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Abstract
Solutions to many real-life optimization problems take a long time to evaluate. This limits the number
of solutions we can evaluate. When optimizing with an Evolutionary Algorithm (EA) a frequently used
approach is to approximate the objective using a surrogate function, replacing the time-consuming real
evaluation. This surrogate model is combined with a so-called acquisition function, to select promising
candidate solutions. The acquisition function balances the trade-off between exploration of parameter
space and the exploitation of the surrogate. These candidates are subject to an expensive evaluation
with the true objective function and are used to update the surrogate model. Iteratively applying this
process can effectively optimize global optimization problems. In this work, we propose a new multi-
objective optimization algorithm with inverse distance weighting as surrogate function, which we call
IDW-SAEA (inverse distance weighting surrogate assisted evolutionary algorithm). We introduce a new
objective to the optimization problem to improve exploration and reduce the complexity of the acquisition
function. We show this algorithm is competitive with state-of-the-art kriging-based surrogate-assisted
EAs on certain benchmark problems. Additionally, we use the algorithm to optimize a practical problem:
a Finite Element Method simulation of the cervix region with applications in radiotherapy for cervical
cancer.
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1
Introduction

Evolutionary algorithms (EAs) are a specific type of artificial intelligence designed to find solutions for
challenging optimization problems. These algorithms are inspired by Darwin’s evolution theory. They
exploit the information and interaction between the set of potential solutions (population) to gain insights
into the optimization landscape. By effectively selecting and combining solutions, the overall popula-
tion ’evolves’ in the direction of the optimal solution to the problem. Compared to exact optimization
methods, EAs are especially useful in problems where finding the optimum is infeasible to compute
(NP-hard problems) or when the objective function, this is the function that determines the quality of a
solution, is too complex because it contains non-linearities, discontinuities or definition gaps [29].

The second strength of EAs is inmulti-objective (MO) optimization, wheremultiple objectives have to
be optimized simultaneously. The different objectives always contain a trade-off between the objectives.
In these problems, there does not exist one single solution which could acquire the best value for all
objectives. Instead, there exists a set of solutions which represent the trade-off between the objectives.
In MO optimization it is desired to get this set of solutions as complete as possible, thus modelling the
whole trade-off. Single solution optimization algorithms, such as Gradient Descent, have to be run
multiple times to create such a front, while EAs already have multiple solutions by using the population
and therefore are great in MO optimization.

1.1. Expensive optimization
Although EAs are well suited for multi-objective problems, state-of-the-art EAs typically require the
evaluation of many potential solutions. In many real-life optimization problems, the evaluation of po-
tential solutions is computationally expensive [53, 50, 52]. A problem is considered expensive when
its solutions are costly to evaluate, with an experiment using a large amount of time or many resources
(e.g. money or valuable materials). For example, large aerodynamic simulations can take hours to
run [33] and physical experiments can involve large financial costs. In standard EAs, the amount of
evaluations used can easily go up to 10.000 and is often higher. When the problem is expensive, the
evaluation of potential solutions becomes such a large factor in the runtime of the optimization process
that generally a maximum of 3000 evaluations is used, often less [15]. Therefore when designing opti-
mization algorithms for expensive to evaluate problems, reducing the required number of evaluations,
could substantially reduce the total optimization time.

Currently, a multitude of algorithms has been developed for expensive multi-objective optimization
with EAs [3, 15, 19]. This is often done by utilizing a quick-to-evaluate approximation, often function
approximations, which replace the expensive evaluations to reduce the number of evaluations or reduce
the time of each evaluation. Three different types of approximations are defined by Jin [30]: function
approximation, problem approximation, and fitness approximation.

The first of these is a frequently used approach [15]. This approximation function, which is fast to
evaluate and based on a set amount of true function evaluations (FE), replaces the true function. An
optimization algorithm, (typically EA) optimizes the surrogate and selects the potential candidate solu-
tions. The surrogate is usually updated in an iterative process: during optimization, the newly evaluated
solutions are combined with the previously evaluated solutions to update the surrogate model.

1



2 1. Introduction

Problem approximation is reducing the complexity of the problem itself by replacing it with a similar
but simpler problem that is easier to solve, therefore reducing the cost of evaluating a solution. Running
computational fluid dynamic simulations instead of wind tunnel experiments is an example of problem
approximation.

