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An extensive numerical benchmark of the various 
magnetohydrodynamic flows 
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A B S T R A C T   

There is a continuous need for an updated series of numerical benchmarks dealing with various aspects of the 
magnetohydrodynamics (MHD) phenomena (i.e. interactions of the flow of an electrically conducting fluid and 
an externally imposed magnetic field). The focus of the present study is numerical magnetohydrodynamics 
(MHD) where we have performed an extensive series of simulations for generic configurations, including: (i) a 
laminar conjugate MHD flow in a duct with varied electrical conductivity of the walls, (ii) a back-step flow, (iii) a 
multiphase cavity flow, (iv) a rising bubble in liquid metal and (v) a turbulent conjugate MHD flow in a duct with 
varied electrical conductivity of surrounding walls. All considered benchmark situations are for the one-way 
coupled MHD approach, where the induced magnetic field is negligible. The governing equations describing 
the one-way coupled MHD phenomena are numerically implemented in the open-source code OpenFOAM. The 
novel elements of the numerical algorithm include fully-conservative forms of the discretized Lorentz force in the 
momentum equation and divergence-free current density, the conjugate MHD (coupling of the wall/fluid do-
mains), the multi-phase MHD, and, finally, the MHD turbulence. The multi-phase phenomena are simulated with 
the Volume of Fluid (VOF) approach, whereas the MHD turbulence is simulated with the dynamic Large-Eddy 
Simulation (LES) method. For all considered benchmark cases, a very good agreement is obtained with avail-
able analytical solutions and other numerical results in the literature. The presented extensive numerical 
benchmarks are expected to be potentially useful for developers of the numerical codes used to simulate various 
types of the complex MHD phenomena.   

1. Introduction 

One of the pre-requisites to be able to deal with advanced physical 
transport phenomena involving the magnetohydrodynamics (MHD) in-
teractions is to have a well-validated and numerically efficient computer 
code. This still poses a quite challenging task due to a lack of advanced 
experimental studies that can provide detailed insights into the flow and 
electromagnetic parameters that can be used to validate computer 
codes. The essence of the MHD phenomena is usually associated with a 
flow of highly electrically conducting liquid metals, which are, due to 
their non-transparency, notoriously difficult to study with standard 
laser-based optics diagnostics tools. 

To validate MHD numerical models, we have to rely on analytical 
solutions that are based on significant simplifications. In the present 
manuscript, we are revisiting and proposing an extensive list of possible 
benchmark cases available in the open literature dealing with various 

aspects of the MHD phenomena. One of the simplest numerical MHD 
benchmarks is a fully developed laminar channel, duct, or pipe flow 
subjected to a uniform magnetic field of different orientations, for which 
an exact analytical solution exists, Hartmann and Lazarus (1937), 
Shercliff (1953). The effects of the non-uniform longitudinal magnetic 
field on a laminar flow of electrically conducting fluid in a pipe were 
recently numerically simulated in Feng et al. (2015). The open-source 
computer code OpenFOAM was used and good agreement was ob-
tained between simulations and experiments. The MHD flow in a duct 
with very thin electrically conducting walls was presented in Tao and Ni 
(2013). Instead of fully resolving the wall region, a special type of 
boundary conditions was applied at the wall/fluid interface that takes 
into account a finite wall conductivity, as proposed in Walker (1981). It 
should be noted that this approach can be applied only for a very thin 
wall thickness and small conductance ratios. 

Fusion engineering and technology-related research include 
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Contents lists available at ScienceDirect 

International Journal of Heat and Fluid Flow 

journal homepage: www.elsevier.com/locate/ijhff 

https://doi.org/10.1016/j.ijheatfluidflow.2021.108800 
Received 16 August 2020; Received in revised form 1 February 2021; Accepted 22 February 2021   

mailto:S.Kenjeres@tudelft.nl
www.sciencedirect.com/science/journal/0142727X
https://www.elsevier.com/locate/ijhff
https://doi.org/10.1016/j.ijheatfluidflow.2021.108800
https://doi.org/10.1016/j.ijheatfluidflow.2021.108800
https://doi.org/10.1016/j.ijheatfluidflow.2021.108800
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatfluidflow.2021.108800&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Heat and Fluid Flow 90 (2021) 108800

2

numerous topics dealing with the MHD phenomena. Smolentsev et al. 
(2015) provided an extensive review of MHD codes for fusion applica-
tions and selected benchmark problems of importance for fusion appli-
cations. The proposed benchmarks covered a series of 2D and 3D steady 
and developing MHD flows in both laminar and turbulent regimes, and 
the final case also included effects of thermal buoyancy. Gajbhiye et al. 
(2018) validated their general-purpose solver by analyzing the free 
convection in a cubical enclosure under a uniform magnetic field and the 
electro-magnetically driven flow in a toroidal duct. The commercial 
ANSYS-CFX finite-volume based code was used to simulate a water- 
cooled lithium lead (WCLL) breeding blanket module subjected to a 
strong uniform magnetic field, Tassone et al. (2017). The commercial 
multi-physics finite-element code COMSOL was successfully applied to 
simulate transient natural convection phenomena under influence of the 
imposed uniform magnetic field, Sahu and Bhattacharyay (2018). 

Validation of the multi-phase MHD flows is a challenging topic. The 
number of validation studies dealing with multi-phase MHD phenomena 
is significantly smaller compared to single-phase MHD phenomena. The 
analytical solutions for the multi-phase MHD situations are very scarce. 
One of the recently proposed analytical solutions for a 2D multi-phase 
MHD flow is presented in Righolt et al. (2016), where the elevation of 
the liquid–metal/air interface due to the presence of an imposed mag-
netic field is analytically solved. Numerical simulations of a rising 
bubble in the liquid metal subjected to an external homogeneous mag-
netic field of different strengths were studied in Shibasaki et al. (2010). 
The finite-difference code was used and the terminal bubble velocity 
dependency on the strength of the imposed magnetic field was analyzed. 

