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STELLINGEN
BEHORENDE BIJ HET PROEFSCHRIFT
COMPUTER SIMULATIONS OF COLLOIDAL SUSPENSIONS
USING AN IMPROVED LATTICE-BOLTZMANN SCHEME

VAN M.W. HEEMELS

i. Geluid kan, op korte tijden, een aanzienlijk oscillatorisch effect heb-
ben op de collectieve dynamica van colloidale deeltjes in evenwicht,
echter, gemiddeld genomen is de invioed nul.

ii. Colloidale deeltjes in een suspensie hebben een extra geleidend ef-
fect op de voortplantingssnelheid van geluidsgolven door die sus-
pensie.

ili. De sterke athankelijkheid van de lengteschaal van de viscositeit in
verhouding tot de grootte van de colloidale deeltjes suggereert dat
de viscositeit in een zeer beperkte geometry, bijvoorbeeld een dunne
cilinder, lager is dan in een bulkvoorbeeld van eenzelfde suspensie.

iv. Het feit dat daders van mishandeling en seksueel geweld de scha-
devergoeding, die zij hun slachtoffers moeten betalen, kunnen ver-
halen op hun WA-verzekering, suggereert ten onrechte dat deze
bedoeld is voor schade die mensen elkaar aandoen bij geweldmis-
drijven.

v. Gezien de vaak scheve verhouding in wachttijden voor de sanitaire
voorzieningen tussen vrouwen en mannen, zou het geen overbodige
luxe zijn, als bij goed bezochte evenementen en gelegenheden het
aantal van deze voorzieningen voor vrouwen het drievoudige is van
dat voor mannen.

vi. De mobiele telefoon is de methadon van de workaholic.

vii. Het rijden van een scheve schaats kan het best voorkomen worden
door een goed passende schoen.

viii. Stellingen kun je schrijven na een flink aantal wijntjes, een proef-
schrift helaas niet.

ix. Ieder mens draagt op elk moment de uitdrukking op zijn gezicht
van wat hij op dat moment voelt, denkt en is.

x. Anders denken zorgt ervoor dat je uiteindelijk anders gaat zijn.




il.

iii.

v.

vi.

vii.

Viii.

X.

PROPOSITIONS

. Sound may have, on short times, a large oscillating effect on the

dynamics of colloidal particles in equilibrium, however, on average
the effect is zero.

Colloidal particles in a suspension have an additional conducting
effect on the speed of sound propagating through the suspension.

The strong dependence on the spatial length scales of the viscos-
ity in relation to the size of the colloidal particles indicates that
a colloidal suspension may have a somewhat lower viscosity in a
confined geometry, for example a thin tube, than in a bulk sample
of the same suspension.

The fact that offenders of mistreatment and sexual violation may
claim the damages they have to pay their victims, from their in-
demnity insurance, wrongly suggests that this insurance is meant
for damage from people injuring each other.

. Because of the often unbalanced waiting times for sanitary utili-

ties between women and men, it would not be luxury if, at busy
events and occasions, the amount of these utilities for women is
the threefold of that of men.

The mobile telephone is the methadon of the workaholic.

Riding a crooked skate can be best prevented by a good fitting
shoe.

You may write propositions after lots of wine, a PhD thesis unfor-
tunately not.

Every person bears the expression on his face at every moment of
what he feels, thinks and is.

. Start thinking differently eventually results in being differently.



/\r—} ~
7 AR A

Jebn J'ile"i 7}4(@

TRy
COMPUTER SIMULATIONS
OF COLLOIDAL SUSPENSIONS

USING AN IMPROVED
LATTICE-BOLTZMANN SCHEME

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K. F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,
door het College voor Promoties aangewezen,
op maandag 13 december 1999 te 10:30 uur
door

Marleen Wilhelmina HEEMELS

natuurkundig ingenieur,
geboren te Roermond




Dit proefschrift is goedgekeurd door de promotor: Prof. dr. S. W. de Leeuw
Toegevoegd promotor: Dr. ir. A. F. Bakker

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. S.W. de Leeuw, promotor Technische Universiteit Delft
Dr. ir. A.F. Bakker, toegevoegd promotor  Technische Universiteit Delft
Prof. dr. ir. H.E.A. van den Akker Technische Universiteit Delft
Prof. dr. ir. J. Mellema Universiteit Twente

Prof. ir. C.P.J.W. van Kruijsdijk Technische Universiteit Delft
Dr. C.P. Lowe Technische Universiteit Delft
Dr. M.H.J. Hagen Unilever Research Port Sunlight,

United Kingdom

Dr. C. P. Lowe heeft als begeleider in belangrijke mate aan de
totstandkoming van het proefschrift bijgedragen.

AN\
e B @ S @S

Advanced School for Computing and Imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 47.

ISBN 90-805120-2-8
subject headings: colioids / hydrodynamic interactions / computer simulation

Cover: Some lost colloidal particles, painted by Harry Pennekamp.
Printed by: PrintPartners Ipskamp B.V., Enschede.




Echte Beeselse die hubbe angere knok,
die vechte mit eine echte Draak.
Het weijt doa as de hell,
de bliksem knettert en knalt flink
en de hagelwolke sjeure oet hun vel.
Mer, die Beeselse zin z6 sterk wie Goliath,
veur niks en nemes bang...

Allein, auch eine Beeselse wet van te veure
noejts wie der ut precies mot doon.
En wen het ens sjitterend geit,
ken se daonoa neet geweun dinke:
“Ich dot het weer net zoa wie veurige kier.”
De vleger geit neet op.

Gistere war se zékmer bienoa “total-loss”
en morge machtig, .... himmelhoch.
Det is het roadselechtige van ut leave.
Doe més namelijk neet get doon,
mer het geit der 6m weam des se bis

| en doa geit het 6m.

Astrid Heemels, “ut leave”, 1999.

To Harry,
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List of symbols

*The most important ones. When in doubt loot at context. Greek sym-
bols are at the end of the list.

Latin symbols

AX

a
Geff
b

C
Cy
ci
Cib
Cs

dimensionless amplitude

radius of the spherical colloidal particle

effective, viscosity dependent, radius of the spherical colloidal particle
number of discrete lattice velocities

the velocity autocorrelation function

a velocity correlation function to calculate the viscosity
discrete velocity vector of direction ¢ ‘

discrete velocity vector of boundary link ¢b

speed of sound in the fluid or solvent

speed of sound in the suspension

general diffusion coefficient, D = D, 4+ D,
Stokes-Einstein diffusion coefficient

short time suspension diffusion coefficient

long time suspension diffusion coefficient

collective part of the diffusion coefficient in the limit of £ — 0
single particle or self-diffusion coefficient

mobility tensor of particle ¢ and particle j

efficiency of a n-processor system

stochastic force acting on a Brownian particle

total force acting on a colloidal particle

stochastic force acting on a colloidal particle

external force acting on a colloidal particle

force acting on a boundary link of a colloidal particle
friction force acting on a Brownian particle

scalar or vector moment of inertia of a colloidal particle
effective moment of inertia of a colloidal particle
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List of symbols

current-current correlation function

interaction velocity correlation function

local momentum density of the lattice

Boltzmann’s constant

wave vector

wave vector orthogonal to the velocity direction
dimensionless wave vector, k* = ka

linearized collision operator

mass of the colloidal particle

effective mass of the colloidal particle

number of colloidal particles

number of internal nodes inside a colloidal particle
particle velocity distribution function of direction ¢

new particle velocity distribution function of direction i
particle velocity distribution function of boundary link ib
equilibrium velocity distribution of the lattice
Probability density of finding N colloidal particles in a state rV
local pressure of the fluid

colloidal particle momentum

position vector of a lattice node

position vector of the centre of the spherical colloidal particle
position vector of the internal lattice nodes of a colloidal particle
position vector of a boundary node

dynamic structure factor

speedup factor for a n-processor system

temperature

execution time for a n-processor system

total torque acting on a colloidal particle

external torque acting on a colloidal particle

frequency dependent torque acting on a colloidal particle
time

storage reduced plane index

number of storage reduced planes

flow velocity of the fluid or solvent

volume of the system

linear velocity of a colloidal particle

(one component of the) initial velocity of a colloidal particle
linear velocity of the boundary node

new linear velocity of a colloidal particle, v/ = v(¢ + 1)
Laplace transform variable

dimensionless Laplace transform variable
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Greek symbols

a - compressibility of the solvent, a = ac,;/vo
- as a subscript denotes one component of the coordinate axes

B8 ratio of the bulk viscosity to the kinematic viscosity of the solvent, 8 = vp /1o
- as a subscript denotes one component of the coordinate axes

I'o sound wave attenuation coefficient of the solvent, T'o = 410/3 + vB

Ty sound wave attenuation coefficient of the suspension

¥ (general) friction coefficient

Yr rotational friction coefficient

Ve translational friction coefficient

yirt  internal fluid contribution to the rotational friction coefficient

A collision operator of the lattice nodes

) Dirac delta-function

¢ relative volume fraction occupied by small spheres compared to the large spheres

o solvent viscosity

nB bulk viscosity of the solvent

ne(¢) bulk viscosity of the suspension

un short time suspension viscosity

nfi, long time suspension viscosity

A eigenvalue of the collision operator £, related to the viscosity

Ap eigenvalue of the collision operator £, related to the bulk viscosity

Vo kinematic viscosity of the solvent

VB kinematic bulk viscosity of the solvent

vg kinematic suspension viscosity

vy  kinematic bulk viscosity of the suspension

II local momentum flux density of the lattice

p local density of the lattice

Po density of the solvent

Pé suspension density

r* ratio of the density of the solvent to the density of the colloidal particles

B Brownian time, 7g = m/y

TH hydrodynamical time, 75 ~ % ~TB

TP Brownian time, 7p = a?/Do

Ts dimensionless sonic time scale, 7, = tcg/a

T dimensionless viscous time scale, 7, = tvp/ a?

¢ volume fraction of the suspension

Q frequency of an applied external field

Qr dimensionless frequency of an applied external field, 2* = Qa/v

Qo (constant) amplitude of the external field

Q(rN) Smoluchowski operator

w angular velocity of a colloidal particle

w new angular velocity of a colloidal particle, w’ = w(t + 1)







1 Introduction to colloidal particle
dynamics

1.1 Scope of the research

Suspensions of colloidal particles are ubiquitous in everyday life. Systems ranging
from in vitro biological complexes, such as viruses, proteins, micelles and blood cells,
to the latex pigments in water based paints belong to this class of particles. The
fact that the sky appears blue can be regarded as consequence of the atmosphere
being colloidal. Apart from aesthetics, colloids are also important in many industrial
processes. Take for example the inks used in ball point pens or in high-speed printing
presses. Each suspension owes its particular properties to its colloidal character.
The characteristics of a suspension strongly depend on the sizes and types of the
suspended particles. These properties are relatively straightforward to modify, thus
the behaviour of a suspension can be “tuned” to suit a given application. So what
is a colloidal suspension? A working definition might be as follows. A colloidal
suspension consists of particles which are by molecular standards large (the colloidal
particles) dispersed in a solvent. Colloidal particles are still, however, small enough
to be influenced by the molecular nature of the solvent. One type of particle which
fits into this category would be a grain of pollen. This can be considered as the
first colloidal suspension to be studied experimentally. In 1828 the botanist Robert
Brown observed pollen grains dispersed in water under a microscope [1, 2]. He noted
that they displayed an erratic, jiggling motion. We now know that this is due to the
effects of the rapid collisions the particles undergo with the (unseen) water molecules.
It must be remembered, however, that even by the turn of the nineteenth century
the atomic theory of matter was not universally accepted. It was in this context that
Einstein turned his attention to “Brownian” motion [3, 4]. He showed theoretically
that the motion of the suspended particles could be quantitatively understood in
terms of a molecular description of the solvent.

Most colloidal suspensions encountered in practice, for instance the functional flu-
ids described above, are rather complicated. They generally contain a polydisperse
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14 Chapter 1. Introduction to colloidal particle dynamics

collection of colloidal particles and additives. Simple “model” colloidal systems,
for which the particle characteristics (shape, composition, size and size distribu-
tion) are well defined, provide a much more convenient basis for understanding the
fundamental processes governing the behaviour of suspensions. Well characterized
suspensions are now routinely synthesized and studied experimentally. Computer
simulations provide a useful complement to these experimental studies. Using mod-
ern computational techniques, it is possible to simulate relatively simple colloidal
suspensions to a high degree of accuracy. However, this is very computationally
intensive even on state-of-the-art highly parallel computer systems. Nonetheless,
relatively simple systems of the type often studied experimentally, can be simulated
in a realistic manner. This serves as a useful aid to understand the fundamentals
governing the behaviour of suspensions and for testing theories.

There is a surprising analogy between the equilibrium behavior of colloidal dis-
persions and that of simple atomic fluids [5]. The static or equilibrium properties
of these systems can be derived. from statistical mechanics in much the same way.
This stands in stark contrast to the dynamic properties. From the dynamical point
of view, the large size difference between the colloidal particles and the solvent
molecules can lead to complex dynamical fluid behaviour. The dynamics of the col-
loidal particles are, for instance, characterized by processes occurring over a vast
range of time scales, from picoseconds to seconds. Understanding the dynamics of
the colloidal particles in suspensions implies understanding hydrodynamics in the
solvent. That is, the flow fields induced by the particles as they move. From a
practical point of view, the most important properties of suspensions are arguably
those of dynamic origin. One notable example is the viscosity. This determines the
ability of a suspension to flow. Furthermore, suspension viscosities strongly depend
on the suspension’s structure and can deviate substantially from that of the solvent
in which the particles are dispersed. Mass transport in suspensions is characterized
by the diffusion of the suspended particles as a consequence of Brownian motion.
This is perhaps the process most extensively studied experimentally. If one is inter-
ested in understanding the fundamental processes occurring in colloidal suspensions,
quite apart from intrinsic interest, mass transport studies form a vital link between
computer simulations and experiment.

The main objectives of this research are twofold. Although it is feasible to study
simple colloidal systems by computer simulation, there is still considerable scope
for improving existing techniques. Improved techniques make it practical to study
more realistic systems with existing computational resources. Part of this thesis is
therefore concerned with algorithmic improvements. Specifically, we consider a rel-
atively recent technique for simulating suspensions, the lattice-Boltzmann equation.
The lattice-Boltzmann algorithm is in principle ideally suited to modern high perfor-
mance computers in that it is intrinsically parallel. This means that one calculation
can be subdivided into a number of sub-processes which can be assigned to separate
processing elements without loss of generality or efficiency. The lattice-Boltzmann
method nonetheless has its drawbacks. Notably it uses a lot of computer memory.
For example, in a typical simulation a parallel processing element may need from
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hundreds of Megabytes up to Gigabytes. To alleviate this problem we develop a
novel storage reduction scheme, which saves more than 75% of the memory used in
“traditional” lattice-Boltzmann simulations. The lattice-Boltzmann technique itself
simulates the solvent in which colloidal particles are dispersed. To simulate suspen-
sions, the colloidal particles themselves need to be incorporated. While considerable
progress has been made in this area, an accurate and robust method for simulating
impervious colloidal particles with the same density as the fluid is still lacking. We
address this problem and describe a means of doing so.

The second objective we have is to apply these improved algorithms to try to
further our understanding of suspensions. An interesting question is, under what
conditions can general theories of the liquid state describe suspensions? We investi-
gate this problem by studying the viscosity of suspensions as a function of the length
scale on which one views them. Of course, for a simple liquid (on a macroscopic
length scale) the viscosity is just a number. On what length scale is this true for a
suspension? Having developed a novel technique for calculating the viscosity of sus-
pensions, we apply the method to a more complex suspension, a binary mixture of
colloidal particles of different sizes. This system is known experimentally to display
very interesting rheological properties. Specifically, the introduction of a relatively
low density of small colloidal particles can significantly reduce the viscosity of a sus-
pension of larger particles. As one is often interested in tuning the viscous properties
of suspensions, this effect is potentially extremely useful.

One respect in which we might expect suspensions to differ fundamentally from
simple fluids is the nature of the interactions between the particles. In contrast to
the inter-particle interactions in a simple fluid, the hydrodynamic interactions be-
tween particles in a suspension are time-dependent. The time regime during which
these interactions propagate can now be probed experimentally. These experimental
studies have stimulated interest in the role sound waves play. The lattice-Boltzmann
method is ideally suited to examining this question because it models a compress-
ible fluid. That is, sound propagates through the fluid in a realistic manner. By
carefully studying the collective dynamics of a simple model suspension, our aim is
to determine exactly what role sound does play.

1.2 The dilute Iimit

Because colloidal particles are large by molecular standards, most dynamical treat-
ments make the simplifying assumption that the dynamics of the solvent, in which
the particles are dispersed can be described at the continuum level. The “lumpiness”
of the solvent, which is necessary to explain the random motion of the particles, is
introduced in an effective way by making the equations of motion of the colloidal
particles stochastic. Armed with such a view, it is possible to make considerable
progress with the dilute limit. At the beginning of the century, Einstein considered
the forces acting on the Brownian particles in a dilute suspension maintained in a
dynamic equilibrium by some external field. These, he argued, can be split into two
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components. The first is a hydrodynamic friction force, proportional to the drift
velocity v of the Brownian particles. This, continuum theory predicts, will be given
by Stokes’ Law, F = —yv. For spherical particles of radius a the friction coefficient
7 is given by v = 6mnga, with 7o the fluid viscosity. The second force is a “thermo-
dynamic” stochastic force f(t) which tries to restore the suspension to equilibrium.
At the level of the Brownian particles, this results from the apparently random col-
lisions of solvent molecules with the Brownian particle. By imposing the condition
that, for a system in dynamic equilibrium, these forces sum to zero, Einstein was
able to show that the value of the diffusion coefficient in the dilute limit, Dy, is given
by

kT

6mnoea

Dy = (1.1)
where kp is Boltzmann’s constant and T the temperature. This is known as the
Stokes-Einstein diffusion coefficient. Although Einstein’s original derivation is by no
means rigorous, it can be shown that equation 1.1 is exact, so long as the solvent can
be described as a continuum Newtonian fluid and the velocity of the fluid adjacent
to the surface of the particle equals the velocity of the particle itself (the “stick”
boundary condition). By calculating the hydrodynamic flow field around a single
large sphere, Einstein also derived the lowest order expression for the macroscopic
viscosity of a colloidal suspension [6]

ne = Mo(1 + g¢) (1.2)

This result, valid to the first order in volume fraction, represents the increase in
the suspension viscosity with respect to the solvent viscosity, due to the presence of
mutually non-interacting spherical Brownian particles.

To gain some insight into the dynamic behaviour of Brownian particles in equi-
librium we need an equation of motion. A phenomenological approach is to assume
this takes the form of a Langevin equation. This basically takes the above idea of
a random and frictional force further. The latter is assumed to be proportional to
the instantaneous particle velocity v(¢). Accordingly, the equation of motion for a
colloidal particle takes the form

md—:’igt—) = —yv(t) +£(t), (1.3)
where m the mass of the Brownian particle. The correlation functions of the ran-
dom force is assumed to be proportional to a delta function and uncorrelated with
the velocity. In order to recover the correct equilibrium properties (for instance a
Maxwellian distribution of velocities), this implies the following; the average of the
random force is zero, i.e. < f(t) >= 0, while it is delta correlated in time with
< f(t)-f(t') >= Gé(t — '), where §(t) is the Dirac delta-function and G = 3kpT7.
The equation can be solved for any statistical quantity we are interested in. One
useful quantity is the velocity autocorrelation function (VACF), C(t), defined as the
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average of the product of instantaneous velocity with the velocity at a subsequent
time ¢. The Langevin equation yields a VACF of the form:

C(t) =< va(t)va(0) >= ’-“Bm—T exp (~t/75), (1.4)

where the exponential decay is characterized by a “Brownian” time 7g = m/v. For
a spherical particle we therefore have

m

™8

= 1.5

67noa (1-5)
The velocity autocorrelation function gives information on the decay of velocity
fluctuations. The characteristic time g can therefore be interpreted as a typical
time scale on which velocity fluctuations relax. Furthermore, the VACF can be
related to the diffusion coefficient via the Green-Kubo relation

D:/O C(t)dt (1.6)

In equation 1.6 it is implicitly assumed that the integral converges. Substituting the
form of the VACF predicted by the Langevin equation into equation 1.6 we recover -
the Stokes-Einstein result for the diffusion coefficient. It is important to note that
although the Langevin equation predicts the correct value for the diffusion coefficient
of a spherical colloidal particle, it does not in general predict the dynamics correctly.
The VACF is in fact not exponential. The assumption of a simple proportionality
between the particle velocity and friction force is too simplistic [7]. A more gen-
eral form of the Langevin equation is needed, which-we will discuss in chapter 2.4.
Nonetheless, the main conclusion, that velocity fluctuations decay in a time scale
7p still holds. It should also be noted that the Green-Kubo relation is formal, and
always holds, even if the velocity correlation function does not decay exponentially.

1.3 Concentrated suspensions

In the previous section only isolated particles have been considered and the colloidal
suspension was described by one time scale parameter rg. This is only true in the
dilute limit. For volume fractions of about 5% and higher, the typical separation
between the surfaces of neighbouring particles becomes of the order of their diame-
ter and the interactions between the Brownian particles become important. These
inter-particle interactions are time-dependent and two different time scales can be
distinguished. First of all there are the hydrodynamic interactions. These are in-
direct interactions between the Brownian particles due to the flow of the solvent.
One measure for the hydrodynamical time 74 is determined by the time it takes for
a viscous shear-wave to propagate between two Brownian particles, i.e. 7y ~ %,
where vo(= pono) is the kinematic viscosity of the solvent and po the density. For
most systems the Brownian time 7g and the hydrodynamic time 7y are of the same
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order of magnitude, i.e. 7y & 75 ~ Ins. The second time scale characterizes the
direct (potential) interactions between the Brownian particles, for example Van der
Waals or electrostatic forces. These interactions vary on a time scale typical of the
time it takes a Brownian particle to diffuse over a distance equal to its own radius,
ie. Tp = %2; This time scale is usually referred to as the Péclet time. As an
example, for a particle of radius 0.1um suspended in water the relaxation time 7g
is about 10~°s. By comparison, for the same system the Péclet time is of the or-
der 10~3s. There is clearly a very large time scale separation between, on the one
hand, the decay time for velocity fluctuations and the propagation of hydrodynamic
interactions and, on the other, the diffusion of the Brownian particles themselves.

1.3.1 Short time transport properties

There is a substantial time regime 75,7y ~ t << 7p (typically between 10~% and
105s) during which velocity fluctuations relax and the hydrodynamic flow fields
evolve. During this period the particle coordinates only vary by distances small
compared to their size. For example, the 1nm colloidal particle discussed in the
previous section only moves about one thousandth of its radius for times ¢t ~ 75.
While velocity fluctuations decay the positions of the colloidal particles are essen-
tially fixed in space. Within the time range 75 ~ t << 7p, we can therefore study
the temporal evolution of the hydrodynamic interactions without the added compli-
cation of changes in particle configuration. These considerations allow us to define
a “short time” ¢t < 7p within which considerable theoretical progress can be made.
Exact solutions for the hydrodynamic interactions between pairs of spheres have
been obtained [8, 9]. However, hydrodynamic interactions are not pairwise additive
and many-body interactions cannot in general be neglected. By considering the hy-
drodynamical motion of one hard-sphere particle in a stationary field due to all other
particles at rest, approximate solutions have been reported by Beenakker [10] and
Beenakker and Mazur [11], These workers obtained explicit expressions for the short
time diffusion coefficient and the short time (or high frequency) viscosity up to vol-
ume fractions of 40%. Their values are in agreement with experiment [12, 13] up to
relatively high volume fractions. The agreement between experiment and computer
simulations, which solve the hydrodynamic equations numerically [14, 15], extends
to remarkably high volume fractions. There is also, to a large degree, quantitative
agreement as to the time dependence of the short time dynamics.

All the simulations described in this thesis apply to the short time scale. I
consider the wave vector dependence both for the viscosity and diffusion. Also I
consider the spatial and temporal evolution of the hydrodynamic interactions by
investigating time-dependent correlations in particle motion.

1.3.2 Long time transport properties

At times 7g << t ~ Tp, there is an additional physical process to consider, involving
the direct Brownian particle interactions (for example, in the case of hard spheres,
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due to their direct collisions). Experimentally, the “transition” from short to long
times (¢ >> 7p) results in a reduction of the diffusion coefficient from its short
time value Dy to its long time value D;. For the viscosity, it results in an increase
in the viscosity from its short time value 74 to its long time value 77{1»' The usual
interpretation of this is that a particle’s neighbours exclude a certain volume of space
to the particle and thus hinder its motion. This is reflected in the decrease in the
diffusion coefficient. The fact that the motion is restricted by its neighbours hinders
the ’flow’ of the suspension and thus increase the viscosity. Understanding the long
time regime for a suspension may be regarded as the most important goal. The
true transport coeflicients for a suspension, the viscosity or diffusion coefficient for
instance, are the long time values. However, the short time transport coefficients set
the natural time scale for processes occurring on the long time scale [16] and may
make up a significant, if not dominant, contribution to the long time values. If we
are ultimately interested in the long time properties, understanding the short time
regime is an important step along the way.

1.4 Simulation methods

One way to extract information about colloids is to perform computer simula-
tions {17]. Computer simulations are complementary to experimental and theoretical
studies. In principle they are exact, i.e. they can be carried out to any desired de-
gree of accuracy for a given model. They can be used to test assumptions made in
approximate theories. A realistic and well tested model could predict the properties
of particular suspensions before embarking on the expensive task of actually making
them. Finally, computer simulations can be used to probe the behaviour of sus-
pensions under conditions that are not easily achieved in experiments. Sometimes
computer simulations can even allow us to predict new behaviour of suspensions and
thereby act as a guide to both theoretical and experimental work.