Fitness, the metric to measure a solution quality, approximation estimates the fitness of a solution
directly. The difference between this and function approximation is the method of determining the final
fitness. In function approximation, the performance of a solution is based on the approximated values
of the objective function. Fitness approximation does not approximate the objective function instead
it directly tries to predict the fitness of a solution. An example of this is CSEA [42], where solutions
are classified into two categories. The categories are then used in the selection of new solutions to
evaluate.

An approximation function is also called a surrogate and an EA using a surrogate is often referred
to as a surrogate-assisted EA (SAEA). The most common method of function approximation used is
kriging [15] (also called Gaussian Process). This method is originally from geostatistics [17] and is
popularized by the expensive optimization algorithm: EGO [34]. This method is usually preferable
to other interpolation methods because of its uncertainty estimation. When selecting new potential
solutions to evaluate, uncertainty estimation can be used to calculate a probability of improvement. A
drawback of the kriging method is its time complexity of 𝑂(𝑛3) [23]. Even more complex methods for
approximation exist, for example, using Deep Learning [55] or even using multiple surrogates together
[24].

Although the performance of these complex approaches is promising, it is interesting to investigate
if a simpler surrogate model could be used. A more computationally efficient (𝑂(𝑛)) surrogate model is
inverse distance weighting (IDW) interpolation [48]. IDW performs a weighted average of the objective
values of its neighbours based on their distance to the interpolation point. To the best of my knowledge,
there is no published research on the performance of IDW as an approximation function for multi-
objective optimization. This makes it interesting to investigate. Kriging interpolation is a frequently used
approach in function approximation, therefore it is a good method to compare against. This results in
the following research questions of this thesis:

Is it feasible to design a multi-objective evolutionary algorithm using an inverse distance
weighting surrogate function that is competitivewith the state-of-the-art kriging-based surrogate-
assisted evolutionary algorithms?

IDW does have limitations, the main one being the inability to extrapolate correctly as can be seen
in Figure 1.1. We can see the 1-dimensional interpolation of the four points closely resembles their
actual trend of 𝑦 = 𝑥/1.7. However, when extrapolating the value achieved from IDW regresses to the
mean. When minimizing this IDW interpolation, the best value of 𝑥 is the already-known value 𝑥 = 2.1.
Since the objective score of this point is already known, re-evaluating this location will not lead us to a
better solution. This directly prompts the following sub-question:
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Figure 1.1: Inverse distance weighting of four points generated by the formula 𝑦 = 𝑥/1.7 with added noise. On the x-axis, we
have the parameter to optimize and on the y-axis the objective value.
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Which adaptations are required to counteract the limitations of inverse distance weighting?

An interesting sub-question is to investigate the difference in performance between the IDW surrogate-
assisted EA (IDW-SAEA) and SAEAs using kriging methods. Resulting in another research question:

What are the advantages and disadvantages of the inverse distance weighting surrogate-
assisted evolutionary algorithmwith respect to state-of-the-art expensive kriging-based surrogate-
assisted evolutionary algorithms?

1.2. Virtual Phantom optimization for brachytherapy for cervical
cancer

Cervical cancer is the fourth most common type of cancer found in women accounting for more than
half a million diagnoses and more than 300.000 deaths worldwide each year [12]. A possible course
of treatment for cervical cancer consists of a two-step process. Firstly, the malignant cells are treated
with external beam radiation therapy (EBRT). Thereafter, they are treated with internal radiation therapy
(brachytherapy). For the planning of both treatments, a scan is made of the patient to capture the organ
shapes during treatment. In the case of cervical cancer, an applicator is placed inside the vagina and
uterus cavity. This applicator is then used to carefully guide the radioactive material close to the cancer
tissue which kills malignant cells and stops them from growing and dividing. The time and location of
the radioactive material are determined by the treatment plan which plans the amount of radiation the
different tissues have to receive. Figure 1.2a illustrates the normal positioning of the vagina, cervix,
uterus and bladder. Figure 1.2b shows the positions of the organs after placement of the applicator.
Both the difference in bladder filling and the displacement of the applicator are creating large deformities
of the surrounding organs.

