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Executive Summary
Traditionally, rolling stock maintenance consists of Preventive Maintenance (PM) and Corrective Main-
tenance (CM). Rolling stock requires PM after running a specified mileage and/or after a specified time
period since its previous Preventive Maintenance routine (Wagenaar et al., 2017). PM of rolling stock
is usually performed at a maintenance depot, so the rolling stock has to be scheduled out of operation
in order to shunt (moving a railway vehicle) to the depot for PM. A rolling stock maintenance planning
should thus be established in order make efficient decision-making for maintenance while complying
with the required availability of rolling stock for passenger operations. The efficiency of the rolling stock
PM planning can be quantified by the mileage losses. The usage of a rolling stock is related to the
mileage (Lai et al., 2015), hence why PM has to be performed every time that a rolling stock ran a
certain mileage. This is considered to be the maximum usage that the rolling stock can safely run ac-
cording to experts. If a rolling stock undergoes PM when the mileage since previous PM is less than
the allowed mileage threshold, this remaining mileage is considered as a loss. The mileage loss can
be expressed into costs, the mileage costs, which are desired to be minimal.

Recently with the use of sensors, microprocessors and an online network that can be used for condition
monitoring, the health state of a component or sub-system can be retrieved in real-time by detecting
faults based on monitoring data (Brahimi et al., 2020). In addition to obtaining the current health state
with the use of online condition monitoring, also the degradation evolution of the system can be ap-
proximated and CM can be avoided.
When an anomaly is detected with the use of condition monitoring, the health of the system is degrad-
ing. This detected anomaly can be isolated and diagnosed, this is defined to be a fault. From the
moment in time that a fault is detected, the component or system will further degrade until failure. The
estimated time between the point in time of fault detection until the time of failure, is defined as the Re-
maining Useful Life (RUL). The length of the RUL in time units is established by a prognosis. Planning
rolling stock maintenance according to this prognosis to failure is referred to as Condition-Based Main-
tenance (CBM). The maintenance planner can act and rearrange the current maintenance planning in
response to a failure prognosis. CBM is thus anticipated to mitigate the disruption of the maintenance
planning in comparison to CM.
Ricardo Rail is a consultancy company that participates in this study. Nationale Spoorwegen (NS) is a
client of Ricardo Rail, which is a Dutch train operating company that is involved due to a mutual interest
in the development of CBM. The newest light-train rolling stock type of NS with its maintenance strategy
will be used as case study for this study.

NS expressed interest in optimizing maintenance operations by integrating CBM in the rolling stock
PM planning. However, it is unknown whether the integration of this new maintenance approach with
the current maintenance strategy is complementary. It will be studied what the impact of CBM is on
the decision-making of rolling stock maintenance planning. The main research question is formulated
as follows:

What is the impact of integrating Condition Based Maintenance in the Preventive Maintenance planning
decision-making?

The state of the art consists of a sufficient amount of research optimizing the rolling stock mainte-
nance planning, based on PM conditions and passenger operations. The objective is to minimize the
mileage losses and overall maintenance costs with a MILP optimization model that is solved with a
solver algorithm. The challenge is often in these studies to comply with passenger operations while
performing efficient PM.
Alternatively, a few studies can be found that integrate a prognostic model of the health of rolling stock
into the maintenance planning. The objective in these studies is to exploit the degradation of the rolling
stock and maintain the asset right before failure in order to perform efficient maintenance. However,
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vi Executive Summary

these studies do not consider if planning maintenance based on the actual degradation actually im-
proves the maintenance planning or study the opportunity of performing CBM in combination with PM.
The rolling horizon framework is suggested from literature for simulating rearrangements in mainte-
nance planning decision-making in response to unforeseen events. The maintenance planning opti-
mization methodology from literature will be used for the formulation of the optimization problem.

Passenger operations and maintenance operations are managed independently at NS, hence there
is a timetable for passenger operations and a separate planning for maintenance. Maintenance is car-
ried out in a maintenance depot outside the passenger transport railway network, so logistics activities
must be initiated in order to shunt a train from the railway network to the NS maintenance depot. NS
performs ”short cycle” PM every 108 [days] and/or 45,000 [km] that a rolling stock has been in oper-
ation, whatever threshold comes first. A standardized cluster of PM activities is performed per rolling
stock at the maintenance depot of NS, which takes 3 days.

The decision-making for maintenance is constrained by the depot capacity and the required amount of
rolling stock available for passenger operation. CM is also performed at the maintenance depot of NS
at a designated track. It is a challenge to plan CM, because a failure occurs unexpected, so CM brings
an extra workload to the maintenance depot and another rolling stock should replace the failed rolling
stock in order to comply with the required availability for passenger operations.
If NS would monitor the health of the rolling stock and plan maintenance based on prognostic data,
so performing CBM, this creates flexibility for the maintenance planner to pick the most ideal timing.
Consequently, less disruptions in the planning take place of this type of maintenance, because it is
foreseen.
Additionally, while assuming that the RUL gives the maintenance planner flexibility for planning the
maintenance, it becomes reasonable to see this as an opportunity to combine PM with CBM. When
PM has to be performed in the near future and a failure is predicted simultaneously, the two main-
tenance activities can be combined, saving shunting costs because of this economic dependence.
Consequently, a trade-off can be made. Either separating PM and CBM, requiring the rolling stock to
visit the depot twice with minimal mileage loss. Or combining PM and CBM by scheduling earlier PM,
which results in mileage losses but saves costs because the rolling stock only needs to visit the depot
once. It is expected that the more combinations of CBM with PM can be made, the more efficient the
PM planning becomes.

In this study, a rolling stock maintenance planning optimization approaches are formulated as a de-
terministic MILP problem. Under several assumptions, a mathematical model is formulated that rolling
stock should perform PM before reaching the mileage or time threshold. The objective of the mainte-
nance approaches is to minimize the maintenance costs. These costs associated with maintenance
are considered to be: Shunting costs, PM costs, CM costs and CBM costs. The model aims to perform
PM only when the maximum mileage threshold has been reached so that the mileage losses are mini-
mal while simultaneously performing CBM and CM.
First of all, a rolling stock PM planning optimization method is established based on the way of practice
at NS. The first approach, ”approach 1”, only considers PM that should be planned while making a
minimum amount of mileage losses. NS does not plan PM according to an optimization tool yet, so
this optimization method is beneficial for optimizing the PM planning under the assumptions that are
defined in this study.
Secondly, two approaches are formulated building on approach 1, but contain additions that concern
the integration of CM and CBM. The addition of this approach is that disruptive CM and CBM will be
included in the existing PM planning. When discussing disruptions, this refers to instances of CM or
CBM. It was a challenge to model the unexpectedness of failures in the planning model with CM, or
how failures could be predicted with CBM. It took therefore three approaches to successfully integrate
CBM or CM in the rolling stock maintenance planning optimization model.

A rolling horizon framework is used in order to come to the satisfactory optimization method. The
approach that is referred to as ”approach 3” minimizes the overall maintenance costs. This approach
is in line with the state of practice, because with this method, a planning is made per week and will be
rearranged when disruptions happen during the execution.
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Approach 3 can be used for achieving three different types of results:

• The rolling stock PM planning optimization integrating CM.

• The rolling stock PM planning optimization integrating CBM.

• The rolling stock PM planning optimization integrating CBM and additionally CBM can possibly
be combined with PM in one routine.

The formulated approaches are evaluated on their sensitivity and the performance of the three different
types of results are compared. The results are quantified according to the defined KPI’s. These KPI’s
are themileage losses, the amount of successful optimization computations, referred to as the amount
of feasible solutions, the amount of combinations of CBM with PM and the overall maintenance costs.

The performance of the maintenance planning optimization approach 3 is evaluated in order to quantify
the difference in the disruptive impact of CM versus CBM. The results demonstrate that a rolling stock
PM planning integrating CBM is superior to a PM planning integrating CM, because 27 more feasible
solutions out of 180 are found. The results of the optimizations integrating CM demonstrate that more
mileage losses are made than for CBM. Moreover, the integration of CBM performs really well, because
more than 50% of the times, no mileage losses are made in the planning.
The performance of the maintenance planning optimization approach 3 is evaluated when CBM can
be combined with upcoming PM routines. The RUL length for CBM is iterated for this performance
evaluation such that a failure may be predicted 7, 14, and 21 days in advance. Also the amount of
disruptions in the planning is iterated from 4 to 12. Results show that combining CBM with PM is cost
efficient, because extra shunting costs are saved. More costs can be saved the longer the RUL and
the more disruptions occur in the maintenance planning. The maximum amount of costs were saved,
which is 0.86% of the maintenance costs, with the longest assessed RUL length of 21 days and the
most interruptions of 12.

In this study, an optimization method is established that minimizes the mileage losses in the PM plan-
ning which can be used as optimization tool for NS. With a rolling horizon framework, the integration
of disruptions in the rolling stock PM planning is modeled that can act on unforeseen events and rear-
range the planning accordingly.
From the results of optimization approach 3 can be concluded that planning maintenance according to
prognostic information results in less mileage losses than a PM planning that is disrupted by CM. This
is because CM must be conducted instantly at a time that is difficult to arrange. CBM is more feasible
to plan and CBM creates the possibility to combine the depot visit for CBM with PM as well. This has
been proven by the model to be cost efficient.

All in all, the model presents an integral simplified version of the NS rolling stock maintenance planning
case. For the formulation of this model, assumptions and concessions are made to be able to model
the case. As a consequence, the results of the model may therefore deviate from reality.
It is therefore recommended to upscale the fleet model to the actual fleet size, model the required
amount of rolling stock for operations variable based on the actual requirements based on peak hours
and peak days and approach the maintenance depot capacity constraints more precisely. Also, it is
recommended to research how uncertainties of prognostic information influence the decision-making
of CBM and how this can be integrated in the planning optimization model.
Nonetheless, this study demonstrates that the integration of CBM to the PM planning is beneficial and
it is therefore recommended to perform more research on this subject. It is shown that combining CBM
with PM in one routine is cost efficient. Also, based on the results of this study, it is recommended
to develop prognostic models to predict failures far in advance, because the longer the RUL of the
prognostic models, the more efficient the integration of CBM into the PM planning can be.
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1
Introduction

1.1. Background
Maintenance is performed on rolling stock in order to ensure reliable and safe passenger transportation
without failures during operation (Zhong et al., 2019). The life cycle of rolling stock includes a signifi-
cant amount of maintenance costs, hence maintainers strive to perform maintenance as cost efficient
as possible. Meanwhile train operators require a high availability of rolling stock for passenger trans-
portation.
Currently, decision-making for rolling stock maintenance planning and activities is based on standard-
ized frameworks such as Failure Modes Effects and Criticality Analysis (FMECA) that determines the
maintenance frequency of components while ensuring reliability (de Vos and van Dongen, 2015). The
result is a Preventive Maintenance (PM) planning that is usually developed by maintenance experts
(Bougacha et al., 2020; Ma et al., 2016; Zomer, 2020). This predetermined PM might lead to un-
necessarymaintenance routines and component replacements, because the actual rolling stock
condition is not taken into consideration while making maintenance decisions.

Recently with the use of sensors, microprocessors and an online network, maintenance decision-
making can be based on the estimated health condition of the asset (Nappi et al., 2020). This is
arguably more efficient since unlike PM, maintenance activities can be suggested when they are cer-
tainly required. Preventive Maintenance inspections become unnecessary, because the deterioration
of the asset is consistently monitored. The condition monitoring can be further exploited when pre-
dictions of failures are made based on the condition monitoring measurements. Besides, Corrective
Maintenance can be avoided, because failure can be foreseen. Predictions of the time to failure are in
this context referred to as prognostics and expressed as the Remaining Useful Life (RUL) (Nappi et al.,
2020). With these developments as starting point, the implementation using prognostics in practice for
rolling stock maintenance decision-making can be anticipated.
The dutch railway operator ”Nationale Spoorwegen” (NS) is interested in using condition monitoring and
prognostic for maintenance decision-making on their newest rolling stock fleet, the ”Sprinter Nieuwe
Generatie” (SNG), which is full of capable equipment to perform condition monitoring. These condi-
tion monitoring measurements can subsequently be used for conducting prognostics. Also, track-side
condition monitoring equipment is already in use, and the readings are being used at the maintenance
depot to determine the health or degradation for example of the wheelsets or the axle bearings. Whilst
prognostics and condition monitoring are almost ready for use, the optimum course of action is still
uncertain. Specifically how to act on this new information with the current maintenance policy is there-
fore unclear. To assess the viability of this new maintenance strategy and to assess whether using
prognostics for maintenance decision-making is beneficial, its integration with the existing Preventive
Maintenance strategy of NS should be researched.

This study addresses rolling stock maintenance, which is specific per train operating organization.
There is no one maintenance strategy solution that suits all for rolling stock maintenance and is there-
fore a thoroughly discussed subject. Due to the involvement of train operator NS in this graduation

1
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Figure 1.1: Rolling stock Preventive Maintenance cycles at NS

project, their maintenance strategy will be presented and used as a case study throughout. This study
contains confidential information that is enclosed in appendix B, which will be referred to as the con-
fidential annex. All maintenance costs are therefore multiplied with multiplication factor 𝑌 throughout
this report, the exact value can be found in confidential annex B section B.3. Also figures with actual
costs can be found in this confidential annex.

At NS, passenger operations and maintenance operations are managed independently, hence there is
a timetable for passenger operations and a separate planning for maintenance. Still, in order to decide
which rolling stock can undergo maintenance and which rolling stock must be available for passenger
operations, the parties must communicate.
Maintenance is carried out in a separate maintenance depot, so logistics activities must be initiated in
order to transfer a train to the NS maintenance depot. These logistic operations are managed by the
fleet operator. The logistics between passenger operations and the maintenance depot are beyond the
scope of this study, because the maintenance operator has no influence over logistical decisions at NS.

The rolling stock maintenance organization at NS is centered around distance- and time based pe-
riodic Preventive Maintenance. So maintenance experts have decided that rolling stock may run until
a time threshold of 108 days has been reached, or the mileage of 45,000 km has been reached since
the last PM, whatever threshold comes first. There are different classifications of PM considered by
NS. Three main maintenance categories listed below and can be seen in figure 1.1.

• Daily or weeklymaintenance service operations. Consisting of tasks like cleaning, short safety
checks and visual inspections. The duration of this type of maintenance takes a few hours. These
activities are performed at shuntyards within the railway network.

• Short cycle maintenance. For this type of maintenance rolling stock is unavailable for passen-
ger operations and goes to the designated maintenance depot for maintenance. The mainte-
nance activities include technical checks, inspections and component repairs when a fault has
been diagnosed so that failures are prevented. This type of maintenance operation takes place
approximately every three months and takes a few days time.

• Long cycle maintenance. For this type of maintenance, the rolling stock will be unavailable for
passenger operations and goes to a designated maintenance depot every 4 years. For long cycle
maintenance, the rolling stock might need to be partly disassembled for large revision projects.
The rolling stock will be unavailable for weeks up to months.

The scope of this study is short cycle maintenance at the maintenance depot, because NS aims to
perform short cycle maintenance based on the actual condition of the rolling stock. Consequently,
when discussing PM, this refers to short cycle Preventive Maintenance of NS.
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Mileage losses The amount of mileage that a rolling stock runs can be related to the amount of usage
of that rolling stock. Therefore, at NS, the usage threshold for PM is expressed in mileages, 45,000
[km]. The value of the mileage threshold is determined by maintenance experts. This is considered
to be the maximum usage that the rolling stock can safely run ensuring a minimum amount of failures.
Since the decision-making of rolling stock PM is constrained by this threshold, the rolling stock should
outrun the full 45,000 [km] for maximum exploitation. Therefore, the efficiency of the PM planning is
expressed at NS in mileage losses. Mileage losses are defined to be the remaining amount of mileage
that the rolling stock potentially could have run if the rolling stock did not go to the maintenance depot
for PM prematurely. This mileage threshold should however be reached within the time threshold of 108
[days] since the last time that the rolling should went to the maintenance depot for PM. The mileage that
the rolling stock ran since the last time that PM is performed, can be referred to as the accumulated
mileage, because the mileage is a cumulative. Similarly, the time in since the last time that PM is
performed can be referred to as the accumulated time.
Figure 1.2 B explains this by showing that more PM is performed when the mileage losses are made.
The mileage losses are shown in red in figure 1.2.
When more mileage losses are made, more PM is performed over a longer period of time, resulting
into more maintenance costs. Components are prematurely maintained resulting into unnecessary and
costly replacements.

Figure 1.2: Two figures illustrating the timeline of a rolling stock and how the decision-making of PM influences the efficiency of
the PM planning
A) situation where PM is planned exactly when the mileage threshold is reached
B) situation where PM is planned before the mileage threshold is reached resulting into mileage losses and more PM

1.2. Maintenance
Consistent use of maintenance terminology is essential for understanding how decisions are made in
the context of planning rolling stock maintenance. Therefore, maintenance terminology definitions ac-
cording to standards and the state of the art are addressed in this section. These definitions will be
used consistently throughout the report.

Following the NEN-EN13306 standard (Maintenance - Maintenance terminology, 2019), maintenance
is defined as:

”Combination of all technical, administrative and managerial actions during the life cycle of an item
intended to retain it in, or restore it to, a state in which it can perform the required function.”

From which technical maintenance actions are defined as: ”observation and analyses of the item state
by e.g. inspection, monitoring, testing, diagnosis, prognosis, etc. and active maintenance actions as
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repair, replacement ...” (Maintenance - Maintenance terminology, 2019). Thus, ”Performing mainte-
nance actions” has various meanings and should be used carefully whilst providing context.

• A failure is defined to be the loss of the ability of a component or system to perform a required
function (Maintenance - Maintenance terminology, 2019).

• A fault is defined to be a deviation of a characteristic property or parameter in the system which
occurs before failure (Brahimi et al., 2020). A fault could indicate the deterioration of a system
that leads to failure over time and over cumulative usage if it would be neglected.

Maintenance actions are performed in order to avoid failures and a detection of a fault could give reason
to actively perform maintenance as a repair or refurbishment.

Maintenance categories Maintenance is generally categorized in two categories:

• Corrective Maintenance

• Preventive Maintenance

Further maintenance categories are standardized and can be seen in figure 1.3

Corrective Maintenance (CM), has to be performed after a failure has been observed, so the asset
or component is not able to perform the required function anymore. Corrective Maintenance is there-
fore a reactive action to a failure, which consists of e.g. restoring or repairing the system to a state in
which it can perform its function again (Maintenance - Maintenance terminology, 2019). An unexpected
failure results in service disruption and may initiate damage to connected components because of so-
called stochastic dependencies (Fumeo et al., 2015; Ghamlouch and Grall, 2018). So if a system runs
until failure, it will incur additional costs. Therefore, Corrective Maintenance is considered expensive,
because additional costs could have been prevented when maintenance was performed before failure
at a convenient time (Fumeo et al., 2015).

Preventive Maintenance (PM) is performed before failure, when the system is still able to perform
its required function. The goal of performing PM is to mitigate degradation and reduce the probability
of failure (Maintenance - Maintenance terminology, 2019). Degradation is defined as the deterioration
of a physical condition because of usage and aging. Preventive Maintenance actions consist of e.g.
inspections in order to observe of degradation and possible restoration and repair of observed faults.

Condition Based Maintenance (CBM) is defined to be Preventive Maintenance based on the obser-
vation of degradation. Predictive maintenance (PdM) is standardized as CBM, but based on a progno-
sis of degradation evolution rather than the only the current health status as can be seen in figure 1.3.
However, for this study PdM is referred to as CBM and it is assumed that in the scope of this study CBM
is based on both observation of degradation and prognostics because of online condition monitoring.
Therefore, the term CBM will be used for this type of maintenance throughout this study.

Maintenance planning The decisions for planning Preventive Maintenance are often risk-based, so
when the system is statistically probable to fail (Fumeo et al., 2015). The optimal timing for PM is when
the system still can function, but degradation is observed and faults may be present indicating that the
time to failure is relatively short. The maintenance frequency for PM is traditionally time or distance
based, because this can be related to the usage of the rolling stock.

1.3. Online Condition Monitoring and Prognostics
Online condition monitoring With the introduction of online condition monitoring, the health state
of a component or sub-system can be retrieved in real-time by detecting faults based on monitoring
data (Brahimi et al., 2020). Online condition monitoring is defined as the method for measuring sys-
tem characteristics through microprocessors and sensors whose values can be acquired in real-time.
Brahimi et al. (2020) describes that the characteristics of the measured system can be processed in a
diagnostic module so that a fault can be detected and located to a specific component. The output
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Figure 1.3: Overview (simplified by leaving irrelevant terms out) of maintenance terminology from standard NEN-EN13306
(Maintenance - Maintenance terminology, 2019)

of a diagnostic system is thus the fault identification and the cause.

Generally, diagnostics methods can be categorized as data-driven and model-based (Brahimi et al.,
2020; Diego Galar et al., 2013; Gálvez et al., 2022; Villarejo et al., 2016).

• Data-driven models for performing diagnostics use available data consisting measurement sig-
nals from multiple sensors placed at various locations or other observable condition indicators
(Diego Galar et al., 2013). The goal of the data-driven models is to find relations between data
that can be correlated to faults (Brahimi et al., 2020; Sysyn et al., 2020). The disadvantage of
this method is that the model relies on these correlations in the system that have to be identified
from training data which has to be executed and validated beforehand (Diego Galar et al., 2013).
Weight parameters are used to build data-driven models, which are then trained using historical
sensor data (Gálvez et al., 2022). The advantage of this method is that successful fault diagnosis
can be established without a deep physical knowledge of the system (Diego Galar et al., 2013).

• Model-based techniques with diagnostics as an output are utilized when there is a deep under-
standing of the physics governing the system to be monitored. A mathematical model is estab-
lished that simulates the physical system. The model requires validation before the output can
be considered as reliable. Another challenge is to observe complementary variables that can be
used as input for the model so the physical state can estimated as output (Diego Galar et al.,
2013). A disadvantage of this method is that unidentified fault mechanisms that are therefore not
included in the physical model cannot be dealt with (Villarejo et al., 2016).

A third option is hybrid model-based that utilizes a combination of data-driven and model-based tech-
niques. A hybrid model can be used to compensate with a lack of data or improve the fault isolation
because of the system knowledge (Gálvez et al., 2022).
Overall, it seems more reliable to use a hybrid model since it integrates two technique that are com-
plementary. For safety reasons, a hybrid model may be more robust because it does not only rely on
data or on a physical model.

Prognostics In addition to obtaining the current health state with the use of online condition mon-
itoring, also the degradation of the system can be approximated. When an anomaly is detected by
exceeding the faultiness threshold with the use of condition monitoring, the health of the system is
degrading, so a fault occurs. As a result, the fault can be online identified, the diagnosis. From this
point in time, the component or system will further degrade until failure. The time between the point
in time of fault detection until the time of failure, is defined as the Remaining Useful Life (RUL). This
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framework is illustrated in figure 1.4. Computing prognostics is defined as estimating the remaining

Figure 1.4: Prognostics based on the degradation of an asset

time to failure by making a future prediction of the health state of a component, often executed through
a degradation- or prognostic model. Prognostics models can also be categorized in data-driven or
model-based techniques (Villarejo et al., 2016).

In literature, examples can be found of prognostic models such as Rivas et al. (2022), whom com-
pute a RUL with a data-driven approach of a turbofan engine, that is part of a larger multi-unit system.
They chose to delimit the prognostic model to a specific sub-system that is monitored, so a single RUL
prediction is made from the data of the sub-system. This can be compared to the study of Gálvez et al.
(2022) who compute the RUL of a HVAC (Heating Ventilation Air Conditioning) system with a hybrid
model-based approach. The HVAC is a sub-system of the complex rolling stock multi-unit system and
the HVAC itself consists of multiple components as well. Within a multiple unit system, the degradation
of the components are often highly dependable because of operational interaction (Boekweit, 2021).
However, there are boundaries between independent sub-systems. Computing a prognosis for the
HVAC is therefore logical, because the system does not affect other sub-systems on a rolling stock
asset.
Defining the sub-systems from which prognostics have to be computed that contribute to the indication
of the health of the complete system is therefore critical. The suitability of the prognostics model also
depends on the definition of the system level.
Figure 1.5 from Villarejo et al. (2016) illustrates which prognostics model is generally appropriate for
the system level.
It has become evident that condition monitoring contributes to better decision-making with diagnostic
modules and prognostic modules. Figure 1.6 illustrates the framework how these methods are used
for maintenance decision-making.

NS rolling stock prognostic development The newest light-train rolling stock type of NS, ”Sprinter
Nieuwe Generatie” (SNG) contains a lot of condition monitoring equipment providing valuable asset
data. This asset data can be analyzed, resulting into accurate predictions when a failure is likely to
occur. Currently, there is ongoing development on prognostic models for this type of rolling stock. The
prognostic models will be conducted on component-, sub-system and system levels. For the scope of
this study, it is assumed that prognostic information is available on system level and can be used for
maintenance decision-making. It is also assumed that prognostic information is provided in the form of
a Remaining Useful Life. A fault can be detected when there is a deviation from the standard behaviour,
this deviation can be related to the overall degradation. It is assumed that a failure prognosis can only
be conducted after the fault detection, so that it is in accordance with figure 1.4.
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Figure 1.5: Suitability of the prognostics technique for the system level (Villarejo et al., 2016)

Figure 1.6: Predictive maintenance framework based on Tiddens et al. (2020) and Jardine et al. (2006)

1.4. Research Scope and Questions
The background about rolling stock maintenance presents ongoing development in maintenance meth-
ods and the stakeholders are introduced. The motivation of this study can be formulated as follows:

Rolling stock maintenance operators have expressed interest to optimize maintenance operations by
using condition monitoring and prognostics for decision-making of rolling stock. However, it is unknown
whether the integration of this new maintenance approach with the current maintenance strategy is
complementary.

Ricardo Rail is participating in this graduating project. The company provides consultancy services
on rolling stock maintenance, purchases and operational excellence, amongst many others. Nationale
Spoorwegen (NS) is a client of Ricardo Rail. NS is a Dutch train operating and maintainer company
that is involved due to a mutual interest in the development of rolling stock maintenance. Currently, NS
performs Preventive Maintenance based on the mileage and/or the time in operation. So the decision-
making for maintenance is currently not based on the actual condition of the assets.

The objective of this study is to investigate the impact on the rolling stock Preventive Maintenance
planning when Condition Based Maintenance is integrated in the maintenance planning instead of
Corrective Maintenance. This approach for maintenance decision-making is relatively new and might
conflict the current time and mileage-based and time-based maintenance strategy. The performance
of this integration can be investigated by evaluating the maintenance costs.
Moreover, the feasibility of maintenance decision-making based on prognostics will be studied by eval-
uating the flexibility of the current Preventive Maintenance planning with respect to the maintenance
depot capacity, resources and the required amount of available rolling stock for passenger operations.
While considering these factors, it can be determined whether the rolling stock maintenance planning
can be effectively rearranged so that new maintenance decisions can be made due to the newly re-
trieved prognostic failure information. Ultimately, the outcome of the study results in a proposal for
integration of Condition Based Maintenance. The main research question is:

What is the impact of integrating Condition Based Maintenance in the Preventive Maintenance planning
decision-making?
This research question is addressed by answering the following sub-questions.

1. What is the current state of the art for rolling stock maintenance planning optimization methods?
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2. What is the current state of practice for rolling stock maintenance planning?

3. How to formulate an optimization problem for rolling stock Preventive Maintenance planning con-
sidering the mileage costs and what are the associated decision-variables and constraints?

4. How to design a rolling stock PreventiveMaintenance planning algorithm for integrating Corrective
Maintenance or Condition Based Maintenance?

5. How to evaluate the performance of the rolling stock Preventive Maintenance planning algorithm
considering the integration of Corrective Maintenance or Condition Based Maintenance?

6. What suggestions could be made to NS for improving the maintenance planning based on the
results of the rolling stock maintenance planning algorithm?

Currently, the state of the art of rolling stock maintenance planning optimization largely consists of op-
timal decision-making in Preventive Maintenance planning. The objective of these studies is often is to
merge the maintenance planning with the passenger operation schedule. Or methods are established
solely focusing on prognosis estimation after fault diagnosis.
Rolling stock maintenance planning decision-making based on prognostics prevents unnecessary com-
ponent replacements and failures can be predicted in advance so that corrective repairs are excluded.
Hence, it is highly desired to implement maintenance decision-making based on the actual degrada-
tion of rolling stock in the current maintenance planning. However, the integration of Condition Based
Maintenance in the rolling stock Preventive Maintenance planning is yet to be studied in literature.
It is unknown if this improves the maintenance decision-making and whether it results in a feasible
rolling stock maintenance planning. This study will contribute to the yet to be established integration of
Condition Based Maintenance into the Preventive Maintenance planning of rolling stock.

1.5. Approach and Structure
This study addresses the main research question and sub- research questions 1 to 6. In chapter 2, the
state of the art of rolling stock maintenance planning optimizations is addressed that answers research
question 1.
In chapter 3, research question 2 is addressed by evaluating and discussing the short cycle mainte-
nance strategy of NS. The maintenance strategy of NS will be used as case study during this study
and confidential information that is used is enclosed in confidential annex B. Therefore, information
with regards to maintenance decision-making is retrieved from NS and this will be considered as the
state of practice. This information consists of Key Performance Indicators, maintenance costs and the
rolling stock maintenance approach. In this chapter, it will also be described what the opportunities are
of Condition Based Maintenance.
According to optimization methods from the state of the art and the state of practice, a maintenance
planning optimization approach will be formulated in chapter 4 that ultimately answers research ques-
tion 3. Also in chapter 4, three optimization approaches are established. It took three iterations to
answer research question 4 by formulating the approach that is able to investigate the impact of the
integration of Condition Based Maintenance to the rolling stock Preventive Maintenance planning. This
approach is verified among other related verification checks further in this chapter.
In chapter 5, research question 5 will be addressed by structurally evaluating the results of the rolling
stock maintenance planning optimization approaches. The Key Performance Indicators based on the
state of the art and state of practice and experience will be used to evaluate the performance of the
approaches. Results are presented as sensitivity checks of parameters and performance comparisons.
In chapter 6, conclusions are made based on the results from chapter 5 with regards to the performance
of the maintenance planning optimization approaches and how prognostics impact this. In chapter 6,
the limitations of the approach are discussed and future recommendations are provided. A proposal
for NS in provided that answers research question 6.
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State of the Art

In this chapter, the state of the art of rolling stock maintenance planning is presented. The goal of
this chapter is to lay out context and demonstrate how rolling stock maintenance planning has been
researched. A distinction will be made in the state of the art in order to make a valid comparison of
the literature. The first section of the literature review addresses rolling stock Preventive Maintenance
planning optimization methods. The second section of the literature review discusses optimization
techniques for rolling stock maintenance planning that integrates some type of prognostics. Based on
this review, the formulated research question 1 will be addressed:

1. What is the current state of the art for rolling stock maintenance planning optimization methods?

The mathematical framework and programming tools commonly used in the state of the art of rolling
stock maintenance planning optimization are addressed. With the systematic literature review in this
chapter, the state of the art of rolling stock optimization can be discovered and gaps can be identified.

2.1. Rolling stock maintenance planning optimization techniques
The Preventive Maintenance planning for rolling stock is usually developed by maintenance experts
(Bougacha et al., 2022). Preventive Maintenance activities for rolling stock are often performed af-
ter a certain amount of usage that is expressed in time and mileage that the rolling stock has been
running since PM is performed. Therefore, the rolling stock fleet’s operating time and mileage are
monitored, since safety is intended to be ensured by not exceeding the predetermined time and/or
mileage threshold (Wagenaar et al., 2017). While sufficient rolling stock is available for operation and
while the workload for the maintenance depot is manageable, the traditional objective of developing
a maintenance planning is to maximize the distance/time before PM needs to be performed. Since it
can be estimated how much kilometers every rolling stock runs on average per day, it can be easily
predicted when a rolling stock is about to exceed the mileage threshold. As a result, the PM planning
can be established in advance. The maintenance planner can make a weekly planning for PM at the
maintenance depot making decisions based on the mileage of the fleet. So the rolling stock will be
maintained at the designated time that the maintenance planner found optimal.