There are several different simulation techniques that can be applied to study
colloidal particle dynamics. Each technique has its own advantages and disadvan-
tages. We begin a brief overview with the “brute force” approach; simulating the
system at the atomic level using conventional Molecular Dynamics (MD). In an
MD simulation one solves Newton’s equation of motion numerically for a system
containing several hundreds up to several millions of molecules, in discrete time
steps (see for instance references [17, 18]). For a simple fluid, a small number of
atoms (100-10000) combined with the use of periodic boundary conditions is usually
enough to approximate the behaviour of an infinite system. In the case of colloidal
suspensions, however, the number of molecules needed to represent the solvent is
prohibitively large compared to the number of colloidal particles. This means that
to simulate a small number of colloidal particles, an astronomic number of solvent
molecules are required. There are also problems in that the time scale on which
the dynamics of a colloidal particle evolves is, by molecular standards, extremely
long. Both the number of molecules and the number of time-steps over which the
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Figure 1.1: Models of a colloidal suspension. The dynamical properties of the large
particles are insensitive to the detailed motions of the background fluid. So the continuum
fluid of the top can be equally well replaced by a molecular solvent (lower left) or a lattice-
Boltzmann fluid (lower right).
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equations of motion must be integrated make MD very limited even as a means of
studying short time colloidal dynamics. Recently a new technique, Dissipative Par-
ticle Dynamics (DPD) [19, 20], has been introduced which, by combining concepts
from MD with certain features of the lattice-gas methods [21, 22, 23], attempts to
surmount these problems. Lattice gases attempt to model the solvent discretely.
The rules governing the motions of the particles are made as simple (and therefore
computationally convenient) as possible while still generating fluid-like behaviour.
Thus the particles have a discrete set of velocities which constrain their positions,
at discrete times, to be located on a lattice. The problems with lattice gases, for
the purpose of simulating suspensions, are two-fold. The method does not generate
the correct thermodynamic behaviour and, for practical purposes, operates in the
wrong range of parameters for a suspension (it does not well separate the time scales
for velocity and positional relaxation for instance). DPD is conceptually similar, it
sets out to mimic a generic fluid in as simple a way as possible, but is more MD-1ike
in that the particles move continuously in space with a continuous set of velocities.
The method, as originally proposed [19, 20], still failed to reproduce correct thermo-
dynamic behaviour but a modified version, proposed by Espanol and Warren [24]
was shown, in theory, to have a well defined canonical equilibrium state. The subse-
quent problem has been satisfying this condition in practice [25, 26]. While progress
has been made on this point [27, 28], problems remain. The essence is calculating
values for the transport coefficients of the model fluid over the full range of pa-
rameters [29, 30] and accurately incorporating colloidal particles into the schemne.
Nonetheless, apparently successful simulations of suspensions have been reported
using this method [31, 32]. In summary, DPD is a promising but as yet unproven
approach for simulating suspensions.

If we do not proceed from a discrete or molecular level, we need to turn to
theory and make some approximations. Following the pioneering work of Mori [33],
it is possible to show that the equations of motion of the colloidal particles reduce
to a generalized Langevin equation on time scales t ~ tp, given the separation
of time scales outlined above and starting from the molecular level. Further, the
generalized Langevin equation reduces to the Smoluchowski equation on time scales
t ~t>> 1 [34]. According to the Smoluchowski equation, the evolution of the
probability density P(r¥,t), the probability of finding the N particles in a state
rN =1y, ..y, is given by

N
d—P-(d’ft—’t) = QNP 1) (1.7)
and Q(r") is the Smoluchowski operator

N
QM) = Y [ksTV; + Fi(r")] - Dy (rV) - v, (1.8)
1,7=1
Here F;(r") is the total force on particle i, V; = d/0r;, and D; is the mobility ten-
sor which gives the velocity change of particle i due to a force applied to particle 7.
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The mobility tensor is therefore a quantity that can be calculated hydrodynamicaily.
Stokesian dynamics {35, 36] is based on solving the Smoluchowski equation numeri-
cally. It therefore probes the asymptotic time regime t > 7p. The mobility tensor is
calculated and substituted into a discretized form of the Smoluchowski equation to
update the particle positions. The details of the short time dynamics are essentially
subsumed into the mobility tensor. The main problem with this approach is the
complexity of calculating the instantaneous mobility tensor. Stokesian dynamics
attempts to calculate the full mobility tensor as accurately as is practical (although
still not exactly). Nonetheless, Brady and collaborators have made considerable
progress understanding the properties of colloidal suspensions of spherical particles,
in particular the rheology, using this method [36]. Because of the generally daunting
task of calculating the mobility tensor, a computationally convenient simplification
is to neglect the pair mobilities (i.e. let D;x; = 0) and set the self mobilities (i.e.
D;; terms) all equal to a constant mean-field value D;;. As the particles diffuse
independently, the Smoluchowski equation then reduces to a much simpler form,
N (N

w =kpT < Dy > V; - [V,- + %} P(N, 1) (1.9)
We will refer to this as the “simplified Smoluchowski” equation. Solving this equa-
tion numerically forms the basis of the Brownian dynamics computer simulation
technique. The problems with this approach are firstly that the mean field value the
self mobility is related to the short time diffusion coefficient [16] and must there-
fore be calculated hydrodynamically within the short time approximation (although
most workers do not follow this procedure). More seriously, it is not possible to know
a priori how good an approximation equation 1.9 is. There is evidence that often
it is often poor [37, 38, 16]. Because both Stokesian dynamics and Brownian dy-
namics operate on the time scale where Brownian motion of the particles dominates
(~ 1ms), long after the regime where the hydrodynamic interactions between the
Brownian particles develop and velocities decay, they cannot give any information
about these processes.

In this research the solvent is modelled by a lattice-Boltzmann model. This has
its origins in lattice gases. It is a essentially a “pre-averaged” lattice gas, dealing
with distributions of particles rather than individual particles. These distributions
evolve on a lattice in such a way that the behaviour of the system is governed by
the continuum equations for a compressible fluid. It can essentially be regarded as a
means of computing the time-dependent hydrodynamic interactions between parti-
cles, i.e. it probes the regime t ~ 75. Because of the pre-averaging involved in going
from a lattice gas to its Boltzmann equation, there are no spontaneous fluctuations
in the system. They can be reinstated by simulating instead a fluctuating Boltzmann
equation. This involves introducing local fluctuations in the stress. In this case one
would be solving the generalized Langevin equation governing the dynamics of the
suspension on the short time scale. The lattice-Boltzmann method could therefore
in principle be used to probe the long time regime (simply by running it for times
where the generalized Langevin equation reduces to the Smoluchowski equation used
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in Stokesian dynamics). Whether it is a practical or efficient method to do so is an
open question. There are problems. Introducing fluctuations in the way outlined
above is not a totally satisfactory way of essentially introducing thermodynamics to
the system (there is no rigorous equipartition for example). There is also the ques-
tion as to whether or not makes computational sense to use a method which resolves
8 when we have the option of integrating over this time scale by using Stokesian
dynamics. Nonetheless, neither of these objections apply on the short time scale,
for which the method has shown itself to be a very useful tool.

1.5 Outline of the thesis

The contents of this thesis can be outlined as follows. We begin, in chapter two,
by describing in more detail the basic lattice-Boltzmann model we have used for
simulating colloidal suspensions. Having considered the algorithm, in chapter three
we describe a novel implementation which both utilizes high performance computing
and introduces a new method to reduce the memory usage. Within the basic lattice-
Boltzmann method there are still some undesirable features. Notably the existence
of fluid inside and outside the colloidal particles. In chapter four we examine the
limitations of this approach and describe and test a new method to simulate truly
solid particles. With the computational and algorithmic wherewithall in place, in
chapters five and six we turn to studying the dynamics of colloidal suspensions of
hard spheres. In chapter five we calculate the suspension viscosity as a function
of both the spatial length scale one considers and the volume fraction occupied by
the colloidal particles. These results serve in the first place as a verification test
of the implemented simulation model and besides to study the spatial length scale
dependence of the viscosity. In addition, we consider the difference in viscosity
of a suspension in which all the particles are the same and a similar suspension
composed of two types of particles differing in size. We succeeded in observing the
viscosity reduction and to our knowledge this is the first time this has been achieved
in three dimensional simulations. The lattice-Boltzmann method is ideally suited
to studying the temporal evolution of hydrodynamic interactions. Accordingly, in
chapter six we study how these interactions develop and the mechanisms involved.
In particular we examine the role sound plays in propagating interactions between
the particles. Thus far the suggestion has been made that sound propagation might
play an important role but it has not been made clear yet.
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2 Description  of the lattice-
Boltzmann model

2.1 Discrete velocity models

The lattice-Boltzmann model, in historical terms at least, is closely related to lattice-
gas cellular automaton (LGCA) model fluids. Lattice gas cellular automata are
discrete velocity models introduced by Frisch, Hasslacher and Pomeau [1], with the
aim of mimicking hydrodynamic behaviour using a system as simple as possible.
As originally formulated, the lattice-gas consists of a collection of discrete particles
moving on a two-dimensional (triangular or square) lattice. The state of the model
fluid at any (discrete) time is specified by a set of Boolean variables describing
whether a particle is (1) or is not (0) located at a given lattice node with a particular
discrete velocity. Particles can only move to neighbouring lattice nodes in a limited
number of directions. There can be at most one particle at a given node with a
given velocity (the exclusion rule), consistent with the Boolean representation, and
all nodes are updated synchronously. The time evolution of the LGCA consists
of two steps (see figure 2.1). The first step is the propagation step, in which the
particles are leaving a node towards the neighbouring nodes. The second step is
the collision step, when the particles “collide” with other particles located at the
same lattice node. The collisions conserve mass and momentum and retain the
full symmetry of the lattice. At a macroscopic scale, the behaviour of the lattice
gas is very close to the incompressible Navier-Stokes equations [2, 3, 4, 5]. The
lattice-Boltzmann model is an adaption of lattice gas techniques [6, 7). It can be
considered as a “pre-averaged” version of the LGCA model fluid. This model retains
the original macroscopic adherence to the Navier-Stokes equations but has a number
of advantages. Because of the pre-averaging there are no fluctuations, the exclusion
rule (which leads to certain unphysical properties in lattice gases) can be relaxed
and there is greater freedom to specify the properties of the collision operator. The
latter is important because the rate at which the collisions relax stress is related
to the viscosity of the model fluid. The greater freedom one has in constructing
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propagation and collision step

Figure 2.1: Example of a time-step in the two dimensional FHP lattice.

the collision operator at the Boltzmann level translates into the ability to vary the
viscosity at will.

2.2 The lattice-Boltzmann equation

In the lattice-Boltzmann method, probabilities or, in lattice gas terms, average pop-
ulations, substitute for discrete particles in the particle velocity distribution function
ni(r,t). This describes the number of particles at a particular node of the lattice r,
at a time ¢, with the velocity c;, where i stands for one of the possible velocities; r
and c; are discrete, whereas n; is continuous. The hydrodynamic fields, mass density
p, momentum density j = pu (where u is the flow velocity), and momentum flux II,
are simply moments of this particle velocity distribution function n;(r,):

p = Zn,', (2.1)
= Znicg, (2.2)
I = Zn,’c,’c,‘. (23)

Cie

The lattice used in this thesis is a three dimensional projection of the four dimen-
sional Face-Centered Hyper Cubic (FCHC) lattice for which there are 18 velocities.
The vectors spanning the particle motion in one time-step for this lattice are given in
figure 2.2. A lower-dimensional model can be obtained by further projection. This
FCHC model is used because three-dimensional Bravais lattices do not have enough
symmetry to ensure that the hydrodynamic transport coefficients are isotropic.
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Figure 2.2: The 18 different velocity vectors (c;) in the lattice-Boltzmann model. The
solid lines represent velocity vectors used twice in the simulation, due to the projection
from the four dimensional Face-Centered Hyper Cubic (FCHC) lattice.
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The lattice-Boltzmann method involves an explicit solution of a discrete analogue
of the Boltzmann equation [3]. Populations evolve in (discrete) time according to
the propagation and collision rule given by

ni(r + ¢yt + 1) = ni(r, ) + Ai(r, t), (2.9)

where A; is the change in n; due to instantaneous collisions at the lattice nodes. The
post-collisional distribution n; + A; is propagated for one time-step, in the direction
c;. The collision operator A(n) depends on all the n;’s at the node represented
collectively by n(r,t); as with lattice gases, it is subject to the constraints of mass
and momentum conservation. Exact expressions for the Boltzmann collision oper-
ator have been derived for several lattice-gas models [3, 6], by making use of the
“molecular chaos” assumption (that the effect of the collision operator depends only
on the instantaneous state of a node). However, such collision operators are complex
and ill-suited to numerical simulation. A computationally more useful form for the
collision operator can be constructed by linearizing the collision operator about the
local equilibrium n®? [8], i.e.

Ai(n) = Ai(n®9) + Z Lij(n; —nS9), (2.5)

where £ is the linearized collision operator, and A;(n®?) = 0 by definition. It is not
necessary to calculate a particular C; rather it is sufficient to consider the general
principles of conservation and symmetry and then to construct the eigenvalues and
eigenvectors of £. As a first step, the correct form of the equilibrium distribution
must be established. We will give a brief outline of the procedure, for complete
derivations of the equations below, the reader is encouraged to refer to the work of
Ladd {9].

To determine the equilibrium distribution, the velocity distribution function is
split into a local equilibrium part and a non-equilibrium part

n; = n{? + n]% (2.6)

The equilibrium distribution is a collisional invariant (i.e. A;(n®?) = 0). To achieve
a constrained equilibrium distribution which will lead to the correct macroscopic
fluid dynamics at the Euler level, i.e. non-dissipative hydrodynamics, the moments
of the velocity distribution function must have the following form:

p = Y n, 2.7)
j = Z nlc;, (2.8)
o = E nlc;c; = pl, (2.9)

with p the local pressure, II°? the non-dissipative part of the momentum flux and I
the unit tensor. The equilibrium distribution can be expressed as a series expansion
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in powers of the flow velocity u,
n{? = pla§’ +a'u - ¢; + a§wu : € + af'u?, (2.10)

where tu = uu — %uzl is the traceless part of uu; equation 2.10 has the same func-
tional form as a small-u expansion of the Maxwell-Boltzmann distribution function.
If we combine equation 2.10 and equation 2.7-2.9, supplemented with a condition to
guarantee isotropy [9], then we can solve for all the coefficients in equation 2.10. The
result of this is given in table 2.1. In these coefficients we have chosen the value for

i Jol1]2]3
al [ ] L ]Z]3L
1
aY? L’_l_’i‘i
1 24 12 1 8 | 12

Table 2.1: The coefficients in the equilibrium distribution.
the speed of sound ¢? = % Since the distribution function must always be positive,
the speed of sound is bounded by the limits % <2< % The intermediate value
¢? = 7 maximizes the stability with respect to variations in flow velocity and is used
for all the work reported in this thesis.

Having constructed the local equilibrium distribution, we come to the relaxation
of the non-equilibrium component of the local distribution. The collision operator
conserves mass and momentum but relaxes the non-equilibrium part of the velocity
distribution function, i.e. n;“?. The requirements on the eigenvalue equations of the
collision operator concern only conservation of mass and momentum and isotropic
relaxation of the stress tensor, where the eigenvalues A and Ap of the collision
operator are related to the shear and bulk viscosities according

no=—%po(2//\+1) (2.11)

and the bulk viscosity is constant and not explicitly calculated in the lattice-Boltzmann
method. The momentum flux density is then updated according to

e — =g, 1 .
M = Mo + (14+ N (Mag — o) + 314 A8) (Mg = Mi)das,  (2:12)

The post-collision distribution, n; + A;(n), is determined by the requirement that
the new populations are consistent with (2.1-2.3), so that

mi+ Auln) = a3p+ 0 jucia + 0§ MsTati + af (M, —3pcd)  (2.13)

The procedure to update the lattice-Boltzmann equation therefore consists of the
following steps. First one calculates the velocity moments p, j, IT and the equilibrinm
momentum flux IT1¢?. From this the post-collision distribution can be calculated.
This is then propagated according to equation 2.4. Following the usual Chapman-
Enskog expansion procedure, the macroscopic behaviour of the system can be shown
be governed by the Navier-Stokes equations for an isothermal, compressible fluid.
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In this thesis we will be concerned with colloidal particles in equilibrium. In this
case a further convenient simplification of the lattice-Boltzmann scheme can be uti-
lized. The relative magnitude of inertial forces compared to viscous forces acting on
an object in a fluid flow can be characterized by the Reynolds number Re = u*[* /v,
where u* is a characteristic velocity and [* a characteristic length. Taking u* to be a
typical thermal velocity (several 10m/s) and * to be a particle diameter (typically
1pm), we obtain the estimate Re < 1073 for a colloidal particle. Inertial forces are
therefore negligible and the flow around the particles can be modelled within the
“inertialess” creeping-flow regime. That is the convective term in the Navier-Stokes
equations can be neglected (V - u = 0). In lattice-Boltzmann simulations, it is the
non-linear term in the equilibrium distribution that gives rise, at the macroscopic
level, to the convective term. For creeping flow this can therefore be neglected,
leading directly to a simpler equilibrium distribution.

T =ajp+ali-c. (2.14)

n
Finally, a further significant simplification of the algorithm occurs for the specific
fluid viscosity vy = é. This corresponds with a relaxation to equilibrium in one
time-step. This being the case, the output state of the collision operator does not
depend on the non-equilibrium part of the distribution. This allows us to use a
simplified collision operator

n; + Ai(n) = ag'p + ai'j - ci, (2.15)

Formulated in these terms, the method can be implemented using less than half the
number of floating-point operations required to solve equation 2.13. Furthermore,
as we show in Chapter 3, by carefully constructing the collision operator a saving of
more than a factor of four can be made in the amount of memory required for a given
system size. Because of this convenient simplification, the majority of the simulations
reported in this thesis are carried out using v = 1/6 for the solvent. Although this
may seem restrictive, in the creeping flow limit, and for time and length scales where
the fluid behaves incompressibly, the viscosity becomes a relatively trivial parameter.
In Chapter 6 however, where we study compressibility effects, this fixed choice of
viscosity does turn out to be too restrictive and we use the full form of the collision
operator so that we can vary the viscosity.

2.3 Integrating colloidal particles into the model
fluid

In the lattice-Boltzmann model, colloidal particles are defined by a boundary surface
(any size or shape), which cuts some of the links between lattice nodes. The fluid
particle populations moving along these links interact with the solid surface via a
perturbation assumed to act at a point halfway along the links. Thus a discrete
representation of the particle surface is obtained, which becomes more precise as the
particle, in terms of lattice units, gets larger (see figure 2.3).
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Figure 2.3: The discrete particle surface representation in a lattice-Boltzmann simulation
for a sphere of radius 2.5 lattice spacings. The velocities along links cutting the surface are
indicated by arrows. The locations of the boundary nodes are shown by squares and the
lattice nodes by circles.

The motion of a colloidal particle is determined by forces and torques acting on
it. These forces can be split into external, or non-hydrodynamic forces, and hydro-
dynamic forces. Non-hydrodynamic forces, for example attraction and/or repulsion
between the particles due to an inter-particle potential, can be calculated separately,
using standard techniques, and incorporated straightforwardly into the equations of
motion. In contrast, the hydrodynamic forces are calculated from the velocity dis-
tributions themselves. This is essential because they characterize the interactions
due to the flow fields induced in the solvent by the colloidal particles. These inter-
actions are computed in the model by introducing additional update rules for the
boundary-nodes. These update rules match the velocity of the Boltzmann fluid to
the velocity of the solid particle surface, i.e. they impose the no-slip condition at
the particle surface.

The implementation of the moving boundary rules is shown in figure 2.4. At each
boundary node there are two incoming population densities n; and ns, corresponding
to velocities €¢; and ¢ (where ¢; = —c;). The location of the boundary is taken
to be halfway between two lattice nodes. One of these lattice nodes is inside the
solid object and the other outside and they are connected via a boundary link. We
label the link which goes from inside to outside as ib and its partner as —ib. For a
stationary boundary the populations are simply reflected back in the direction they
came from [3, 10]. If the boundary is moving, the bounce-back rule is still applied,
but some of the particles moving in the same direction as the solid object are allowed
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Figure 2.4: Nlustration of the moving boundary rule. The solid circles represent the lattice
nodes, the open circle the boundary node with its associated velocity vector. (a) Shows
the densities n; and na propagating in the direction of the boundary node. (b) Shows
the intermediate step, reversing the densities at the location of the boundary node. (c)
The reversed densities together with the projection of the boundary-velocity on the link
of concern, propagate to the lattice nodes in reversed direction they came from. Hereafter
the lattice nodes are updated.

to ”leak”through in proportion to the boundary velocity. For the lattice-Boltzmann
model these rules take the form

n_ip(Tp) nip(rs) — 4no(p)ve - Cip (2.16)
nip(rs) = n_is(rs) + 4no(p)ve - €iv

where ng(p) is the equilibrium velocity distribution, v, is the local boundary velocity
and ry, is the vector connecting the center of mass of the object to the midpoint of
the boundary link. These results are ensemble averages of earlier boundary node
collision rules for lattice gases [11, 12]. The local boundary velocity is given by

Vp =V +w XTI, (2.17)

with v and w the linear and angular velocities respectively of the colloidal particle.
The boundary node interactions, equations 2.16, conserve neither linear or angular
momentum. Forces and torques must therefore act on the particle such that the
correct conservation laws are recovered. The force on each individual boundary
link, F;s(rs), is related to the change of momentum and, assuming a time-step of
unity, is given by

Fio(rs) = 2[nip(rs) — n_ip(rs) — 4no(p)vs - €iv)cis (2.18)

The total force and torque acting on the particle are obtained by summing these
link forces, giving

F = ) Fi(r) (2.19)
ib

T = ZF;b(rb)xrb.
ib
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The simplest way of updating the particle velocities is to use an Eulerian discretiza-
tion of the equations of motion:

v = v(t+1)=v({t)+F/m (2.20)
w = wi+l)=w(t)+T/I

where m and I are the mass and moment of inertia of the particle, respectively.
However using this scheme one matches the velocity of the fluid at the boundary
with the ’old’ velocity of the particle, rather than with the new’ velocity. This makes
the equations of motion inherently unstable. In order to suppress this instability, the
density of the particle must be several times greater than the density of the fluid [9].
This is unrealistic because most colloidal suspensions have a density ratio of nearly
unity (otherwise the particles would settle or float under the influence of gravity).
An alternative approach, described by Lowe et al. [13], is to match the ’new’
velocity of the particle with the velocity at the boundary. The update rule is made
self-consistent. To do so we express equation 2.17 in terms of the ’new’ object
velocity:
vp=v +w xrp, (2.21)

where v/ and w’ indicate the 'new’ object velocities. Substituting this modified
expression for v, in equations 2.18 - 2.20 and solving the a-component of the linear
and angular particle velocity results in

mvg (t) + 23 [nip(rs) — n_ip(rs)lciva

r_ 2.22

@ m+ 8ng(p) Y, CibaCiba ( )

Wl = Twg + 23, [nip(re) — n_is(re)] (rs X €ib)a (2.23)
I+ 8no(p) Y_;p(re X Cib)a (Tb X €ib)a

Using this rule the new fluid velocity at the boundary implies a force and torque
on the object which, when incorporated into the equations of motion of the object,
imply the same new velocity for the particle. Lowe et al. [13] reported that using
this method it was possible to choose the density ratio freely - the algorithm is un-
conditionally stable. It is this approach with a density ratio of unity that is used in
this thesis. Finally, it should be noted that using either of the above methods for
integrating the equations of motion, imposing the stick boundary condition requires
the presence of fluid both inside and outside the colloidal particles. The particles
are essentially hollow spheres filled with fluid. This interior fluid is computationally
convenient, since it avoids the necessity of creating and destroying fluid as the parti-
cle moves. However, it is an artefact. Real colloidal particles are not generally filled
with fluid, they are impervious solid objects. In simulations of colloidal suspensions
reported thus far, using this method, the presence of the internal fluid has not been
reported as problematic. In Chapter 4 we consider to what extent this is justified,
and suggest a modified approach negating any effects of the internal fluid.
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2.4 Calculating transport coefficients

This thesis is concerned with hydrodynamic processes near equilibrium, correspond-
ing to short times experimentally. Because matter is discrete, systems in equilib-
rium will undergo fluctuations about their equilibrium states. Fluctuations about
the equilibrium state decay on the average according to the same hydrodynamic
equations which describe the decay of the system from a non-equilibrium to the
equilibrium state. The hydrodynamic equations govern the dynamics of the long-
wavelength and low-frequency components of those fluctuations, and they determine
the behaviour of dynamic equilibrium correlation functions. The point is that inho-
mogeneities in the densities of the particles, momentum or kinetic energy must be
transported from one part of the fluid to another to achieve equilibrium. If we can
probe the decay of these inhomogeneities, we have a means of probing the transport
processes in the system. The lattice-Boltzmann method provides a method for doing
this.

