90 0.90 0.90

This procedure was carried out on the Value function TDRL, Q-learning, and HRL
with options on each of the two Beeworld designs. A selection of the results from the
above procedure can be seen in Section D.2. The final parameter selections are summa-
rized below in Table D.1.

Given similar evaluation performance, preference was given to parameter values which
consistently perform well across different configurations. Furthermore, easier imple-
mentation was also considered. For example, variable learning rate, α, involves storing
another table with the same dimensions as the Q-function, in order to keep track of num-
ber of times each state/action pair is visited. Using a constantα, doesn’t require this extra
large variable. Therefore, even though convergence appears to be slightly better over 50
statistical runs for a variableα, the constant value was implemented in the study. For the
purposes of comparison, the results will still be valid. In Section 6.4.3, some of the results
diverge using constant α, and a variable α proves to converge. Therefore, modifying α

can be seen as a useful tool in case of poor convergence.
It is a common practice to increase the greediness of an ε-greedy policy through

training in order to begin with more exploration when little is known about the envi-
ronment, and then later exploit the knowledge gained. Three “scheduled" ε-greedy poli-
cies were designed as another possible ε solution for comparison. The schedules are
shown in Figure D.1. For the parameter search, Schedule 1 and 2 were compared to the
constant ε parameters. There are infinite ways to schedule ε, and some other methods,
such as convergence-based scheduling was also tried on specific configurations. After
the parameter study and more trial and error, Schedule 3 was determined to be a good
fit for the HRL configuration. It stops at ε= 0.8 because going fully greedy only reinforces
the current optimal path, which leaves no room for improvement. This could be a good
thing if the current learned behavior is optimal, but since that may not be knowable, it is
beneficial to train with some random actions.

1Beeworld 2 with nectar regeneration time, tnr = 12 timesteps.
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Figure D.1: Examples of time-scheduled ε-greedy policies. (top) Schedule 1 ramps up from fully random to
fully greedy in order to trade-off exploration for exploitation. (middle) Schedule 2 is useful when fully random
exploration is not beneficial, such as in beeworld 2.

D.2. SELECT INFORMATION FROM THE PARAMETER STUDY
The select information shown in the following figures are plotted in two different ways.
The results of each individual parameter set, ran 50 times, can be seen in individual
subplots plotted as mean and standard deviation in the shaded region. The other kind
of plot shows the averages of several configurations, as a comparison.
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D.2.1. BEEWORLD 1
In Beeworld 1, we see that the performance is robust to a large range of parameter values
and within this range will converge to the optimal 100% of the time (the standard devia-
tion goes to 0). We can see this through the selected plots showing a range of ε values for
the flat Q-learning case in Figure D.2 and the HRL case in Figure D.3.

0 0.5 1 1.5 2

×10
5

60

80

100

120

0 0.5 1 1.5 2

×10
5

60

80

100

120

0 0.5 1 1.5 2

×10
5

60

80

100

120

0 0.5 1 1.5 2

×10
5

60

80

100

120

0 0.5 1 1.5 2

×10
5

60

80

100

120

0 0.5 1 1.5 2

×10
5

60

80

100

120

iterationiteration

iterationiteration

iterationiteration

st
ep

s

st
ep

s

st
ep

s

st
ep

s

st
ep

s

st
ep

s

ǫ= 0.0 ǫ= 0.2

ǫ= 0.4 ǫ= 0.6

ǫ= 0.8 ǫ= 1

optimal

Figure D.2: Q-learning parameter study: ε. Evaluation results with standard deviation over 50 statistical runs.
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Figure D.3: HRL parameter study: ε. Evaluation results with standard deviation over 50 statistical runs.
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D.2.2. BEEWORLD 2
For Beeworld 2, the range of robust parameters is more restrictive than for Beeworld 1.