The disadvantage of making a Preventive Maintenance planning based only on the mileage and op-
erational time, is that unexpected or unforeseen ”disruptive” events during operation may impact the
planning so that it becomes invalid (Bakon et al., 2022). These disruptive events are initiated be-
cause of failures of rolling stock. As a result, the rolling stock has to be repaired for which Corrective
Maintenance will be planned. Therefore, Corrective Maintenance is considered to be disruptive in the
maintenance planning. Also maintenance that has to be performed due to newly acquired prognostics
is considered to be disruptive, because it disrupts the initial maintenance planning.
Therefore, in order to integrate disruptive events in a PM planning, the planning should be able to re-
arrange maintenance activities and act on these disruptions in real-time.

There are several objectives that may be discovered for optimizing the maintenance planning as a

9
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result of complex organizational issues that are involved. Performance indicators managed by various
stakeholders must be balanced to optimize the maintenance planning. Hence, many scheduling opti-
mization models are developed in past decades to solve complex scheduling problems (Fazel Zarandi
et al., 2020). The rolling stock maintenance planning optimization models that are analyzed for this
study are formulated in a mathematical model, translated into Mixed Integer Linear Programming and
executed by a solver algorithm.

Mathematical Model Rolling stock is a moving asset in a network, so Research Operations (Hillier
and Lieberman, 2015) are often applied to simulate and optimize railway operations, including main-
tenance planning (Huisman et al., 2005). When an optimization problem is defined, this can be refor-
mulated into a mathematical model for analysis. Under the condition that the problem is well-defined,
a model is a realistic representation of an integral part of an operation.
In this case, the defined problem is that the Preventive Maintenance planning is not optimal. Hence, the
operation of making a planning for maintenance is formulated considering the key contributions as input
for such an operation. From themodel formulation, a mathematical model can be formulated expressed
in terms of mathematical symbols and expressions (Hillier and Lieberman, 2015). Decision-variables
are variables whose values have not yet been determined by the model. These are quantifiable de-
cisions, and the values of these decision-variables result into the performance of the operation. An
example of a maintenance decision for rolling stock is whether to maintain a unit of rolling stock or not,
which is a binary choice expressed as {0, 1}. The objective function is a mathematical function of the
decision-variables that is used to express the operation’s performance measurement. In the case of
maintaining rolling stock, the objective can be to minimize maintenance costs or to maximize the avail-
ability. The objective function is then often the sum of all costs or values that relate to availability. The
quantifiable boundaries of the performance of the model are defined by the constraints. Constraints
are functions of decision-variables and parameters that make the mathematical solution bounded.
These constraints are expressed as inequalities or equations. Parameters define for example the ca-
pacity of the maintenance depot. The pre-defined parameters are constants during the operation that
can be used to bound the decision-variables in the constraint functions. Parameters define for example
the capacity of the maintenance depot, the rolling stock fleet size or costs. Constraints express how
the capacity of the maintenance depot can not be exceeded or how decision-variables cannot exceed
a boundary for example.
If the objective function is well-defined, by minimizing or maximizing the function, the model is capa-
ble of optimizing the formulated operation. The output of the model is a set of decision-variables that
correlate with the optimized operation.

(Mixed) integer (linear) programming The mathematical model can be converted to a computer
programming language. (Mixed) integer (linear) programming is a tool which describes a problem
of concern with a mathematical model which is described previous section. Programming refers to
computer programming and linear refers to the linear structure of the mathematical model (Hillier and
Lieberman, 2015). However, this tool is used to solve linear or nonlinear problems. When integers are
used, it is integer (linear) programming (IP or ILP). When both integer and continuous variables are
used, this is Mixed Integer (linear) Programming (MILP or MIP). IP problems can also be called Binary
Integer Programming (BIP) when the integers used are binary. Integers are very usable for planning
problems, because vehicles, people and capacity are assigned for example to the problem that can
only be expressed as integers. Integer programming uses a linear programming mathematical model
to describe the problem, its objective and constraints. IP is Non-deterministic Polynomial-time hard
(NP-hard) which indicates the computational complexity which is high in this case. Polynomial-time is
defined by Aung et al. (2019) as:
”An algorithm for some type of problem where the time required to solve any problem of that type can
be bounded above by a polynomial function of the size of the problem.”
NP-hard problems have a long computation time per iteration and are considered ”expensive” to solve.
Several solver algorithms can be found in Operation Research and depending on the type of formu-
lation, whether the problem is linear, or nonlinear, a fitting solver can be used. So a solver algorithm
can be used for finding the solution set of decision-variables.
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2.2. Rolling stock Preventive Maintenance planning state of the art
Several studies have focused on optimizing rolling stock maintenance operations. A systematic review
of rolling stock maintenance planning showcases the techniques and tools that are used for such prob-
lems. A search is conducted in the Scopus database to discover the literature analytically. Scopus is a
database linked to scholarly literature. The search query is shown in table 2.1. The query is structured
in a way that ”rolling stock” has to be included in the study for maintenance planning or scheduling.
The search results will include optimization techniques because the keyword ”optimization” is present.
Since the maintenance decision-making is the objective for this assignment, studies with the terms
’routing’, ’allocating’ and ’location’ in the title, abstract or as keyword are excluded. If these term are
not excluded, the search would result into undesirable results such as optimization methods that study
the shortest route to the maintenance depot for example or location choice (Giacco et al.; Luan et al.).

From the results of the search query, articles are further selected when they satisfy the criteria.

• It includes an optimization problem for rolling stock maintenance planning.

• The research includes an elaborated formulated mathematical optimization model.

• Routing and timetabling rolling stock in the railway network is not the main objective.

• Preferably includes a case study.

Search Query

ALL(”rolling stock”) AND TITLE-ABS-KEY(”maintenance”
AND (”planning” OR ”scheduling”)) AND TITLE-ABS-
KEY(”optimization”) AND NOT TITLE-ABS-KEY(”routing”
OR ”allocating” OR ”location”)

amount of results 117
usable articles 9

Table 2.1: Search query and findings for rolling stock maintenance planning optimization

The subject is the study should be rolling stock and a mathematical optimization method should be
formulated in the article. The optimization should be focused on maintenance decision-making. From
the 117 results, only 9 are relevant studies that contain an optimization method for rolling stock main-
tenance planning.

A classified overview of the 9 articles can be found in table 2.2. The studies are classified by the
decision horizon, which is defined to be time period over which the rolling stock maintenance plan-
ning is optimized. It can be assumed that the longer the PM interval, the more PM activities have
to be performed (Li et al., 2016). As a result, the duration of the decision horizon indicates the kind
of maintenance level, because, for instance, if the decision horizon is one week, monthly or yearly
maintenance cannot be taken into account in that study. The table classifies the articles by whether
the maintenance planning is integrated with the timetable, because this indicates how planning mainte-
nance is constrained by passenger operations. When maintenance is integrated with timetabling, short
inspections are generally performed between operational tasks which is the case for the studies that
integrate maintenance planning with timetabling. Therefore, among the 9 articles, a decision horizon
of a week corresponds to an integration with the timetable and longer cycle maintenance correlates to
no integration with the timetable.

The 9 articles consider a timeline or decision horizon during which rolling stock is operating and there-
fore accumulate their mileage. The majority of studies use a predetermined mileage value as threshold.
Before this threshold, PM have to be performed. This mileage threshold is therefore the main driver
for performing maintenance and thus identify the maintenance approach. In order to comply with this
PM approach, constraints are defined in the mathematical models. The objectives of the maintenance
planning are listed, because is showcases what is considered for the decision-making for maintenance.
Common objectives found are:
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• Minimize maintenance costs:
The costs associated with maintenance are costs such as labor, repairs, and spare parts.

• Minimize unavailability:
Unavailability is quantified by Rudek and Rudek (2021) as the amount of days that a rolling stock
undergoes maintenance and Mira et al. (2020) quantifies unavailability as the days at the main-
tenance depot, similar as Ma et al. (2016) who defined it as the days that rolling stock is not in
operation because of maintenance.

• Minimize manoeuvring:
The amount of action (mileage) that a rolling stock needs to perform to go from operation to the
maintenance depot is included in the studies of Lai et al. (2015), Méchain et al. (2020), and Mira
et al. (2020). Manoeuvring rolling stock can also be called shunting in railway terms. These
studies sometimes simplify maneuvering as a constant mileage that it takes to the maintenance
depot. Other times, manoeuvring is formulated to be a very detailed operation and the amount of
shunting actions to the depot depends on where the rolling stock is in the railway network.

• Minimize mileage losses:
If a rolling stock undergoes PM when the mileage since last PM is less than the allowed mileage
before PM is required, this remaining mileage is considered as a loss which is desired to be
minimal. On the contrary, the accumulated mileage is the mileage since last PM which should
be maximized before going to the required PM. This objective indirectly results in cost savings,
because when the accumulated mileage is maximized or mileage loss is minimized, the PM is
performed less frequently, lowering maintenance costs, as the model ofLin and Zhao (2021).

The yet to be discussed objectives from table 2.2 are found in the studies of Li et al. (2016), Ma et al.
(2016), and Sriskandarajah et al. (1998). Li et al. (2016) formulates a maintenance planning optimiza-
tion integrated with the timetable while also optimizing the procurement of rolling stock. So, when less
rolling stock units are required for a feasible operation, this will save overall costs. The objective is
therefore to minimize the amount of rolling stock required for the complete operation.
Furthermore, the model of Sriskandarajah et al. (1998) allows the rolling stock to undergo maintenance
far before the mileage threshold for maintenance or even after this threshold. This phenomena should
not occur and is therefore penalized in their formulated model by applying an extra cost in the objective
function. The objective function should be minimized in their study and a penalty would result into a
sub-optimal solution.
Ma et al. (2016) maximizes the amount of maintenance in the decision horizon, while having enough
rolling stock available for operation. The decision horizon is not long enough to finish all of the prede-
fined PM. The model will therefore optimize the maintenance decision-making.

The solution approach for each study indicate the options that maintenance planning optimization can
use. The algorithms are not further elaborated in the articles. However, Lai et al. (2015) and Lin et al.
(2019) compare the performance of different solver algorithms on the same model.

The reviewed articles are considered to be the state of the art for rolling stock Preventive Maintenance
planning. All studies except for Rudek and Rudek (2021) and Sriskandarajah et al. (1998) contain a
MILP mathematical model from which the decision-variables, parameters, constraints and objective
functions can be used as inspiration for further development of rolling stock maintenance planning
optimizations.
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author year decision
horizon

integrated
with
timetable

objective solution approach/
algorithm

Lai et al. 2015 1 week yes

multi-objective:
minimize mileage losses
minimize manoeuvring
minimize maintenance costs

manually,
heuristics

Li et al. 2016 1 week yes

multi-objective:
maximize accumulated
mileage/time,
minimize required RS
for the operation

heuristics,
particle swarm

Lin and Zhao 2021 1 week yes minimize mileage losses gurobi

Lin et al. 2019 1 year no minimize maintenance costs simulated annealing
gurobi

Ma et al. 2016 1 year no

multi objective:
maximize maintenance
performance,
minimize unavailability

backtracking algorithm
ordering heurstics

Méchain et al. 2020 1 year no

multi objective:
minimize manoeuvring,
minimize mileage losses,
minimize maintenance costs

unknown

Mira et al. 2020 2 days yes

multi objective:
minimize unavailability,
minimize costs,
minimize maneuvering

Xpress software

Rudek and
Rudek

2021 7, 8,
15, 16
years

no minimize unavailability heuristics, RND

Sriskandarajah
et al.

1998 1 year no minimize costs for too late or
too early

genetic algorithms

Table 2.2: Rolling stock Preventive Maintenance planning research categorization
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2.3. Rolling stockmaintenance planning based on prognostics state
of the art

Literature studies that consider rolling stock maintenance planning that are able to rearrange when
prognostics indicate that a failure will occur if the asset will not be maintained in the near future are
reviewed in this section. Supplementary terms from the state of the art of rolling stock maintenance
planning based on prognostics will be introduced in order to understand themethods from these studies.

Condition monitoring data is used as input for prognostic models. The output of prognostic analyses in
this study is considered the Remaining Useful Life (RUL). This remaining life can be expressed in time
units to failure or usage to failure. Prognostic models process online asset data into fault isolation and
failure prediction on multiple system levels. The outcome of these models can be used for supporting
decisions in maintenance planning. Decision-making is the process of selecting the best choice from
a set of options that are carefully considered (Bougacha et al., 2020). Decisions which are logically
chosen because of received prognostic information can be defined as post-prognostic decisions. In
the context of rolling stock maintenance, post-prognostic decisions are performed with the objective to
intervene on an as-needed basis while undesirable failure events are avoided (Tiddens et al., 2020).
Consequently, the when the RUL is expressed in time unit, this is the decision horizon time period in
which decisions can be made to maintain an asset to prevent a failure.

Earlier is described that conducting maintenance based on the prognosis of failure will be referred
to as Condition-based maintenance (CBM). CBM is considered to be very effective, because the de-
mand for maintenance is known in advance and the maintenance mechanics are informed about faults
due to the fault isolation. The component that needs maintenance is thus known and spare parts can
be ordered in advance, since it is known which parts contain faults in the system (Rivas et al., 2022).
When CBM is efficiently implemented, the interval between maintenance interventions can be maxi-
mized, resulting in less inspections, less repair downtime and less need spare parts inventory (Rivas
et al., 2022).

Literature is available researching how rolling stock maintenance decision-making is enhanced with
considering prognostic data. The literature addresses how prognostic information is integrated in rolling
stock maintenance planning optimization models. Prognostic information can only be acquired in real-
time, so a maintenance planning model that integrates prognostic information should be able to act
to new information. Still, model wise, these optimization models are comparable to the rolling stock
maintenance planning models from section 2.1, because the majority of the found studies consist of
a MILP formulation. According to table 2.3, where the search query for finding appropriate studies is
written, a search is conducted in the Scopus database. Because of the way the search query is set
up, ”rolling stock” must be taken into account for planning or scheduling maintenance. In order to be in
line with the previous literature search, ”optimization” is included and studies with the terms ”routing”,
”allocating” and ”location” in the title, abstract or as keyword are excluded. In order to find results that
address prognostics, ”prognostics”,  ”RUL”  and ”condition-based” are the search terms added in com-
parison to the query for finding rolling stock Preventive Maintenance planning studies.

The problem of searching literature on post-prognostic decision-making for maintenance planning specif-
ically applied to rolling stock, is that it is very limited. The results are critically filtered on whether an
optimization is performed on the maintenance planning. Out of evaluating 140 results, only 5 articles
are selected as compatible for this review.

Search Query

( ”rolling stock” )  AND  ( ”maintenance”  AND  ( ”planning”  OR
 ”scheduling” ) )  AND  ( ”optimization” )  AND ( ”prognostic”  OR
 ”Remaining useful life”  OR  ”RUL”  OR  ”conditionbased” )  AND
NOT  ( ”routing”  OR  ”allocating”  OR  ”location” )

amount of results 140
usable articles 5

Table 2.3: Search query and findings for post-prognostic rolling stock maintenance planning
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author year decision
horizon

integrated
with
timetable

objective solution
approach/
algorithm

prognostic
level

prognostic integration
method

Bougacha
et al.

2022 1-60
days

yes

minimize
maintenance costs,
missed operational tasks
corrective maintenance

genetic
algorithm,
heuristics

component rolling decision hori-
zon

Crespo
Márquez

2022 52
months

no
maximize
component degradation
before maintenance

Vensim component component degrade
stochastically to higher
risk levels

Herr,
Nicod,
Varnier,
Zerhouni,
Cherif,
et al.

2017 unknown yes
maximize
component degradation
before maintenance

unknown system degrading rolling stock
because of operational
usage

Herr,
Nicod,
Varnier,
Zerhouni,
and Dersin

2017 20-90
days

yes
maximize
component degradation
before maintenance

Gurobi system degrading rolling stock
because of operational
usage

Rokhforoz
and Fink

2021 50 days yes minimize
maintenance costs hierarchical

algorithm
sub-
system

every time the next de-
cision horizon starts,
random variables de-
termine if a fault is de-
tected

Table 2.4: Overview of rolling stock maintenance based on prognostics planning studies

2.3.1. Rolling stock maintenance planning studies integrating prognostics
The articles that consider rolling stock maintenance planning based on prognostics from table 2.3 are
analyzed in order to learn how prognostic information is utilized to improve rolling stock maintenance
decision-making. The articles will be analyzed on different aspects:

• The maintenance planning optimization with the optional formulated mathematical model will be
discussed. Especially the objective of the optimization model.

• Whether the problem of computing prognostics is conducted on a component, sub-system or
system level.

• How prognostics are integrated into the maintenance planning and how the planning is getting
rearranged.

Similarly to the literature review from section 2.1, the ’decision horizon’ length is listed in table 2.4,
because this indicates the type of maintenance level and scale of the optimization model.
Planning optimizations integrated with the operational timetable brings more complexity, but also show
the dependence of rolling stock maintenance with passenger operations. The objective formulation of
the optimization highly depends on this aspect.
From the ’solution approach/algorithm’ can be learned which optimization method is appropriate for the
optimization problem and which algorithm can be used. This is not always described in the articles. All
studies include a MILP mathematical model, except for Crespo Márquez (2022).
The ’prognostic level’ describes whether the prognostics are on a system, sub-system of component
level. This study aspect learns how the prognostic method influences the maintenance decision-
making.
The method how the optimization problem integrates prognostics of the studies will be reviewed and
discussed in this section
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Figure 2.1: Degradation model of a rolling stock component over time (Bougacha et al., 2022)
Δ𝑘 represents the failure threshold and Λ𝑘 represents the lower bound threshold for maintenance

System levels Prognostics can be computed for various system levels. Not every sub-system or
components is evenly critical in a complex multi-unit system such as a rolling stock unit. It is therefore
relevant to find out on which level(s) prognostic information is relevant and how this can be logically
applied for maintenance decisions. Also how the criticality of components in the multi-unit system is
considered in the decision-making process. The studies of Herr, Nicod, Varnier, Zerhouni, Cherif, et al.
(2017) and Herr, Nicod, Varnier, Zerhouni, and Dersin (2017) neglect this and assume that the whole
rolling stock fails when the failure threshold of the prognosis has been exceeded. Although Bougacha
et al. (2022), Crespo Márquez (2022), and Rokhforoz and Fink (2021) are considering individual com-
ponents of sub-system of the rolling stock, it is still assumed that the whole rolling stock fails when any
failure threshold has been reached.

Prognostic inputs The studies of Bougacha et al. (2022), Herr, Nicod, Varnier, Zerhouni, Cherif, et
al. (2017), Herr, Nicod, Varnier, Zerhouni, and Dersin (2017), and Rokhforoz and Fink (2021) consider
similar prognostic inputs to the model. The study assumes that parallel to the maintenance planning
optimization, the component or system degrades as illustrated in figure 2.1. When a failure is predicted,
thus exceeding the lower bound threshold for maintenance, the rolling stock should be planned for
maintenance. The RUL is thus expressed in time units.

Methods from of rolling stock maintenance planning integrating prognostics The research of
Bougacha et al. (2020) is the most valuable for this study. They proposed a MILP mathematical model
for the maintenance planning decision-making of rolling stock, integrating maintenance interventions
based on prognostic information with a periodically PM planning. This study is actually based on the
studies of Herr, Nicod, Varnier, Zerhouni, Cherif, et al. (2017) and Herr, Nicod, Varnier, Zerhouni, and
Dersin (2017), which are also relevant. Simultaneously, the rolling stock is assigned to passenger op-
eration tasks, thus the model is integrated with a timetable.
It is assumed that prognostic information is available on a component level. A deterioration curve as
a function of time is used to initialize the prognostic characteristics of components, which can be seen
in figure 2.1. Since the times that component failures are known, their model decides to plan mainte-
nance right before this failure threshold. When this is infeasible to plan, the rolling stock fails and it is
assumed that CM has to be performed at the expense of higher maintenance costs.

Bougacha et al. (2022) includes the rolling horizon principle, which is used in order to integrate prog-
nostic information in the maintenance planning. Because in a real-world application, the maintenance
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schedule is periodically updated (Mira et al., 2020), therefore Bougacha et al. (2022) proposed to sim-
ulate periodic planning by executing the maintenance planning optimization with a rolling horizon. This
framework will be further addressed in the next section.
Planning maintenance is based on the Preventive Maintenance threshold on a component level or
based on the degradation of a component. The objective is to minimize maintenance costs, minimize
missed operational tasks and minimize Corrective Maintenance.

• Early PM is penalized similar as mileages losses which are directly related to costs in their model.

• Early CBM is also penalized when the prognostic model indicates that the component can still
function for some time.

It is assumed that CM is always more expensive than performing early PM or CBM. The capacity of the
maintenance depot is defined to not maintain more than a certain amount of rolling stock at a time and
secondly, no more than a predefined amount of components can be maintained at the same time. CM
is integrated in the algorithm by allowing it to miss the PM or CBM threshold, resulting into expensive
CM.
However, the decision horizon length is yet to be determined and the goal of this study is to optimize
this. Therefore, the decision horizon length is getting iterated throughout the study in combination with
the fleet-size.

Crespo Márquez (2022) proposed a continuous time simulation model of wherein the degradation of
bearing (a component) of a rolling stock is modelled. The model is formulated to be a state machine.
The lifespan of a rolling stock bearing is modeled to be in three states: brand new, degraded and likely
to fail. The state transitions are randomly generated in the simulation environment. The states of the
state machine thus provide prognostic information about the bearings, because every state in the state
machine represent what the remaining life is. According to the health state of the bearings, mainte-
nance is planned while being constrained by maintenance depot capacity.
Their main conclusion is that the time from that bearing is likely to fail to actual failure, highly impacts
the decision-making. Because a small RUL, for example, gives less time to act, while a long RUL pro-
vides flexibility to act as optimal as possible (Crespo Márquez, 2022).

The proposed model in the study of Rokhforoz and Fink (2021) assumes that the rolling stock are
capable of conducting a prognosis. It is assumed that prognostic information cannot be retrieved on-
line. Instead of online, every month the maintenance planners receive an update on the condition of
the rolling stock fleet, including a prognosis when which train is likely to fail. The model of Rokhforoz
and Fink (2021) decides to perform maintenance on certain rolling stock based on the monthly failure
prognosis, while the rest of the fleet is planned for passenger operations every month. The prognosis is
expressed as the RUL, however, it is assumed that the RUL is uncertain. So, the failure time of a certain
rolling stock is simulated as a random variable. The study is formulated as a MILP model, however,
the model is multi-level. One level optimizes the rolling stock passenger operations with the available
amount of rolling stock, while the second level optimizes the maintenance planning of the rolling stock
based on the failure prognosis per train wagon. The model integrates prognostics by optimizing two
levels independently. The maintenance planning will be rearranged based on the prognostics obtained
in the second level. This multi-level approach is rather complex to model and not in line with the state
of the art and will therefore not be further utilized.

2.3.2. Rolling horizon
A rolling horizon framework to plan rolling stock maintenance is found in the studies of Bougacha et al.
(2022) and Lai et al. (2015). The framework of planning according to a rolling horizon framework is
illustrated in figure 2.2 where every planning result that will be implemented is represented by a dark
color, while the light color represents the decision horizon that symbolizes the foreseeability in days
(x-axis) for the planner. Per optimization, a daily planning is executed, considering events that occur
7 days in advance. An optimization is carried out in each round (y-axis), and this process is repeated
until the whole planning has been established.
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Outside of the context of rolling stock maintenance planning, this concept is used for more compa-
rable problems in literature. The study of Consilvio et al. (2020) used a rolling horizon for simulating
planning railway maintenance based on prognostic information. A rolling horizon framework is used to
act on newly available real-time information and unexpected faults or delays and rearrange the main-
tenance planning accordingly (Consilvio et al., 2020). Furthermore, in aircraft maintenance planning,
a rolling horizon framework is used to plan aircraft component replacement based on the predicted
criticality (de Pater et al., 2021). Not only maintenance can be planned and rearranged with a rolling
horizon, it is also used to rearrange the rolling stock timetable for passenger operations when disrup-
tions occur while executing the predefined timetable (Nielsen et al., 2012).

From this can be concluded that this framework is frequently used in literature to model time plannings
while unexpected events may happen and rearrangements are required.

Figure 2.2: Rolling horizon framework used for rolling stock maintenance planning (Lai et al., 2015)

2.3.3. Discussion on the rolling stock maintenance planning integrating prog-
nostics

It can concluded that only a few studies considered rolling stock maintenance planning based on prog-
nostics. The five studies on integrating prognostics that are reviewed found a method to integrate the
prognostics into the maintenance planning optimization. The methods found are able to rearrange the
maintenance planning according to prognostics. The prognostic degradation models in the studies are
simplified and make the optimization problem nonlinear. It can be argued that the found degradation
models can be simplified into a constant standard RUL expressed in time units when a failure is de-
tected, regardless of the component or subsystem, since a component failure is considered to result
into a rolling stock failure. The multi-level planning approach of Rokhforoz and Fink (2021) can be very
complex to implement and reproduce. The approach of a state machine from Crespo Márquez (2022)
is not in line with the state of the art of rolling stock Preventive Maintenance planning, because it does
not contain a MILP model. From this can be concluded that the approach of Bougacha et al. (2022)
and Herr, Nicod, Varnier, Zerhouni, and Dersin (2017) can be used for the rolling stock maintenance
planning integrating prognostics. However, a few gaps can be identified:

• It is not considered in literature to integrate the decision-making of rolling stock maintenance
based on prognostics within a Preventive Maintenance planning or study the feasibility of pro-
ceeding CBM in combination with PM.

• It is not considered if maintenance based on prognostics is more cost efficient to plan in compar-
ison to CM.

The impact of maintenance planning decision-making based on prognostics is not analyzed in literature
and should therefore be further researched in this study.



2.4. Concluding Remarks 19

2.4. Concluding Remarks
This chapter, the state of the art of rolling stock maintenance planning optimizations is addressed. A
distinction is made between Preventive Maintenance planning optimizations and planning optimizations
that integrate prognostics, which helps to find appropriate methods to optimize a rolling stock Preventive
Maintenance planning decision-making that can integrate CM and CBM. It became clear that MILP is
often used as mathematical framework to optimize the rolling stock maintenance planning. With the
literature reviews of rolling stock maintenance planning optimization, research question 1 is addressed.

1. What is the current state of the art for rolling stock maintenance planning optimization methods?

A literature gap is identified for the rolling stock maintenance planning optimization methods integrating
prognostics. The objective found in the studies is to exploit the degradation of the rolling stock and
maintain the asset right before failure in order to perform efficient maintenance. The degradation to
failure is provided by the prognostics in the form of the RUL. The RUL is generally expressed in time
units to failure. However, these studies do not consider if planning maintenance based on the actual
degradation actually enhances the maintenance planning or to study the feasibility of proceeding CBM
in combination with PM.
A rolling horizon framework is suggested from literature for simulating rearrangements in maintenance
planning decision-making in response to unforeseen events. The maintenance planning optimization
methodology from the literature review will be used for the formulation of the optimization problem. The
following chapter, the state of practice will be addressed.
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State of Practice

In this Chapter, the current state of practice of the maintenance organization of NS will be explained.
Therefore, research question 2 is addressed:

2. What is the current state of practice for rolling stock maintenance planning?

The methodology and motivation of the current maintenance pr active will be described and compared
to the state of the art. Consequently, the state of practice of NS may be optimized with an optimization
method found in the state of the art. This chapter provides background for the case study that will be
performed in the upcoming chapters.

3.1. Rolling stock system breakdown
In order to categorize rolling stock maintenance activities, NS classified the rolling stock multi-unit
system into sub-systems. As a result, maintenance tasks can be assigned to specific sub-systems. The
classification is inspired by the BS EN 15380 standard Railway applications — Classification system
for railway vehicles Part 5: System Breakdown Structure (SBS), 2014.
BS EN 15380-5 provides the classification of railway vehicles in order to make the multi-unit system
manageable and recognizable. Note that BS EN 15380 also contains the Product Breakdown Structure
and the Function Breakdown Structure. These structures describe different views of railway vehicles
(Railway applications—Classification system for railway vehicles Part 5: System Breakdown Structure
(SBS), 2014). However, the BS EN 15380-5 standard structure is used for maintenance classification.
Figure 3.2 showcases the top level sub-systems of the railway vehicle, by ten sub-systems. Figure 3.1
showcases comparable sub-systems used for the classification of the NS railway vehicles which are
also used for assigning maintenance tasks. The so-called SDM (Storing Defect Materiaal, translated
to ”rolling stock failure defect” ) codes classification of the NS consists of more sub-systems than the
standards, because first level system ’Propulsion and Braking’ (H) from BS-EN-15380 for example is
divided into two: codes 01 ... (traction/propulsion) and 02 ... (braking). The translation and overlap
between the two classifications is illustrated in table 3.1. Note that the sub-system names in table 3.1
are solely the top-level systems, lower level sub-systems are further specified.

3.2. Maintenance activities classification
NS uses the classification system from figure 3.1 for locating and specifying maintenance activities,
this is further translated in table 3.1. For this project, only the ”short cycle maintenance” activities will
be reviewed. ”Short cycle maintenance” is classified by NS to be PM tasks from 108 days up to 3 years
intervals. There is a list of PM activities set up for a specific rolling stock type, classified according
to the sub-(sub-)systems. The list consists of activities that have to be performed with an interval of
approximately 3 months (specifically 108 days), 6 months 9 months, 1 year, 1 and a half year and 3
years. The PM activities vary each time because not every item requires PM every 108 days, so some
components can be longer in operation than 108 days without requiring PM, so the time threshold may
be higher for some components.

21
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Figure 3.1: Classification of the rolling stock unit structure from NS in
Dutch

Figure 3.2: Classification of the rolling stock unit
structure by standard BS-EN-15380 Railway appli-
cations — Classification system for railway vehicles
Part 5: System Breakdown Structure (SBS), 2014

In order to equally distribute the workload of PM activities every 108 days interval, a cluster of PM
activities is arranged. The PM throughput time is therefore consistent for all individual PM clusters.
The sequence of PM activities for a maintenance mechanic is a mix of activities located at various
sub-systems and the cluster of PM activities is different every 108 days, because the time threshold
for PM varies per component. The maintenance planner does take into account whether certain PM
activities can be combined and if it is opportunistic to perform adjacent to another. The sequence of
clustered PM activities taking a constant workload can be referred to as the PM routine. The duration
of this PM routine at NS is standardized.

In the state of the art of PM planning optimizations, PM routines are generalized and a predetermined
duration of PM routines is considered, regardless of the activities that have to be performed. These
studies are in line with the state of practice where a PM routine is also a cluster of PM activities that
have to be performed periodically (Lai et al., 2015; Lin and Zhao, 2021; Lin et al., 2019; Ma et al., 2016;
Méchain et al., 2020; Mira et al., 2020).

The state of practice of planning PM activities of NS demonstrates that PM routines are not designed
for a specific rolling stock sub-system or activities that have equal time intervals. The result is the con-
trary, PM routines consist of a cluster of PM activities performed by various maintenance mechanics
on various sub-systems that can have a 108 days up to 3 years interval. Nonetheless, the consistency
of PM routines is that they are designed to endure a similar throughput time. This is in line with the
majority of the state of the art where PM is also considered as a cluster of PM activities that also endure
a similar throughput time.