Starting from Newton’s equations of motion, one can show that the dynamics of
the colloidal particles can be written in the form of a generalized Langevin equa-
tion [16, 17, 18]. Considering one component of a particle ¢ in a system of N particles
the generalized Langevin equation (in the absence of propagative processes) takes
the form

m dv; (t)
dt

= Z [: i (t — s)vi(s)ds + F;(t) + Fix(t) (2.24)

Here the terms 7;;(t) are time-dependent friction coefficients, relating the force on
particle 7 to the current and past velocity of particle j, and F;x is any external force
acting on particle 7. The term F;(t) is a stochastic force, similar to the random force
in the simple Langevin equation (1.3). It again represents the cumulative effects
of thermal collisions between the colloidal particles and solvent. In order to ensure
that the correct equilibrium properties of the system are recovered, the statistical
properties that the stochastic force must satisfy are now more complex [19], namely

<F({t)> = 0 (2.25)
<Fu)> = 0
<EOF0)> = ksTy;(t)

The “random” force is no longer delta function correlated. The generalized Langevin
equation is quite formal because we do not know the friction coefficients. However,
given an equation of motion for the solvent, they can, in principle, be calculated.
The lattice-Boltzmann model can be summarized as a means of solving the gener-
alized Langevin equation under the assumption that the dynamics of the fluid are
governed by the Navier-Stokes equations. If we solve a fluctuating Boltzmann equa-
tion [9] we solve the stochastic differential equation (equation 2.24) in its entirety.
Without fluctuations, we simply solve the dissipative equation one obtains from the
generalized Langevin equation with the random force term neglected.
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Following from the above, there are a number of ways we can extract transport
coefficients for colloidal suspensions by using the lattice-Boltzmann equation. The
most obvious is to solve the fluctuating Boltzmann equation and simply calculate
the relevant correlation function. We have already seen that the diffusion coefficient
is related to the time integral of a velocity correlation function (equation 1.6). There
are similar Green-Kubo relations relating other transport coefficients to correlation
functions. The viscosity of a pure fluid, for example, is related to the decay of
equilibrium stress fluctuations. Specifically

o0 f f
nVkpT = / <> 3 (0) > at, (2.26)

where Z‘f is the fluid stress tensor, equivalent to the momentum flux density of the
fluid (equation 2.3). Equation 2.26 can be applied to solid-fluid suspensions as well
by including both the fluid stress tensor and the solid-fluid stress Y_°, summed over
all the solid particle surfaces. By integrating the stress-stress correlation functions
the viscosity can be computed from equation 2.26.

While using a fluctuating Boltzmann equation and computing time correlation
functions is the most obvious root for calculating transport coefficients, but there
are alternatives [20]. We will discuss two of these here, in terms of the velocity auto-
correlation function (although both approaches can be generalized). It is convenient
to begin by taking the Laplace transform of equation 2.24 in the absence of external
forces

m(zd;(z) — vio) — Fi(z) = — Z:ﬁj(z)ﬁj(z), (2.27)

where z is the Laplace transform variable, and v;q is the initial velocity of particle
i. Transformed quantities are indicated with by a tilde. If we set z = 0 we find

moio + Fi(0) = 3 5:;(0)3(0), (2.28)

The N equations for the dynamics of the N particles in the system can be written
as the matrix equation ~

mug + F(0) = 5(0)3(0). (2.29)
where vy and F(0) are the vectors of initial velocities and Laplace transformed

stochastic forces respectively. Inverting the equation and taking the product with
vo we find

09(0) = vo7(0) ™ (mwo + F(0)) (2.30)

and averaging over all N particles

% ) vioi(0) = % > (3(0)7)i5 (mviovjo + vio F5(0)) (2.31)
i ij
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If we now take the average over all thermal velocities, denoted < ... >, and note
that for short-time diffusion the friction matrix v only depends on the instantaneous
positions of the particles, we find

1 .
N 21: < 'U,‘ovi N Z ,] m < Yoo > + < ’U,oFJO >) (232)

In an equilibrium system we know from thermodynamics that < vigvjo >= kpTdi;/m
and by definition we have < v;gF;(0) >= 0, hence, using the Green-Kubo relation
between the velocity autocorrelation and the diffusion coefficient, we have

_ kBT

}: < viofi(0) >= (3(0)"YYii = kpT < Di; >, (2.33)

1

By definition 4 3_;(7(0)~'):i is the average mobility < D;; >. This is known as the
generalized Einstein relation. Now suppose we take the purely dissipative system
where the fluctuating force term is zero (i.e. (< Fi(0)F;(0) >= 0)) and apply a
constant external force F;yx to particle i. We expect that the system will come to
a steady state whereby particle i has a constant velocity vix. If the magnitude of
the random force is zero but an external force acts on particle i the equation for the
velocity of particle 7 from the set of equations 2.30 reduces, at low frequency, to

5(0) = 7(0) "1 F(0) (2.34)
If we substitute for low frequency Laplace transform we find

%{i = (7(0)™ ) (2.35)
X
So, by applying a constant force to particle ¢ and calculating the steady response we
can calculate the value of the mobility for particle i. By repeating such a calculation
for each particle in the system we can calculate the average mobility and so, by
making use of the generalized Einstein equation, calculate the diffusion coefficient.
The argument outlined above shows how we can calculate the diffusion coefficient
from the purely dissipative system i.e. without the need for fluctuations. There
is another route for doing so which follows along the lines of Onsager’s regression
hypothesis. The decay of a fluctuation we impose on the dissipative system should be
the same as the decay of a spontaneous fluctuation in a real system. To see this, let
us return to the generalized Langevin equation. If we take the Laplace transformed
equations of motion for the purely dissipative system, at low frequencies we have

vo5(0) = mue¥(0) ~Lvg (2.36)

or in terms of individual particles

% Z vioti(0) = %Z(’?(O)_l)ijmviovjo- (2.37)

ij
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Suppose we now specify the properties of the initial velocities such that the equilib-
rium condition m < wvigvjo >= kpT4é;; is satisfied (denoted [...]), then we find that

Eed S G0 = %;[viomon (2.38)

i

If we calculate the quantity on the right hand side then, comparing with equa-
tion 2.33 derived for the “real” fluctuating system, then this is clearly equal to the
diffusion coefficient. This latter approach has the advantages that it allows us to
calculate the diffusion coefficient in the dissipative system without the need to aver-
age over thermal fluctuations, and without having to explicitly evaluate the mobility
on a particle by particle basis. It effectively evaluates the average mobility in one
simulation.
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3 Simulation tools and equipment

3.1 Introduction

This chapter deals with algorithmic considerations to reduce the computational costs
required to perform the lattice-Boltzmann simulations described in the subsequent
chapters. The computational cost depends on the size and number of time-steps of
the simulation system involved. Generally speaking, the size of the system deter-
mines the accuracy of the results, whereas the number of time-steps represents the
time evolution of the physical quantities. As we shall see in later chapters, these
two considerations are also, to some extent, linked. There are two main reasons why
large system sizes are generally required. One is that the many-body colloidal par-
ticle interactions are long ranged in nature, so systems containing large numbers of
colloidal particles are needed to minimize finite size effects {1, 2]. The second is that
the size of the model colloidal particles, relative to the lattice spacing, determines
the spatial resolution of the simulation. To capture hydrodynamic effects with suf-
ficient accuracy we may need to use large representations of the colloidal particles.
Again, this translates, in computational terms, into a need for a large system. The
limitations on the size of a lattice-Boltzmann simulation system are, however, closely
related to the limitations on the computer capacities. Large scale lattice-Boltzmann
simulations consist of typically several tens of thousands of colloidal particles. This
is very demanding both in computing time and in memory usage.

To solve the problem of computational costs we tried both to improve the algo-
rithm and increase the computational power. A serious disadvantage of the lattice-
Boltzmann algorithm is its memory usage. The problem space uses large amounts of
storage capacities [3] both on main memory and on disk. For large scale simulations
memory can become a serious problem. By carefully analysing the algorithm it ap-
pears that often less than 25% of the original data has to be kept in memory. This
appeared to be possible by making use of the properties of the collision operator and
by starting the simulation time-step at a different point. We shall show how this
works by analysing the algorithm steps in terms of processor operations.

During the course of the research reported here, the computational power avail-
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able increased due to continuous developments in hardware. New and faster com-
puters became available. However, the simulation of colloidal suspensions, still re-
quires large supercomputers. The current top performance is still time consuming
and many calculations of scientific and technological relevance are still impracti-
cal. Increasing hardware performance is achieved in two independent ways; by the
development of faster technology and by utilising parallelism. Whereas faster tech-
nology is used to scale up the performance of a sequential computer, parallellism
is used to bring “many hands make light work” into practice. The nature of the
lattice-Boltzmann algorithm is highly parallel and can be exploited on most com-
puter topologies. In order to optimise the performance and reduce the necessary
computing time to a minimum, the lattice-Boltzmann computer program should be
written such that the hardware capacities are fully exploited.

This chapter is organised as follows. We start with an explanation of the se-
quence of steps involved in the algorithm. In section 3.3 the efficiency of the se-
quential algorithm on a single processor will be considered. Section 3.4 will describe
a modification to the conventional algorithm that considerably reduces the demand
on computer memory. The degree of parallelisation and performance of a parallel

- computer system is discussed in section 3.5. Finally, the performance of the current
computer program is described.

3.2 Basic algorithm

As we already explained in section 2.2, the time evolution of the lattice-Boltzmann
model fluid consists of a propagation and a collision step. In practice, the prop-
agation step consists of collecting, for every node in the system, the 18 floating
point values of the distribution functions, n;, from the nearest neighbour nodes.
From this we calculate the velocity moments p, j, IT and II°?, according the equa-
tions 2.7-2.12 described in chapter 2. The collision step updates the nodes in the
system, again in terms of 18 floating point numbers, towards their new populations
according equation 2.13 from chapter 2. Both steps affect all nodes in the system
and can be performed in any random sequence, provided that for every single node,
the propagation step precedes the collision step.

On the other hand, the colloidal particles add two more steps to the basic al-
gorithm. One of these involves the update of the colloidal particle velocities
for the next time step. For the modified algorithm, without internal fluid, this will
be done according equation 4.5 and 4.6 from chapter 4 accompanied with the asso-
ciated treatment of the internal nodes. For the standard model with internal fluid
the equations 2.22 and 2.23 will be used from chapter 2. Notably, this step has to
be carried out before the moving boundary rules can be applied and affects all the
velocity distributions to and from the boundary nodes in the system. The other
step, concerning the integration of the colloidal particles, is applying the moving
boundary rules on both directions of all the boundary nodes from all colloidal
particles. After the moving boundary conditions are applied, the propagation step
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Figure 3.1: Schematic overview of the implementation of the conventional algorithm.

and collision step may update all nodes in the system towards their new state.

These four steps contain the body or inner loop of the calculational scheme.
Fig. 3.1 displays a schematic overview of this basic algorithm, containing the steps
in the right order. The calculations used in this numerical scheme are mainly float-
ing point calculations, supplied with predefined address-lists where possible, e.g.
boundary links, internal nodes, fluid nodes if desired. However, for the simulation of
colloidal suspensions we are dealing with large system sizes. The memory required
to describe the fluid state in terms of 18 floating point numbers per node can really
be prohibitively large in this conventional algorithm. Therefore we implemented an
improved storage technique, described in section 3.4.

There is one step left over from fig. 3.1 and that is dealing with the finite size
of the simulation box. This we call copy velocities to border. To simulate a
(pseudo) infinitely large system, periodic boundary conditions are used. This means
that the original problem space is surrounded by identical copies of itself. In order
to efficiently implement these periodic boundary conditions, extra layers (halos) of
nodes are added to the boundaries of the system. The values of each boundary
node is copied into a corresponding halo node, such that the nodes with directions
pointing outside the system can collide with the nodes of the opposite sides. When
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using a parallel computer (see section 3.5.1), the halos act as communication buffers
and contain information of the nodes at neighbouring processor boards.

3.3 Computer Architecture

The match between the computer architecture to be selected and the algorithm to
be used, importantly determines the performance of the simulation system. To opti-
mise this performance against costs we either can search for commercially available
computers and benchmark our algorithm, or, as an alternative, design and build a
computer ourselves, the architecture of which is tailored to the algorithm involved.
These two cases will be considered in this section.

The computational characteristics of the lattice-Boltzmann simulations are used
to choose possible candidates from the large variety of available computers. First of
all, lattice-Boltzmann simulations of colloidal suspensions require a large memory
to store all their fluid- and colloidal particle information to avoid time consuming
swapping to disk. Secondly, the operations on the data are standard Single Precision
(SP) and Double Precision (DP) floating point operations, such as add, subtract and
multiply, and integer address calculations. Because DP floating point operations
require twice as much storage as SP floating point operations, this implies a two
times smaller maximum system size. Therefore the performance of DP floating
point operations is important for the selection of the computer system. Thirdly, the
calculational scheme is memory intensive, that is only a few operations are involved
on all data. Therefore the usage of cache memory at the processor level is important
for the total performance of the simulation.

In general the choice for a RISC processor instead of a CISC processor is clearly
justified. A RISC processor is made to do only simple calculations at a high pro-
cessing rate. One of the characteristics of a RISC architecture is its load/store
mechanism, made to obtain maximum processor-memory speed. The load and store
operations are made independent of processor operations which allows for instruc-
tion pipelining. Such a processor operates merely on registers, which additionally
reduces the instruction set. Fast cache memories reduce memory excesses by holding
frequently used data and instructions close to the processor. The instructions and
data use separate buses. A (build-in) floating point processor is also required and a
high clock speed is an obvious advantage.

Furthermore there are trivial other conditions that limit the number of candidates
in our choice for a suitable computer for Lattice Boltzmann simulations. These are
the available budget to purchase, lease or rent such a computer, the maximum turn-
around-time allowed for a simulation and the local availability of such a computer
in the research group. Once such a computer is selected, the implementation of the
algorithm can still be tuned to the hardware architecture of the computer. Also
the programming language used to implement the algorithm may depend on the
efficiency of the available compilers.

We started by using the available workstations in our group and performed
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lattice-Boltzmann simulations on three RISC processor types, i.e. MIPS R4000,
R5000 and R10000. These three processors are representative of the technological
improvements in workstations over the last five years. The improvements in proces-
sor technology and thus in simulation time are clear from the results shown in figure

3.2.
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Figure 3.2: Processor speed plotted as a function of problem size for a Boltzmann fluid
(left) and for a colloidal suspension(right).

As an alternative, when both performance and costs do not meet the require-
ments, and thus the simulations can not be carried out, designing and building
a special-purpose computer can be considered. If the infrastructure locally allows
you to do so, the advantages of building your own computer are enormous. Mul-
tiple memory sections, data paths and arithmetic operators can be exploited to
use pipelined and parallel operations tailored to the algorithm involved. Also word
lengths and memory sizes can be tuned to optimize the performance and the accu-
racy of the simulation. The newest commercially available hardware components at
the chip- or board level can be used to speed up the calculations and to minimize the
cost/performance ratio. Commercially available Computer Aided Design software
packages allow efficient design, building, testing and maintenance of such a special
purpose computer. This approach has been successfully demonstrated over the last
20 years in our group. Cost/performance ratio improvements of two orders of mag-
nitude were shown for molecular dynamics, Monte Carlo Ising spin simulations and
Cellular Automata systems [4, 5, 8, 9, 10, 11]. As we can state that modern commer-
cially available super computers are good candidates for our simulations and they
are available to us, we will only consider commercially available computers during
the rest of this thesis.
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3.4 Storage Reduction

As we already mentioned, large scale lattice-Boltzmann simulations of colloidal sus-
pensions demand large amounts of computer memory. To give a feeling for the size
of numbers we are dealing with consider the following. A typical system size we
want to simulate contains for example 20000 colloidal particles, with a radius of 4.5
lattice spacings and intermediate volume fraction of 25%, we need a simulation box
of over 300 nodes which corresponds with 30 Mb nodes. Nodes consist of 18 floating
point numbers each to describe their flow state, requiring 2.2 Gb to describe just
the fluid state. The particles in this case occupy another 120 Mb storage for their
boundary links. Here the problem space requires in total about 2.3 Gb main memory
from its processor and thus it seems unavoidable that these simulations require very
expensive hardware.

However, by carefully analysing the collision operator we have found a way to
greatly reduce the demand for memory. The method is based on the properties
of the collision operator and, to our knowledge, has not been described before.
Storage reduction is particularly effective when the collision operator is described
by equation 2.15, with which most of our simulations are carried out (see chapter
2). In this case the mass p and the three components of momentum j are calculated.
Then, using only those four values, in addition to the constant values for ap and
ai, the new velocity distributions n; can be calculated, representing the new states
of the fluid sites. This makes an important storage reduction of the configuration
space possible. Storing the four intermediate data rather than the usual 18 values
of the output state leads to a storage reduction factor of 4/18, which is better
than a factor of four. Therefore, the collision step is split into two steps: A pre-
collision step where the four values of p and momentum j are calculated and a post-
collision step where the 18 new populations are computed from these four values.
A time-step now starts with the post-collision step. To update the fluid state this is
followed by the propagation step and ends with the pre-collision, where only p and
the three components of j are kept in memory. However, when (moving) boundaries
are involved, as is the case in colloidal suspensions, the interaction between fluid and
colloidal particles needs to be calculated (see 3.2). In that case, we will need some
of the 18 values of n; for the boundary nodes involved. These can only be obtained
by the post-collision operation, which would destroy the storage reduction effect. To
overcome this problem we allocate a small portion of memory where only a small
part of configuration space is stored with their 18 n; values. During a time-step we
sweep through configuration space in one direction and do all calculations plane by
plane. By chosing a plane to expand into the detailed configuration space, we still
can both use the storage reduction scheme and efficiently allow (moving) boundary
conditions in our simulations.

The data storage is organised such that the required information is efficiently
retrieved from memory. A closer look at the FCHC-lattice shows that it is convenient
to define three different sets of velocity directions: a top, a middle and a bottom set
(see fig. 3.3). Five directions are pointing up to nodes in the upper layer (the top




Figure 3.3: Top, middle and bottom set of the FCHC lattice.

settop), five directions are pointing down to the lower layer (the bottom set bot) and
the eight other directions lie in the middle plane pointing to the nodes situated in
the same plane (the middle set mid). Each site in a plane interacts with sites in the
two neighbouring planes in addition to sites in the same plane. Hence the problem
space is divided in planes each consisting of a top, bot and mid part, indexed by a
stepping variable ¢t (numbered from top to bottom). That is, the top set top(tt) of
the current plane tt interacts with the bottom set bot(t¢ — 1) of the plane ¢t — 1,
indicating the preceding plane. The bottom set bot(tt) of the current plane interacts
with the next top set top(tt + 1) to be handled, corresponding to the plane with
index tt + 1, the middle set mid(tt) with the current middle set mid(¢t). The small
portion of additional memory that is required to keep these populations amounts,
per site in a plane, to 5 locations for bot(it — 1), 5 locations for top(tt), 8 locations
for mid(tt), b locations for bot(tt) and 5 locations for top(tt + 1).

At the start of each sweep or time-step, we calculate the new velocity and angular
velocity of each colloidal particle by summing over the velocity distributions n;
concerning their boundary nodes. At this time the storage is in reduced state and
therefore this operation needs a small partial post-collision operation. Furthermore,
for each plane, we can pre-calculate a list for all three sets, i.c. toplist(tt), midlist(tt)
and botlist(tt), containing boundary node position, velocity direction and population
for that plane. These lists are then used to perform the moving boundary rules,
resulting in a preparation step that takes the effect of the boundary interactions
into account. This step 1s required before the propagation step can be performed for
all sites in the system. Figure 3.4 displays the storage reduced algorithmic procedure
in terms of high level algorithm steps.

By contrast, we need a more detailed description to deal with the separated and
independent top, mid and bot sets. To serve as a visual guide we give a schematic
overview of the data flow in figure 3.5. This illustrates the update of the planes,
utilizing the storage reduced algorithm, in a system of four planes. The steps are as
follows. Starting updating the sites in the planes, we apply the post-collision step
for the first plane, where t¢ = 0, for the following sets bot(—1), top(0), mid(0), bot(0)
and top(1). For this we are using the reduced storage information from the plane(-
1), the plane(0) and the plane(1). Due to periodic boundary conditions, plane(-1) is




48

Chapter 3. Simulation tools and equipment

Initialise problem space
(fluid nodes and hard spheres)

( copy velocities to border A)

{ipdate colloidal particle velocities)

next time-step

Figure 3.4: Schematic overview of the algorithm steps and their sequence taken in the

storage reduced algorithm.

—

C post-collision )

(" moving boundary rales )

Gropagaﬁon and pre-collision )

all planes
updated?

All time-steps
performed?




3.4. Storage Reduction

P+

4 bot-D) i bot(-1) bot(-1) bot(-1)
¥ op0) ¥
== mid©) | e P+
bot(0) N
9 top(1) ' top(1) >
?—, <= mid(1) P+
p+j
s bot(1) A
v top(2) Y top(2)
L =5 mid(2) | P+]
p+]
bot(2) >
A
top(3) ' top(3)
<= mid(3)
p+j
4 bot(-1)

49

Figure 3.5: Data flow diagram for updating the planes in the storage reduced algorithm for
a system consisting of four planes. The symbols bot(tt), mid(tt) and top(tt) represent the
independent plane sets. Adjacent planes are indexed consecutively. The planes are updated
consecutively, starting from plane(0) to plane(3) so that the course of time is from left to
right in the figure. The black arrows represent the data flow from and back to the reduced
configuration storage. The open arrows represent the moving boundary interactions and
the dashed arrows represent the propagation of data.
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equal to plane(TT-1), where TT is the total number of planes in configuration space.
Next, the pre-calculated lists, the toplist(0) and botlist(-1) are used to account for
the (moving) boundary effects in both bot(—1) and top(0) and then both bot(—1) and
top(0) are propagated, just by swapping the pointers of the bot(—1) and top(0) plane
sets. Next midlist(0) is used for performing the (moving) boundary interactions in
plane set mid(0), and then the propagation step is carried out at once by proper
addressing the velocities in mid(0) during the pre-collision operations. Thereafter,
both botlist(0) and toplist(1) are used to account for the (moving) boundary inter-
actions in both bot(0) and top(1). Both bot(0) and top(1) are now propagated, just
by swapping the pointers of the bot(0) and top(1) plane sets. From top(0), mid(0)
and bot(0) plane sets, we now apply the pre-collision step and thus overwrite the
storage reduced data with their new states for plane(0), i.c. the resulting 4 data per
site in reduced storage format.

To update the next plane a similar procedure is repeated where ¢t is incremented.
First the post-collision operations for mid(tt), bot(tt) and top(it + 1) are carried
out. Next the pre-calculated lists midlist(tt), botlist(tt) and toplist(tt+1) are used
to account for the (moving) boundary interactions. The pointers to bot(tt) and
top(tt + 1) are then swapped for the propagation step, and finally top(tt), mid(tt)
and bot(tt) are used to calculate the pre-collision step and, with that, the newly
updated plane(tt) is restored in the reduced storage space. In the last cycle, when
updating the bot(TT — 1) plane part, we replace this plane set by bot(—1) because of
periodic boundary conditions. This plane set was already taken care of in the first
cycle.

3.5 Parallelism

One primary advantage of the lattice-Boltzmann scheme is its suitability for parallel
computing. Because exotic technology is required to speed up sequential computer
architectures, parallel computer systems are the only way to speed up the calcula-
tions at modest costs. In general, when the nature of the problem to be solved allows
a decomposition of the calculations, a parallel calculational scheme will speed up the
calculations. In the lattice-Boltzmann scheme a simultaneous update or time-step
of all fluid nodes is allowed, simply just by performing the sequence of algorithm
steps for every node simultaneously. Besides, the information needed to update a
node is contained by its 18 nearest neighbouring nodes. All of them are separated by
equal distances, because of the underlying structured grid topology, and this ensures
that only local environment calculations are necessary. The simultaneous update of
the lattice nodes and the local environment characteristics are responsible for the
highly parallel and scalable nature of the lattice-Boltzmann algorithm. Further-
more, splitting the calculations up into equally sized smaller parts, corresponds to
decomposing problem space into equally sized slices to be updated. Such a domain
decomposition appears to be applicable in every extent to the lattice-Boltzmann
scheme. Since the Boltzmann-scheme has a structured grid topology, domain de-
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parallelized direction

Figure 3.6: The LPA concept; Each slice of the problem space is calculated parallel on a
separate processor.

composition into equally sized sub-parts will result in a load balanced application.
The simplest approach is a one-dimensional, or linear domain decomposition. To
start with, we chose this straightforward approach and examined the efficiency of
the parallel program on two parallel computers, detailed below.

3.5.1 Linear domain decomposition

An obvious decomposition of the problem space is to subdivide it into equally sized
slices in just one dimension. Each slice is then assigned to a separate processor,
which computes the new states of the nodes independently for each domain. As
the interaction distance of the lattice nodes is smaller than or equal to the slice
dimension, information is only required from the local processor and at most the
two neighbouring processors. Such a one-dimensional communication topology, il-
lustrated in figure 3.6, is called The Linear Processor Array (LPA). Because of the
very small interaction distance inherent in the lattice-Boltzmann algorithm this LPA
communication topology should lead to a high degree of inherent parallel scalability.

Furthermore, the parallel algorithm contains the same steps as the storage re-
duced algorithm (see figure 3.4) except that the interprocessor communication takes
place at the boundary of each slice. Here the populations from neighbouring nodes
need to be copied from adjacent domains. This implies that the halos, previously
used for periodic boundary conditions, now hold, in the parallelized direction, copies
of the boundary nodes of neighbouring domains. After updating the domains on each
processor, a synchronous communication step takes place between all neighbouring
Processors.

