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Abstract

This thesis considers the problem of nonlinear output regulation in a Koopman operator
framework. The goal of output regulation is to asymptotically track a reference and/or
simultaneously reject a disturbance signal, both generated by some external autonomous
system called the exosystem. The nonlinear output regulation problem is solvable if and only
if a set of partial differential equations (PDE) are satisfied. From the solution, a feedback
law can be obtained that achieves output regulation. However, solving the PDE is difficult.
In this thesis, we instead aim to construct a feedback law by utilizing the Koopman operator
instead.
The Koopman operator associated with a state-space model of a (nonlinear) dynamical system
describes the evolution of functions of the states, called observable functions, by propagating
the state forward in time according to the flow of the system, and evaluating this at each
possible observable function. The space of observables is an infinite-dimensional vector field.
Therefore, the Koopman operator is infinite-dimensional and linear. The Koopman operator
of an autonomous system associated with a nonlinear control system provides a bilinear
description of the control system instead.
The use of the Koopman operator to tackle the output regulation problem has not been done
before in the literature. We identify conditions under which the Koopman operator can be
used to rephrase the nonlinear output regulation problem as a bilinear output regulation
problem. We then show when the bilinear output regulation problem is solved using linear
dynamic error feedback. In particular, a Lyapunov-based approach is used to characterize
a set of initial conditions for which the output is regulated. Finally, to verify the results, a
numerical example is presented.
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Chapter 1

Introduction

This thesis considers the nonlinear output regulation problem in a Koopman operator frame-
work. The output regulation problem is a well-known known problem in control theory. The
goal is to asymptotically track a reference signal and/or simultaneously reject a disturbance
signal. Both signals are generated by an external autonomous dynamical system called the
exosystem. It has been applied to various dynamical systems. For instance, in [18] the output
regulation framework is used for disturbance rejection in formation keeping control of non-
holonomic wheeled robots. In the work [16] the output regulation is considered in the context
of biology and neuroscience.
A special case of the output regulation problem is the linear output regulation problem. It
concerns a linear plant with linear output and a linear exosystem. The linear output regula-
tion problem has been studied by [11, 12], and [10] provides necessary and sufficient conditions
for its solvability. Solving the linear output regulation problem requires a solution to a set of
linear matrix equations called the regulator equations (and internal model principle). From
these equations, a linear dynamic error feedback controller can be derived that solves the
linear output regulation problem. The nonlinear output regulation problem considers a more
general class of systems and exosystems. Namely, one where the system, system output,
and/or exosystem are nonlinear. Necessary and sufficient conditions for its solvability are
given in [17]. They show that a set of partial differential equations must be satisfied. From
the solution, a controller may be synthesized. However, solving the PDE is hard. In this
thesis, we instead take the novel approach of utilizing the Koopman operator to tackle the
nonlinear output regulation problem. The Koopman operator provides an alternative way
to model (nonlinear) dynamical systems. It was originally introduced by Bernard Koopman
in [24, 25] and popularized for the study of dynamical systems by [29, 30]. The Koopman
operator provides a framework to better deal with the complexity of nonlinear systems. Fur-
thermore, it is particularly well suited for data-driven methods. It has already seen numerous
applications in a wide range of topics. A few are mentioned here.
In [28], a relationship between Koopman eigenfunctions and nonlinear observability is estab-
lished. In [26], the Koopman operator is utilized to allow for linear model predictive control
methods to be used on nonlinear systems. In [27], the well-known Extended dynamic mode
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2 Introduction

decomposition algorithm [34] is used to perform linear system identification of nonlinear sys-
tems. The work [4] uses the Koopman operator in the analysis of chaotic systems. On the
more practical side, [1] employed the Koopman operator to generate a model and controller
in real-time to stabilize a faulty quadcopter.
The Koopman operator, associated with a (state-space) description of a nonlinear dynamical
system, is a linear and infinite-dimensional operator that acts on functions of the state of
the system, often called observables or observable functions. The action of the Koopman
operator on such observables amounts to evaluating the observable at the state advanced
in time according to the dynamics (flow) of the system. Since projections to the states of
the underlying nonlinear system are observable functions themselves, full knowledge of the
Koopman operator allows one to compute trajectories of the system through linear dynamics.
Its infinite-dimensional linear nature stems from the space of observables F , which is a linear
vector space consisting of all possible observable functions of the state.
The infinite-dimensional nature of the Koopman operator limits its practical use. However,
for some systems, finite-dimensional subsets of F , that include the projections to the state
exist, such that the action of the Koopman operator on any observable of that set yields
an observable that is also in that set, resulting in a finite-dimensional linear description. In
general, given a set of observables, an observable for which the action of the Koopman oper-
ator yields an observable that is in the given set is called invariant under the action of the
Koopman operator. A set of observables for which each element is invariant under the action
of the Koopman operator is called a Koopman invariant subspace [5]. The dynamics on a
finite-dimensional Koopman invariant subspace that includes the state projections provide
an equivalent, finite-dimensional linear description of a nonlinear system in the state-space
description. A trivial example of such a set is the set of state projections for an LTI system.
The class of nonlinear systems that admit such a description is limited [5]. Hence, to utilize
the Koopman operator description, we often have to find approximate Koopman invariant
subspaces instead. We thus have to find a set of observable functions, often called a dic-
tionary or lifting, that approximately captures the Koopman dynamics. Finding a suitable
dictionary depends on the system of interest and effective ways to find it is an open problem.
For control affine systems, the Koopman operator associated with the related unforced system
will result in an equivalent bilinear dynamical system instead [13]. As such, the nonlinear
output regulation may be tackled by considering the related bilinear output regulation prob-
lem. To solve the latter, we take inspiration from the solution of the linear output regulation
problem and make use of linear dynamic error feedback. A bilinear system under such control
leads to a quadratic system. This thesis presents a stability analysis of the resulting quadratic
system that utilizes quadratic Lyapunov functions and linear matrix inequalities, based on the
work of [21, 22]. The analysis allows for the characterization of a set of initial conditions for
which output regulation is achieved. Finally, a numerical example highlighting the problem
is presented to verify the results.

Thesis structure

In chapter 2, we cover the preliminaries of the thesis. This includes the Koopman operator and
some relevant theoretical background, as well as the nonlinear and linear output regulation
problem. It also provides a description of a Lyapunov-based technique for the analysis of
quadratic systems. Chapter 3 contains the main contributions of this thesis. First, the
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problem is formulated, and the nonlinear output regulation problem is related to the bilinear
output regulation problem. We then consider the bilinear output regulation problem for
linear dynamic error feedback and use this to tackle the output regulation problem for the
special case of matched input disturbance for nonlinear systems and verify the result in a
numerical example. Finally, we suggest future directions for the research on the utilization of
the Koopman operator in nonlinear output regulation. The thesis is concluded in chapter 4.
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Chapter 2

Preliminaries

2-1 Koopman operator theory

In this section, we introduce the Koopman operator. The Koopman operator is an infinite-
dimensional linear operator that describes the dynamics of functions of the state of dynamical
systems. Therefore, it provides an alternative description of the dynamical system. In partic-
ular, it allows a certain class of nonlinear systems to be approximated by finite, albeit higher,
dimensional linear dynamical systems. Nonlinear control systems, on the other hand, at best
admit to descriptions of bilinear in the input.
The following text is based primarly on [2, 5, 6]

2-1-1 Koopman operator

Consider the autonomous continuous-time dynamical system described by the ordinary dif-
ferential equation

ẋ = f(x), (2-1)

where x ∈ X ⊆ Rn, and f : X → X a smooth function assumed to be Lipschitz. Integrating
(2-1) yields the flow F t : X 7→ X of the system, that is,

x(t) = F t(x0) with F t(x0) = x0 +
∫ t

0
f(x(τ))dτ. (2-2)

Equation (2-2) describes a trajectory starting from the initial condition x(0) = x0. Note that
in general, we cannot analytically solve equation (2-1), and we have to resort to numerical
integration methods to determine the flow (2-2), e.g., Runge-Kutta method. The Koopman
operator allows us to circumvent this by looking at how functions of the state evolve in time
instead.
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6 Preliminaries

We now turn our attention to the definition of the Koopman operator. To this end, we
consider functions of the state ψ : X → R, which are called observable functions. Denote the
space of all such functions, with possible constraints, as F . The family of Koopman operators
Kt : F 7→ F , parameterized by t, is defined by

Ktψ(x) = ψ(x) ◦ F t = ψ(F t(x)). (2-3)

Since Kt2(Kt1ψ(x)) = ψ(F t1+t2(x)), we simply write K and refer to it as the Koopman
operator. The action of the Koopman operator on ψ thus amounts to propagating the state
forward according to the flow F and then evaluating ψ at the new state. Since F contains
an infinite number of elements, the Koopman operator is an infinite-dimensional operator.
Furthermore, it is a bounded linear operator. Linearity follows from the fact that F is assumed
to be a linear vector space of functions. Indeed, let ψ1, ψ2 ∈ F and a ∈ C, then

K(aψ1(x) + ψ2(x)) = aψ1(F (x)) + ψ2(F (x)) = aKψ1(x) + Kψ2(x)). (2-4)

Next, we define the infinitesimal generator L of the Koopman operator. Suppose ψ ∈ F , the
action of L on ψ is defined by

Lψ = lim
t→0

Ktψ − ψ

t
= lim

t→0

ψ(F t(x)) − ψ(x)
t

. (2-5)

From its definition, we see that L corresponds to the time derivative of ψ along the trajectories
of (2-1). Therefore, we write

ψ̇ = Lψ. (2-6)

This expression is reminiscent of the standard expression of LTI systems. Indeed, from the
linearity of the Koopman operator, it follows that the infinitesimal generator L is a linear
operator. If ψ1, ψ2 ∈ F and a ∈ C, then

L(aψ1 + ψ2) = lim
t→0

Kt(aψ1 + ψ2) − (aψ1 + ψ2)
t

= lim
t→0

a
Ktψ1 − ψ1

t
+ lim
t→0

Ktψ2 − ψ2
t

= aLψ1 + Lψ2, (2-7)

where in the second line, we used the linearity of the Koopman operator and the linearity of
the limit.

For each ψ ∈ F equation (2-5) holds. If we order all ψ in an infinite-dimensional column
vector, we can think of L defining the infinite-dimensional matrix of a linear dynamical
system. That is,

d

dt

ψ1
ψ2
...

 =

L 0 . . .
0 L . . .
...

... . . .


ψ1
ψ2
...