3.3. Preventive Maintenance routines at the NSmaintenance depot
The mileage and operational days of every rolling stock item is monitored. Based on these values,
rolling stock PM decision-making is performed. Rolling stock is scheduled for PM before that the time
or mileage threshold is exceeded. At NS, the smallest time threshold for performing PM every 108
days is established by maintenance experts. A second threshold is distance or mileage. For reliability,
NS considers the mileage threshold of 45,000 [km] to be the maximum mileage a rolling stock can run
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Classification name SDM code Standard ident First level system
Tractiesystemen
(Traction systems) 1 H Propulsion and braking

Remsystemen
(Braking systems) 2 H

Koppelingssystemen
(Coupling systems) 3 L Coupling and interconnection

Buitendeuren
(Exterior doors) 4 C Doors

Veiligheidssystemen
(Safety systems) 5 K Train control

Besturings-/Diagnosesystemen
(Control/ Diagnose systems) 19 K

19 X Diagnostics
Cascodelen
(Car body) 6 B Car body

Loopwerk
(Running gear) 7 D Guidance

Verlichtingssystemen
(Lighting) 9 F Lighting

Communicatiesystemen
(Communication system) 10 J Information and communication

Klimaatsysteem
(HVAC) 8 E Interiors

Interieur
(Interior) 11 E

Sanitair
(Toilet facilities) 12 E

Energievoorzieningen
(Energy supply) 14 G Energy supply

Table 3.1: Classification translation from SDM codes to the BS-EN-15380 standard

without requiring PM.
A higher level controller in the organization, the MBN (”Materieel Besturingscentrum Nedtrain” trans-
lated to ”rolling stock controlling center of NS”), monitors the mileage and operational time data and
decides which rolling stock unit should undergo PM. The maintenance planner at the maintenance de-
pot receives arrival and departure times from the MBN. The rolling stock must finish the PM routine
before the departure time in order to comply with the MBN.

The PM activities cannot be performed at one place inside the depot. During the standardized PM
routine, a rolling stock should therefore be shunted from a certain location at the depot to another
location. Three key locations within the depot are available to perform PM activities:

• Bio track (Biospoor): At the Bio track the toilets are emptied and cleaned. In general, 8 hours are
scheduled for this activity. However, when there are no anomalies, this takes less time and when
it is possible to go to the next step, the rolling stock is getting shunted. During this PM activity,
the wheels are checked on roundness and wear. When this is good, the rolling stock unit is ready
for the general PM routines, otherwise, the wheels are getting machined in the kuilwielenbank
(”underfloor wheel lathe”).

• Kuilwielenbank: At the kuilwielenbank, the wheels can be machined like a lathe. Irregularities are
grind off and the wheels are turned until all the wheels have comparable sizes. After this activity,
the rolling stock unit is ready for the general PM routine.

• Maintenance track with balcony: At the maintenance track with balcony, the rolling stock unit can
be maintained under-, -in and above the rolling stock. Not all PM activities can be performed at
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Figure 3.3: Standardized Preventive Maintenance routine

once, because for some PM activities, electric power should be applied via the catenary wires. So
the pantograph is in contact with the catenary wire above the roof of the rolling stock. Therefore,
due to safety issues, no PM can be performed on the roof via the balcony when electric power is
applied.

• Cleaning track: Cleaning equipment is accessible at the cleaning track for cleaning the rolling
stock. During this routine, the rolling stock unit can be checked for safety as well.

PM at the depot of NS is performed in shifts of 8 hours, because maintenance mechanics work in that
manner. Figure 3.3 demonstrates the throughput of the rolling stock during a standardized PM routine.
The different colors represent the different actions and locations that are listed above. The figure is
therefore divided in blocks and illustrates when the rolling stock requires shunting in order to go to a
different location within the maintenance depot for remaining PM activities. The actual duration of the
routine is variable, because it depends on the available mechanics, amount of rolling stock arrivals
and available train drivers to perform shunting. However, it is assumed that for this project, the total
PM routine is standardized to take 3 days. As earlier described, the PM activities that are performed
at every key location may vary every PM routine. Nevertheless, the PM routine is designed to take
always 3 days.

The NS maintenance depot has a capacity of three balcony maintenance tracks where PM can be
performed. These balcony tracks are only needed for two 8-hours shifts adjacent to one another. This
is illustrated in light blue in figure 3.3. In order to avoid that more than three specialized PM tracks
have to be used at the same time, at NS, the capacity is constrained by the amount of arrivals at the
same time. As a result, it will never occur that rolling stock have to queue for the specialized tracks
when three or less rolling stock begin PM in two time slots time. After this maximum arrival, one time
slot should be left open when no rolling stock can arrive for PM, because the tracks are occupied for a
double shift. Figure 3.4 illustrates this principle, where the chain of blocks represents the PM routine
from figure 3.3. The light blue blocks represent the shifts that require the specialized track. As an ex-
ample, the red cross indicates that too many rolling stock start within two time slots, because at 𝑘 = 5
because too many rolling stock require the balcony track.

3.4. Corrective Maintenance at the NS maintenance depot
Corrective Maintenance is unplanned maintenance when a failure occurred. At NS, the moment when
CM is performed depends on the criticality of the failure. The criticality of the failure is classified by NS,
based on the the so-called ”Q-profile”. The Q-profile is a predefined chart that determines according
to the type of failure in combination with the SDM-code the criticality. Hence, a non-critical component
failure may occur that does not require CM up to 21 days, or a severe failure may happen that needs to
be repaired immediately. For the scope of this project, only immediate CM as a result of a critical failure
is considered. Because practically, immediate CM cannot be planned in advance, this is in contrast to
when a rolling stock is allowed to continue operating while experiencing a non-critical failure. These
non-critical failures may remain unfixed until the next PM routine.
Critical immediate CM has to be repaired at the maintenance depot. However, CM has to be performed
at the NS maintenance depot where PM is performed on other rolling stock units at the same time. CM
is therefore performed at the expense of the workload of maintenance mechanics that are already
scheduled to perform PM. The throughput time for CM varies and depends on the type of failure, NS
aims to perform this in 1 day, but this can deviate when larger repairs are needed. Since the mainte-
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Figure 3.4: Simplified PM planning for 9 rolling stock (y-axis) in 21 time slots (x-axis) where the depot capacity constraint is
illustrated

nance depot is using its full capacity already for PM, it is challenging for the maintenance planner to
plan CM in between. However, in practice, there continues to be a little room for flexibility in the plan-
ning, making it feasible to plan for CM. Besides, at the maintenance depot, there is a dedicated track
preserved solely for CM in order to be always able to accommodate a failed rolling stock. Although,
this track does not have always all of the tools to repair every type of failure and CM still has to be
performed at another specialized track where it disrupts the regular PM planning.

3.5. Rolling stock maintenance planning decision-making at NS
NS is an organization with sub-organizations. For this research the stakeholders in the organization of
NS to be considered are the train operator planner and the maintenance planner. The two stakeholders
perform their operations according to different KPI’s that are listed as follows:

• The maintenance planner at NS aims to perform maintenance as cost- and time efficient as pos-
sible while utilizing the available resources in the most effective manner.
Therefore, at NS, similar to the state of the art, the KPI that is utilized to assess the PM planning
performance is the amount of mileage losses that are made.

• The train operator aims to have as many rolling stock available for operation creating flexibility
and cost efficient passenger operations. So the availability of rolling stock is an important KPI for
the train operator. Besides, the train operator would benefit from minimal maintenance, because
it directly results into more availability.

Additionally, balancing the PM workload is highly desirable for the PM planner. In order to balance the
workload for the maintenance depot, the number of trains each week or to be maintained each day
should be allocated equally. For that reason, the deployment of rolling stock in passenger operation
should be evenly dispersed so that the asset is exploited equally in order to achieve a steady flow of
rolling stock needing PM. Since the train operator planner is responsible for rolling stock deployment,
a consistent flow of rolling stock entering and exiting the maintenance depot must be ensured through
communication between the train operator and the maintenance planner. This proves the dependency
of communication between passenger operations and maintenance operations for efficient rolling stock
maintenance planning.

Bakkenstand The unavailability of rolling stock at NS is expressed as the ”bakkenstand”. This value
represents the number of train carriages from the whole fleet that is not required for passenger op-
eration. This can be rather complex because the SNG fleet that is considered as case for this study
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exists of 3 carriage trains and 4 carriage trains. For the sake of simplicity, the two train-sets types
will not be distinguished for the problem formulation. The maximum allowed number of unavailable
carriages is based on data from NS and can be found in the confidential annex B. How this is com-
puted and expressed in percentages can also be found in the confidential annex, this value is ex-
pressed in this study as parameter 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒% as described in confidential annex B section B.2.
The ”bakkenstand” represents the amount of rolling stock that is required in operation to perform op-
timal passenger transport. Note that this value is an average amount over a month. Actually, the
required affability of rolling stock for passengers operations dynamically changes depending on peak
hours, and peak days. Out of the 190 trains-sets, on average, a certain amount of rolling stock (see
confidential annex B section B.2) do not have to be deployed. Performing PM is only useful when the
train has been in operation for the given amount of time and mileage threshold, that can only be con-
trolled by the train operator. If the rolling stock assets that do not need to be deployed have been the
same train sets for a long time period, when the PM time threshold of 108 days is reached for these
train sets, they will be maintained earlier than necessary, resulting into mileage losses. From this can
be concluded that efficient PM decision-making is highly dependent on the (even) deployment of rolling
stock decided by the train operator.

3.6. Opportunistic Maintenance
Complex multi-component systems are difficult to maintain, because of the interdependence of com-
ponents their states and functions. A rolling stock is considered a multi-component system, which
became evident from the SDM classification and standard Railway applications — Classification sys-
tem for railway vehicles Part 5: System Breakdown Structure (SBS), 2014. This implies that a different
approach should be applied to these systems for performing efficient maintenance. However, instead
of assessing maintenance tasks to individual components, the dependencies of components can be
exploited if tasks are grouped (Boekweit, 2021). Opportunistic maintenance (OM) refers to the practice
of taking advantage of the occasion when a particular component is being maintained by additionally
maintaining neighbouring components for example. Three classes of dependencies can be considered
for OM, economic, structural and stochastic (Ghamlouch and Grall, 2018).

Economic dependence When a maintenance task share the same costs with another task, these
can be economic dependent. For example, when the same setup for maintenance is required for
multiple maintenance tasks, grouping them to one routine saves costs (Boekweit, 2021). Or when in a
geographically distributed system, the item has to travel to the depot for maintenance that brings extra
costs, it is convenient to group maintenance tasks.

Structural dependence Structural dependent components should always be maintained simultane-
ously (Ghamlouch and Grall, 2018). This applies to maintenance tasks where multiple components
have to be dissembled in order to perform a specific maintenance task. So these components are then
physical dependent.

Stochastic dependence Because of operational interaction between components, when component
failures occur, it might influence other components. Consequently, the probability of another compo-
nent failure increases. Stochastic dependence implies that a component its state may influence the
health status of other components in the system (Boekweit, 2021; Ghamlouch and Grall, 2018).

So by understanding the dependencies of a multi-component system to be maintained, the main-
tenance operation could be performed more efficiently. For the multi-unit geographically distributed
rolling stock having economic, structural and stochastic dependencies, an OM approach is therefore
very reasonable.

3.7. Condition Based Maintenance opportunities at the NS mainte-
nance depot

CBM that will be planned according prognostics from a prognostic model is not yet implemented at
NS. It is therefore unknown how this will be organized at the maintenance depot. This leaves room
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for creativity and multiple options on how to deal with this approach for maintenance decision-making.
The state of the art describes that due to CBM, individual components replaced on an as needed ba-
sis so that the component degradation is maximized without failing during operation (Bougacha et al.,
2022; Crespo Márquez, 2022; Herr, Nicod, Varnier, Zerhouni, Cherif, et al., 2017; Herr, Nicod, Varnier,
Zerhouni, and Dersin, 2017). The maximum component degradation before maintenance cannot be
estimated in this research since no prognostic model will be developed. Still it will be assumed that
prognostics are expressed as a remaining useful life (RUL) in time units.

Prognostics give insight to the maintenance operator on which component or sub-system is going to
fail. The maintenance activities can be prepared before the rolling stock arrives at the maintenance
depot, because the fault is already diagnosed. It is not necessary to conduct an investigation to identify
the failure in order to carry out CBM, so maintenance activities may be completed immediately. It is
therefore expected that the throughput time of CBM is quicker than for CM and therefore costs less.

Combining CBM with PM While assuming that the RUL gives the maintenance planner flexibility for
planning the maintenance, it becomes reasonable to see this as an opportunity to also plan the PM
routine after the CBM routine. It is appropriate to view this as an opportunity, given that the RUL allows
the maintenance planner freedom for arranging the current maintenance planning. When PM has to be
performed in the near future, the two maintenance activities can be combined, saving shunting costs
because of this economic dependence. Consequently, a trade-off can be made. Either separating PM
and CBM, requiring the rolling stock to visit the depot twice with minimal mileage loss. Or combining
PM and CBM by scheduling earlier PM, which results in mileage losses but saves costs because the
rolling stock only needs to visit the depot once.
From interviews with NSmaintenance depot planners, it became evident that it is completely unrealistic
to see a CM routine at the depot also as an opportunity to perform PM when the mileage of the rolling
stock is near the threshold. The argument for this is that it is considered a tough challenge to plan CM
within the already dense PM planning, so planning an extra PM routine in the current planning as well
is seen as being too opportunistic.

3.8. Maintenance cost specification
The objective to minimize costs is common for rolling stock maintenance planning optimizations, is
be demonstrated from the literature. Also, rolling stock maintenance is desired to be as cost efficient
as possible. It should therefore be specified which costs are associated with maintenance of rolling
stock. Costs of maintenance operations are difficult to specify because it includes logistic operations,
spare parts and the maintenance facility costs for example that are not in the scope of this research.
Additionally, the financial losses associated with unavailability of rolling stock due to maintenance can
be assessed as well. These costs are very difficult to approach because it is completely dependable on
the dynamically changing required availability for passenger transport and therefore out of this scope.
Other costs that can be classified as maintenance costs are labor costs. Labor costs consist of wages
of mechanics and specialized mechanics to perform specialized maintenance. Since the organization
of the depot is out of this scope, the labor costs are simplified and will be considered in the generalized
PM or CM costs.
Spare parts costs are considered by Bougacha et al. (2022) and Doganay and Bohlin (2010) who
consider maintenance on component level. If spare part costs are considered, the component failures
and spare part inventory should be analyzed as well. Because of the complexity and corresponding
additional knowledge about spare parts and inventories, this is considered to be out of the scope of
this research.
On the contrary, in order to determine the cost savings if fewer PM is required at the depot when
maintenance is based on prognostic information, the logistic operations, or so-called shuntings (the
transportation of the rolling stock from one location in the railway network to the maintenance depot),
must be estimated.
Furthermore, PM and CM routine costs may be generalized and costs due to mileage losses can be
estimated. From cost overviews of NS and model comparisons to literature, the considered cost for
the rolling stock maintenance planning optimization problem are in table B.1.
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Associated maintenance costs: costs: [euros] for every:
Shunting costs see two-way shunting
Preventive Maintenance routine costs confidential routine
Costs induced by mileage losses annex km
Corrective Maintenance routine costs B section B.3 routine
Maintenance due to prognostics Routine costs routine

Table 3.2: Maintenance costs overview considered in the maintenance planning model

Shunting costs Shunting brings costs like power, a train driver, the permission for utilizing a path to
the depot and service costs. So when a rolling stock makes more trips to the maintenance depot for
maintenance, this bringsmore costs. Shunting costs can also be found in the studies of Lai et al. (2015),
Méchain et al. (2020), and Mira et al. (2020). In some studies, longer shunting paths are assumed to
cost more, depending on the logistical measures, but that will not be considered in this problem. The
shunting costs that are specified by NS are estimated to be 𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔 euros (see confidential annex B
section B.3). This is considered for arriving and departing to and from the depot.
The shunting costs for PM are not specified at NS, but are assumed to be the same as for CM.

Costs induced by mileage losses: The costs for rolling stock Preventive Maintenance are ex-
pressed in costs per mileage in monetary units. Also, Lin et al. (2019) computes the maintenance
costs per mileage. In this case, the costs are caused by not sufficiently utilizing the remaining mileage
up to the mileage threshold. NS applies the same methodology for decision-making on PM, because
it similarly expresses PM costs in terms of costs per kilometer. It is fair to take additional costs into
account when premature maintenance is performed, as is done in literature and in a similar method
at NS. The costs are based on data from NS and estimated to be 𝐶𝑚𝑖𝑙𝑒𝑎𝑔𝑒 (see confidential annex B
section B.3) euro per [km], that is referred to as mileage costs.

Preventive Maintenance routine costs: Preventive Maintenance costs are determined based on
the maintenance operations and cost data of NS. This information is retrieved through interviews and
cost analyses found in NS databases. The PM costs includes labor, spare parts, depot facility and
other supplementary costs. This is simplified and generalized that every PM routing costs 𝐶𝑃𝑀 euros
(see confidential annex B section B.3) excluding shunting costs.

Corrective Maintenance routing costs: The CM costs includes additional planning costs because
the maintenance planning at the depot has to be rescheduled. Additionally, labor and repair expenses
are paired with CM along with replacement costs for another rolling stock taking over the passenger
operation. NS provides a costs overview from which it can be assumed that CM costs are estimated
to be 𝐶𝐶𝑀 euros (see confidential annex B section B.3). The shunting costs to the depot are excluded
because this is taken separately.

Condition Based Maintenance routine costs: CBM is planned according to prognostics expressed
as the RUL in time units. This type of maintenance is not yet implemented by NS and therefore, there
are no costs estimations made by the operator. Bougacha et al. (2022) estimated the costs of this
type of maintenance by the repairing/replacement costs on a component level of the component that
is condition monitored. However, for this project, the prognostics are assumed to be on a system level
and unrelated to individual components.
It remains therefore an open discussion what the costs are of performing CBM. For this study, it is
assumed that this type of maintenance routine is comparable to a CM routine. CM is performed after
failure of the asset that has to be maintained whereas CBM is conducted before failure. It may be
assumed that CBM costs less because the asset has not failed yet and the fault can be repaired in its
infant state. Nevertheless, it may be argued that the same kind of repair is required.

Since CBM is more flexible planning wise, CBM may be combined with PM routines, saving costs
due to opportunistic maintenance. PM costs are estimated by NS including repairs that are performed
because of a faulty component that is identified during a preventive check. The same faultiness was
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found if that component was condition monitored, but online and without a preventive check. As a re-
sult, PM routines would cost less if CBM would be implemented in the maintenance strategy, because
repairs are rather performed according to condition monitoring than in response to a preventive check.
So repair costs are shifting from PM to CBM. Therefore, it is unfair to assume that CBM costs the same
as CM, because it is assumed that PM costs reduce with the implementation of CBM. Subsequently,
costs for CBM are assumed to be less than CM, so 𝐶𝐶𝐵𝑀 euros (see confidential annex B section B.3),
while PM routine costs remain the same with the integration of both routines. The shunting costs to the
depot are excluded because this is taken separately.

The described costs will be used for the model optimization objective function that will minimize the
costs, resulting in the most cost efficient maintenance planning under the given constraints.

3.9. Concluding Remarks
By describing the current state of practice, research question 2 is addressed:

2. What is the current state of practice for rolling stock maintenance planning?

It can be concluded that NS performs maintenance activities on a sub-system level in accordance with
the standardized classification of the rolling stock unit breakdown. These individual PM activities are
clustered based on their PM time threshold, so that all PM routines have a similar throughput. From this
can be concluded that NS makes use of opportunistic maintenance, because convenient PM activities
are clustered.
PM routines are planned based on the offer of rolling stock to the maintenance depot and required
availability for passenger operations, resulting into a dense planning. CM is therefore very disruptive
to the PM planning, because the maintenance depot planning has to be rearranged in order to fit in a
CM repair.
CBM is not yet implemented at NS, but it can be expected that the throughput time of CBM is quicker
than for CM, because it is known in advance what is going to fail and therefore costs less.
Thereafter, since CBM can be planned in advance, this creates the opportunity to combine CBM with
an upcoming PM routine, saving shunting costs. An optimization approach based on the state of the
art may now be developed for the maintenance practice at NS in accordance with the disclosed state
of practice of this chapter. Maintenance costs are specified that are used for the maintenance planning
optimization that will be formulated in this study. This is crucial, because it allows the optimization to
base decisions on the actual cost ratios of PM activities so that realistic decisions can be made that
provide practical insights. This will be performed in the following chapter.
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Rolling Stock Maintenance Planning

Optimization Approaches
In this dhapter, the rolling stock maintenance planning optimization approaches that are formulated in
accordance with the state of the art, state of practice and the maintenance operations of NS will be pre-
sented. From the scope and assumptions, the optimization problem can be formulated. Subsequently,
the mathematical model will be formulated that will be able to solve the problem with an optimization
solver algorithm. As a result, the following research questions will be addressed:

3. How to formulate an optimization problem for rolling stock Preventive Maintenance planning con-
sidering the mileage costs and what are the associated decision-variables and constraints?

4. How to design a rolling stock PreventiveMaintenance planning algorithm for integrating Corrective
Maintenance or Condition Based Maintenance?

Research question 3 will be addressed by formulating an optimization method that can optimize the
PM planning based on the way of practice of NS that is described in the previous chapter. This model
will be referred to as ”approach 1”.
Research question 4 will be addressed by formulating ”approach 2” considering, PM, CM and CBM.
It becomes apparent that approach 2 is not satisfactory for answering research question 3, so a third
approach, ”approach 3”, is formulated. Approach 3 is able to plan maintenance with a rolling horizon
framework that is discovered in the state of the art. With this approach, a satisfactory model is computed
that is able to integrate CM or CBM representing the current state of practice. The model will be verified
in this chapter in order to prove the correctness of the model so that it can be further evaluated.

4.1. Scope and Assumptions
The rolling stock maintenance planning optimization problem is a complex problem, because there are
several processes on different levels that can be optimized. The state of the art shows how the planning
could be optimized integrated with the operational timetable or logistics are taken into account for the
maintenance planning optimization. This study will focus solely on the optimization of the rolling stock
maintenance planning decision-making. Implying that the rolling stock will be maintained without taking
into account the viability of the logistics nor the individual maintenance activities at the maintenance
depot.

The approach for this optimization planning will be described by formulating assumptions. Assump-
tions will be made that simplify and bound the maintenance planning.

• Detailed shunting operations to the maintenance depot is not considered.

• No restrictions on the availability of spare parts.

• Maintenance is performed perfectly.

31



32 4. Rolling Stock Maintenance Planning Optimization Approaches

• In comparison to the maintenance decision-making at NS, for the model, the rolling stock can
be during the week without being restricted to strict arrival and departure times to and from the
maintenance depot. This is noteworthy because in practice, the MBN, the train operator, decides
when trains can be withdrawn out of operation to the maintenance depot.

• The cumulative operational time is still accumulating when the rolling stock is not in operation, so
when the rolling stock is standby.

• It is assumed that every rolling stock in operations builds up the same amount of cumulative
mileage while in operation per day which is 475 [km].

• Based on the ’bakkenstand’, (see confidential annex B) a certain percentage of the rolling stock
fleet should be in operation at all times.

• The duration of a PM routine is based on the standard PM routine of NS. The PM routine is
modeled because of the discretization per day to take 3 days time.

• The limiting factor of the capacity of the maintenance depot is assumed to be the a maximum
amount of arrivals over a certain amount of days.

• The rolling stock is not allowed to undergo PM if the rolling stock has been running less than 94%
of the mileage threshold. This implies that rolling stock has to run at least 94% out of 45,000 [km],
which is 42,800 [km].

4.2. Rolling stock Preventive Maintenance planning problem for-
mulation

Based on the state of the art, it became apparent that formulating a deterministic MILP problem is
the most appropriate method for modeling a rolling stock maintenance planning optimization. The
outcome of such optimization problem will describe the PM decision-making of the rolling stock main-
tenance planning. The goal is to comprehend and quantify the decision-making of the model in order
to describe the effects of different input parameters.
The objective of the maintenance planning model will be explained and how this affects the final main-
tenance decision-making. The method and considerations for the formulation of the maintenance plan-
ning model will be chosen Finally, results of the optimization can be discussed according to the yet to
be defined Key Performance Indicators.

For themodel formulation, a rolling stock fleet maintenance planning problem is defined using a discrete
time model where each time slot 𝑘 is 1 day. In the model, 𝑈 rolling stock are considered. Passenger
operations will not be modeled in the model, however it is assumed that a certain amount of rolling
stock 𝑂 has to be available in operation every day 𝑘.
Based on the PM thresholds of NS and the state of the art, it is defined that rolling stock requires PM
before running 𝐷 = 45, 000 km or every 𝐸 = 108 days. Since premature maintenance is undesired
by NS, PM is not allowed to be planned before running at least 𝐷𝐿𝐵 = 42, 800 [km] (94% out of 𝐷).
In order to reach this mileage threshold, it is defined that if a rolling stock runs passenger operation a
certain day, it runs theMission Profile defined by the NS as 𝑃 = 475 [km] a day. When a rolling stock is
approaching either of these thresholds, whatever is reached first, it is going to the maintenance depot
out of operation for PM. After PM, the rolling stock is readily available and able to run another 𝐷 km
within 𝐸 days.

The way rolling stock is modeled to run operation, results into a certain feasibility region for PM, as
they are constrained to the time in operation and cumulative mileage since last PM. This feasibility
region is showed in figure 4.1. The green dotted lines illustrate how the constraints in the model ensure
that PM is performed at the right time and that it is bounded. This graph shows that when the rolling
stock is constantly in operation, the lower bound mileage threshold 𝐷𝐿𝐵 will be reached in 𝑘 = 91 days,
mileage threshold 𝐷 in 𝑘 = 94 days. Simultaneously, the grey feasible region in the figure demonstrates
that there is room for flexibility in the model to plan rolling stock for PM.
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Figure 4.1: Graph showing the feasible region for planning PM of the maintenance planning model

Objective function The state of the art of rolling stock PM planning optimizationmethods offers only a
handful of objective functions. The objective function is the quantification for the maintenance planning
decision-making. The resulting maintenance planning of the optimization model is strongly dependent
on how the objective function is formulated. So the performance of the planning can be justified based
on the objective function value. The objectives found in literature are to minimize:

• Unavailability

• Shunting through the railway network to the maintenance depot

• Mileage losses

• Maintenance costs

The optimization model will not optimize the availability of rolling stock for operation, so it will not be
integrated in the objective function, because the availability of rolling stock for passenger operations at
NS is not a direct concern of the maintenance planner.

Earlier is assumed that shunting is out of the scope of this study. Therefore, this will not be integrated
in the objective. However, the shunting costs from the railway network to the maintenance depot are
standardized and taken into account. Shunting costs are incurred when the rolling stock goes to the
depot for either CM, PM of CBM, so this will be integrated in the objective function.

At NS, the mileage loss is an important KPI for the PM planning. The rule of thumb is to outrun at
least 94% out of 45,000 km before performing PM. Therefore, the goal is to perform PM when a maxi-
mum possible mileage is reached within the mileage threshold. If the rolling stock is maintained before
running 45,000 km, the maintenance operator introduces additional costs. This argument is in line with
the state of the art, where it is common to minimize the mileage losses. Previous chapter, the costs
per mileage loss is specified, so the mileage losses can be expressed asmileage costs. Mileage costs
will therefore be integrated in the objective function.

Maintenance costs for PM, CM and CBM are defined in the previous chapter. These costs will be
accounted for in the objective function if one of these maintenance will be planned.
Overall, all possible maintenance decisions can be related to costs, therefore, the objective function will
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Figure 4.2: Structure how approach 1 optimizes the PM planning

be formulated as a cost function that sums up all maintenance related costs that are described above,
based on the decisions in themodel. If the costs areminimized, it can thus be argued that the planning is
optimized.
As a result, the outcome of the model presents the optimal planning that describes when a certain
rolling stock should be withdrawn out of operation to the depot for maintenance under the given con-
ditions. The conditions the planning optimization model is formulated as constraint functions which
are fed by parameter values. These conditions are formulated in such a way that they represent the
actual conditions of the maintenance practice of NS and that these ”design parameters” can be used
for general rolling stock maintenance planning optimizations.

4.3. Approach 1: Mathematical model for the rolling stock PM plan-
ning optimization

This section, approach 1 will be elaborated, which is a rolling stock PM planning optimization model
based on the way of practice of NS. Constraints, parameters, decision-variables and the objective func-
tion are chosen according to the former discussed models in the state of the art.

The structure of approach 1 is illustrated in figure 4.2. The figure illustrates how parameter sets are used
for the initialization of the problem formulation which are subsequently used for formulating the con-
straints. While respecting the formulated constraints, the model performs the PM decision-making and
when a rolling stock runs passenger operations. When a the decision-making expressed in decision-
variables results into a minimum costs, an optimized maintenance planning is conducted. If this cannot
be found because of an ill defined initialization or when the constraints are not bounded, no solution
can be found and the solution is ”infeasible”.

The mathematical MILP model that is used for establishing the optimized rolling stock PM planning
is described in the following sub-sections.

4.3.1. Notations
Indices are used to specify the element of an array. For example, which rolling stock number from the
fleet.
Parameters that are used a priori for the model are listed and based on the case of NS.
Indices:

𝑢 Denotes the rolling stock number
𝑘 Denotes the day number
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Sets:

𝑈 = 21 [-], size of the rolling stock fleet
𝐾 [days], set of days in the planning

Parameters:

𝐷 = 45, 000 [km], mileage threshold for PM
𝐷𝐿𝐵 = 42, 800 [km], mileage threshold lower bound for PM

is 94% of 𝐷
𝑃 = 475 [km], operating mileage per rolling stock per rolling stock per day

(mission profile)
𝑑𝑢(0) = {0, ...𝐷𝐿𝐵 − 𝑃} [km], initial rolling stock mileage integer values,

ascending with an evenly distributed interval
𝐸 = 108 [days], time threshold for PM

𝑒𝑢(0) =
𝐷𝑢(0)
𝐷 ⋅ 𝐸 [days], initial cumulative time of every rolling stock is set

in ratio according to ascending mileage
𝑁 = 3 [days], duration of PM routine, based on the standard PM routine
𝑂 [-], amount of rolling stock required in operation

of the fleet size, however this may be iterated
𝐴 = 1 [-], amount of rolling stock that can go

to the depot in 𝐴𝑑𝑎𝑦𝑠, this may be iterated
𝐴𝑑𝑎𝑦𝑠 = 3 [days], amount of days that the amount of

𝐴 can arrive in
𝐶𝑃𝑀 [euro], costs of PM per day
𝐶𝑚𝑖𝑙𝑒𝑎𝑔𝑒 [euro], costs per mileage loss
𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔 [euro], costs per two-way shunting to the depot

Numerical parameters:

𝑀 = 100, 000 Very large number (big M)
𝑆 = 10−4 Very small number

Parameter values justification Most of the parameter values are directly based on the data of NS.
Because computational limit or for simplification, some values are not like the actual situation at NS
and need to be estimated. The assumed values choices will be elaborated below:

• Fleet size 𝑈:
The fleet size have been downsized due to to 21 rolling stock computational reasons. Therefore,
the required amount of rolling stock in operation is 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒%of the fleet denoted by an amount
of 𝑂 [-] rolling stock.

• Initialization of mileage 𝑑𝑢(0) and cumulative time 𝑒𝑢(0)in operation:
The rolling stock are at 𝑘 = 0 initialized in such a way that the mileage is constantly increasing
over the fleet 𝑑𝑢(0) ∈ {0, ..., 𝐷𝐿𝐵}, ∀𝑢 ∈ 𝑈, while 𝑑𝑢(0) is a multiplication of the mission profile 𝑃.
The initial cumulative time 𝑒𝑢(0) ∈ {0, ..., 101}, ∀𝑢 ∈ 𝑈 for the fleet is set linearly increasing to the
initial mileage.
As a result, the model is guaranteed to start with a feasible solution without immediately requiring
PM for the first rolling stock nearest to 𝐷𝐿𝐵. The complete list of initial values can be found in
table 4.1.
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• PM routine duration 𝑁:
The model is discretized in days unlike at the NS depot, where maintenance is planned per shift
of 8 hours. It is assumed that the maintenance that the PM routine takes 3 days. This is illustrated
in figure 4.3.

