
Protecting smart contracts of Decentralized Finance systems against Reentrancy
attacks

Nafie El Coudi El Amrani , Oğuzhan Ersoy , Zekeriya Erkin
Delft University of Technology

Abstract
Reentrancy attacks target smart contracts of De-
centralized Finance systems that contain coding er-
rors caused by developers. This type of attacks
caused, in the past 5 years, the loss of over 400
million USD. Several countermeasures were de-
veloped that use patterns to detect reentrancy at-
tacks on smart contracts before deployment on the
Ethereum blockchain. However, the smart con-
tracts are by default public and immutable once
deployed on the blockchain. That is why the re-
search question is: How can we protect smart con-
tracts of DeFi systems deployed on the Ethereum
blockchain that are known to be vulnerable to reen-
trancy attacks? A solution that detects reentrancy
attacks on smart contracts after their deployment
is presented in this paper. It flags transactions
when a difference is found between the users’ funds
on both the application and protocol layers before
and after each transaction using special made smart
wallets. A proof of concept shows that the pro-
posed solution can detect reentrancy attempts and
stop them during the execution phase of smart con-
tracts.

1 Introduction
Decentralized finance (DeFi) is a system where a variety

of financial applications are available publicly on a decentral-
ized blockchain network in order to get rid of financial inter-
mediaries. Users of DeFi can lend, borrow, trade and insure
risks without any central interference. In January 2021, the
total locked value (TLV) in Decentralized Finance systems
was around 25 billion USD [1]. The logic behind decentral-
ized finance systems is encoded in their respective smart con-
tracts. It allows these systems, otherwise called: Decentral-
ized applications (dApps), to perform complicated financial
operations such as: lending and trading assets mainly in the
form of cryptocurrencies. Therefore, any bug exploit or vul-
nerability on the smart contract level directly puts the entire
decentralized finance system at risk of being exploited.

In the early days of DeFi, precisely in 2016, an attacker
managed to drain 150 million USD [2] from a crowdfunding
smart contract called DAO. The attack exploited a reentrancy

bug present in the underlying smart contract of the protocol
by calling recursively a payout function. This attack was sig-
nificant to the point that the Ethereum [3] market cap dropped
by over 600 million USD in one day [4]. This was not the only
consequence of the attack, it caused a split in the commu-
nity that led to a hard fork and the birth of Ethereum classic
blockchain [2].

Another important example to cite is the delayed Con-
stantinople update of Ethereum in January 2019. The update
aimed to introduce gas cost for several smart contract opera-
tions. However one day prior to the update’s launch date, it
was found that the gas cost reduction can cause some already
deployed smart contracts on the Ethereum blockchain to be-
come vulnerable to reentrancy attacks. This has delayed the
push of the update [5].

The academic community have shown interest in research-
ing solutions to make smart contracts secure against reen-
trancy attacks. These proposed solutions range from creat-
ing a safer programming language [6] to creating tools that
detect and prevent reentrancy attacks before deployment on
the blockchain. Oyente [7] leverages symbolic execution to
analyse smart contracts and flag security vulnerabilities.

Even though the academic community have conducted sev-
eral research on the topic, most of the tools mentioned earlier
try to detect reentrancy vulnerabilities during the develop-
ment stage of the smart contract. Since these contracts are
deployed on the Ethereum blockchain, they are immutable
after deployment which makes correcting the mistakes in the
code impossible. This leaves smart contracts vulnerable to
attacks and in need of protection after deployment.

In order to keep Decentralized Finance systems safe and
prevent costly attacks on this new thriving platform, more
academic research should be conducted. The research ques-
tion of this paper is: How can we protect smart contracts of
DeFi systems deployed on the Ethereum blockchain that are
known to be vulnerable to reentrancy attacks?

The paper presents the different parts of the research as
follows. Section 2 formally defines all the key concepts, sys-
tems included in this research. It also presents a formal def-
inition of reentrancy attacks and its types will be presented.
Section 3 describes the methodology adopted during the re-
search. Then, section 4 presents the different existing tools

and methods to protect smart contracts and discusses their
limitations. In section 5, we present the suggested solution to
the reentrancy problem in smart contracts. Next in Section 6,
a proof of concept of the solution is conducted on three types
of reentrancy attacks. Then, a discussion about the results of
this research is presented in 7. Next, section 8 follows with
a discussion on the ethical implications of this research. Fi-
nally, the paper ends with a conclusion in Section 9 and some
suggestions for future work.

2 Background
In this section, Decentralized Finance systems and their ap-

plications are presented in subsection 2.1. Then, in subsection
2.2, we define smart contracts and their applications. Finally,
a formal definition of reentrancy attacks is introduced and a
description of some types of reentrancy attacks is presented
in subsection 2.3.

2.1 Decentralized finance systems
As briefly introduced in the introduction, Decentralized

Finance systems provide a financial architecture that allows
users to benefit from financial products such as lending, bor-
rowing, trading and exchanging currencies in a permission-
less, non-custodial and anonymous way. This novel financial
architecture is built on relatively new technology; blockchain
networks. These networks allow users to create and innovate
new financial protocols by developing new smart contracts,
discussed in detail in subsection 2.2. Currently, the most used
blockchain network to develop new smart contracts and new
financial protocols is Ethereum [3].

Decentralized Finance is relatively new and has been grow-
ing rapidly during the last 6 years, reaching a total locked
value of 88 billion USD in May 2021 [1]. However, every
novel technology comes with its own risks and DeFi is no
exception. Decentralized Finance systems are the target of
dozens of attacks every year [8]. The attacks carried out on
DeFi are of different types. For instance, exploits of technical
errors such as exploits of bugs in the smart contracts, reen-
trancy attacks fall under this category. Or, economical ex-
ploits that can make users of DeFi lose funds such as market
or oracle manipulations. Another important risk worth men-
tioning is the fact that DeFi facilitates all sorts of financial
crime. Hackers, money launderers and scammers can freely
move and clean funds easily. This is due to the anonymous
nature of Decentralized Finance.