Finally, the turbulent MHD phenomena require a special solving 
strategy due to the necessity to properly capture both – the flow and 
electromagnetic instabilities. The presence of the fluctuating Lorentz 
force requires a proper adaptation of the RANS-type of turbulence 
models (Kenjereš and Hanjalić, 2000; Kenjereš et al., 2004) or applica-
tions of the eddy-resolving simulation techniques such as Direct Nu-
merical Simulations (DNS) or Large Eddy Simulations (LES), Kenjereš 
(2018). Krasnov et al. (2008) compared different sub-grid scale models 
for the MHD LES channel flow and demonstrated ability of the dynamic 
Smagorinsky model to properly predict the influence of the imposed 
magnetic field. Chaudhary et al. (2010) used DNS and analyzed how the 
increasing strength of a transverse magnetic field could influence the 
turbulence in the square duct flow. Mao et al. (2017) simulated the MHD 
flow in the insulated squared duct with different sub-grid scale models 
and compared data with the DNS results from the previous research of 
Chaudhary et al. (2010). Additionally, Mao et al. (2017) varied the 
Hartman number, showing how the turbulence is being suppressed by 
the imposed magnetic field. 

The main goal of the present study is to obtain and validate results 
from our newly developed OpenFOAM solver over a range of various 
magnetohydrodynamic flows, and based on these findings, to propose an 
extensive numerical MHD benchmark, which can be potentially useful 
for developers of the computer codes for simulations of the MHD phe-
nomena. We are primarily focusing on the influence of the finite electric 
conductivity of surrounding walls and the multiphase aspects of the 
MHD phenomena. We have analyzed the following situations: (i) a 
laminar duct flow with finite conductivity of surrounding walls, (ii) a 
laminar back-step flow, (iii) a shallow 2D multi-phase cavity, (iv) a 
rising bubble in the liquid metal, and, finally, (v) a turbulent duct flow 
with conducting walls. For all mentioned cases we performed a detailed 
comparative assessment against available analytical solutions or/and 
numerical results presented in the literature. 

2. Governing equations and numerical details 

2.1. Governing equations for a single-phase MHD 

We consider an incompressible electrically conductive fluid with 
liquid metal properties. The fluid is affected by the imposed external 

(constant) magnetic field through the Lorentz force. Conservation of 
mass and momentum are used to describe the MHD flow (under the 
assumption that the imposed magnetic field is known), and are written 
as: 

∇⋅U = 0 (1)  

∂U
∂t

+(U⋅∇)U = −
1
ρ∇p+ ν∇2U+

1
ρ(J × B) (2)  

where U is velocity, p is pressure, ν is the kinematic viscosity, ρ is den-
sity, J is the current density and B is the imposed magnetic field. In the 
momentum equation, the MHD interactions are accounted for through 
the Lorentz force term. In addition to the velocity and pressure, also the 
current density (J) needs to be calculated. For the one-way coupled 
MHD phenomena, i.e. when the following conditions are valid 

Rem =
UL
λ

≪1 and Prm =
ν
λ
≪1 (3)  

where Rem is the magnetic Reynolds number, Prm is the magnetic Prandtl 
number, L is the characteristic length and λ is the magnetic diffusion, ν is 
the kinematic viscosity, the Ohm’s law for a moving conducting fluid is 
used 

J = σ( − ∇ϕ+U × B) (4)  

where σ is the electrical conductivity of the fluid. By imposing the 
divergence-free current density condition in the Ohm’s law, i.e. 

∇⋅J = 0 (5)  

the final Poisson’s equation for the electric potential (ϕ) is obtained and 
can be written as 

∇2ϕ = ∇⋅
(
U × B

)
(6) 

In addition to Rem and Prm (given in Eqn. (3)), the hydrodynamic 
Reynolds and Hartmann number are used as typical MHD non- 
dimensional parameters: 

Re =
UL
ν , Ha = BL

̅̅̅̅̅σ
ρν

√

(7)  

2.2. Governing equations for a multi-phase MHD: volume of fluid method 

In the current study, the Volume of Fluid (VOF) method is applied to 
the multi-phase MHD flow simulations. In addition to the Lorentz force, 
also the surface-tension and gravitational forces need to be included into 
the momentum equation: 

∂U
∂t

+(U⋅∇)U = −
1

ρav
∇p+ νav∇

2U

+
1

ρav

(
(J × B) + fg + γk∇α

)
(8)  

where fg is the gravity force term, γ is the surface tension, k is the cur-
vature of the interface (calculated as k = ∇⋅ ∇α

|∇α|), νav is the phase aver-
aged viscosity (calculated as νav = α⋅ν1 + (1 − α)⋅ν2, where ’1’ and ’2’ 
are phase indicators), ρav is the phase averaged density (calculated as 
ρav = α⋅ρ1 + (1 − α)⋅ρ2) and the volume fraction α is described by the 
following transport equation: 

∂α
∂t

+∇⋅
(

αU
)

+∇⋅(Urα(1 − α)) = 0 (9)  

where Ur is the artificial compression velocity used for the interface 
sharpening, which is calculated as: 

Ur = nf min
[

Cα
|ψ |
⃒
⃒Sf

⃒
⃒
,max

(
|ψ|
⃒
⃒Sf

⃒
⃒

) ]

(10) 
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where nf is the normal vector of the cell surface, ψ is the mass flux 
through the face, Sf is the cell surface area, and Cα is a coefficient that is 
used to control the interface thickness. There is no artificial interface 
compression when Cα = 0. In order to control the spurious velocities 
which appear near the interface due to the sharp change of α, the volume 
fraction function is smoothed by the following Laplacian filter (Hoang 
et al., 2013; Mukherjee et al., 2018): 

α̃c =

∑n

f=1
(αf Sf )

∑n

f=1
(Sf )

(11)  

where α̃ is the resulting smooth volume fraction function, while sub-
scripts c and f indicate the cell center and cell face, respectively. Using 
the smooth function α̃ in Eqn. (9), instead of the original function α will 
suppress these parasitic velocities. In the current study, the filter (11) is 
applied twice for each time step. 

2.3. The eddy-resolving MHD turbulence: large Eddy simulation 

Turbulence modeling is performed by the Large Eddy Simulation 
(LES) method which is a good alternative to a more computationally 
expensive Direct Numerical Simulations (DNS). We apply the spatial 
filtering operation to Eqn. (2), which finally can be written as: 

∂U
∂t

+(U⋅∇)U = −
1
ρ∇p* + ν∇2U − ∇⋅τsgs +

1
ρ(J × B) (12)  

where (’’) indicates the spatially filtered value and (τsgs) is the sub-grid 
scale stress tensor, and p* = p + 1

3 τ′I. The eddy viscosity concept is 
applied for the closure of the subgrid stress tensor as: 

τsgs
ij = − 2νsgsSij, νsgs = (CSΔ)

2S, S =
(

2SijSij

)1
2 (13)  

where S is the modulus of the strain rate tensor, νsgs is the subgrid scale 
turbulent viscosity, and Cs is Smagorinsky coefficient. In the present 
work, we have adopted the dynamic approach to locally estimate values 
of the Smagorinsky coefficient, Lilly (1992), as follows: 

C2
S =

1
2

〈
LijMij

〉

〈
MijMij

〉 (14)  

Lij = ŨiUj + ŨiŨj (15)  

Mij = Δ2S̃ Sij + Δ̃2S̃ S̃ij (16)  

where Δ is the first filter (calculated as Δ = (ΔxΔyΔz)
1/3), Δ̃ is the 

second filter (calculated as Δ̃ = 2Δ) and ’〈…〉’ means the local spatial 
averaging over the cell faces. 