• Maintenance arrival frequency 𝐴 and 𝐴𝑑𝑎𝑦𝑠:
In literature, the depot capacity is often constrained by amount of rolling stock to bemaintained per
day as in Lai et al. (2015), Li et al. (2016), and Lin and Zhao (2021). While Lin et al. (2019) restricts
the capacity of the depot like NS to not more than 3 rolling stock arriving per day for maintenance.
Ma et al. (2016) and Méchain et al. (2020) restrict the capacity by the amount of spare parts and
mechanics available. How the capacity of the NS maintenance depot is constrained is defined in
the previous chapter, which is according to the arrivals, constrained by 9 rolling stock per 2 days.
However, the model is scaled down to a fleet size of 21 rolling stock instead of 190, which is 9
times as small. So it can be logically scaled down to 1 per 2 days. Still, the the optimization model
resulted in too optimistic results because there was too much room for planning maintenance,
while through interviews with the NS, this appeared to be quite strict. Therefore it is formulated
to accept a maximum of one rolling stock arrivals during three days, so 𝐴 = 1 and 𝐴𝑑𝑎𝑦𝑠 = 3.

rolling stock 𝑑𝑢(0) [km] 𝑒𝑢(0) [days] rolling stock 𝑑𝑢(0) [km] 𝑒𝑢(0) [days]
1 0 0 12 23275 56
2 1900 5 13 25175 60
3 4275 10 14 27550 66
4 6175 15 15 29450 71
5 8550 21 16 31825 76
6 10450 25 17 33725 81
7 12825 31 18 36100 87
8 14725 35 19 38000 91
9 17100 41 20 40375 97
10 19000 46 21 42275 101
11 20900 50

Table 4.1: Default mileage and cumulative time initialization for 21 rolling stock

4.3.2. Decision-variables
Decision-variables represent the decisions of the model. Hence, the outcome of the model is the
mileage and time since the latest PM routine of every rolling stock. Binary variables are introduced that
indicate whether the rolling stock is running passenger operations or is undergoing PM.

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑑𝑢(𝑘) cumulative mileage of rolling stock 𝑢 at time 𝑘
integer variable with lower bound 0

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑒𝑢(𝑘) cumulative time of rolling stock 𝑢 at time 𝑘
integer variable with lower bound 0

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑥𝑢(𝑘) {1, if rolling stock 𝑢 is not in operation at 𝑘
0, otherwise

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑦𝑢(𝑘) {1, if rolling stock 𝑢 undergoes PM at time 𝑘
0, otherwise

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑤𝑢(𝑘) {1, if rolling stock 𝑢 arrives at depot and starts PM at 𝑘
0, otherwise
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4.3.3. Objective function for optimizing PM planning
The objective function is a cost function that should be minimized in the model. The objective function
can be formulated in equation 4.1 containing costs that considered by the model.

minimize 𝐶𝑚𝑖𝑙𝑒𝑎𝑔𝑒∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝐷𝑦𝑢(𝑘) − 𝑑𝑢(𝑘 − 1)𝑦𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

1

+ 𝐶𝑃𝑀∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑤𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

2

+𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑤𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
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(4.1)

1. Mileage costs
Upper bound mileage threshold parameter 𝐷 is subtracted by the decision-variable 𝑑𝑢(𝑘 − 1) at
one day before it is in the depot for maintenance when 𝑦𝑢(𝑘) = 1. This function is results into a
outcome of 0, except for a day when one of the rolling stock in the model arrives for maintenance.

2. PM routine costs
Decision-variable 𝑤𝑢(𝑘) = 1 only when one of the rolling stock in the model arrives for mainte-
nance. By taking the PM routine costs in product with the decision-variable, the costs are counted
when it is righteous.

3. Shunting costs
Decision-variable 𝑤𝑢(𝑘) = 1 only when one of the rolling stock in the model arrives for mainte-
nance. So similarly to the PM routines costs, this variable is taken in product with the shunting
costs.

4.3.4. Constraints
The constraints bound the model and force to find a solution while respecting the constraint equations.

Cumulative constraints for the time and mileage decision-variables

• Accumulated mileage The accumulated mileage is formulated as the mileage of the previous
day plus the mission profile if the rolling stock is in operation, so if 𝑥 − 𝑢(𝑘) = 0. This formulation
is inspired from the study of Lin and Zhao (2021).

𝑑𝑢(𝑘) = (1 − 𝑦𝑢(𝑘))) ⋅ (𝑑𝑢(𝑘 − 1) + (1 − 𝑥𝑢(𝑘)) ⋅ 𝑃), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.2)

• Accumulated Time The calculation for accumulative time is comparable to constraint 4.2. The
operating time is still accumulating while the rolling stock is not deployed for passenger operation,
so if 𝑥 − 𝑢(𝑘) = 1. This explains the difference with constraint 4.2. Despite not being in use, this
shows that the rolling stock is still ”aging”.

𝑒𝑢(𝑘) = (1 − 𝑦𝑢(𝑘)) ⋅ (𝑒𝑢(𝑘 − 1) + 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.3)

Time and mileage thresholds for PM

• Mileage threshold The accumulated mileage of every rolling stock should not exceed the for-
mulated maximum mileage threshold. The threshold of NS before performing PM is 45,000 km
.

𝑑𝑢(𝑘) ≤ 𝐷, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.4)

• Time threshold The accumulated time of every rolling stock should not exceed the formulated
maximum time threshold. The threshold of NS before performing PM is 108 days. It is not possible
to reach this amount of days when the rolling stock is operation everyday and running the mission
profile of 475 [km] until the rolling stock is going into to the depot for PM.

45, 000
475 ≃ 95 𝑑𝑎𝑦𝑠 (4.5)



38 4. Rolling Stock Maintenance Planning Optimization Approaches

This implies that the rolling stock could 108 − 95 = 13 days not be used for operation while the
mileage threshold of 45,000 is still reached.

𝑒𝑢(𝑘) ≤ 𝐸, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.6)

• No PM before lower bound mileage threshold Since performing PM earlier than the maximum
mileage threshold is considered as a loss, rolling stock can only go to the depot after running for at
least the mileage value of the lower boundmileage threshold. The constraint is formulated in such
a way that the mileage 𝑑𝑢(𝑘) value should be larger than the lower bound mileage threshold 𝐷𝐿𝐵
at the time that the rolling stock is going to undergo maintenance and the constraint is satisfied.
When the rolling stock will undergo maintenance: 𝑦𝑢(𝑘) − 𝑦𝑢(𝑘 − 1) = 1 − 0 resulting into a
positive 1. If the rolling stock is going into operation, this results into -1 and if the rolling stock is
undergoing maintenance or in operation this equal 0. As integer decision-variable 𝑑𝑢(𝑘) is always
positive and greater than 0, the constraint is still satisfied.

𝑑𝑢(𝑘) ≥ 𝐷𝐿𝐵 ⋅ (𝑦𝑢(𝑘) − 𝑦𝑢(𝑘 − 1)), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.7)

Operational constraints

• Rolling stock in operation Based on the ’bakkenstand’, the train operator needs to deploy
𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒% of the SNG fleet into operation. Therefore, the constrained is formulated to main-
tain at least 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒% of the fleet available for operation (see confidential annex B B.2). This
implies that a maximum of 100 − 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒% is either undergoing maintenance activities or is
standby. Since it is not the objective to minimize unavailability of the rolling stock in the optimiza-
tion problem, it was chosen to keep the availability constant throughout the model, similarly to
the models of Lai et al. (2015), Li et al. (2016), and Lin and Zhao (2021). So constraint 4.8 is
formulated that the every day, exactly 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒% of the fleet is deployed for operation. As a
result, no more rolling stock than required are in operation.

𝑂 = 𝑈 −∑
𝑢∈𝑈

𝑥𝑢(𝑘), ∀𝑘 ∈ 𝐾 (4.8)

• Rolling stock can only be maintained when not in operation. This constraint is satisfied only if
decision-variable 𝑦𝑢(𝑘) = 1 if 𝑥𝑢(𝑘) = 1 .

𝑦𝑢(𝑘) ≤ 𝑥𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.9)

Preventive Maintenance routine constraints

• PM routine The PM routine is modeled by the following constraints. If the rolling stock starts the
PM routine, it stays for maintenance for 3 days, the sum of decision-variable 𝑦𝑢(𝑘) should be at
least have the value of 1 for 3 days in a row, defined by constraint 4.10. Constraint 4.11 defines
that the rolling stock is not longer in PM than 3 days.

𝑘+𝑁

∑
𝑘∈𝐾

𝑦𝑢(𝑘) ≥ 𝑁(𝑦𝑢(𝑘) − 𝑦𝑢(𝑘 − 1)), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.10)

𝑘+𝑁+1

∑
𝑘∈𝐾

𝑦𝑢(𝑘) ≤ 𝑁, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.11)

• Maintenance depot capacity for PM At NS, the capacity for rolling stock at the maintenance
depot is defined by the amount of arrivals per day. The arrival decision-variable is defined in
constraint 4.12 and 4.13. Because of these constraints, decision-variable 𝑤𝑢(𝑘) has the value 1
only if a rolling stock starts undergoing PM.
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Figure 4.3: Preventive Maintenance standard routine and simplified routine

The depot capacity is constrained by the amount of arrivals per a certain amount of days. Con-
straint 4.14 is therefore defined to sum up the amount of arrivals over 𝐴𝑑𝑎𝑦𝑠 = 3 days. This
constraint is satisfied when the summation is less or equal to 𝐴 = 1 arrival.

𝑤𝑢(𝑘) ≥ 𝑦𝑢(𝑘) − 𝑦𝑢(𝑘 − 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.12)
𝑤𝑢(𝑘) ≤ 𝑑𝑢(𝑘 − 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.13)

𝑘+𝐴𝑑𝑎𝑦𝑠

∑
𝑢∈𝑈

𝑤𝑢(𝑘) ≤ 𝐴, ∀𝑘 ∈ 𝐾 (4.14)

4.3.5. Linearization and numerical issues
The mathematical model is coded in Python and the objective is minimized with the Gurobi solver
algorithm that uses by default branch and bound as solution approach, but an initial solution is often
found through heuristics as solution approach. In order to perform the computation faster and make
the problem less complex, the mathematical model is linearized. Numerical issues that arise if the
mathematical model is solved in a numerical algorithm such as Gurobi. How to cope with these issues
is addressed in this section.

Numerical issues Since a MILP model is formulated, it integrates a mix of integer variables and
binary variables. Therefore, the numerical solver might encounter numerical issues. In order to avoid
these issues, small numbers are introduced in certain equations. Binary numbers are in code estimated
numbers. As a result, 0 can be for example 10−8 and 1 can be 1 + 10−6. This has consequences for
constraints as equation 4.15.

𝑦𝑢(𝑘) ≤ 𝑥𝑢(𝑘) (4.15)
1 + 10−6 ≰ 1 (4.16)

It is assumed that the binary decision-variables can only be 0 or 1. Therefore, the constraint will be
satisfied if 𝑦𝑢(𝑘) = 1 and 𝑥𝑢(𝑘) = 1 since their values are equal. However, for example when 𝑦𝑢(𝑘) =
1 + 10−6 and 𝑥𝑢(𝑘) = 1, due to numerical issues, the constraint is not satisfied as can be seen in
equation 4.16, although it should be algebraically satisfied. By introducing a small number 𝑆 = 0.001
to the constraint, this numerical issue can be avoided. The constraint can be programmed as the
following:

𝑦𝑢(𝑘) ≤ 𝑥𝑢(𝑘) + 𝑆 (4.17)
1 + 10−6 ≤ 1 + 0.001 (4.18)
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This solution is introduced for similar problems in constraints. Since this is a numerical problem, this
will not be included in the mathematical model.

Linearization of the objective function The objective function of the maintenance planning models
calculates the KPI ’mileage loss’.

minimize∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝐷𝑦𝑢(𝑘) − 𝑑𝑢(𝑘 − 1)𝑦𝑢(𝑘) (4.19)

This calculation can be classified as nonlinear because two decision-variables are in product (𝑑𝑢(𝑘 −
1)𝑦𝑢(𝑘)). The mileage loss is calculated by multiplying the integer decision-variable mileage of the
rolling stock at the day right before undergoing PM with the binary decision-variable that defines when
the rolling stock undergoes PM. This product is subsequently subtracted by the mileage threshold 𝐷.
This nonlinearity in the objective function results in computational complexities. However, this can be
linearized by introducing an auxiliary integer decision-variable 𝑣𝑢(𝑘), see equation 4.20 and 4.21.

mileage of rolling stock 𝑢 before undergoing PM
at time 𝑘, integer variable with lower bound 0:

𝑣𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.20)

𝑣𝑢(𝑘) = 𝑑𝑢(𝑘 − 1)𝑦𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.21)

Lin and Zhao (2021) encountered the same issue for the same formulation of the objective function
for their rolling stock PM planning optimization model. They have proposed a pragmatic linearization
technique, which can be used for the objective formulation of this study.

𝑀(𝑦𝑢(𝑘) − 1) + 𝑑𝑢(𝑘 − 1) ≤𝑣𝑢(𝑘) ≤ 𝑑𝑢(𝑘 − 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.22)
𝑣𝑢(𝑘) ≤ 𝑀𝑦𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.23)

Note that in these equations, the big 𝑀 method (Hillier and Lieberman, 2015) is used, which is a
large number. By implementing these constraints, it forces auxiliary variable 𝑣𝑢(𝑘) to take the value of
𝑑𝑢(𝑘 − 1) when 𝑦𝑢(𝑘) equals to one. When 𝑦𝑢(𝑘) take the value of zero, equation 4.23 forces 𝑣𝑢(𝑘)
to be zero as well. Hence, 𝑣𝑢(𝑘) can be used in the objective function and it becomes linear as can
be seen in function 4.24. For the numerical computation, equation 4.24 is used to replace segment 1
from the objective function 4.1.

minimize∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝐷𝑦𝑢(𝑘) − 𝑣𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.24)

4.4. Approach 2: rolling stock maintenance planning optimization
integrating CM and CBM

With approach 1, a rolling stock PM planning optimization model is established that may be used by NS
as planning tool. However, approach 1 does not integrate CM or CBM. A second approach to optimize
the rolling stock maintenance planning is therefore formulated: ”approach 2”. Approach 2 is formulated
building on approach 1, but contains additions that concern the integration of CM and CBM. The addi-
tion of this approach is that disruptive CM and CBM will be included in the existing PM planning. When
discussing disruptions, this refers to instances of CM or CBM.

CM will be modeled as one particular moment in the planning when CM should take place. These
instances are initialized a priori and CM is determined to be performed at a certain time at a specific
rolling stock taking 2 days time. The rolling stock is thus unavailable for 2 days when CM is performed.
CBM is assumed to be a maintenance routine also taking 2 days time similar to CM, but CBM is based
on the prognosis that a rolling stock system will fail within a given amount of time, the RUL. It is as-
sumed that planning optimization integrates either CM or CBM, not both. Furthermore, it was earlier
described how CBM creates an opportunity to save costs if PM and CBM are combined. So for this
approach it can be enabled to the model to perform CBM and PM adjacent to another to save shunting
costs. The outcome of approach 2 consists therefore of three results, one with CM, one result with
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Figure 4.4: Structure how approach 2 optimizes the maintenance planning

CBM and a result where CBM may be combined with PM.
How approach 2 is structured, is shown in the diagram in figure 4.4. This figure shows that it is similar
to approach 1, but it contains the addition of the initialization of random times of CM or CBM that are
used for the formulated constraints that concern CM and CBM. The instances when CM or CBM take
place are randomized and therefore artificial, because the timing for CM or CBM is not based on actual
historical failure data. CBM will be modeled as a time period in the planning wherein CBM should take
place. CBM is thus more flexible planning wise in comparison to CM because CBM is not determined
to be realized at a particular day.

In literature, the actual degradation of the rolling stock ismodeled, which determines the RUL (Bougacha
et al., 2022; Rokhforoz and Fink, 2021; Wang et al., 2022). The time in the planning when a fault de-
tection takes place is in these studies related to the rolling stock usage. However, for this approach,
the degradation of the rolling stock is not modeled and the timing of fault detection is thus indepen-
dent on the usage of the rolling stock for passenger operations. A simplified approach for CBM is
thus established in this study so that only the feasibility of planning CBM in the PM planning will be
studied regardless of any degradation. The prognostic information including the RUL is thus artificially
integrated in the model. It is assumed that at a random time in the planning a failure will occur. The
RUL determines how far ahead of time this failure is predicted to take place. For instance, if a fault is
detected with a RUL of 14 days, the failure is predicted 14 days in advance.

The objective of this approach is to evaluate the maintenance planning decision-making for a case
where disruptions are caused by unforeseen CM in comparison with a case where disruptions are pre-
dicted with prognostics, so with CBM. It is anticipated that the model can make more effective decisions
when a failure is predicted by prognostics, because the planning up to when the failure is predicted to
occurs can still be rearranged. These decisions would result into less mileage costs and less PM rou-
tines overall. On the contrary, when a failure occurs unexpected and CM is determined to be performed
immediately, the planning can only be rearranged as the failure already happened.

For this approach, more decision-variables, parameters and objectives will be added to the formulated
problem of approach 1. The same notations will be used as approach 1.
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4.4.1. Parameter values
Additional costs of CM and CBM are defined, based on the costs of NS. The duration of the routine for
CM and CBM is assumed to take 2 days. It is assumed that there is no maintenance depot capacity
restriction for CM or CBM. Because the RUL of the prognostics is considered to be constant in duration,
each failure is predicted an identical amount of time in advance. Based on the NS maintenance depot
capacity, there is a dedicated track free for this type of maintenance and it is assumed to be free at any
time.

𝑇𝐶𝑀 = 2 [days], amount of days needed for a Corrective repair
𝑇𝐶𝐵𝑀 = 2 [days], amount of days needed for a Condition based repair

is 94% of 𝐷
𝐶𝐶𝑀 [euro], costs for a Corrective repair
𝐶𝐶𝐵𝑀 [euro], costs for a Condition based repair
𝑄 [-], amount of CM in the decision horizon
𝑅 [-], amount of CBM in the decision horizon
𝑅𝐶𝐵𝑀 [days], amount of days wherein CBM can be planned as if the rolling stock has a RUL
𝑊𝑢(𝑘) [-], defines when in the decision horizon for rolling stock 𝑢 at time 𝑘 CM occurs,

with the amount of CM defined by 𝑄 according to a randomized definition
𝑉𝑢(𝑘) [-], defines when in the decision horizon for rolling stock 𝑢 at time 𝑘 CBM occurs,

with the amount of CBM defined by 𝑅 according to a randomized definition

Random instances of CM and CBM The initialization of when CM will take place in the decision
horizon is defined a priori by parameter value 𝑊𝑢(𝑘). As earlier mentioned, the timing of CM or CBM
will be unrelated to the usage of rollings stock or any degradation. The timing of the disruptions will
therefore be modeled as random. Parameter 𝑊𝑢(𝑘) is a matrix full of zeros structured in a way that
there are 𝑄 instances of ones in random places in the matrix. The size of matrix𝑊𝑢(𝑘) is 𝑢 ×𝑘, so that
it indicates which rolling stock 𝑢 fails at what time 𝑘. The randomization is performed according to the
following steps and figures 4.5 and 4.6:

1. An amount of 𝑄 ones are randomly distributed over the rolling stock, so over column𝑊𝑢(0). Every
rolling stock can only get one 1 per row.

2. Subsequently, the ones at 𝑘 = 0 will be randomly distributed over the row per rolling stock 𝑢, so
that at a random point in time is determined that rolling stock 𝑢 will get CM.

Parameter matrix 𝑉𝑢(𝑘) is constructed in a similar manner, but then according to parameter 𝑅 instead
of 𝑄. However, 𝑉𝑢(𝑘) defines the moment for CBM not as an instance in time, but as a period in time,
because it is assumed that CBM will be performed according to the RUL, which is a period of time until
failure. Therefore, for constructing 𝑉𝑢(𝑘), the random ones of 𝑊𝑢(𝑘) are repeated adjacent to another
𝑅𝐶𝐵𝑀 times so that a chain of ones is constructed in matrix 𝑉𝑢(𝑘). The length of this chain of ones
represents the RUL of the asset as can be seen in figure 4.6.

Figure 4.5: Construction of𝑊𝑢(𝑘) according to steps, simplified example for 𝑈 = 5 and 𝐾 = 5
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Figure 4.6: Construction of 𝑉𝑢(𝑘) according to steps, simplified example for 𝑈 = 5, 𝐾 = 5 and 𝑅𝐶𝐵𝑀 = 3

4.4.2. Decision-variables
Additional decision-variables are introduced to formulate the decisions of CM and CBM. Decision-
variables represent the arrival at the depot and the days that the rolling stock undergoes CM or CBM.

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑧𝑢(𝑘) {1, if rolling stock 𝑢 undergoes CM at time 𝑘
0, otherwise

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑚𝑢(𝑘) {1, if rolling stock 𝑢 undergoes CBM at time 𝑘
0, otherwise

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑞𝑢(𝑘) {1, if rolling stock 𝑢 arrives at depot and starts CM or CBM at 𝑘
0, otherwise

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈, 𝑟𝑢(𝑘) {1, if rolling stock 𝑢 combines CBM adjacent to PM at the depot at 𝑘
0, otherwise

4.4.3. Objective function for optimizing the PM planning while disrupted by CM
or CBM

The objective function is similar to the linearized objective cost function of the PM planning model.
However, a few costs are added. Segment 1 of 4.25 is the linearized formulation of the computation of
the mileage costs.
Segment 3 and 4 contain the costs when either CBM or CM is performed in the planning.
Segment 5 now also contains the arrival of CM or CBM, so that the shunting costs are also incurred.

minimize 𝐶𝑚𝑖𝑙𝑒𝑎𝑔𝑒∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝐷𝑦𝑢(𝑘) − 𝑣𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

1

+ 𝐶𝑃𝑀∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑤𝑢
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

2

+ 𝐶𝐶𝑀∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑞𝑢
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

3

+ 𝐶𝐶𝐵𝑀∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑞𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

4

+𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑤𝑢(𝑘) + 𝑞𝑢(𝑘)
⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

5

(4.25)

As earlier described, CBM can be combined with PM, saving shunting costs. Hence, decision-variable
𝑟𝑢(𝑘) will be subtracted from the amount of arrivals, resulting in equation 4.26. If the model integrates
CBM in the PM planning and also PM and CBM can be combined, the segment of equation 4.26
replaces segment 5 of the objective function so that shunting costs are subtracted.

𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝑤𝑢(𝑘) + 𝑞𝑢(𝑘) − 𝑟𝑢(𝑘) (4.26)

4.4.4. Constraints
All constraints from the initial model formulation are preserved. The additions are listed below.
Constraint 4.27 and 4.29 define that PM and CM or CBM cannot be performed at the same time.
Constraint 4.28 and 4.30 define that for CM and CBM the rolling stock has to be out of operation.

𝑧𝑢(𝑘) + 𝑦𝑢(𝑘) ≤ 1, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.27)
𝑧𝑢(𝑘) ≤ 𝑥𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.28)

𝑚𝑢(𝑘) + 𝑦𝑢(𝑘) ≤ 1, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.29)
𝑚𝑢(𝑘) ≤ 𝑥𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.30)
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Constraint 4.31 defines at which time CM is determined to take place for which rolling stock, therefore,
the equal sign is used. Constraint 4.32 defines that CBM has to take place within the predefined time
period. The model can decide at which instance within that time period it would plan CBM, but not
outside of this time period, hence why the less or equal sign is used.
Since planning CBM is more complex to formulate because of its flexible ability to plan, two extra
constraints are added. Constraint 4.33 defines that over every period of 𝑅𝐶𝐵𝑀 days long, the amount
of CBM divided by the duration of CBM, has to be greater or equal to the amount of ones in matrix
𝑉𝑢(𝑘) during the same time period. And by adding constraint 4.34, CBM is always planned the defined
duration within the predefined time period.
The arrival day of CM and CBM is monitored by decision-variable 𝑞𝑢(𝑘) that will be 1 only if the rolling
stock arrives at the depot for CM of CBM. Since CBM and CMwill never be combined, the same notation
of decision-variable can be used.

𝑧𝑢(𝑘) = 𝑊𝑢(𝑘) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.31)
𝑚𝑢(𝑘) ≤ 𝑉𝑢(𝑘) ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.32)

𝑘+𝑅𝐶𝐵𝑀
∑
𝑘∈𝐾

𝑉𝑢(𝑘)
𝑅𝐶𝐵𝑀

≥
𝑘+𝑅𝐶𝐵𝑀
∑
𝑘∈𝐾

𝑚𝑢(𝑘)
𝑇𝐶𝐵𝑀

∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.33)

𝑘+𝑅𝐶𝐵𝑀
∑
𝑘∈𝐾

𝑚𝑢(𝑘) ≤ 𝑇𝐶𝐵𝑀 ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.34)

𝑞𝑢(𝑘) ≤ 𝑧𝑢(𝑘) − 𝑧𝑢(𝑘 − 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.35)
𝑞𝑢(𝑘) ≤ 𝑚𝑢(𝑘) − 𝑚𝑢(𝑘 − 1), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.36)

Finally, if CBMwill be combined in onemaintenance routine with PM another constraint should be added
defining the possibilities. This is formulated in constraint 4.37. When binary decision-variables 𝑚𝑢(𝑘)
and 𝑦𝑢(𝑘) are adjacent to another, the sum over two days equals 2. When the model decides to make
𝑟𝑢(𝑘) = 1, so combining CBM and PM, this constraint is only satisfied when 𝑚𝑢(𝑘) and 𝑦𝑢(𝑘) have the
value of 1 adjacent to another. This is only possible when firstly CBM is performed and subsequently
PM.

2 ⋅ 𝑟𝑢(𝑘) ≤ 𝑚𝑢(𝑘 − 1) + 𝑦𝑢(𝑘), ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝑈 (4.37)

4.5. Approach 3: rolling stock maintenance planning optimization
integrating CM and CBM with rolling horizon framework

In previous sections, maintenance planning optimization approaches 1 and 2 are formulated. It will be
explained why both approaches are inadequate for evaluating the impact of integrating CBM in rolling
stock PM planning in comparison to CM, which is why ”approach 3” is introduced.

With approach 1 and 2, the rolling stock maintenance planning is established in once over the de-
cision horizon defined by parameter 𝐾. The simulation-horizon is defined to be the amount of days
that is ultimately optimized by the rolling stock maintenance planning optimization model. Since for
approach 1 and 2 the total planning is optimized in once, the decision horizon 𝐾 equals the simulation-
horizon. This suggests that for approach 2, the model is aware of all disruptions a priori defined by
parameter matrices𝑊𝑢(𝑡) and 𝑉𝑢(𝑡) from the start of the decision horizon (𝑘 = 0) to its ending (𝑘 = 𝐾).
So, the model can take into consideration any disruptions once the CBM or CM moments are initialized
in the model and it will consequently optimize around these moments in the planning from the start of
the decision horizon, because the moments of failure are known by the model a priori. This is not satis-
factory for analyzing the impact of CBM on the decision-making, because realistically, the maintenance
planner cannot predict all failures over the complete decision horizon. The maintenance planner, can
only realistically account for failures as they happen in real-time or account within the RUL when they
are predicted by a prognostic model.

Because of this problem, an optimization method is formulated according to a rolling horizon frame-
work where the optimization model cannot predict all failures over the complete simulation-horizon. So
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with this method, a situation is simulated where the maintenance planning is made per week and rear-
ranged in real-time. Approach 3 will be formulated building on approach 1 and 2, therefore, a similar
mathematical model will be used. The methodology of this approach is illustrated in figure 4.7, which
is similar to approach 2. However it becomes clear that the optimization process functions in a loop
where new optimizations are updated with new information. So, the total planning is split up in smaller
decision horizons than the simulation-horizon, which are optimized individually and chronologically with
the rolling horizon framework. The smaller plannings however, are initialized with the former planning,
hence why figure 4.7 resembles a feedback loop. Also, the CM/CBM constraints are only taken into
consideration when a failure happens of a fault is detected.

Figure 4.7: Structure how approach 2 optimizes the maintenance planning

4.5.1. Justification of using a rolling horizon framework
The state of the art of rolling stock PM planning includes one study that considered a rolling horizon
in order to cope with unexpected failures and rearrange the planning to this (Lai et al., 2015). The
state of the art of rolling stock maintenance that integrates prognostics also includes a study that used
a rolling horizon principle in order to plan according to the degradation of RS components (Bougacha
et al., 2022). These studies used a MILP model as is formulated for the rolling stock PM planning
optimization. Therefore, this rolling horizon principle will be used for maintenance decision-making in-
tegrating prognostics since it is able to rearrange the planning when disruptive events happen during
the execution of the optimization of the planning. A rolling horizon simulates a scenario in which the
maintenance planner makes a planning per week, while considering recent failures or failures that are
predicted in the near future.

4.5.2. Applying a rolling horizon framework to the maintenance planning opti-
mization

A rolling horizon method that is used for approach 3 is illustrated in figure 4.8. The rolling stock main-
tenance planning will be executed over a period of 𝐾 [days] in total, which is defined as the simulation-
horizon. The figure illustrates how the rolling stock maintenance planning increases in length on the
x-axis as the value of 𝑗 increases on the y-axis. Instead of a single optimization, multiple optimizations
indicated by 𝑗 will be performed for solving the complete maintenance planning. So, every number 𝑗 in-
dicates that a new optimization has been taken place. This implies that the total maintenance planning
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optimization is established step-wise, by shifting the planning 7 [days] forward every optimization, while
implementing the first 7 [days], implementation-horizon 𝐼. The implementation-horizon 𝐼 is defined to be
the initialized time-period for the following planning, maintenance decisions cannot be changed in this
implementation horizon. The decision-making from implementation-horizon 𝐼 is what is in the feedback
loop in figure 4.7. The darker colors in figure 4.8 represent the final planning, while the light colors can
still be changed the following optimization when new information is received. This indicates that every
optimization 𝑗, there is a limited time horizon that the optimization considers denoted by 𝑊, the deci-
sion horizon. Constraints of the rolling stock maintenance planning optimization are only considered
in this decision horizon 𝑊. The same MILP model formulation of approach 1 and 2 is used for every
single optimization for approach 3. But instead of optimizing the maintenance planning once over the
simulation-horizon of 𝐾, a smaller decision horizon𝑊 is considered every optimization.

Formulating CM as unexpected and CBM as predicted The model may be deceived if constraints
governing CM and CBM are not considered until they can be predicted. This can be established by
modifying the decision horizon in which the constraints are taken into account for in the optimization
model. As a consequence, it can be modeled that CM is not foreseen until it immediately should be
performed and CBM can be foreseen, but only when a failure is predicted. decision horizon length
𝑊, defines in a rolling horizon framework how much time in advance an event can be foreseen by the
optimization model. However, CM should be modeled as unforeseen and CBM can only be predicted
when a fault is detected, so decision horizon 𝑊 is not satisfactory for simulating this. Therefore, new
decision horizons, that are referred to as prediction-horizon should be introduced:

• Only if a failure actually occurs, so 1 day in advance, the optimization model can recognize the
disruption, making it unexpected and only little room to plan CM in the planning.
Prediction-horizon 𝐹 will be considered for CM (equation 4.47).

• Meanwhile if CBM is implemented, a failure can be foreseen 𝑅𝐶𝐵𝑀 days in the future, representing
the RUL, so the prediction-horizon should be the length of 𝑅𝐶𝐵𝑀 days. Consequently, the opti-
mization model can take an upcoming disruption into account, so there is still time to rearrange
and make the planning more efficient by minimizing the costs.
Prediction-horizon 𝐺 will be considered for CBM (equation 4.48).