2.2 Smart contracts
Smart contracts are computer programs stored on the

blockchain that gets executed by all the nodes when cer-
tain conditions are met. They consist of self-contained code
written in specialized programming languages. In the case
of the Ethereum blockchain, Solidity is the most used high-
level programming language to create smart contracts of DeFi
systems [9]. The code gets compiled to bytecode, which
in its turn gets interpreted by the Ethereum Virtual Machine
(EVM).

To incentivize the nodes of the Ethereum blockchain to ex-
ecute smart contracts, the sender of the request to execute a

smart contract pays a small fee called: gas to the nodes of
the network. The amount of gas needed for a smart contract
relates to the cost of executing a smart contract and is paid
in Ether [10]. Moreover, every smart contract has a fallback
function that gets executed when the name of the function
in the data field doesn’t get recognized by the correspond-
ing smart contract. This function is important in the design
of some reentrancy attacks that will be discussed in the next
subsection 2.3.

Moreover, smart contracts are by default immutable, mean-
ing that they cannot be updated or removed from the
blockchain after deployment. Unless the creator(s) of the
smart contract design it keeping mind upgradeability or de-
stroyability. Unfortunately, many contracts already deployed
on the Ethereum blockchain don’t have the options to be
deleted or updated. Thus any existing in these contracts can-
not be fixed.

2.3 Reentrancy attacks
Reentrancy attacks occur when a smart contract A calls

an (external) smart contract B which calls back the fallback
function of A. These successive actions happen in one trans-
action. However, reentrancy in itself is not always malicious,
it happens during legitimate smart contract execution and is
one of the patterns supported by the Ethereum blockchain
[11].

To explain in details how the reentrancy pattern should
work normally, an example (inspired from [12]) is shown in
listing 1, contract A tries to withdraw 10 units from its bal-
ance in contract B. Contract A starts by calling the withdraw
method of contract B. Then contract B calls msg.sender.value
(it is equivalent to calling contract A) to transfer 10 units to
contract A. This last action is where contract A reenters con-
tract B using its callback function. The function in line 2
without a name is the callback function of contract A. This is
necessary for Ethereum and it is expected behavior to be able
to transfer funds between smart contracts.

1 contract A {
2 function () public payable { }
3 function f() {
4 b.withdraw(10);
5 }
6 }
7
8 contract B {
9 function withdraw(uint amount) public

{
10 msg.sender.send.value(amount)();
11 }
12 }

Listing 1: An example of legitimate reentrancy in a smart
contract [12].

Since reentrancy is expected in smart contracts and sup-
ported by the Ethereum blockchain, a reentrancy is consid-
ered an attack when it is unexpected by the creators of the
smart contract making it operate in an inconsistent internal
state. In other words, a reentrancy call is malicious if the
update of the internal state happened after an external call is

2

returned. In listing 4, an example (inspired from [13]) of a
vulnerable function to reentrancy attacks is presented. The
withdraw() function should perform 3 actions. First, check if
the calling smart contract is entitled to the requested amount.
Second, transfer the requested amount to the calling party.
And, finally, update the balance of the caller. The main is-
sue in the withdraw() function is the order of the second and
third actions because it allows a malicious third party to reen-
ter the contract and call withdraw() function with the same
amount as the first call. Hence, an attacker can repeatedly
call the withdraw() function and keep reentering the smart
contract until the latter is drained of funds. A relatively easy
fix for this problem would be to swap lines 3 and 4, mak-
ing the function update the internal state of the smart contract
before calling the attacker’s contract. Preventive methods on
how to prevent reentrancy attacks will be briefly presented
in subsection 4.2. The example presented here is one of the
main type of reentrancy attacks: Single function reentrancy
attack.

1 function withdraw(uint amount) public {
2 if (credit[msg.sender] >= amount) {
3 msg.sender.call.value(amount)();
4 credit[msg.sender] -= amount;
5 }
6 }

Listing 2: An example of vulnerable function to single function
reentrancy attacks [12].

Other types of reentrancy attacks were presented by
academia in different articles and can be summarized in sev-
eral additional types.

The first type is Cross-Function Reentrancy. Its main
idea is to reenter the victim’s smart contract from different
functions instead of only one. It was shown that this type of
reentrancy attacks is as dangerous as the single function reen-
trancy attack [12] because they both do achieve the same re-
sult which is repeatedly withdrawing funds until all funds of
the victim’s smart contract are drained. This type of attack is
possible when a vulnerable function in a smart contract shares
a state with another function in the same contract that has an
effect desired by an attacker. In listing 3, an example (in-
spired from [14]) shows that the withdraw calls the attacker’s
fallback function the same as in single function reentrancy
attacks. However, the difference lies in the callback function
that makes a call to the transfer() function instead of the the
withdraw() function because the balance has not been reset
to 0 yet before this call. Hence, allowing the transfer() to
transfer an amount that has already been transferred.

1 function transfer(address to, uint amount
) public {

2 if (balances[msg.sender] >= amount) {
3 balances[to] += amount;
4 balances[msg.sender] -= amount;
5 }
6 }
7
8 function withdraw() public {
9 uint amount = balances[msg.sender];

10 require(msg.sender.call.value(amount)
());

11 balances[msg.sender] = 0;
12 }

Listing 3: An example of a smart contract vulnerable to
Cross-Function reentrancy attack [14].

The final type is different from the previously mentioned
attacks because it represents a reentrancy vulnerability but
can only be feasible under specific conditions such as the in-
troduction of low gas costs in the Constantinople update of
Ethereum in 2019. No formal name was given to this attack,
so we will refer to it as the Constantinople reentrancy at-
tack. The attack can be performed on smart contracts that
allow users to share funds. This issue was found by [5] and
caused a delay in the roll-out of the new update of Ethereum.
An attacker with two accounts can perform the attack by fol-
lowing the next steps:

1. Create a shared account between his two accounts.
2. Update the split of the share, 100% to the main account

and 0% to the other.
3. Withdraw 100% of the funds to his main account.
4. In the fallback function, update the split again; 0% to the

main account and 100% to the other.
5. Withdraw 100% of the funds again to his second ac-

count.