2.4. Numerical details 

2.4.1. The conservative form of the Lorentz force 
The additional Lorentz force in the momentum equation is tradi-

tionally treated in a non-conservative way (i.e. by applying the volume 
integration of the source term). This can potentially lead to significant 
numerical errors, especially for flow regimes with high Hartmann 
numbers. Similarly, the total electric current density must be conserved 
too. Both of these requirements are achieved through the application of 
the Four Steps Projection Method (FSPM) proposed by Ni et al. (2007), 
which can be summarized through the following four steps:  

1. Calculate the magnetic flux at cell faces: 

ψmhd = σf (U × B)f ⋅Sf (17)  

where the cell -face electric conductivity (σf ) is calculated by 
applying the harmonic average between different phases, and (Sf) is 
the cell surface area vector.  

2. Use Eq. (17) to solve the discretized electrical potential equation and 
find electric potential (ϕ) at the cell centers: 

∑m

f=1
σf∇nf ϕ⋅|Sf | =

∑m

f=1
ψmhd (18)  

where ‘m’ indicates the number of cell faces.  
3. Calculate the current density flux at cell faces using the surface- 

normal gradient of electric potential (ϕ): 

Jn = − σf∇nf ϕ⋅
⃒
⃒Sf

⃒
⃒+ψmhd (19)  

where (Jn) is the cell face normal component of the current density.  
4. Finally, use the current density flux from Eq. (19) and calculate the 

fully conservative form of the Lorentz force as: 

(J × B)c = −
1

Ωc

∑m

f=1
(Jn)f (Bf × rf)

− rc ×
1

Ωc

∑m

f=1
(Jn)f Bf

(20)  

where (Ωc) is the volume of cell, (rc) is the cell center distance vector 
and (rf) is the face center distance vector. 

2.4.2. Conjugate MHD: taking into account electric conductivity and 
thickness of surrounding walls 

The finite electric conductivity and finite thickness of surrounding 
walls have a significant impact on the fluid flow. This is due to the effects 
of the current density transfer between a liquid layer and solid walls, 
which is directly influencing the intensity and direction of the local 
Lorentz force in the near-wall region. To include the fluid/wall interface 
effects, we have developed an approach similar to traditional conjugate 
heat transfer, but now instead of the heat flux transfer, we focus on the 
distribution of the electric potential and current density in both do-
mains. Transport equations of the electric potential in liquid (L) and 
solid (S) wall domains can be written as: 

∇⋅(σL∇ϕL) = ∇⋅(σL(U × B)) (21)  

∇⋅(σS∇ϕS) = 0 (22) 

Note that the source term (the RHS of Eqn.(21) is absent for the solid 
wall domain. Along the fluid/wall interface (Fig. 1), the conservation 
and continuity of the electric current density (J) needs to be kept. This is 
achieved by imposing following set of the boundary conditions at the 
interface: 

σL
∂ϕL

∂n
= σS

∂ϕS

∂n
(23)  

ϕL = ϕS (24) 

The electric current density in the computational cell center is 
calculated in the same manner for both liquid and solid part of 

Fig. 1. Sketch of the fluid/wall interface condition for the conjugate 
MHD problem. 
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computational domain as: 

Jc[L,S] =
1

Ωc

∑m

f=1

((
Jn,f

)

[L,S]⋅rf

)
− rc⋅

1
Ω

∑m

f=1

(
Jn,f

)

[L,S] (25)  

where the harmonic average is used to interpolate the electric conduc-
tivity at the interface, needed for calculation of the current density flux 
at the cell faces (Jn,f ). 

2.4.3. The computer code 
The integrated MHD solver, which includes all above-listed transport 

equations, for both single- and multi-phase MHD phenomena is based on 
the finite-volume open-source computer code OpenFOAM-extend 4.0, 
Weller et al. (1998). Coupling between pressure and velocity field is 
performed with the PISO algorithm, Issa et al. (1986). 

3. Applications: test cases 

3.1. Laminar duct flow with conjugate MHD 

In the first test case, we address a laminar pressure-driven flow of an 
electrically conducting fluid in the rectangular duct subjected to a 
transverse magnetic field, Fig. 2. The duct has the square cross-section 
(where L- is the half-width), length of 20L and ds is the thickness of 
side-walls (Hartmann walls). The Reynolds number is kept constant at 

Re = 10 and Hartmann number is varied in the 0⩽Ha⩽104 range. At the 
inlet, a uniform velocity profile is imposed. At all walls, the no-slip ve-
locity boundary conditions are applied. At the outlet, a zero-pressure 
boundary condition is imposed. The uniform transverse magnetic field 
is imposed. To deal with the finite-thickness surrounding walls, we 
introduce characteristic wall conductance parameter, defined as: 

Cd = (σSds)/(σLL). (26) 

Three types of electric boundary conditions for the walls perpen-
dicular to the magnetic field (Hartmann walls) are considered: (i) 
arbitrary conductive walls with varied wall conductance parameter 
(0.005⩽Cd⩽40), (ii) fully electrically insulated walls (∂ϕ/∂n = 0 and 
dS = 0), and finally, (iii) fully conductive walls (ϕ = 0 and dS = 0). The 
walls parallel to the magnetic field (Shercliff walls) are considered as 
electrically insulated for all cases. 

Although the final steady-state results are validated against analyt-
ical solutions, the solution procedure is performed in a time-dependent 
mode. This time-dependent approach is not numerically efficient, but 
our final goal is to have a well-validated solver able to simulate MHD 
phenomena in transient and turbulent flow regimes, so we adopted a 
time-dependent solution approach for all benchmark cases presented 
here. The second-order central difference scheme (CDS) is applied for 
both convective and diffusive terms of discretised momentum equation, 
whereas the second-order backward scheme is used for time integration. 