To have optimal planning it is important to account for the dosage delivered by the EBRT. Currently,
the medical procedure is to assume the worst-case scenario (the maximum dosage) of radiation deliv-
ered to the organs. By correctly keeping track of radiated tissue a more efficient treatment plan could
be designed without increasing the risk of over-radiating the healthy organs at risk. A magnetic res-
onance imaging (MRI) scan is made before the placement of the applicator with a second scan once
the placement is finished. Tracking the tissue deformation between scans is challenging due to large
deformations induced by the applicator and vaginal padding. The padding is used to keep the appli-
cator in place and restrict tissue movement during the radiation period. The resulting deformation can
be seen on the MRI scan. To keep track of the tissue locations, deformable image registration (DIR) is
required. DIR for brachytherapy is concerned with mapping two or more images onto the same coordi-
nate system, this allows for calculating the transformations (translation, rotation, shrinking, stretching)
of the organs. An additional difficulty is the content mismatch between the scan with and without the
applicator. Current DIR methods are capable of modelling the deformations of the tissue to match the
MRI scans with the applicator, however, these methods do not always keep into account the physical
feasibility of the transformations [46].

Cervix 

Uterus

Uterus cavity

Bladder cavity

Vagina cavity

(a) The anatomy of the Cervix, Vagina, Bladder and Uterus.

Padding

Applicator

(b) The deformation occurring with applicator placement

Figure 1.2: Schematic illustrations showing the cervix region before (1.2a) and after (1.2b) placement of the applicator.

A recent direction of research [46] pertains to the use of a virtual phantom of the cervix region. A
virtual phantom is a possible manner for ensuring the physical feasibility of the deformations by creating
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a mechanical model of the abdominal region based on MRI scans of the patient. On the model, we
can run a mechanical simulation using established Finite Element Method (FEM). This mechanical
simulation requires us to specify the organ forces and mechanical properties (details in section 2.4)
such that the organ deformation aligns with the organ deformation seen during brachytherapy. These
properties have a large variability between different patients and also are highly dependent on the
placement of the applicator. Therefore these properties should be optimized on a patient-specific basis
to achieve the most realistic results. The results of this simulation are compared to the MRI scan made
post applicator placement to judge the correctness of the modelled deformations. The biomechanical
nature of the virtual phantom allows checking for the feasibility of the transformations occurring. The
ability to create matching and feasible deformations with the virtual phantom opens up the possibility
to assume this deformation as ground truth. These ground truths can be used to validate the results of
other DIR algorithms that do not take the biomechanical feasibility into account.

The two main organs to simulate are the bladder and the vagina-uterus. These organs are adjacent
to each other in the abdominal region and therefore have a large amount of interaction. In addition,
we work with simplified organ models, thus it is highly unlikely that a perfect matching exists. This
results in a trade-off between finding the correct deformation of the two organs. A good result requires
correct deformation of both organs, thus a bi-objective approach is most suitable. This allows mod-
elling the trade-off between organ matching without requiring the preferred definition of the trade-off
before simulation. Thus opening up the possibility for a clinical expert to later decide which matching
is preferred.

Additional difficulties of this optimization problem are the runtime of a single simulation and the
objective landscape. Currently, a single run of the virtual phantom requires approximately 15 to 25
minutes of computation time. This greatly impedes the number of evaluations that can be used. Sec-
ondly, the possibility of having incompatible biomechanical parameters, resulting in an unstable and
crashing simulation, greatly inhibits gradient-based optimization methods. Therefore the choice of an
EA seems a good fit, as they are capable of optimizing multi-objective and discontinuous landscapes.
This practical problem introduces the last research question:

Can the evolutionary algorithm utilizing an inverse distance weighting surrogate optimize
the Virtual Phantom Simulation more efficiently compared to state-of-the-art (surrogate-
assisted) evolutionary algorithms?

The structure of this thesis is as follows. Chapter 2 contains the background information on EAs and
the Virtual Phantom. Followed by a description of the designed optimization algorithm in Chapter 3.
Then in Chapter 4 the experiments on both benchmark problems and the virtual phantom optimization
are described. Thereafter these results and the algorithm are discussed in Chapters 5, followed by the
mentioning of some limitations. Finally, a conclusion is drawn.



2
Background

This section will explain the basics of evolutionary algorithms (EAs), explain what expensive optimiza-
tion is, how to address expensive problems and finally a few different state-of-the-art (SOTA) EAs will
be introduced. Furthermore, this section contains the details of the virtual phantom simulation.