 =

a11 a21 . . .
a21 a22 . . .
...

... . . .


ψ1
ψ2
...

 . (2-8)
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2-1 Koopman operator theory 7

Koopman eigendecomposition

The infinitesimal generator of the Koopman operator can be used to define Koopman eigen-
functions. A function ϕ ∈ F that satisfies

Lϕ(x) = µϕ, (2-9)

for some µ ∈ C is called a Koopman eigenfunction, and the number µ is its eigenvalue.
As the name suggest, if ϕ is an eigenfunction of L then it is also an eigenfunction of Kt

with eigenvalue λt = exp(µt). Furthermore, if ϕ1 and ϕ2 are Koopman eigenfunctions with
eigenvalues µ1 and µ2, then the product ϕ1ϕ2 is also a Koopman eigenfunction. In particular,
if the corresponding eigenvalues are µ1 and µ2, then

Kϕ1(x)ϕ2(x) = ϕ1(F (x))ϕ2(F (x))
= exp((µ1 + µ2)t)ϕ1(x)ϕ2(x). (2-10)

Hence, the eigenvalue of the product is µ1 + µ2. The set of eigenfunctions that can be used
to construct all other eigenfunctions is called a principle set of eigenfunctions.

The set of all Koopman eigenfunctions {ϕj}∞
j=1 forms a basis on F . Thus, for any ψi ∈ F we

can write

ψi(x) =
∞∑
j=1

vijϕj(x), (2-11)

with vij ∈ R. The time evolution of ψi(x) is determined by the action of K, and since ϕj are
eigenfunctions with eigenvalue λtj . Thus,

ψi(x(t)) =
∞∑
j=1

λtjvijϕj(x(0)) =
∞∑
j=1

exp(µjt)vijϕj(x(0)). (2-12)

Given a set of observable functions D = {ψ1, ψ2, . . . , ψN} ⊆ F , often called a dictionary or
lifting, we form the vector-valued observable function Ψ : X 7→ RN as

Ψ(x) =

ψ1(x)
...

ψN (x)

 . (2-13)

Each component of Ψ may be decomposed as in equation (2-11), so that we can write

Ψ(x) =
∞∑
j=1

vjϕj(x), (2-14)

Master of Science Thesis Bart Kieboom



8 Preliminaries

with vj ∈ RN a vector of coefficients given by vj = [v1j , . . . , vNj ]T . The vector vj is called
the j-th Koopman mode associated with Ψ. We refer to equation (2-14) as the Koopman
eigen decomposition of Ψ. The time evolution of the set of observables {ψi}Ni=1 is then fully
characterized by the objects {λj , ϕj ,vj}∞

j=1 and is summarized by the following equation

Ψ(x(t)) =
∞∑
j=0

λtjvjϕj(x(0)). (2-15)

Of particular interest is the vector-valued observable function I : X 7→ X, which contains the
projections to each component xi of the state x, i.e.,

I =

x1
...
xn

 . (2-16)

The Koopman eigendecomposition of I then allows us to describe the nonlinear in (2-1), using
the linear dynamics given in (2-15).

Koopman invariant subspaces

The clear advantage of the Koopman operator is that it allows one to describe a nonlinear
system linearly. The downside of this description is that it is an infinite-dimensional one. In
practice, one has to resort to finite-dimensional approximations. In some cases, an observable
function Ψ ∈ F admits a finite-dimensional Koopman eigendecompostion, equation (2-15)
then becomes

Ψ(x(t)) =
M∑
j=0

λtjvjϕj(x(0)). (2-17)

Defining V = [v1, . . . ,vM ]T , Λt = diag(λt1, . . . , λtM ) and Φ(x) = [ϕ1(x), . . . , ϕM (x)]T , equation
(2-17) may be written as

ψ(x(t)) = V TΛtΦ(x(0)). (2-18)

A set of observable functions, or dictionary, D, for which the time derivative (along the
trajectory) of each element ψ ∈ D is a linear combination of the elements in D, is called a
Koopman invariant subspace. Mathematically, D is a Koopman invariant subspace if

D = {ψ ∈ F | ψ ∈ D =⇒ ψ̇ ∈ span(D}. (2-19)

A Koopman invariant subspace of the nonlinear system (2-1) that contains the state pro-
jections I in its span thus provides an equivalent finite, albeit higher, dimensional linear
description.

Bart Kieboom Master of Science Thesis



2-1 Koopman operator theory 9

If D is a Koopman invariant subspace, we write z = Ψ(x) with Ψ given by (2-13), consisting
of all the elements of D, so that

ż = Az. (2-20)

We now give an example of a Koopman invariant subspace.

Example 1. Consider the following nonlinear dynamical system [19]

[
ẋ1
ẋ2

]
=
[

νx1
κ(x2 − x2

1)

]
, (2-21)

with µ, κ ∈ R plant parameters. Let ψ1(x) = x1, ψ2(x) = x2 and ψ3(x) = x2
1. The time

derivatives of ψ1 and ψ2 along trajectories of (2-21) are given by ψ̇1(x) = νx1, ψ̇2(x) = κ(x2 −
x2

1) and ψ̇3 = 2x1ẋ1 = 2ν. Hence, the set D = {ψ1, ψ2, ψ3} is a Koopman invariant subspace
for (2-21). Define the vector-valued observable function Ψ(x) = [ψ1(x), ψ2(x), ψ3(x)]T and
the transformation z = Ψ(x). Then

ż =

ν 0 0
0 κ −κ
0 0 2ν

 z. (2-22)

Hence, the 2-dimensional nonlinear dynamical system (2-21) is equivalently described by the
3-dimensional linear dynamical system (2-22) with z0 = Ψ(x0). The eigenvalues of the system
(2-22) (not to be confused with Koopman eigenvalues) are ν, κ and 2ν. If ν, κ < 0 then the
system is stable. If ν, κ < 0 then the system is unstable. Even so, due to the triangular
structure of the system matrix, we can redefine z = −Ψ(x) and obtain a stable system.

2-1-2 Koopman operator for control systems

Consider now the control affine system

ẋ = f(x) + g(x)u. (2-23)

with x ∈ X ⊆ Rn the state and u ∈ Rm the input. Using Koopman eigenfunctions the work
[13] shows that the control affine system (2-23) can be written as

ż = Az +
m∑
i=1

Nzui. (2-24)

Inspired by this observation, section 3-1 shows that a control affine plant, experiencing input
disturbance, can be represented by a bilinear dynamical model aswell, which also includes
linear terms.

We now present an example based on example 1, which shows this for a control affine system.

Master of Science Thesis Bart Kieboom



10 Preliminaries

Example 2. Consider again the system studied in Example 1 but now with a scalar input
entering the system through g(x), i.e.,

[
ẋ1
ẋ2

]
=
[

νx1
κ(x2 − x2

1)

]
+
[
β1x1
β2

]
u, (2-25)

where u ∈ R the input and µ, κ, β1, β2 plant parameters. Consider the dictionary D =
{ψ1, ψ2, ψ3} with ψ1 = x1, ψ2 = x2 and ψ3 = x2

1, and define Ψ(x) = [ψ1(x), ψ2(x), ψ3(x)]T
and z = Ψ(x). The dynamics of z are given by

ż =

ν 0 0
0 κ −κ
0 0 2µ

 z +

 0
β2
0

u+

β1 0 0
0 0 0
0 0 2β1

 zu. (2-26)

The Koopman operator for autonomous systems thus allows one to describe the nonlinear
system (with linear input) as a dynamical system with linear natural dynamics and bilinear
in the control input. We refer to such a model as a bilinear Koopman model.

2-2 Output Regulation Problem

This section gives an overview of the output regulation problem, sometimes called a ser-
vomechanism problem. In the output regulation problem, the goal is to asymptotically track
a reference on the output of a plant and/or simultaneously reject disturbance signals on the
plant dynamics. The disturbance and reference signals are generated by an autonomous dy-
namical system, referred to as the exosystem. Output regulation of linear systems with linear
output and a linear exosystem is called the linear output regulation problem. Necessary and
sufficient conditions for the solvability of the linear output regulation problem are established
in [10]. The internal model principle, which states that the controller must be able to re-
produce the exogenous disturbance signal in order to regulate the output, is introduced and
discussed in [11, 12]. It is essential in tackling the linear output regulation problem when no
(full) state information is available. For a modern treatment of the linear output regulation
problem, see [15]. See [32] for a concise summary.
Output regulation of systems with nonlinear dynamics is referred to as the nonlinear output
regulation problem. In the nonlinear output regulation problem, the output of the system
and the dynamics of the exosystem may or may not be nonlinear. Necessary and sufficient
conditions were established by [17] for general nonlinear plants and nonlinear exosystems. For
an extensive treatment of the general nonlinear output regulation problem, see [7] and [15].
We briefly mention that for both the linear and nonlinear output regulation, robust variants
have been considered. See for example [9] for the linear case and [8, 7] for the nonlinear case.
Section 2-2-1 discusses the linear output regulation problem and section 2-2-2 describes the
nonlinear output regulation problem. The summary is primarily based on [32, 15] for the
linear case and [7, 17] for the nonlinear case.

Bart Kieboom Master of Science Thesis



2-2 Output Regulation Problem 11

2-2-1 Linear output regulation

We start by considering the special case of linear output regulation. In the linear output
regulation problem, one considers systems of the form

ẋ = Ax+Bu+ Pw, (2-27a)
ẇ = Sw, (2-27b)
e = Cx+Qw. (2-27c)

Equation (2-27a) is the plant with the state x ∈ Rn, input u ∈ Rm and exogenous distur-
bance w ∈ Rr. Equation (2-27c) determines the plant output error with e ∈ Rl. Equation
(2-27c) is the exosystem that generates the exogenous disturbance w. The exogenous dis-
turbance w may include both a reference signal and a disturbance signal. The matrix Q in
the output error picks out the reference signal, and the matrix P in the plant dynamics the
disturbance signal. The exosystem is assumed to be skew-symmetric. That is, the matrix S is
skew-symmetric, i.e., ST = −S. Such an exosystem can always be constructed from parallel
interconnections of constant and sinusoidal exosystems1.

The goal of linear output regulation is to find a linear dynamic error feedback controller

ξ̇ = Fξ +Ge, (2-28a)
u = Hξ +Kx, (2-28b)

with ξ ∈ Rν , such that the matrix

Ac =
[
F GC
BH A+BK

]
(2-29)

is Hurwitz, and the closed loop system

ξ̇ = Fξ +GCx+GQw, (2-30a)
ẋ = (A+BK)x+BHξ + Pw, (2-30b)
ẇ = Sw, (2-30c)
e = Cx+Qw, (2-30d)

satisfies

lim
t→∞

e(t) = 0, (2-31)

for every initial condition (ξ0, x0, w0). Figure 2-1 shows a block diagram of the linear output
regulation problem.