For all simulations the same hexahedral non-uniform orthogonal 
mesh is used with (Nx× Ny × Nz = 80 × 100 × 100)fluid control volumes 
for the fluid domain and (Nx × Ny × Nz = 80 × 10 × 100)solid for the 
solid domain, respectively. In making the spatial distribution of the non- 
uniform mesh, special attention is devoted that characteristic Hartmann 
and Shercliff boundary layers (with a typical thickness of δHa = L/Ha 
and δSh = L/Ha1/2) are properly resolved. This is achieved by placing 
between 5 and 10 control volumes with a typical grid expansion ratio of 
1.14 in the region bounded by the wall and the edge of the boundary 
layer (at δHa). 

Contours of the calculated streamwise velocity and electric potential- 
after reaching steady state in the center of the duct (x = 10L) – are 
shown in Fig. 3. For the MHD neutral case (Ha = 0) the velocity exhibits 
a typical symmetric parabolic-like distribution, Fig. 3(a). By imposing 
the transverse magnetic field (Ha = 100) and by keeping all duct-walls 

Fig. 2. Sketch of the simulated domain for a laminar MHD flow in a duct with 
Hartmann walls with finite electric conductivity, subjected to a transverse 
magnetic field. 

Fig. 3. The contours of the streamwise velocity (top row) and electric potential with current density streamlines (bottom row) in the center of the conjugate MHD 
duct flow: (a), (e) Ha  = 0. (b), (f) Ha  = 100, fully insulated walls (Cd = 0). (c), (g) Ha  = 100, arbitrary conductive walls (Cd = 0.1). (d), (h) Ha  = 100, fully 
conductive walls (Cd→∞). 
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electrically insulated, a flattening of the velocity distribution occurs in 
the central part of the duct, whereas thin Hartmann boundary layers are 
generated along opposite vertical walls, Fig. 3(b). Next, by keeping the 
same strength and direction of the imposed magnetic field, and by 
changing electric properties of the vertical walls from fully insulated to 
walls with a finite thickness and conductivity (i.e. Cd = 0.1), we observe 
a dramatic reorganization of the velocity with peaks in the proximity of 
the Shercliff walls, Fig. 3(c). Finally, by making Hartmann walls fully 
electrically conducting (Cd→∞), the velocity distribution with two 
peaks is still present, Fig. 3(d). The electric potential contours exhibit 
close to a linear distribution in the vertical direction for electrically 
insulated and finite-conductivity Hartmann walls, Fig. 3(f) and (g). In 
contrast to this, the perfectly electrically conducting Hartmann walls 
impose almost a uniform distribution in the central part of duct, Fig. 3 
(h). 

The numerical solutions are compared next against the following 
analytical solutions: (1) Shercliff’s solution for the electrically insulated 

Fig. 4. The streamwise velocity profiles along y-axis (between Hartmann walls) and z-axis (between Shercliff walls) in the duct at various Cd and Ha.  

Fig. 5. Numerical mesh dependency on the streamwise velocity profiles along 
z-axis in a conjugate MHD duct, Cd = 0.5,Ha = 50. 

Fig. 6. The streamwise velocity profiles along z-axis (between Shercliff walls) in the duct with arbitrary conductivity walls, (Cd = 0.05) for Ha = 5 × 103 (a) and 
Ha = 104 (b), respectively. 
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walls, Shercliff (1953), (2) Hunt’s solution for the electrically fully 
conductive walls, Hunt (1965), and (3) Sloan’s solution for the walls 
with the arbitrary electrical conductivity and thickness, Sloan and Smith 
(1966). For all simulated cases, an excellent agreement between present 
numerical simulations and analytical solutions is obtained, confirming 
an adequate implementation and validation of the conjugate MHD 
solver, Fig. 4. 

To illustrate the sensitivity of the numerical solution, we perform a 
mesh dependency study with three mesh levels: (i) the coarse mesh 
(M1), (Nx × Ny × Nz = 40 × 50 × 50)fluid and (Nxs × Nys × Nzs = 40×
5 × 50)solid = (0.11 × 106)total CVs, (ii) the present mesh (M2) 
(Nx × Ny × Nz = 80 × 100 × 100)fluid and (Nxs × Nys × Nzs = 80 × 10 
×100)solid = (0.88 × 106)total CVs and (iii) the fine mesh (M3) 
(Nx × Ny × Nz = 160 × 200 × 200)fluid and (Nxs × Nys × Nzs = 160 ×

20 × 200)solid = (7.04× 106)total CVs. As it can be seen in Fig. 5, a very 
good agreement with the analytical solution is obtained for the inter-
mediate (M2) and fine mesh (M3), and that a slight underprediction of 
the double peaks is observed for the coarse mesh (M1). To test possible 
limits of the numerical stability and accuracy, two additional high 
values of Ha = 5000 and 10000 are simulated for the case with a finite 
electrically conducting walls (Cd = 0.05), Fig. 6. For such high values of 
Ha, very strong wall jets are generated along Shercliff walls. With a 
proper mesh refinement in the proximity of walls, i.e. 
(Nx × Ny × Nz = 100 × 180 × 180)fluid control volumes for the fluid 
domain and (Nx × Ny × Nz = 100 × 15 × 180)solid for the solid domain, 
Again, a very good agreement is obtained between numerical simula-
tions and analytical solutions for both values of Ha, additionally proving 
accuracy and numerical stability of the algorithm. 

3.2. The 2D MHD laminar back-step flow 

Next, we consider the two-dimensional backward-facing step flow in 
a laminar flow regime subjected to a uniform vertical magnetic field, 
Fig. 7. In contrast to the previous case, this configuration is expected to 
produce a more complex flow pattern with a well-defined recirculation 
region in the lower part of the domain. The channel height is L and its 
length is 15L. The lower and upper boundaries of the channel are no-slip 
walls. The upper half of the left boundary is the inlet, while the lower 
half is the solid wall. The inlet velocity is defined as: 

u(x = 0, y) =
{

12(y − 1)(1 − 2y), L/2 < y < L
0, 0 < y < L/2 (27) 

For the right boundary, a simple zero-gradient condition is imposed. 
All walls are treated as perfectly electrically insulated. The simulation 
domain and all boundary conditions are selected such that they match 
exactly the numerical study of Mramor et al. (2014), who applied a MHD 
extension of the Local Radial Basis Function Collocation Method 
(LRBFCM). The entire simulation domain is represented by an orthog-
onal numerical mesh with (Nx× Ny = 600× 50) = (3 × 104