3.5.2 Performance results

The simulations described in this thesis were performed on two different parallel
computers. Before showing their scalability results it is useful to consider the fol-




52 Chapter 3. Simulation tools and equipment

lowing. The speedup factor is defined as follows.
S(n) =T(1)/T(n) (3.1)

With T(1) the sequential execution time on a uniprocessor and T(n) the parallel
execution time for an n-processor system. There are still a lot of current definitions
for the speedup performance of a parallel system. For example, consider the fixed-
load speedup. This includes the famous (at least in the world of parallel computing)
Amdahl’s law [12], whereby the speedup factor is upper-bounded asymptotically
by the sequential portion of the program. The idea is that the parallel portion
of the program is evenly distributed by n processors, resulting in a reduced time,
while the sequential part cannot be divided among the processors and therefore
becomes dominant. In other words the communication overhead increases faster
than the machine size and will, due to communication limits, eventually restrict the
performance even if the sequential fraction is small. One of the major shortcomings
in applying Amdahl’s law is that the fixed load prevents scalability in performance.
Although the sequential bottleneck is a serious problem in time critical-applications,
in accuracy-critical applications we wish to solve the largest problem size as possible
on a larger machine with about the same execution time as for solving a smaller
problem on a smaller machine. Therefore fixed-time speedups are a more appropriate
measure of performance [13]. In scalability analysis, one can increase the machine
size and problem size proportionally to maintain the system efficiency at an equal
level. The system efficiency for a n-processor system is defined by [14]
S(n) _ T(1)

E(n) = n nT(n)

(3.2)

Efficiency is an indication of the actual degree of scalable speedup performance. In
the ideal case, we want a workload that grows linearly with the machine size. If the
workload grows exponentially, the system is considered poorly scalable. In this case
the efficiency or speedup is restricted by exceeding memory and I/O limits. Hence,
exponential workload growth might not be feasible due to memory shortage or I/O
bounds. A parallel system can be used to solve arbitrarily large problems in a fixed
time if and only if its workload pattern is allowed to grow linearly. In practice, an
algorithm must fit within the resource constraints and is considered efficient only if it
can be cost effectively implemented. Also the match between the implementation of
the parallel algorithm and the computer architecture contributes another important
factor to the performance. Here we measured the system efficiency for two given
parallel computer systems, indicating to what degree the n processors are fully
utilized during execution.

We start by analysing the scalable parallel system efficiency, on the DEMOS [4,
5, 6] and the Cray T3E [7]. The DEMOS (DEIft MOlecular dynamics Simulator),
is a special-purpose computer that can be used for speeding up local environment
problems with a low cost/performance ratio. The Cray T3E is a large Massive Par-
allel Processing (MPP) system that could also be used for a three dimensional do-
main decomposition. Using a linear domain decomposition appears efficient enough
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Figure 3.7: The system efficiency plotted as a function of machine size for a Boltzmann
fluid (triangles) and for a Boltzmann colloid (diamonds). The left figure refers to the
DEMOS and the right figure shows the CRAY T3E performance. The dashed lines represent
fixed-load performance while the solid lines denote fixed-time performance, or scalable
performance. The figure shows that when problem size grows linear with machine size, the
performance stays still high.

throughout this research and thus a more complex decomposition has not yet been
necessary.

For both parallel systems we plotted the system efficiency, as defined above, as
a function of the number of processors. As we are interested in the communication
overhead, we kept the system sizes small in relation to the number of processors.
This corresponds to a maximum surface-to-volume ratio of the domain decompo-
sition and therefore a worst case scalability. We calculated both the run times
according to the fixed-load speedup model and the fixed-time speedup model. For
the fixed-time speedup we allow the system size to grow linearly with the number
of processors. The results are shown in figure 3.7, left for the DEMOS and right
for the CRAY T3E. The fixed-load curves are denoted by dashed lines whereas the
scaled-load curves are denoted by solid lines. For a constant workload we see that
the efficiency curves drop rapidly (curves «). The figure also shows that, for both
a lattice-Boltzmann fluid and a lattice-Boltzmann suspension, the efficiency curves
are almost flat as the workload increases linearly with the machine size (curves 3).
This means that the ratio of communication overhead and workload is very low for
lattice-Boltzmann simulations, indicating a high degree of parallel scalability . When
the problem space is not exactly divisible by the number of processor elements, in-
efficient asynchronous communication is encountered. This may account for small
fluctuations about linearity. Another consideration is that, using the storage reduc-
tion scheme, the scalability with problem size is optimized for cubic systems. The
ordered planes, see section 3.4, must be perpendicular to the direction of slicing.
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This is highly favourable for simulating cubic systems. If the system is not cubic
the performance may be degraded.

3.6 Total Progam

3.6.1 General remarks

The performance (or long term objective) of parallel computing must be assessed,
not only on the grounds of system scalability, but also on the implementation of the
parallel program. The portability of the code, the scalability of the code in prac-
tice, the program options and flexibility for future development are also important
considerations.

The lattice-Boltzmann program developed as part of this research can simulate
many kinds of complex, (dense) colloidal suspensions. The program is robust enough
that the user need not to be an expert to run the parallel code. Regarding the
portability, the code has been written entirely in ansi-C, making full use of the
concepts such as dynamic data structures and pointers. Thus a well structured
and maintainable code has been obtained. The code also provides the user with
architecture-independent software which runs on a sequential machine, a workstation
cluster, or a massively parallel system.

In practice, the numerical scheme utilizes massively parallel systems economically
and in a scalable way. One small restriction with our code is that, to minimize the
communication overhead, one colloidal particle can only occupy a maximum of two
processors. This may degrade the performance in a number of cases. There is
always a restriction, for instance, on the maximum number of processors. For large
particles this may be problematic. Another point concerns the ordered passage
through planes, utilized as part of the memory reduced algorithm. In combination
with a linear domain decomposition, this means that a cubic system is optimal.
For non-cubic systems we would expect the performance to be somewhat poorer.
In practice, this is not a major problem. It is rarely necessary to use a non-cubic
system.

At the same time the program contains a lot of flexibility and options for future
expansion. First, the measurement of any physical quantity can easily be incorpo-
rated in the program. Second, the program supports real-time visualisation, imple-
mented by a controlling program. This program has only the tasks of organising
data files for visualisation and handling the (parallel) simulation data. Because of
its limited workload, it offers a fast response for visualisation by continually check-
ing updated files. Within the framework of the code, the simulation of mixtures
of particles and particles with different sizes and shapes is also possible. The basic
structure of the algorithm is identical. We therefore expect no influence on the par-
allel efficiency if we switch to simulating these more complicated colloidal systems.
This remains , however, to be investigated.
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Figure 3.9: The computational costs spread over the different number
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3.6.2 Performance analysis

As we have detailed, the implementation of the lattice-Boltzmann scheme consists
of several separate routines (figure 3.4). The inner loop calculations concern the
update of fluid sites plane by plane. A detailed description of the calculations in a
plane are given in section 3.4. In addition, the particle coordinates and velocities
must also be updated once per time-step, along with the extra populations at the
boundary. We examined the efficiency of the program running on the Cray T3E with
the apprentice tool from CRAY RESEARCH. Apprentice is an X Window System
tool designed for CRAY T3E systems to find anomalies and inefficiencies in a parallel
program. The graphical output is shown in figure 3.8 and 3.9. To summarize, it
appears that there is almost no time (0.12%) lost for communication overhead. The
same holds for the amount of I/O time (0.04%). However, unfortunately a lot of
time (74%) is spent on loading instructions and data caches, while only a small
percentage (24%) of the total time is used for executing work instructions. This
percentage appears the same for both lattice-Boltzmann fluids and suspensions.
The same is true for the sequential program. Another point concerns the multiple
integer calculations. These are a consequence of indirect addressing via pointers.
This would be much faster using direct addressing. Unfortunately this overrides
the idea of well structured and maintainable code. The sections of code consuming
the largest proportion of the total time, including subordinate code and routines
called, are propagate_and.pre_collide and update.solids. If the time spent in the
routine propagate_and_pre_collide could be decreased by a more efficient usage of
data caches and instruction registers this could provide a considerable speed up of
the total simulation time. The routine update_solids updates the new solid velocities
by visiting the populations of the boundaries (calculated by link_momentum) and by
collecting data from neighbouring processors (collected via collect local summings).
There is no obvious way to speeding up this particular routine.

3.7 Conclusions

We have described a new improved storage technique for lattice-Boltzmann simu-
lations. This storage reduced algorithm performs strictly the same calculations as
the conventional algorithm but in a more memory efficient way. By alleviating the
problem of huge memory demand for large simulations, this method allows the max-
imum system size to increase by a factor four. Using this storage reduction method,
it is possible to simulate large scale concentrated suspensions, containing up to 1
million colloidal particles (corresponding to a storage of nearly 7 Gb instead of about
30Gb for the conventional algorithm). For the more general case, for which the fiuid
viscosity can be varied, the reduced storage technique is still useful. However, the
storage reduction will be a factor of two instead of four. This is still worthwhile.
We demonstrated the method’s suitability for parallel computing by examining the
parallel performance for the storage reduced algorithm. This showed the expected
high degree of scalability. The current computer code is extremely parallel, i.e. al-
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most no communication is involved. However, unfortunately the cache of the Cray
T3E appears to be used very inefficiently. This drawback remains to be solved by
programming in a way that fully exploits the capacities of the Cray T3E. Consider-
ing the use of Fortran is a possible option. This should alleviate the problem of the
large number of integer address calculations generated by C. Using the novel memory
algorithm imposes no further restrictions with respect to the size and shape of the
colloidal particles. It only requires a small amount of extra work to prepare the new
velocities of the colloidal particles. As we have seen, this is, in computational terms,
negligible compared to propagation and collision of the lattice-Boltzmann fluid.
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4 Simulating solid colloidal particles

4.1 Introduction

Because of the complexity of hydrodynamic interactions between the particles in
a suspension, the properties of suspensions are generally difficult to predict theo-
retically or to calculate numerically. In the hybrid lattice-Boltzmann solid particle
model the time-dependent hydrodynamic interactions and motions of the particles
emerge quite naturally from the dynamics of the model fluid. As such, it represents a
useful tool for studying suspensions numerically. In this respect it has two particular
strengths both related to the fact that the velocity fields in the fluid evolve with the
correct time dependence i¢.e. it avoids the approximation of pseudo steady states.
This means, firstly, that the technique can be used to probe the time-dependent
nature of the interactions between the particles [1, 2]. Secondly, it can be used to
study the effects of inertia on suspensions [3] (that is, particulate flows where the
Reynolds number is not negligible). The latter becomes important if, for example,
the particles are large (>> 1um) or the suspension is very far from equilibrium (a
common occurrence during the processing).

In this chapter the point we address is the following. Because the approach
outlined in section 2.3 requires fluid both inside and outside the object it cannot
be regarded a priori as representing a truly solid particle. It actually describes the
dynamics of a hollow shell, of mass m and moment of inertia I, filled with fluid. Now,
it may be that the behaviour of these two systems is broadly similar, in which case
the presence of the internal fluid is not problematic. Indeed, the method outlined
in section 2.3 (which we will subsequently refer to as the “original” method) has
been successfully applied in several studies. By investigating the influence of the
internal fluid on the dynamics of a single spherical particle undergoing periodic
rotational motion, Ladd [4] showed the following. For high values of the frequency
Q (Q >> vo/a?, where g is the kinematic viscosity of the fluid and a the particle
radius), the internal fluid makes no contribution and the particle displays behaviour
characteristic of a solid sphere with moment of inertia I. For low frequency motion
(€ << vp/a) the internal fluid contributes essentially as a rigid body and the particle
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displays behaviour characteristic of a solid particle with an effective moment of
inertia, I'*, comprising the moment of inertia of the shell and the moment of inertia
of internal fluid. For a sphere this gives

I"=I+ anoll‘,‘nt - I'ol2 (41)

Tint

Here b is the number of discrete velocities, ng the zero velocity distribution, ro the
position vector of the centre of the sphere and r;,; the position vectors of all the
Njiyn: lattice nodes inside the object. By analogy, for translational motion we would
expect a particle to behave as if it had a mass m at high frequencies, but an effective
mass m* = m + Ni,:bno at low frequencies. This is not particularly satisfactory
because the ratio of the density of the fluid to the density of a colloidal particle,
p*, plays an important role in the dynamics. It influences the inertial time scale
(the characteristic time it takes the particle to respond to changes in the velocity
of the fluid surrounding it). If one is interested in the effects of inertia it would
be preferable to get this right. Furthermore, the parameter p* does not vary much
in real suspensions. It always takes a value close to unity otherwise the particles
would separate out under the effects of gravity. If we try to simulate a neutrally
buoyant particle {p* = 1) using the original approach then at best we can choose
between setting m = 0 and having the correct low-frequency behaviour, or setting
m = Njuebno and having the correct high frequency behaviour. Our aim in this
chapter is therefore to develop and test a modified algorithm that is free of these
artefacts.

Given the above, it is unsurprising that attempts have been made to develop a
scheme for simulating colloidal particles that does not involve internal fluid [3, 5, 6].
To our knowledge, none of these methods is completely satisfactory as they do not
conserve both mass and momentum. There is also the question, do we actually want
to get rid of the internal fluid or keep it, but get rid of its contribution to the effective
particle mass and moment of inertia? Dispensing with it altogether actually creates
a new problem. That is, as the particle moves over the lattice some nodes that
were external become internal and vice versa. If the nodes inside the particle are
undefined (i.e. there is no internal fluid) we then face problems. In particular how
do we define the state of an “exposed” node i.e. a node that was inside the particle
but suddenly becomes part of the system [3]. Taking this into consideration, the
second of the two options above, keeping the internal fluid but mitigating its effects,
is probably preferable as it limits these problems. It is this approach that we pursue
here.

This chapter is organized as follows. We start by describing a modified algorithm
that should remove the effects of the internal fluid. By focusing on the motion of
an isolated sphere in a compressible fluid we compare the new method against both
the original method and theory. Finally, we conclude the chapter by studying the
effects of the internal fluid on the viscosity of a many particle system. Again we
compare the new and original algorithms against known results.



e 5 e S

4.2. Removing the effects of the internal fluid 61

4.2 Removing the effects of the internal fluid

The method we propose to minimize the effects of the internal fluid and the reasoning
behind it, proceed along the following lines. Suppose the internal fluid is at rest. In
this case it is straightforward to see that, using the original method (equation 2.19),
summed over the entire object the internal fluid contributes no nett force or torque.
Consequently it does not enter into the equations of motion. Making use of this fact
we therefore adopt a two stage process. The first stage is to impose the condition
that the internal fluid remains at rest. To this end, at the start each time step we
reset all the distribution functions inside a particle n;(r;,¢, 1) to values characteristic

of a fluid at rest 7.e.
! . Zl‘,‘ng Zz ni(r’ t)
bNint

The value of this constant ensures conservation of mass (all mass inside the particle
is equally redistributed, thus dissipating any sound propagation within the particle).
This step does not conserve linear or angular momentum. However, if the changes
in linear and angular momentum, resulting from step 1, are interpreted as inducing
an external force and torque on the particle

n; (rintv t)

(4.2)

Fy = - Z Z (ni (Tine,t) — Tli(!‘int,t)) ¢
Ty = - ZZ (n,-(r,-m,t)l - ni(rint,t)) (r—ro,) X ¢ (4.3)

and these additional forces and torques are included in equation 2.19, so that we
have

F = Y Fi(r)+Fx (4.4)
ib

T = ZFib(rb)xrb+Tx
tb

then, over a full time-step, both linear and angular momenta are conserved. Follow-
ing the same procedure described in 2.3, we then find for the o component of the
new linear and angular velocities, v/ and w’

o T mva(t) + 23 p[nis(rs) = noin(ry)]Cive (4.5)
o m+ 8ng(p) 3 CibaCiba
T’I“‘ +Iwa + 2% [nis(re) — nois(rs)] (rs X Cit)a

= 4.6
Ya I+ 8no(p) Y ;p(rs X €it)a (X5 X €ib)a (4.6)

This second step ends with updating the state of the system in the usual manner
from t — t+ At. The internal fluid adjacent to the shell of the particle will generally
not now be at rest (because of the intervening boundary collisions). However, on
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the subsequent step we will apply the first operation again. The second step can
therefore be interpreted as transferring the momentum that would, using the original
method, have been transferred into the internal fluid back to the shell - where it
belongs. In essence, we preserve Ladd’s original method for imposing the stick
boundary condition but apply a small correction preventing momentum transfer to
the interior fluid. The internal fluid thus has no linear or angular momentum and
does not contribute to the equations of motion.

If we consider a colloidal particle that is to move on the lattice, the method we
outlined above, because it keeps the internal fluid, provides a convenient point at
which to do so. This point is immediately prior to applying the first operation. The
reason for this is the following. The normal bounce back rule (step two) applies the
stick boundary condition to both the exterior and interior of the solid-fluid interface.
Thus, at this point in the algorithm, nodes adjacent to the boundary, both inside
and outside, will be set to the correct velocity. Therefore, if a particle moves and
a node originally inside the object is now outside, it will, to a good approximation,
be in the correct state. Using the method outlined above a particle moving over
the lattice can be dealt with quite simply. No costly special procedure is needed to
identify and deal with nodes that enter or exit the interior of the object. This is in
contrast to approaches which remove the internal fluid completely [3].

4.3 Tests of the method

As a test of the method outlined above we consider three different dynamic prop-
erties of colloidal systems. Our aim is to apply the original method and establish
the role of the interior fluid. Then we apply the new method for comparative pur-
poses. Specifically we have calculated the following. Firstly, we have calculated the
frequency dependent rotational friction coefficient of an isolated colloidal sphere.
This is the same problem considered by Ladd [4]. Secondly, we have calculated the
single particle velocity autocorrelation function for a colloidal sphere. In contrast to
rotation, sound propagation (related to mass conservation) influences this quantity.
Finally we consider a transport property, the viscosity of a concentrated suspension
of colloidal hard spheres. For the first two cases there is an analytic result to com-
pare with. For the third we can compare with accurate numerical values, calculated
using multipole methods [7], or theory, valid at low to intermediate volume fractions.
In all the simulations we report here, the shell mass and moment of inertia (m and
I) are set to values characteristic of a solid sphere with the same density as the
density of the fluid. Thus, if the effects of the internal fluid can be neglected, we are
simulating neutrally buoyant particles.

4.3.1 The frequency dependent rotational friction coefficient

If we consider one Fourier component of the velocity of a particle executing some
arbitrary time-dependent rotational motion, i.e. w(t) = Qocos (2t), then the fluid
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Figure 4.1: Phase lag between the external torque required to maintain an imposed
periodic angular velocity and the angular velocity itself. The results are for a sphere of
radius 4.5 lattice units

will exert a frequency dependent torque Ty (§2) on the particle with the general form
Tj (Q) = Qo"y,— (Q) (4.7)

where v,(Q) is a frequency dependent rotational friction coefficient. The time-
dependent motion of a single spherical particle can be analyzed theoretically in
considerable detail. By assuming that the dynamics of the fluid can be described by
the Navier-Stokes equations for an incompressible fluid (in the limit of zero Reynolds
number) and that a stick boundary condition applies at the solid-fluid interface, this
problem can be solved [8] analytically. For a particle suspended in a fluid of viscosity
no and density po the result for the friction coefficient =, is '

"= o
7 (827) = =7 (0) (1 3(l+\/——iﬂ_"‘)) (4.8)

where Q* = Qa?/vo, o = 10/po is the kinematic viscosity of the fluid and +,(0) =
8mnoa’ is the zero frequency rotational friction coefficient. If the spherical particle
is not solid but filled with fluid, there is an additional contribution to the friction
coefficient coming from the internal fluid vi"*(2). At low values of the reduced
frequency, Q* << 1, this contribution takes the form

int * 71‘(0) * . Q*
sty = 200 (i- ) (49)
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The first term simply represents the inertial force of the internal fluid acting as a
rigid body. Numerically, it is straightforward to calculate v, (£2). We simply impose
a cosinusoidal velocity on the particle and calculate the in phase and out of phase
components of the torque exerted on the particle by the fluid. These are then
conveniently expressed in terms of a magnitude and phase shift. The results we
obtained for the phase shift (the dominant effect at low frequencies) are plotted in
figure 4.1, along with the analytical result for a solid sphere (equation 4.8) and the
asymptotic result for a fluid filled sphere. The calculation was performed using both
the method described in chapter 2 (“with internal fluid”) and using the modified
method we outlined above (denoted “without internal fluid”, although this method
could more correctly be described as using a passive internal fluid). As figure 4.1
shows, for the simulations with the internal fluid, the inertial contribution at low
frequencies is clearly visible. Just as Ladd concluded [4] at low frequencies, the
particle behaves as a solid sphere with a moment of inertia equal to that of the
shell plus that of the equivalent volume of fluid undergoing rigid body rotation.
In contrast, using the modified method we described above, there is no additional
inertial contribution and the data follow the theoretical curve for a solid object with
a moment of inertia simply equal to the assigned moment of inertia I. Thus, from
the point of view of rotation, the method we outlined above succeeds in its objective
of removing the effects of the internal fluid.

4.3.2 The single particle velocity autocorrelation function

We now turn to translational motion, where, this time, we will consider the velocity
autocorrelation function (VACF). In a real colloidal suspension a colloidal particle
experiences rapid collisions with the solvent molecule, giving it a fluctuating ther-
mal velocity. The VACF, or C(t), is defined as an average over these fluctuations,
C(t) =< vo(0)va(t) >, where v4(t) is one component of the instantaneous thermal
velocity. In our lattice-Boltzmann model we have no spontaneous velocity fluctu-
ations. However if we impose a velocity fluctuation then, according to Onsager’s
regression hypothesis, the subsequent decay of our fluctuation will be identical to
the average thermal decay in a real system. To analyze the decay of an imposed ve-
locity fluctuation, in the same way that we defined a rotational friction coefficient, we
define a translational frequency dependent friction coefficient v;(€). :(§2) charac-
terizes the force acting on a particle undergoing simple periodic translational motion
with frequency €2. Since the function +;(2) connects the velocity to its derivative,
it can be used to define an equation of motion. In terms of Fourier components, the
velocity of the particle satisfies the equation

Fy (Q)/m

va(Q) = Tt (Q)m (4.10)

where Fy_ () is the Fourier transform of any time-dependent external forces acting
on the particle. If we consider a particle impulsively accelerated to a velocity vg at
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t =0, i.e Fy_(Q) = mug, then

va(R) 1
vo =i+ (Q)/m

(4.11)

This can be related to the Fourier transform of the “true” VACF (see chapter 2),

va(§2) _ C(w) m

w  C({t=0) kgl

c(Q) (4.12)

where T is the temperature and kp is Boltzmann’s constant. We have also used the
equipartition condition to identify C(t = 0) = kgT/m. So, if we know v,(Q2) then,
with the aid of equation 4.11, equation 4.12 and an inverse transformation, we can
calculate the velocity autocorrelation function. For a single spherical particle v, (2)
can be calculated analytically. Assuming that the motion of the fluid is described
by the compressible Navier-Stokes equations and that a stick boundary condition
applies at the solid/fluid interface, this calculation yields [9, 10]

(1+a+ %az) B - %,BZA

7(2) = 27(0)a’ FAT 90D (4.13)
with
1,
A = l14a+ ga
1
B = 148+ gﬂ
a = —ia/Q/ro
g = iaf? (4.14)

V(e =i ($v0+vp))

Here +;(0)(= 67noa) is the zero frequency translational friction coefficient, vp =
n8/po, where np is the bulk viscosity of the fluid, po the density of the fluid and c;
is the speed of sound through the fluid. The latter two quantities are associated with
the speed and rate of damping of the sound wave generated by a moving particle
respectively (see chapter 6). Comparisons have been made between theoretical and
numerical values, calculated using the lattice-Boltzmann model [4], for the VACF
of a single spherical colloidal particle. However, the comparison was made against
theory derived using the additional assumption that the fluid is incompressible (the
compressible result, equation 4.13, reduces to the incompressible result in the limit
B — 0 i.e. the speed of sound going to infinity). The lattice-Boltzmann approach
simulates a compressible fluid, sound propagates through the model fluid at a finite
speed. Although the effects of compressibility are limited to high frequencies, © ~
¢s/a [10], a comparison with the full compressible result, notably at short times, is
more appropriate.
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Figure 4.2: The normalised velocity autocorrelation function for a particle of radius 2.5
lattice spacings. For comparative purposes the theoretical result from Bedeaux and Mazur

is also shown.
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Figure 4.3: The normalised velocity autocorrelation function for a particle of radius 4.5
lattice spacings. For comparative purposes the theoretical result from Bedeaux and Mazur
is also shown. Note that the effects of the internal fluid are more pronounced whereas the
simulation using the new approach is nearer to the theoretical result.
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Numerically, we have calculated the normalized velocity autocorrelation function
along the lines outlined above (equation 4.12). Starting with a fluid at rest and a
spherical particle with a velocity vy, we allowed the system to evolve in time and
from the subsequent velocity of the particle, v(¢), we calculate the normalized veloc-
ity autocorrelation function v(t)/vo. We performed the same procedure for particles
of radius 2.5 and 4.5 lattice sites using a cubic system with periodic boundary con-
ditions applied at the faces of the simulation box. We only calculated the VACF
up until times less than the time it takes a sound wave to pass between the central
particle and its nearest periodic image. Thus, the results are free from any finite
size effects. In figure 4.2 we have plotted the normalized velocity autocorrelation
function, as a function of the viscous time 7, = tvg/a?, calculated by using the orig-
inal method and using the modified method outlined above. For the results plotted
in figure 4.2 the radius of the solid particle was 2.5 lattice sites. Also plotted in
figure 4.2 is the theoretical result for a compressible fluid, calculated by substituting
appropriate values for the transport coefficients into equation 4.13 and transforming
the frequency dependent VACF into the time domain. In lattice units, such that the
time-step density of the fluid and lattice spacing are all unity, the values of the trans-
port coefficients were v = 1/6, ¢, = 1/+/2 and vp = 1/30. In figure 4.3 we show the
same plot for data obtained using the identical fluid, but this time using a sphere of
radius 4.5 lattice sites. Examining figure 4.2 we see that the VACF calculated using
our new method (“without internal fluid”) follows the theoretical curve more closely
than does the curve calculated using the original method. With the internal fluid
present, the VACF lies initially below the theoretical curve then subsequently above
it. It displays weak oscillations about the true result. This is almost certainly an
effect of sound propagation inside the colloidal particle. To support this hypothesis,
the time it takes a sound wave to travel one particle diameter is also shown in the
plot (7, = ¢;/a). As we can see, it corresponds to an artificial maximum in the
VACF. Turning to the plot for the sphere of radius 4.5 lattice units (figure 4.3),
the oscillations about the correct result for the simulation with internal fluid are
now, compared to the case of radius 2.5, more pronounced. Again the first artificial
maximum occurs at a time commensurate with a sound wave travelling one diameter
through the fluid (7;) - consistent with our remark above, that these oscillations are
an artefact of sound propagation back and forth through the internal fluid. Given
the fact that we are using a bigger representation of the sphere we should get a more
accurate answer. The spatial resolution of the simulation has been increased. How-
ever, the artificial oscillations we observe are more pronounced. At short times we
are further away from the true result. The reason for this is that, by moving from a
sphere of radius 2.5 to 4.5, we have, in dimensionless terms decreased the compress-
ibility. Sound waves are dissipated proportionately more slowly. In contrast, the
simulation in which we have attempted to remove the effects of the internal fluid, on
going from a radius of 2.5 to 4.5 just gives a result nearer to the theoretical curve.
This is the behaviour we would expect for a truly solid particle. On the whole, the
agreement between the theoretical result and the simulations with the effects of the
internal fluid removed is very good. Particularly so given the extremely rapid initial
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Figure 4.4: The normalised velocity autocorrelation function at long times, calculated
using a particle of radius 2.5 lattice spacings. The long time effects of the internal fluid are
clearly visible as the simulation results “with internal fluid” follow the theoretical curve
for a particle with twice the density of the fluid. By contrast, the results obtained using
the modified method described here follow the theoretical result for a neutrally buoyant
particle

decay of the function relative to one time step. Turning to longer times, after the
oscillations induced by the internal fluid have died away, figures 4.2 and 4.3 suggest
that either method is adequate. However, on closer examination we find this is not
true. In figure 4.4 we have plotted, in log-log form, the decay of the VACF at longer
times for a particle of radius 2.5. It is clear that, with the internal fluid present, the
results follow the theoretical curve for a particle with mass ratio p* = 0.5. Again,
as with rotation, the internal fluid is contributing, at low frequencies (or in this case
long times), a rigid body inertial term to the equations of motion. In contrast, using
the approach we outlined above, the results follow the (correct) curve for a neutrally
buoyant particle. Again our method seems to successfully reproduce the dynamics
of a solid particle.