1This follows from the fact that the transpose of a matrix S is similar to S, so that the non-zero eigenvalues
of a skew-symmetric matrix always come in pairs, and because the eigenvalues of a real skew-symmetric all lie
on the imaginary axis.

Master of Science Thesis Bart Kieboom



12 Preliminaries

Figure 2-1: Block diagram of the linear output regulation problem.

Note that the Hurwitz requirement on the matrix Ac given by equation (2-29), corresponds to
the requirement that the closed loop dynamics in the absence of the exogenous disturbance,
i.e., w = 0 (or P,Q = 0), is stable. We refer to the system in the absence of the exogenous
disturbance as the disconnected system. Stability of the disconnected system is achieved
by means of linear state feedback Kx (see equation (2-28)). The plant dynamics of the
disconnected system under this control read

ẋ = (A+BK)x, (2-32)

which is stable if A+BK is Hurwitz.

Consider now the full system. We are looking for equilibria x = Πw and ξ = Σw, with
Π ∈ Rn×r and Σ ∈ Rν×r, such that (2-31) is satisfied. These equilibria must satisfy the closed
loop dynamics (2-30), this results in

ΠS = AΠ +BR+ P, (2-33a)
0 = CΠ +Q, (2-33b)

and

ΣS = FΣ, (2-34a)
R = HΣ +KΠ. (2-34b)

Equations (2-33) are called the linear regulator equations and (2-34) is called the internal
model principle. It turns out that these equations provide necessary and sufficient conditions
for the solvability of the linear output regulation problem. To see this, consider the trans-
formations x̃ = x − Πw and ξ̃ = ξ − Σw. We refer to these as the error coordinates. From

Bart Kieboom Master of Science Thesis



2-2 Output Regulation Problem 13

equation (2-30) we find the error dynamics

˙̃ξ = F ξ̃ +GCx̃+G(CΠ +Q)w + (FΣ − ΣS)w, (2-35a)
˙̃x = (A+BK)x̃+BHξ̃ +

(
(A+BK)Π +BHΣ + P − ΠS

)
w, (2-35b)

ẇ = Sw, (2-35c)
e = Cx̃+ (CΠ +Q)w, (2-35d)

which, if equations (2-33) and (2-34) are satisfied, reduce to

˙̃ξ = F ξ̃ +GCx̃, (2-36a)
˙̃x = (A+BK)x̃+BHξ̃, (2-36b)
e = Cx̃. (2-36c)

Indeed, the origin is a stable equilibrium if the matrix Ac (equation (2-29)) is Hurwitz. As a
result, the condition (2-31) is satisfied, and the linear output regulation problem is solved.

Conversely, suppose that the linear output regulation problem is solved. That is, condition
(2-31) is satisfied for some controller (2-28) with Ac, given by equation (2-29), Hurwitz.
Therefore, there exist equilibria x = Πw and ξ = Σw such that

lim
t→∞

(CΠ +Q)w = 0. (2-37)

Since w is non-zero, it follows that CΠ + Q = 0, which is exactly (2-33b). Furthermore,
equation (2-33a), (2-34a) and (2-34b) form a Sylvester equation2. The matrix S is skew-
symmetric and real, therefore the real part of the eigenvalues are all 0. Furthermore, A+BK
Hurwitz, and thus A+BK and S have no eigenvalues in common. This implies that equation
(2-33a) has a unique solution.

2-2-2 Nonlinear output regulation

In this section, we recall the nonlinear output regulation problem as discussed in [17, 7]. The
general nonlinear output regulation problem considers nonlinear systems of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui +
r∑
i=1

pi(x)wi, (2-38a)

ẇ = s(w), (2-38b)
e = h(x) + q(w). (2-38c)

with x ∈ X ⊆ Rn the state, u ∈ Rm the input, w ∈ W ⊆ Rr an exogenous disturbance
signal and e ∈ Rl the output error. Furthermore, f : X 7→ X, gi : X 7→ X, pi : X 7→ X,
s : W 7→ W , h : X 7→ Rl, q : W 7→ Rl are smooth nonlinear functions. For convenience,
assume that f(0) = 0, s(0) = 0, h(0) = 0 and q(0) = 0. Equation (2-38a) is the plant, (2-38b)

2A Sylvester equation is a matrix equation of the form AX + XB = C, which admits a unique solution X
if and only if A and −B have no common eigenvalues [3].
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the exosystem, and (2-38c) the plant output.

Consider a dynamic error feedback controller of the form

ξ̇ = η(ξ, e), (2-39a)
u = α(ξ), (2-39b)

with ξ ∈ Ξ ⊆ Rν , η : Ξ 7→ Ξ and α : Ξ 7→ Rm smooth nonlinear functions. Assume that
η(0, 0) = 0 and α(0) = 0. The goal is to find η(ξ, e) and α(ξ) such that (ξ, x) = (0, 0) is an
exponentially stable equilibrium of the disconnected closed loop system, i.e., when w = 0,
given by

ξ̇ = η(ξ, h(x)), (2-40a)

ẋ = f(x) +
m∑
i=1

gi(x)αi(ξ), (2-40b)

and there exists a neighbourhood U ⊆ X × Ξ × W of the equilibrium (0, 0, 0) such that if
(x0, ξ0, w0) ∈ U , then the output is regulated. That is, the trajectories of the closed loop
system

ξ̇ = η(ξ, h(x) + q(w)), (2-41a)

ẋ = f(x) +
m∑
i=1

gi(x)αi(ξ) +
r∑
i=1

pi(x)wi, (2-41b)

ẇ = s(w), (2-41c)

satisfy
lim
t→∞

e(t) = lim
t→∞

h(x(t)) + q(w(t)) = 0. (2-42)

The following assumptions are made:

(1) the origin is a neutrally stable equilibrium point of the exosystem and there exists a
neighbourhood Ŵ ⊆ W such that each initial w0 ∈ Ŵ is Poisson stable3. This property
is referred to as neutral stability of exosystem.

(2) The functions f(x) and g(x) are such that their linearizations at the origin form a stabi-
lizable pair. In other words, the matrices

A =
[
∂f

∂x

]
x=0

, B =
[
∂g

∂u

]
x=0

, (2-43)

are a stabilizable pair.
3Poisson stability of an initial conditions w0 means that the flow St : W 7→ W of s(w) is defined for all

t ∈ R and for each neighbourhood N of w0 and real number T > 0, there exists t1 > T and t2 < −T such
that St1 and St2 are in U [17]. In other words, the trajectory of a Poisson stable initial condition w0 will
eventually return to a neighbourhood of w0.
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2-3 Quadratic stabilization of bilinear control systems 15

(3) The functions h(x), q(w), p(x) and s(w) are such that the pair([
A P
0 S

]
,
[
C Q

])
, (2-44)

with

C =
[
∂h

∂x

]
x=0

, Q =
[
∂q

∂w

]
w=0

, P =
[
∂p

∂w

]
x=0

, S =
[
∂s

∂w

]
w=0

, (2-45)

is detectable.

Note that the first assumption implies that all the eigenvalues of the Jacobian S of s(w) are
on the imaginary axis. For if this is not the case, then the neutral stability and/or Poisson
property of the initial condition does not hold.

Given these assumptions, the nonlinear output regulation problem is solvable if and only if
there exist smooth mappings x = π(w) and u = c(w), with π : W 0 7→ X and c : W 0 7→ Rm,
that satisfy

∂π

∂w
s(w) = f(π(w)) + g(π(w))c(w) + p(π(w))w, (2-46a)

0 = h(π(w)) + q(w). (2-46b)

Equations (2-46) are called the nonlinear regulator equations.

2-3 Quadratic stabilization of bilinear control systems

For the analysis of the bilinear output regulation problem obtained by applying the Koopman
operator to the nonlinear output regulation problem in question, we utilize a technique based
on quadratic Lyapunov functions and linear matrix inequalities introduced in [22]. In this
technique, Petersen’s lemma [31], in combination with ellipsoidal constraints on the state,
is used to characterize a (linear) matrix inequality that, when satisfied, guarantees that the
derivative of the quadratic Lyapunov function is negative. In this section, we briefly describe
the essence of this technique.

2-3-1 Petersen’s lemma

The Lyapunov-based stability argument for quadratic systems presented in this section, relies
on the following lemma.

Lemma 1 (Petersen’s lemma [31]). Suppose G = GT ∈ Rn×n, M ∈ Rn×p, N ∈ Rq×n. The
matrix inequality

G+M∆N +NT∆TMT ≼ 0 (2-47)

holds for all matrices ∆ ∈ Rp×q satisfying
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||∆||2 ≤ 1, (2-48)

if and only if there exists a real number ϵ > 0 such that

[
G+ ϵMMT NT

N −ϵI

]
≼ 0. (2-49)

For the proof, see the original work [31] and see [21] for one based on the S-procedure. Pe-
tersen’s lemma has been generalized in multiple ways in [21]. Of interest here is a modification
proposed in [22]. In this modification, instead of considering the matrix uncertainty ∆ sat-
isfying (2-48), we consider a vector uncertainty satisfying an ellipsoidal constraint. We now
state the lemma and provide a proof, as it is not provided in the original source.