)

total control 
volumes. Two values of the Reynolds number are simulated (Re = 300 
and 800, where Re = uxL/ν) over a range of Hartmann numbers 
(0⩽Ha⩽50). The second-order linear upwind differential scheme is used 
for convective terms, the second-order central differencing scheme 
(CDS) is used for diffusion terms, and the second-order backward 
scheme for the time-integration. The contours of the non-dimensional 
streamwise velocity (u/u0 where u0 = (ux)|x=0, i.e. the inlet integrated 
velocity profile), at Re = 800 and different strengths of the imposed 
magnetic field (Ha = 0, 5, 10 and 50) are shown in Fig. 8. It can be seen 
that with a magnetic field increase, the recirculation length reduces, and 
flow becomes much more uniform. At Ha = 0, two large recirculation 
regions along the upper and lower walls are generated. With Ha in-
crease, the recirculation region along the upper wall disappears, while 
the recirculation long the lower wall is still present, but its length is 
significantly reduced. This reduction of the recirculation region is 
further illustrated in zoom-in plots, where we superimposed contours of 
the streamwise velocity and streamlines, as shown in Fig. 9. At the 
highest value of Ha = 50, the recirculation can be observed only in a 
very small region attached to the lower part of the inlet plane. A 

Fig. 7. The sketch of the simulation domain of the 2D laminar MHD back-step 
test case. 

Fig. 8. The contours of the non-dimensional horizontal (streamwise) velocity (u/u0) for Re = 800 and different Ha. (a) Ha = 0, (b) Ha = 5, (c) Ha = 10, (d) Ha =

50. 

Fig. 9. Same as in the previous figure, only now the zoom-in regions in the 
proximity of the inlet are shown with superimposed streamlines. 
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comparison of obtained profiles of horizontal (u/u0) and vertical (v/u0) 
velocity components at the exit plane with values presented in the 
literature (Mramor et al., 2014), are shown in Fig. 10. It can be seen that 
the horizontal velocity profiles become more flat with the magnetic field 
increase for both Reynolds numbers. The vertical velocity component 
almost completely disappears at higher values of Ha. A very good 
agreement between the present profiles and results from the literature 
(Mramor et al., 2014) is obtained for all presented cases. To demonstrate 
that the obtained results at present mesh of (Nx× Ny = 600× 50) (M2) 
(3 × 104 CVs) are grid independent, one coarser (Nx× Ny = 300× 25) 
(M1) (0.75 × 104 CVs) and one finner (Nx× Ny = 1200× 100) (M3) 
(1.2 × 105 CVs) numerical mesh are generated, and results are compared 
in Fig. 11. A good agreement between different mesh levels is obtained, 
with a slight overprediction of the local maxima of the non-dimensional 
vertical velocity (v/u0) at y/L = 0.7 for the coarse mesh. 

3.3. The multi-phase two-dimensional shallow cavity flow with MHD 

The first example of the MHD multi-phase test case is a shallow 
cavity subjected to combined effects of the imposed non-uniform mag-

netic field and electric potential difference. The two-dimensional cavity 
with characteristic length L and partially filled with the electrically 
conductive liquid (where d is the liquid layer height and d≪L) is shown 
in Fig. 12. The upper part of the cavity if filled with air (σair = O (10− 15)

S/m, i.e. negligible electric conductivity). The external magnetic field is 
aligned with the negative z-direction (perpendicular to the cavity) and 
its linear distribution is defined as: 

Fig. 10. The vertical profiles of the non-dimensional horizontal (u/u0) and vertical (v/u0) velocity components at various Ha and two values of Re: Re = 300 (a–b) 
and Re = 800 (c–d). Comparison between the reference study based on the Local Radial Basis Function Collocation Method (LRBFCM) (Mramor et al., 2014) and the 
present Finite Volume Method (FVM) results. 

Fig. 11. The non-dimensional horizontal (u/u0) and vertical (v/u0) velocity profiles at the exit plane for various meshes at Re = 800 and Ha = 5 compared to the 
reference solution (LRBFCM, Mramor et al., 2014). 

Fig. 12. The sketch of the simulation domain of a two-dimensional multi-phase 
MHD cavity test case. 
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B = − b0(1+αb⋅x)ẑ (28)  

where αb = 0.1 defines a distribution parameter. The no-slip velocity 
boundary condition is imposed at all walls (i.e. bottom and side-walls). 
The gravity force is aligned with the negative y-coordinate direction. 
The side-walls are kept at constant (but different) electric potential 
(ϕ1 = − 1

2 Δϕ, ϕ2 = 1
2 Δϕ, where Δϕ is the imposed electric potential 

difference). The bottom wall is perfectly electrically insulated (∂ϕ/∂n =

0 and Cd = 0). Because of the imposed magnetic field and electric po-
tential difference, the generated Lorentz force within the fluid will drive 
the flow. This fluid motion will be opposed by a joint combination of the 
viscous, gravitational, and surface tension forces. To account for addi-
tional free-surface related physical mechanisms, the following set of 
non-dimensional parameters is introduced, Righolt et al. (2016): 

Re* =
U*d

ν , Ha* = b0d
̅̅̅̅̅̅̅̅σαb

μ

√

, Bo* =
ρgd2

γ
, Ca* =

ρνU*

γ
(29) 

In addition to the redefined Reynolds (Re*) and Hartmann (Ha*), also 
the Bond (Bo*) and capillary (Ca*) numbers are introduced. The char-
acteristic non-dimensional velocity is calculated as: 

U* =
σΔϕb0αbdA

ρν (30) 

Because of the large number of possibilities based on the various 
combinations of characteristic non-dimensional numbers, in the present 
work we kept constant Re* = A and Ha* = 1, while we change Bo* and 
Ca*. We also kept the identical aspect ratio of the domain, A = d/L =

0.1. The two-dimensional orthogonal, non-uniform mesh (Nx× Ny =

50× 200) with rectangular control volumes is used. The central differ-
encing scheme (CDS) is used for the diffusive and convective terms of 
transport equations. The time-integration is performed with the second- 
order backward scheme. For this particular case, the different values of 
the interface compression coefficient (0⩽Cα⩽1) did not have any sig-
nificant impact on the obtained solutions due to a smooth free-surface 
deformation. The local variation of the resulting Lorentz force gener-
ates the flow of electrically conducting fluid (initially at rest) in the 
lower part of the cavity with characteristic elevation of the free-surface, 
as shown in Fig. 13. 