2.1. Optimization with Evolutionary Algorithms
After a quick definition of optimization, the Genetic Algorithm [28], a type of EA, will be described. The
following sections will explain the changes required to transfer to real-valued and multi-objective EAs.

2.1.1. Optimization
In an optimization problem, the goal is to find the best, or as good as possible, solution for the problem.
Optimization can be mathematically defined as:

min
𝑥∈𝑆

𝑓(𝑥)

where 𝑥 is a solution, 𝑆 is the set of all feasible solutions, and 𝑓 is the optimization function. The set
of feasible solutions is called the search space or decision space and the set of possible outcomes is
called the objective space.

2.1.2. Basics
EAs are a subset of the field of Evolutionary Computation. Evolutionary Computing algorithms are a
set of optimization algorithms inspired by the principles of Darwin’s theory of evolution: selection and
variation. EAs use a set (population) of potential solutions (individuals) which is updated iteratively,
where each iteration is called a generation. An individual is a list of values (genotype) which together
form a single solution to the optimization problem. An individual will be evaluated using the fitness
function, sometimes called evaluation function or objective function. This function assigns a (scalar)
score (fitness) to each individual based on the quality of its genotype.

After (randomly) generating and evaluating an initial population, an EA iteratively applies selection
and variation to generate a new population. New individuals are created by applying variation to so-
lutions of the previous population (parents). These new individuals are called the offspring and inherit
part of the genotype of their parents (variation). A parent with a higher fitness has a higher chance of
surviving the process of selection and thus a higher chance of passing down its genotype. Repeat-
edly doing variation and selection will move the population in the direction of the optimal solution thus
optimizing the problem.

In discrete optimization, the most common types of variation are mutation and crossover. Crossover
is the exchange of genotype parts between two or more individuals. There are many different ways of
exchanging information, but an easy example is one-point crossover. In one-point crossover a random
point is chosen, up until the crossover point the genotype of the first parent is used and after the
crossover point, the genotype of the second parent is used. Figure 2.1 shows the crossover point after
the fifth digit. Taking the first five values from parent B and the last three from parent A results in a
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6 2. Background

A

B

0 1 1 0 0 1 10

0 01 11 1 1 0

Crossover

C 0 01 10 1 10

Mutation

Figure 2.1: Two parents, A and B, with one-point crossover after the 5th digit. Mutation occurs on the 3rd digit to result in the
child C.

new child. This offspring is a new combination of the parents’ values. Mutation does not combine
information of the parents but makes a random change to one individual without external information.
The following binary-mutation rule is applied: randomly flip one of the values. It is now possible to
reach different locations in parameter space independent of the parent solutions. Looking at Figure 2.1
again, we see the third digit mutating into a 0. This results in a new individual which was not possible
to create no matter how the values of parents A and B would be exchanged.

Randomly selecting parents to generate offspring will not result in a better optimization process
than random search. This is why there is a selection phase. The individuals who are selected to
perform crossover and (possibly) mutate are once again inspired by a well-known biological principle:
”survival of the fittest”. The whole population will first be evaluated based on the objective function.
Individuals with good fitness will be more likely to be selected as parents. This way the genotypes
which contribute to good objective scores are more likely to exist in the offspring of the generation.
By iteratively applying selection and variation the population will become more similar, which is called
convergence. A population is called converged when the complete population has the same genes.

It is an important aspect of the algorithm to achieve convergence at the right moment in the opti-
mization process. If the selection pressure is too large, premature convergence can occur. This means
that all the diversity is lost before a solution of sufficiently high quality can be found, which does not
allow for further exploration. It is therefore important that the convergence does not happen too early
in the optimization process. Late convergence is also not preferred since it will reduce the speed of
finding good solutions. If the algorithm converges very slowly there will be many weak individuals in
the population which slows the optimization process by introducing non-promising offspring. Therefore
a balance in convergence speed is required to be found.

Since the algorithm continues with generating new offspring every generation, and the optimal fit-
ness value is generally not known, outside termination criteria have to be set. There are two types
of termination criteria: resource-based and performance-based. Resource-based termination criteria
cause the termination of the algorithm after a set amount of time or function evaluations. Performance-
based termination terminates the algorithm when the desired fitness level has been reached or the
population is fully converged thus no new solutions are introduced anymore.