Lemma 2 ([22]). Suppose G = GT ∈ Rn×n, N ∈ R1×n, M ∈ Rn×n, and 0 ≼ P = P T ∈ Rn×n.
The matrix inequality

G+MδN +NT δTMT ≼ 0 (2-50)

holds for all vectors δ ∈ Rn satisfying

δTP−1δ ≤ 1, (2-51)

if and only if there exists a real number ϵ > 0 such that

[
G+ ϵMPMT NT

N −ϵI

]
≼ 0. (2-52)

Proof. Let ∆ = P−1/2δ [23] the inequality (2-50) may then be written as

G+MP 1/2∆N +NT∆TP 1/2MT ≼ 0. (2-53)

Furthermore, we have that

||∆||2 ≤ 1 ⇐⇒ sup
x ̸=0

||P−1/2δx||2
||x||2

≤ 1,

⇐⇒ sup
x ̸=0

xT δTP−1δx

xTx
≤ 1,

⇐⇒ δTP−1δ ≤ 1. (2-54)

The last line follows from the fact that δTP−1δ is a positive scalar, and the property that if
U ⊆ R is a set and r > 0 then sup(rU) = r sup(U).
Thus if (2-50) and (2-51) are satisfied, by Petersen’s lemma there exists a real number ϵ > 0
such that inequality (2-52) holds.
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2-3-2 Quadratic stabilization

We now present the main result of [22], on the stability of quadratic systems. The stability
analysis of the bilinear output regulation problem will be based on this result. Consider the
bilinear control system

ẋ = Ax+Bu+Nzu, (2-55)

with x ∈ X ⊆ Rn the state and u ∈ R the input. Under linear state feedback u = Kx, with
K ∈ Rn, the closed loop dynamics of equation (2-55) obey

ẋ = Acx+NxKx, (2-56)

where we have defined the closed loop matrix Ac = A+BK. Next, we introduce the quadratic
Lyapunov candidate function

V (x) = xTP−1x, (2-57)

with P a symmetric positive semi-definite matrix. The candidate V (x) is a Lyapunov function
for the closed loop system (2-56) if the time derivative along trajectories of this system is non-
positive. The derivative is given by

V̇ (x) = ẋTP−1x+ xTP−1ẋ

= (Acx+NxKx)TP−1x+ xTP−1(Acx+NxKx)
= xT (ATc P−1 + P−1Ac +KTxTNTP−1 + P−1NxK)x. (2-58)

From equation (2-58) we see that V (x) is a quadratic Lyapunov function of the closed loop
system (2-56) if

ATc P
−1 + P−1Ac +KTxTNTP−1 + P−1NxK ≼ 0. (2-59)

Pre- and post multiplying this expression with P yields

AcP + PAc + PKTxTNT +NxKP ≼ 0. (2-60)

By imposing the ellipsoidal constraint x ∈ E , with

E = {x ∈ Rn | V (x) ≤ 1}, (2-61)

we find that by lemma 2 the inequality (2-60) is equivalent to

[
AcP + PAc + ϵNPNT PKT

KP −ϵI,

]
≼ 0 (2-62)
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for some ϵ > 0. Therefore, any trajectory generated by the closed loop system (2-56) for
which the initial state is x0 ∈ E , will tend towards zero.

We summarize the result in the following lemma

Proposition 1 ([22]). Suppose 0 ≼ P = P T ∈ Rn×n and let K ∈ Rn be such that Ac =
A+BK is Hurwitz. Then any trajectory of (2-56) for which x0 ∈ E, with E given by (2-61),
is stable if and only if there exists ϵ > 0 such that

[
AcP + PAc + ϵNPNT PKT

KP −ϵI,

]
≼ 0 (2-63)

is satisfied.

Note that there is a freedom in choosing K, P and ϵ as long as the conditions of the theorem
are satisfied. The matrix inequality (2-63) is a linear matrix inequality in one of these variables
if the others are fixed.
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Chapter 3

Nonlinear output regulation in
Koopman framework

In this chapter, we utilize the Koopman operator to tackle the output regulation problem
for a certain class of nonlinear systems. To this end, we identify a class of nonlinear control
systems that admit a finite-dimensional bilinear Koopman representation. That is, we can
identify a finite dictionary, for which the dynamics of its elements are described by a bilinear
control system. We use this to rephrase the nonlinear output regulation problem as a bilinear
output regulation problem and determine necessary conditions for certain solutions to occur
in the presence of linear dynamic error feedback control. Motivated by this analysis, we tackle
the bilinear output regulation problem with matched input disturbance using linear dynamic
error feedback. Based on the work of [22] we characterize a set of initial conditions of the
system that guarantees output regulation.

3-1 Problem formulation

As discussed in section 2-2-2, the general problem of nonlinear output regulation considers
system given by equations (2-38). In this section, we set s(w) = Sw and q(w) = Qw. And
assume the matrix S to be skew-symmetric. This is not a restrictive assumption. A linear
exosystems with a skew-symmetric matrix is able to generate a combination of sinusoidal and
constant signals. From Fourier theory, linear combinations of these signals allow, in prin-
ciple, for the construction of a large class of signals. Moreover, since the exosystem is an
autonomous dynamical system, the Koopman operator associated with the nonlinear exosys-
tem (2-38b) provides an equivalent linear description. If the nonlinear exosystem admits a
finite-dimensional Koopman invariant subspace, with the property that its system matrix is
skew-symmetric, and the components of q(w) are in this set, then the analysis of this chapter
automatically generalizes to include such nonlinear exosystems.
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20 Nonlinear output regulation in Koopman framework

As mentioned in section 2-1-2, the Koopman operator for autonomous dynamical systems pro-
vides a bilinear description of the control affine system associated with the said autonomous
system. The same holds true for a system with an affine term with a disturbance signal, as is
the case in (2-38a). Inspired by [13], we show when the system (2-38a) with output (2-38c)
is described by a finite bilinear dynamical system with a linear output. We restrict our at-
tention to the case where u and w are scalars. The general case will be considered in Lemma 3.

Define a dictionary D of observable functions ψ, with N = dim(D). Let Ψ : X 7→ RN be a
vector valued observable function consisting of all observable functions ψ ∈ D. Consider the
transformation

ż = Ψ(x). (3-1)

Taking the time derivative along the trajectories of z yields

ż = ∂Ψ
∂x

(
f(x) + g(x)u+ p(x)w

)
. (3-2)

If, when u,w = 0, D is a Koopman invariant subspace of (2-38a), it follows that the first term
can be written as Az, with A ∈ RN×N . Moreover, if the components of the vectors ∂Ψ

∂x g(x)
and ∂Ψ

∂x p(x) are in the span of D, they may be written as Nzu and Mzw, respectively, with
N,M ∈ RN×N . Note that if ∂ψi

∂xj
gi = Ni∗z is constant, then the entries of the column Ni∗ are

zero everywhere except where it multiplies the constant function1 ψ = 1. However, since it
is constant, we can simply write ∂ψi

∂xj
gi = βi, with βi ∈ R. Thus the second and third term

in equation (3-2) can actually be written as the sum of a linear and bilinear term instead,
we denote these as Bu+Nzu and Pw +Mzw, respectively, with B,P ∈ RN . Motivated by
the above observation, we redefine Ψ such that it no longer includes the constant function.
Putting everything together, equation (3-2) becomes

ż = Az +Bu+ Pw +Nzu+Mzw. (3-3)

Finally, if we assume that the components of the vector valued function h are in D, then the
output error (2-38c) can be written as e = Cz +Qw, with C ∈ Rl×N .

The function output z ∈ RN of the vector-valued observable function Ψ(x) is interpreted
as the state of the bilinear dynamical system. It is important to note that the state of the
bilinear system is constrained by the transformation (3-1). Since the dynamics are directly
derived from this transformation, it is sufficient to assume that z0 = Ψ(x0), with x0 the initial
condition of the nonlinear system (2-38a).

Combining these observations, we see that under certain assumptions on D, we can rewrite
the nonlinear system (2-38a) and its output (2-38c) as a bilinear dynamical system in z, u,

1Without loss of generality we assume that the constant function appears only once in the dictionary D
and is equal to 1. Any other constant function is trivially contained in the span of D.
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3-1 Problem formulation 21

w. The set of nonlinear systems that admit to such a bilinear description corresponds to the
set of systems that admit a dictionary D that satisfies these assumptions. While for many
systems we can not find such dictionaries, there may exist dictionaries for which the bilinear
dynamical system provides a good approximation. The more dictionary terms we include,
the more accurate we expect the approximation to be2.

We summarize the result of this section in the following lemma and provide its proof.

Lemma 3. Consider the nonlinear dynamical system

ẋ = f(x) +
m∑
i=1

gi(x)ui +
r∑
i=1

pi(x)wi, (3-4a)

e = h(x) +Qw, (3-4b)

with x ∈ X ⊆ Rn, u ∈ Rm, w ∈ W ⊆ Rr, e ∈ Rl and f : X 7→ X, gi : X 7→ X, pi : X 7→ X
and h : X 7→ Rl smooth nonlinear functions. Suppose there exists a set D of observable
functions ψ : X 7→ R, with N = dim(D) > n, satisfying the following properties:

(1) If u,w = 0 and ψ ∈ D then ψ̇ ∈ span(D), i.e., D is a Koopman invariant subspace.

(2) If ψ ∈ D then ∂ψ
∂xj

gij and ∂ψ
∂xi
pkj are in the span of D for each i = 1, . . . ,m, j = 1, . . . , n

and k = 1, . . . , r.

(3) The components hi(x) are in the span of D.

(4) The state projections ψ(x) = xi are in the span of D.

The nonlinear system (3-4) is then equivalently described by the following bilinear system

ż = Az +Bu+ Pw +
m∑
i=1

Nzui +
r∑
i=1

Mzwi, (3-5a)

e = Cz +Qw, (3-5b)

with z0 = Ψ(x0) = [ψ1(x0), . . . , ψN−1(x0)]T and ψi ∈ D.

Proof. Choose a set D of functions ψ : X 7→ R, that satisfies the above properties. Denote
the j-th element of f , gi and pi as fj , gij and pij , respectively. For any ψi ∈ D the time
derivative along the trajectories satisfying (3-4a) is given by

ψ̇i(x) =
n∑
j=1

∂ψi
∂xj

ẋj =
n∑
j=1

∂ψi
∂xj

(
fj(x) +

m∑
q=1

gqj(x)uq +
r∑
q=1

pqj(x)wq
)
. (3-6)

Property 1 implies that we can write

n∑
j=1

∂ψi
∂xj

fj(x) =
N∑
k=1

αikψk(x), (3-7)

2Note that in practice, this may not always be the case, see [14].
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with αik the expansion coefficients for ∂ψi
∂xj

fj(x). Property 2 implies that we can write

∂ψi
∂xj

gqj(x) =
N∑
k=1

µijkqψk(x), ∂ψi
∂xj

pqj(x) =
N∑
k=1

νijkqψk(x), (3-8)

where µijkq and νijkq are the expansion coefficients of ∂ψi
∂xj

gqj(x) and ∂ψi
∂xj

pqj(x), respectively.
We rewrite these as the sum of a linear and a bilinear terms. To this end, assume w.l.o.g.
that ψN = 1 is the only constant function in D. Using equation (3-8) the second term in
equation (3-6) may then be written as

m∑
q=1

( n∑
j=1

∂ψi
∂xj

gqj(x)
)
uq =

m∑
q=1

n∑
j=1

(
µijNqψN +

N−1∑
k=1

µijkqψk(x)
)
uq,

=
m∑
q=1

biquq +
m∑
q=1

N−1∑
k=1

nikqψk(x)uq, (3-9)

with biq =
∑n
j=1 µijNqψN and nikq =

∑n
j=1 µijkq. Similarly, the third term in equation (3-6)

is written as

m∑
q=1

( n∑
j=1

∂ψi
∂xj

pqj(x)
)
wq =

r∑
q=1

n∑
j=1

(
νijNqψN +

N−1∑
k=1

νijkqψk(x)
)
uq,

=
r∑
q=1

piqwq +
m∑
q=1

N−1∑
k=1

mikqψk(x)wq, (3-10)

with piq =
∑n
j=1 νijNqψN and mikq =

∑N−1
j=1 νijkq. Using the equations (3-7), (3-9) and (3-10),

equation (3-6) becomes

ψ̇i(x) =
N∑
k=1

aikψk +
m∑
q=1

biquq +
r∑
q=1

piqwq +
m∑
q=1

N∑
k=1

nikqψkuq +
r∑
q=1

N∑
k=1

mikqψkwq. (3-11)

Next, define the vector valued observable function Ψ : X 7→ Rn as

Ψ(x) =

 ψ1
...