This non-dimensional vertical elevation (h/d) of the free-surface, as a 
function of Ca* and Bo* numbers, is shown in Fig. 14. It can be seen that 
an excellent match between the present numerical results (CFD) and 
analytical solutions is obtained for all calculated cases. Note that a 
vertical elevation of the free-surface increases with an increase in both 
Ca* and Bo*. The horizontal profiles of the non-dimensional horizontal 
(u/u*) and vertical (v/u*) velocity in the proximity of the left-wall are 
shown in Fig. 15(a) and (b), respectively. The vertical profile of the non- 
dimensional horizontal velocity at the central vertical line is shown in 
Fig. 15(c). Again, an excellent agreement between the present simula-
tion (CFD) and analytical solution from the literature (Righolt et al., 
2016) is obtained, proving the capability of the MHD multi-phase solver. 
To confirm that the presented solutions are grid independent, we 
analyzed the non-dimensional free-surface elevation (h/d) for three 
mesh sizes: (i) the coarse mesh (M1) (Nx × Ny = 25× 100), (ii) the in-
termediate (previously presented results) mesh (M2) (Nx × Ny = 50×

200), and (iii) the fine mesh (M3) with (Nx × Ny = 100× 400). A good 
agreement between results at different mesh resolutions confirms the 
full mesh convergence of the presented results, Fig. 16. 

3.4. The 3D rising gas bubble in liquid metal subjected to a longitudinal 
magnetic field 

A rising gas bubble (with an initial diameter db = L/2) is submerged 
into the liquid metal confined in the 3D rectangular box (with height 3L, 
width and depth L) is analyzed next, Fig. 17. This test case is based on 
the study of Shibasaki et al. (2010). All boundary surfaces are electri-
cally insulated walls (∂ϕ/∂n = 0,Cd = 0) with imposed no-slip boundary 
conditions. The external magnetic field is aligned with the y-coordinate 
and the gravity is oriented in the opposite direction. The problem is fully 
defined with the following set of non-dimensional parameters: 

G =
gρ2

Gd3
b

μ2
G

, Γ =
γρGd
μ2

G
, Ha = Bdb

̅̅̅̅̅σL

μL

√

(31)  

where G is the Galilei number, Γ is the Tension number, and subscripts 
(G) and (L) indicate the gas and liquid phase, respectively. The non- 
dimensional velocity, pressure, and time are defined as: 

u* = μG
/
(ρGdb), p* = μ2

G

/(
ρGd2

b

)
, t* = ρGd2/μG (32) 

We kept constant G = 4⋅104,Γ = 2⋅106 and varied 0⩽Ha⩽200 to 

Fig. 13. The velocity vector distribution (a) and contours of the non- 
dimensional horizontal (x-component) velocity (Ux/U*) in the 2D MHD cav-
ity, Re* = A,Ha* = 1,Bo* = A2,Ca* = A4. 

Fig. 14. The free-surface elevation for various Ca and Bo. Comparison between the present simulations (CFD) and analytical solution of Righolt et al. (2016).  
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study the influence of the magnetic field strength on the rising bubble 
behavior. The electrical conductivity ratio is σG/σL = 2.49⋅10− 7. The 
orthogonal mesh is created with the mesh size (Nx × Ny × Nz = 60×

180× 60), identical to the mesh used in Shibasaki et al. (2010). The 
second-order linear-upwind scheme is used for the convective terms in 
both momentum and volume fraction equations, whereas the backward 
scheme is used for time integration. Because of a sharp jump of the 
electrical properties at the phase interface, we have applied the har-
monic interpolation scheme for the electric conductivity. For this case, 
the interface compression coefficient (Cα) had stronger effect on the final 
shape of the rising bubble. The selected value of Cα = 0.1 proved to be a 
good choice for both multi-phase benchmarks presented here. The ob-
tained characteristic bubble shape, current density streamlines, contours 
of the vertical velocity and pressure in the central vertical plane at an 
arbitrary time instant t/t* = 0.02 and for Ha = 50, are shown in Fig. 18. 
The current density streamlines form close loops around the bubble with 

opposite directions above and below the bubble. The velocity contours 
portray an updraft region in the center of the domain – above and below 
the bubble, whereas the down-drafts are generated along the side walls. 
Contours of the pressure exhibit almost linear distribution in the vertical 
direction, with small deviations in the proximity of the bubble surface. It 
can be seen that the resulting shape of the bubble strongly depends on 
the imposed magnetic field strength, Fig. 19. The higher Ha leads to the 
bubble stretching in the direction of the imposed magnetic field (y-di-
rection) and to a reduction of its rising velocity. We compare our results 
with a numerical study of Shibasaki et al. (2010) who applied the finite- 
difference (FDM) multi-phase MHD code. Comparison of the computed 
terminal velocity for different values of Ha is shown in Fig. 20. After an 

Fig. 15. The profiles of the velocity components in the proximity of the side-wall extracted along the y = d/2 line (a), (b), and in the center of the cavity extracted 
along the x = 0 line (c): Re* = A,Ha* = 1,Bo = A2,Ca = A4. 

Fig. 16. The mesh-dependency of the non-dimensional free-surface elevation 
(h/d) for Re* = A,Ha* = 1,Bo = A2,Ca = A4. 

Fig. 17. The sketch of the simulation domain for the rising bubble in a liquid 
metal subjected to an external (axial) magnetic field. 
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Fig. 18. The bubble shape (extracted as the isosurface of the volume fraction α = 0.5) with superimposed streamlines of the total current density (a), (b) contours of 
the non-dimensional vertical velocity (uy/u*) in the central vertical plane, (c) contours of the non-dimensional pressure field (p/p*) in the central vertical plane - all at 
t/t* = 0.02 and for Ha = 50. 

Fig. 19. The bubble shape (identified as the isosurface of the volume fraction α = 0.5) and its location at time instant t/t* = 0.025 for various Ha: Ha = 0, 50, 100,
200 (a–d), respectively. 

Fig. 20. Terminal bubble velocity at various Ha. Comparison with the finite- 
difference (FDM) results of Shibasaki et al. (2010). 

Table 1 
The reattachment position (at y/L = 0 for Re = 300 and 800, 
and 0⩽Ha⩽100).    