FLAT Q-LEARNING

Figure D.4 shows the performance of various ε values for flat Q-learning, before α and γ

are tuned. The resulting choice was to use ε= 0.8 for this method. Figure D.5 shows how
γ effects the performance on average after ε and α are tuned. In almost all cases, γ= 0.9
was the best choice or just slightly worse than the best performing γ; therefore, it was
decided to use γ= 0.9 consistently throughout the study.
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Figure D.4: Q-learning parameter study: ε. Evaluation average results over 50 statistical runs.
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HIERARCHICAL REINFORCEMENT LEARNING WITH options
Figure D.6 and Figure D.7 show the same data in different forms: the former comparing
the means of each ε value performance in a single plot, and the latter showing the mean
and standard deviation of each dataset in its own subplot. The interesting conclusion
from the parameter search for HRL was that the scheduled ε is far superior in finding
the optimal evaluation path, where as a constant ε was best for V-TDRL and Q-learning.
This can be because using high greed in early training, when not much is known about
the value function, is more wasteful when using extended actionsets than with single
step methods.
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Figure D.6: HRL parameter study: ε. Evaluation average results over 50 statistical runs.



D.2. SELECT INFORMATION FROM THE PARAMETER STUDY

D

189

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

0 0.5 1 1.5 2

×10
5

80

100

120

iteration

iterationiteration

iterationiteration

iterationiteration

st
ep

s

st
ep

s

st
ep

s

st
ep

s

st
ep

s

st
ep

s

st
ep

s

ǫ= 0.0 ǫ= 0.2

ǫ= 0.4 ǫ= 0.6

ǫ= 0.8 ǫ= 1

sch. 2

optimal

Figure D.7: HRL parameter study: ε. Evaluation results with standard deviation over 50 statistical runs.
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D.2.3. BEEWORLD 2, VARYING tnr
With the parameters tuned, it is also important to see how it affects different values of
tnr for the transferability study.

The results from tnr values within each of the ranges are found in Figure D.8 using
ε-schedule 2. The optimal number of steps are demonstrated with a dashed line and the
average and standard deviation of 50 runs evaluated over 18000 iterations are plotted.
The optimal path is normally found, except for tnr = 3. For tnr > 20, the optimal is not
known.
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drate composition and the structure of receptacular nectaries in the invasive plant
Bunias orientalis L. (Brassicaceae). Protoplasma, 253(6):1489–1501, 2016.

[36] T. G. Dietterich. State Abstraction in MAXQ Hierarchical Reinforcement Learning.
In NIPS, pages 994–1000, 1999.

[37] T. G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Func-
tion Decomposition. Journal of Artificial Intelligence Research, 13(1):227–303,
2000.

[38] K. Doya. Reinforcement Learning In Continuous Time and Space. Neural Compu-
tation, 12:219–245, 2000.

[39] D. Fanelli. Negative results are disappearing from most disciplines and countries.
Scientometrics, 90(3):891–904, 2012.



194 REFERENCES

[40] F. Fernández, J. García, and M. Veloso. Probabilistic policy reuse for inter-task
transfer learning. Robot. Auton. Syst., 58(7):866–871, July 2010.

[41] F. Fernández and M. Veloso. Probabilistic policy reuse in a reinforcement learning
agent. Proceedings of the 5th international joint conference on Autonomous agents
and multiagent systems - AAMAS, page 720, 2006.

[42] E. Feron and E. N. Johnson. Aerial robotics. In B. Siciliano and O. Khatib, editors,
Handbook of Robotics, pages 1009–1029. Springer Berlin Heidelberg, 2008.

[43] M. Fliess and C. Join. Model-free control. International Journal of Control,
86(12):2228–2252, 2013.

[44] A. F. Foka and P. E. Trahanias. Real-time hierarchical POMDPs for autonomous
robot navigation. Robotics and Autonomous Systems, 55(7):561–571, 2007.

[45] A. F. Foka and P. E. Trahanias. Probabilistic autonomous robot navigation in dy-
namic environments with human motion prediction. International Journal of So-
cial Robotics, 2(1):79–94, Mar 2010.

[46] P. K. Freeman and R. S. Freeland. Agricultural uavs in the us: potential, policy, and
hype. Remote Sensing Applications: Society and Environment, 2:35–43, 2015.

[47] N. Gageik, P. Benz, and S. Montenegro. Obstacle Detection and Collision Avoid-
ance for a UAV With Complementary Low-Cost Sensors. IEEE Access, 3:599–609,
2015.

[48] J. García and F. Fernández. A comprehensive survey on safe reinforcement learn-
ing. Journal of Machine Learning Research, 16(1):1437–1480, Jan. 2015.