ψN−1

 , (3-12)

the transformation z = Ψ(x) and matrices A = (aij), B = (bij), P = (pij); and Nq = (nij)q
and Mq = (mij)q for q = 1, . . . ,m. From equations (3-11) and (3-12) we obtain equation
(3-5a). With the dynamics of z known and the initial condition z0 = Ψ(x0), property 4 allows
the reconstruction of the state x(t) from the state z(t) at each time t.

Finally, property 3 implies that we can write
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hi(x) =
N∑
k=1

cikψk(x). (3-13)

Define C = (cij), then we can write h(x) = Cz and the output error of the nonlinear dynamical
system given by equation (3-4b) can be written as (3-5b).

We conclude the section with two remarks:

Remark 1. Property 4 in Lemma 3 is only required if we need to reproduce the original state
x from the lifted state z. If we omit property 4, Lemma 3 remains valid if the only information
we have of the system is the output error e.

Remark 2. The system matrices of the bilinear dynamical model (3-5) have a particular
structure to them. As seen in the proof of Lemma 3 the function ψi contributes a constant
control term to the i-th row in the dynamics whenever ∂ψi

∂xj
gij is constant. And a bilinear input

term whenever ∂ψi
∂xj

gij is non-constant. In the case that g(x) = B and p(x) = P are constant
columns, and the vector valued observable function Ψ(x) consists of the state projections
ψi(x) = xi in the first n components and the purely nonlinear observable functions in the
remaining N − n components, the bilinear system has the structure

[
ż1
ż2

]
=
[
A11 A12
A21 A22

] [
z1
z2

]
+
[
B
0

]
u+

[
P
0

]
w +

[
0 0
N21 N22

] [
z1
z2

]
u

+
[

0 0
M21 M22

] [
z1
z2

]
w. (3-14)

3-2 Bilinear output regulation

In the previous section, we have seen that under the assumptions of Lemma 3, the nonlinear
system described by equations (3-4) is equivalently represented by the bilinear system (3-5).
Henceforth, we consider systems that admit to such an equivalent description and aim to solve
the output regulation problem of these systems by tackling the output regulation problem of
the bilinear system. In particular, the goal is to regulate the output using linear dynamic error
feedback. We restrict our attention to the scalar input and exogenous disturbance case. The
discussion below can be generalized to account for multiple input and exogenous disturbances.

From now on, we consider linear exosystems with a linear output, i.e.,

ẇ = Sw, (3-15a)
v = Ew. (3-15b)

with w ∈ Rr and v =∈ R. The output v of the exosystem now fulfills the role of disturbance
and reference signal in (3-5), instead of directly w. This allows us to consider (linear com-
binations of) one-dimensional sinusoidal signals. Furthermore, to ease the notation we write
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N := N1 and M := M .

We assume to have full state information of x, which implies full state information of z. The
goal is to find a linear dynamic error feedback controller of the form

ξ̇ = Fξ +Ge, (3-16a)
u = Hξ +Kz, (3-16b)

with ξ ∈ Ξ ⊆ Rν such the the matrix

Ac =
[
F GC
BH A+BK

]
(3-17)

is Hurwitz, and there exists a neighbourhood U ⊆ Z × Ξ × W such that if z0 = Ψ(x0) and
(ξ0, z0, w0) ∈ U then the trajectories generated by the closed loop system

ξ̇ = Fξ +GCz +GQv, (3-18a)
ż = (A+BK)z +NzKz +BHξ + Pv +NzHξ +Mzv, (3-18b)
ẇ = Sw, (3-18c)
v = Ew, (3-18d)
e = Cz +Qv, (3-18e)

satisfy

lim
t→∞

e(t) = lim
t→∞

Cz(t) +Qv(t) = 0. (3-19)

Remark 3. Recall that to solve the nonlinear output regulation problem (of which the bilinear
output regulation problem is a special case), the point (ξ, z) = 0 must be an exponentially stable
equilibrium of the disconnected closed loop dynamics, i.e. of (3-18a)-(3-18b) with w = 0. The
disconnected closed loop dynamics has an equilibrium point at (ξ, z) = (0, 0). Furthermore, the
Jacobian of the disconnected closed loop dynamics at (0, 0) is equal to Ac. The assumption that
the matrix Ac is Hurwitz thus ensures that (ξ, z) = (0, 0) is an exponentially stable equilibrium
point of the closed loop dynamics [20].

To solve the bilinear output regulation problem, we take inspiration of the linear output
regulation problem and look for equilibrium points of the form ξ = Σw and z = Πw, with
Σ ∈ Rν×r and Π ∈ Rn×r. Equation (3-19) becomes

lim
t→∞

(CΠ +QE)w(t) = 0. (3-20)

Recall that the signal w(t) is a (nontrivial) neutrally stable trajectory, implying that for all
T ∈ R there exists t > T such that w(t) ̸= 0. Therefore, equation (3-20) holds if and only if

CΠ +QE = 0. (3-21)
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Furthermore, ξ = Σw and z = Πw are equilibrium points of the closed loop system (3-18a)-
(3-18b) if and only if

ΣSw = FΣw +G(CΠ +QE)w, (3-22a)
ΠSw = (A+BK)Πw +NΠwKΠw +BHΣw + PEw +NΠwHΣw +MΠwEw. (3-22b)

Clearly, if w = 0, this is satisfied. If w ̸= 0, the following should be satisfied

ΣS = FΣ, (3-23a)
ΠS = (A+BK)Π + PE +BHΣ +NΠwKΠ +NΠwHΣ +MΠwE, (3-23b)

where we have used equation (3-21) to simplify the first line. Summarizing, if there exist
Π ∈ Rn×r, Σ ∈ Rν×r and R ∈ Rm×w such that

ΠS = AΠ +BR+ PE +NΠwR+MΠwE, (3-24a)
0 = CΠ +QE, (3-24b)

ΣS = FΣ, (3-24c)
R = HΣ +KΠ, (3-24d)

are satisfied, and if Ac, given in equation (3-17), is Hurwitz, then (3-20) holds, and thus
the bilinear output regulation problem of the system (3-5) with a linear exosystem is locally
solved by the linear dynamic error feedback controller (3-16). We identify equations (3-24c)
and (3-24d) as the linear internal model principle. Furthermore, equations (3-24a) and (3-24b)
are reminiscent of the linear regulator equations (2-33), and we appropriately call these the
bilinear regulator equations3.

Note that equation (3-24a) depends on the exogenous disturbance w(t). At best, we can
solve these equations with prior knowledge of w in the case that w is constant, i.e., S =
0. If, however, w is non-constant, in order to solve these equations, we necessarily require
NΠwR + MΠwE = 0 for each value of w(t). One way for this to hold is if Π = 0. This
means that the equilibrium point of the system at which the output is regulated is z = 0. The
case that the output is regulated for z = 0 coincides with the output regulation problem with
no reference signal, i.e. Q = 0. Given these assumptions, equation (3-24b) is automatically
satisfied and equations (3-24a), (3-24c) and (3-24d) become

0 = BR+ PE, (3-25a)
ΣS = FΣ, (3-25b)
R = HΣ, (3-25c)

which are the linear regulator equations (2-33) and linear internal model principle (2-34) for
the case that Q,Π = 0.

The following proposition concerns the bilinear output regulation problem in the case that
Q = 0. This result makes no reference to the Koopman dynamical model and thus holds for
any bilinear dynamical system that satisfies the assumptions.

3Note that these are the bilinear regulator equations that the linear equilibrium points x = Πw and ξ = Σw
must satisfy in the case of linear dynamic error feedback, and not the general nonlinear regulator equations
(2-46).
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26 Nonlinear output regulation in Koopman framework

Proposition 2. The bilinear output regulation problem of the system

ż = Az +Bu+ Pv +Nzu+Mzv, (3-26a)
e = Cz, (3-26b)

with z ∈ Z ⊆ Rn, u ∈ R and v ∈ R generated by the linear exosystem (3-15) and the linear
dynamic error feedback controller (3-16) is locally solved if Ac, given by equation (3-17), is
Hurwitz and if there exist Σ ∈ Rn×r, R ∈ Rm×w that satisfy equations (3-25).

Proof. Let ξ̃ = ξ − Σw. In these coordinates, the closed loop dynamics are given by
˙̃ξ = F ξ̃ +GCz + (FΣ − ΣS), (3-27a)
ż = (A+BK)z +NzKz +BHξ̃ +NzHξ̃ +MzEw + (BHΣ + PE)w +NzHΣw, (3-27b)
ẇ = Sw. (3-27c)

Using equations (3-25) the closed loop dynamics reduce to

˙̃ξ = F ξ̃ +GCz, (3-28a)
ż = (A+BK)z +NzKz +BHξ̃ +NzHξ̃ +MzEw +NzHΣw. (3-28b)
ẇ = Sw. (3-28c)

Assume w.l.o.g. that w = 0 is a neutrally stable equilibrium point of the exosystem4. We
see that if w = 0, the point (ξ̃, z) = (0, 0) is an equilibrium point, and the Jacobian of the
dynamics at this point is equal to Ac. The matrix Ac is assumed to be Hurwitz. Hence the
origin is an exponentially stable equilibrium point of the disconnected system [20].