4.3.3 The viscosity of a concentrated suspension

Whereas for generalized rotational and translational motion, considered above, the
internal fluid causes only a relatively minor perturbation to the dynamics of the
particle, we now turn to what may be a more serious problem: The influence this
may, in turn, have on the transport coefficients. Specifically, we consider the viscos-
ity of a concentrated suspension. There are various ways to calculate this quantity.
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Figure 4.5: Log-linear plot of the correlation function C.(t) as a function of time. The
data refer to a simulation of a system of 1956 spheres of nominal radius 2.5 lattice units,
with a volume fraction of 25%. Note that the simulations with and without internal fluid
give different rates of decay. In addition, the initial transients are less pronounced using
the novel algorithm we describe here. The reduced wave vector (ka) was equal to 0.2.

Probably the most convenient way is by studying the decay of an initial transverse
sinusoidal velocity perturbation [11] viz(0) = sin(kryy), where v;;(0) is the x com-
ponent of the velocity of particle ¢ and r;, the y component of its position vector. If
we calculate the subsequent velocity of v, (t) of the N particles in the system, then
according to classic hydrodynamics [12]

1< 1 (&
Cy(t) = N < Z'U,‘,;(O)'Uix(t) >= = (Z vfx(O)) exp (—k?vgt) (4.15)

i=1

where the angular brackets denote an average over all possible configurations of the
N particles and vy is the kinematic viscosity of the suspension. As discussed at
greater length in chapter 5, we only expect equation 4.15 to apply on length scales
long compared to the length scale defined by the particles themselves i.e. k << 27/a.

The decay of this correlation function has been reported elsewhere [11]. In fig 4.5
the typical decay of the correlation function is plotted in log-linear form. The figure
clearly shows that the results using the original and the new algorithm give differ-
ent values for vg. These particular results are for a suspension consisting of 1956
spheres, at a volume fraction of ¢ = 0.25 and the function has been averaged over
10 independent configurations. The dimensionless wave vector k* = ka was equal
to 0.2. In the simulation the radius of one sphere was nominally equal to 2.5 lat-
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Figure 4.6: The high frequency suspension viscosity, vy/vo, calculated at four different
volume fractions ¢ = 0.15, 0.25, 0.35 and 0.45, both with the algorithm without internal
fluid (circles) and with internal fluid (upward triangles). The solid line is the theory
from Beenakker and the dashed line represents this theory adapted for the internal fluid
algorithm. The + and X symbols represent numerical multipole expansions, respectively
for the neutral buoyant viscosity values and the internal fluid algorithm

tice spacings. The point here is that using this method we calculate the kinematic
viscosity of the suspension. This is related to the suspension viscosity, 74, so long
as we know the density, by 14 = pvy. But what should we take for the density?
If the particles are neutrally buoyant we expect that the density of a suspension,
regardless of the volume fraction, will be equal to the density of the solvent, so

Y _T¢ (4.16)
v 7o

If, however, we set the shell mass such that the particles are nominally neutrally
buoyant, but the internal fluid contributes an equivalent mass to the particles (as-
suming that it is the low frequency mass that is relevant) then the density of the
suspension py, at volume fraction ¢, will effectively differ from the solvent density
as pp = (1 + ¢)po. This being the case, we would expect

ms _ (1+8)ve (4.17)

Mo v

Using the methodology outlined above (and described in more detail in chapter
5 or reference [11]), we have calculated the kinematic viscosity of a suspension of
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hard spheres as a function of volume fraction. In figure 4.6 we have plotted ve/vo
as a function of volume fraction for nominally neutrally buoyant particles, simu-
lated using Ladd’s original method (“with internal fluid”) and using the modified
method we outlined above (“without internal fluid”). Also plotted in figure 4.6 are
theoretical predictions (based on an expansion up to second order in the volume
fraction [13]) for the kinematic viscosity of a suspension of neutrally buoyant parti-
cles and accurate numerical values calculated by Ladd [7]. As we see from the figure,
whereas the data calculated using the modified method agree with theoretical and
numerical values for the viscosity of a suspension of neutrally buoyant particles,
data calculated using the original method do not. They clearly follow the curve
vg/vo = 14/(1 + ¢)no. The internal fluid is therefore contributing to the effective
density of the suspension (equation 4.17) and the kinematic viscosity is increasingly
underestimated with increasing volume fraction.

4.4 Conclusions

We have described a method for simulating truly solid colloidal particles within the
lattice-Boltzmann framework. Unlike other methods that have been proposed, our
method strictly adheres to the microscopic conservation laws for mass and momen-
tum. For computational convenience our approach keeps the internal fluid inherent
in Ladd’s original model. However, by transferring linear and angular momentum,
that would otherwise have been transported to the internal fluid, back to the shell of
the particle, we recover the dynamics of a truly solid particle. We demonstrated this
by showing that the correct time-dependent rotational and translation dynamics of a
solid particle were recovered. To our knowledge, the theoretical result for the VACF
of a colloidal particle suspended in a compressible fluid has not been tested before.
Thus, our simulations could equally well be regarded as a test of the theory rather
than vice versa. Either way, the agreement was excellent. For the simulations where
the internal fluid reacted passively, we reached the same conclusion as Ladd. At low
frequencies, or long times, the internal fluid contributes an additional rigid body
inertia to the motion of the particles. By considering the viscosity of a concentrated
suspension, we showed that this additional inertia leads to a suspension with an
effective density greater than one would expect for a suspension of colloidal particles
with the same density of the fluid. This means that the kinematic viscosity and
viscosity do not display the same dependence on volume fraction, as they should.
Using our modified method, the correct equivalence was recovered.
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5 The high frequency viscosity of
hard sphere colloidal suspensions

5.1 Introduction

Probably the most important dynamical property of a colloidal suspension is its
viscosity. The viscosity characterizes the flow properties of the suspension. For
example, if one has a colloidal suspension flowing through a tube of circular cross-
section of radius R, the mass @ of suspension passing per unit time through any
cross-section of the pipe (the discharge) should, one would expect, be given by the
usual Poiseuiville equation [1] but with the kinematic viscosity of the suspension v

replacing the solvent viscosity,
TA
= —R! 5.1

Q=5 (5.1)
This of course assumes that the radius of the pipe is sufficiently large compared to
the size of the colloidal particles so that, on the scale of the pipe, the suspension
appears homogeneous. One of the notable characteristics of a suspension is that its
viscosity v, is greater than the viscosity of the solvent vp. This enhancement of
the viscosity depends strongly on the volume fraction ¢ occupied by the colloidal
particles. For a suspension of colloidal spheres, Einstein derived the relation between
vy and vp to first order in the volume fraction [2]

2142410067 (5.2)
140 2

Higher order corrections depend on the non-hydrodynamic interactions between the
particles. The model most widely studied theoretically is the monodisperse suspen-
sion of hard spheres. For this system the quadratic term has subsequently been
evaluated by several authors [3, 4, 5]. This analysis shows that equation 5.2 is
only valid at very low volume fractions. Taking higher order terms into account
Beenakker and Mazur [6] succeeded in predicting the viscosity of suspensions of
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hard spheres up to moderate to high volume fractions (¢ ~ 0.40) where equation 5.2
is totally inadequate. The monodisperse suspension of hard spheres is not just a
theoretical abstraction. It can also, to good approximation, be studied experimen-
tally [7] and has thus come to represent something of a benchmark system. There
is therefore excellent experimental and theoretical data on the monodisperse hard
sphere system which, up to moderate to high volume fractions, are in very good
agreement. The viscosity of a suspension has also been calculated numerically up
to volume fractions ¢ = (.45, and again the agreement is very good. One question
that remains, however, is on what length scale can the suspension can be treated as
a simple Newtonian fluid characterized by the suspension viscosity. We mentioned
above the example of predicting the flow of a suspension through a tube. What
happens if the diameter of the tube is not very much greater than the size of the
colloidal particles? Because colloidal particles are atomically very large, it is not
uncommon to come across suspensions flowing in geometries that are not charac-
terized by length scales very large compared to the size of the particles composing
the suspension. A good example would be your blood vessels, their diameter is not
vastly greater than the cells dispersed in the blood they carry. One of our main
objectives here is therefore to study on what length scales a colloidal suspension can
be regarded as simply a fluid characterized by the suspension viscosity.

Although the monodisperse suspension of hard spheres is certainly the most
widely studied and best understood system, it is rarely typical for suspensions en-
countered in practice. It is very difficult to synthesize a truly monodisperse suspen-
sion. Even the “monodisperse” suspensions studied experimentally and compared
with monodisperse theory display a polydispersity of typically 5%. In general, sus-
pensions of particles that could be regarded as approximating hard spheres will be
significantly polydisperse due either to deliberate mixing, aggregation or vagueries
in the synthesizing procedure. Neither are the effects of polydispersity limited to
dynamical quantities. The effect of polydispersity on the equilibrium properties of
colloidal suspensions is still a significant question [8, 9, 10], particularly when and
whether such systems are thermodynamically stable. This will not concern us here.
We are more interested in the following remarkable property of polydisperse sus-
pensions. If one takes a a dense suspension and replaces a certain fraction of the
colloidal particles with smaller particles, such that the total volume occupied by the
solvent remains the same, the resulting suspension can have a significantly lower
viscosity. This effect can be technologically very useful because it offers a route for
producing very dense suspensions (useful if the colloidal particles are pigments for
example), without paying the price of impractically high viscosity.

The viscosity of a suspension will depend on the composition, the volume fraction
occupied by the colloidal particles and the nature of the interactions between the
particles. Even if all these quantities are fixed, the viscosity further depends on
the frequency (or time scale) [7] and the shear rates [11] one is considering. It is
therefore important to be clear about which regime one is addressing. In this chapter
we consider the limit of low shear rates and high frequency. The limit of low shear
rates means that we can assume that the suspension has its equilibrium structure.
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By taking the limit of high frequencies we can neglect the “collisions” between
the suspended particles. These collisions are driven by Brownian motion and are
responsible for the long-time (or low frequency) contribution to the viscosity. The
only relevant effects in the high frequency regime are the hydrodynamic interactions
between the suspended particles. These hydrodynamic interactions are a result
of momentum transfer through the fluid and between the colloidal particles. The
true, low frequency, Newtonian viscosity "ft’ i.e. the viscosity that would measured
from a steady shear experiment, consists of a short-time contribution ¢ (due to
hydrodynamic interactions) plus a long-time, or Brownian, contribution ng(¢) (due
to the effects of Brownian motion). By definition we have:

ny = 1y + 18(6) (5.3)

Other than at very high volume fractions, (> 40% [14]), the high frequency com-
ponent is the dominant contribution to the Newtonian viscosity (ns >> n8(¢)).
At even higher volume fractions, the high frequency viscosity remains a significant
contribution to the Newtonian viscosity. It also worth pointing out that there are
very successful theories for predicting the Brownian contribution to the Newtonian
viscosity based on solving the simplified Smoluchowski equation [12, 13} (discussed
in section 1.4). These theories necessarily introduce further approximations because
solving even the simplified Smoluchowski equation to all orders in ¢ is impractical.
An analytical approach also becomes more problematic if one wishes to generalize
to suspensions of particles other than spheres. Alternatively, the simplified Smolu-
chowski equation can be solved numerically using Brownian dynamics, in which case
there is no restriction on the applicability of the approach. There is, therefore, an
approximate computational method for calculating the Brownian contribution to
the viscosity. It does not, however, resolve the high frequency component. If we can
develop a good method for calculating the high frequency viscosity we can, using a
two stage approach, calculate the two contributions separately and obtain the true
Newtonian viscosity of any suspension. It should be added that the validity of this
approach depends on the assumption that the simplified Smoluchowski equation is
a good approximation to the full Smoluchowski equation. There is evidence that it
may not be [14].

Following the preceding discussions, our aims in this chapter are three-fold. The
first is simply to find a convenient way of extracting the high frequency viscosity from
a lattice-Boltzmann simulation. The second is to establish on what length scales a
suspension may be expected to behave like a simple Newtonian fluid. Finally, we
wish to begin to examine the effects of polydispersity by considering a bimodal sus-
pension of hard spheres. This system has been studied theoretically by Jones [15].
We also note that, whereas extensive calculations of the viscosity of monodisperse
suspensions of hard spheres have been reported using Stokesian Dynamics [11], sim-
ulations of bimodal suspensions have been limited to two-dimensional systems of

disks [16].
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5.2 The wave vector dependent viscosity

To see where the high frequency regime dominates the suspension viscosity in terms
of length scales, it is necessary to consider the quantitative contributions to the
viscosity from the two different time scales involved. The argument is closely related
to the discussion in section 1.3 regarding the short- and long-time scales. Let us
consider one Fourier component of this instantaneous transverse velocity field,

Avg(r,t = 0) = a(kr) exp (ikp - 1), (5.4)

where the wave vector kr is orthogonal to the velocity direction z and a(kr) is the
Fourier transform of the velocity field. For a generic, structureless fluid the viscosity
determines the decay of transverse components of the instantaneous velocity field.
For such a system one expects this perturbation to decay as [20]

Av,(r,t) = a{kr) exp (k3 vot) (5.5)

where v is the kinematic viscosity of the fluid. For a given wave vector the perturba-
tion therefore decays on a time scale ¢, ~ 1/ szug, while the time it takes a particle
to diffuse a distance of the order of its own radius is of the order tp ~ a2?/D, where a
is the particle radius and D the diffusion coefficient. The diffusion coefficient can be
estimated from the Stokes-Einstein equation (equation 1.1). If we now consider, for
illustrative purposes, the case of a micron sized particle dispersed in water at room
temperature then we find that tp ~ 1s and ¢, ~ 100/kT2s. The high frequency
condition, i.e. that ¢, << tp, is therefore satisfied so long as kr+ >> 10cm~1. Thus,
there exists a large range of values of kr, corresponding to real lengths much greater
than the dimensions of the colloidal particles, where we can safely neglect the ef-
fects of Brownian motion and consider the configuration of particles to be essentially
“frozen”.

If we examine equation 5.5 we see that it further gives us a means of achieving
the goals we set out in the introduction. We can simply examine the time dependent
response of the suspension to an initial velocity perturbation of the form given in
equation 5.4. We would not however expect the decay of such a perturbation to
simply follow equation 5.5. It only applies for a simple structureless fluid. On length
scales of the order of the colloidal particle radius a suspension cannot be considered
structureless. We expect, however, that on length scales long compared to the size
of the particles (k7 << 1/a) the behaviour of a structureless fluid will be recovered
with the suspension viscosity v4 (henceforth the fact that we are looking at the
high frequency viscosity will be implied) appearing as the viscosity in equation 5.5.
In the opposite limit (k7 >> 1/a) we would conversely expect that the decay of
the perturbation will be so rapid that the particles in the suspension will not have
time to feel each others presence. Consequently the apparent viscosity will be less
than the small wave vector value. There will thus, one expects, be a wave vector
dependent viscosity characterizing the decay of transverse velocity fluctuations. Only
by looking for the (small k7) limiting value can we calculate the suspension viscosity.
The smallest value of the wave vector that can be studied in a simulation is of course
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determined by the system size, so this will necessitate using the algorithmic and
computational strategies described in chapter 3. By establishing the wave vector
dependence of the viscosity we can also address our second question; on what length
scales does a suspension behave like a simple fluid. For a simple model fluid the
viscosity is independent of wave vector. If and when we recover this behaviour in
a suspension we can, interpreting a wave vector as an inverse characteristic length,
determine on what spatial length scales simple fluid behaviour is recovered.

5.3 Calculating the wave vector dependent viscos-
ity
The method we used involved three dimensional simulations of configurations of
hard spheres embedded in the simple lattice-Boltzmann model fluid (the solvent).
The initial configurations of colloidal spheres were generated using a Poisson proces
and further compressed under equilibrium conditions, using a standard Monte Carlo
method [17], in case of concentrated suspensions. Using the lattice-Boltzmann model
(for the solvent), spontaneous fluctuations are absent. Thus, in the absence of
any externally imposed fluctuations, a colloidal particle in a Boltzmann fluid does
nothing. Fluctuations can be reinstated in the lattice-Boltzmann model by adding a
suitable random noise term to the stress tensor [18], but we have chosen a different
approach. According to Onsager’s regression hypothesis the decay of a fluctuation
which we impose on the (otherwise) purely dissipative system should be the same as
the decay of a spontaneous fluctuation in the real fluctuating system. The advantage
of following the decay of an imposed, rather than spontaneous, fluctuation is that
it does not involve adding any additional noise to the system and so the results are
relatively free from statistical error. A philosophically similar procedure was applied
in reference [19] to study diffusion in suspensions. In this work, however, as outlined
above, the fluctuation we need to impose corresponds to one Fourier component of
the transverse velocity field i.e. we apply an initial velocity perturbation of the form

vg(r,t = 0) = Aexp (ikp - 1) (5.6)

where A is a constant, to both the fluid and the colloidal particles. We then calculate
the correlation function

zvz ry, 0)vg(ry, t sz rp, 0)vy(rp, 1) (5.7)

where [V is the number of lattice sites outside the spheres, N, the number of colloidal
spheres and r the position vector of either the lattice site (subscript !) or the centre
of the particle (subscript p). In keeping with our high frequency, (or short time)
assumption the positions of the particles do not change during the course of the
simulation. The mass of the particles was set equal to the mass of the equivalent
volume of fluid and the method described in Chapter 4 was used to remove the
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effects of the internal fluid. One expects a priori that the function C,(t) will decay
as [20]
Gu(?)
C.,(0)

where we have, on the basis of the argument given in the preceding section, intro-
duced v4(kr), a wave vector dependent viscosity. Hence, in principle one can extract
vg(kr) by calculating C, (t). Such an approach remains of course phenomenological
in that it assumes C, (t) decays as predicted by equation 5.8. This remains to be
shown. Even if it is the case, we still need to simulate small enough wave vectors to
enable us to establish the limiting k7 — 0 behaviour of the viscosity.

Viewed simply as a means of calculating the viscosity, the approach outlined
above has a number of advantages. The obvious alternative would be to look for the
steady state response to an constant external perturbation (see section 2.4). The
disadvantage with this approach is that the time required for a system to reach a
steady state increases dramatically as the system size increases. System size is an
important consideration for two reasons. Firstly, hydrodynamic interactions are long
ranged and finite size effects on transport coefficients can be large [21]. Secondly,
the system size determines the minimum value of kr which can be studied and only
in the limit of kr approaching zero can one expect v4(k7) to approach the limiting
value v, (the true, in our case high frequency, viscosity). If we are merely interested
in extracting the viscosity then it is obviously important that we can simulate wave
vectors small enough such that, to a good approximation, vg4(kr) = vy or, alterna-
tively, that one can extrapolate reliably to this limit. An analogous linear response
technique for calculating the viscosity can be applied in molecular dynamics simula-
tions and extracting a reliable estimate of the zero wave vector value can indeed be
problematic [17]. It is clear that we must anticipate having to simulate large systems
to obtain a reliable estimate for the viscosity. Using the steady state approach this
also implies having to perform long simulations to ensure the steady state is reached.
Using the lattice-Boltzmann approach Ladd [18], for example, reported having to
simulate for hundreds of thousands of time-steps before the steady state response to
an imposed shear was observed. In contrast, if equation 5.8 does hold then it pro-
vides a convenient means of extracting the wave vector dependent viscosity because
one only has to establish the rate of decay of C,,(t). This should require a relatively
small number of time-steps and, furthermore, one does not expect this number to
depend on system size. Another obvious alternative method for calculating the vis-
cosity is to introduce thermal fluctuations into the lattice-Boltzmann system and
calculate the stress-stress correlation function. The stress-stress correlation function
is related to the viscosity by a Green-Kubo formula similar to that which relates the
velocity autocorrelation function to the diffusion coefficient (equation 2.26). The
disadvantage of this approach is that the thermal fluctuations introduce additional
noise into the system, so extensive time averaging is required. More seriously, the
fluctuating lattice-Boltzmann model lacks true equipartition and this introduces an
element of uncertainty regarding the true temperature of the system (which is needed
to relate the stress-stress correlation function to the viscosity). Taken as a whole,

= exp(—kZvy(k)t) (5.8)




5.4. Results 79

020 . ;
0.00 ]
3 -020 1
g
2
=
T -040 | .
-0.60 | .
-0.80 : '
0.0 50.0 100.0

Figure 5.1: Log-linear plot of the correlation function C,(t) (defined in the text) as a
function of time. The data refer to a simulation of a system of 1956 spheres of nominal
radius 2.5 lattice units, the spheres occupying a volume fraction of 25%. The reduced wave
vector (kra) was equal to 0.2.

the method we propose here, viewed purely as a means of calculating the viscosity,
seems to have several computational advantages. Given that we also gain additional
information, the dependence of the viscosity on the wave vector, it is our preferred
method for studying the viscosity.

5.4 Results

5.4.1 Typical decay of the correlation function

Applying the methodology outlined above, a typical example of the results we obtain
for the correlation function C,(t) is plotted in linear-log form in figure 5.1. These
particular results are for a suspension consisting of 1956 spheres at a volume fraction
of 25% and the function has been averaged over 10 configurations. The dimensionless
wave vector k* (defined as kra, where a is the particle radius) was equal to 0.2, In the
simulation, the radius of one sphere was nominally equal to 2.5 lattice spacings. The
particle radius in these lattice units is an important parameter because it basically
determines the spatial resolution of the simulation. Increasing this radius leads
to a better resolution of the hydrodynamic interactions between spheres which are
almost touching (the lubrication forces), at the expense of bigger system sizes. One
sees from the figure that, after the decay of some short lived initial transients, an
exponential decay is observed (the plot becomes linear). Thus, we find the decay
which we expected and we can use equation 5.8 to calculate a wave vector dependent,
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Figure 5.2: The k-dependent viscosity for a simulation of a suspension of colloidal spheres
which occupy a volume fraction ¢ = 0.35. The symbols correspond to systems of 21904
spheres (circles), 2738 spheres (pluses) and 342 spheres (triangles). The statistical errors
are of the order of, or less than, the symbol size.

viscosity. We also note that the number of time-steps required before we can establish
the form of the exponential decay is relatively few (~ 100) whereas for steady state
calculations on much smaller systems (reference [22]) the number of steps required
was hundreds of thousands. This confirms the suggestion we made in section 5.3
that this is a much more efficient method for calculating the viscosity.

5.4.2 Determining the limiting suspension viscosity

Repeating the simulations for various values of the wave vector, we calculated the
wave vector dependent viscosity by fitting an exponential to the post-transient decay
of C,(k,t) and using equation 5.8. To illustrate the dependence of the viscosity on
k* we focus on one particular intermediate volume fraction, ¢ = 0.35. In figure 5.2
the wave vector-dependent viscosity is plotted as a function of k*. The results
were again averaged over ten independent configurations and these results are for a
sphere of radius of 4.5 lattice units. This simulations were repeated with a larger
value for the radius (a = 6.5), but, at this particular volume fraction, the values
obtained for v4(k*) were not significantly different, indicating that a radius of 4.5
gave adequate resolution. The conclusion one can draw from figure 5.2 is that the
limiting (k* = 0) value has almost been reached for the smallest wave vector we have
studied (k* = 0.098). With the aid of a small extrapolation, based on a polynomial
fit to the data shown in figure 5.2, we can therefore obtain an accurate value for v4.
The uncertainty in the extrapolation is in fact of the same order as the statistical
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Figure 5.3: The high frequency suspension viscosity, v4 as a function of volume fraction
¢. The solid line is a spline through the numerical values calculated by Ladd. The dashed
line is the theoretical result due to Beenakker. The crosses are the experimental results
of van der Werff et al.. The remaining symbols are the numerical results described in this
work using spheres of nominal radius 2.5 (circles), 4.5 (squares), 6.5 (upward triangles) and
8.5 (downward triangles). The statistical errors are of the order of, or smaller than, the
symbol size.

error associated with averaging over a number of configurations.