[49] C. Gaskett, L. Fletcher, and A. Zelinsky. Reinforcement learning for a vision based
mobile robot. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 1, pages 403 – 409, 2000.

[50] F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial Intelligence, 57(2-
3):323–389, 1992.

[51] G. J. Gordon, N. Roy, and S. Thrun. Finding Approximate POMDP solutions
Through Belief Compression. Journal of Artificial Intelligence Research, 23, 2005.

[52] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska. A Survey of Actor-Critic
Reinforcement Learning: Standard and Natural Policy Gradients. IEEE Transac-
tions on Systems, Man, and Cybernetics, 42(6):1291–1307, 2012.

[53] M. Grzes and D. Kudenko. Theoretical and empirical analysis of reward shaping
in reinforcement learning. In International Conference on Machine Learning and
Applications, pages 337–344. IEEE, 2009.

[54] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning Invariant Feature
Spaces to Transfer Skills with Reinforcement Learning. In International Conference
on Learning Representations, pages 1–14, 2017.



REFERENCES 195

[55] M. Hardegger, D. Roggen, S. Mazilu, and G. Tröster. ActionSLAM: Using location-
related actions as landmarks in pedestrian SLAM. In International Conference on
Indoor Positioning and Indoor Navigation, pages 13 – 15, Sydney, Australia, 2012.

[56] M. J. Hausknecht and P. Stone. Deep Recurrent Q-Learning for Partially Observable
MDPs. Association for the Advancement of Artificial Intelligence Fall Symposium,
2015.

[57] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel, M. Botvinick,
C. Blundell, and A. Lerchner. Darla: Improving zero-shot transfer in reinforcement
learning. International Conference on Machine Learning, 2017.

[58] T. Hinzmann, T. Schneider, M. Dymczyk, A. Melzer, T. Mantel, R. Siegwart, and
I. Gilitschenski. Robust map generation for fixed-wing UAVs with low-cost highly-
oblique monocular cameras. In 2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 3261–3268, Oct 2016.

[59] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and C. J. Tom-
lin. The Stanford testbed of autonomous rotorcraft for multi agent control (STAR-
MAC). The 23rd Digital Avionics Systems Conference (IEEE), 2004.

[60] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1992.

[61] C. W. Hsu and A. Liu. High-level behavior control of an e-pet with reinforcement
learning. In 2010 IEEE International Conference on Systems, Man and Cybernetics,
pages 29–34, Istanbul, 2010.

[62] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter. Control of a Quadrotor with Rein-
forcement Learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, 2017.

[63] P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1995.

[64] S. Jacklin. Closing the Certification Gaps in Adaptive Flight Control Software. In
AIAA Guidance, Navigation and Control Conference and Exhibit, pages 1–14, Hon-
olulu, Hawaii, 2008.

[65] E. N. Johnson and M. A. Turbe. Modeling, control, and flight testing of a small-
ducted fan aircraft. Journal of guidance, control, and dynamics, 29(4), 2006.

[66] J. Junell, T. Mannucci, Y. Zhou, and E. van Kampen. Self-tuning Gains of a Quadro-
tor using a Simple Model for Policy Gradient Reinforcement Learning. In AIAA
Science and Technology Forum: Guidance, Navigation and Control Conference, San
Diego, CA, USA, 2016.

[67] J. Junell, E. van Kampen, C. C. de Visser, and Q. P. Chu. Reinforcement Learn-
ing Applied to a Quadrotor Guidance Law in Autonomous Flight. In AIAA Science
and Technology Forum: Guidance, Navigation and Control Conference, Kissim-
mee, Florida, USA, 2015.



196 REFERENCES

[68] W. Knight. The Roomba Now Sees and Maps a Home, September 2015.
[Accessed 21-Feb-2018]. https://www.technologyreview.com/s/541326/
the-roomba-now-sees-and-maps-a-home/.

[69] M. L. Koga, V. F. Silva, F. G. Cozman, and A. H. R. Costa. Speeding-up Reinforce-
ment Learning Through Abstraction and Transfer Learning. In Proceedings of the
2013 International Conference on Autonomous Agents and Multi-agent Systems
(AAMAS), pages 119–126, Richland, SC, 2013.