In this manner, CM and CBMmay be distinguished from one another as CM will not be considered at all
in advance. Also CBM can only be recognized by the model only when a failure prediction is assumed.
This is shown in figure 4.8, where it is shown that prediction-horizon 𝐺 is 14 days after implementation-
horizon 𝐼, indicating that CBM can be considered by the model 14 days in advance.
prediction-horizon 𝐹 is shown to be only 1 day after implementation-horizon 𝐼, indicating that CM can
be considered by the model 1 days in advance. Actually, prediction-horizon 𝐹 is 8 days in the figure,
but since 7 days out of the 8 days of 𝐹 fall within the implementation-horizon, these decisions cannot
be changed. Therefore, CM can only be foreseen 1 day in advance, and the same rule applies for CBM.

4.5.3. Notations
The overview of decision horizons, sets and indices are listed as follows. It should be noted that the
implementation-horizon and prediction-horizon fall within the simulation-horizon 𝐾 and are dependent
on the optimization number indicated by 𝑗. However, the length of the horizons remains constant.

Indices

𝑖 Denotes the day in the implementation-horizon (4.38)
𝑗 Denotes the optimization number in the rolling horizon (4.39)
𝑘 Denotes the day in the simulation-horizon (4.40)
𝑓 Denotes the day in the prediction-horizon for CM (4.41)
𝑔 Denotes the day in the prediction-horizon for CBM (4.42)
𝑤 Denotes the day in the decision horizon (4.43)
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Sets As is earlier described, some sets are dependent on the optimization number 𝑗. This phe-
nomenon occurs because every optimization, the horizon shifts 7 days in the future. This implies that
in figure 4.8, horizons𝑊,𝐹, 𝐺 and 𝐼 are starting at 𝑘 = 𝑗 ⋅ 7 = 2 ⋅ 7 = 14 for optimization number 𝑗 = 2,
while as illustrated for 𝑗 = 3, the horizons start at 𝑘 = 𝑗 ⋅ 7 = 3 ⋅ 7 = 21.

𝐼 = {𝑗 ⋅ 7, ..., (𝑗 ⋅ 7) + 7} Implementation-horizon of 7 [days] (4.44)
𝐽 [-], Set of optimizations that equals the amount of weeks

of the total rolling horizon optimization 𝐾
(4.45)

𝐾 Simulation-horizon in [days] which is the total amount
of days in the complete planning

(4.46)

𝐹 = {𝑗 ⋅ 7, ..., (𝑗 ⋅ 7) + 8} Prediction-horizon in [days] in which CM
is considered

(4.47)

𝐺 = {𝑗 ⋅ 7, ..., (𝑗 ⋅ 7) + 𝑅𝐶𝐵𝑀} Prediction-horizon in [days] indicated by 𝑅𝐶𝐵𝑀 in which
CBM can be predicted

(4.48)

𝑊 decision horizon in [days], the period that is considered
every individual optimization of the rolling horizon

(4.49)

4.5.4. Assumptions and modifications in comparison to approach 1 and 2
To enable approach 3 to function, a few assumptions and modifications are made in comparison to
approach 1 and 2:

• It is assumed that with using a rolling horizon framework, the rolling stock maintenance planning
is implemented per week and shifts every finished optimization one week in time. This implemen-
tation week is symbolized by 𝐼 with a length of 7 [days], see equation 4.44. At NS, the planning
is made per week and executed accordingly, so this method is in line the way of practice.

• The first implementation-horizon 𝐼 for 𝑗 = 0 is obtained from the first week of a feasible solution
from the approach 1 that is solved for 21 rolling stock over a decision horizon of 32 weeks time
without CM or CBM. So the model with rolling horizon is initialized with a historical verified optimal
solution excluding CM or CBM.

• The objective function 4.25 from approach 2 is preserved and the identical minimization is used
for approach 3 every optimization in the rolling horizon framework.

• The majority of constraint formulations from approach 1 and 2 remain preserved, because they
remain valid in the simulation-horizon 𝐾. Only constraints related to CBM and CMwill be modified
for approach 3.

• New decision horizons are introduced, these are dependent on the number of the optimization of
the rolling horizon 𝑗 and listed above.

• Every optimization 𝑗 is computed over decision horizon𝑊.

• The constraints that deal with CM are valid in prediction-horizon 𝐹 defined in 4.47 and for CBM
in prediction-horizon 𝐺 defined in 4.48. The horizon definitions correspond with figure 4.8.

• Similar to approach 2, three different results can be achieved with approach 3: One with CM, one
result with CBM and a result where CBM may be combined with PM.

4.5.5. Constraints
Because the optimization method for approach 3 differs from that of approach 2, a few constraints
must be modified to be valid for approach 3. This is primarily due to the newly introduced decision- and
prediction-horizons, which indicate at which day or time period a particular constraint is valid.

The artificial method of how the RUL in for CBM is initialized in parameter matrix 𝑉𝑢(𝑘) and how failures
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Figure 4.8: Rolling horizon framework principle example with 𝐽 = 4, implementation-horizon 𝐼 = 7 days, simulation-horizon
𝐾 = 47 days, decision horizon𝑊 = 28 days, CM prediction-horizon 𝐹 = 8 days, CBM prediction-horizon 𝐺 = 21 days

are initialized in order to perform CM with parameter matrix𝑊𝑢(𝑘) remain preserved for approach 3.

The prediction-horizon 𝐹 for CM is formulated in such a way that per optimization in, CM cannot be
foreseen. The mathematical model is formulated to plan CM according to the random matrix 𝑊𝑢(𝑘),
but when the constraints considering CM are now formulated as below:

𝑧𝑢(𝑓) = 𝑊𝑢(𝑓) ∀𝑓 ∈ 𝐹, ∀𝑢 ∈ 𝑈 (4.50)
𝑞𝑢(𝑓) ≤ 𝑧𝑢(𝑓) − 𝑧𝑢(𝑓 − 1), ∀𝑓 ∈ 𝐹, ∀𝑢 ∈ 𝑈 (4.51)

Since the constraints are only valid in prediction-horizon 𝐹, they cannot be considered in the whole
decision horizon 𝑊. Consequently, CM is unforeseen until it appears right after the implementation
horizon in the decision horizon and the unpredictableness of CM is simulated.

The CBM constraints are modified similarly to the modifications of the constraints for CM. The CBM
constraints are valid for the prediction-horizon 𝐺. The prediction-horizon of 𝐺 depends on the how far
ahead a failure is predicted, so on parameter value 𝑅𝐶𝐵𝑀. The formulation of the constraints are similar
to approach 2 and will therefore not be further elaborated.

𝑚𝑢(𝑔) ≤ 𝑉𝑢(𝑔) ∀𝑔 ∈ 𝐺, ∀𝑢 ∈ 𝑈 (4.52)
𝑔+𝑅𝐶𝐵𝑀
∑
𝑔∈𝐺

𝑉𝑢(𝑔)
𝑅𝐶𝐵𝑀

≥
𝑔+𝑅𝐶𝐵𝑀
∑
𝑔∈𝐺

𝑚𝑢(𝑔)
𝑇𝐶𝐵𝑀

∀𝑔 ∈ 𝐺, ∀𝑢 ∈ 𝑈 (4.53)

𝑔+𝑅𝐶𝐵𝑀
∑
𝑔∈𝐺

𝑚𝑢(𝑔) ≤ 𝑇𝐶𝐵𝑀 ∀𝑔 ∈ 𝐺, ∀𝑢 ∈ 𝑈 (4.54)

𝑞𝑢(𝑔) ≤ 𝑚𝑢(𝑔) − 𝑚𝑢(𝑔 − 1), ∀𝑔 ∈ 𝐺, ∀𝑢 ∈ 𝑈 (4.55)

As earlier stated, approach 3 can achieve three different results:

• A rolling stock maintenance planning optimization integrating CM.

• A rolling stock maintenance planning optimization integrating CBM.

• A rolling stock maintenance planning optimization integrating CBM and additionally, CBM can
possibly be combined with PM in one routine.
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Examples of these results are plotted in eventplots that are enclosed in appendix C for each type of
result.

4.6. Verification analysis
In order to prove the correctness of the established optimization model, a verification analysis should
be conducted. The goal of the verification is to check whether the outcome of the programmed model
is correctly executed. So with a certain initialization, a specific outcome can be expected. When the
results of the model meet the expected outcome, the verification check is satisfied.
A validation cannot be performed, because this would mean that real world available data should be
used in order to compare it with the results of the artificial model. This cannot be performed in the
scope of this study and the analysis consists therefore solely of a verification.

Firstly, the optimization performed by the Gurobi solver in the Python environment should be verified.
However, this is difficult to verify because Gurobi is an integrated solver algorithm. But since Gurobi is
a professional solver algorithm, it should be assumed that no errors are made during the optimization.
Secondly, the mathematical models should be verified by running its translation in programming lan-
guage. Since there is a large understanding of the model, it can be expected how changing parameter
values impacts the deterministic optimization solution. Therefore, logical relations between the input
parameters and decision-variables as output of the model can be listed. Accordingly, these logical
relations can be checked by running the model with the changed input parameters. When the outcome
of the verification tests match the deterministic expectations, the test has passed. These runs are
verification tests. This helps identifying errors in the model and bottlenecks of the model.

Cumulative time verification check For all models, the maximum time threshold is set to 𝐸 = 108
days. When a rolling stock starts operation after PM, its cumulative time and mileage is getting reset
to zero. The mission profile is set to 475 [km] per day. Accordingly, when the rolling stock is only in
operation, it will reach the mileage threshold within 45,000

475 = 94.7 days, so the maximum amount of days
the rolling stock can be in operation is then 94 days if the optimal mileage has been reached. While
assuming that the rolling stock runs the maximum possible mileage, the rolling stock can be in rest
(𝑥𝑢(𝑘) = 1) for a maximum of 108 − 94 = 14 days between maintenance routines. This phenomenon
can also be seen in figure 4.1, when from 94 up to 𝐸 = 108 the mileage threshold be reached.

Minimal mileage losses verification The mileage losses are considered optimal when losses are
350 [km] before going to the depot for PM. The mileage threshold can be reached in 94.7 [days] of run-
ning, but the model is discretized in [days]. So in order to comply with the mileage threshold constraint
4.4, every rolling stock can only run 94 ⋅ 475 = 44, 650 [km]. The minimal remaining mileage loss is
therefore always 45, 000 − 44, 650 = 350 [km].
Consequently, the total mileage losses over an optimization is therefore always a multiplication of 350
[km] with the amount of PM routines in the decision horizon. It is therefore reasonable to initialize the
mileages of all rolling stock with a multiplication of the mission profile of 𝑃 = 475 [km] which is shown
in table 4.1. This makes it easier to verify whether the optimal solution is found. When the mileage
losses per rolling stock before performing PM equal 350 [km], it can be concluded that the model found
the optimal solution.

Finite horizon effect verification After solving approach 1 with Gurobi, it is observed in the out-
come when the upcoming PM routine can be potentially planned after the decision horizon, that the
rolling stock will not be deployed for passenger operation. These effects can be explained by so-called
”horizon effects” (Berliner, 1973). Since the optimization has a finite horizon defined by parameter 𝐾,
only within the decision horizon, the objective function will be optimized. This phenomenon has two
consequences for approach 1.

• After the decision horizon, too many rolling stock require immediate maintenance that cannot be
feasibly distributed because of the maintenance depot capacity constraints.

• The lower bound mileage threshold 𝐷𝐿𝐵 is impossible to reach for a few rolling stock if the opti-
mization would continue after the decision horizon 𝐾 resulting into an infeasible solution.
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rolling stock 𝑢 [-] 𝑒𝑢(𝑘 = 𝐾) [day] 𝑑𝑢(𝑘 = 𝐾) [km] mileage where 𝐷𝑚𝑎𝑥 ≤ 𝐷𝐿𝐵 [km]
10 97 13775 37525
11 102 1710 42750
12 107 16150 36100

Table 4.2: Model 1 optimization resulting decision variables at the end of the decision horizon with model parameters 𝑈 = 21, 𝑂
(confidential annex B section B.2), 𝐾 = 223, 𝐴 = 1, 𝐴𝑑𝑎𝑦𝑠 = 3

Since PM will be postponed until after the decision horizon, this could result into a peak in rolling stock
requiring immediate PM, because mileage threshold 𝐷 and time threshold 𝐸 are almost reached. Since
the depot capacity does not allow this, a consecutive optimization initialized with the decision-variable
values at time 𝑘 = 𝐾 results into an infeasible solution.

The second consequence is proved in table 4.2. For rolling stock number 10, 11 and 12, at time 𝑘 = 𝐾,
so at the end of the decision horizon, the decision-variable values 𝑒𝑢(𝑘 = 𝐾) and 𝑑𝑢(𝑘 = 𝐾) are called
after optimizing the PM planning with approach 1 over 32 weeks (also in figure 4.9). Decision-variable
value 𝑒𝑢(𝑘 = 𝐾) in the table shows how the rolling stock are nearing the time-threshold 𝐸 = 108 while
the cumulative mileage 𝑑𝑢(𝑘 = 𝐾) is still below the lower bound mileage threshold 𝐷𝐿𝐵 = 42, 800. The
third column is calculated with equation 4.56, where the remaining days until time-threshold 𝐸 is taken
in product with the mission profile 𝑃 and accordingly added up to the mileage monitored at the end of
the decision horizon. If this calculated value is below the lower bound threshold, this implies that if the
PM planning would continue after the decision horizon, this results into a infeasible solution because
it will become impossible to satisfy constraint 4.7. For this experiment, in the given configuration this
occurred only for three rolling stock 9 to 11.

𝐷𝑚𝑎𝑥 = 𝑑𝑢(𝑘 = 𝐾) + 𝑃 (𝐸 − 𝑒𝑢(𝑘 = 𝐾)) (4.56)

Lin and Zhao (2021) also observed this issue and stated that the workload of maintenance cannot be
balanced adequately as a consequence. Their decision horizon consists of 7 days with a fleet of 30
rolling stock, wherein two rolling stock were not deployed at all within the decision horizon. They did
not overcome this problem.

It can be observed from the PM planning results that the deployment decision-making between PM
routines is dependent on the upcoming PM routine. Consequently, all deployment decision-making
since the last PM routine in the decision horizon per rolling stock does unrealistically not consider up-
coming PM routines. This can be seen in figure 4.9 where after the last PM routine, many rolling stock
are unrealistically not in operation. This phenomenon is highlighted in the red square, because after
the last PM routine, rolling stock 𝑢 = 12 is 31 days out of operation. It has been verified in the previous
paragraph and in table 4.2 that the rolling stock can only be out of operations for 14 days maximum
while still reaching the lower bound mileage threshold, so 31 days out of operation is an unrealistic
outcome.

A possible solution to overcome this horizon effect is therefore to disregard all maintenance deci-
sions after the last PM routine per rolling stock. From this can be concluded that to make sure that
the decision-making post last PM in the planning is disregarded, 𝐸 = 108 [days] should be cut off the
established maintenance planning. Hence, the red line in figure 4.9 is drawn to illustrate the end point
for valid analyses, in this case at 𝑘 = 𝐾 − 𝐸 so 𝑘 = 224 − 108 = 116. Consequently, every planning
decision horizon should be larger than 𝐸 = 108 days in order to retrieve reliable decision-making from
the optimization models.

Finite horizon effects cannot be observed in approach 3. Because of the rolling horizon principle,
the horizon becomes ”infinite”. However, when the rolling horizon optimization stops, planning after
the last implementation-horizon should be disregarded. This complies with the previous statement,
because the decision horizon𝑊 < 𝐸 and should therefore be disregarded.
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Figure 4.9: PM planning with approach 1 showing horizon effects after the last PM routine of rolling stock 𝑢 = 21 and therefore
disregarded

4.6.1. Constraint verification of approach 1
Verification checks are listed below. Since approach 2 and 3 are building on approach 1, it can be
assumed that these checks also account for approach 2 and 3.

• The amount of rolling stock in operation at all times is formulated in constraint 4.8. With a verifi-
cation check in figure 4.10 it, Parameter 𝑂 is set to 1 rolling stock out of the 𝑈 = 4. It can be seen
that every time 𝑘, exactly 1 rolling stock is in operation, by leaving a blank.

• Constraint 4.10 and 4.11 bound the PM duration to be exactly𝑁 days. However, decision-variable
𝑦𝑢(𝑘) is indexed this case out of simulation-horizon 𝐾 because PM can be scheduled at the end
of the decision horizon 𝑘 = 𝐾. In order to satisfy the constraint, PM still should take 𝑁 days, but
this this is after the decision horizon, because 𝐾 + 𝑁 ∉ 𝐾. This is inspired by the rolling stock
maintenance planning in the model of Lin and Zhao (2021), where the same issue is identified
and solved. This is modeled for continuity of the model, so it may occur that only 1 or 2 days of
PM are modeled in the decision horizon.
A verification of this constraint is defined:
Four rolling stock from which 1 is available are initialized as table 4.3. A decision horizon is set
to 𝐾 = 7 days. As can be seen in figure 4.10, rolling stock number 1 only has 2 days in PM (at
𝑘 = 6 and 𝑘 = 7) in the modeled decision horizon. The results show that this is always the case,
and therefore it is satisfied.

rolling stock number 𝑢 𝑑𝑢(0) 𝑒𝑢(0)
1 43700 104
2 44175 105
3 44650 106
4 0 0

Table 4.3: PM routine verification initialization.

• Constraint 4.14 defines that the depot does not accept more than 𝐴 arriving rolling stock over
𝐴𝑑𝑎𝑦𝑠 days. While assuming that the initial mileages are a multiplication of the mission profile and
the accumulated time and mileage is initially equally distributed over the fleet (table 4.1), it can be
verified that in case there are 21 rolling stock, the arrival rate cannot be less than a frequency of
1 per 5 days. The solution becomes infeasible when the arrival rate is set to a frequency 1 rolling
stock to be maintained per 6 days. Because that rate would result in needing 6 ⋅ 21 = 126 days
for maintaining 21 rolling stock. Since the upper bound time threshold is 𝐸 = 108 days < 126
days, the solution will become infeasible. Table 4.4 shows how this is proved for a fleet size of
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Figure 4.10: PM routine verification test.
Performed in model 1 for 1 week with Mileage loss = 1050 [km].
Relevant parameters: 𝑂 = 1 in operation, 𝐾 = 7, 𝑈 = 4 depot capacity: 𝐴 = 1 arrival per 𝐴𝑑𝑎𝑦𝑠 = 1 day.

21 rolling stock by iterating parameter 𝐴𝑑𝑎𝑦𝑠. Additionally, this can be further checked by higher
number of rolling stock as long as it is in line with the following equation:

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑅𝑆 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 ⋅ 𝑅𝑆 𝑓𝑙𝑒𝑒𝑡 < 108 (4.57)

𝐴𝑑𝑎𝑦𝑠
𝐴 ⋅ 𝑈 < 𝐸 (4.58)

If it does not satisfy the equation, the model becomes infeasible.

• Constraint 4.8 forces the rolling stock to be always out of operation when PM is performed, this
is always the case, otherwise the constraint cannot be satisfied. Therefore, it is considered to
comply at all times. Figure 4.10 shows that while performing PM, the rolling stock is considered
to be not in operation.

• Because of constraint 4.10 and 4.11 that forces themodel to performmaintenance 3 days, mainte-
nance cannot be performed a different duration, this is checked to be always satisfied. However,
the constraint holds for longer than the decision horizon, making it possible to plan maintenance
after the decision horizon. The PM after the decision horizon is not considered in the cost ob-
jective function since it only minimizes the cost over the decision horizon. Consequently, 2 days
before the decision horizon, PM may only takes 2 days, because it continues after the horizon,
similarly to 1 day before the decision horizon, PM only takes 1 day within the decision horizon.
This can be checked if the cumulative time rolling stock in a decision horizon of 1 week is initial-
ized with 103 days, so it should be maintained within 6 days, resulting in only 1 day of PM in the
decision horizon. Figure 4.10 demonstrates this.

amount of arriving rolling stock 𝐴: per amount of days 𝐴𝑑𝑎𝑦𝑠: solution result:
1 2 optimal
1 3 optimal
1 4 optimal
1 5 optimal
1 6 infeasible

Table 4.4: Verification of the depot capacity constraint, for this test, the terms in which rolling stock can arrive is iterated resulting
into infeasibility when the terms are equal or larger than 6 days

4.6.2. Verification of approach 2 and 3
The mathematical model of approach 1 is built upon in approaches 2 and 3. It can thus be concluded
that approaches 2 and 3 pass the verification criteria of approach 1 as well. Still, the additions of ap-
proach 2 and 3 need to be verified. This is done by means of:

• Verify the foreseeability of approach 2 and 3.

• Verify the foreseeability difference between CM and CBM with the difference in decision-making.
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Foreseeability verification The premise that approach 2 can predict all initiated disruptions has to
be verified. With approach 3, the formulated different decision horizons 𝑊, 𝐹 and 𝐺 define how far in
the future events are considered for establishing the current week planning. This can be referred to as
the ”foreseeability”.

The claim that with approach 3 cannot foresee disruptive events in the future has to be verified as
well. An experiment will be set up in order to investigate the difference in foreseeability of approach
2 and 3. When this experiment is conducted with approach 2 and no mileage losses are made, this
proves that approach 2 can foresee failures in the model and it becomes unsatisfactory to use for fur-
ther analyses on disruptions.

For this experiment the approach is initialized with the following:

• Approach 2 is initialized with the mileage and time as defined in table 4.1.

• Approach 2 optimizes over a decision horizon of 𝐾 = 35 + 𝐸 days, so that horizon effects are
excluded and the first 35 days / 5 weeks can be used for trustworthy analysis.

• The first implementation-horizon 𝐼 of approach 3 is initialized with the first 7 days of a optimization
of approach 1 over 32 weeks that is also initialized according to table 4.1. Thus, there are no
horizon effects.

• 1 disruption for rolling stock number 𝑢 = 18 on day 𝑘 = 21 for 𝑇𝐶𝑀 = 1 day is determined to occur
with matrix𝑊𝑢(𝑘), so𝑊18(21) = 1.

• Approach 3 performs 𝐽 = 5 optimizations in the simulation, so including implementation-horizon,
5 weeks are optimized.

Figure 4.11 a and b show the outcome of the experiment. The CM disruptions are shown to be at the
exact same timing and for the same rolling stock number in both optimizations. PM for rolling stock
number 18 is in both approaches performed on the day after that the cumulative time decision-variable
had the value of 𝑒18(21) = 107. PM had to be performed immediately for that reason on day 𝑘 = 22.
However, a difference can be observed in the operational planning of rolling stock number 18 before
the PM routine. In approach 2, the rolling stock was out of operation twice, while in approach 3, is was
out of operation three times. So approach 2 optimized this in order avoid mileage losses. While this is
not decided for approach 3, because the optimization could not foresee the disruption, the rolling stock
had to be corrective maintained, hence the rolling stock did not run enough mileages in operation for
minimal mileage losses.
The cumulative mileage losses are shown in figure 4.11, where it is illustrated that when PM is per-
formed, the total mileage loss accumulates. Figure 4.12 shows as a result that in approach 3 more
mileage losses are made at 𝑘 = 22 for approach 3 with CM, while in approach 2, CM, minimal mileage
losses of 350 [km] were made only.

From this can be concluded that approach 2 foresees disruptions and thus acts on this while this are
realistically unforeseen events. Approach 2 is therefore unsatisfactory to further conduct experiments
on in regards to analyze the impact on the decision-making of the rolling stock maintenance planning.

Decision-making difference between CM and CBM verification A second verification is performed
on approach 3. This verification check will prove the difference in decision-making between CM and
CBM for approach 3. A comparison is made between the same results from figure 4.12b and c.

A disruption in the form of failure can be initialized in the optimization model using approach 3. When
this disruption is responsible for mileage losses because CM has to be performed, this can be com-
pared to a situation where instead of a failure, a fault is detected and the asset has to perform CBM
within the given RUL. Figure 4.12 shows that more than 350 [km] as mileage losses are made at 𝑘 = 22
for approach 3 with CM. The same disruption as defined in𝑊𝑢(𝑘) is initialized for approach with CBM,
so 𝑉18(21) = 1. The initialization of approach 3 with CBM is identical to the approach 3 with CM.
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Figure 4.11: Verification of approach 2 with CM (a), versus approach 3 with CM (b), versus approach 3 with CBM (c)
𝑊18(21) = 1 and 𝑉18(21) = 1
Optimization for 𝑈 = 21, 𝑂 (confidential annex B section B.2), 𝐴 = 1, 𝐴𝑑𝑎𝑦𝑠 = 3 [days], 𝑅𝐶𝐵𝑀 = 14 [days]

Figure 4.12: Cumulative mileage loss of approach 2 CM versus approach 3 CM versus approach 3 CBM
Optimization for 𝑈 = 21, 𝑂 (confidential annex B section B.2), 𝐴 = 1, 𝐴𝑑𝑎𝑦𝑠 = 3

The result of this experiment is shown in figure 4.11b and c and in figure 4.12. 4.11 b and c are identical
the first 7 days, showing that they are initialized the same. Because of the flexibility of CBM, no mileage
losses are made, it can be proved that CBM has a positive effect on the maintenance decision-making.

Verification of combining CBM with PM routine Decision-variable 𝑟𝑢(𝑘) creates the possibility with
constraint 4.37 to combine CBM with PM. Note that this constraint only holds for the combination of PM
after CBM, not the other way. This is reasonable, since CBM is detected first and should be maintained,
while PM should be maintained within the given constraints.

As earlier discussed in the state of practice, the combination of CBM with PM is an opportunity. But
a trade-off should be made between the mileage costs due to early PM with avoiding double shunting
costs. Mileage costs are defined to be 𝐶𝑚𝑖𝑙𝑒𝑎𝑔𝑒 [euro] and shunting costs 𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔 [euro]. So if the total
amount of mileage costs are less than 𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔 [euro] and it suits better in the maintenance planning,
it becomes tempting for the optimization problem to combine the two maintenance routines. Therefore,
the mileage losses should be less than 3125 [km] (see calculation in confidential annex B section B.4)
to be still profitable. However, it is still desired to run at least 94% of the upper bound mileage thresh-
old 𝐷, so constraint 4.7 still holds. It can therefore be verified that if the cumulative mileage of 𝐷𝐿𝐵 is
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reached, it becomes feasible for for constraint 4.37 to combine CBM with PM and save costs in the
maintenance planning.

4.7. Concluding Remarks
By describing how the mathematical model is formulated with the decision-variables, constraints, pa-
rameters and objective function that considers the explained mileage costs, research question 3 has
been well addressed.

3. How to formulate an optimization problem for rolling stock maintenance planning considering the
mileage costs and what are the associated decision-variables and constraints?

The elements of the mathematical model are formulated using similar models from the state of the art.
Passenger operations are not considered in the study which are often integrated with rolling stock main-
tenance planning optimization state of the art. Instead, the mathematical model is formulated to have
a specified amount rolling stock available for operation that cannot be maintained as a consequence.
The mathematical constraints are designed in such a way that the model resembles the maintenance
planning method at the maintenance depot of NS. The objective function of the models is therefore
formulated to minimize the mileage losses and PM routines. It is explained how approach 1 results into
a rolling stock PM planning optimization that is in accordance with the state of the art and the state of
practice. So a PM planning decision-making optimization tool is developed for NS that establishes the
PM planning while making a minimum amount of mileage losses as possible.

The numerical problems that are encountered during the establishment of approach 1 are described
and the methods on how to resolve these issues is explained. Solving these problems led to a linear
model that can be solved in python by the Gurobi solver algorithm.

The optimization approaches 1 and 2 are further verified with verification checks showing for exam-
ple that for approach 1 and 2 only the maintenance planning up to day 𝑘 = 𝐾 − 𝐸 can be used as
realistic planning due to the described horizon effect.

Research question 4 is also addressed in this chapter by formulating approach 3 that establishes the
rolling stock maintenance planning using the rolling horizon framework.

4. How to design a rolling stock PreventiveMaintenance planning algorithm for integrating Corrective
Maintenance or Condition Based Maintenance?

Approach 2 conducts a single optimization considering all of the initialized disruptions over the decision
horizon a priori, but the approach is unable to process updates and other disruption in the planning. With
approach 2, an unrealistic outcome is generated, because the optimization is able to take upcoming
failures into account. Hence, approach 2 is not satisfactory for evaluating the impact of disruptions on
the maintenance planning decision-making.
The state of the art showed how to overcome this problem by using a rolling horizon as framework.
A rolling horizon framework can be used in order to simulate rearrangements in the planning as a
result of newly appearing disruptions. Ultimately, approach 3 is satisfactory for analyzing how planning
maintenance based on prognostics impact the decision-making for rolling stock maintenance which will
be performed in the next chapter.





5
Sensitivity and Results

In this chapter, the performance of the formulated maintenance optimization approach 1, 2 and 3 and
will be evaluated. The approaches have been be verified.
The actual fleet of SNG at NS consists of 190 available rolling stock. This large fleet number results
into very long computational times and the current computer on which the optimization runs does not
have sufficient numerical capacity. The computational time increases as the amount of rolling stock
increases, because it enlarges the size of the optimization problem, similar to the decision horizon.
Due to these computational limitations, the fleet size has been down-scaled to 21 rolling stock in order
to evaluate the performance of the optimization approaches in this chapter.

Research question 5 will be addressed in this chapter by comparing and evaluating the outcome of
the rolling stock Preventive Maintenance planning algorithm considering the integration of CM or CBM
according to Key Performance Indicators.

5. How to evaluate the performance of the rolling stock Preventive Maintenance planning algorithm
considering the integration of Corrective Maintenance or Condition Based Maintenance?

This research question will be answered by evaluating the performance of approach 3. Approach 3
can achieve 3 different results that should be compared:

• The rolling stock maintenance planning optimization integrating CM.

• The rolling stock maintenance planning optimization integrating CBM.

• The rolling stock maintenance planning optimization integrating CBM and additionally CBM can
possibly be combined with PM in one routine.

Comparisons between results can be used to assess performance and justify the impact of CM and
CBM on the rolling stock maintenance planning. This includes also the cost effectiveness of combining
CBM with PM in the rolling stock maintenance planning.

Ultimately the main research question will be answered:

What is the impact of integrating Condition Based Maintenance in the Preventive Maintenance planning
decision-making?

5.1. Key Performance Indicators of the maintenance planning op-
timization

To quantify the performance of an optimization approach, multiple Key Performance Indicators (KPI’s)
are generally used in the state of the art and the state of practice. An KPI is a quantitative value
that reflects the performance of an approach. KPI’s can thus be used to evaluate and compare the
performance of different approaches. The following KPI’s based on the state of the art and state of
practice will be used for the analysis in an order from highest priority to low:

57
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1. Mileage losses: The mileage losses are calculated in the objective function. The equation that
isolates this KPI is formulated in equation 5.1. This KPI is found in the state of the art and NS
uses the mileage losses as KPI as well. The optimization is increasingly less optimal the more
mileage losses are incurred and therefore is this KPI from the highest priority. Since it is assumed
for modeling purposes that every rolling stock runs constantly 475 [km] per day when in operation
(𝑥𝑢(𝑘) = 0) and the mileage threshold is 𝐷 = 45, 000 [km], the optimal mileage losses is nonzero.
45,000
475 = 94.7 is not a round number and therefore themaximum amount of days that a rolling stock

can be in operation before PM is 94. Consequently, themileage losses are 45, 000−94⋅475 = 350
[km] per rolling stock asminimal value. The optimal value of mileage losses in the decision horizon
is therefore the a multiplication of PM routines with 350 [km].