5.4.3 The suspension viscosities for different volume fractions

By following this procedure, we have calculated the high frequency viscosity over
the range of volume fractions 0 < ¢ < 0.59. The highest value is very close to the
maximum possible for a random packing of hard spheres ¢ = 0.63. The values we
obtained are plotted in figure 5.3. In the figure we also show the effect of changing the
spatial resolution (the radius, in lattice units, of the sphere). Clearly this needs to be
increased as the volume fraction increases but not dramatically. At a volume fraction
of 50%, spheres of radii 6.5 and 8.5 give results which differ only by a few percent;
a difference which is not statistically significant. However, at these high volume
fractions smaller spheres are clearly not adequate. In the figure we have also plotted
accurate numerical results [21], the theoretical prediction due to Beenakker (6] and
the results of experimental measurements by van der Werff et al. [7]. The agreement
between all three is very good. However, at a volume fraction of 45% our results
are in somewhat better agreement with the theory than those of Ladd. In addition
our results for higher volume fractions do not appear to increase as rapidly with
increasing volume fraction as the trend suggested by Ladd’s results (which only
extend to ¢ = 0.45) would indicate. It is therefore possible that the theoretical
values are quite good even at volume fractions higher than 45%. Unfortunately,
the values quoted in reference [6] only extend up to ¢ = 45% so this we can only
summarize.
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Figure 5.4: Log-log plot of the difference between the wave vector dependent viscosity,
ve(k™), and the suspension viscosity vy as a function of the reduced wave vector k*. The
data refer to simulations of a suspension of 21904 {open symbols) and 2738 (filled symbols)
spheres, occupying a volume fraction of 35%. The solid line is the result of a linear least-
squares fit to the data.

5.4.4 The wave vector dependence of the viscosity

If we now return to the wave vector dependence of the viscosity (figure 5.2) we
remarked that at the smallest wave vector we studied (k* = 0.098), vy(k*) was
almost, but not quite, equal to v4. There is still a statistically significant difference.
What is somewhat surprising is that there is any measurable discrepancy at all. This
value of k* corresponds to dimensionless wavelengths, A*(= l/a), of about 60, i.e.
real space lengths which are very much greater than the typical separation between
colloidal particles. Indeed, the theory of Beenakker [6] predicts that we should see no
wave vector dependence for k* < 1. It also appears that vy is approached relatively
slowly with decreasing k*. In order to analyze this more quantitatively we have also
analyzed the data shown in figure 5.2 by plotting, in log-log form (vy — v4(k*)) as
a function of k* (figure 5.4). The plot appears to be linear. A linear fit to the data
yielding a slope of 1.55 £ 0.05. This, interestingly, is very similar to observations
made by Evans [23] who performed a similar analysis for a soft sphere fluid and
Alley and Alder [24] who performed a similar calculation for a hard sphere fluid.
They found small k* behaviour compatible with the form

vs(k*) = vy — ck* (5.9)

with ¢ a positive constant. In fact, if one compares figure 5.4 with the equivalent plot
for a hard sphere fluid then the similarity is not just qualitative but quantitative.
For example, at k* = 1 we find v4(k*)/vy = 0.8 whereas for the hard sphere fluid it
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Figure 5.5: The high frequency bi-
modal suspension viscosity vy in the di-
lute regime. Here ¢ = 0.10 and the size
ratio is 2.6. The viscosities are plotted as
a function of ¢ (defined in the text). The
crosses are the lattice-Boltzmann results.
The statistical errors are of the order of, or
smaller than, the symbol size. The accu-
racy in the sphere representation is shown
by the difference in viscosity for the radii
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Figure 5.6: The high frequency bimodal sus-
pension viscosity vy at ¢ = 0.30, ¢ = 0.33 and
¢ = 0.35, as a function of {. The size ratio
is 2.6. The squares correspond to systems of
¢ = 0.30, the triangles correspond to ¢ = 0.33
and the circles have ¢ = 0.35. The statisti-
cal errors are of the order of, or smaller than,
the symbol size. The accuracy in the sphere
representation is shown by the difference in
viscosity for the radii 2.5 and 6.5.

2.5 and 6.5

is about 0.75. Given that the two systems are quite different (in a hard sphere fluid
there is no solvent, the particles undergo ballistic motion between direct collisions)
the similarity is surprising.

5.4.5 The viscosity of bimodal suspensions

Exactly the same methodology applied to study the viscosity of monodisperse sus-
pensions can be used to study bimodal suspensions of hard spheres. We take a
binary mixture of hard spheres which differ in size and again generate initial config-
urations using standard Monte Carlo techniques. The simulations then proceed as
before. The correlation function is still found to decay exponentially and from this
we extract the wave vector dependent viscosity. This is then extrapolated to the
limit of small k*. The regime we are considering is clearly still the same, i.e. low
shear rate and high frequency. We have calculated the viscosity of bimodal suspen-
sions in both the dilute regime and at intermediate volume fractions. For bimodal
suspensions, in addition to the volume fraction, we need to specify the size ratio for
the two species. For the results reported here, one sphere has a radius 6.5 lattice
units and the value for the other particle radius is 2.5. This gives a size ratio 2.6 for
the particles. Again the results were averaged over 10 independent configurations.
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Initially, we considered the effects on the suspension viscosity in the dilute regime.
To specify the composition of the bimodal system it is useful to define the volume
fraction ¢, as the total volume fraction occupied by colloidal particles (large and
small) and the mixing volume fraction ¢ defined as the relative volume occupied by
the small spheres ,

S

(= o (5.10)
where vg is the volume density of big spheres and vs the volume density of small
spheres. First we consider a volume fraction of 10%. We have calculated the viscosity
for mixing volume ratios of { = 10%, ¢ = 25%, { = 50% and { = 75%. Over the
whole range, it seems that there is no statistically significant viscosity difference (see
figure 5.5) for the bidisperse system as compared to the monodisperse system. The
dilute regime theory of Jones [15] predicts that we should see a reduction in the
viscosity and that the viscosity has a minimum when the volume fraction is evenly
split between the two sizes of particles (¢ = 0.5). As figure 5.5 shows, we see no
evidence for this. It is still possible, for this dilute system, that the effect is too small
to measure within the accuracy of the lattice-Boltzmann technique. Conversely, if
any effect is present it is too small to be of any practical importance.

There are two possible routes for enhancing the effect of bidispersity. One is
to make the size ratio between the particles much larger. The other is to go to
more concentrated suspensions. Increasing the size ratio implies simulating bigger
particles and therefore bigger systems (to measure the value of the viscosity v{(k*)
at the same dimensionless wave vector k*). Alternatively (and more conveniently)
we can simulate higher volume fractions. Given that we are restricted in the size
ratios we can study, we have chosen to calculate bimodal suspension viscosities for
some intermediate volume fractions.

Moving to higher volume fractions we find that substantial viscosity reductions
can indeed be observed. The results for overall volume fractions ¢ = 0.30,0.33 and
0.35 are plotted in figure 5.6, as a function of the mixing volume ratio ¢. The amount
by which the viscosity is reduced is about 15%, at this size ratio. Interestingly, at the
lower of the three volume fractions, this is the viscosity reduction we would expect
if the suspension viscosity were determined by solely the volume fraction of large
spheres. It is as if the small particles contribute nothing to the suspension viscosity.
Experimentally, it is universally observed that in a concentrated suspension the
addition of a small volume of small particles replacing large particles, such that the
total volume fraction occupied by the colloidal particles remains constant, results in a
noticeable viscosity reduction {25, 26, 27]. This is consistent with what we observe.
One also sees from the figure that the minimum of the viscosity, with respect to
mixing volume ratio, occurs on the side rich in large particles. Experimentally, this
asymmetry in the reduction of the viscosity as a function of mixing volume ratio
is also typical [28, 29, 30]. Again this is in contrast with the low density theory
of Jones [15], according to which the minimum occurs when the volume fraction
is evenly split between the two sizes of particles. Interestingly, our observation is
very similar to that of Chang and Powell {16}, who performed a two-dimensional
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Stokesian Dynamics simulation over a range of volume fractions. They always found
the minimum for the viscosity at around 25% small and 75% large particles. This is
in rough correspondence with what we observe. We can go farther to say that, for a
given ratio of particle sizes, the minimum viscosity initially appears for suspensions
rich in large particles, but that, as the volume fraction increases, this minimum shifts
towards suspensions of more equal composition. Furthermore, for a fixed value of the
size ratio, the composition with the minimum viscosity appears to be very sensitive
to the total volume fraction (see figure 5.6).

5.5 Discussion

5.5.1 Monodisperse colloidal suspensions

We have described a method for calculating, within the lattice-Boltzmann frame-
work, the high frequency, low shear rate viscosity of a colloidal suspension. The
method seems to have some advantages over those previously employed in that it
only requires the dynamics of the suspension be simulated for a very short period
of time. The values for the viscosity that we have calculated using this approach
are, up to volume fractions of 46%, in good agreement with other simulations, ex-
periment and theory. We have also extended the calculations up to volume fractions
approaching the maximum possible for random (that is “glass-like” as opposed to
“solid-like”) configurations of spheres. A comparison with theory at these higher
volume fractions would clearly be desirable. This would allow one to establish to
what extent the theory brakes down at higher volume fractions - at 45% it still works
remarkably well. A comparison with experiment would also be desirable as it would
establish if, at sufficiently high volume fractions, our approximation of colloidal par-
ticles as perfect hard spheres breaks down. In reality the colloidal particles studied
experimentally are only approximately hard spheres (they have polymer coats and
interact via a short-ranged electrostatic interaction). One might expect that even-
tually, at high enough volume fractions, the hard sphere approximation would break
down and some difference would become apparent.

Finally, we examined the wave vector dependence of the viscosity. We found that
the low k* limit was approached relatively slowly with decreasing £*, in a manner
very similar to that observed for simple model “atomic” fluids. The k* dependence
was apparent at wavelengths much smaller than the theory contained in reference [6]
would suggest. This means that the suspension can only be expected to behave like
a simple (continuum) Newtonian fluid on spatial lengths scales very much greater
than the size of the colloidal particles. This may be relevant if one considers a
suspension flowing in some constricted geometry with dimensions not much larger
than the colloidal particles themselves. An example would be the flow of a suspension
through a tube that we discussed earlier. For tube flow we may well expect that
the suspension will behave as if it had a somewhat lower viscosity than in a bulk
sample, if the diameter of the tube does not exceed that of the colloidal particles by
at least an order of magnitude. This remains to be examined. Finally, it is worth
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commenting on the similarity between the k* dependence we found for a suspension
and that found in a hard sphere fluid. A hard sphere fluid is most fundamentally
different from a suspension in that, on the length scales of the particles making up the
fluid, the fluid cannot be treated as a continuum. One might therefore expect that
any deviations between the dynamics of a hard sphere fluid and the dynamics of a
continuum Newtonian fluid (for instance a k* dependent viscosity) would originate
from this discrete nature of the fluid. However, this is not true for a suspension
because the solvent, on the length scale of the colloidal particles, does appear as a
continuum. Deviations from simple Newtonian fluid behaviour in the suspension can
only originate from the complex nature of the hydrodynamic interactions between
the particles and the non uniform distribution of the particles. The observation
that the (small) k* dependence of the viscosity in a suspension is very similar to
that of a hard sphere fluid suggests that, in a simple “atomic - like” fluid, the k*
dependence of the viscosity has its origins more in the structure of the fluid than
in the hydrodynamics. The static properties of a hard sphere fluid are identical
to those of a colloidal suspension of hard spheres although the dynamics are very
different.

5.5.2 Bidisperse colloidal suspensions

At a moderate volume fraction, the values we have calculated for the viscosity of bi-
modal suspensions showed the commonly observed viscosity reduction phenomenon.
We considered the viscosity as a function of the mixing volume ratio. For these, high
frequency viscosities, there are only theoretical results expected to be valid in the
dilute regime with which to compare. Unfortunately, at low volume fractions, where
these theories should be valid, the viscosity reduction effect was either non-existent
or too small (for the size ratio we used) to be measurable. A comparison with theory
for the intermediate volume fractions would clearly be desirable but the fact that
we only observe this effect at intermediate volume fractions is indicative of the fact
that it is a many-body effect. This being the case, it is difficult to invoke a simple
“intuitive” explanation for the viscosity reduction. Nonetheless we find good quali-
tative agreement with experiment. Specifically, at intermediate volume fractions we
found a significant viscosity reduction and when we studied this as a function of the
mixing volume ratio, the minimum of the viscosity always showed up for composi-
tions rich in large particles. Experiments measure the real “Newtonian” viscosity
which consists of a high frequency component and a Brownian component, due to
Brownian motion of the particles. Only the former is calculated here. Although this
short-time or high frequency component is important and has to be determined, it
is not as yet known to what order Brownian motion contributes. By analogy with
the monodisperse case, it would be reasonable to assume that, at the volume frac-
tions we studied, the Brownian contribution will be small and that our results are
reasonably representative of the true Newtonian viscosity.

To study the viscosity reduction effects for bimodal suspensions in the regime of
most practical importance, it would be necessary to make the size difference between
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the two types of particles very much larger. Within the lattice-Boltzmann scheme
there are two problems associated with this. Firstly, a bigger size ratio implies that
the problem space grows as the difference of the radius to the power of three. With
this, the decay time for the system gets larger with the difference of the radius
squared. Secondly, at high volume fractions (> 40%), where the viscosity reduction
effect is probably bigger, spheres of small radii are clearly not adequate. This will
lead to an extra increase in the size of problem space to keep the size ratio the
same. It is for these reasons that we considered only moderate volume fractions and
size ratios. Nonetheless, we succeeded in observing the viscosity reduction effect
and identifying some of its features. To our knowledge this is the first time this
has been achieved in three dimensional simulations. To be able to study the high
volume fraction and high size ratio regime, further hardware and or algorithmic
improvements are needed.
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§) The role sound plays in propagat-
ing hydrodynamic interactions

6.1 Introduction

6.1.1 The nature of hydrodynamic interactions

As a colloidal particle moves it induces flow fields in the solvent. These flow fields
are both influenced by, and influence, the motion of its neighbours. In a concen-
trated suspension these “hydrodynamic” interactions between the colloidal particles
modify the transport coefficients relative to their values in the dilute limit. Under-
standing colloidal suspensions therefore implies understanding hydrodynamic inter-
actions. Compared to the intermolecular forces between individual molecules in a
simple fluid, hydrodynamic interactions between colloidal particles differ in several
respects. Whereas the former are essentially instantaneous, colloidal particles in-
fluence one another only via the fluid occupying the space between them. These
interactions cannot be considered instantaneous. The speed at which they propa-
gate depends on the properties of the fluid itself. Generally this transient regime
can be probed experimentally (by for instance, diffusing wave spectroscopy [1, 2]).
More formally, hydrodynamic interactions are a consequence of momentum transfer
between particles by way of the fluid. Consider, for example, a colloidal particle
i that, at a given instant in time has momentum p;(0). As time goes by the ve-
locity of the particle will be thermalized by collisions with the solvent molecules.
The initial momentum will thus be dissipated through the system and “felt” by the
particle’s neighbours. Transport of momentum can take place via two mechanisms
generally operating on very different time scales. The first is the diffusion of momen-
tum transverse to the original direction. The second is the propagation of a sound
wave longitudinal to the original direction. Theoretical approaches developed thus
far [3, 4] only take into account the first, diffusive, mechanism. Incorporating the
effects of sound propagation at the many particle level would be a daunting task.
Nonetheless, there are cases in which the second, sonic, mechanism can been shown
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to be relevant [5, 6]. Furthermore, the suggestion has been made that sound propa-
gation may explain apparent discrepancies between computer simulation results and
experiments probing the time dependence of the hydrodynamic interactions. In this
chapter our aim is to establish, by computer simulation, precisely what role sound
plays in propagating hydrodynamic interactions.

6.1.2 A single particle in a compressible fluid

To begin with it is useful to consider a case where considerable theoretical progress
can be made. Namely, a single colloidal particle. This serves as a useful means
of illustrating the relative characteristics of the two propagation mechanisms. The
analysis of the single particle case begins with the observation that the equation of
motion for the colloidal particle takes the form of a generalized Langevin equation (7,
8, 9]
t

dp%t(t) = ——7}1- | v(t — 8)pa(s)ds + R(t) (6.1)
where m is the mass of the particle and p, one Cartesian component of the particle
momentum. The convolution on the right hand side expresses the change in the
velocity of the particle at time ¢ in terms of its previous history through the (as
yet) unknown memory function v(t). The second term, R(t), is a stochastic force
orthogonal to the momentum (i.e. < po(t)R(t) >= 0), introduced to ensure that the
correct equilibrium properties are recovered. In order to study the decay of velocity
fluctuations, it is useful to introduce the velocity autocorrelation function, C(t). In
terms of one component of the instantaneous velocity v4(t) this is defined as

C(t) =< va(0)val(t) > (6.2)

The solution to equation 6.1 for the Laplace transform of the velocity autocorrelation
function (denoted by the tilde) in terms of the transform variable z, reads

~ < 'Ua
= 5

As it stands equation 6.3 is not very useful because we do not know the memory
function (z). However, given the equations of motion describing the dynamics of the
solvent and imposing the correct boundary conditions on the surface of the particle,
4(z) can in principle be calculated. The simplest assumption is that the motion of
the solvent can be described by the incompressible Navier-Stokes equations. In this
case the pressure and velocity, fields p(r,t) and u(r,t) satisfy

(6.3)

du(r,t 1
u('(;t. ) = pViu(r,t) - p—OVp(r, t) (6.4)
V-u(r,t) = 0

where po is the equilibrium density and vy the kinematic viscosity of the fluid.
For colloidal particles in equilibrium the non-linear term is extremely small and so
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has been neglected. Assuming that the fluid velocity matches the colloidal particle
velocity at its surface (a stick boundary condition), for a spherical particle of radius
a this problem can be solved analytically [10] to yield

3(2) = 6mpovoa (1 + %z* + \/z_) (6.5)

where 2* is the dimensionless transform variable za?/vp. Substituting this result
into solution of the generalized Langevin equation gives an expression for the di-
mensionless VACF,

where p* is the ratio of the mass of fluid displaced by the particle to the mass of the
particle itself i.e. p* = 4ma®po/3m. In practice, for stable suspensions the particles
are nearly neutrally buoyant (p* = 1), otherwise the system would separate under
gravity. Equation 6.6 implies that, for a given value of p*, the normalized VACF
is a unique function of the dimensionless time 7, = tvp/a?. Values of 7, of the
order unity characterize the time it takes transverse momentum to diffuse a distance
the order of a particle radius. This is in turn controlled by the viscosity so we
subsequently refer to this as the viscous time scale. A notable feature of equation 6.6
is that, taking the limit of large z* and performing the inverse transformation to
obtain the short time behaviour of the VACF, one finds a discontinuous drop in
the value from unity at ¢ = 0 to a value (1 + p*/2)~! at an infinitesimal time
later. This so called “added mass” effect is an artefact of assuming that the fluid is
completely incompressible. A proportion of the initial momentum is carried away by
the propagation of a sound wave. For a neutrally buoyant particle the normalized
VACF drops instantaneously to a value of 2/3, reflecting the fact that 1/3 of the
momentum is carried away by sound propagation and that, in an incompressible
fluid, this happens instantaneously. In practice fluids are not, of course, completely
incompressible. Sound propagates on a time scale set by the speed of sound through
the system. To allow for the finite speed of sound, one needs to proceed as above,
but solve the more complex compressible Navier-Stokes equations instead

Q@% +poV-u(r,t) = 0 (6.7)
du(r,t) 2 2 vo _
ot V(e 1) — vV 2ulr, 1) - (-3— + uB) VVou(eh) = 0

where vp is the bulk viscosity, and with ¢; the speed of sound. Despite the greater
complexity, this problem can nonetheless be solved [11]. Assuming the dynamics
of the fluid are given by equation 6.7, and again imposing a stick boundary condi-
tion, an expression can be derived for the frequency dependent friction coefficient
(equation 4.13) and hence the VACF.
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Figure 6.1: The normalized VACF for a single, neutrally buoyant, colloidal sphere in an
incompressible and compressible fluid. The compressible result is shown for two different
values of the compressibility factor a. In both cases the bulk viscosity is assumed equal to
the shear viscosity. Note that the rapid short time decay in the compressible case replaces
the discontinuity at ¢ = 0 in the incompressible case. At longer times the results become
identical

The solution to our problem is now more complicated (see section 4.3.2) because
it involves the two additional parameters associated with sound propagation, c;s
and vg. These are most conveniently incorporated into the analysis by defining,
in addition to the viscous time, a “sonic” time 7, = t¢,/a and a viscosity ratio
B = vp/vy. For most fluids the latter is of the order unity. As for the sonic time,
values of the order unity characterize the time it takes a sound wave to travel a
distance the order of a particle radius. To give a feel for the two time scales involved,
it is useful to consider real times in a “typical” suspension. A typical system we
consider to be particles of radius 1um dispersed in water at room temperature. This
being the case we have 7, ~ 1 when t ~ 10~®s, whereas 7, ~ 1 when t ~ 10~ %.
The ratio of the two a = 7, /75 = ac,/vo takes the value a ~ 1000. Clearly, on
the scale of a colloidal particle sound propagates momentum much more rapidly
than does viscous diffusion. In terms of the viscous and sonic time scales, the
principle characteristics of the VACF in a compressible fluid can now be summarized
as follows. Real times, where given, correspond to the typical system described
above.

e At short times, t << afc, (! << 107%s), the normalized VACF depends
only on ¢,/a and is a unique function of the dimensionless “sonic” time scale
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s = tcs/a. This very rapid decay replaces the discontinuity found for the
incompressible case and reflects the period during which the particle generates
the sound wave.

e At intermediate times ¢ ~ a/c, (t ~ 10~°) there is a “mixed” region where the
viscous time, sonic time, and viscosity ratio are all relevant. This reflects the
period where the sound wave is separating away from the particle.

e For longer times t > a/c, (t > 10~°)the result reduces to the incompressible
result above (equation 6.6). The sound wave has departed and consequently
compressibility plays no role.

In summary, by going from an incompressible to a compressible model for the fluid,
we get rid of the discontinuity in the VACF at very short times. Further, we find that
for times 75 > 1 we could have saved ourselves the trouble because the incompressible
result suffices. This is illustrated in figure 6.1 where we have plotted the VACF
predicted by compressible theory, for a neutrally buoyant particle with a = 10 and
a = 100, along with the incompressible result.

6.1.3 Sound in a concentrated suspension

While the above discussion serves as a useful guide to the relevant parameters and
time scales for a compressible fluid, it only applies for a single particle. What we
are interested in is a suspension, for which there are many particles. The question
then arises, what role does sound play in a suspension? We have already seen
that the hydrodynamic interactions between particles are a result of momentum
transfer and that a significant proportion of that momentum is carried off by sound
propagation. Therefore, in principle, part of the interactions can develop on the
fast sonic time, rather than the slow viscous time. There are several reasons to
establish whether such a mechanism is present. Firstly, it is the separation of the
relative time scales for the various processes operating in suspensions that underlies
theoretical treatments. A detailed discussion of this was given by Masters [12].
Secondly, if sound can be neglected (the solvent is assumed incompressible) then
the size of colloidal particles becomes essentially irrelevant. The results for any
correlation function can be expressed as universal functions of the dimensionless
parameters outlined above (equation 6.6 for example). On the other hand, if sound
_propagation does play a role this is no longer true. The radius of the particles
enters in the expression for the compressibility factor a. Thus, if sound plays a role,
correlation functions for particles of different sizes differ fundamentally. They cannot
simply be scaled onto each other. This is important because the compressibility can
vary considerable between different systems that could still lay claim to be called
colloidal. For instance, we quoted a value a ~ 10® for our typical system of a micron
sized particle suspended in water. We further commented that this implied sound
transported momentum on times scales very short compared to viscous diffusion.
There is nothing special about one micron though. Particles with sizes in the range
Inm < a < 10u satisfy the criterion of being atomically large but macroscopically
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small. Further, particle spanning this entire range are synthesized and used in
experiments. Usually the radius is chosen to suit the problem under study or the
technique being applied. This in turn implies a range of compressibilities in the
range 1 < a < 10%. That is ranging from sound propagation and viscous diffusion
occurring on similar time scales to the regime where the latter is much slower.
Despite the fact that sound propagation might be an important mechanism for
propagating interactions in a suspension, until relatively recently the tacit assump-
tion was that it is not. One reason for this might simply be wishful thinking. Con-
structing an incompressible theory for the propagation of hydrodynamic interactions
is difficult enough without the additional complication of compressibility. There are,
however, two more substantial reasons. First, as outlined above, it is largely irrel-
evant for a single particle. Second, at sufficiently long times, it definitely cannot
play a role. This is simply because the integral of a correlation function is related
to the zero frequency response. The zero frequency response to an external pertur-
bation is the same for a compressible or an incompressible fluid. Thus, the speed
of sound does not enter into the expression for the diffusion coefficient of a single
particle whether the fluid is compressible or not (see section 2.4). The question then
becomes, when does it become irrelevant rather than if. More recently experimental
theoretical and computer simulation results have suggested that the effects of sound
propagation may be manifest on viscous time scales. As we have seen, for a single
particle, this is not the case. Firstly, experiments were reported [13, 14] probing
the transient behaviour of the mean square displacement at short times (7, ~ 1).
By comparing the short time dynamics of particles in a concentrated suspension
with those of an isolated particle, Zhu et al. [13] found that all the experimen-
tal data could be plausibly collapsed onto the single-particle curve if the time was
rescaled in units of a®/v,, where vy is the kinematic viscosity of the suspension.
The conclusion was, that even on time scales where 7, ~ 1, a colloidal suspension
behaves like an “effective fluid”, by which we mean a fluid with the viscosity of the
suspension. This was surprising because, if the hydrodynamic interactions develop
on the viscous time scale, one would expect that the suspension can only behave
as an effective fluid on time scales 7, > 1. Computer simulations performed by
Ladd [15, 16] appeared to confirm this, although more detailed simulations [17],
and theoretical work [4] suggested that effective fluid regime was only reached on
longer times 7, 3> 1. Nonetheless, these observations led to Espafiol et al. [18, 19] to
re-examine the role of sound propagation and suggest that the speed of sound may
play a role in determining the time scale at which the hydrodynamic interactions
propagate. This might, it was suggested, make effective fluid behaviour possible
on very short time scale. A similar explanation was invoked to explain a discrep-
ancy between experimental work and computer simulations vis a vis the collective
dynamics of simulations. In the simulations, Ladd observed collective correlation
induced by sound propagation but these were ascribed to excessive compressibility
in the simulation model. More recently, for a colloidal particle confined in a medium
with a fixed geometry, it was demonstrated that the effects of sound propagation
persist well beyond the sonic time scale and into the viscous diffusion regime [5]. So
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much so, compressibility actually determines the long time form of the decay of the
VACF. This is because, in a confined geometry (which dissipates momentum), the
sound wave generated by a particle ceases to propagate and dissipates by a diffusive
mechanism instead [6]. If the sound wave no longer disappears away with its quota
of momentum, it is not surprising that its effects linger on beyond the normal sonic
time.