If w ̸= 0, we require (3-19) to hold. Since Q = 0, this is satisfied if z(t) → 0 as t → ∞. The
Jacobian of (3-28) at (ξ̃, z, w) = 0 is given by

[
Ac 0
0 S

]
. (3-29)

Since Ac is Hurwitz, it follows that there exists a set of initial conditions (ξ̃0, z0, w0) (close
to the origin) for which z(t) → 0 and ξ̃(t) → 0 as t → ∞. We conclude that the output is
locally regulated.

We use Proposition 2 in combination with Lemma 3 to arrive at the following corollary.

Corollary 3.1. The nonlinear output regulation problem of the system

ẋ = f(x) + g(x)u+ p(x)w, (3-30a)
e = h(x), (3-30b)

with the linear exosystem (3-15) and linear dynamic error feedback controller (3-16) is locally
solved provided that the following conditions hold: (1) the assumptions of Lemma 3 and
proposition 2 are satisfied; (2) the initial condition satisfy z0 = Ψ(x0).

4The sinusoidal exosystem automatically satisfies this, and for a constant exosystem, we can make the
coordinate transformation w̃ = w − w0.
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Proof. If z0 = Ψ(x0), then, by Lemma 3, the nonlinear system (3-4) is equivalently described
by (3-26). It follows that, by Proposition 2, the nonlinear output regulation problem is locally
solved.

In Proposition 2 we have used a linearization argument to show there exist initial conditions
for which the output is regulated. However, this only tells us something about the existence
of such initial conditions, not which initial conditions achieve this.

3-3 Matched input disturbance

In this section, we consider the special case of matched input disturbance. That is, the dis-
turbance and the input enter the system dynamics identically. This is a natural problem to
consider, as it models uncertainty to the input. Furthermore, in this case, we can use the
Lyapunov-based stability argument for quadratic systems [22] to characterize a set of initial
conditions for which output regulation is guaranteed.

The nonlinear output regulation problem with matched input disturbance considers systems
given by (3-30) with p(x) = g(x) and the linear exosystem (3-15). If the assumptions of
Lemma 3 are satisfied and z0 = Ψ(x0), the system is equivalently represented by a bilinear
dynamical system (3-26) with P = B and M = N . Under the control (3-16) the closed loop
dynamics of the plant obeys (3-27). Since P = B and M = N , equation (3-27b) becomes

ż = (A+BK)z +NzKz +BHξ̃ +NzHξ̃ +B(HΣ + E)w +Nz(HΣ + E)w. (3-31)

From this, we see that if HΣ +E = 0, then the last two terms are canceled. In other words,
the linear disturbance term is canceled if and only if the bilinear disturbance term is canceled.
This is a feature of the matched input disturbance case. In the general case, the second term
does not cancel and is only zero if z = 0. Note that this condition is equivalent to the linear
regulator equation (3-25a).

If we define the quantities

s =
[
ξ̃
z

]
, Ñ =

[
0 0
0 N

]
, K̃ =

[
0 K

]
, H̃ =

[
H 0

]
, (3-32)

and assume that the linear regulator equations and internal model principle given in (3-25)
are satisfied, then the closed loop dynamics (3-27) for the matched input disturbance case
may be written as

ṡ = Acs+ ÑsK̃s+ ÑsH̃s. (3-33)

We see that the closed loop dynamics no longer depend directly on the exogenous disturbance
signal w. This allows us to apply the Lyapunov-based stability analysis proposed by [22],
described in section 2-3. The result is presented in the following proposition.
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Proposition 3. The bilinear output regulation problem of the bilinear dynamical system
(3-26), with P = B and M = N and the linear exosystem (3-15), is locally solved by the
linear dynamic error feedback controller (3-16), provided that the following conditions hold:
(1) the linear regulator equations and internal model principle (3-25) are satisfied; (2) the
matrix Ac, given in equation (3-17), is Hurwitz; (3) if x0 and ξ0 are such that

[
ξ0 − w0
z0

]
= s0 ∈ E = {s ∈ Ξ × Z | sTW−1s ≤ 1}, (3-34)

with ϵ > 0 and 0 ≼W = W T ∈ R(N+r)×(N+r), satisfying

WATc +AcW + ϵÑWÑT W
[
H K

]T[
H K

]
W −ϵI

 ≼ 0. (3-35)

Proof. The closed loop dynamics of the disconnected plant obeys

ξ̇ = Fξ +GCz, (3-36a)
ż = (A+BK)z +BHξ +NzKz +BzHξ, (3-36b)

which has an equilibrium point at (ξ, z) = (0, 0). Its Jacobian is equal to Ac, which is
Hurwitz by assumption. Hence, (ξ, z) = (0, 0) is an exponentially stable equilibrium point
of the system, which is the first requirement to solve the nonlinear output regulation problem.

Next, define the error variable ξ̃ = ξ − Σw. In these coordinates, the closed loop dynamics
are given by equations (3-15), (3-28a) and (3-31). Since the linear internal model principle is
satisfied and HΣ + E = 0, the closed loop dynamics in the error coordinates reduce to

˙̃ξ = F ξ̃ +GCz, (3-37a)
ż = (A+BK)z +NzKz +BHξ̃ +NzHξ̃. (3-37b)

We see that (ξ̃, z) = (0, 0) is an equilibrium point of the system, which, since the Jacobian is
again equal to Ac, is locally exponentially stable. Using the definitions (3-32), the closed loop
dynamics (3-37) are equivalently described by equation (3-33). Next, define the quadratic
Lyapunov function

V (s) = sTW−1s. (3-38)

The time derivative of (3-38) along the closed loop dynamics (3-33) is given by

V̇ (s) = sT
(
ATcW

−1 +W−1Ac + K̃T sT ÑTW−1 (3-39)
+W−1ÑsK̃ + H̃T sT ÑTW−1 +W−1ÑsH̃

)
s. (3-40)

Thus, V (s) is a Lyapunov function for the dynamics (3-37) if

ATcW
−1 +W−1Ac + K̃T sT ÑTW−1 +W−1ÑsK̃ + H̃T sT ÑTW−1 +W−1ÑsH̃ ≼ 0 (3-41)

Pre- and post multiplying the inequality (3-41) with W yields the equivalent inequality
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WATc +AcW +WK̃T sT ÑT + ÑsK̃W +WH̃T sT ÑT + ÑsH̃W ≼ 0. (3-42)

Let T = WATc +AcW , D = ÑT and V = W (K̃ + H̃), then the inequality (3-42) is written as

T + V T sTDT +DsV ≼ 0, (3-43)

with T = T T . Because s0 ∈ E (see (3-34)) it follows by Lemma 2 that the inequality (3-42)
is satisfied if and only if there exist ϵ > 0 such that

[
T + ϵDWDT WV T

VW −ϵI

]
≼ 0, (3-44)

which is exactly (3-35). The inequality (3-44) is satisfied by assumption, implying V̇ (s0) ≤ 0.
As as result, any trajectory s(t) for which s0 ∈ E will tend to 0, which means z(t) tends to
zero and

lim
t→∞

e(t) = lim
t→∞

Cz(t) = 0, (3-45)

hence the output is regulated and the bilinear output regulation is locally solved.

The equivalence of the nonlinear dynamical system (3-30) and the bilinear dynamical system
(3-26) leads to the following important corollary.

Corollary 3.2. The nonlinear output regulation problem of the system (3-30), with p(x) =
g(x), and the linear exosystem (3-15), is locally solved by the linear dynamic error feedback
controller (3-16) for the set of initial conditions {ξ0, x0, w0}, satisfying (3-34), provided that
the following conditions hold: (1) the assumptions of Lemma 3 are satisfied; (2) the initial
condition satisfies z0 = Ψ(x0); (3) the assumptions of Proposition 3 are satisfied.

Proof. If z0 = Ψ(x0), then, by Lemma 3, the nonlinear system (3-30) is equivalently described
by (3-26), with P = B and M = N . The corollary then follows from Proposition 3.

3-3-1 Numerical example

In this section, we verify the results of Proposition 3 and Corollary 3.2 by means of a numeri-
cal simulation of an example system. We design a controller that satisfies the assumptions of
Corollary 3.2 and simulate the closed loop dynamics of the nonlinear system under the effect
of this controller.

Inspired by [19], we consider an example system that is nonlinear system given by

ẋ1 = νx1 + x1(u+ v), (3-46a)
ẋ2 = κ(x2 − x2

1) + u+ v, (3-46b)
e = x2 + x2

1x2 + x1x
2
2, (3-46c)
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30 Nonlinear output regulation in Koopman framework

where u is a scalar input and v ∈ R the output of the sinusoidal exosystem

ẇ1 = −ωw2, (3-47a)
ẇ2 = ωw1, (3-47b)
v = w1. (3-47c)

Thus v(t) = w10 cos(ωt) + w20 cos(ωt). The affine term in the first state highlights the use
of property 2 of Lemma 3, and the nonlinear terms in the output highlights property 3. We
may omit either of these terms and still apply the method.

To start, we choose a dictionary D such that the properties of lemma 3 are satisfied, so that
the system is equivalently represented by a Koopman bilinear dynamical model. The equiv-
alent bilinear dynamical model and the details of its construction are given in appendix A.

We use a linear dynamic error feedback controller as described in proposition 3. We choose
K such that A + BK is Hurwitz, and subsequently G such that Ac is Hurwitz. We fix the
number ϵ = 0.01 and determine W such that the matrix inequality (3-35) is satisfied. The ini-
tial conditions w10 and w20 are randomly sampled from the interval [−1, 1]. Next, the initial
state of the plant x0 and controller ξ0 are randomly chosen such that z0 = Φ(x0) and s0 ∈ E .
The trajectory of the system is then determined using Runge-Kutta integration. Figure 3-1
shows quantities of interest for a typical trajectory of the closed loop system that is initiated
as described above. The top left and right plots show the value of the Lyapunov and its time
derivative along the trajectory of the closed loop dynamics z(t) = Ψ(x(t)) as a function of t,
respectively. The bottom right plot shows the output error e(t) of the closed loop system as a
function of time. Finally, the bottom right figure shows the residual of the disturbance signal
g(x(t))(Hξ(t)+v(t)) (consisting of two components). as a function of time. Observe that the
Lyapunov function always satisfies V (z(t)) ≤ 1 and V̇ (z(t)) ≤ 0, as it should. Furthermore,
we see that the disturbances are successfully rejected, and the output error is driven to zero.
Hence, the output of the nonlinear plant is successfully regulated.