At the end of the transaction, the attacker will steal funds
from the other participants in the smart contract. To be able
to perform this attack steps 3,4 and 5 should happen in one
transaction block. That is why this attack wasn’t possible be-
fore introducing the lowering of gas costs.

1 function splitFunds(uint id) public {
2 address payable a = first[id];
3 address payable b = second[id];
4 uint depo = deposits[id];
5 deposits[id] = 0;
6 a.transfer(depo * splits[id] / 100);
7 b.transfer(depo * (100 - splits[id])

/ 100);
8 }

Listing 4: An example of vulnerable function to Constantinople
reentrancy attacks [5]

3 Methodology
To answer the main question of this research project, liter-

ature analysis of existing research and innovations presented
by both the academic community and the companies involved
in the Decentralized Finance systems world. Several aca-
demic research has been conducted on protecting smart con-
tracts of DeFi systems on the Ethereum blockchain. A formal
discussion about these research projects is presented in sec-
tion 4. Then, a new solution to protect already deployed smart
contracts on the Ethereum blockchain is presented. Followed
by a proof of concept that is shown by implementing the pro-
posed tool in 3 different test cases for three reentrancy at-
tack types: single function, Cross-Function and Constantino-
ple reentrancy attacks.

3

4 Related work and their limitations
In this section, detection tools created by previous research

are presented in Subsection 4.1. Then, known preventive
methods that can protect smart contracts during development
are shown in Subsection 4.2. And in the last Subsection 4.3,
some limitations of the existing methods are presented.

4.1 Existing detection tools
In this subsection, a variety of tools are used to detect reen-

trancy vulnerabilities off-chain (before deployment on the
Ethereum blockchain) and on-chain (after deployment).

Off-chain tools
Several strategies are used to detect reentrancy vulnerabil-

ities off-chain. One of the most used ones is Symbolic exe-
cution. It is an old program analysis technique introduced to
computer science in the 70s, used to determine the inputs that
can cause the execution of each part of the program [15]. Us-
ing this strategy, the tools can reason statically path by path
about a program.

Oyente [7], for instance, obtains the path condition before
the execution of each CALL transaction. It then checks if this
condition still holds with different variables such as storage
values in the smart contract of the DeFi system. Maian [16]
and teEther [17], on the other hand, use symbolic execution
differently. They try to find a sequence of invocations leading
to vulnerabilities such as reentrancy attacks.

Securify [18] leverages static analysis to analyze smart
contracts in a scalable and automated way. It detects un-
safe behavior of smart contracts based on provided patterns
and properties. It first, symbolically analyses the dependency
graph of the smart contract’s code to extract the semantic in-
formation. Then, it checks whether the smart contract con-
tains compliance and violence patterns to decide if the con-
tract has any reentrancy vulnerability.

Several other tools use symbolic execution in combination
with other strategies such as Mythril [19]. It uses both taint
analysis and symbolic execution to detect cybersecurity vul-
nerabilities including reentrancy attacks.

Several other researchers have decided to approach the
problem with dynamic solutions. For instance, some used
fuzzing-based techniques to test the smart contracts. This
has the benefit of allowing the detection tools to analyze the
smart contracts by themselves or in combination with each
other, thus detecting cross-function reentrancy attacks more
accurately. ReGuard [20] first translates Solidity code of the
smart contracts to C++ code, then it uses a fuzzing engine to
generate random sequences of transactions. This generated
input is run in an automata designed to flag sequences that can
reach one error state. Reaching this state means that a reen-
trancy vulnerability has been detected. Other tools have opted
to use fuzzing engines in a more structured way. In [21], the
authors have used the patterns discovered in previous research
by symbolic execution to generate sequences of transactions
that have a higher probability of finding reentrancy vulnera-
bilities than sequences generated randomly. Harvey [22] uses
greybox fuzzing to generate tailored sequences to detect reen-
trancy attacks.

Other strategies were used to tackle this problem, Zeus
[23] uses symbolic model checking, constrained horn clauses
and abstract interpretation to verify the safety of smart con-
tracts. SmartCheck [24] translates the smart contract’s source
code to a parse-tree based on XML and then looks for viola-
tion patterns using XPath queries.

On-chain tools
All tools mentioned previously can find reentrancy attacks

outside of the Ethereum blockchain, the 3 tools presented
next are tools used to protect the smart contracts that are al-
ready deployed on the Ethereum blockchain. ECFChecker
[25] leverages Effectively Callback Free (ECF) to detect reen-
trancy attacks. An execution with an equivalent execution
that can achieve the same state without callbacks is called
ECF. And a smart contract is called an ECF contract if all its
executions are ECFs. Since callbacks can affect state transi-
tions during contract execution, non-ECF smart contracts are
vulnerable to reentrancy attacks. It is important to mention
here that statically proving that a smart contract is ECF is
considered an undecided problem up until now. However, the
creators of ECFChecker have come up with a way to dynam-
ically prove if the ECF property of a smart contract has been
violated by a transaction.

ÆGIS [4] has introduced a strategy different than of the
existing tools. It analyses the source code data flow then
it compares the pattern of the data flow to several patterns
stored in its smart contract. This is not particularly different
than the strategies adopted by other tools. However, the new
idea that helps ÆGIS as an online tool is the users’ ability to
propose new patterns to ban and vote whether the new pro-
posed pattern should be incorporated in the tool or not. This
helps ÆGIS to keep detecting any newly detected vulnerabil-
ity. However, this option introduces other problems that other
Decentralized Finance systems are already facing like how to
determine the eligibility of a voter or how to incentivize users
to take part in the voting process. These problems are outside
the scope of this paper.