Given the above, a detailed study of the role sound plays in a suspension is clearly
in order. This is our aim here. We wish to establish in what regimes the effect of
sound propagation can be safely neglected and conversely where not. To do so we
have chosen to study, rather than the velocity autocorrelation function, the more
general wave vector dependent current-current correlation function J(k,t), defined
as

N N
J(k,t) = %<ZZ [lc- vi(t)v; (0) - K] exp ik - (s — rj)1> (6.8)

=1 j=1

where k is the wave vector. The reasons for choosing to study this function are
twofold. First, it gives an insight into collective correlations. That is, the ability
of the instantaneous velocity of one particle to subsequently influence the motion of
its neighbours. There is no analogue of this process in the case of a single particle
so the inference that sound does not influence this function cannot, by analogy, be
drawn. The second reason is that the suggestion has already been made that this
quantity is indeed influenced by sound propagation [20, 21].

6.2 Calculating the current-current correlation func-
tion

The procedure we used was as follows. We generated a configuration of hard
spheres using standard Monte-Carlo techniques and “embedded” them in a lattice-
Boltzmann fluid. This, as we have discussed in chapter 4, is a model compressible
fluid. Because spontaneous fluctuations are averaged out in the lattice-Boltzmann
fluid we need to introduce velocity fluctuations in the system to calculate the wave
vector dependent current-current correlation function (equation 6.8). One way is to
do so is to drive fluctuations in the stress tensor of the fluid and thus maintain the
model colloidal particles at some prescribed temperature [22]. The other is to im-
" pose velocity fluctuations on the colloidal particles and study the decay [23] of these
fluctuations in an otherwise dissipative system. According to Onsager’s regression
hypothesis these two methods should be equivalent. For reasons of computational
expediency we have chosen the latter. We have seen in chapter 4, that, if the model
colloidal particles contain internal fluid, there are certain artefacts associated with
internal sound propagation. We will be looking for the effects of sound propagation
in a suspension largely by studying scaling behaviour and these artefacts compli-
cate the analysis considerably. We have therefore adopted the procedure described
in chapter 4 to remove the effects of the internal fluid. Thus we generated initial
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velocities, v;(0), for the colloidal particle from a Gaussian distribution with a fixed
variance. The subsequent velocities v;(t) are calculated by simply letting the system
evolve in time. The correlation function can then be calculated by simply substitut-
ing these quantities into equation 6.8 and taking the ensemble average over different
initial configurations of particles and statistically independent initial values of the
velocity. In practice we do both at the same time by repeating the calculation with
different configurations each with a set of initial velocities drawn independently from
Gaussian distributions. At least 40 independent configurations were used. The sta-
tistical errors in the time integral of J(k,t) were then of the order of 10%, which is
just about adequate for our present purposes. It would have been desirable to use
more extensive ensemble averaging, say 500 configurations, but the computational
demands would have been excessive.

One small point in calculating the correlation function (equation 6.8) is that
we do not constrain the total momentum in the system to be zero because this
introduces an artificial anticorrelation between the velocity of an individual particle
and the velocities of its neighbours. However, since we have a nett momentum in
the system the correlation function does not, for a finite system size, decay to zero.
To correct for this we perform the calculation in a frame of reference where the total
solvent momentum remains zero. This has the effect of scaling the velocities from
vi(t) to vi(t), where, by definition

Ap(t) (6.9)

Here Ap(t) the total momentum in the solvent phase at time ¢ and V the volume
of the system. By using values of v}(t) rather than v;(¢), the correlation function,
starting from a system with nett momentum, decays to zero and is independent of
system size [17].

In order to separate out the contribution from collective motions from that of
the single particle motion, it is useful to split the wave vector dependent current-
current correlation function into the (normal) velocity autocorrelation function, C(t)
and an interaction velocity correlation function Jy(k,t). Thus we have J(k,t) =
C(t) + J1(k,t), where, by definition (see equation 6.8) Jr(k,t) is:

N N
Jr(k,t) = -]i-, <Z > [k vittvi(0)- k] exp ik - (rs - rj)]> (6.10)

i=1 j#i

By considering the properties of J(k, %) and C(t) we can deduce some of the features
we expect to characterize the interaction correlation function. The integral over
all times of J(k,t) defines the wave vector dependent collective diffusion coefficient,
D(k). In the limit k¥ — 0 this should approach the (short time) collective diffusion
coefficient, D.. In the limit k — co terms with ¢ # j average to zero, J(k,t) reduces
to the velocity autocorrelation function and so D(k) approaches the single particle
or self diffusion coefficient D, (equation 1.6). In terms of transport coefficients,
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the integral of Jr(k,t) over time is equal to the difference between the wave vector
dependent collective diffusion coefficient and the self diffusion coefficient.

/m Ji(k,t)dt = D(k,t) — D, (6.11)
0

Given the above, we expect that as k& — oo the integral of Jy(k,t) will be zero,
whereas in the limit ¥ — 0 it will be equal to the largest interactive contribution
part of the collective diffusion coefficient D, = D — D,. The collective diffusion
coefficient can be calculated (to a good approximation) theoretically [24] and has
also been calculated numerically [20, 25]. Both concur that D << Dj, so we expect
that, as k — 0, the integral of Jr(k,t) will be a negative quantity.

6.3 Results

6.3.1 The effect of sound propagation on single particle mo-
tion

We will begin by considering the effect of sound propagation on the motion of an
individual particle in a dense suspension. To this end, we consider only the self part
of J(k,t), that is the velocity autocorrelation function C(t). Measuring all quantities
in units such that the lattice spacing and time-step are equal to unity, we took a
suspension with volume fraction ¢ = 0.25 and calculated the VACF for spheres with
three different radii, @ = 2.5, 4.5 and 6.5. The solvent viscosity vp, speed of sound c;
and bulk viscosity vp were kept at constant values of 1/6, 1/4/2 and 1/30 respectively.
This means that for these three simulations the compressibility factor a(= acs /vg)
took the values 10.6,19.1 and 36.0. We are therefore making the suspension rmore
incompressible by increasing the size of the particles. Physically this is because
the viscous time is proportional to a? whereas the sonic time is proportional to
a. Therefore sound travels a characteristic distance a in a proportionately shorter
time if we increase the particle radius. The reasons this is our preferred method for
changing the compressibility factor are firstly that there are strict stability conditions
on the speed of sound. This cannot be varied much. Secondly, although the viscosity
can be chosen freely, the particles have an effective radius which depends on the
viscosity. The value vy = 1/6 gives effective radii very similar to the nominal radii
“but, as the fluid viscosity varies either side of 1/6, this becomes increasingly untrue.
Furthermore, the memory reduction scheme, described in chapter 3, is most effective
for this particular viscosity. We therefore prefer to vary a. The down side of this
is that we require proportionately larger systems. However, for these three sizes of
particles we have been able to simulate systems large enough to allow us to calculate
the VACF up to sufficiently long times and still limit the calculations to times less
than that required for sound to cross the simulation box. The periodic boundary
conditions applied at the faces of the simulation box cannot, therefore, influence the
results. If such a procedure is not adopted there is a pronounced perturbation to
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Figure 6.2: The velocity autocorrelation function for the self part, C(t), at three different
compressibilities of a suspension of volume fraction ¢ = 0.25. These three different com-
pressibilities are obtained by varying only the radii: & = 2.5, 4.5 and 6.5. Other parameters
responsible for the compressibility were kept constant and are given in the text.

the decay of the VACF as a particle gets hit by the sound wave generated by its
periodic images.

The results we obtained for the normalized VACF, as a function of the viscous
time scale 7, are plotted in 6.2. Plotting the data in this form makes that the effects
of compressibility are simple to spot. Any difference between the curves (apart from
numerical errors, which are relatively small even for a = 2.5, see chapter 4) must
be attributable to sound propagation. If the fluid is incompressible then, in these
dimensionless terms we are basically simulating the same system (equation 6.6).
Clearly, at short times the VACF for the three systems are not identical. However,
at longer times the three functions do converge indicating that sound is playing no
role. Furthermore, the time at which the functions become indistinguishable shifts
to shorter times as we decrease the compressibility (increase a). More quantitatively
we find that the VACF calculated for o = 10.6 becomes indistinguishable from the
other two (higher) values of o for 7, > 0.40, whereas the VACF calculated for
a = 19.1 becomes indistinguishable from that calculated at a = 36.0 for times
, > 0.20. We saw in section 6.1.2 that, for the single particle case, the effects
of compressibility can be neglected on time scales long compared to the sonic time
75, that is ¢ > a/cs;. In terms of the viscous time this condition corresponds to
7, > v/e,a or T, > 1/a. Therefore, in terms of the viscous time the effects of
compressibility become negligible after a time which scales as 1/c. The behaviour
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Figure 6.3: The interaction part of the normalized current-current correlation function,
Jr(k,t)/J1(k,0), for two different system sizes. The simulation data are for a 60 sphere
simulation system (diamonds) and a 3820 sphere simulation system (triangles). The di-
mensionless wave vector k* is .6283 in both cases. The other parameters are given in the
text. The functions are statistically indistinguishable

we noted above is quite consistent with this also being the case in a suspension.
On increasing o from a value of 10.6 to 19.1 (a factor of 1.8) the time at which
incompressible behaviour is observed decreases by a factor of approximately 2.0.
Given the uncertainty involved in establishing a precise value for the incompressible
time, this difference cannot be regarded as significant. It is interesting to note that
the incompressible time not only scales in the same way as for the single particle case
but is also quantitatively almost identical. Examining the Bedeaux and Mazur result
(figure 6.1) for a single particle, the incompressible time is, to a good approximation
7, & 4/a. Extrapolating the same behaviour to a suspension, one would predict
an incompressible time of 7, = 0.38, for the system with o = 10.6, and r, = 0.21
for the system with a = 19.1. This compares with values 0.4 and 0.2 respectively
“calculated form the simulation results. The most obvious conclusion we can therefore
draw from figure 6.2 is that, in a suspension, the role of sound propagation on the
velocity autocorrelation function is rather trivial. It is remarkably similar to the
single particle case in that it influences the decay on the short sonic time scale. On
the longer viscous time scale sound appears irrelevant and an incompressible theory
could adequately describe the dynamics.




102 Chapter 6. The role sound plays in propagating hydrodynamic interactions

lset] a Jaegs [ vo [ @ [ To [ N | LIXxLxL [ nrpunsl]
R1}15 | 1.5 1/6 6.3 1/4 | 3820 60 x 60 x 60 40
R2|25{ 25 1/6 10.5 1/4 | 3820 | 100 x 100 x 100 40
R3 |45 | 4.5 1/6 18.9 1/4 | 3820 | 180 x 180 x 180 40
R4 | 85| 8.5 1/6 356.7 1/4 | 477 | 170 x 170 x 170 40
R5 | 45| 47 | 1/48 | 157.9 [ 1/18 | 119 47 x 47 x 94 40
R6 | 45| 479 | 1/96 | 321.9 | 1/24 | 120 48 x 48 x 96 40

Table 6.1: The various parameters associated with the six simulations.

6.3.2 Calculating the interaction contribution

Turning our attention to the interaction part of the transverse current-current cor-
relation function Jr(k,t) we found it useful to adapt our approach in two respects.
Firstly, by comparing the results for simulations on different system sizes we found
that, in contrast to the VACF, the periodic boundary conditions did not influence
the results significantly, even on time scales long compared to the time taken by a
sound wave to cross the simulation box. We were therefore able to calculate J;(k, t),
free from finite size artefacts, up to longer times and using smaller systems. This is
illustrated in figure 6.3, where we have plotted the normalized interaction correlation
function for a system of 60 and 3820 spheres of radius 1.5 lattice sites. The volume
fraction was 25%. Because of the periodic boundary conditions we can only use wave
vectors commensurate with the periodic box. With these two system sizes we can
simulate the same wave vector in both cases. Other the the system size, these sim-
ulations are therefore identical. As the figure shows, the results for the two systems
are indistinguishable. This is despite the fact that, for both systems, the time range
plotted greatly exceeds the time it takes a sound wave to cross the simulation box.
It should be noted that the other possible time scale on which we might expect to
observe finite size effects, the time it takes transverse momentum to diffuse across
the simulation box, is not reached. However, this is a much a less serious restriction.
All the simulations we subsequently report also satisfy the condition.

Secondly, in order to gain a reasonable degree of insight into the role of sound
propagation, the compressibility factor needed to be varied to a greater extent than
was practical by varying the particle size alone. It was necessary, in addition, to
vary the viscosity. For simulations where the viscosity differed from the value 1/6
(used thus far in the simulations outlined above), the particle radii were assigned
to be the effective, viscosity dependent, radii (a.ss) calculated by Ladd [16]. Six
sets of simulations were carried out in total, all at a volume fraction of ¢ = 0.25.
The values of the parameters associated with these simulations, which we denote
by R1, R2.....R6, are summarized in table 6.1. Here, the sound wave attenuation
coefficient T is defined as (4v9/3 + v). It defines the rate of damping for sound
waves propagating through the solvent. The number of colloidal particles is denoted
N and the number of configurations by nryuns. The final column gives the dimen-
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sions L of the simulation box. For the cubic systems we averaged over over wave
vectors directed along each of the three directions of the coordinate axes (giving 120
independent correlation functions). For the non-cubic systems, only wave vectors
directed parallel to the long axis were used.

6.3.3 General features of the interaction correlation function

In figure 6.4 we have plotted J(k,t), calculated for various values of the dimension-
less wave vector k* = ka, for run R4. This simulation had a compressibility factor
a = 36 and, as such, corresponds to particles of radius a ~ 25nm suspended in water
i.e. small colloidal particles. The most notable feature is clearly the pronounced
oscillation. This phenomenon was also observed in computer simulations performed
by Ladd et al. [20]. Ladd et al. further concluded that these oscillations were sonic
in origin, but that they were an artefact of the excessive compressibility of the model
they were using. The model was, in all but detail, the same as the lattice-Boltzmann
scheme we are using here. What we are interested in is whether these oscillations
can really be considered artefacts. To begin with we re-iterate that the results shown
in figure 6.4 are parametrically correct for small colloidal particles. This simulation
can only be regarded as excessively compressible if we are interested in larger par-
ticles. In figure 6.5 we show the equivalent plot for run R6. This simulation had a
compressibility factor @ = 325, approximately an order of magnitude greater. As
such it corresponds to particles of radius a ~ 250nm suspended in water. This could
reasonably be described as an average colloidal particle. As figure 6.5 shows, we
still observe oscillations although they are characterized (at a given value of £*) by
a a higher frequency and more rapid damping than was the case for o = 36. Tak-
ing figures 6.4 and 6.5 together it appears that these oscillations are not necessary
artificial, but rather, they are sensitive to the compressibility of the system. "The
fact that their characteristics depend on the compressibility factor shows that they
must be sonic in origin. If the solvent were incompressible this behaviour could not
be observed, figures 6.4 and 6.5 would be identical. A further point illustrated by
figures 6.4 and 6.5 is that that both the frequency and damping of the oscillations
depend on the wave vector.

In order to come to any conclusion as to whether this effect will be relevant
in the analysis of experimental results, it is necessary to establish the scaling with
respect to the wave vector. There are two reasons for this. First, experimentally it

" is not possible to measure the correlation function J(t) itself. It is only possible to
measure its time integral (as in photo-correlation spectroscopy), or a quantity closely
related to the time interval. The contribution these oscillations make to the integral
of the correlation function and the time scale over over which this contribution
will be significant, will depend on the amplitude, frequency and rate of damping.
Second, the time regime probed by experiments depends on the wave vector. Longer
wave vectors are, for instance, characterized by longer decay times for correlation
functions of position. Thus, experimentally, decreasing the wave vector normally
implies probing longer times. If the oscillations in J(k,t) increase in magnitude
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Figure 6.4: The dimensionless interaction correlation function Ji(k,t)/J(k,0), for Run 4,
calculated for various values of the reduced wave vectork®.
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with decreasing wave vector, but correspondingly decay over shorter times, their
effect may not be relevant.

A convenient reference point for analyzing the wave vector dependent current-
current correlation function is what one may term “classic hydrodynamic” behaviour.
For a one component, isothermal, compressible fluid whose behaviour can be de-
scribed by the compressible Navier-Stokes equations (equation 6.7), the contribution
to Jr(k,t) from sound propagation, J;(k,t), is of the form [26]

T2 (kyt) = ';:li cos (kest) exp (—Tok?t) (6.12)
The full form of J?(k,t) in the frequency, domain is given in reference [26]. Equa-
tion 6.12 is obtained by taking the inverse transformation for frequencies w << ¢,k
so can only be expected to hold for times 7,k* >> 1. In a suspension, J{(k,t) can in
general only be one component of the total interaction function Jy(k,t). We know
this because the integral over all time of J;(k,t) at small k, is not zero. As noted
above, this integral is equal to the difference between the total diffusion coefficient
and self diffusion coefficient (D(k) — D;), (as equation 6.12 implies) and in the limit
of £ — 0 represents the collective part of the diffusion coefficient D.. Furthermore,
as we pointed out in section 6.1.3, this quantity {(D(k) — D,), cannot depend on the
compressibility of the fluid. There must therefore be an “incompressible” contribu-
tion to Jr(k,t), i.e. a component that is independent of the compressibility of the
solvent. This is clearly illustrated in both figures 6.4 and 6.5, particularly at short
times, where Jy(k,t) oscillates about a negative non-zero value. To try to separate
out the effects of the compressible component of J;(k,t) it is convenient to work
with the relative amplitudes of successive oscillations rather than absolute values.
We therefore define the following quantities.

o A frequency w defined 27/At, where At is the time between successive max-
ima (or minima) in the oscillations. From the first maximum (or minimum)
onwards we find that this value is constant, in agreement with equation 6.12.
Equation 6.12 further predicts that w = ck.

e A dimensionless “initial” amplitude Ay = Aom/2wkp, where Ao is defined
as the difference between the first minimum of J;(¢) and the first maximum.
According to equation 6.12, Ay = exp (—~Tok*r/w) (1 + exp (—Iok?n/w)). If
k®T'or/w << 1 (the decay of the oscillations is slow compared to the frequency)
this can be expanded in the simpler form,

A ~2— k*Tom/w + Ok* (6.13)
¢ A dimensionless time-dependent amplitude, A*(¢;) defined as
A* () = |Jr(ti — At/4) — J1(t + At/4)|m/2nksT (6.14)

where | = 1,2,..., is an integer and t; = IAt/2 + At/4. According to equa-
tion 6.12 this should decay as,

2A*(t;) = exp (—kZFOt,) (exp (—k2l"07r/2w) + exp (k2Fo7r/2w)) (6.15)
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Figure 6.6: The (dimensionless) frequency of the oscillations observed in the interaction
correlation function plotted as a function of the reduced wave vector (k* = ka). This data
corresponds to run R4. Data for the other runs showed the same behaviour.

Again, so long as k?T'gm/w << 1, this can be expanded in a simpler for

A*(t;) = exp (—k’Tot:) + Ok* (6.16)

We will take these characteristics in turn and examine to what extent they de-
scribe the results we find in a suspension, beginning with the frequency.

6.3.4 The frequency of the sound induced correlations

In figure 6.6 we have plotted the dimensionless frequency w* = w/c;k as a function
of the dimensionless wave vector k*. According to classic hydrodynamic theory, this
function takes a value of unity, independent of wave vector. As figure 6.6 shows, the
dimensionless frequency of the oscillations displays a weak dependence on the wave
vector, but becomes independent of k for k* < 0.5. That is, we recover hydrodynamic
behaviour on sufficiently long length scales. However, careful analysis of figure 6.6
shows that, in this limit, the dimensionless frequency does not quite asymptote to
unity. The value we find is limy_,ow/c,k = 1.05 £ 0.01.

We now note, however, that there are two primary objections to applying the
classic theory (equation 6.12) to a suspension. First, there is an ambiguity as to the
values we should input for the transport coefficients. In the above analysis we have
taken the speed of sound to be the speed of sound in the solvent, that is, the speed
of sound in the dilute limit. Of course, as with, for instance the viscosity, we do not
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necessarily expect the speed of sound in a suspension to be equal to the speed of
sound in the solvent. Second, it takes no account of the structure of the fluid.

One possible explanation for the low frequency asymptote differing from unity
concerns the former. Simply, the speed of sound in the suspensions ¢,y is slightly
greater than that in the solvent, specifically ¢,4/c, = 1.05. We have independently
confirmed that this is the case by measuring directly the speed of sound in the
simulation system. Specifically, we examined the time at which sound induced per-
turbations to the decay of the VACF, resulting from the periodic boundary con-
ditions, were observed. By comparing with the dilute limit, this analysis gives a
value ¢,4/cs = 1.05. As a point of reference, the suspension viscosity vy is equal to
2.17vg at this volume fraction, so this is a rather weak dependence. Nonetheless, the
asymptotic behaviour we observe for the frequency of the oscillations, at long wave
lengths, is consistent with classic hydrodynamic theory if we replace a transport co-
efficient characteristic of the solvent (c;) with a transport coefficient characteristic
of the suspension (c,g).

If we now turn to the wave vector dependence, this is most likely to be a conse-
quence of the structure present in the fluid. This {(in Fourier space) is most conve-
niently probed by the static structure factor S(k)

S(k) = fvl— < Zexp(ir; -k) Zexp (—iri - k) > (6.17)

i

At sufficiently small wave vectors the static structure factor (SSF) approaches a
constant value, reflecting the fact that, on sufficiently long length scales, the sus-
pension appears essentially homogeneous. For hard spheres at this volume fraction
(see for example reference [27]), the SSF becomes essentially independent of & for
k* < 0.5, in line with our estimate for the wave vectors for which we observe classic
hydrodynamic behaviour. Thus, the wave vector dependence we observe in w/csk at
short wave lengths is consistent with the structure of the suspension, not accounted
for in the simple theory, playing a role.

We finally note that generalizing the hydrodynamic result by defining a wave
vector dependent speed of sound c,(k), such that w/e,(k)k = 1, the data we have
plotted in figure 6.6 is consistent, at short wave lengths with ¢;(k) < ¢,. That
is, a wave vector dependent speed of sound less than the speed of sound in the
solvent (the region where w/c,k < 1). Although this is somewhat counter intuitive,

" the same phenomenon - on lengths scales where the structure of the fluid cannot
be neglected - is observed in simple atomic fluids [28, 29]. It can be accounted
for by more sophisticated theories [30]. It should also be pointed out, however,
that in simple atomic fluids, the wave vector dependence of the speed of sound
is significantly more pronounced. The suspensions we consider here follow classic
hydrodynamic behaviour to a far better approximation than do simple fluids.
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Figure 6.7: The dimensionless initial amplitude Ag (defined in the text) of the oscillations
observed in the interaction correlation function, plotted as a function of dimensionless
wavelength (k* = ka). The data correspond to runs R2, R4 and R6.

6.3.5 The initial amplitude of the correlations

Moving on to the second characteristic of classic hydrodynamic behaviour, the di-
mensionless initial amplitude Ag, is plotted in figure 6.7. It is clear from figures 6.4
and 6.5 that the period of the oscillations is significantly less than the decay rate, so
we are justified in comparing our results with the small ¥ expansion (equation 6.13).
Examining figure 6.7 we see that the dimensionless initial amplitude is approaching
the value 2 as £ — 0, so again we are recovering classic hydrodynamic behaviour
in the limit of long wave lengths. However, there is a clear k¥ dependence, with the
amplitude decreasing roughly linearly with increasing wave vector. The k depen-
dence is not quadratic, so it cannot be accounted for by the O(k?) term appearing
in equation 6.13 (which simply reflects the relatively trivial change in the value of
exponential decay envelope between the first minimum and first maximum). The &
dependence we observe therefore represents behaviour not accounted for by simple
hydrodynamics, again manifesting itself on length scales where the structure of the
suspension cannot be neglected. One further point illustrated by figure 6.7 is that,
following the trend, the amplitude of the oscillations tends to zero at a value k* ~ 2.
That is, we observe no collective effects at all for £* > 1.75. Presumably this reflects
the fact that the minimum separation of 2a between particles essentially defines a
maximum wave vector at which particles can interact via sound propagation. Again,
the theory outlined above takes no account of this effect.
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Figure 6.8: Linear-log plot of the dimensionless time-dependent amplitude A*(t) of the
oscillations in the interaction correlation function (defined in the text), as a function of
dimensionless time ¢tTok?. The reduced wave vector k™ was equal to 0.314. Data for all six
runs is shown.

set | RL|R2| R3| R4| R5 | R6
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Table 6.2: The apparent the sound wave attenuation coefficient of the suspension, I'y,
relative to the solvent value I'o.