[70] T. Krajník, V. Vonásek, D. Fišer, and J. Faigl. AR-Drone as a Platform for Robotic
Research and Education. In Research and Education in Robotics - EUROBOT 2011,
volume 161 of Communications in Computer and Information Science, pages 172–
186. Springer Berlin Heidelberg, 2011.

[71] R. M. Kretchmar, T. Feil, and R. Bansal. Improved automatic discovery of subgoals
for options in hierarchical. Journal of Computer Science & Technology, 3, 2003.

[72] V. Kumar and N. Michael. Opportunities and challenges with autonomous micro
aerial vehicles. In Robotics Research, pages 41–58. Springer, 2017.

[73] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107–1149, Dec. 2003.

[74] A. Lazaric. Knowledge Transfer in Reinforcement Learning. Phd thesis, Politecnico
di Milano, Milano, Italia, 2008.

[75] A. Lazaric. Transfer in reinforcement learning: A framework and a survey. In
M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art,
pages 143–173. Springer, Berlin, Heidelberg, 2012.

[76] J. D. Lee. Perspectives on Automotive Automation and Autonomy. Journal of Cog-
nitive Engineering and Decision Making, page 155534341772647, 2017.

[77] T. Lombaerts. Fault Tolerant Flight Control: A Physical Model Approach. Phd the-
sis, Delft University of Technology, Delft, the Netherlands, 2010.

[78] S. Lupashin, M. Hehn, M. W. Mueller, A. P. Schoellig, M. Sherback, and R. D’Andrea.
A platform for aerial robotics research and demonstration: The Flying Machine
Arena. Mechatronics, 24(1):41–54, 2014.

[79] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea. A simple learning strategy
for high-speed quadrocopter multi-flips. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 1642–1648, May 2010.

[80] T. Mannucci. Safe Online Robust Exploration for Reinforcement Learning Control
of Unmanned Aerial Vehicles. Phd thesis, Delft University of Technology, Delft, the
Netherlands, 2017.

[81] T. Mannucci, E. van Kampen, C. C. de Visser, and Q. P. Chu. Safe Exploration Al-
gorithms for Reinforcement Learning Controllers. IEEE Transactions on Neural
Networks and Learning Systems, PP(99):1–13, 2017.

https://www.technologyreview.com/s/541326/the-roomba-now-sees-and-maps-a-home/
https://www.technologyreview.com/s/541326/the-roomba-now-sees-and-maps-a-home/


REFERENCES 197

[82] A. J. McDaid, K. C. Aw, S. Q. Xie, and E. Haemmerle. Gain scheduled control of
{IPMC} actuators with ‘model-free’ iterative feedback tuning . Sensors and Actua-
tors A: Physical, 164(1–2):137 – 147, 2010.

[83] A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. Computer Science Department Faculty Publication
Series, page 8, 2001.

[84] K. McGuire, G. C. H. E. de Croon, C. De Wagter, K. Tuyls, and H. J. Kappen. Efficient
Optical flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on
an Autonomous Pocket Drone. IEEE Robotics and Automation Letters, 2(2), 2017.

[85] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern. Transfer in variable-reward hier-
archical reinforcement learning. Machine Learning, 73(3):289, Jun 2008.

[86] J. Michels, A. Saxena, and A. Y. Ng. High Speed Obstacle Avoidance Using Monoc-
ular Vision and Reinforcement Learning. In Proceedings of the 22nd International
Conference on Machine Learning, pages 593–600, New York, NY, USA, 2005.

[87] G. E. Monahan. State of the Art—A Survey of Partially Observable Markov Deci-
sion Processes: Theory, Models, and Algorithms. Management Science, 28(1):1–16,
1982.

[88] C. G. Morley, J. Broadley, R. Hartley, D. Herries, D. MacMorran, and I. G. McLean.
The potential of using unmanned aerial vehicles (uavs) for precision pest control
of possums (trichosurus vulpecula). Rethinking Ecology, 2:27, 2017.

[89] N. Navarro, C. Weber, and S. Wermter. Real-world reinforcement learning for au-
tonomous humanoid robot charging in a home environment. In Towards Au-
tonomous Robotic Systems, pages 231–240, Berlin, Heidelberg, 2011. Springer.