2.1.3. Real-valued optimization
In real-valued optimization, the crossover becomes a lot less efficient since there are an infinite (prac-
tically limited by the computational precision) amount of values between two individuals. There exist
multiple ways of incorporating real-valued individuals. It is possible to express real-valued numbers
using a binary encoding, and directly optimize this using a discrete EA. This will scale badly: With four
binary variables to encode a parameter within the range of [0,1], it is possible to divide into 8 different
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steps giving a precision of 1
16 = 0.0625. Having multiple parameters to optimize the genotype of a

single individual will increase the number of decision variables substantially and with that, the difficulty
of finding the optimum also increases. A second even larger problem is the difference in magnitude
between two numbers when using a bit representation: bit strings [0101] and [1101] only differ one bit
in the encoding however the difference in real values ( 5

16 = 0.3125 and
13
16 = 0.8125) is half the search

space. Therefore most of the time a different algorithm is used, which is designed to handle real-valued
inputs without encoding. An example of this is Evolution Strategies (ES) [44], where variation is done
primarily by mutating a sample with the use of normal distributions for each variable. The most famous
ES algorithm is CMA-ES [25].

Another approach is Estimation-of-Distribution Algorithms (EDAs), which is the type of algorithm
used in this Thesis. The first designs of the EDAs were not real-valued but binary. This algorithm is
known as the Univariate Marginal Distribution Algorithm [41]. The general idea is to create a probability
distribution over all problem variables based on the population. Thus when each sample consists of a
binary string of 0s and 1s, the algorithm would perform selection and then estimate the probability of
1s and 0s when sampling a random individual. These probabilities are then used to generate a new
population by generating individuals based on the Bernoulli distribution of each value. Take for example
a three-digit binary encoding. If after selection in the previous population 30% of the population has a
value of 1 as the first digit, 40% a value 1 on the second digit, and 85% value 1 on the third digit, the
next generation will be sampled using those values.

In real-valued EDAs the distribution estimated is no longer a Bernoulli distribution but a Normal
distribution. From there on it is straightforward to sample the new population again based on the dis-
tribution. Iteratively performing selection, distribution estimation, and resampling is shown a promising
alternative to ES [9]. This real-valued EDA is later improved into AMaLGaM [4] which was shown to be
competitive with other state-of-the-art real-valued EAs.

2.1.4. Multi-objective optimization
Many real word problems do not have one optimization criterion. Usually, there is a combination of
different objectives to be optimized. These objectives will often conflict where the optimal value of both
objectives can not occur in a single solution. An engineering example is minimizing the cost while
maximizing the structural strength. Another example is taking a direct flight for a higher price, or a
cheap flight with a connection in between. Both these problems create a trade-off where the balance
between the objectives is challenging to define a priori. Mathematically this is defined as:

min
𝑥∈𝑆

{𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑚(𝑥)}

Where we have 𝑚 objective functions 𝑓 to minimize, using the same solution 𝑥 which lies in decision
space 𝑆. In multi-objective optimization, a single solution obtaining an optimal value for each of the
objectives is often unachievable. Instead, the preferred result is a set of solutions that are all an efficient
trade-off between the objectives. This set of optimal solutions is called the Pareto set. Their associated
objective values are called the Pareto front.

In a multi-objective minimization problem, solution A is said to be Pareto dominated by solution B if
for each objective the solution score of B is at least as good as A, and in at least one objective B scores
better than A.

Definition 1 Solution 𝑥0 is said to (Pareto) dominate solution 𝑥1 denoted as 𝑥0 ≻ 𝑥1. If and only if.

∀𝑖 ∈ {1, ..., 𝑚} ∶ 𝑓𝑖(𝑥0) ≤ 𝑓𝑖(𝑥1) ∧
∃𝑖 ∈ {1, ..., 𝑚} ∶ 𝑓𝑖(𝑥0) < 𝑓𝑖(𝑥1)

The goal of MO optimization is to find a set of solutions, that approximate the values of the Pareto set as
good as possible. This resulting set of solutions is called the approximation set. The approximation set
only contains non-dominated solutions and thus each solution models different options of the trade-off
between the objectives. Together these solutions also create a front, the so-called approximation front.

The concept of ranks of solutions within a population is an important part of the selection in this
Thesis. Rank is a metric of how often a solution is dominated within a population. All non-dominated
solutions in the population are given rank 0. Calculating the solutions belonging to rank 𝑖 is done by
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removing all solutions of rank 𝑖 − 1, the solutions which are now non-dominated get assigned rank 𝑖.
Repeat this until all solutions are assigned a rank.