One of the competitors of ÆGIS is Sereum [12]. It tackles
the problem of detecting reentrancy attacks based on valida-
tion and run-time monitoring in a backwards-compatible way.
It leverages taint analyses and is built on the assumption that
every vulnerability originates from a transaction.

4.2 Preventive methods
In this subsection, some preventive methods are suggested

by the Ethereum community to prevent before deploying
smart contracts on the blockchain.

A document called: Ethereum Smart Contract Security
Best Practices, maintained by ConsenSys Diligence [26]
presents a wide range of best practices to help developers
avoid several types of security vulnerabilities including reen-
trancy attacks.

• Checks-effects-interactions pattern: It forces the de-
velopers to first check if the state of the contract is
the one the developer is expecting using require or
assert. Then they should resolve any effects of the
methods. After the first two steps are done, the devel-
opers can interact with an external contract.

4

• Usage of Mutex: Mutual exclusion makes sure that a
part of the program cannot be accessed a second time
unless the first call has already been done. Libraries
like: ReentrancyGuard [27] are accessible on Solidity
and helps developers to lock parts of the code until the
call is done to avoid reentrancy.

Other members of the academic and Ethereum community
have opted to focus on building safer programming languages
for smart contracts. One of the most maintained languages for
smart contracts other than Solidity is Vyper which is a high-
level programming language with the goal of better code se-
curity and easier security audits. Its creators have excluded,
on purpose, features that can lead to misleading code such
as recursive calling and inheritance [28]. Another language,
less used than Vyper, is Obsidian. It leverages linear types
to flag abuse of assets and typestate to detect malicious state
manipulation [29]. The paper by Tyurin et al. gives a de-
tailed overview of several programming languages for smart
contracts [30].

4.3 Limitations
In this subsection, the limitations of the previously men-

tioned tools and methods are discussed.

• Since most smart contracts already deployed on
Ethereum are immutable or there is no way to find their
creators, off-chain tools cannot protect them.

• Several tools discussed in Subsection 4.1 such as Oyente
and Securify use known patterns to detect reentrancy
vulnerabilities. This limits their ability to detect new
types of reentrancy attacks, and they need manual up-
dates to add them once the patterns are publicly known.

• Tools leveraging symbolic execution suffer from the
path explosion problem [31] that is still an ongoing re-
search topic.

• Dynamic strategies such as fuzzing use significant
amounts of resources by running tests on input that
doesn’t lead to reentrancy vulnerabilities.

• The preventive methods can only be performed during
the production of smart contracts which renders them
useless in protecting already deployed contracts.

5 The SmartTool solution
In this section, a solution SmartTool to protect smart con-

tracts already deployed on Ethereum is presented. Smart-
Tool can be implemented in different ways, can be used on
the Ethereum blockchain and can flag malicious transactions
without using any patterns.

The main idea behind SmartTool is the same one used
by [32]. It all comes down to the idea that reentrancy exploits
are caused by the difference of balance values between the
protocol layer and the application layer. All smart contracts
that provide fund managing services rely on two values to
perform the internal bookkeeping. The first one is the value
stored on the application layer, which is usually stored in a
mapping between the addresses of participants and their cor-
responding funds. The second one is the value stored on the
protocol layer which makes it protected by the miners who

maintain the Ethereum blockchain. The changes on both val-
ues should be the same before and after every transaction to
avoid reentrancy vulnerabilities.

The attackers try to trick the smart contracts to cause a dif-
ference in their balance values on the application and protocol
layers. The only way they can do this is to manipulate the val-
ues on the application since they cannot change the values on
the protocol layer that is protected by the miners. If the at-
tackers succeed in creating a discrepancy between the layers
by having a higher balance on the application layer than the
balance in the protocol layer, they can steal funds from the
smart contract. And the latter will not be able to stop it since
it is not aware of the discrepancy.

Therefore, the solution is to check the values on both layers
before and after each transaction and flag malicious transac-
tions that can create discrepancies between the values in the
two layers. However, keeping track of only the sum of bal-
ances of all participants in the application layer and the funds
stored on the smart contract on the protocol layer will not be
able to catch reentrancy attacks such as the one discovered by
ChainSecurity [5]. This approach was adopted by [32].

Thus, the SmartTool will keep track of each user’s funds
in both the protocol and application layers instead of keeping
track of only the sum of all participants’ funds. This will
be done by creating s special made wallet for each user that
deposits funds to the smart contract. The introduction of such
wallets will allow the main contract to get the balance of each
user from the protocol layer so that it can compare it to the
balance on the application layer.

Moreover, SmartTool can be implemented in three differ-
ent ways:

1. Implement the logic of the SmartTool directly on the
vulnerable smart contract.

2. Implement it as an off-chain tool.
3. Implement it on the blockchain on a different contract.

Workflow of SmartTool
In figure 1, the workflow of the SmartTool is presented.

The SmartTool first gets the balance ui of each useri from the
associated helper wallets (protocol layer) and the balance vi
from the smart contract (application layer) before each opera-
tion. Then after the operation is executed, the SmartTool gets
again the same balances ui & vi for every useri. Next, the
tool performs the integrity checks in two ways:

• Transfer operation from usera to userb with value t, the
SmartTool will check if:

1. ua - ua = va - va = t
2. ub - ub = vb - vb = -t
3. For every other useri : ui - ui = vi - vi = 0

• Withdraw operation from usera with value t, the Smart-
Tool will check if:

1. ua - ua = va - va = t
2. For every other ui - ui = vi - vi = 0

If any check from both cases fail, then the SmartTool will
flag the operation as malicious and will store the address of
the attacker to ban it in next operations. Otherwise, the next
operation is tackled following the same workflow.