∑
𝑘∈𝐾

∑
𝑢∈𝑈

𝐷𝑦𝑢(𝑘) − 𝑑𝑢(𝑘 − 1)𝑦𝑢(𝑘) (5.1)

2. Feasibility: When the optimization is initialized with parameters values that cannot be bounded
by the formulated constraints, it is impossible to find a feasible solution. In the case of the main-
tenance planning, the infeasibility can be coupled to the problem formulation. When the mainte-
nance depot is too full and a rolling stock should be maintained for example. Or when a disruption
takes place and not enough rolling stock can be available as a consequence.
Therefore, a maintenance planning approach that puts out a feasible solution is thus better in
decision-making than a planning that results into a infeasible solution. A feasible solution will be
considered as a success. An infeasible solution is a cumulative result of poor decision-making in
the past or due to unfortunate disruptions.

This KPI cannot be found in other studies or in practice. However, it became evident that this
KPI directly shows the difference in quality of decision-making, since poor decisions result into
infeasible solutions. As a result, this KPI is considered to be important.

3. Combinations of CBM with PM: As discussed, CBM can be planned in advance. When the
RUL is overlapping the nearest PM routine in the planning, this can be used as an opportunity in
the to combine CBM with PM, saving shunting costs. Since this is highly desired, the amount of
combinations are used as KPI. The higher the number of combinations the better. However, this
might be at the expense of the mileage costs.

4. Maintenance costs: The maintenance costs can be obtained directly from the objective function
4.1. This KPI indicates the total performance and is optimal when the mileage losses are minimal
and the time between PM routines is maximal. This KPI indicates to overall outcome, but does not
necessarily specify how the optimization is performing, therefore, other KPI’s have more priority.

5. Total amount of PM routines in the decision horizon:
The total amount of PM routines in the decision horizon can indicate the efficiency of the PM
planning. This KPI is related to the decision horizon length, because when a time of 𝐸 = 108 days
has passed, every rolling stock had PM once. When the decision horizon length is a multiplication
of 𝐸, the least amount of PM routines can be calculated, by performing the same multiplication
number times the total rolling stock, this is defined to be the least amount and thus optimal. When
this has not been reached, it can be concluded that the outcome of the optimization is sub optimal.
Doganay and Bohlin (2010) approached this KPI by calculating the time between PM routines and
integrating this in the objective function. However, this is not done for the approaches is this study
hence, the amount of PM is used as KPI.
This KPI can be calculated by summing decision-variable 𝑤𝑢(𝑘) that has the value 1 when a
rolling stock arrives at the depot for PM. Note that only PM is counted in the domain that does
not include horizon effects as is explained in previous chapter with the verification. The domain
𝑘 ∈ {0, ..., 𝐾 − 𝐸} is therefore used for performance evaluation.

∑
𝑘∈{0,...,𝐾−𝐸}

∑
𝑢∈𝑈

𝑤𝑢(𝑘) (5.2)
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Since the rolling stock maintenance planning is only optimized over a relatively small fleet in
comparison to practice and the planning for approach 3 will only be computed for 133 [days],
the value of this KPI is relatively small. The number of PM routines grow over longer periods
and larger fleets so that variations of this KPI become less significant as a result. It is therefore
expected that this KPI is a better indicator for larger fleets and longer periods, hence for this
analysis, the KPI is not highly prioritized.

6. Computational time: The computational time to the optimal solution is considered to be an KPI of
the optimization approaches. This KPI indicates complexity of the problem and the complexity of
resolving a problem because of disruptions in the planning for example. Since the computational
time is not considered to highly contribute to the qualility of the solution, this KPI has the lowest
priority.

5.2. Sensitivity analysis
For a broader understanding of the optimization, performing a sensitivity analysis helps identifying
computational relations of the approaches. The sensitivity analysis is performed by iterating input pa-
rameters and accordingly checking the optimization results. It is expected that certain input parameters
have an effect on the computational optimization and outcome of the approaches. This has to do with
the computational capacity and algorithm version, thus the available computer with processor (Intel(R)
Core(TM) i7-6700HQ CPU with 2.60GHz), computed at Gurobi Version 10.0 and Python 3.8. The ef-
fect of the iterations can be measured with the outcome. These analyses will be performed separately
with every approach. The differences of the outcome will be ultimately compared between the three
approaches. Analyses and comparisons will be made based on KPI’s that are previously defined in
section 5.1.

decision horizon It is expected that the computational time increases significantly every time when
the decision horizon is increased. It is expected that less PM has to be planned when the decision
horizon is shorter than the time threshold. This will result into shorter computational times.

Optimality Gap The Gurobi solver optimizes the formulated program to the best solution. The op-
timality gap is defined by Gurobi as: 𝑔𝑎𝑝 = |𝑧𝑃−𝑧𝐷|

𝑧𝑃
, where 𝑧𝑃 is the primal objective upper bound for

minimization problems and 𝑧𝐷 the lower bound for minimization problems. The quality of the solution
usually depends on the optimality gap, indicated in a percentage. The closer the gap to zero, the bet-
ter the solution is. It is desired to obtain a optimality gap of 0%. However, this usually is expensive
because it costs a lot of computational time. A feasible solution with a slightly larger optimality gap
is in some cases already satisfactory, because it can be verified that there is no better solution. This
may also depend on the objective function formulation and how the solution is bounded. Méchain et al.
(2020) described for the rolling stock maintenance planning how the computational time impacts the
optimality gap. It was concluded that the longer the computational time, the better the solution, but this
relation is not linear. The optimality gap decreases minimally over the long run and it is therefore not
worth the extra computational time.

decision horizon length The decision horizon length ultimately determines how many PM routines
are performed since this is time dependent. The longer the decision horizon is, themore PMare decided
to be planned. Since all decision-variables are related to the decision horizon length, the model size
exponentially grows as the decision horizon increases. It is therefore expected to have a large impact
on the computational time.

5.2.1. Sensitivity analysis approach 1
With approach 1, only costs are minimized that are made by not sufficiently utilizing the mileages that
a rolling stock may run before going to the depot for Preventive Maintenance. So the final objective
cost value of approach 1 is only influenced by the mileage losses and the amount of PM routines in
the decision horizon. It can be verified what the optimal minimum costs are depending on the decision
horizon and amount of rolling stock. However, while the optimal costs are achieved, the optimality gap
is not yet closed to 0%. Therefore, for this sensitivity analysis, the influence of the optimization gap on
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the maintenance decision-making while the minimal costs are achieved will be analyzed.
Also the influence of the decision horizon length will be analyzed.

Optimality Gap For the approach 1, from the objective function and knowing how much maintenance
should minimally take place in the decision horizon for a fleet size of 21 rolling stock and the costs
according to this, the optimal solution may be calculated as can be seen in the dotted line in figure 5.1.
This optimal solution was already found while the optimality gap was still 6.71%, as can be seen in
figure 5.1. It can be noticed that the objective costs is therefore steady at 208,659.36 [euro]. From this
can be concluded that the optimality gap does not necessarily relate to the best solution. This can also
be proved because while the verified solution is found, the Gurobi solver still runs while the optimality
gap decreases (as figure 5.1 shows a decreasing optimatilty gap at time 698 [s] to 796 [s]), but the
best solution of 208,659.36 [euro] is already found at 538 [s]. This phenomenon can be seen in figure
5.1. This implies that the gap should not be necessarily closed to 0% in order to compute performance
evaluation results for the optimization approached. A stopping criteria for approach 1 is defined as the
following: The optimality gap is either less than 1% or the algorithm did not find a better solution in
1800 [s] time.

Figure 5.1: Optimization computation approach 1 PM planning 224 [days], 21 rolling stock.
The graph shows the maintenance costs (red) and optimal costs from on the left y-axis (costs are multiplied with factor 𝑌 see
confidential annex B section B.1) and the optimality gap (blue) on the right y-axis

decision horizon length iteration The decision horizon length is iterated from 16 up to 40 weeks
with increments of 4 weeks. The Gurobi solver is used to solve the MILP problem, but for quicker
computation, the Gurobi solver parameter ”NoRelHeurTime” is adjusted (Gurobi Optimization, 2022).
With this parameter, the computation of the optimization starts with 300 [s] of heuristic solving. This
is a robust method that finds feasible solutions quickly of the MILP problem. The found solutions are
often far from optimized, but the they are used by the algorithm as starting point of the optimization
after 300 [s].
The stopping criteria for the optimization is preserved from the previous analysis: The optimality gap is
either less than 1% or the algorithm did not find a better solution in 1800 [s] time. This method is used
consistently through the iteration of the decision horizon.

The for all approaches, the optimization is initialized with 21 rolling stock according to table 4.1. After
16 weeks (112 days), the maximum time threshold 𝐸 = 108 days for PM just passed, so every rolling
stock went to the depot for PM at least once. The decision horizon has to be at least 16 weeks in
order to avoid horizon effects, therefore the iteration is selected to begin at 𝐾 = 112 [days]. Figure 5.2
shows that the computational time up to a decision horizon of 32 weeks is relatively quick, being within
45 minutes ( 2500 [s]). From that point every rolling stock had its second PM routine in the decision
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Figure 5.2: Illustration how the decision horizon length influences the computational time (left y-axis) and how the amount of PM
(right y-axis) increases linearly with the decision horizon for a fleet of 21 rolling stock

horizon. Once a few rolling stock in the planning must go for their third PM routine, the computational
time spikes to almost 4 hours for a decision horizon of 36 weeks and even longer for 40 weeks. It has
to be noted that the mileage loss KPI is optimal with every iteration. The linear increase in the decision
horizon coincides with a linear rise of PM routines. From this can be concluded that the computational
time increases significantly once the decision horizon is longer than 32 weeks and some rolling stock
are planned for their third PM routine in the decision horizon.

5.2.2. Sensitivity analysis approach 2
From approach 1, the optimal solution can be retrieved. With the verification of approach 1 and its
optimal solution, the minimal objective costs can be calculated for approach 2 as well. Because for ap-
proach 2, the only addition is that CM or CBM is included in the planning, resulting into extra shunting
costs and CM or CBM costs. These costs can then be added to the minimal solution of approach 1.
When this value is programmed as parameter in the Gurobi solver environment as ”Best objective”, the
solver automatically stops, regardless of the optimality gap. Consequently the optimal solution can be
found and if this cannot be reached, it can be concluded that CM disrupts the planning in such a way
that the optimal solution cannot be achieved.
The influence of the increasing number of CM over a constant decision horizon is iterated in order to
analyze the impact of CM on the maintenance planning optimization computational time.

However, it can be concluded that the increasing number of CM and CBM over the decision hori-
zon has no logical effect on the computational time. Because no observable relation in computation is
observed, this is excluded from this study.

5.2.3. Sensitivity analysis approach 3
Approach 3 performs the same optimization method as for approach 1 and 2. Hence, the sensitivity for
approach 1 and 2 also applies to approach 3. However, for approach 3, the rolling horizon framework is
added, so horizon effects are excluded in this approach. Therefore, the conclusion from the verification
check on approach 1 and 2 concerning horizon effects do not apply to approach 3. As a result, the
decision horizon𝑊 in approach 3 may be shorter than the PM time threshold 𝐸

The decision horizon length have according to the study of Bougacha et al. (2022) an enormous impact
on the decision-making and also on the computational time. In order to comprehend how the decision
horizon𝑊 impacts the output, this parameter will be iterated for the sensitivity analysis.

The decision horizon is iterated from 2 to 16 weeks as can be seen in table 5.1. For this iteration,
no disruptions are initialized in the model, only a PM planning is conducted during these optimization.
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It can be concluded that from a decision horizon of 𝑊 = 13, the rolling horizon optimization is stable
and results into a feasible and optimal solution. Similarly to approach 1 and according to the sensitivity
analysis considering the computational time as a result of the decision horizon length, approach 3 takes
also longer to solve as decision horizon length increases. It is therefore desired to solve the problem
with a decision horizon length as small as possible. Considering these two factors, is has been decided
that a decision horizon of𝑊 = 14 will be used for further performance evaluations of approach 3.

decision horizon𝑊 [weeks] infeasible after 𝑗 [weeks]
2 2
3 6
4 21
5 20
6 18
7 > 32
8 22
9 > 32
10 > 32
11 7
12 14
13 > 32
14 > 32
15 > 32
16 > 32

Table 5.1: decision horizon𝑊 iteration for approach 3 with rolling horizon over 𝑗 optimizations in the simulation horizon without
CM or CBM
The decision horizon length of 14 weeks is chosen as demonstrated in bold

5.3. Results of the rolling stock maintenance planning optimiza-
tion approaches

In section 5.1, the KPI’s were defined from which the performance of the rolling stock maintenance
planning optimizations can be evaluated and quantified. This section, the performance of the formu-
lated verified approaches will be compared and evaluated on their decision-making. Ultimately, these
conclusions can be used for the discussion that describes the impact on the integration of CBM on the
PM planning.

5.3.1. Rolling stock availability for operation in approach 1
From the ”bakkenstand” of NS, it is assumed that the availability of rolling stock should be 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒%
so a parameter value for availability of 𝑂 for a fleet of 𝑈 = 21 rolling stock is considered (see confidential
annex B section B.2). However, the ”bakkenstand” is an average percentage over a whole week. More
availability is required in peak hours or peak days as more passengers should be transported. More-
over, because of Covid19 for instance, less rolling stock were required because less people needed
transportation services (Hildebrand, 2022). Therefore, it is analyzed how the required availability of
rolling stock influences the decision-making for PM.

For this analysis, the amount of rolling stock in operation is analyzed with approach 1 by iterating
parameter 𝑂 with 𝑈 = 21 rolling stock in total. The decision horizon is set to 𝐾 = 224, however,
because of the horizon effect, only the planning up to 𝑘 = 224 − 𝐸 is analyzed. The outcome of the
analysis is expressed in total mileage losses and total amount of PM in the decision horizon.

Parameter 𝑂 is iterated from 15 up to 20 rolling stock in operation. For a value of 𝑂 = 16 and lower,
the optimal mileage loss (350 [km] per PM routine) cannot be achieved. In these optimizations, too
few rolling stock had the chance of running operation and accumulating mileages as can be seen in
table 5.2. Therefore the mileage threshold has not been reached when the time threshold is nearly
reached. Consequently, the maximum mileage threshold is below 45,000 [km] resulting into higher
mileage losses overall because all rolling stock will be maintained prematurely.
With optimization with 𝑂 < 16, the problem becomes infeasible because the rolling stock runs too little
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mileage in order to even reach the lower bound mileage threshold before reaching the time threshold.
Figure 5.3 illustrates the cumulative mileage losses over time with the parameter values of 𝑂 that can
be iterated. As earlier described, the minimal mileage loss is 350 [km]. Consequently steps in the
figure are steps of 350 [km] accumulating every time a rolling stock undergoes PM. However, the steps
for the simulation where 𝑂 = 16, the steps are larger than 350 [km], indicating that the mileage losses
are made.

The cumulative mileage and the quantity of PM increases when an optimization is conducted with
parameter 𝑂 = 20 as opposed to 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 by default. A few rolling stock are thus unable to cover
enough kilometers when only 1 out of every 21 assets of rolling stock can be unavailable. A conces-
sion is made in the optimization by deciding to let 5 rolling stock perform early PM in order realise PM
with minimal mileage losses for the remaining rolling stock (at 𝑘 =3, 50, 53, 76 and 99). This can be
explained by the fact that rolling stock run too much mileage and require PM more frequently, hence
why 23 rolling stock are maintained in only 116 days. With too many rolling stock requiring mainte-
nance, the depot capacity restricts rolling stock from running the optimal mileage can be concluded.
Practically, two conclusions can be made from the sensitivity of the parameter 𝑂:

• As less rolling stock are required for operation than the ”bakkenstand”, the deployment of rolling
stock becomes less. This results into less running mileages before reaching the time threshold
for PM resulting into mileage losses.

• Whenmore rolling stock are required for passenger operation than the ”bakkenstand”, themileage
threshold is reached earlier in time resulting into more PM routines in total. Due to the more PM
routines in total, the maintenance depot workload becomes higher.

Finally, the conclusion can be made that for a required availability of 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒%, an optimal solution
can be found, so no more than 350 [km] in mileage losses are made every PM routine. This proves
that the model is capable of optimizing the rolling stock PM planning.

Figure 5.3: Iteration of availability parameter 𝑂 resulting in different cumulative mileage losses over the decision horizon.
Optimization run with 𝑈 = 21, 𝐴 = 1, 𝐴𝑑𝑎𝑦𝑠 = 3 optimization over 𝐾 = 224 values retrieved from the domain 𝐾 − 𝐸
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availability 𝑂 [-] PM in horizon [-] accumulative mileage loss [km]
16 22 36325
17 22 7700
18 22 7700
19 22 7700
20 23 11850

Table 5.2: Iteration of availability parameter 𝑂.
Optimization run with 𝑈 = 21, optimization over 𝐾 = 224 values retrieved from the domain 𝐾 − 𝐸
The lower, the better

5.3.2. Performance of approach 3 comparing CM with CBM
The optimization approaches are very capable of minimizing the costs of the maintenance planning
with a minimal amount of mileage losses, which has been shown by the evaluation of approach 1.
CM and CBM are disruptive factors in the maintenance planning. However it can not always be ob-
served based on the KPI’s that CM and CBM disrupt the planning. So CM and CBM are sometimes
not disruptive enough to the planning to have an effect on additional maintenance costs. There may
however occur some instances of CM in the planning that result into sub-optimality indicated by the
increased mileage costs due to premature PM.

Because of a failure in a rolling stock, it has to go to the maintenance depot for CM and it becomes
unavailable. Due to this unavailability, the rolling stock cannot run operation for a certain amount of
time. In the meantime, the cumulative time is increasing, nearing the time threshold for PM. So since
the rolling stock is unable to run enough distance before the time threshold, mileage losses are made.
This has been identified in the verification of approach 3 with CM in the previous chapter.

To measure the impact of disruptive CM and CBM on the PM planning, instances of CM and CBM
will be initialized in random matrix 𝑊𝑢(𝑘) and 𝑉𝑢(𝑘). Approach 3 will be used for this analysis since it
has been verified that CM is unforeseen in the planning and CBM is foreseen in the RUL. The matrices
𝑊𝑢(𝑘) and 𝑉𝑢(𝑘)will be initialized in such a way that disruptions always occur at the first day of the week
(𝑘 = 0, 𝑘 = 7, 𝑘 = 14 and so on), because the implementation horizon 𝐼 is one week or 7 days. In this
way, the unexpectedness of CM is perfectly simulated, because with the rolling horizon, the disruption
appears in the disruption horizon 𝐹 right after the last implemented day. Therefore, there is no way for
the optimization to prepare for this disruption.

The instances in random matrix𝑊𝑢(𝑘) and 𝑉𝑢(𝑘) will be chosen as follows:

• No more than 1 disruption per rolling stock over the simulation horizon.

• Amount of disruptions (𝑅 for CBM and 𝑄 for CM) are iterated from 4 to 12 with increments of 1:
{4, 5, 6, 7, 8, 9, 10, 11, 12}.

• The disruptions will be randomly distributed over the simulation horizon from 𝑘 = 21 to 𝑘 = 98
with increments of 7 days: {21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98}.

• No more than 3 disruptions per day, otherwise, not enough rolling stock can be available for
passenger operations due to parameter 𝑂.

• The RUL length of 𝑅𝐶𝐵𝑀 = 14 [days] is chosen for the comparison of CBM with CM.

• 20 different randomization configurations (random seeds) are used in order to exclude coinci-
dences of successes.

• A planning will be established with approach 3 for 𝐽 = 19 weeks so 133 days. This differs from
the results of approach 1, because no horizon effects can take place.

Disruptions resulting into losses It has been shown in the PM planning from approach 1 that in
the time between PM routines, the rolling stock does not always have to be available for operations.
It became apparent that in 108 days, the rolling stock could be 13 days out of operation. So when a
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rolling stock becomes unavailable due to a failure or a fault detection that requires maintenance, the
planning can resolve this by substituting another rolling stock for the unavailable one. And if a rolling
stock becomes unavailable for a longer period of time, the optimization approach resolves this by de-
ploying this rolling stock after CM or CBM as much as possible in order to minimize the mileage losses.

The sensitivity of the time of CM and CBM (parameters 𝑇𝐶𝑀 and 𝑇𝐶𝐵𝑀) on the maintenance planning
is therefore analyzed for 1 day and 2 days. The same method for increasing disruptions is used as
previous section. However, the percentages shown for 𝑇𝐶𝑀 = 1 and 𝑇𝐶𝐵𝑀 = 1 are only the result out
of 5 random configurations, while the other percentages are a result out of 20. Also the iteration of
amount of disruptions increases with increments of 2.

Table 5.3 shows the outcome of this analysis. When the table shows that 100% of the times no mileage
losses are made, this means that over a planning over 133 it did not occur that the planning became
disrupted by the CM or CBM and no mileage losses are made. From the table can be concluded that
the duration of CM or CBM of one day have no disruptive effect on the planning and never result to
mileage losses. Alternatively, if CM or CBM takes 2 days, it has an effect on the mileage losses. The
disruptive effect is relatively small, since still for 44% of the configurations, the minimum amount of
mileage losses can be reached for 𝑇𝐶𝑀 = 2. Still a difference between CBM and CM can clearly be
identified, because with CBM the percentage of optimal mileage losses is consistently higher than with
CM.

From this analysis can be concluded that the optimization is very capable of optimizing the PM planning
despite a number of disruptions of CM or CBM and mileage losses do not have to be made necessarily.
However, it can be shown that a disruption due to CM more likely results into mileage losses. Since the
analysis demonstrated that duration of 2 days for CM and CBM is disruptive, this duration is chosen to
be used for further evaluations.

CBM [%] CM [%]
amount of disruptions [-] 𝑇𝐶𝐵𝑀 = 1 𝑇𝐶𝐵𝑀 = 2 𝑇𝐵𝑀 = 1 𝑇𝐶𝑀 = 2
4 100 87.5 100 66.7
6 100 75 100 44.4
8 100 80 100 55.6
10 100 80 100 75
12 100 50 100 0

Table 5.3: Percentage of solutions resulting into minimal mileage losses, iterated for 1 day and 2 days duration of CM or CBM
The higher, the better

Performance of the maintenance planning optimization comparing the integration of CM with
CBM while increasing disruptions The results of 9 iterations over 20 random configurations are
presented by showing the KPI’s in graphs. This means that for CM and CBM each, 20 ⋅ 9 = 180 opti-
mizations are performed.
The first graph 5.4 shows the comparison in percentage of infeasible solutions between CM and CBM.
What can be seen from the figure is that in any optimization with disruptions, for either CM and CBM, a
certain amount of cases become infeasible. No logical relation of infeasible solutions can be noticed for
CBM, because for 4 to 6 disruptions, 45% of all optimizations become infeasible and with 9 disruptions,
only 15% is infeasible. It can be stated that the percentage of infeasible solutions is stable throughout
the iteration and on average 42.2%.

On the contrary, there can be a significant increase in infeasible solutions observed for CM, the more
disruptions take place in the simulation horizon. From an amount of 9 CM in the simulation horizon, the
amount of infeasible solutions steadily increases with respect to the amount of CM up to a percentage
of 85%, while for the same amount of disruptions only 35% of the optimizations integrating CBM came
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Figure 5.4: Percentage of infeasible solutions out of 20 random configurations, a comparison between CM and CBM with in-
creasing amount of disruptions

out as infeasible. However, for the disruptions amounts 4 to 7, more CBM infeasible solutions came
out the optimizations, on average 41.2% against 36.3% for CM.
For a low amount of disruptions in the planning, CM came out 5% better in optimization performance
in comparison to CBM. However, in total, 27 more solutions are found with a planning with CBM than
for CM. Moreover, there is no sign of a trend in infeasible solutions for CBM whilst there is for CM.

Graph 5.5a and 5.5b are whiskers plots. These whiskers plots show the performance of the feasi-
ble solutions that integrate CM or CBM indicated by the mileage losses. The average mileage loss
over the complete rolling stock maintenance planning is selected from every feasible solution and cat-
egorized per amount of disruptions. The data is plotted in a whiskers plot that demonstrates that 50%
of all of the solutions are in the box, showing the spread of data and the median (middle stripe in the
box). The ”x” indicate the average and the ”dots” indicate the outliers of the data set. The standard
deviation is demonstrated by the bars when this is outside of the box.

Firstly, it can be noticed that in figure 5.5b, for 4 to 10 disruptions, there is no box. This implies that the
median, the first and second quartile of data lies within the same point of 350 [km]. This means that the
majority of feasible solutions integrating CBM into the maintenance planning make no mileage losses
on average. When 11 and 12 disruptions take place in the planning, the spread of mileage losses
becomes higher, so more mileage losses are made on average when more disruptions take place.

Alternatively, the whiskers plot 5.5a for CM solutions show that the spread of average mileage losses
is higher in comparison to CBM, since the standard deviation reaches higher and the median is at a
higher number of mileage losses. This implies that mileage losses are made more often in an optimiza-
tion integrating CM in comparison to an approach with CBM. So the performance of the maintenance
planning optimization integrating is lower when CM is considered.

It can be observed that the mean average of the data sets per box is sometimes higher for CBM
than for CM ( with 10 and 11 disruptions). This can be explained by the outliers that can be found in
graph 5.5b, resulting into a significant increase of the mean average. This leads to the conclusion that,
while the performance of a maintenance planning integrating CBM is overall more successful than CM,
mileage losses are very large with CBM on average when they actually occur.

This evaluation quantifies that a rolling stock maintenance planning integrating CBM is better to plan,
based on the 27 more feasible solutions out of the 180 optimizations. Besides, a trend is observed for
the maintenance planning optimization integrating CM, that ’the more disruptions take place, the higher
the chance is that no solutions can be found’.
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The evaluation based on the whiskers plots quantifies that CBM is more than halve of the times able to
establish a rolling stock maintenance planning without inducting more than optimal amount of mileage
losses. Meanwhile the spread of overage mileage losses for a planning considering CM is higher.
This implies that it frequently occurs that mileage losses are made when a disruption in the planning is
unexpected.

(a) CM

(b) CBM, RUL of 14 days

Figure 5.5: Whiskers plot of the average mileage losses (y-axis) that are made by by the feasible solutions that successfully
integrated CM (a) and CBM (b), categorized by the amount of disruptions occurring in the planning (x-axis).
Dots demonstrate outliers of the data set, ”x” indicates the mean average mileage loss and the bars indicate the standard
deviation.

5.3.3. Performance of approach 3 with opportunity to combine CBM with PM
Approach 3 provides the opportunity to combine CBM with the PM routine. Since with CBM, the time
to failure of the rolling stock is indicated with the RUL. When this occurrence is close to an upcoming
PM routine, the two maintenance routines can be combined. A ”combination” refers to the combina-
tion of CBM with PM in one maintenance routine. An example of how this is combined is illustrated
in appendix C in figure C.3 If this combination is feasible to plan, it reduces shunting costs, because
the rolling stock only has to go to the depot once. The maintenance costs are directly related to the
amount of combinations of CBM with PM, since every combination saves 𝐶𝑠ℎ𝑢𝑛𝑡𝑖𝑛𝑔 [euro] in shunting
costs. However, the costs also depend on the extra mileage losses that are made. As is verified, com-
bining CBM with PM is a trade-off between mileage losses and shunting costs.
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A case will be initialized with approach 3 similarly as the previous two cases where disruptions are
randomly initialized in disruption matrix 𝑉𝑢(𝑘). The same method is used for the following evaluation
where the opportunity is given that a combination of CBM with PM can take place. This is realized with
decision variable 𝑟𝑢(𝑘). For this performance evaluation:

• 20 random configurations for 𝑉𝑢(𝑘) are used with the same conditions as previous case.

• The RUL indicated by parameter 𝑅𝐶𝐵𝑀 is iterated from 7 to 21 with increments of 7, so {7, 14, 21}
[days].

• The amount of disruptions 𝑅 is increasing over the iterations is performed with increments of 2,
so: {4, 6, 8, 10, 12}.

(a) CBM, RUL of 14 days (b) CBM, RUL of 21 days

Figure 5.6: Comparison of the average maintenance costs (multiplied with cost factor 𝑌 from confidential annex B section B.1)
of approach 3 for CBM with a RUL of 14 days (a) compared to CBM with a RUL of 21 days (b), where in blue, combinations are
possible, in green without combinations of CBM with PM.
The costs savings are expressed in percentages and the error bars demonstrate the standard deviation of the maintenance
costs.

The performance of approach 3 with combinations can be evaluated with the KPI that expresses the
amount of combinations of CBMwith PM. The results are expressed in table 5.4 that shows the average
number of combinations that are made in the planning for a RUL of 7, 14 and 21 days in relation to the
amount of disruptions in the planning.
It can be seen in table 5.4 that the longer the RUL, the more combinations are made. This is expected,
because the longer the RUL, the higher the chance in overlap with the upcoming PM routine. Addition-
ally, the more disruptions that take place, the higher the chance that there is an overlap between the
RUL and the upcoming PM routine.

Approach 3 with possible combinations is compared to approach 3 where no combinations are per-
mitted. The comparison is made with the average maintenance costs as KPI. This costs comparison
is presented in figure 5.6a and b. The average maintenance costs are provided in these figures as a
result of combinations in relation to the amount of disruptions by CBM in the optimization for an RUL
of 14 days and 21 days.
Graph 5.6a illustrates by the comparison that the mean average maintenance costs are very close,
but overall, the percentages show positive costs savings if combinations are possible in the planning.
Alternatively, graph 5.6b illustrates that for 4 and 6 disruptions, the maintenance costs are on average
not less than approach 3 without combinations. This is logical, because less cost savings can be made
to lower the amount of disruptions as is concluded from table 5.4. However, the standard deviations
show with the lower bar that the maintenance costs are generally lower than for approach 3 without
combinations.
Overall, for an RUL of 14 days over disruptions from 4 to 12, an average cost savings of 0.32% is
made. The graph of figure 5.6b shows the relations that the more disruptions take place, the higher
percentage in costs are saved. For an RUL of 21 days over disruptions from 8 to 12 resulted to an
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average cost saving of 0.54%, which is more cost efficient than CBM with an RUL of 14 days.

From this can be concluded that ’the more disruptions take place and the longer the RUL, the higher
the chance is of combinations of CBM with PM’. It is shown by the maintenance costs comparison that
these combinations generally result into cost savings. The highest cost savings of 0.86% is achieved
with the longest RUL of 21 days and for the most disruptions, which are 12, as shown in figure 5.6b.
So more combinations have a positive impact on the performance of the rolling stock maintenance
planning decision-making.

Table 5.4: Average number of combinations CBM and PM over 20 random configurations iterated over increasing amount of
disruptions and RUL length

5.4. Concluding remarks on the rolling stock maintenance plan-
ning optimization results

The goal of this chapter is to evaluate the performance of the rolling stock maintenance planning opti-
mization approaches. KPI’s are therefore defined in order to quantitatively evaluate the performance.
Sensitivity analyses showed how the formulated approaches are solved by the Gurobi optimization
solver algorithm. By iterating the decision horizon for approach 1, the effect on the computational time
is analyzed.
For approach 3, the decision horizon and its impact on the feasibility are evaluated so that further out-
comes may be produced while still employing the same decision horizon.

Results from approach 1 showed how the availability impacts the efficiency of maintenance decision-
making. This is shown by the increasing amount of PM in the planning and the mileage loss when less
or more than rolling stock are available for operation than needed. This confirms the dependencies
between passenger operations and maintenance decision-making. Moreover, the results of approach
1 showed that with governing the default ”bakkenstand” of 𝐶𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒%, the amount of mileage losses
are minimal. As results, approach 1 may be used as an optimization tool to plan PM.

Research question 5 is answered in this chapter by evaluating the performance of approach 3 inte-
grating either CM, CBM or CBM with combinations according to the KPI’s.

5. How to evaluate the performance of the rolling stock Preventive Maintenance planning algorithm
considering the integration of Corrective Maintenance or Condition Based Maintenance?