After multiple iterations of the EA, the number of rank 0 solutions can grow to the size of the popula-
tion i.e. the complete population is the approximation front. When performing selection some of these
non-dominated solutions have to be removed from the population to create space for new offspring.
This is especially the case in the real-valuedmulti-objective optimization since often the objective scores
are real-valued as well. Real-valued objective scores allow for an infinite number of non-dominated so-
lutions. When solutions are discarded, the space dominated by the front changes and this makes it
possible for the front to become worse. To avoid this an elitist archive is used. This archive stores all
non-dominated solutions from the population. Every generation the new non-dominated solutions are
compared to the existing ones in the archive. If any new solution is not dominated by one in the archive
it is added and all solutions currently in the archive dominated by this new solution will be removed.
Since the real-valued objectives could produce infinitely many solutions the elitist archive has to be
managed, or else it might grow to extreme sizes. One method, designed by Luong and Bosman [38], is
to set an upper bound on the maximum number of solutions. When more solutions than this bound are
present in the elitist archive, the elitist archive is divided into hypercubes allowing only a single solution
per hypercube. This way solutions that are close to each other in objective space will be removed.

In every multi-objective optimization problem, there are two goals to achieve: proximity and diver-
sity. Good proximity means that the objective values of the non-dominated solutions are close to the
Pareto front. A good diversity score is achieved by having a broad approximation front and having
solutions close to all sections of the Pareto front. The most straightforward comparison of bi-objective
optimization algorithms is plotting the approximation sets and comparing those visually. This allows
us to see the strengths and weaknesses of each algorithm and sometimes directly indicates which al-
gorithm is outperforming the other. When there are more than 3 objectives or the different algorithms
dominate each other in different locations the visual inspection does not work well anymore. Another
drawback is that it can be difficult to see the progression of the approximation set in a single figure.

This is where a metric like the hypervolume (HV) [36] is useful. Especially when the Pareto front is
unknown, the HV is a good metric. In the HV metric, the dominated (hyper)volume in objective space
is measured between the approximation set and a reference point. The reference point is a point which
functions as an upper bound to the solutions of the approximation set. An example of the HV metric
is seen in image 2.2a. The HV is indicated in orange. In this thesis, the HV is normalized by dividing
the final result by the total possible area the HV could hypothetically span: from the reference point to
the Utopia point. The utopia point is often not reachable, but it is the hypothetical best solution to the
optimization problem. In the minimization problem illustrated in Figure 2.2a it is located in the origin.
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two dimensions) between the reference point and the non-
dominated solutions.

Objective f1 

O
bj

ec
tiv

e 
f2

Pareto front

Approximation
front

(b) For every point in the Pareto set the distance to the clos-
est point in the approximation set is calculated, summed,
and then divided by the size of the Pareto set to achieve
the Inverted Generational Distance

Figure 2.2: Metrics used in this thesis: Hypervolume and Inverted Generational Distance

A second metric is the distance from Pareto front to approximation set (𝐷𝒫ℱ→𝑆 ) [10], also known
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as Inverted Generational Distance (IGD) [16]. This metric requires the Pareto front to be known. It
measures the distance from every solution of the Pareto front to the closest solution in the approximation
set and averages these distances. Mathematically it is defined as:

𝐼𝐺𝐷(𝑆) = 1
|𝒫ℱ|

∑
𝑝∈𝒫ℱ

min
𝑠∈𝑆

𝑑(𝑝, 𝑠)

Where 𝒫ℱ is the Pareto front, 𝑝 is a single solution of this front, 𝑆 is the approximation set and 𝑠 is
a single solution from the approximation set. An illustration of the metric can be seen in 2.2b.

2.2. Expensive Optimization
Expensive optimization considers a specific type of sub-problem in the general optimization domain.
A typical characteristic of expensive problems is the time or resource cost of an evaluation. When
the cost of the evaluations itself is a large factor of your time and resource budget, the choice of which
solutions to evaluate becomes of large importance. Therefore expensive optimization places additional
importance on making every evaluation count. In EAs this is often done by using a so-called acquisition
function. This is a function that manages which solutions to evaluate. It often aims to find a balance
between promising solutions and explorative solutions, trying to quickly find the optimal regions to
explore further. Multiple surveys on Expensive Optimization for EAs exist in literature [30, 49, 31, 3,
19, 15].