5

Figure 1: Workflow of SmartTool

6 Proof of concept of SmartTool
In this subsection, 3 cases are presented to show that

SmartTool can stop different types of reentrancy attempts.
The source code of all smart contracts used is in [33]. Be-
sides, sequence diagrams and detailed instructions to perform
each test cases are added to the appendix ??.

6.1 The testing setup
To test SmartTool, several smart contracts were developed

in Solidity and tested using Remix [34] to simulate their be-
havior on the Ethereum blockchain. Three types of attacks
are studied: (1) Single function reentrancy, (2) Cross func-
tion reentrancy and (3) Constantinople reentrancy. For the
first two cases, the FundsManagerWithSmartTool and Funds-
Manager contracts are the same but they are attacked by two
different smart contracts. The Attacker smart contract per-
forms a single reentrancy attack and both the Attacker1 and
Attacker2 perform a Cross-Function reentrancy in the sec-
ond case. In the third case, the same smart contracts Pay-
mentSharer & Attacker presented by ChainSecurity in [35]
are used. To prove that SmartTool can stop this type of at-

tack, the PaymentSharerWithSmartTool has been created as
well.

In each case, two test cases are tested. The first one is to
attack without SmartTool and the second one is to attack with
SmartTool to see if the solution is able to prevent the reen-
trancy attempt. The detailed sequence of actions and UML
sequence diagrams of each test case are described in the ap-
pendix ??.

In the following subsections, an overview of the balance
of each smart contract before and after performing the attack
is shown in tables. Then an explanation on how the code
can manage to detect reentrancy attacks. In these tables, the
stages are numbered and mean the following:

1. Stage 1 is the balance of the smart contracts after de-
ployment on the blockchain.

2. Stage 2 is the balance of the smart contracts before the
attack.

3. Stage 3 is the balance of the smart contracts after the
attack.

6.2 Single Function reentrancy case
First test case: The Attacker smart contract performs sin-

gle function reentrancy on the FundsManager which contains
a vulnerability in line 22. The attack is performed in three
stages and the balances of each smart contract is presented in
table1.

Stage 1:
• Deploy the Attacker smart contract with 1 wei.
• Deploy the FundsManager smart contract with 2 wei.

Stage 2:
• Deposit 1 wei from the Attacker smart contract to Funds-

Manager.

Stage 3:
• Call the withdraw(1) function from Attacker smart con-

tract to perform the Single Function reentrancy attack.
• The Attacker receives all the funds of the FundsManager

because of the recursive calls hidden in the fallback()
function of Attacker.

Stage Attacker{} FundsManager{}

1 1 2

2 0 3

3 3 0

Table 1: Balance of smart contracts after all three stages of the first
case of Single function reentrancy. All balances are in: wei.

Result: The single function reentrancy attack succeeded in
stealing all funds from the FundsManager in this test case.

Second test case: The Attacker smart contract performs a
single function reentrancy on the FundsManagerWithSmart-
Tool which contains a vulnerability in line 71. The attack is
performed in three stages and the balances of each smart con-
tract is presented in table2.

6

Stage 1:
• Deploy the Attacker smart contract with 1 wei.
• Deploy the FundsManagerWithSmartTool smart con-

tract with 2 wei.

Stage 2:
• Deposit 1 wei from the Attacker smart contract to Funds-

ManagerWithSmartTool.
• The FundsManagerWithSmartTool stores the funds in

the SmartWallet associated with the Attacker.

Stage 3:
• Call the withdraw(1) function from Attacker smart con-

tract to perform the Single Function reentrancy attack.
• The Attacker receives only the funds deposited in the

second stage from the FundsManagerWithSmartTool.
• The FundsManagerWithSmartTool stores the address of

the Attacker1 to be banned.

Stage Attacker{} FundsManager
WithSmartTool{}

SmartWallet{}

1 1 2 0

2 0 2 1

3 1 2 0

Table 2: Balance of smart contracts after all three stages of the
second case of Single function reentrancy. All balances are in: wei.

Result: The single function reentrancy attack failed in the
second test case even if FundsManagerWithSmartTool con-
tract has a reentrancy vulnerability.

6.3 Cross Function reentrancy case
First test case: The Attacker1 smart contract performs a

cross function reentrancy with the help of the Attacker2 con-
tract on the FundsManager which contains a vulnerability in
line 22. The attack is performed in three stages and the bal-
ances of each smart contract is presented in table3.

Stage 1:
• Deploy the Attacker1 smart contract with 1 wei.
• Deploy the FundsManager smart contract with 2 wei.
• Deploy the Attacker2 smart contract with 0 wei.

Stage 2:
• Deposit 1 wei from the Attacker smart contract to Funds-

Manager.

Stage 3:
• Call the withdraw(1) function from Attacker smart con-

tract to perform the Cross Function reentrancy attack.
• The Attacker1 1 wei from the FundsManager.
• The Attacker2 receives the rest of the funds of Funds-

Manager

Result: The cross function reentrancy attack succeeded in
stealing all funds from the FundsManager in this test case.

Stage Attacker1{} FundsManager{} Attacker2{}

1 1 2 0

2 0 3 0

3 1 0 2

Table 3: Balance of smart contracts after all three stages of the first
case of Cross-Function reentrancy. All balances are in: wei.

Second test case: The Attacker1 smart contract performs a
cross function reentrancy with the help of the Attacker2 con-
tract on the FundsManagerWithSmartTool which contains a
vulnerability in line 71. The attack is performed in three
stages and the balances of each smart contract is presented
in table4.

Stage 1:
• Deploy the Attacker1 smart contract with 1 wei.
• Deploy the FundsManagerWithSmartTool smart con-

tract with 2 wei.
• Deploy the Attacker2 smart contract with 0 wei.

Stage 2:
• Deposit 1 wei from the Attacker smart contract to Funds-

ManagerWithSmartTool.
• The FundsManagerWithSmartTool stores the funds in

the SmartWallet associated with the Attacker1.