Present LRBFCM, Mramor et al. (2014) 
Re Ha x/L x/L 

300 0 3.57 3.57 
5 2.56 2.55 
10 1.28 1.28 
50 0.02 0.02 
100 0.007 0.01  

800 0 6.07 6.1 
5 5.46 5.48 
10 2.93 2.93 
50 0.07 0.07 
100 0.01 0.01  
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initial slight increase in the terminal velocity for intermediate values of 
Ha < 50, a gradual decrease is obtained with a further increase of the 
imposed magnetic field. The agreement between the current simulations 
and data presented in Shibasaki et al. (2010) is good up to Ha = 50. 
After reaching this peak value, larger differences are observed, but 
qualitatively similar trends are observed. Differences for larger values of 
Ha number can be partially explained by the use of different dis-
cretization approaches (the present finite-volume vs. finite-difference of 
Shibasaki et al. (2010)), the application of different convective schemes 
(the present second-order linear-upwind vs. the third-order UTOPIA 
scheme of Shibasaki et al. (2010)), as well as due to the absence of the 
mesh-dependency study of Shibasaki et al. (2010)). We also performed 
additional simulations with a second-order quadratic-upwind scheme 
for convective terms in momentum equations, but this resulted in mar-
ginal differences of rising velocity (less than 1%) compared to the linear- 
upwind scheme (see Table 1). 

Finally, we complete a mesh-dependency study for two different 
Hartmann numbers Ha =50 and 200, and three meshes: (i) the coarse 
mesh (M1) (Nx × Ny × Nz = 30 × 90 × 30) = (0.081 × 106)total CVs, (ii) 
the present mesh (M2) (Nx × Ny × Nz = 60 × 180 × 60) =
(0.64 × 106)total CVs and (iii) the fine mesh (M3) (Nx × Ny × Nz = 120 ×

360 × 120) = (5.1 × 106)total CVs. Results in Table 2 demonstrate that 
the finest mesh (M3) provides the best agreement with the reference 
data. However, the difference in terminal velocity values between in-
termediate (M2) and fine (M3) mesh is only 1%, while the total number 
of CVs is four times larger. Based on this small difference, we conclude 
that results are grid independent already at the mesh (M2). 

3.5. A conjugate MHD duct flow in a fully developed turbulent regime 

The final test case is a conjugate MHD square duct flow in a fully 
developed turbulent regime. The duct height and width are L, and its 
length is 16L. The imposed magnetic field is aligned with the y-axis and 
perpendicular to the flow direction, Fig. 21. The periodic boundary 
conditions are imposed in the streamwise (x-coordinate) direction. All 

other surfaces are walls with imposed no-slip velocity boundary condi-
tions. The lower and upper walls (Shercliff walls) are fully electrically 
insulated (∂ϕ/∂n = 0 and Cd = 0). The front and back walls (perpen-
dicular to the imposed magnetic field – Hartmann walls) are considered 
to have three different types of electric boundary conditions: (i) the 
finite conducting walls with the wall conductance parameter Cd =

(σSdS)/(σLL) = 0.05, (ii) fully electrically insulated walls, and (iii) fully 
conductive walls (ϕ = 0 and Cd→∞). We apply the wall-resolving dy-
namic large-eddy simulation (LES) approach. The numerical mesh 
contains (Nx × Ny × Nz = 240 × 120 × 120

)

fluid = (3.456× 106) CVs 
and (Nx × Ny × Nz = 240 × 12 × 120

)

wall = (0.3456× 106) CVs in the 
fluid and wall regions, respectively. The non-dimensional mesh pa-
rameters are Δy+wall = Δz+wall ≈ 0.6,Δy+core = Δz+core ≈ 6 and Δx+ ≈ 25. 
The central differencing scheme (CDS) is used for spatial discretization 
and the second-order backward scheme for temporal discretization. The 
flow is defined with the following set of the non-dimensional parame-
ters: Re = 5602 and Ha = 21.2. Furthermore, a simulation with Ha = 0 
is performed in order to provide a comparison with the non-MHD 
neutral case. The selected value of the Reynolds number assures that a 
fully developed turbulence is generated and maintained. All simulations 
are statistically averaged over at least 100 flow-through times, and the 
spatial averaging procedure is applied to accelerate the convergence of 
the flow statistics. The instantaneous coherent structures colored by 
streamwise velocity for various Ha, and Hartmann walls conductivities 
(expressed through the wall-conductivity parameter, Cd), are shown in 
Fig. 22. Under the action of the imposed transverse magnetic field, by 
changing the electric properties of the walls, the coherent structures 
start to be suppressed in the proximity of Hartmann walls, as seen from 
the side-views of the duct shown in Fig. 22(a)–(c). 

Contours of the long-term time-averaged streamwise velocity, tur-
bulent kinetic energy, and electric potential, for various wall conduc-
tivities, are shown in Fig. 23. Starting from a symmetrical distribution, 
contours of the mean streamwise velocity start to be suppressed in the 
direction of the imposed magnetic field (y-direction). This behavior is 
caused by the reorganization of the electric current density streamlines. 
In contrast to the fully closed current loops in the fluid region (for 
electrically insulated walls), a finite electric conductivity of walls makes 
that current density loops also enter these regions, causing significant 
changes in resulting Lorentz force components in the y- and z-directions, 
respectively. 

The contours of the turbulent kinetic energy portray the reorgani-
zation from fully symmetrical distributions for the neutral case with 
characteristic peaks in the proximity of duct walls, Fig. 23(e), to the non- 
symmetrical distributions for non-insulated walls, Fig. 23(f)–(h). It can 
be seen that the levels of turbulent kinetic energy are suppressed in the 
proximity of Hartmann walls for the fully insulated and walls with finite 
conductivity, Fig. 23(f)–(g). At the same time, distributions of the 

Table 2 
The non-dimensional terminal velocity at Ha = 50 and Ha = 200 
for different meshes. Comparisons with values presented in the 
finite-differences based method (FDM) of Shibasaki et al. (2010).  

Ha The non-dimensional 
terminal velocity, (uy/u*)  

Present Shibasaki et al. 
(2010) 

50 Mesh (M1) 143.3   
Mesh (M2) 147.8 152  
Mesh (M3) 149.9   

200 Mesh (M1) 41.3   
Mesh (M2) 42.1 58  
Mesh (M3) 42.5   

Fig. 21. Sketch of the simulation domain for the fully-developed (periodic flow 
in the x-direction) turbulent MHD duct flow with Hartmann walls with finite 
thickness (ds) and electric conductivity (σS). 