[90] R. C. Nelson. Flight Stability and Automatic Control. The McGraw-Hill Companies,
second edition, 1998.

[91] A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Proceedings of the 16th
International Conference on Machine Learning, pages 278–287, San Francisco, CA,
USA, 1999.

[92] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke. Autonomous Naviga-
tion for Micro Aerial Vehicles in Complex GNSS-denied Environments. Journal of
Intelligent & Robotic Systems, 84(1):199–216, Dec 2016.

[93] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and R. Sieg-
wart. A synchronized visual-inertial sensor system with FPGA pre-processing for
accurate real-time SLAM. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 431–437, May 2014.

[94] K. Nonami, M. Kartidjo, K. J. Yoon, and A. Budiyono. Autonomous Control Systems
and Vehicles: Intelligent Unmanned Systems. Springer, 2013.



198 REFERENCES

[95] Office Of The Secretary Of Defense. Unmanned Aerial Vehicles Roadmap 2000-
2025. April 2001.

[96] Office Of The Secretary Of Defense. Unmanned Aerial Systems (UAS) Roadmap
2005-2030. August 2005.

[97] Office of the Under Secretary of Defense for Aquisition Technology Logistics. The
Role of Autonomy in DoD Systems. DoD Defense Science Board, July 2012.

[98] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep Decentralized Multi-
task Multi-Agent Reinforcement Learning under Partial Observability. In Proceed-
ings of the 34th International Conference on Machine Learning, Sydney, Australia,
2017.

[99] M. Pachter and P. R. Chandler. Challenges of autonomous control. Control Sys-
tems, IEEE, 18(4):92–97, 1998.

[100] R. E. Parr. Hierarchical Control and Learning for Markov Decision Processes. Phd
thesis, University of California, Berkeley, 1998.

[101] R. E. Parr and S. Russell. Reinforcement learning with hierarchies of machines.
Advances in neural information processing systems, pages 1043–1049, 1998.

[102] T. J. Perkins and D. Precup. Using options for knowledge transfer in reinforcement
learning: Cmpsci technical report 99-34. Technical report, Department of Com-
puter Science, University of Massachusetts, Amherst, MA, 1999.

[103] C. Phillips. Knowledge Transfer in Markov Decision Processes. report, Reasoning
and Learning Lab, McGill University, 14 September 2006.

[104] O. Purwin and R. DÁndrea. Performing aggressive maneuvers using iterative learn-
ing control. In IEEE International Conference on Robotics and Automation, pages
1731–1736, Kobe, Japan, 2009. IEEE.

[105] B. Ravindran and A. G. Barto. Relativized Options: Choosing the Right Transfor-
mation. In Proceedings of the 20th International Conference on Machine Learning,
pages 608–615, 2003.

[106] B. Ravindran and A. G. Barto. SMDP homomorphisms: An algebraic approach to
abstraction in semi-Markov decision processes. In IJCAI, volume 3, pages 1011–
1018, 2003.

[107] S. A. Raza and W. Gueaieb. Intelligent Flight control of an Autonomous Quadrotor.
In F. Casolo, editor, Motion Control, chapter 12, page 580. INTECH, Croatia, 2010.

[108] G. Reinhart. Assembly automation. In L. Laperrière and G. Reinhart, editors, CIRP
Encyclopedia of Production Engineering, pages 52–54. Springer, Berlin, Heidelberg,
2014.



REFERENCES 199

[109] B. D. W. Remes, D. Hensen, F. van Tienen, C. De Wagter, E. van der Horst, and
G. C. H. E. de Croon. Paparazzi: How to make a swarm of Parrot AR Drones fly
autonomously based on GPS. In IMAV 2013: Proceedings of the International Micro
Air Vehicle Conference and Flight Competition, Toulouse, France, 2013.

[110] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement learning for robot
soccer. Autonomous Robots, 27(1):55–73, 2009.

[111] J. Roberts and R. Walker. Flying robots to the rescue [competitions]. IEEE Robotics
& Automation Magazine, 17(1):8–10, 2010.