Comparisons are made between the optimization approach 3 integrating CM and CBM. CBM and CM
demonstrated to be disruptive to the PM planning when the duration is 2 days. This value is therefore
employed for further evaluations.
The performance is further evaluated by making comparisons in feasibility. This demonstrates a trend
that the more CM disrupts planning, the more infeasible solutions occur up to 85% in total. While when
the planning is disrupted by CBM, the percentage of infeasible solutions remain stable with an average
of 42.2% of infeasible solutions and 27 more feasible solutions in total.
Moreover, whisker plots demonstrate the comparison in the average mileage loss spread of data be-
tween CM and CBM. The majority of cases with CBM, the mileage loss remained minimal, while for a
planning integrating CM as disruptive factor, mileage losses are made more frequently.
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CBM creates the opportunity to combine the routine with PM so double shunting operations can be
avoided, saving shunting costs. Consequently, earlier PM is performed, so the combination of CBM
with PM results in more mileage costs. However, it is demonstrated by the average maintenance costs
comparison that combining CBM with PM generally leads to average cost savings, which are on av-
erage 0.32% for an RUL of 14 days, which proves the cost efficiency of combinations of CBM with
PM. By counting the amount of combinations of CBM with PM, the following relation is observed: the
more disruptions take place, the higher the chance of combinations and the longer the RUL, the more
combinations can be made. This may also hold up for costs savings as a higher percentage of costs
is saved when a higher amount of disruptions take place with a longer RUL, because the highest costs
saving of 0.86% is found for an RUL of 21 days with 12 disruptions.

The main research question can be answered with the results of the approaches of the rolling stock
maintenance planning optimization that are provided in this Chapter:

What is the impact of integrating Condition Based Maintenance in the preventive maintenance planning
decision-making?

It can be concluded from the comparisons of approach 3 resulting to the 3 different results (CM, CBM
and CBM with combinations) that CBM impacts the decision-making positively by creating flexibility in
planning resulting into more feasible solutions. Moreover, less mileage costs are made because of
better decision-making in comparison to a situation where failures cannot be predicted and result into
CM as is proved in the whiskers plots. This demonstrates that more than 50% of the time that CBM is
integrated in the rolling stock PM planning, no more than the minimal mileage losses of 350 [km] per
PM routine are made. Combining CBM with PM saves maintenance costs and has therefore a positive
effect on the rolling stock Preventive Maintenance decision-making.

However, the approach for optimizing the rolling stock maintenance planning has its limitations and
is solved under the assumptions that are formulated in chapter 4. This will be further discussed in the
next chapter where the main conclusion will be provided.
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Conclusions and Recommendations

This study addresses the main research question:

What is the impact of integrating Condition Based Maintenance in the Preventive Maintenance planning
decision-making?

This question is approached by formulating a deterministic MILP mathematical model that represents
the maintenance decision-making process of NS, which can be optimized using a Gurobi solver al-
gorithm. It has been verified that with approach 3, the rolling horizon framework is perfectly able to
approach the maintenance planning problem because of its ability to rearrange in response to (pre-
dicted) disruptions. Using a rolling horizon provides the opportunity to distinct CM from CBM in its
foreseeability, so that fair comparisons could be made.
The final model presents an integral simplified version of the NS rolling stock maintenance planning
case. For the formulation of this model, assumptions and concessions are made to be able to model
the case. As a consequence, the results of the model may therefore deviate from reality, but the con-
cept can still be of practical use.

Nevertheless, conclusions can be drawn from the model. As a result, the impact of CBM instead
of CM on the PM planning can be described. This will be presented as key findings.

Moreover, general recommendations are proposed on the integration of CBM with the rolling stock
PM planning. These reasoned recommendations ultimately answer research question 6.

6. What suggestions could be made to NS for improving the maintenance planning based on the
results of the rolling stock maintenance planning algorithm?

Finally, limitations will be described and recommendations for future research and a proposal to NS will
be described that conclude the study.

6.1. Key findings
A rolling stock PM planning optimization model is established with approach 1 based on the SNG fleet
of NS that minimizes the mileage losses and optimizes the utilization efficiency of the rolling stock. A
rolling stock PM planning optimization model is established that integrates disruptions in the form of
CM and CBM with approach 3. Approach 3 can be used as planning tool for rolling stock maintenance
optimization that accounts for unexpected events. Based on the results of approach 1 and approach 3
in the previous Chapter, the following outcome can be interpreted:

1. The utilization efficiency of rolling stock maintenance planning depends on the required amount
of rolling stock that should remain available for passenger operations.

2. CBM is less disruptive to the PM planning than CM, resulting into better decision-making and less
mileage costs.

71
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3. CBM can be combined with PM if the RUL overlaps with the upcoming PM routine, saving main-
tenance costs because of less shunting operations.

The first finding is based on the sensitivity analysis of approach 1 on the required availability of rolling
stock for passenger operations. If less rolling stock is required for operation, the deployment of rolling
stock is less. This results into less running mileages before reaching the time threshold for PM resulting
into mileage losses. Alternatively, when more rolling stock is required for passenger operation than al-
lowed, the mileage threshold is reached earlier in time resulting into more PM routines in total resulting
into higher maintenance costs.

The second finding can be justified, because knowing that the rolling stock is going to fail within the
RUL, gives time to plan the optimal moment for maintenance in the planning. Planning maintenance in
this way has no direct impact on the availability of the rolling stock, because the asset may continue to
operate passenger operations meanwhile it is going to be planned for an optimal moment for mainte-
nance. CM is determined to be performed immediately when a failure occurs, if the optimization could
not deal with this, this resulted into infeasible solutions. The amount of infeasible solutions quantifies
that 27 out of 180 more feasible solutions are found with CBM, so CM is more disruptive to be plan-
ning. Furthermore, results showed that if the planning is disrupted by CM, there is a high chance that
this results into mileage losses. CBM is less disruptive to the planning, because while the planning is
disrupted by CBM, still more than halve of the times, no mileage losses where made in the planning.
It has also been shown that the disruptive effect on the PM planning depends on the duration of CM
or CBM. When CM only takes one day, the disruptive effects on the planning are minimal as is shown
by the results. NS aims to perform CM in one day, so maybe the actual difference in impact on the
planning is less high than the outcome of the model. However, it is expected that since CBM is based
on a diagnosed fault, the throughput time of CBM is less than CM. Maintenance activities can be pre-
pared and arranged at the depot while the rolling stock is still in operation. This aspect implies that CM
is even more disruptive than CBM.

The third finding can be explained by the results of approach 3 that enables the possibility to combine
PM with CBM. Assuming that prognostics give plenty of time to plan the maintenance, the decision-
making optimization model might also check if PM is planned for the rolling stock in the near future.
If so, this gives an opportunity to combine the two maintenance operations at the depot. Combining
PM with CBM is making a trade-off between logistic shunting costs and mileage costs. If it is more
convenient in the planning to perform PM prematurely so that it can be combined with CBM, it is worth
the extra mileage costs, since shunting costs are saved. The longer the RUL length, the higher the
chance is to overlap with the following PM. And more CBM result into more combinations of CBM and
PM. Therefore, the longer the RUL of the prognostic models, the more cost efficient the integration of
CBM into the PM planning can be. This is suggested by the results that indicate when a prognosis is
made 21 days in advance and 12 disruptions occur in the simulation horizon, on average, 0.86% of the
total maintenance costs are saved.

As previously stated, with CBM, maintenance mechanics can be informed ahead in time which main-
tenance activities should be performed based on the prognosis. This saves inspection costs, time and
the best specialized mechanics can be deployed for the specific activity. CBM is also maintained while
the predicted failure is still in its infant state, whilst with CM, the rolling stock already has failed. It is
therefore expected that CM leads to more repairs and higher costs than CBM. However, the effect of
these assumptions on the planning is not further modeled.

6.2. Recommendations
In this section, the limitations from the study will be addressed. Following from the limitations of the
approach, recommendations are formulated, that may be reasoned with the literature that is reviewed
in this study.
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6.2.1. Limitations and recommendations for rolling stock maintenance planning
optimization approach

• In reality the SNG fleet exists of 190 rolling stock from which 𝑂𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 should be available for
passenger operation according to the ”bakkenstand”. This cannot be modeled with the current
optimization methods because it results computational delays.

• The ”bakkenstand” is variable depending on the time of the day and the day of the week, due to
peak hours and peak days. In the approaches, it is assumed that it is a constant. The mainte-
nance decision-making can be more realistic if the variable rolling stock availability requirements
are integrated in the maintenance planning model. Lin et al. (2019) integrated the seasonal avail-
ability requirements of rolling stock in the model in order to approach this, so this methodology
can be used for future research.

• Seasonal maintenance can be considered as well, since during the winters more failures are
expected and the maintenance planning of NS acts on these predictions.

• From interviews with the production engineer of NS, it became apparent that more rolling stock
is maintained during weekends because more rolling stock can be unavailable. The capacity of
the maintenance depot varies throughout the week and should be taken into consideration for a
future rolling stock maintenance planning optimization approach.

• In the model, the maintenance planning is discretized per day, while in practice at NS, mainte-
nance shifts endure 8 hours, so three shifts per day. This approach is able to plan maintenance
in more detail, but because of computational complexities it was simplified to a day discretization.
Future research may consider this.

• Disruptions in the form of CBM and CM are modeled as random instances for experiments. There
is historical data failure data available over the whole fleet. So if the whole fleet is considered
for a future approach, historical data can be used in order to validate the decision-making and
making more valid comparisons between CM and CBM. In reality less disruptions take place and
this should be validated with historical data.

• Furthermore, the mileage losses of the SNG rolling stock fleet is also available, so if the whole
fleet is considered, the optimizations approach can be validated with the actual mileage loss
historical data.

• Another aspect that should be analyzed is the capacity of the depot for CM and CBM. The arrival
of a rolling stock for CM or CBM is in themodel not constrained to anymaintenance depot capacity
limitations. It is reasonable that more arrivals for CBM results in more workload for the depot. In
a situation where solely maintenance is decided based on prognostics, this is recommended to
thoroughly analyze and compare it to the current situation with PM.

Comparisons with models found in literature It is evident that multiple rolling stock maintenance
planning MILP optimizations are performed in literature. It is helpful to check similarities between
the formulated model and the models in literature, because this will verify the results of the model.
When the formulated model of this thesis report can be initialized with the input parameters retrieved
from literature, the results can be compared. It should be kept in mind that the decision-variables,
constraints and objective is formulated differently from the literature. Equal results are not anticipated,
but inferences may be derived from the findings comparison and it can be argued why discrepancies
between the models can be observed.
Studies that provide input parameters and results are listed below.

• Bougacha et al. (2022)

• Herr, Nicod, Varnier, Zerhouni, Cherif, et al. (2017)

• Li et al. (2016)

• Lin and Zhao (2021)

• Lai et al. (2015)
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Infeasible solution or penalized solution The formulated approaches are designed to plan PM
when this is determined due to the mileage or threshold, a failure, or a predicted failure. When optimiz-
ing this under the given conditions, a solution can only be found when this bounded by the constraints.
Otherwise, the model responds by stating that it is impossible to find a feasible solution. So the model
formulation is limited by this aspect.
However, in literature, a few optimization approaches can be found where the planning of rolling stock
maintenance is less strict (Bougacha et al., 2022; Lai et al., 2015; Li et al., 2016; Lin et al., 2019;
Sriskandarajah et al., 1998). When it is too difficult to find a feasible solution with the ”normal” con-
straints, a secondary option appears for the optimization model. This secondary option is formulated
as a failed rolling stock that cannot be available and not maintained because it is infeasible to plan.
Consequently, the model penalizes the decision for letting the rolling stock fail, because there is no
depot capacity. Since this penalty is incorporated into the objective function, the model tries to prevent
this undesirable event from occurring. This improves the model flexibility and problem solvability (Lin
et al., 2019), because instead giving a model call-back of ”infeasible”, the objective costs increase sig-
nificantly due to the penalization while still a feasible solution can be found.
It is recommended to apply this in future work, because as a result of the method, more feasible solu-
tions can be achieved from the optimization approaches.

Uncertainties of CBM because of incorrect prognostic information It is assumed that the RUL
from a fault detection in the formulated model is perfectly accurate. Realistically, since actual CBM is
conducted according to prognostic information that predicts a failure, it is not 100% certain if the rolling
stock is actually going to fail. The prognosis might be false positive and the rolling stock is going to the
maintenance depot for CBM purposeless. When considering CM, the rolling stock fails and shunting
to the maintenance depot and is guaranteed useful. Alternatively, CBM might lead to a false negative,
so CM can still occur despite that the health of the rolling stock condition is monitored and potential
failures can be predicted. A statement can be made that more routines for CBM can be expected than
CM, because CBM contains false positive fault detection and for CM, the rolling stock is always failed.
More CBM routines brings more shunting costs. This distinction is not considered in the study and the
trade-off between CBM and CM can be reconsidered if the uncertainty of the prognostic model is taken
into account.
Furthermore, it is assumed that the RUL is expressed in time units, not in usage. The planning opti-
mization becomes more complex when the degradation evolution of a rolling stock is related to usage,
so there is a limited usage of the rolling stock until failure. It is recommended to take these aspects in
consideration for future research.

Mileage losses because of early CBM When CBM is performed immediately after the fault detec-
tion, similar to PM, mileage losses are made, because the rolling stock could have been in operation
for longer due to the RUL. Performing early CBM can therefore be considered as a loss. PM is re-
lated to the upcoming PM routine, because the time between two routines should not be longer than
108 days, so performing PM early has cumulative effects on the next PM routine. However, unlike
PM, performing CBM early has no cumulative effects on the planning, because CBM is unrelated to
the next maintenance routine. Penalizing mileage losses for early CBM is therefore not as important
as mileage losses for PM. A situation where all maintenance is based on prognostic data and no PM
are performed in the strategy, mileage losses because of CBM becomes a more important factor in
efficient decision-making. When the prognosis to failure is expressed in months as time units, early
maintenance becomes a bigger loss than in a situation where the prognosis to failure is expressed in
days as time units. From this can be concluded that it is dependent on RUL length of the prognostics,
whether it is valuable to take the mileage losses before CBM into account.

6.2.2. Proposal to NS for improving the integration of CBM in the rolling stock
PM planning

As stated earlier, the results of this study are based on 21 rolling stock instead of for a fleet size of 190.
However, the performance of the optimization approaches can be translated to practice.
The maintenance planner at NS knows in advance, based on the prognostics, how many rolling stock
require more complex repairs at the maintenance depot. As a result, maintenance can be planned
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when this is most convenient with the resources at the maintenance depot. Shunting to the mainte-
nance depot is relatively expensive and can be logistically complex. The opportunity to combine CBM
with PM is proven to be cost efficient by the model if a failure can be predicted far in advance. It is
therefore recommended to develop prognostic models to predict failures far in advance, most ideally
108 days as the time threshold, because the longer the RUL of the prognostic models, the more effi-
cient the integration of CBM into the PM planning can be.

The findings of the approach integrating CBM in the PM planning showed that, despite a significant
number of disruptions occurring in the simulation horizon, that the majority of times PM is performed
with minimal mileage loss. This implies that with the integration of CBM in the PM planning of NS, even
if there is an increase of disruptions, because this can be foreseen, it is still feasible to plan.

The current maintenance strategy at NS is constrained by the PM activities that should be performed
periodically and distance-based. Given that the future rolling stock has multiple prognostic models to
ensure that a rolling stock does not fail, the amount of PM operations may be reduced. As a result,
the throughput time of PM routines can be reduced as well. Or the time threshold for PM of 108 days
may be extended, because the condition monitoring ensures that the rolling stock does not fail. It
can be expected that a certain optimum can be found for the cost efficiency between a shorter PM
throughput and that a larger amount of maintenance activities that is determined by prognostic models,
resulting in CBM. The feasibility of this strategy can be further analyzed and compared with the current
maintenance strategy.

6.3. Conclusion
In this study, 3 approaches of the rolling stock planning optimization are formulated based on the state
of the art and practice in order to come to approach 3 that is satisfactory for evaluating the impact of
the integration of CBM on the rolling stock PM planning. The optimization approaches can be used as
tool for planning rolling stock maintenance and minimizing the mileage losses.
The main research question is answered:

What is the impact of integrating Condition Based Maintenance in the Preventive Maintenance planning
decision-making?

With the formulated model that has been evaluated on it its performance based on the defined KPI’s, it
has been shown that CBM enhances the maintenance planning decision-making by being more flexible
planning wise in comparison to unexpected CM. This is concluded from the comparison in infeasible
solutions between a PM planning that integrates CBM with a PM planning that integrates CM. Also,
the maintenance costs are less with the integration of CBM, because less shunting costs are made. It
can be concluded that CBM creates the opportunities to combine the maintenance with PM that saves
shunting costs.

By providing a proposal based on the results of the optimization approaches, research question 6
is answered.

6. What suggestions could be made to NS for improving the maintenance planning based on the
results of the rolling stock maintenance planning algorithm?

It is recommended to first extend the optimization approach to a fleet size of 190, make the required
amount of rolling stock in operation variable based on actual requirements and to approach the depot
capacity more precisely. When this is validated, it is expected that the optimization model will more
closely match reality. Thereafter, it is recommended to further research how uncertainties of prognostic
information influence how to cope with CBM. Nevertheless, it is expected that the integration of CBM
in the PM planning benefits NS when prognostic models can predict a failure far in advance so that
maintenance can be prepared and possibly combined with PM.

It can be concluded that this study provides insight into how CBM benefits the rolling stock mainte-
nance planning and how prognostic models and CBM development can be directed in the future.
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Abstract

Planning rolling stock maintenance based on prognostic

data (Condition Based Maintenance, CBM) is a trend

since the ideal timing for maintenance before failure

can be planned. With the use of prognostics, a fail-

ure can be predicted so Corrective Maintenance (CM)

can be avoided. Traditional rolling stock decision-making

for Preventive Maintenance (PM) is based on the time

and/or mileage since last PM routine at the maintenance

depot. A sufficient amount of literature is available that

considers rolling stock PM planning optimization meth-

ods. Planning rolling stock maintenance is constrained

by the required availability for passenger operations, the

conditions for PM and the maintenance depot capacity.

However, the integration of CBM with the rolling stock

PM planning has not been researched. CM also needs to

be performed and is considered a disruptive element in

the maintenance planning. It is expected that integrating

CBM in the rolling stock PM planning is less disruptive

than CM. This study investigates how CBM impacts the

rolling stock PM planning by formulating a deterministic

MILP that uses a rolling horizon framework that mini-

mizes the maintenance costs. An approach that optimizes

the rolling stock PM planning while being disrupted by un-

expected failures that lead to CM is compared with an ap-

proach that integrates CBM that is disrupted by predicted

failures that can be planned in advance. The outcome of

the model demonstrates that CBM is less disruptive to the

maintenance planning than CM, because the time to fail-

ure gives the model flexibility to find the ideal moment to

perform CBM. Conclusions and recommendations of this

study can be used for implementing CBM approaches for

rolling stock.

1 Introduction

Maintenance is performed on rolling stock in order
to ensure reliable and safe passenger transportation
without failures during operation (Zhong et al.,
2019). Currently, decision-making for rolling stock
maintenance planning and activities is based on
standardized frameworks such as Failure Modes
Effects and Criticality Analysis (FMECA) that
determines the Preventive Maintenance (PM) fre-
quency and activities of rolling stock while ensuring
reliability (de Vos and van Dongen, 2015). Rolling
stock requires PM after running a specified mileage
and/or after a specified time period since its previous
Preventive Maintenance routine (Wagenaar et al.,
2017). Rolling stock PM is usually performed at a
maintenance depot, so the rolling stock has to be
scheduled out of operation in order to shunt (moving
a railway vehicle) to the depot for PM. Shunting
to the maintenance depot brings costs, because a
train driver, energy and a railway path should be
arranged. A rolling stock maintenance planning
should thus be established in order make efficient
decision-making for maintenance while complying
with the required availability of rolling stock for
passenger operations.

The efficiency of the rolling stock PM planning
can be quantified by the mileage losses. The usage
of a rolling stock is related to the mileage (Lai et al.,
2015), hence why PM has to be performed every
time that a rolling stock ran a certain mileage. This
is considered to be the maximum usage that the
rolling stock can safely run according to experts
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ensuring a minimum amount of failures. If a rolling
stock undergoes PM when the mileage since previous
PM is less than the allowed mileage threshold, this
remaining mileage is considered as a loss. The
mileage loss can be expressed into costs, the mileage
costs, which are desired to be minimal. This KPI
is considered in the state of practice and the state
of the art (Lai et al., 2015; Li et al., 2016; Lin and
Zhao, 2021; Méchain et al., 2020).

Planning rolling stock maintenance does not
only concern PM, but also Corrective Maintenance
(CM). CM has to be performed if a rolling stock
has (unexpectedly) failed and is not able to perform
the required function anymore (Maintenance -
Maintenance terminology, 2019). CM also needs to
be performed at the maintenance depot, so shunting
(logistic) operations to the depot have to be orga-
nized and the rolling stock becomes unavailable for
passenger operation. Unexpected CM is a disruptive
element in the maintenance planning, because the
maintenance planning is optimized in accordance
with the rolling stock PM requirements while an
acceptable number of rolling stock should remain
available for passenger operation. CM is therefore
problematic and can be at the expense of the rolling
stock availability.

However, recently with the use of sensors, mi-
croprocessors and an online network that can be
used for condition monitoring, the health state of
a component or sub-system can be retrieved in
real-time by detecting faults based on monitoring
data (Brahimi et al., 2020). Subsequently, mainte-
nance decision-making can be based on the actual
health condition of the asset (Nappi et al., 2020).
This is arguably more efficient since unlike PM,
maintenance activities can be suggested when they
are certainly required. In addition to obtaining the
current health state with the use of online condition
monitoring, also the degradation evolution of the
system can be approximated and CM can be avoided.

When an anomaly is detected with the use of
condition monitoring, the health of the system has
started degrading. This detected anomaly can be

isolated and diagnosed, this is defined to be a fault.
From the moment in time that a fault is detected,
the component or system will further degrade until
failure. The estimated time between the point in
time of fault detection until the time of failure,
is defined as the Remaining Useful Life (RUL).
The length of the RUL in time units is established
by a prognostic model. Planning rolling stock
maintenance according to this prognosis to failure is
referred to as Condition-Based Maintenance (CBM).
The maintenance planner can act and rearrange
the current maintenance planning in response to
a failure prognosis. CBM is thus anticipated to
mitigate the disruption of the maintenance planning
in comparison to CM.

In this paper, the focus is to investigate the
latter hypothesis. Dutch railway operator NS
(Nationale Spoorwegen) and railway consultancy
company Ricardo Rail is involved in this study
because of a mutual interest in researching the
enhancement of CBM to maintenance planning
decision-making. The fleet of the newest light-train
rolling stock type of NS ”Sprinter Nieuwe Generatie”
(SNG) and its maintenance requirements is used as
case study in order to determine whether CBM is
complementary to the current maintenance strategy.

The maintenance planning decision-making pro-
cess will be approached by formulating a MILP
mathematical model that can be solved with the
Gurobi optimization solver algorithm. The outcome
of the model is an optimized rolling stock mainte-
nance planning for the SNG fleet considering the
maintenance depot capacity, required availability
and the PM conditions. The proposed model uses a
rolling horizon framework, which implies that it is
able to rearrange the planning based on disruptive
events as CM and it can act and optimize in response
to predicted failures (CBM).

A sufficient amount of research is performed on
optimizing the rolling stock maintenance planning
based on PM conditions and passenger operations
e.g. Lai et al. (2015) and Lin and Zhao (2021)
in which the objective is to minimize the mileage

2



losses and overall maintenance costs with a MILP
optimization model that is solved with a solver
algorithm. The challenge is often in these studies to
comply with passenger operations while performing
efficient PM. Other challenges found in these works
are to minimize shunting through the network to the
maintenance depot (Lai et al., 2015; Méchain et al.,
2020; Mira et al., 2020).
Alternatively, a few studies can be found that
integrate a prognostic model of the health of rolling
stock into the maintenance planning e.g. Bougacha
et al. (2022) and Herr, Nicod, Varnier, Zerhouni,
and Dersin (2017). The objective in these studies
is to exploit the degradation of the rolling stock
and maintain the asset right before failure in order
to perform efficient maintenance. However, these
studies do not consider if planning maintenance
based on the actual degradation actually enhances
the maintenance planning or study the feasibility of
proceeding CBM in combination with PM.

2 Motivation and structure

Rolling stock maintenance operators have expressed
interest to optimize maintenance operations by using
condition monitoring and prognostics for decision-
making of rolling stock maintenance. However, it is
unknown whether the integration of this CBM with
the PM planning that is time- and/or mileage-based
is complementary.

This paper is organized as follows. The state
of the art of maintenance optimization methods is
described in the ”related works” section 3. Also
methods that integrate prognostic models for rolling
stock maintenance decision-making will be consid-
ered. The rolling stock maintenance planning case
at NS will be described accordingly, presenting the
maintenance conditions and practice of NS in section
4. The model approach formulation for the main-
tenance planning optimization will be presented in
section 5. Results of different cases of the approach
are presented and compared, followed by concluding
remarks and recommendations in section 6 and 7.

3 Related works

In the state of the art for optimizing rolling stock
maintenance planning that integrates prognostic
models for decision-making, planning methods can be
found that are able to rearrange the planning based
on unexpected disruptions. These prognostic models
are presented in the form of a component degradation
evolution and when the component is about to fail,
maintenance is planned in order to prevent a failure
(Herr, Nicod, Varnier, Zerhouni, Cherif, et al., 2017;
Herr, Nicod, Varnier, Zerhouni, and Dersin, 2017).
This indicates that a certain foreseeability of a failure
has to be simulated in such models in order to ver-
ify if maintenance planning based on prognostics can
be performed. This predicted failure can be consid-
ered as a ”disruption” since it disrupts the original
maintenance planning. Therefore, the rolling hori-
zon framework is often proposed (Bougacha et al.,
2022; Lai et al., 2015). Within this framework, an
optimization model optimizes the maintenance plan-
ning given the information within a limited decision
horizon that can be foreseen at that moment. When
time has passed and the planning has been executed,
the decision horizon shifts further in time and a new
optimization starts with new information that can
be seen in the new decision horizon. This method
is used in comparable (maintenance) planning prob-
lems, such as railway or aircraft maintenance (Con-
silvio et al., 2020; de Pater et al., 2021). Or for act-
ing on disruptive events in the timetable planning
for passenger trains (Nielsen et al., 2012). From this
can be concluded that this framework is frequently
used in literature to model time plannings while un-
expected events may happen and rearrangements are
required.

4 Rolling stock maintenance
planning, NS case

The rolling stock maintenance planning strategy at
NS will be considered for this study. At NS, short
cycle PM implies that a fleet of 190 rolling stock re-
quire maintenance activities based on the individual
components of the multi-component asset. The com-
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ponents require PM that is time-based and distance-
based. The smallest time interval for PM per com-
ponent is 108 days and distance interval is 45,000
[km]. Every 108 [days] or 45,000 [km] in operation a
standardized cluster of maintenance activities is per-
formed per rolling stock at the depot of NS (see fig-
ure 1). This cluster is assembled while making use of
economic, structural and stochastic dependencies for
efficient maintenance (Ghamlouch and Grall, 2018).
As a result, every rolling stock PM routine takes 3
days.
The decision-making for maintenance is constrained
by the depot capacity. Since the workload needs to
be balanced at the maintenance depot and because
the maintenance tracks are limited, no more than 9
rolling stock may arrive in 2 days.
Simultaneously, an adequate amount of rolling stock
should remain available for passenger operations.
The maintenance planning at NS is very dense and
there is little room for flexibility.
CM is also performed at the maintenance depot of NS
at a designated track for CM. A failure can not be
predicted and happens unforeseen and is therefore a
disruptive factor to the planning. It is a challenge for
the maintenance planner to plan CM. On the other
hand, if a rolling stock fails, another rolling stock
should remain available for passenger operations in-
stead.
CBM that can be planned according to online prog-
nostics from a prognostic model is not yet imple-
mented at NS. So for an ideal future strategy, it is
assumed that CM is excluded if the rolling stock is
condition monitored, so instead of CM, a failure is
predicted. This provides two opportunities:

• The maintenance planner should utilize the RUL
to determine the ideal time for maintenance that
will cause minimum disruptions.

• When PM has to be performed in the near future
and a failure is predicted simultaneously, the
CBM can be combined with PM, saving shunt-
ing costs because the rolling stock only has to go
to the depot once. This will be referred to as a
”combination of CBM with PM”.

Prognostics give insight to the maintenance opera-

Figure 1: Short cycle maintenance or going to the
depot due to a (predicted) failure

tor which component or sub-system is going to fail.
The maintenance activities can be prepared before
the rolling stock arrives at the maintenance depot,
because the failure is already diagnosed online.
While assuming that the RUL gives the maintenance
planner flexibility for planning the maintenance, it
becomes reasonable to see this as an opportunity to
combine PM with CBM. When PM has to be per-
formed in the near future and a failure is predicted
simultaneously, the two maintenance activities can
be combined, saving shunting costs because of this
economic dependence. Consequently, a trade-off can
be made. Either separating PM and CBM, requir-
ing the rolling stock to visit the depot twice with
minimal mileage loss. Or combining PM and CBM
by scheduling earlier PM, which results in mileage
losses but saves costs because the rolling stock only
needs to visit the depot once. It is expected that the
more combinations of CBM with PM can be made,
the more efficient the PM planning will become.

5 Rolling stock maintenance
planning optimization ap-
proach with rolling horizon

In this section, the rolling stock maintenance opti-
mization problem will be formulated as a determin-
istic MILP model. The goal of this optimization ap-
proach is to evaluate the performance of the rolling
stock PM planning optimization integrating CM in
comparison to an approach that integrates CBM. So
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three types of planning may be established by the
optimization model:

• A rolling stock PM planning optimization inte-
grating CM as a result of unexpected failures.

• A rolling stock PM planning optimization inte-
grating CBM as a result of predicted failures.

• A rolling stock PM planning optimization inte-
grating CBM as a result of predicted failures.
Additionally, CBM can possibly be combined
with PM in one routine.

The maintenance planning will be optimized using
a rolling horizon framework that is shown in figure
2. It will be explained how this method helps dis-
tinguishing a rolling stock PM planning integrating
CM from a PM planning integrating CBM.

The model accounts for planning rolling stock
PM while being constrained by depot capacity,
passenger operation availability, conditions for per-
forming PM and disruptive CM or CBM in response
to a failure or a predicted failure. A simulation
horizon (denoted by K in figure 2 as the light col-
ored segments) indicates the time period over which
the total planning will be established. However, the
model optimizes over the smaller decision horizon
(denoted by W in figure 2). So, the total planning
is split up in smaller decision horizons than the
simulation-horizon, which are optimized individu-
ally and arranged chronologically with the rolling
horizon framework. The first optimized 7 days from
the decision horizon is already implemented and
cannot be changed, the implementation horizon
(denoted by I and the dark colored segments in
figure 2). After implementation, the decision horizon
shifts 7 days forward and starts a new optimization
as can be seen by a new color in figure 2 (denoted
by j) initialized with the maintenance decisions of
the former implementation horizon.