2.2.1. Basics surrogate assisted
As described in the introduction there exist multiple types of expensive optimization approximations for
EAs. A common method consists of the use of the surrogate model, also called surrogate function, to
approximate the original objective function. The main goal of a surrogate model is to predict the objec-
tive value in unknown areas i.e. it can be seen as inter- and extrapolation of the objective scores. EAs
using these surrogates (or meta-models) are called surrogate-assisted EAs (SAEA) [31]. A simplified
version of the general workflow (based on [15]) of SAEAs is as follows:

1. Initialize individuals with a sampling method and evaluate.

2. Build a surrogate, based on these individuals.

3. Optimize the EA population based on the fitness of the surrogate

4. Evaluate (a few of) the individuals in the final population

5. Update the surrogate model

6. If termination criteria are met: terminate. Otherwise, return to step 3.

Steps 2 through 5 are the steps where SAEAs differ and thus the ongoing research topics.
A crucial aspect of all SAEAs is Evolution Control (or model management) [32], which essentially

boils down to the questions of when to update the surrogate model and which individuals to evaluate
to update this model with. When the surrogate is updated after a predefined number of iterations, this
is called Fixed Evolution Control. In adaptive evolution control, the choice of when or how to update is
regulated by the algorithm. This allows for more flexibility but can be challenging to define correctly.

The choice of surrogate model and the way the EA interacts with it is critical to the success of the
algorithm. There are multiple types of surrogates models. Often the surrogate function is used in the
acquisition function. The acquisition function usually is a combination of expected value based on the
surrogate and a measure of uncertainty. By combining these two, a new metric is designed to select
appropriate candidates to evaluate with the expensive real function. Selecting the sample with the
largest Expected Improvement [34] is one of these possible acquisition functions.

2.2.2. Inverse distance weighting
Inverse distance weighting [48] (IDW) is a simple interpolation method when interpolating between
more than two data points. It multiplies a normalized weight with the value of the data point based on
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the distance to the sample point. The IDW value of the interpolated point 𝑥 is based on the known
points 𝑁 and is defined as:

𝐼𝐷𝑊𝑠𝑐𝑜𝑟𝑒(𝑥) =∑
𝑖∈𝑁
𝑤′𝑖(𝑥)𝑣(𝑖) (2.1)

Where 𝑣(𝑖) is the value of datapoint 𝑖 and 𝑤′𝑖 is the normalized weight of sample 𝑖 defined as:

𝑤′𝑖(𝑥) =
𝑤𝑖(𝑥)
∑
𝑗∈𝑁

𝑤𝑗(𝑥)
(2.2)

To normalize weights the individual weight is divided by the sum of all weights. Individual weight is
calculated by:

𝑤𝑖(𝑥) =
1

𝑑2(𝑥, 𝑖) (2.3)

where 𝑑2(𝑎, 𝑏) is the Euclidean distance between point 𝑎 and 𝑏.
An advantage of IDW is its simplicity to use and understand but when the number of points increases

the computation times becomes considerably slower [48]. Since the weights of the closest neighbours
already are the most influential, the computation can be sped up by only computing the weights of the
nearest neighbours.

2.2.3. Kriging
Kriging (also called Gaussian Process or the design and analysis of computer experiments (DACE)
stochastic process model [47]) is a commonly used surrogate type [15]. In a Kriging model, the function
is approximated (Equation 2.4) by a global prediction 𝜇(𝑥) and a localized deviation based on Gaussian
distribution 𝜖(𝑥) with zero mean and nonzero standard deviation 𝜎 (Equation 2.5). The 𝜇(𝑥) is typically
a polynomial regression function. The result of a trained model with 10 data points can be seen in
Figure 2.3.

𝑦(𝑥) = 𝜇(𝑥) + 𝜖(𝑥) (2.4)

𝜖(𝑥) ∼ 𝑁(0, 𝜎2) (2.5)

For every untested point the Kriging surrogate can not only give a prediction of the value, but also an
uncertainty 𝜎(𝑥1) and with that uncertainty a confidence interval 𝜇(𝑥1) ± 𝜎(𝑥1). This confidence level
can then be used in the acquisition function to select the next candidates, for example by calculating
the probability of improvement and the Expected Improvement [40].