Stage 3:
• Call the withdraw(1) function from Attacker smart con-

tract to perform the Cross Function reentrancy attack.
• The Attacker1 1 wei from the FundsManager.
• The FundsManagerWithSmartTool stores the address of

the Attacker1 to be banned.

Stage Attacker1{} FundsManager
WithSmartTool{}

Attacker2{} SmartWallet{}

1 1 2 0 0

2 0 2 0 1

3 1 2 0 0

Table 4: Balance of smart contracts after all three stages of the
second case of Cross-Function reentrancy. All balances are in: wei.

Result: The cross function reentrancy attack failed in the
second test case even if FundsManagerWithSmartTool con-
tract has a reentrancy vulnerability.

6.4 Constantinople reentrancy case
To prove that SmartTool can detect this type of reentrancy,

the same example used by ChainSecurity to prove that the
lowering of gas costs can enable this reentrnacy is used in
this proof as well [35]. To simulate the same state of the
blockchain at the time of the Constantinople update, we use
Ganache [36] at the ”constantinople” hardforfk. This enables
us to run the attack with low gas costs.

7

First test case: The Attacker3 smart contract performs the
attack on the PaymentSharer smart contract which is vulner-
able to Constantinople reentrancy attacks. The attack is per-
formed in three stages and the balances of each smart contract
is presented in table5.

Stage 1:
• Deploy the Attacker3 smart contract with 1 wei.
• Deploy the PaymentSharer smart contract with 1 wei.
• Deploy the SecondaryAttacker smart contract with 0

wei.

Stage 2:
• Deposit 1 wei from the Attacker3 smart contract to Pay-

mentSharer.
• The Attacker3 creates a shared account between itself

and SecondaryAttacker with 100% of the funds to itself.

Stage 3:
• Call the attack() function from Attacker3 smart contract

to perform the Constantinople reentrancy attack.
• The Attacker1 1 wei from the PaymentSharer.
• The split of the shared account gets changed to 100% to

the SecondaryAttacker.
• The Attacker2 receives 1 wei from the PaymentSharer.

Stage Attacker3{} PaymentSharer{} SecondaryAttacker{}

1 1 1 0

2 0 2 0

3 1 0 1

Table 5: Balance of smart contracts after all three stages of the first
case of Constantinople reentrancy. All balances are in: wei.

Result: The Constantinople reentrancy succeeded in steal-
ing funds because the Attacker3 contract updated the splits
before updating the internal state of PaymentSharer.

Second test case: The Attacker3 smart contract performs
the attack on the PaymentSharerWithSolution smart contract
which is vulnerable to Constantinople reentrancy attacks. The
attack is performed in three stages and the balances of each
smart contract is presented in table6.

Stage 1:
• Deploy the Attacker3 smart contract with 1 wei.
• Deploy the PaymentSharerWithSolution smart contract

with 1 wei.
• Deploy the SecondaryAttacker smart contract with 0

wei.

Stage 2:
• Deposit 1 wei from the Attacker3 smart contract to Pay-

mentSharerWithSolution.
•
• The PaymentSharerWithSolution stores the funds in the

SmartWallet associated with the Attacker3.
• The Attacker3 creates a shared account between itself

and SecondaryAttacker with 100% of the funds to itself.

Stage 3:
• Call the attack() function from Attacker3 smart contract

to perform the Constantinople reentrancy attack.
• The Attacker3 1 wei from the PaymentSharer.
• The PaymentSharer stores the address of the Attacker3

to be banned.

Stage Attacker3{} SmartSharer
WithSmartTool{}

SecondaryAttacker{} SmartWallet{}

1 1 1 0 0

2 0 1 0 1

3 1 1 0 0

Table 6: Balance of smart contracts during the second case of
Constantinople reentrancy. All balances are in: wei.

Result: The Constantinople reentrancy was stopped by the
PaymentSharerWithSolution before stealing funds because
the funds of the shared account were all stored in the helper
Wallet and it was empty after the first lawful withdrawal by
the attacker.

7 Discussion
The test cases conducted in this paper have proven that

the SmartTool can detect and stop single function, Cross-
Function and Constantinople reentrancy attacks. Since the
third type of attack was a novel one, most tools that rely
on patterns for reentrancy attacks detection didn’t have prior
knowledge that a reentrancy attack can be performed in a sim-
ilar way and thus couldn’t stop it.

SmartTool can protect smart contracts that are already de-
ployed on the Ethereum smart contract unlike most of the
other tools presented in the related work section 4. It can
also be implemented in the vulnerable smart contract or in an
external one. Moreover, it can be implemented in languages
other than Solidity. What is also important to note here is
that due to SmartTool’s main idea that exploits the fact that
the protocol layer balance and the balance of users stored on
the application layer are both consistent before and after each
transaction, it can potentially detect and stop new types of
reentrancy attacks without prior knowledge of how the attack
is performed.

Even though, SmartTool can detect reentrancy attacks and
stop them during execution. It comes with some limitations
as well depending on the implementation approach done by
the developers.

• Implementation on the smart contract itself or on a dif-
ferent smart contract requires access to the code which
is not always possible since the smart contracts can be
immutable on the Ethereum blockchain. It also requires
a high amount of gas to perform all the necessary ac-
tions.

• Implementation of an off-chain tool is a relatively cen-
tralized approach since a third party will be responsible
of checking if the transaction is a reentrancy or not. This
goes against the goal of DeFi systems.

A future version of the SmartTool can be focused on limit-
ing the gas cost of running the tool on-chain.

8

8 Responsible Research
In this section, the ethical implications and reproducibility

of this research are discussed.
In this research, two main ethical implications exists. First,

the proposed tool can detect reentrancy attacks on smart
contract of Decentralized Finance systems on the Ehtereum
blockchain. Therefore, all the contracts used to prove the ef-
ficacy of this tool were made up and do not have any relations
with existing tools on the Ethereum blockchain. The choice
to not use real smart contract that are already deployed on the
Ethereum blockchain is to avoid putting users’ funds put on
the smart contracts in case they were found to be vulnerable
to reentrancy attack.