Figure 3-2 shows the limit of the error5 for 100 different trajectories satisfying the initial
conditions and closed loop dynamics described above. The top figure shows the value of
sT0 W

−1s0 and the bottom figure the corresponding limit of the error. We see that, without
exception, the error is driven to machine precision, and hence we conclude that the output is
regulated in the limit.

Note that in the above simulation we have made no effort to find a W for which the set of
initial conditions is large (in terms of magnitude of the initial states ξ̃0 and x0 in the 2-norm.).
And actually, they are quite small. Figure 3-3 shows the relevant quantities for a trajectory
for which the initial condition is chosen to be much larger than those satisfying the constraint
s0W

−1s ≤ 1 (for W as chosen in the previous simulation). We see that the disturbance is
still successfully rejected and the output is regulated. Furthermore, observe that V (s) is still
a Lyapunov function for this trajectory, even though max V (s) ≈ 1900. This suggest that the
result may be generalized to V (s) ≤ γ with γ > 1. Indeed, [21] provides a generalization of

5With this we mean the average error over a fixed interval.
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Figure 3-1: Closed loop dynamics of the example system (3-46) initiated such that s0W
−1s0 ≤ 1

is satisfied. Top left: Lyapunov function as a function of time. Top right: Time derivative of the
Lyapunov function along the closed loop dynamics as a function of time. Bottom left: Output
error e as a function of time. Bottom right: Residual of the disturbances g(x)(Hξ + v) as a
function of time.

Figure 3-2: Distribution of the output error e in the limit for 100 trajectories of (3-46), satisfying
the ellipsoidal constraint s0W

−1s0 ≤ 1.
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Figure 3-3: Closed loop dynamics of the example system (3-46) initiated with s0W
−1s0 ≈ 1900.

Top left: Lyapunov function as a function of time. Top right: Time derivative of the Lyapunov
function along the closed loop dynamics as a function of time. Bottom left: Output error e as a
function of time. Bottom right: Residual of the disturbance g(x)(Hξ + v) as a function of time.

Figure 3-4: Closed loop dynamics of the example system (3-46), initiated such that s0W
−1s0 ≤ 1

is satisfied, using a controller based on the linearization (dotted line) and one based on the
Koopman bilinear model (solid line). Left: Output error e as a function of time. Right: Residual
of the disturbance g(x)(Hξ + v) as a function of time.
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Petersen’s lemma that addresses precisely this, the result may be adapted to lemma 2 and
applied to the problem at hand. More interestingly, we might be able to find a different ϵ
and W (and K for that matter) for which V (s0) ≤ 1 is valid, but for a larger set6 of initial
conditions s0. [22] suggests a semi-definite program to achieve this.

Finally, figure 3-4 shows a comparison of the method compared to a controller design based
on the linearization of (3-46). The dynamics of the closed loop system, using the controller
obtained from the linearization, are given by the dotted line, and using the controller obtained
from the Koopman-based method, by the solid line. In both cases, the gain K is obtained
using linear quadratic control, and the same matrix G is used. The system is initiated such
that s0W

−1s0 ≤ 1 is satisfied. We see that the transient behavior of the output error of
the controller based on the linearization is larger than the Koopman-based method. The
reason for this is that the controller derived from the Koopman-based method is a nonlinear
controller in the state x and utilizes nonlinear terms that appear in the dictionary used to
derive the bilinear dynamical model.

3-4 Future directions

We finalize the chapter by mentioning possible paths for future research for the use of Koop-
man operator for the nonlinear output regulation problem. We mention a few future paths
concerning the bilinear output regulation approach. We conclude with a novel suggestion
for a data-driven approach of the nonlinear output regulation problem, which has not been
considered so far in this thesis.

Partial state information. For most of the results, we have assumed full-state information.
In practice, this is often not the case, and only output data is available. The stabilizing
part of the linear dynamic error feedback controller (3-16) may be incorporated in the con-
troller dynamics instead. For linear plants, this is achieved using the separation principle. A
state-feedback controller and state-observer are designed separately and combined to achieve
stabilization. However, for bilinear plants, the error dynamics of the state-observer depend
on the input, thus the separation principle does not hold. It is therefore of interest to identify
how a linear dynamic error feedback controller, without a state-feedback component, can be
used to solve the bilinear output regulation problem, and thereby the equivalent nonlinear
output regulation problem.

Quadratic stability for general disturbance signals. In the previous section, we focused on
the matched input disturbance case and characterized a set of initial conditions for which
output regulation is guaranteed. Essential in the argument was the fact that the closed loop
dynamics (3-37) did not directly depend on the exogenous disturbance w. The reason for this
was that both linear and bilinear disturbances were canceled by the same control action. In

6If Ei = {s ∈ RN+ν | sT W −1
i s} ≤ 1 and smax

i = maxs{||s||2 | s ∈ Ei}, then E1 is larger than E2 if
smax

1 > smax
2 . Alternatively, one may consider a set larger than the other if the average of the two norm of its

elements is larger.
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the general disturbance case, considered in section 3-2, this was not the case, see equation
(3-28). However, since the exogenous disturbance signal w is neutrally stable, it is bounded,
i.e. ||w|| ≤ γ, for some γinR. We therefore expect that a similar result as in proposition 3
can be obtained for the general disturbance case. The stability argument must be modified
to account for the additional bilinear terms in w.

Reference tracking. In tackling the bilinear output regulation problem we have assumed
that no reference signal was present. This is an important part of the output regulation
problem and cannot be ignored. In section 3-2, we have seen that linear error dynamic error
feedback cannot be used to achieve output regulation of the bilinear dynamical system in the
presence of a reference signal. Nonlinear techniques must therefore be explored to tackle this
problem.

Extended Dynamic Mode Decomposition for nonlinear output regulation. One of the
main merits of the Koopman operator framework is that it is particularly well suited for data-
driven methods. The most famous example is the Extended dynamic mode decomposition
(EDMD) algorithm [34]. Given a set of observable functions, the EDMD algorithm provides
a best-fit linear dynamical system, in the least-squares sense, for a (nonlinear) autonomous
dynamical system from data. EDMD uses as data a set of K snapshot pairs {xi, x+

i }Ki=1,
with x+

i = F (xi) and xi, x
+
i ∈ X ⊆ Rn. Recall that F is the flow of the system autonomous

system (2-1) given by (2-2). The EDMD algorithm is extended to actuated systems in [33].

We now sketch a proposal for the use of EDMD for actuated systems to obtain a linear dy-
namical model of the nonlinear system (2-38) out of data. The resulting linear system will be
of the form (2-27). We subsequently solve the linear output regulation problem as described
in section (2-2-1) and obtain a linear dynamic error feedback controller of the form (2-28).

The method requires one to specify a dictionary of observable functions. Looking at the
system (2-38), we see that, in general, the dictionary must contain observable functions ψ ∈ F ,
ϕ ∈ W, and θ ∈ F × W. Here, F denotes the space of functions of the plant state x and W
the space of functions of the exogenous disturbance state w. For a finite dictionary, we define
the transformations

zx = Ψ(x), (3-48a)
zw = Φ(w), (3-48b)
zxw = Θ(x,w), (3-48c)

where Ψ(x), Φ(w) and Θ(x,w) are vector valued observable functions consisting of all the
observable functions in D of the type ψ : X 7→ R, ϕ : W 7→ R and θ : X × W 7→ R ,
respectively.

The data consists of the snapshot pairs in the plant state {xi, x+
i }Ki=1, exogenous disturbance

{wi, w+
i }Ki=1, output error {ei, e+

i }Ki=1 and input {ui, u+
i }Ki=1. The linear dynamical model is

then obtained from the data by solving the following optimization problem:

Bart Kieboom Master of Science Thesis



3-4 Future directions 35

min
A,B,P,S

K∑
j=0

∥∥∥∥∥∥∥
 Ψ(xj+1)

Θ(xj+1, wj+1)
Φ(wj+1)

−

A11 A12 P1
A21 A22 P2
0 0 S


 Ψ(xj)

Θ(xj , wj)
Φ(wj)

−

B1
B2
0

uj
∥∥∥∥∥∥∥

2

2

(3-49)

min
C,Q

K∑
j=0

||ej − CΨ(xj) −QΦ(wj)||22. (3-50)

Often, only input-output data is available. The optimization procedure may then be modi-
fied to make use of time-delayed measurements of the input and output, as suggested by [26, 4].

Note that the resulting Koopman model we obtain from data is a linear dynamical model
instead of a bilinear dynamical model. Why this is the case can be seen by looking at the
closed loop dynamics of the bilinear Koopman model under linear state feedback (which is
nonlinear in the original state), given by ż = (A+BK)z+NzKz+Pw+Mzw and ẇ = Sw.
The closed loop dynamics are autonomous in the extended state [zT , wT ]T . The dynamics of
the Koopman operator can be approximated on an approximate Koopman invariant subspace.
This subspace consists of functions of the extended state and thus functions of x and w.
This observation provides a rationale for the choice of a linear dynamical model on a set of
observable functions in x and w, instead of a bilinear dynamical model on a set of observable
functions in x.
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Chapter 4

Conclusion

In this thesis, we have demonstrated a novel approach to the nonlinear output regulation
problem that utilizes the Koopman operator. The Koopman operator was used to identify a
class of nonlinear control systems that can be equivalently described by a bilinear dynamical
system. We have subsequently solved the bilinear output regulation problem using linear
dynamic error feedback for the case of disturbance rejection. In particular, for the case of
matched input disturbance, we have used a Lyapunov-based stability argument to charac-
terize a set of initial conditions for which output regulation is guaranteed and validated the
result by presenting a numerical example.

Many interesting problems can be framed as an output regulation problem and the Koopman
operator is a promising modeling paradigm that can help our understanding of nonlinear
systems. With this thesis, I hope to initiate an interest in the marriage of these frameworks
to advance our theoretical understanding of numerous problems and push the boundaries for
new applications.
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Appendix A

Construction of the bilinear Koopman
model for example system

In this appendix, we show the construction of the dictionary D for the example considered in
section 3-3, that satisfies the properties of Lemma 3. Subsequently, we obtain the Koopman
bilinear model. The plant in consideration is given by

ẋ1 = νx1 + x1(u+ v), (A-1a)
ẋ2 = κ(x2 − x2

1) + u+ v, (A-1b)
e = x2 + x2

1x2 + x1x
2
2. (A-1c)

with x ∈ X ⊆ R2, u, v ∈ R and e ∈ R. In the notation of equation (3-30) we have

f(x) =
(

νx1
κx2 − κx2

1

)
, g(x) = p(x) =

(
x1
1

)
, h(x) = x1 + x2 + x2

1x2 + x1x
2
2.