Formulating CM as unexpected and CBM as
predicted Using this rolling horizon framework
helps distinguishing the PM planning integrating
CM from a PM planning that integrates CBM. Since

Figure 2: Rolling horizon principle example with J = 4 as
number of optimizations in the simulation horizon of K = 47
days, implementation horizon of I = 7 days, decision horizon
of W = 28 days, 8 day prediction horizon for CM F , prognosis
prediction horizon G of 21 days

CM is performed according to an unexpected failure,
this should not be considered in decision horizon W ,
otherwise the failure could be foreseen by the model.
Simultaneously, CBM is performed according to a
predicted failure, so this should also not be consid-
ered in the decision horizon. Therefore, prediction
horizons F for CM and G for CBM are introduced
that are smaller than decision horizon W as can be
seen in figure 2. Prediction horizon F is 8 days, but
7 out of the 8 days lie within the darker colored
implementation horizon I that cannot be changed.
Consequently, the model may only foresee a failure
1 day in advance, making a failure unexpected
and determined to perform CM at that day. The
same rules apply to prediction horizon G for CBM,
but alternatively, a failure can actually be foreseen
in advance, so G is larger than F . In the case
illustrated in figure 2, a failure can be foreseen 14
days in advance. As a result, the optimization model
can consider this predicted failure and rearrange
the planning accordingly, while for an unexpected
failure, the planning cannot be rearranged because
it occurs unexpected. Additionally, the optimization
model has the freedom to pick the ideal day in the
planning within the period to failure to perform
CBM. Planning CBM is thus more flexible.
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A rolling stock maintenance planning optimiza-
tion problem will be formulated. The outcome of
this optimization will be a rolling stock PM planning
for a fleet size of 21 rolling stock over 133 days.
The planning is disrupted by failures, so that CM
and CBM have to be performed also. Failures that
lead to either to CM or CBM will be referred to as
”disruptions”. The following assumptions are made
for the formulation:

• Time units in the planning are discretized per
[day].

• The limiting factor of the capacity of the depot is
assumed to be the a maximum amount of arrivals
over a certain amount of days.

• The fleet size has been downsized due to 21
rolling stock computational reasons. Therefore,
the required amount of rolling stock in operation
is O of U = 21 and the depot capacity has been
downsized to 1 arrival per 3 days according to
the same ratio.

• Maintenance is performed perfectly.

• The time is still accumulating when the rolling
stock is not in operation, so when the rolling
stock is standby.

• It is assumed that every rolling stock in oper-
ations builds up the same amount of cumula-
tive mileage (”mission profile”) while in opera-
tion per day which is 475 [km].

• The amount of O rolling stock should be in op-
eration at all times

• The duration of a PM routine takes 3 days time
based on the method from NS.

• Performing CM or CBM takes 2 days time.

• The rolling stock is not allowed to undergo PM
if the rolling stock has been running less than
94% of the mileage threshold. This implies that
rolling stock has to run at least 94% out of 45,000
[km], which is 42,800 [km].

Figure 3: structure of the maintenance planning optimization
approach as feedback loop due to the rolling horizon framework

• Disruptive CM or CBM is initialized randomly
distributed over the planning and can only occur
once per rolling stock in the simulation horizon.

• A prognosis is modeled artificially as a time to
failure and CBM should be maintained within
that given time period. This time period is con-
sidered as always correct and no unexpected fail-
ure may happen due to uncertainties of the prog-
nosis.

• The moments when disruptions take place in the
planning are randomly initialized artificially, not
based on historical data.

• The following costs for rolling stock maintenance
estimated based on the data from NS are consid-
ered:
Shunting costs
PM costs
CM costs
CBM costs

Optimization approach The objective of the op-
timization model is to minimize the costs associated
with rolling stock maintenance.
The methodology of the optimization approach is
illustrated in figure 3. The figure demonstrates that
the model is initialized by parameters, which are then
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used for the constraints. With the constraints, the
rolling stock maintenance planning is bounded and
decisions can be made. The CM/CBM constraints
are only taken into consideration when a failure
happens or a fault is detected (according to the
prediction horizon). The rolling stock maintenance
planning decision-making is subsequently optimized
over the decision horizon by minimizing the associ-
ated maintenance costs. The model initially aims
to perform PM only when the maximum mileage
threshold has been reached, so that the mileage costs
are minimal. However, simultaneously, CM or CBM
must be performed and the model optimizes also
by finding the best moment for performing CBM.
If this is done successfully, an optimized planning
is established. If this cannot be found because of
an ill defined initialization, when the constraints are
not bounded, or failures leading to CM or CBM are
too disruptive to the planning, no solution can be
found and the outcome of the optimization approach
is ”infeasible”. Due to the rolling horizon frame-
work, the optimized outcome is used for updating
the initialization for the next optimization which
explains why figure 3 is structured as a feedback loop.

In the optimized planning, the rolling stock
has five possible states: assigned for PM yu(k),
assigned for CM zu(k), assigned for CBM mu(k),
not in operation xu(k) or in operation. These will be
indicated by binary decision-variables. Two integer
decision-variables are the cumulative mileage du(k)
and the cumulative time eu(k) that indicate the
time and mileage per rolling stock since the last PM
routine. Auxiliary integer decision-variable vu(k)
is introduced in order to linearize the objective
function and indicates the mileage at the time that a
rolling stock arrives at the depot for performing PM.
Decision-variable ru(k) indicates whether CBM
can be combined with PM. Other auxiliary binary
decision-variables wu(k) and qu(k) indicate the deci-
sion when a rolling stock arrives at the maintenance
depot for PM, CM or CBM.
The notations of the mathematical model, in-
cluding the indices, sets, and parameters and
decision-variables are listed in the following sections.

5.1 Indices

u Denotes the rolling stock number

i Denotes the day in the implementation-horizon

j Denotes the optimization number in the rolling horizon

k Denotes the day in the simulation-horizon

f Denotes the day in the prediction-horizon for CM

g Denotes the day in the prediction-horizon for CBM

w Denotes the day in the decision horizon

5.2 Sets

U = 21 [-], Set of rolling stock fleet

K = 133 [days], Set of days in simulation horizon

W = 98 [days], Set of days in decision horizon

I = 7 [days], Set of days in implementation horizon

J = 19 [-], Set of optimizations that are performed

to establish the total simulation horizon K

F = 8 [days], Set of days in prediction horizon for CM

G [days], Set of days in prediction horizon for CBM

based on the RUL in time days

5.3 Coefficients and parameters

D = 45, 000 [km], mileage threshold

for PM

DLB = 42, 800 [km], mileage threshold

lower bound for PM

P = 475 [km], operating mileage per

per rolling stock per day

(mission profile)

du(0) = {0, ...DLB − P} [km], initial rolling stock

mileage integer values

E = 108 [days], time threshold for PM

eu(0) =
Du(0)

D
· E [days], initial cumulative time

of every rolling stock is set

in ratio according to mileage

N = 3 [days], duration of PM routine,

O [-], amount of rolling stock

required in operation

of the fleet size
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A = 1 [-], amount of rolling stock that

can go to the depot in Adays

Adays = 3 [days], amount of days that the

amount of A can arrive in

CPM [euro], costs of PM per day

CCM [euro], costs for CM

CCBM [euro], costs for CBM

Cmileage [euro], costs per mileage loss

Cshunting [euro], shunting costs to depot

TCM = 2 [days], amount of days

needed for CM

TCBM = 2 [days], amount of days

needed for CBM

Q [-], amount of CM

in the simulation horizon

R [-], amount of CBM

in the simulation horizon

RCBM [days], RUL length

Wu(k) [-], defines when in the simulation

horizon for rolling stock u at

time k CM occurs, with the

amount of CM defined by Q according

to a randomized definition

Vu(k) [-], defines when in the simulation

horizon for rolling stock u at

time k CBM occurs, with the

amount of CBM defined by R according

to a randomized definition

M [-], Big M, denotes a very large number

5.4 Decision-variables

∀k ∈ K, ∀u ∈ U, du(k) integer variable with lower bound 0

cumulative mileage of rolling stock u

at time k

∀k ∈ K, ∀u ∈ U, eu(k) integer variable with lower bound 0

cumulative time of rolling stock u

at time k

∀k ∈ K, ∀u ∈ U, vu(k) integer variable with lower bound 0

cumulative mileage of rolling stock u

at time k when it enters

the depot for PM

∀k ∈ K, ∀u ∈ U, xu(k)

1, if rolling stock u is not in
operation at time k

0, otherwise

∀k ∈ K, ∀u ∈ U, yu(k)

1, if rolling stock u
undergoes PM at time k

0, otherwise

∀k ∈ K, ∀u ∈ U, wu(k)

1, if rolling stock u arrives
at depot and starts PM at k

0, otherwise

∀k ∈ K, ∀u ∈ U, zu(k)

1, if rolling stock u undergoes
CM at time k

0, otherwise

∀k ∈ K, ∀u ∈ U, mu(k)

1, if rolling stock u undergoes
CBM at time k

0, otherwise

∀k ∈ K, ∀u ∈ U, qu(k)


1, if rolling stock u arrives

at depot and starts CM
or CBM at k

0, otherwise

∀k ∈ K, ∀u ∈ U, ru(k)


1, if rolling stock u combines

CBM adjacent to PM at
the depot at k

0, otherwise

5.5 Objective function

minimize Cmileage

∑
k∈K

∑
u∈U

Dyu(k)− vu(k)︸ ︷︷ ︸
1

+ CPM

∑
k∈K

∑
u∈U

wu︸ ︷︷ ︸
2

+ CCM

∑
k∈K

∑
u∈U

qu︸ ︷︷ ︸
3

+ CCBM

∑
k∈K

∑
u∈U

qu(k)︸ ︷︷ ︸
4

+ Cshunting

∑
k∈K

∑
u∈U

wu(k) + qu(k)︸ ︷︷ ︸
5

(1)

Cshunting

∑
k∈K

∑
u∈U

wu(k) + qu(k)− ru(k) (2)
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The linear objective function 1 is formulated to mini-
mize the costs associated with maintenance while CM
or CBM are integrated in the rolling stock PM plan-
ning. Segment 1 of the objective function in equation
1 is the formulation of the mileage losses at the mo-
ment that a rolling stock arrives at the depot for PM.
Segment 3 and 4 contain the costs when either CBM
or CM is performed in the planning. Segment 5 con-
tains the arrival of PM and CM or CBM, so that the
shunting costs to the depot are also incurred. If the
model integrates CBM in the PM planning and also
PM and CBM can be combined, the segment of equa-
tion 2 replaces segment 5 of the objective function so
that shunting costs are subtracted.

5.6 Constraints

The accumulated mileage is formulated in linearized
constraints 3 and 4 as the mileage of the previous
day plus the mission profile if the rolling stock is in
operation. The linearization is performed with the
big M method (Hillier and Lieberman, 2015). For the
accumulated time constraint 5 and 6 is formulated
in a similar manner. The time is still accumulating
while the rolling stock is not deployed for passenger
operation.

du(k) = (du(k − 1) + (1− xu(k)) · P ) +M · yu(k),
∀k ∈ K,∀u ∈ U (3)

du(k) ≤ M · (1− yu(k)), ∀k ∈ K,∀u ∈ U (4)

eu(k) = (eu(k − 1) + 1 +M · yu(k),
∀k ∈ K,∀u ∈ U (5)

eu(k) ≤ M · (1− yu(k)), ∀k ∈ K,∀u ∈ U (6)

Constraint 7 and 8 linearly define the auxiliary
decision-variable vu(k) that is used to define the
mileage when a rolling stock enters the depot for PM
and otherwise this variable is always zero. The con-
straints are linearized using the big M method.

vu(k) ≤ Myu(k), ∀k ∈ K,∀u ∈ U (7)

M(yu(k)− 1) + du(k − 1) ≤ vu(k) ≤ du(k − 1),

∀k ∈ K,∀u ∈ U
(8)

Constraint 9 and 10 prevents the rolling stock from
exceeding the mileage and time thresholds. Con-
straint 11 bounds rolling stock to only perform PM
when the lower bound mileage threshold is reached.

du(k) ≤ D, ∀k ∈ K,∀u ∈ U (9)

eu(k) ≤ E, ∀k ∈ K,∀u ∈ U
(10)

du(k) ≥ DLB · (yu(k)− yu(k − 1)), ∀k ∈ K,∀u ∈ U
(11)

Constraint 12 is formulated to ensure that every day
exactly an amount of O rolling stock of the fleet is
deployed for operation. As a result, no more rolling
stock than required are in operation. Constraint 13,
14 and 15 define the rolling stock state if it is in
operation or not and that PM, CM and CBM can-
not be performed while performing passenger opera-
tions. CBM or CM cannot be performed simultane-
ously with PM as defined in constraint 16 and 17.

O = U −
∑
u∈U

xu(k), ∀k ∈ K (12)

yu(k) ≤ xu(k), ∀k ∈ K,∀u ∈ U (13)

zu(k) ≤ xu(k), ∀k ∈ K,∀u ∈ U (14)

mu(k) ≤ xu(k), ∀k ∈ K,∀u ∈ U (15)

zu(k) + yu(k) ≤ 1, ∀k ∈ K,∀u ∈ U (16)

mu(k) + yu(k) ≤ 1, ∀k ∈ K,∀u ∈ U (17)

Performing PM is modeled by the following con-
straints. PM is performed at the depot and always
for 3 days exactly as is defined by constraint 18 and
19.

k+N∑
k∈K

yu(k) ≥ N(yu(k)− yu(k − 1)), ∀k ∈ K,∀u ∈ U

(18)

k+N+1∑
k∈K

yu(k) ≤ N, ∀k ∈ K,∀u ∈ U

(19)

The capacity for rolling stock at the depot is de-
fined by the amount of arrivals per day. The arrival
decision-variable is defined in constraints 20 and 21.
The depot capacity is constrained by the amount of
arrivals per a certain amount of days. Constraint 22
is therefore formulated to sum up the amount of ar-
rivals over Adays days, which is satisfied when the
summation is less or equal to A = 1 arrival.

wu(k) ≥ yu(k)− yu(k − 1), ∀k ∈ K,∀u ∈ U

(20)

wu(k) ≤ du(k − 1), ∀k ∈ K,∀u ∈ U
(21)

k+Adays∑
u∈U

wu(k) ≤ A, ∀k ∈ K

(22)

The maintenance states of performing CM or CBM
are defined by constraints 23 to 28. These constraints
are only considered in the prediction horizons F and
G using indices f and g related to the foreseeability of
failures. Hence the difference formulation compared
to previously defined constraints. Constraint 23 de-
fines at which time CM is determined to take place
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for which rolling stock, therefore, the equal sign is
used, this is performed according to parameter value
Wu(k). Constraint 25 defines that CBM has to take
place within the predefined time period indicated by
the RUL of parameter Vu(k). The model can decide
at which instance in that time period it would plan
CBM, but not outside of this time period, hence why
the less or equal sign is used.
Since planning CBM is more complex to formulate
because of its flexible ability to plan, two extra con-
straints are added. Constraint 26 defines that over
every period of RCBM days long (the RUL), the
amount of CBM divided by the duration of CBM,
has to be greater or equal to the amount of ones in
matrix Vu(k) during the same time period. And by
adding constraint 27, CBM is always planned before
failure.
Finally, the arrival day of CM and CBM is indicated
by decision-variable qu(k) that will be 1 only if the
rolling stock arrives at the depot for CM or CBM as
constraint 24 indicates for CM and constraint 28 for
CBM. Since CBM and CM will never be integrated
in the same approach, the same notation of decision-
variable can be used.

zu(f) = Wu(f) ∀f ∈ F,∀u ∈ U (23)

qu(f) ≤ zu(f)− zu(f − 1), ∀f ∈ F,∀u ∈ U (24)

mu(g) ≤ Vu(g) ∀g ∈ G, ∀u ∈ U (25)

g+RCBM∑
g∈G

Vu(g)

RCBM
≤

g+RCBM∑
g∈G

mu(g)

TCBM
∀g ∈ G, ∀u ∈ U (26)

g+RCBM∑
g∈G

mu(g) ≤ TCBM ∀g ∈ G, ∀u ∈ U (27)

qu(g) ≤ mu(g)−mu(g − 1), ∀g ∈ G, ∀u ∈ U (28)

Finally, if CBM will be combined with PM when
binary decision-variables mu(k) and yu(k) are adja-
cent according to, constraint 29. This is only possible
when firstly CBM is performed and subsequently PM.

2 · ru(k) ≤ mu(k − 1) + yu(k), ∀g ∈ G, ∀u ∈ U (29)

6 Results

The optimization problem is solved with the Gurobi
solver algorithm. The formulated model will be eval-
uated on its performance, especially the decision-
making of the rolling stock PM planning optimization
integrating CM in comparison to an approach that in-
tegrates CBM. Comparisons between results can be
used to assess performance and justify the impact of
CM and CBM on the rolling stock maintenance plan-
ning. This includes also the cost effectiveness of the

possibility to combine CBM with PM in the rolling
stock maintenance planning.
To quantify the performance of the optimization ap-
proach, multiple KPI’s are generally used in the state
of the art and the state of practice. An KPI is a
quantitative value that reflects the performance of an
approach. The following KPI’s are defined in order
to evaluate and compare the performance of different
approaches prioritized from high to low according to
the state of the art, practice and experience:

1. Mileage losses

2. Amount of infeasible optimization solutions

3. Amount of combinations of CBM with PM

4. Maintenance costs

The mileage losses can be calculated from the first
segment of the objective function from equation 1.
Since it is assumed that every rolling stock runs con-
stantly 475 [km] per day when in operation and the
mileage threshold is D = 45, 000 [km], the optimal
mileage losses is nonzero. 45,000

475 = 94.7 is not a
round number and therefore the maximum amount
of days that a rolling stock can be in operation be-
fore PM is 94. Consequently, the mileage losses are
45, 000−94 ·475 = 350 [km] per rolling stock as min-
imal value. The optimization is increasingly less op-
timal the more mileage losses are incurred and there-
fore is this is considered the most important KPI.
Infeasibility is characterized as when the optimiza-
tion initialized with parameters values cannot be
bounded by the formulated constraints and a solu-
tions is found by the solver algorithm. A maintenance
planning approach that puts out a feasible solution
is better in decision-making than a planning that re-
solves into an infeasible solution. Based on experi-
ence, an infeasible solution is a cumulative result of
poor decision-making in the past or unfortunate dis-
ruptions. The performance of the optimization ap-
proach is therefore quantified by this KPI.
When the RUL is overlapping the nearest PM routine
in the planning, this can be used as an opportunity to
combine CBM with PM, saving shunting costs. Since
this is highly desired, the amount of combinations are

10



used as KPI, the higher the amount of combina-
tions of CBM with PM, the better. However, this
might be at the expense of the mileage costs. The
amount of combinations of CBM with PM can be re-
trieved by summing up decision-variable ru(k).
The maintenance costs can be obtained directly
from the objective function equation 1. This KPI in-
dicates to overall outcome, but does not necessarily
specify how the optimization is performing, therefore,
other KPI’s have more priority to characterize this.

6.1 Performance of the PM planning
optimization while disrupted by
CM or CBM

CM and CBM are disruptive factors in the main-
tenance planning. Because of a failure, a rolling
stock has to go to the maintenance depot for
CM and it becomes unavailable. Due to this un-
availability, the rolling stock cannot run opera-
tion for a certain amount of time. In the mean-
time, the cumulative time is increasing, nearing
the time threshold for PM. So since the rolling
stock is unable to run enough distance before
the time threshold, mileage losses are made.
To evaluate the performance of the maintenance
planning optimization while being disrupted by CM
and CBM, instances of CM and CBM will be initial-
ized in random matrix Wu(k) and Vu(k). The ma-
trices Wu(k) and Vu(k) will be filled with instances
in such a way that ensures disruptions always occur
at the first day of the week (k = 0, k = 7, k = 14
and so on), because the implementation horizon I is
one week or 7 days. In this way, the unexpected-
ness of CM is perfectly simulated, because with the
rolling horizon, the disruption appears in the disrup-
tion horizon F right after the last implemented day.
The instances in random matrix Wu(k) and Vu(k)
will be chosen as follows:

• No more than 1 disruption per rolling stock in
the simulation horizon.;

• Amount of disruptions (R for CBM and Q for
CM) are iterated from 4 to 12 with increments
of 1: {4, 5, 6, 7, 8, 9, 10, 11, 12}, or for other com-
parisons with increments of 2.

• The disruptions will be randomly distributed
from k = 21 to k = 98 with increments of 7
days: {21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98}.

• No more than 3 disruptions per day, otherwise,
not enough rolling stock can be available for pas-
senger operations due to parameter O.

• The RUL length of RCBM = 14 [days] is chosen
to enable the comparison of CBM with CM.
The RUL length of RCBM = 14 and 21 [days]
is chosen for comparing the integrating of CBM
in the PM with possible combinations of CBM
with PM.

• 20 different randomization configurations for
CM and CBM are used in order to exclude co-
incidences of successes. The results in data of
the different outcomes can be processed in or-
der to analyze the impact of disruptions on the
decision-making.

• A planning will be established for J = 19 opti-
mizations, so a simulation horizon of K = 133
days.

Amount of infeasible solutions The first graph
4 shows the comparison in percentage of infeasible
solutions between CM and CBM. What can be seen
from the figure is that in any optimization with dis-
ruptions, for either CM and CBM, a certain amount
of cases become infeasible. No logical relation of
infeasible solutions can be noticed for CBM, because
for 4 to 6 disruptions, 45% of all optimizations
become infeasible and with 9 disruptions, only 15%
is infeasible. It can be stated that the percentage of
infeasible solutions is stable throughout the iteration
and on average 42.2%.

On the contrary, the more disruptions take place in
the simulation horizon, significantly more infeasible
solutions are observed for CM. From an amount
of 9 CM in the simulation horizon, the amount of
infeasible solutions steadily increases with respect
to the amount of CM up to a percentage of 85%,
while for the same amount of disruptions only 35%
of the optimizations integrating CBM came out as
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infeasible. However, for the disruptions amounts 4
to 7, more CBM infeasible solutions came out the
optimizations, on average 41.2% against 36.3% for
CM.
For a low amount of disruptions in the planning, CM
came out 5% better in optimization performance
in comparison to CBM. However, in total, 27 more
solutions out of 180 are found with a planning with
CBM than for CM. Moreover, there is no sign of a
trend in infeasible solutions for CBM whilst there is
for CM.

Average mileage losses per rolling stock main-
tenance planning Graph 5a and 5b are whiskers
plots. These whiskers plots show the performance
of the feasible solutions that integrate CM or CBM
indicated by the mileage losses. The average mileage
loss over the complete rolling stock maintenance
planning is selected from every feasible solution and
categorized per amount of disruptions. The data
plot demonstrates that 50% of all of the solutions
are in the box, showing the spread of data and the
median (middle stripe in the box). The standard
deviation is demonstrated by the bars when this is
outside of the box.

First of all, it can be noticed that in figure 5b,
for 4 to 10 disruptions, there is no box. This implies
that the median, the first and second quartile of
data lies within the same point of 350 [km], which
is proven to be the minimal amount of mileage loss.
This means that the majority of feasible solutions
integrating CBM into the maintenance planning
make no mileage losses on average. When 11 and 12
disruptions take place in the planning, the spread
of mileage losses becomes higher, so more mileage
losses are made on average when more disruptions
take place.

Figure 4: Percentage of infeasible solutions out of 20 random
configurations, a comparison between CM and CBM with in-
creasing amount of disruptions

(a) CM

(b) CBM, RUL of 14 days

Figure 5: Whiskers plot of the average mileage losses (y-axis)
that are made by by the feasible solutions that successfully
integrated CM (a) and CBM (b), categorized by the amount
of disruptions occurring in the planning (x-axis).
Dots demonstrate outliers of the data set, ”x” indicates the
mean average mileage loss and the bars indicate the standard
deviation.
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6.2 Performance of the PM planning
optimization with the opportunity
to combine CBM with PM

The opportunity is provided by the optimization
approach by replacing segment 5 from the objec-
tive function 1 with equation 2 to combine CBM
with the PM routine. The time to failure of the
rolling stock is indicated with the RUL. When this
occurrence is close to an upcoming PM routine,
the two maintenance routines can be combined.
If this combination is feasible to plan, it reduces
shunting costs, because the rolling stock only has
to go to the depot once. The maintenance costs
are directly related to the amount of combinations
of CBM with PM, since every combination saves
Cshunting [euro] in shunting costs. However, the
costs also depend on the extra mileage losses that
are made. Combining CBM with PM is therefore
a trade-off between mileage losses and shunting costs.

A case will be initialized with disruptions simi-
larly as the previous section. Disruption matrix
Vu(k) randomly distributes time of failures over the
fleet size and simulation horizon. For evaluating
the performance of the rolling stock PM planning
optimization that integrates CBM that can be
combined with PM, the following assumptions are
made:

• 20 random configurations for Vu(k) are used with
the same conditions as previous experiment.

• The RUL RCBM is iterated from 7, 14 to 21 with
increments of 7, so {7, 14, 21} [days].

• The amount of disruptions R is increasing over
the iterations {4, 6, 8, 10, 12}.

The performance is evaluated with the KPI that
expresses the amount of combinations of CBM with
PM. The results are expressed in table 1 that shows
the average number of combinations that are made
in the planning for a RUL of 7, 14 and 21 days in
relation to the amount of disruptions in the planning.
It can be seen in table 1 that the longer the RUL,
the more combinations are made. This is expected,

because the longer the RUL, the higher the chance
in overlap with the upcoming PM routine. Addition-
ally, the more disruptions that take place, the higher
the chance that there is an overlap between the RUL
and the upcoming PM routine.

The comparisons are made with an approach
that enables combinations versus an approach that
does not. This costs comparison using the mainte-
nance costs as KPI is presented in figure 6a and 6b.
The average maintenance costs are provided in these
figures as a result of combinations in relation to the
amount of disruptions by CBM in the optimization
for an RUL of 14 days and 21 days.
Graph 6a illustrates by the comparison that the
mean average maintenance costs are very close,
but overall, the percentages show positive costs
savings if combinations are possible in the planning.
Alternatively, graph 6b illustrates that for 4 and 6
disruptions, the maintenance costs are on average
not less than an approach without combinations.
This is logical, because less combinations of CBM
with PM can be made with a lower amount of
disruptions as is concluded from table 1, so also less
cost savings. However, the standard deviations show
with the lower bar that the maintenance costs of
the maintenance planning that enables combinations
are generally lower than for the approach without
combinations.
Overall, for an RUL of 14 days over disruptions from
4 to 12, an average cost savings of 0.32% is made.
The graph of figure 6b shows the relations that the
more disruptions take place, the higher percentage
in costs are saved. For an RUL of 21 days over
disruptions from 8 to 12, an average cost savings of
0.54% is made, which is more cost efficient than with
an RUL of 14 days.

7 Conclusion and Recommen-
dations

A deterministic MILP mathematical model that
represents the maintenance decision-making process
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(a) CBM, RUL of 14 days

(b) CBM, RUL of 21 days

Figure 6: Comparison of the average (fictional) maintenance
costs (multiplied with cost factor Y see confidential annex B)
where in blue, combinations are possible, in green without
combinations of CBM with PM.
The costs savings are expressed in percentages and the error
bars demonstrate the standard deviation of the maintenance
costs.

Table 1: Average number of combinations CBM and PM over
20 random configurations iterated over an increasing amount
of disruptions and RUL lengths

of NS, which can be optimized using a Gurobi solver
algorithm, is formulated in this study. The rolling
horizon framework is perfectly able to approach the
maintenance planning problem because of its ability
to rearrange in response to (predicted) disruptions.
This frameworks provides the opportunity to dis-
tinct CM from CBM in its foreseeability, so fair
comparisons could be made.
The model presents an integral simplified version of
the NS rolling stock maintenance planning case.

For the formulation of this model, assumptions
and concessions were made to model the case. As a
consequence, the results of the model may therefore
deviate from reality. Nevertheless, conclusions can
be drawn from the model, under the assumptions
and conditions that are made earlier in this study.
Overall, it can be concluded from the results of the
formulated optimization problem that CBM impacts
the decision-making positively by creating flexibility
in planning resulting in more feasible solutions.
Besides, a trend is observed for the maintenance
planning optimization integrating CM, that the more
disruptions take place, the higher the chance is that
no solutions can be found. The evaluation quantifies
that a rolling stock PM planning integrating CBM is
better to plan based on the 27 more feasible solutions
out of the 180 optimizations. Under the condition
that disruptions take 2 days and 4 to 12 disruptions
take place randomly distributed over 21 rolling
stock over 12 weeks. Moreover, the evaluation based
on the whiskers plots qualifies that CBM is more
than halve of the times able to establish a rolling
stock maintenance planning without inducting more
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than optimal amount of mileage losses. Meanwhile
the spread of overage mileage losses for a planning
considering CM is higher. This implies that it more
frequently occurs that mileage losses are made when
a disruption in the planning is unexpected.

CBM creates the opportunity to combine the
routine with PM so double shunting operations can
be avoided, saving shunting costs. It is shown by the
maintenance costs comparison that these combina-
tions generally result into cost savings to maximum
of 0.86% on average for an RUL of 21 days. So
more combinations have a positive impact on the
performance of the rolling stock maintenance plan-
ning decision-making. The more disruptions take
place, the higher the chance of combinations and the
longer the RUL, the more combinations can be made.

In reality the fleet exists of 190 rolling stock
from which a certain amount should be available for
passenger operation. This cannot be modeled with
the current optimization method, because it results
in computational complexities, so the optimization
approach is limited. The required availability for
passenger operations is actually variable depending
on the time of the day and the day of the week,
due to peak hours and peak days. The maintenance
decision-making can be more realistic if the variable
rolling stock availability requirements are integrated
in the maintenance planning model.
Disruptions in the form of CBM and CM are modeled
as random artificial instances, it is recommended to
initialize this with historical failure data to further
validate the model with the maintenance costs and
mileage losses of NS.
Another aspect that should be analyzed, is the
capacity of the depot for CM and CBM. The arrival
of a rolling stock for CM or CBM is not constrained
to any maintenance depot capacity limitations. It is
reasonable that more arrivals for CBM results into
more workload for the depot. In a situation where
solely maintenance is decided based on prognostics,
this is recommended to thoroughly analyze and
compare it to the current situation with PM.
It is assumed that the RUL from a fault detection in
the formulated model is perfectly accurate. Realis-

tically, since actual CBM is conducted according to
prognostic information that predicts a failure, it is
not 100% certain if the rolling stock is actually going
to fail. The prognosis might be false positive and
the rolling stock is going to the maintenance depot
for CBM purposeless. With CM, the rolling stock
fails and shunting to the maintenance depot and is
always necessary. Alternatively, CBM might lead to
a false negative, so CM can still occur despite the
health of the rolling stock condition that is moni-
tored and potential failures can be predicted. It is
recommended to take these aspects in consideration
for future research.

Since according to the results, the integration
of CBM to the PM planning is beneficial, it is
recommended to perform more research on the
integration of CBM in the rolling stock maintenance
planning. Planning maintenance according to
prognostic information has no direct impact on the
availability of the rolling stock because the asset
may continue to operate passenger operations, while
it is going to be planned for an optimal moment for
maintenance. Since CBM can be planned ahead of
time, it can be researched how this is beneficial to
maintenance strategies.
It is shown that combining CBM with PM in one
routine is cost efficient. It is therefore recom-
mended to develop prognostic models to predict
failures far in advance, because the longer the
RUL of the prognostic models, the more efficient
the integration of CBM into the PM planning can be.
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C
Eventplots of Approach 3

Examples of eventplots of approach 3 are presented, illustrating the difference in planning. The event-
plots demonstrate the timeline (x-axis) over the simulation-horizon for every rolling stock (y-axis). The
block of the color in the eventplot indicate the state of the rolling stock. When there is no color, the
rolling stock is in operation and runs 475 [km] that given day.

Figure C.1: Eventplot of approach 3 for 𝑄 = 10 CM, random configuration 5
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98 C. Eventplots of Approach 3

Figure C.3: Eventplot of approach 3 for 𝑅 = 8 CBM and 𝑅𝐶𝐵𝑀 = 7 including CBM+PM combinations as can be seen, random
configuration 9

Figure C.2: Eventplot of approach 3 for 𝑅 = 8 CBM and 𝑅𝐶𝐵𝑀 = 21, random configuration 5
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