6.3.6 The rate of decay of sound induced correlations

Having examined the factors determining the frequency and initial amplitude of
the sound induced oscillations, all that remains is to establish what determines the
subsequent rate of decay. In figure 6.8 we have plotted, at a reduced wave vector
k* = 0.314, the dimensionless time-dependent amplitude as a function of a dimen-
_sionless time tT'gk?, for all six simulations. Hydrodynamically, this plot should be
linear with a slope equal to unity. As figure 6.8 shows, the data are, to a good approx-
imation, linear. The amplitude of the oscillations decays exponentially. However, if
we calculate the slopes, by linear regression, the values are not unity. Following the
same reasoning applied for the speed of sound, it seems sensible to interpret this as
indicating that the sound wave attenuation coefficient in the suspension I'y is not
the same as the solvent value I'g. That is, we expect the amplitude of the oscillations
to decay as exp (-—I‘¢k2). Having made this assumption, we can calculate values for
Ty consistent with the data shown in figure 6.8. These values are summarized in
table 6.2. As the table shows, for the first four systems (R1, R2, R3, R4) the ratio
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T'4/To takes a roughly constant value between 2.0 and 2.6. For these simulations,
the solvent viscosity is greater than the bulk viscosity so, to a first approximation,
we can neglect the bulk viscosity and thus T'o ~ 4v9/3. If we further interpret I'y
as depending on the suspension viscosity v4 and the suspension bulk viscosity vpg,
i.e. T'y = 4vy/3 + vpy, this condition corresponds to I'y/I'o = vg/vo (so long as
vBe/vB < v4/vo). The value of vy for suspensions of hard spheres is known. Ac-
curate multipole calculations performed by Ladd [25] give a value vy/vp = 2.17 at
this volume fraction. The values we obtained for the ratio I's/T'o (~ v4/vo) from
the first four simulations are roughly equivalent to this value (see table 6.2). It
should be noted that, because these simulations use spheres of different radii, the
numerical errors are not the same. We expect the run R4, where the radius of
the spheres was 8.5 lattice units, to be the most accurate. This simulation gives a
value 'y /T = 2.6, somewhat higher than the value quoted above. It is nonetheless
clear from table 6.2 that the most anomalous results are those for runs R5 and R6.
These runs are characterized by a bulk viscosity greater than the viscosity, and a
bulk viscosity similar to the viscosity, respectively. The obvious explanation for this
is that the ratio vp,/vp behaves significantly differently to the ratio vy/vo. If we
take the values of I's/T¢ for these two runs and solve for the two viscosity ratios
we find vy/v = 2.3 and vgy/vp = 4.8. If we now return to run R6 and examine
the correction due to the non-negligible bulk viscosity then, substituting this value
for vg we find that I'y/To = 2.5, in better agreement with the value we calcu-
lated (2.6). Taken as a whole, our results are therefore consistent with the sound
wave attenuation coefficient in the suspension taking the from I'y = 4v4/3 + vBg, if
vpe/vB ~ 4.8, suggesting that the bulk viscosity of the suspension has a stronger
dependence on the volume fraction than does the shear viscosity. It would be useful
to test this hypothesis by calculating vpy directly. Unfortunately, as of yet we have
not succeeded in doing so. The above must therefore remain a working hypothesis.

6.3.7 The effect of sound propagation on the wave vector de-
pendent collective diffusion coefficient

We now turn our attention to the contribution the oscillations do, or do not, make
to the time integral of Jy(k,t). According to equation 6.12, the compressible con-
tribution to the correlation function makes, on average, no contribution to the time
integral. It merely induces oscillations about the incompressible contribution. In
figure 6.9 we have plotted the time integral of J;(k,t), at a reduced wave vector
k* = 0.314, as a function of the viscous time scale. Data for five of the six runs are
plotted figure 6.9. Data from run R5 is omitted for clarity (it follows the same trend).
As the figure shows, for the data obtained from the least compressible simulation
(R6), the frequency of the oscillations in Jr(t) is so high that they hardly influence
the time integral of the correlation function. The striking thing is, for all the other
data where the effects of the oscillations are non negligible, the time integrals clearly
oscillate about the same underlying function as run R6. This is despite the fact that,
between runs R1 and R6, the compressibility factor varies by a factor of 50. It is
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Figure 6.9: Dimensionless time integral of the interaction correlation function. The di-
mensionless wave vector was 0.314. The results for run R5 are omitted for clarity.

therefore clear that the correlation function consists of a compressible component
which oscillates about zero, and therefore contributes nothing, on average, to the
integral, and incompressible component, determined entirely by 7,. Although we
only show results for £* = 0.314, where the statistical errors are minimal, the same
was true for all the wave vectors we studied.

6.4 Discussion

Having carefully examined the role sound plays propagating hydrodynamic interac-
tions, we arrive at the following conclusions. On the dynamics of a single tagged
particle in a suspension, the effect of sound is relatively trivial. Sound propagation
only influences the dynamics on time scales of the order of the time it takes a sound
-wave to propagate a distance the order of a particle radius. At longer times, the
dynamics of the particle become completely independent of the parameters asso-
ciated with compressibility. An incompressible theory could, in principle, describe
the motion. This is exactly the same kind of behaviour one observes for an isolated
colloidal particle. Thus, as far as one particle is concerned, the rest of the suspension
behaves in the same way as a simple solvent. This means that sound propagation
cannot induce the relatively rapid onset of “effective fluid” behaviour, observed in
experiments. Rather, it is more likely that, as speculated in references [4] and [17],
this behaviour is more apparent than actual.
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If, however, we consider collective motions, that is the ability of one particle to
influence the velocity of others, the situation is more complicated. We observe oscil-
lations in the longitudinal current-current correlation function that are clearly the
result of sound propagation between the colloidal particles. These oscillations are
not restricted to the very short times, characteristic of sound propagating a typical
distance in the suspension. Rather, in the limit of small wave vectors (k << 1/a)
the criteria by which these oscillations will be negligible, our results imply, is that
t >> 1/(k?T) should be satisfied. Thus, at sufficiently small wave vectors, the in-
fluence of sound propagation will always be significant. If we return to our original
question, can hydrodynamic interactions propagate at the speed of sound? The
answer is, yes. More strictly, a part of the interaction of one particle with its neigh-
bours is governed by the speed of sound and the sound wave attenuation coefficient.
Since these are quantities characteristic of sound propagation, this clearly implies a
sonic propagation of hydrodynamics interactions. This may seem a little daunting.
It would imply that a complete understanding of hydrodynamic interactions would
require the development of a full, many body, compressible theory. However, our
simulations show that although sound propagation is playing a role, it can be un-
derstood relatively simply. At sufficient small wave vectors (the simulations suggest
roughly ka < 0.1) the effect of sound in a suspension is the same as the effect of
sound propagation in a simple fluid. In other words, if one views a colloidal suspen-
sion on length scales very much greater than the size of the particles, it behaves in
the same way as a generic “structureless” fluid would behave. This can be under-
stood quite simply in terms of what one may term classical hydrodynamics. The
only modification required was that the transport coefficients be characteristic of
the suspension (speed of sound, bulk and shear viscosity), rather than the solvent.
Our simulations suggested that the speed of sound, for a suspension where the col-
loidal particles occupy 25% of the available volume, is approximately 1.05 times the
value for the solvent. The bulk viscosity, on the other hand, appears to be 4.8 times
the solvent value. Relative to other transport coefficients, this applies a very week
dependence on volume fraction for the former and a very strong dependence for the
latter. The scattering of sound waves by the particles is, it seems, a more effective
means of dissipating density fluctuations than propagating them.

We concluded above that hydrodynamic interactions can propagate at the speed
of sound. Here we add the caveat that it depends somewhat on what we take as the
definition of a hydrodynamic interaction. Our results show that the motion of one
particle can influence another by sound propagation. However, we might prefer to
define a hydrodynamic interaction as the motion of one particle influencing another
on average. If we took this definition we would come to a different conclusion.
Looking at the integrated influence of sound propagation we found no effect. On
average sound does nothing but induce wiggles about the incompressible result. It
is still, therefore, the viscous diffusion mechanism that determines the time scale
on which the interactions have a nett effect - the “relaxation” time scale on which
the transport coefficients asymptote. Consequently, we find no evidence to support
the speed of sound propagation mechanism suggested by Ladd et al. to explain the
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different relaxation times observed in computer simulations and experiment. The
origin of this discrepancy remains unknown.

Based on our results we can nonetheless speculate as to when sound induced
oscillations should be observable experimentally. To do so we return to the time-
dependent transport coefficients. The quantity measured experimentally, in photo-
correlation spectroscopy for example, is the dynamic structure factor S(k,t). The
decay of the dynamic structure factor, to lowest order in k is given by,

S(k,t) = Sk,0)exp (—k2 /0 t D(k,t’)dt’) (6.18)

where

D(k,t) = /Ot J(k,t")dt' (6.19)

If we approximate the non-oscillatory components of J(k,t) by their asymptotic
values (valid for times ¢t > a?/1g) we have

t ot

t
/ D(k, ) ~ D(k, 1)t + / T2 (k, ") de"dt’ (6.20)
0

0 JO

In order for the oscillations in the second term to be experimentally observable the
condition

f(; f(:l J? (k’ t”)dt"dt' .
Dyt
should be satisfied. Here Dy is the Stokes-Einstein diffusion coefficient characteristic

of the dilute limit. Substituting the hydrodynamic result for J; (k,t) (equation 6.12)
and performing the double integration this corresponds to the condition

(6.21)

14
t~ ﬁ (6.22)

We have also taken the limit that ¥* << o« but, as we have seen, for any colloidal
suspension the compressibility factor « is greater than unity so this only corresponds
to the condition k* < 1. The latter restriction is in any case necessary for the simple
hydrodynamic result to be valid. The conclusion we therefore arrive at is that sound
“induced oscillations in the dynamics structure should be observable at short times.
To see how short we can substitute values for ¢, and vg typical of water at room
temperature. This yields ¢ < 1071% at k* = 10~!, which is rather short, or more
reasonably t < 107%s at k* = 10~3. We should also point out that the dynamic
structure factor decays on a time scale t ~ 1/(k?D(k)) and that, unless the colloidal
particles are very small (a ~ lnm), the time regime defined by equation 6.22 is very
much shorter. Thus, any effects of sound propagation on the dynamic structure
factor would show up as rapid oscillation about the initial value, rather than any
modulation of the decay.




114  Chapter 6. The role sound plays in propagating hydrodynamic interactions

Bibliography

[1] D.J. Pine, D.A. Weitz, P.M. Chaikin and B. Herbolzheimer, Phys. Rev. Lett.
60, 1134 (1988).

[2] S. Fraden and G. Maret, Phys. Rev. Lett. 65, 512 (1990).
(3] S.T. Milner and A.J. Liu, Phys. Rev. E48, 449 (1993).
[4] H.J.H. Clercx, Phys. Rev. E56, 2950 (1997).

[5] M.H.J. Hagen, 1. Pagonabarraga, C. P. Lowe and D. Frenkel, Phys. Rev. Lett.
78, 3785 (1997).

[6] 1. Pagonabarraga, M.H.J. Hagen, C.P. Lowe and D. Frenkel, Phys. Rev. E 59,
4459 (1999).

[7] H. Mori, Prog. Theor. Phys. 34, 399 (1965).
[8] B. J. Berne and G. D. Harp, Adv. Chem. Phys. 17, 63 (1970).
[9] J.M. Deutch and I. Oppenheim, Faraday Discuss. Chem Soc. 83, 1 (1987).

[10] J. A. McLennan, ”Introduction to Non-equilibrium Statistical Mechanics”,
Prentice Hall, Englewood Cliffs, New Jersey (1989).

[11] D. Bedeaux and P. Mazur, Physica 78, 505 (1974).

[12] A.J. Masters, Mol. Phys. 57, 303 (1986).

[13] J.X. Zhu et all, Phys. Rev. Lett. 68, 2559 (1992).

[14] M.H. Kao, A.G. Yodh and D.J. Pine, Phys. Rev. Lett. 70, 242 (1993).

[15] A.J.C. Ladd, Phys. Rev. Lett. 70, 1339 (1993).

[16] A.J.C. Ladd, J. Fluid Mech. 271, 311 (1994).

[17] C.P. Lowe and D. Frenkel, Phys. Rev. E54, 2704 (1996).

[18] P. Espafiol, M.A. Rubio and 1. Ziiiga, Phys. Rev. E 51, 803 (1995).

[19] P. Espaiiol, Physica A214, 185 (1995).

[20] A.J.C. Ladd, H. Gang, J.X. Zhu and D.A. Weitz, Phys. Rev. E52, 6550 (1995).

[21] A. J. C. Ladd, H. Gang, J. X. Zhu and D. A. Weitz, Phys. Rev. Lett.74, 318
(1995).

[22] A. J. C. Ladd, J. Fluid. Mech. 271, 285 (1994).
[23] M.H.J. Hagen, D. Frenkel and C. P. Lowe, Physica A, in press (1999).




Bibliography 115

[24] C.W.J. Beenakker and P. Mazur, physica 126 A, 349 (1984).
[25] A.J.C. Ladd, J. Chem. Phys. 93, 3484 (1990).

[26] J. P. Hansen and I. R. McDonald, Theory of simple liquids, Academic Press
Limited, 2nd edition (1990).

[27] J.-P. Boon and S. Yip, “Molecular Hydrodynamics”, McGraw-Hill, New York
(1980).

[28] K. Skold and K. E. Larsson, Phys. Rev. 161, 102 (1967).

[29] A. Rahman, in “Neutron Inelastic Scattering” 1, International Atomic Energy
Agency, Vienna, 561 (1968).

[30] C.-H Chung and S. Yip, Phys. Lett. 50A, 175 (1974).







Summary

The lattice-Boltzmann method is a simulation method to study colloidal particle
dynamics. In this method the colloidal particles are incorporated in a discrete
lattice-Boltzmann fluid model by simple Eulerian discretized equations of motion.
To represent the complex, collective particle dynamics properly, several ten thou-
sands of colloidal particles, implying an astronomic number of solvent molecules to
deal with as well, must be included in the simulation, which is perfectly possible
within the lattice-Boltzmann technique. An additional advantage is that the full
time regime can be studied. These advantages do not come cheap; the calculations
require large computer resources. Besides, an accurate and robust method for simu-
lating the motion of truly solid colloidal particles with the same density as the fluid
is still lacking.

The most powerful computers nowadays have a parallel architecture. Due to
the parallel nature of the lattice-Boltzmann scheme a parallel calculational scheme
will speed up the calculations. Therefore the code is parallelized and the scalable
performance is tested as a function of the number of processors for two given parallel
computer systems.

The first part of this thesis describes two algorithm improvements. The first con-
cerns a way to greatly reduce the demand for memory, affecting both main memory
and hard disk. This storage reduction is particularly effective when the collision
operator associated with a kinematic fluid viscosity of 1/6 is used, resulting in a
storage reduction of more than 75%, with which most of our simulations are carried
out. This being the case allows the system sizes to grow by a factor of four. We have
shown that this storage reduced algorithm is efficient and highly parallel scalable.

The second algorithm improvement deals with a method for truly solid particle
motion, incorporated in the lattice-Boltzmann fluid. The method removes the ef-
fect of the internal fluid. It has been demonstrated that the correct time-dependent
rotational and translational dynamics of a single solid particle were recovered. For
a concentrated suspension we have showed that an additional inertia from the in-
ternal fluid contributed to the effective density ratio of the suspension and that the
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kinematic viscosity does not display the same dependence on volume fraction as
it should. It has been shown that the new method recovers the correct kinematic
viscosity up to high volume fractions.

The second part of this thesis is devoted to two applications that have been
studied using this storage reduced and removed effect of internal fluid algorithm.
The first concerns calculating a transport coefficient, namely the high frequency low
shear rate viscosity for both monodisperse and bimodal hard sphere suspensions,
using a method that only requires the dynamics to be simulated for a very short
period of time. For monodisperse suspensions we found good agreement with other
simulations, experiment and theory for volume fractions up to 45%. Furthermore,
we examined the wave vector dependence of the viscosity and found that simple
Newtonian fluid behaviour appears at spatial length scales very much greater than
the size of the colloidal particles, i.e. k* < 0.1, indicating that one may expect
a somewhat lower viscosity when considering for example tube flow. Finally, the
similarity found for the k* dependence of a suspension and that of a hard sphere
fluid suggests that the k* dependence of a simple atomic fluid has its origin more
in the structure than in the hydrodynamics. For bimodal suspensions at moderate
volume fractions and size ratio 2.6, the commonly observed viscosity reduction has
been shown, with its minimum showing up for compositions rich in large spheres. To
our knowledge the first time this has been achieved in three dimensional simulation.
To study higher volume fractions and higher size ratios further hardware and or
algorithmic improvements are needed.

The second application is investigating the role sound plays in propagating hy-
drodynamic interactions. It appears that on the dynamics of a single particle in
a suspension, the effect of sound is negligible. Already on time-scales of ~ 1 ns
and longer, the dynamics of the particle becomes completely independent of the
compressibility theory and an incompressible theory could, in principle, describe the
motion. When considering collective motions the situation seems more complicated.
We observed oscillations in the longitudinal current-current correlation function that
are clearly the result of sound propagation between the colloidal particles. These
oscillations are not restricted to the very short sonic times. For small wave vectors
(k << 1/a) the criteria by which these oscillations will be negligible, our results
imply ¢t >> 1/(k®T). Thus at small enough wave vectors the influence of sound
propagation will always be significant. However, although sound is playing a role
it could be understood relatively simple. For small enough wave vectors (roughly
ka < 0.1) simple fluid behaviour has been recovered again and thus on length scales
very much greater than the size of the particles, the suspension behaves in the same
way as a generic “structureless” fluid would behave. The only modification required
was that the transport coefficients (speed of sound, bulk and shear viscosity) of the
solvent have to be replaced by the values of the suspension. It has been shown that,
at a volume fraction of 25%, the speed of sound is 1.05 times the value for the sol-
vent and the bulk viscosity 4.8 times the solvent value. This means a relative weak
dependence on volume fraction for the former and a relative strong dependence for
the latter. Looking at the integrated influence of sound propagation it appeared
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that on average sound does nothing but induce wiggles about the incompressible re-
sult. It is still the viscous diffusion mechanism that determines the relaxation time
scale on which the transport coefficients asymptote. Speculating as to when the
sound induced oscillations should be observable experimentally, we concluded that
any sound effects would show up as rapid oscillations unless the colloidal particles
are very small (a ~ 1nm).







Samenvatting

De rooster-Boltzmann methode is een geschikte simulatie methode om de dynamica
van colloidale deeltjes in evenwicht te bestuderen. Deze colloidale deeltjes zijn via
simpele Euleriaanse bewegingsvergelijkingen geintegreerd in een zeer gediscretiseerd
vloeistofmodel, wat de rooster-Boltzmann methode is. Omdat de dynamica tussen
de colloidale deeltjes zeer complex en collectief van aard is, zijn systeemgroottes
van enkele tienduizenden colloidale deeltjes vereist. Dit is zeer goed mogelijk met
de rooster-Boltzmann methode die het bijbehorende astronomische aantal vloeistof
moleculen op geschikte wijze behandelt. Een bijkomend voordeel is dat het gehele,
natuurlijke tijdsverloop bestudeerd kan worden. Deze voordelen hebben hun prijs;
de berekeningen vergen veel computertijd en geheugenruimte. Daarnaast ontbreekt
een nauwkeurige en robuuste methode voor de beweging van echte ondoorlaatbare
zwevende harde bollen nog steeds.

De krachtigste computers van deze tijd hebben een parallelle architectuur. Van-
wege de uiterst parallelle natuur van de rooster-Boltzmann methode zal een parallel
rekenschema de berekeningen behoorlijk versnellen. Daarom is de computercode ge-
paralleliseerd en de parallelle prestaties getest op schaalbaarheid als functie van het
aantal processoren. Dit is gedaan voor twee gegeven parallelle systemen.

Het eerste deel van dit proefschrift beschrijft twee algoritmiek verbeteringen. De
eerste betreft een manier om het gigantische geheugengebruik van deze methode te-
rug te dringen, zowel voor het werkgeheugen als de harde schijf. Dit werkt vooral in
het geval de botsingsregels voor de kinematische viscositeit van 1/6 voor de vloei-
stof worden gebruikt, een viscositeit waarmee verreweg de meeste simulaties zijn
uitgevoerd. In dit geval kan het geheugengebruik met meer dan 75% worden te-
ruggebracht. En dus kan de systeemgrootte verviervoudigd worden en daarmee ook
het aantal te simuleren colloidale deeltjes. Vervolgens worden de prestaties van dit
parallelie en opslaggereduceerde algoritme besproken.

De tweede algoritme verbetering betreft de beweging van de colloidale deeltjes in
de rooster-Boltzmann vloeistof. De methode verwijdert het onnatuurlijke effect dat
de interne vloeistof in de bol zou kunnen hebben, zoals een extra traagheidskracht
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vanwege de extra massa. De berekingen wijzen uit dat de correcte, tijdafhankelijke
rotatie en translatie snelheden worden gevonden met deze nieuwe methode. Voor
een geconcentreerde suspensie blijkt dat de interne vloeistof zorgt voor een andere
kinematische viscositeits afhankelijkheid van de deeltjesconcentratie dan zou moeten.
Met de nieuwe methode wordt de juiste kinematische viscositeit verkregen tot hoge
deeltjesconcentraties.

In het tweede deel van dit proefschrift worden twee toepassingen behandeld die
zijn bestudeerd met dit opslaggereduceerde algoritme en waarin het effect van de in-
terne vloeistof is verwijderd. De eerste toepassing is een berekening van een transport
coefficient, namelijk de viscositeit voor korte tijden en onder lage schuifspanning, zo-
wel voor monodisperse als bidisperse systemen, gebruikmakend van een meetmetode
die alleen de simulatie van de dynamica op zeer korte tijden behoeft. Voor mono-
disperse systemen vertonen de berekeningen goede overeenkomsten met theory en
experiment, tot hoge deeltjesconcentraties (45%). Vervolgens hebben we de golf-
lengte afhankelijkheid getoetst en gevonden dat puur Newtoniaans vloeistof gedrag
optreedt op lengteschalen die veel groter zijn dan de colloidale deeltjes zelf, dat is
k* < 0.1. Dit geeft aan dat we een lagere viscositeit kunnen verwachten in bijvoor-
beeld cilinder stroming. Tot slot volgt een overeenkomst met een harde bol vloeistof
voor de golflengte afhankelijkheid van de viscositeit. Deze overeenkomst suggereert
dat de oorzaak van de golflengte afhankelijkheid gezocht moet worden in de struc-
tuur van de vloeistof en niet in de hydrodynamische interacties. Voor bidisperse
systemen met relatieve grootteverhouding 2.6 en een redelijke deeltjesconcentratie
(30% — 35%), vertonen de rooster-Boltzmann simulaties zichtbare viscositeitsreduc-
ties. Het minimum hiervan bevindt zich steeds aan de kant van grote concentraties
van grote deeltjes. Voor zover bekend is dit niet eerder bereikt in een drie dimensi-
onale simulatie. Echter om hogere concentraties en grotere grootteverhoudingen te
simuleren zijn verdere hardware- en of algoritmeaanpassingen nodig.

De tweede toepassing is het bepalen welke rol geluid en daarmee de compressibi-
liteit van de suspensie, speelt in de voortplanting van hydrodynamische interacties.
Het blijkt dat voor een geisoleerd deeltje in een suspensie dit effect verwaarloos-
baar is. Reeds vanaf zeer korte tijden ~ 1 ns raakt de dynamica van het deeltje
compleet onafhankelijk van de compressibiliteits theory en zou een incompressibele
theory, waarbij wordt aangenomen dat de geluidssnelheid oneindig is, in principe
voldoen. Echter, wanneer we de collectieve bewegingen van de deeltjes beschouwen
is de situatie veel gecompliceerder. Er doen zich oscillaties voor in de longitudi-
nale snelheids correlatie functies van de deeltjes die duidelijk een resultaat zijn van
geluidspropagatie tussen de deeltjes. Deze oscillaties duren langer dan de tijd die
geluid nodig heeft om een deeltjesdiameter af te leggen. Onze berekeningen wijzen
uit dat deze oscillaties voor kleine golfvectors (k << 1/a) pas verwaarloosbaar zijn
voor tijden t >> 1/(k®T). Dit betekent dat voor kleine golfvectors de invloed van
geluidspropagatie altijd significant is. Gelukkig kan de geluidspropagatie eenvoudig
worden voorgesteld. In het geval van kleine (ruwweg ka < 0.1) golfvectors treedt ef-
fectief vloeistof gedrag op, wat betekent dat de suspensie zich gedraagt als een pure,
simpele atomaire vloeistof. Het enige vereiste is wel dat de vloeistofparameters ver-
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vangen dienen te worden door de suspensieparameters. Bij een deeltjesconcentratie
van 25% blijkt de geluidssnelheid 1.05 keer de vloeistofsnelheid te zijn en de bulk
viscositeit 4.8 keer de vloeistof waarde. Dit betekent een relatief zwakke afhanke-
lijkheid van de concentratie voor de geluidssnelheid en een relatief sterke voor de
bulk viscositeit. Wanneer we naar de geintegreerde effecten van geluidspropagatie
kijken blijkt dat geluid slechts kleine oscillaties veroorzaakt rondom het incompres-
sibele resultaat. Het blijft nog steeds het diffusiemechanisme dat bepalend is voor
de asymptotische benadering van de transport coefficienten. Concluderend kunnen
we stellen dat geluidseffecten zich voordoen in de vorm van snelle oscillaties rondom
het incompressibele resultaat en meetbaar worden voor kleine colloidale deeltjes
(@ ~ 1nm).
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