The second implication is that the proposed tool can
achieve two purposes. Detect possible smart contracts and
protect vulnerable smart contracts on the blockchain. There-
fore, it can be used by anyone to test if the smart contract
of a DeFi system is vulnerable to reentrancy attacks. Thus,
it can help an attacker to chose which smart contract to tar-
get. However, this tool was created with the purpose to, first,
help creators and auditors of the smart contract to protect their
users, and to provide the users of Decentralized Finance the
ability to test the smart contracts themselves before interact-
ing with them. That is why we ask creators/auditors of DeFi
systems to use this tool to help the Ethereum community to
prevent future reentrancy attacks.

It is also important to discuss the reproducibility of the re-
sults of this paper. The research has presented a new tool
to protect and prevent reentrancy attacks on smart contract
already deployed on the Ethereum blockchain. A detailed
proof of the efficacy of this tool is presented in section 6. The
source code of the tool and the contracts used in the proofs are
publicly available on GitHub for any researcher to verify the
results. Moreover, the workflow of the idea behind the tool
is presented in details in section 5. This can help any skilled
researcher to build a similar tool and verify if the idea works
and is sound.

9 Conclusions and Future Work
This paper has provided a new solution (SmartTool) to de-

tect and stop reentrancy attacks on smart contracts already de-
ployed on the Ethereum blockchain. Its main idea is to check
if the difference between the balance of the smart contract on
the protocol layer and the balance of participants stored on the
application layer should stay the same before and after each
transaction. This allows SmartTool to detect reentrancy at-
tacks during the execution of the smart contract without hav-
ing prior knowledge of the mechanism of the attack. Meaning
that it, unlike current tools and methods that use patterns, can
stop novel types of reentrancy attacks in the future as well.
The correctness of this tool was proven by implementing the
tool on vulnerable smart contract and performing 3 different
types of reentrancy attacks.

It is also important to highlight that most existing tools
used to protect smart contracts against reentrancy attacks can
only detect them before deployment. On the other hand,
SmartTool can detect reentrancy attacks after deployment
and thus can be used by auditors and members of the DeFi

community to test public smart contracts on the Ethereum
blockchain.

However, this paper only tackled this problem by imple-
menting the tool on the smart contract directly which will
drive the gas costs up. Further research on whether it can
be implemented off-chain to limit the gas cost is needed. An-
other possible future study can focus on whether detection of
reentrancy attack can be implemented directly on the proto-
col layer which will make the miners check the transactions
and decide if it is a legitimate one or not instead of relying on
developers to protect each smart contract individually.

There exist many other challenges when it comes to the
security of smart contracts of DeFi systems. Since any small
mistake on the developers side can cause the loss of huge
amounts of funds. That is why more research on the security
of smart contracts by the industry and academia is needed.

References
[1] “Defi pulse: The defi leaderboard: Stats, charts and

guides,” https://defipulse.com/, 2020.
[2] D. Siegel, O. Godbole, D. Palmer, D. Nelson, D. Dantes,

and C. Kim, “The dao attack: Understanding what hap-
pened,” https://www.coindesk.com/understanding-dao-
hack-journalists, Dec 2020.

[3] “Ethereum white paper,” https://ethereum.org/en/, 2019.
[4] C. Ferreira Torres, M. Baden, R. Norvill, B. B. Fiz Pon-

tiveros, H. Jonker, and S. Mauw, “Ægis: Shielding vul-
nerable smart contracts against attacks,” Proceedings of
the 15th ACM Asia Conference on Computer and Com-
municationsSecurity, 2020.

[5] ChainSecurity, “Constantinople enables new reen-
trancy attack,” https://medium.com/chainsecurity/
constantinople-enables-new-reentrancy-attack-
ace4088297d9, Jan 2019.

[6] M. Coblenz, “Obsidian: A safer blockchain pro-
gramming language,” 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Companion
(ICSE-C), 2017.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Ho-
bor, “Making smart contracts smarter,” Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[8] 2021. [Online]. Available: https://defihacks.wiki/
[9] “Solidity documentation.” [Online]. Available: https:

//docs.soliditylang.org/en/v0.8.4/
[10] “What is ether (eth)?” [Online]. Available: https:

//ethereum.org/en/eth/
[11] “Withdrawal from contracts,” 2021. [Online]. Avail-

able: https://docs.soliditylang.org/en/develop/common-
patterns.html#withdrawal-from-contracts

[12] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum:
Protecting existing smart contracts against re-entrancy
attacks,” Proceedings 2019 Network and Distributed
System Security Symposium, 2019.

9

https://defipulse.com/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://ethereum.org/en/
https://medium.com/chainsecurity/constantinople-enables-new-reentrancy-attack-ace4088297d9
https://medium.com/chainsecurity/constantinople-enables-new-reentrancy-attack-ace4088297d9
https://medium.com/chainsecurity/constantinople-enables-new-reentrancy-attack-ace4088297d9
https://defihacks.wiki/
https://docs.soliditylang.org/en/v0.8.4/
https://docs.soliditylang.org/en/v0.8.4/
https://ethereum.org/en/eth/
https://ethereum.org/en/eth/
https://docs.soliditylang.org/en/develop/common-patterns.html#withdrawal-from-contracts
https://docs.soliditylang.org/en/develop/common-patterns.html#withdrawal-from-contracts

[13] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of at-
tacks on ethereum smart contracts (sok),” Lecture Notes
in Computer Science, p. 164–186, 2017.