[112] R. S. Russell. Non-linear F-16 Simulation using Simulink and Matlab. Technical
manual version 1.0, University of Minnesota, 22 June 2003.

[113] S. R. B. Santos, S. N. J. Givigi, and C. L. N. Júnior. An Experimental Validation of
Reinforcement Learning Applied to the Position Control of UAVs. In IEEE Interna-
tional Conference on Systems, Man, and Cybernetics(SMC), pages 2796–2802, 2012.

[114] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85 – 117, 2015.

[115] C. J. E. Schulp, S. Lautenbach, and P. H. Verburg. Quantifying and mapping ecosys-
tem services: Demand and supply of pollination in the European Union. Ecologi-
cal Indicators, 36:131 – 141, 2014.

[116] A. A. Sherstov and P. Stone. Improving Action Selection in MDP’s via Knowledge
Transfer. In Proceedings of the 20th National Conference on Artificial Intelligence -
Volume 2, AAAI, pages 1024–1029. AAAI Press, 2005.

[117] S. Sieberling, Q. P. Chu, and J. A. Mulder. Robust Flight Control Using Incremen-
tal Nonlinear Dynamic Inversion and Angular Acceleration Prediction. Journal of
Guidance, Control and Dynamics, 33(6), 2010.
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NOMENCLATURE

LIST OF SYMBOLS
M Markov decision Process
t discrete time step or iteration
s, st state at t
s′, st+1 state at t +1
S state set
a, at action at t
A action set
ot option at t
O option set
rt reward at t
k(s, a) number of of updates at (s, a)
α learning rate, step-size
γ discount factor
π policy
ε probability of greedy action in ε-greedy policy

(where ε= 0 is random and ε= 1 is fully greedy)
V Value function
V π(s) Value of state s under policy π
Q Value function for state-action paired Q-learning
Qπ(s, a) Value of state s taking action a under policy π
λ decay-rate parameter for eligibility traces
δ temporal-difference error

ABBREVIATIONS
GNC Guidance, Navigation, and Control
MAV micro aerial vehicle
UAV, UAS unmanned aerial vehicle/system
RL reinforcement learning
HRL hierarchical reinforcement learning
MDP Markov decision process
sMDP semi-Markov decision process
TDRL temporal difference reinforcement learning
MAE mean absolute error
POI point(s) of interest
PID proportional–integral–derivative (controller)
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Propositions

accompanying the dissertation

AN EMPIRICAL APPROACH TO REINFORCEMENT
LEARNING FOR MICRO AERIAL VEHICLES

by

Jaime Lin JUNELL

1. Including a priori information with reinforcement learning (RL) is a double-edged
sword: It can aid in faster learning but undermines the benefits of RL as a tabula
rasa learning method, and can limit the freedom of the algorithm to find its own
(possibly more optimal) solution. [this thesis]

2. The combination of state and temporal abstraction together outperforms either
one on their own for an RL task in an obstacle-rich maze. [this thesis]

3. State abstraction, which fights the curse of dimensionality, comes at the cost of
added state ambiguity therefore leading to suboptimal solutions. [this thesis]

4. Gradient-based policy improvement reinforcement learning can be used for fine-
tuning gains when starting from a reasonably good starting point, but care should
be taken to ensure the task is not prone to sharp transitions into unstable regions
within the policy-space. [this thesis]

5. A good reward structure is minimalist.

6. In life, as in machine learning, optimal solutions are not learned through fully
greedy policies.

7. Hiding negative results within “positive spin” creates self-inflicted and unneces-
sary inefficiency in the research community. [Fanelli, 2012]

8. Targeted financial incentives to recruit females into engineering positions should
come only from a desire to have more of the female mindset in the workplace – not
from a stance of trying to even the playing field or making reparations.

9. Critics of foreign cultures often lack the resources needed to see through another
cultural lens. This is true for any hot topics including Zwarte Piet in the Nether-
lands, or gun control in the US.

10. If the goal of automation was to provide for human’s basic needs in order to re-
duce stress and free up time, we have succeeded as engineers and failed as a soci-
ety. Therefore, the best way to honor the accomplishments and labors of previous
generations is to go on vacation more often.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors Prof. dr. ir. M. Mulder and Dr. Q.P. Chu.
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