Fig. 22. The instantaneous coherent structures identified with the second- 
invariant of the velocity-gradient tensor (Q-criterion) and colored by the 
streamwise velocity, Re = 5602 (a) Ha = 0, (b) Ha = 21.2, insulated walls 
(Cd = 0), (c) Ha = 21.2, arbitrary conductive walls (Cd = 0.05). The iso- 
surface value Q  = 1 s− − 2. Note that scaling factor of 2× is applied in the x- 
direction to provide a more compact view. 
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turbulent kinetic energy along Shercliff walls are just slightly affected by 
changing Hartmann walls conductivity, Fig. 23(f)–(g). Interestingly, for 
the fully conducting walls, the turbulence kinetic energy along Shercliff 
walls is reduced in comparison to values along Hartmann walls, Fig. 23 
(h). 

The contours of the electric potential also illustrate significant 
changes between the fully electrically insulated Fig. 23 and fully con-
ducting Hartmann walls Fig. 23(l), with the latter exhibiting signifi-
cantly more pronounced non-uniform distribution in the vertical 
direction. Next, we move to a more detailed comparison of the charac-
teristic long-term time-averaged first- and second-order statistics 

profiles, Figs. 24 and 25. The present results obtained with the dynamic 
LES approach are validated against two reference studies: Gavrilakis 
(1992) who simulated an MHD neutral turbulent duct flow, and 
Chaudhary et al. (2010) who simulated MHD turbulent duct flow at 
Ha = 21.2 with fully electrically insulated walls – both using the fully- 
resolving Direct Numerical Simulations (DNS) approach. The time- 
averaged mean streamwise velocity profiles in the proximity of Hart-
mann and Shercliff walls are shown in Fig. 24(a) and (b), respectively. It 
can be seen that a very good agreement between the present and DNS 
results from the literature is obtained at both locations. The profiles of 
the non-dimensional rms values of the fluctuating streamwise velocity 

Fig. 23. The long-term time-averaged contours of the streamwise velocity (top row), turbulent kinetic energy (middle row) and electric potential (bottom row) in the 
central vertical plane of the duct shown in Fig. 21, for a fixed value of Re = 5602: (a–e–i) Ha  = 0, (b–f–j) Ha = 21.2 with fully electrically insulated walls (Cd = 0), 
(c–g–k) Ha = 21.2 with arbitrary conducting walls (Cd = 0.05), (d–h–l) Ha = 21.2 with fully conducting walls (Cd→∞). 

Fig. 24. The long-term time-averaged non-dimensional streamwise velocity (the semi-log plots of U+ vs. y+ and z+) profiles (where U+ = U/Uτ,y+ = yUτ/ν, and) in 
the proximity of Hartmann (a) and Shercliff wall (b), respectively. 
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along the identical locations reveal an interesting behavior, Fig. 25. In 
the proximity of Shercliff walls, an increase of the wall conductivity 
produced a gradual decrease of the rms values, Fig. 25(b). In contrast to 
this behavior, the distributions in the proximity of Hartmann walls 
indicate an initial suppression for the fully electrically insulated walls, 
followed by an increase for the fully conducting walls, Fig. 25(a). Again, 
a good agreement with available DNS references (for the non-MHD sit-
uation and the MHD case with fully insulated walls) is obtained con-
firming suitability of here used dynamic LES approach. 

4. Summary and conclusion 

We have presented a comprehensive numerical benchmark study 
addressing a range of single- and multi-phase one-way coupled MHD 
flows. The single-phase cases included the conjugate MHD flows in ducts 
with varied electric conductivity of the wall – in both laminar and tur-
bulent flow regimes, and the laminar back-step flow subjected to a 
transverse magnetic field. The multi-phase cases covered a two- 
dimensional MHD cavity and a rising bubble in a liquid metal flows – 
both simulated with the volume of fluid (VOF) approach. We have 
implemented an extended set of MHD transport equations in the open- 
source code OpenFOAM. Our particular focus was to extend the exist-
ing set of MHD benchmarks and to provide a detailed comparison with 
similar studies in the literature. We also proposed a novel methodology 
and benchmark for a conjugate MHD in a turbulent duct flow with an 
arbitrary wall conductivity (expressed in terms of the wall conductance 
parameter). For the multi-phase flows, we have introduced a recently 
proposed analytical solution of a two-dimensional partially-filled cavity 
flow subjected to an external magnetic field. An excellent agreement 
was obtained for all cases for which analytical solutions are available. 
For considered test cases without analytical solutions, a very good 
agreement was obtained with available numerical studies from the 
literature. It is concluded that here developed and validated version of 
the computer code can be used for advanced fundamental and indus-
trial/technological studies involving various aspects of the MHD 
phenomena. 
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Mramor, K., Vertnik, R., Šarler, B., 2014. Simulation of laminar backward facing step 
flow under magnetic field with explicit local radial basis function collocation 
method. Eng. Anal. Boundary Elem. 49, 37–47. https://doi.org/10.1016/j. 
enganabound.2014.04.013. 

Gavrilakis, S., 1992. Numerical simulation of low-Reynolds-number turbulent flow 
through a straight square duct. J. Fluid Mech. 244 (-1), 101. https://doi.org/ 
10.1017/s0022112092002982. 

A. Blishchik et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.jcp.2007.07.023
https://doi.org/10.1063/1.168744
https://doi.org/10.1016/0021-9991(86)90100-2
https://doi.org/10.1017/S0022112065000344
https://doi.org/10.1002/zamm.19660460705
https://doi.org/10.1002/zamm.19660460705
https://doi.org/10.1016/j.enganabound.2014.04.013
https://doi.org/10.1016/j.enganabound.2014.04.013
https://doi.org/10.1017/s0022112092002982
https://doi.org/10.1017/s0022112092002982

	An extensive numerical benchmark of the various magnetohydrodynamic flows
	1 Introduction
	2 Governing equations and numerical details
	2.1 Governing equations for a single-phase MHD
	2.2 Governing equations for a multi-phase MHD: volume of fluid method
	2.3 The eddy-resolving MHD turbulence: large Eddy simulation
	2.4 Numerical details
	2.4.1 The conservative form of the Lorentz force
	2.4.2 Conjugate MHD: taking into account electric conductivity and thickness of surrounding walls
	2.4.3 The computer code


	3 Applications: test cases
	3.1 Laminar duct flow with conjugate MHD
	3.2 The 2D MHD laminar back-step flow
	3.3 The multi-phase two-dimensional shallow cavity flow with MHD
	3.4 The 3D rising gas bubble in liquid metal subjected to a longitudinal magnetic field
	3.5 A conjugate MHD duct flow in a fully developed turbulent regime

	4 Summary and conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