[14] W. Shahda, “Protect your solidity smart contracts
from reentrancy attacks,” Aug 2020. [Online]. Avail-
able: https://medium.com/coinmonks/protect-your-
solidity-smart-contracts-from-reentrancy-attacks-
9972c3af7c21

[15] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu,
and I. Finocchi, “A survey of symbolic execution tech-
niques,” ACM Comput. Surv., vol. 51, no. 3, 2018.

[16] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Ho-
bor, “Finding the greedy, prodigal, and suicidal con-
tracts at scale,” Proceedings of the 34th Annual Com-
puter Security Applications Conference, 2018.

[17] J. Krupp and C. Rossow, “teether: Gnawing at ethereum
to automatically exploit smart contracts,” in 27th
USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp.
1317–1333. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity18/presentation/krupp

[18] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais,
F. Bünzli, and M. Vechev, “Securify: Practical security
analysis of smart contracts,” Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018.

[19] “Welcome to mythril’s documentation!” 2019.
[Online]. Available: https://mythril-classic.readthedocs.
io/en/master/

[20] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and
B. Roscoe, “Reguard,” Proceedings of the 40th Interna-
tional Conference on Software Engineering: Compan-
ion Proceeedings, 2018.

[21] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and
M. Vechev, “Learning to fuzz from symbolic execution
with application to smart contracts,” Proceedings of the
2019 ACM SIGSAC Conference on Computer and Com-
munications Security, 2019.

[22] V. Wüstholz and M. Christakis, “Harvey: a greybox
fuzzer for smart contracts,” Proceedings of the 28th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, 2020.

[23] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus:
Analyzing safety of smart contracts,” Proceedings 2018
Network and Distributed System Security Symposium,
2018.

[24] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy,
R. Takhaviev, E. Marchenko, and Y. Alexandrov,
“Smartcheck,” Proceedings of the 1st International

Workshop on Emerging Trends in Software Engineering
for Blockchain, 2018.

[25] S. Grossman, I. Abraham, G. Golan-Gueta,
Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar,
“Online detection of effectively callback free objects
with applications to smart contracts,” Proceedings
of the ACM on Programming Languages, vol. 2, no.
POPL, p. 1–28, 2018.

[26] ConsenSys, “Known attacks.” [Online]. Avail-
able: https://consensys.github.io/smart-contract-best-
practices/known attacks/

[27] OpenZeppelin, “Reentrancyguard,” Feb 2021.
[Online]. Available: https://github.com/OpenZeppelin/
openzeppelin-contracts/blob/master/contracts/security/
ReentrancyGuard.sol

[28] “Vyper documentation.” [Online]. Available: https:
//vyper.readthedocs.io/en/latest/index.html

[29] M. Coblenz, “Obsidian: A safer blockchain pro-
gramming language,” 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering Companion
(ICSE-C), 2017.

[30] A. Tyurin, I. Tyuluandin, V. Maltsev, I. Kirilenko, and
D. Berezun, “Overview of the languages for safe smart
contract programming,” Proceedings of the Institute for
System Programming of the RAS, vol. 31, pp. 157–176,
09 2019.

[31] G. Bessler, J. Cordova, S. Cullen-Baratloo, S. Dissem,
E. Lu, S. Devin, I. Abughararh, and L. Bang, “Metri-
nome: Path complexity predicts symbolic execution
path explosion,” 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion), 2021.

[32] A. Alkhalifah, A. Ng, P. A. Watters, and A. S. M.
Kayes, “A mechanism to detect and prevent ethereum
blockchain smart contract reentrancy attacks,” Frontiers
in Computer Science, vol. 3, p. 1, 2021. [Online].
Available: https://www.frontiersin.org/article/10.3389/
fcomp.2021.598780

[33] N. El Coudi El Amrani, “Smarttool: Source
code,” 2021. [Online]. Available: https://github.com/
NafieAmrani/SmartTool

[34] “Remix ide.” [Online]. Available: https://remix.
ethereum.org/

[35] ChainSecurity, “Chainsecurity/constantinople-
reentrancy.” [Online]. Available: https:
//github.com/ChainSecurity/constantinople-reentrancy

[36] T. Suite, “Ganache: Overview: Documentation.”
[Online]. Available: https://www.trufflesuite.com/docs/
ganache/overview

10

https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://medium.com/coinmonks/protect-your-solidity-smart-contracts-from-reentrancy-attacks-9972c3af7c21
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://mythril-classic.readthedocs.io/en/master/
https://mythril-classic.readthedocs.io/en/master/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol
https://vyper.readthedocs.io/en/latest/index.html
https://vyper.readthedocs.io/en/latest/index.html
https://www.frontiersin.org/article/10.3389/fcomp.2021.598780
https://www.frontiersin.org/article/10.3389/fcomp.2021.598780
https://github.com/NafieAmrani/SmartTool
https://github.com/NafieAmrani/SmartTool
https://remix.ethereum.org/
https://remix.ethereum.org/
https://github.com/ChainSecurity/constantinople-reentrancy
https://github.com/ChainSecurity/constantinople-reentrancy
https://www.trufflesuite.com/docs/ganache/overview
https://www.trufflesuite.com/docs/ganache/overview

	Introduction
	Background
	Decentralized finance systems
	Smart contracts
	Reentrancy attacks

	Methodology
	Related work and their limitations
	Existing detection tools
	Off-chain tools
	On-chain tools

	Preventive methods
	Limitations

	The SmartTool solution
	Workflow of SmartTool

	Proof of concept of SmartTool
	The testing setup
	Single Function reentrancy case
	Stage 1:
	Stage 2:
	Stage 3:
	Stage 1:
	Stage 2:
	Stage 3:

	Cross Function reentrancy case
	Stage 1:
	Stage 2:
	Stage 3:
	Stage 1:
	Stage 2:
	Stage 3:

	Constantinople reentrancy case
	Stage 1:
	Stage 2:
	Stage 3:
	Stage 1:
	Stage 2:
	Stage 3:

	Discussion
	Responsible Research
	Conclusions and Future Work