We show the construction of a dictionary D that satisfies the properties of Lemma 3 w.r.t.
to the nonlinear system (A-1).

Consider the dictionary D1 = {ψ1, ψ2, ψ3, ψ4, ψ5} with

ψ1(x) = x1,

ψ2(x) = x2,

ψ3(x) = x2
1,

ψ4(x) = x2
1x2,

ψ5(x) = x1x
2
2.

The functions ψ1(x) and ψ2(x) are the state projections, and therefore property 4 of Lemma
3 is satisfied. Furthermore, the output (A-1c) can be written as e = ψ1 + ψ2 + ψ4 + ψ5, thus
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property 3 of Lemma 3 is satisfied.

The time derivative of an observable function ψ = xn1x
m
2 , along the trajectories of (A-1), is

given by

ψ̇ = nxn−1
1 xm2 ẋ1 +mxn1x

m−1
2 ẋ2

= nνxn1x
m
2 +mκ(xn1xm2 − xn+2

1 xm−1
2 )

= (nν +mκ)xn1xm2 −mκxn+2
1 xm−1

2 . (A-2)

Using (A-2) we find that derivatives of along the trajectories of (A-1) of each ψ ∈ D1, in the
case that u, v = 0, are given by

ψ̇1(x) = νx1,

ψ̇2(x) = κ(x2 − x2
1),

ψ̇3(x) = 2νx2
1,

ψ̇4(x) = (2ν + κ)x2
1x2 − κx4

1,

ψ̇5(x) = (ν + 2κ)x1x
2
2 − 2κx3

1x2.

The functions x3
1x2 and x4

1 are not in D1, hence D1 is not a Koopman invariant subspace.
Motivated by this observation, let D2 = {ψ6, ψ7, ψ8} with

ψ6(x) = x4
1,

ψ7(x) = x3
1x2,

ψ8(x) = x5
1.

Again, when u, v = 0, we find using equation (A-2) that

ψ̇6(x) = 4νx4
1,

ψ̇7(x) = (3ν + κ)x3
1x2 − κx5

1,

ψ̇8(x) = 5νx5
1.

We see that D1 ∪ D2 is a Koopman invariant subspace w.r.t. the autonomous dynamics of
(A-1), which is exactly property 1 of Lemma 3.

The dictionary D1 ∪ D2 does not satisfy property 2. To see this, write down the partial
derivatives of the observable functions w.r.t. x1 and x2 and multiply these with components
g1(x) and g2(x), respectively. Using the notation ∂i = ∂

∂xi
, we find(

∂1ψ1(x)
)
g1(x) = x1,

(
∂2ψ1(x)

)
g2(x) = 0,(

∂1ψ2(x)
)
g1(x) = 0,

(
∂2ψ2(x)

)
g2(x) = 1,(

∂1ψ3(x)
)
g1(x) = 2x2

1,
(
∂2ψ3(x)

)
g2(x) = 0,(

∂1ψ4(x)
)
g1(x) = 2x2

1x2,
(
∂2ψ4(x)

)
g2(x) = x2

1,(
∂1ψ5(x)

)
g1(x) = x1x

2
2,

(
∂2ψ5(x)

)
g2(x) = 2x1x2,(

∂1ψ6(x)
)
g1(x) = 4x4

1,
(
∂2ψ6(x)

)
g2(x) = 0,(

∂1ψ7(x)
)
g1(x) = 3x3

1x2,
(
∂2ψ7(x)

)
g2(x) = x3

1,(
∂1ψ8(x)

)
g1(x) = 5x5

1,
(
∂2ψ8(x)

)
g2(x) = 0.
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Indeed, 2x1x2 and x3
1 are not in the span of D1 ∪ D2. To satisfy property 21 of Lemma 3, we

require (linear combinations of)

ψ9(x) = x1x2,

ψ10(x) = x3
1.

Therefore, let D3 = {ψ9, ψ10}. The time derivatives of ψ9 and ψ10 along the trajectories of
(A-1) are given by

ψ̇9(x) = (ν + κ)x1x2 − κx3
1,

ψ̇10(x) = 3νx3
1.

Furthermore, the partial derivatives w.r.t. x1 and x2 multiplied by g1(x) and g2(x), respec-
tively, read (

∂1ψ9(x)
)
g1(x) = x1x2,

(
∂2ψ9(x)

)
g2(x) = x1,(

∂1ψ10(x)
)
g1(x) = 3x3

1,
(
∂2ψ10(x)

)
g2(x) = 0,

and are contained in the span of D1 ∪ D2 ∪ D3. Therefore, let D = D1 ∪ D2 ∪ D3. The
dictionary D satisfies all four properties of Lemma 3.

A-1 Deriving the Koopman bilinear model

We now determine the bilinear Koopman model associated with the dictionary D. For each
ψ ∈ D the time derivative along the trajectories of (A-1) are given by

ψ̇ =
2∑
i=1

∂ψ

∂xi
ẋi =

2∑
i=1

∂ψ

∂xi

(
fi(x) + gi(x)(u+ v)

)
. (A-3)

Thus we find

ψ̇1(x) = νψ1(x) + ψ1(x)(u+ v)
ψ̇2(x) = κψ2(x) − κψ3(x) + u+ v

ψ̇3(x) = 2νψ3(x) + 2ψ3(x)(u+ v)
ψ̇4(x) = (2ν + κ)ψ4(x) − κψ6(x) + (ψ3(x) + 2ψ4(x))(u+ v)
ψ̇5(x) = (ν + 2κ)ψ5(x) − 2κψ7(x) + (ψ5(x) + 2ψ9(x))(u+ v)
ψ̇6(x) = 4νψ6(x) + 4ψ6(x)(u+ v)
ψ̇7(x) = (3ν + κ)ψ7(x) − κψ8(x) + (3ψ7 + ψ10(x))(u+ v)
ψ̇8(x) = 5νψ8(x) + 5ψ8(x)(u+ v)
ψ̇9(x) = (ν + κ)ψ9(x) − κψ10(x) + (ψ1(x) + ψ9(x))(u+ v)
ψ̇10(x) = 3νψ10(x) + 3ψ10(x)(u+ v)

1Actually, we only need to satisfy property 2 for the non-constant terms ∂igi.
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Next, define the transformation

z = Ψ(x), (A-4)

with Ψ(x) = [ψ1(x), . . . , ψ10]T . Then we find

ż = Az +B(u+ v) +Nz(u+ v), (A-5a)
e = Cz, (A-5b)

with

A =



ν 0 0 0 0 0 0 0 0 0
0 κ −κ 0 0 0 0 0 0 0
0 0 2ν 0 0 0 0 0 0 0
0 0 0 2ν + κ 0 −κ 0 0 0 0
0 0 0 0 ν + 2κ 0 −2κ 0 0 0
0 0 0 0 0 4ν 0 0 0 0
0 0 0 0 0 0 3ν + κ −κ 0 0
0 0 0 0 0 0 0 5ν 0 0
0 0 0 0 0 0 0 0 ν + κ −κ
0 0 0 0 0 0 0 0 0 3ν


, (A-6)

B =



0
1
0
0
0
0
0
0
0
0


, N =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 3 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3


, (A-7)

C =
[
0 0 0 1 1 0 0 0 0 0

]
. (A-8)

Proposition 3 requires the matrix Ac, given by equation (3-17), to be Hurwitz. To achieve
this, the pair (A,B) must be stabilizable. By inspecting A and B, we see that the only con-
trollable mode (in the linear sense, i.e., ignoring the bilinear term) is the one corresponding to
the second row. Therefore, for the pair (A,B) to be stabilizable, we require all other modes
to be (asymptotically) stable. The triangular structure of A allows us to easily identify the
system’s eigenvalues. They correspond to the elements that appear on the diagonal. We
see that the stability of these modes depends on the values of ν and κ. For instance, the
eigenvalue corresponding to the observable function ψ5 is given by µ5 = ν+2κ. If µ5 is larger
than zero, the corresponding mode is unstable (in the linear sense). However, the eigenvalues
of the matrix A depend on the choice of the transformation (A-4). In this example, we can
redefine the transformation (A-4) such that instead of ψ5(x), it includes −ψ5(x), i.e., we set

Bart Kieboom Master of Science Thesis



A-1 Deriving the Koopman bilinear model 43

Ψ(x) = [ψ1(x), . . . ,−ψ5(x), . . . , ψ10(x)]T . Because of the triangular structure, all elements in
the fifth row of A, B, C, and N gain a minus sign. Consequently, the corresponding mode
is stable. Because of the triangular structure, we can do this for all non-zero eigenvalues of
A that correspond to uncontrollable modes. Thus, if all the eigenvalues that correspond to
uncontrollable modes are non-zero, we can make the pair (A,B) stabilizable. This is true
when ν is unequal to κ whenever it is multiplied by the integers 1, 2 and 3.

In the simulation we use the values ν = −0.7 and κ = 1. The only positive Koopman
eigenvalues are those of ψ1(x), ψ5(x) and ψ9(x) (w.r.t. the autonomous system), and are
given by

µ2 = κ = 1,
µ5 = ν + 2κ = 0.3
µ9 = ν + κ = 1.3,

respectively. The modes corresponding to ψ5(x) and ψ9(x) are uncontrollable, thus we con-
sider the transformation z = Ψ(x), with

Ψ(x) = [ψ1, ψ2, ψ3, ψ4,−ψ5, ψ6, ψ7, ψ8,−ψ9, ψ10]T . (A-9)

The system matrices of the bilinear Koopman model are then given by

A =



ν 0 0 0 0 0 0 0 0 0
0 κ −κ 0 0 0 0 0 0 0
0 0 2ν 0 0 0 0 0 0 0
0 0 0 2ν + κ 0 −κ 0 0 0 0
0 0 0 0 −ν − 2κ 0 2κ 0 0 0
0 0 0 0 0 4ν 0 0 0 0
0 0 0 0 0 0 3ν + κ −κ 0 0
0 0 0 0 0 0 0 5ν 0 0
0 0 0 0 0 0 0 0 −ν − κ κ
0 0 0 0 0 0 0 0 0 3ν


, (A-10)

B =



0
1
0
0
0
0
0
0
0
0


, N =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 −2 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 3 0 0 1

−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3


, (A-11)

C =
[
1 1 0 1 −1 0 0 0 0 0,

]
(A-12)

with the pair (A,B) stabilizable.
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