A drawback of the Gaussian Process is its time complexity of 𝑂(𝑛3) [27, 22] for training the model
where 𝑛 is the number of samples. This can cause the training time to become problematic when a
large number of data points are used.

2.2.4. Other surrogate types
Some other popular surrogate types are Radial Basis Functions (RBFs) and Neural Networks. RBFs
are well known from classical machine learning and thus can be used as a form of regression model
in EAs [45, 1]. Deep Learning with Neural Networks is currently a very popular machine learning
methodology being applied in many different application areas [26]. Training a Neural network to predict
fitness values is being used in new SAEAs [55, 37, 43]. While performance can be great, this method
suffers from the standard deep learning drawbacks of being not easily explainable and potentially long
training times.

2.3. State-of-the-Art Evolutionary Algorithms
In this section, a few notable multi-objective real-valued (expensive) EAs will be described. Starting with
MOEA/D-EGOwhich is an older but well-known algorithm. Then K-RVEA and AB-SAEA are described,
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Figure 2.3: One-dimensional result after performing Kriging on nine observations (red). The mean (black) is shown, together
with the uncertainty (grey).

which are both state-of-the-art. Last MAMaLGaM will be introduced being the only non-expensive EA
in this section.

2.3.1. MOAE/D-EGO
MOAE/D-EGO [57] is a combination of the famous Effective Global Optimization (EGO) algorithm [34]
and themulti-objective evolutionary algorithm framework called MOAE/D [56]. TheMOAE/D framework
decomposes the multi-objective problem into scalar optimization subproblems where each subproblem
is solved simultaneously. Each subproblem consists of a weighted aggregation of the objectives. Each
of these subproblems is optimized using information from their neighbouring subproblems. The neigh-
bours are measured using the distance between the weight vectors. In the MOEA/D-EGO version
of this framework, the subproblems are again transformed into an Expected Improvement score by
constructing a Gaussian Process model for each aggregation and which is then further optimized to
maximize the Expected improvement.

2.3.2. K-RVEA
K-RVEA [14] is a combination of the Reference Vector Evolutionary Algorithm (RVEA) [13] with Kriging.
The algorithm is originally designed to perform in more than 3 dimensions, however, it is also possible to
run it on a bi-objective problem. K-RVEA balances convergence and diversity with the use of the Kriging
models and performs selection using the Angle Penalized Distance (APD) [13]. APD utilizes a set of
uniformly initialized reference vectors. Each individual is then assigned to its closest reference vector.
The fitness of each individual is measured using the length of the vector and the angle between the
individual and the reference vector. Since the utopia point is located at the origin the shortest vectors are
preferred to longer vectors for increased convergence. To keep diversity, solutions with small angles to
the reference vectors are also preferred. These two sub-criteria are combined to perform the selection.

In the K-RVEA algorithm, the objective function is replaced with a kriging model to approximate the
fitness. The first samples are initialized and evaluated. These are used to train the surrogate model for
each objective. In the next phase, the optimization procedure of RVEA is run to generate and evaluate
offspring where the original objective function is replaced by the surrogate. After 𝑤 iterations, a fixed
number based on sensitivity analysis, the surrogate model is updated by selecting 𝑢 individuals from
these last generations for re-evaluation. Selection is based on the uncertainty of the kriging model
and the APD score. If more diversity is required, more uncertain samples are selected and when
convergence is preferred, individuals with good APD values are selected. Which of the two is required
is measured by the number of reference vectors without any individuals assigned to them. To limit the
training time of the surrogate model, a selection of evaluated individuals was maintained instead of the
complete set.

2.3.3. AB-SAEA
Adaptive Bayesian Surrogate-Assisted Evolutionary Algorithm (AB-SAEA) [54] is another Kriging-based
extension based on RVEA. They use an acquisition function inspired by the lower confidence bound
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(LCB), which tries to balance the expected mean and the uncertainty into a single function:

𝐿𝐶𝐵(𝑥) = 𝜇(𝑥) − 𝜅𝜎(𝑥)

Where 𝜅 is the trade-off parameter between prioritizing exploitation (more focus on low 𝜇) or exploration
(higher focus on large 𝜎). They then improve this function by adding an adaptive weight based on the
maximum number of evaluations where initially there is more exploration and then finishing gradually
more weight is given to the exploitation of good areas. Next, an adaptive sampling strategy is introduced
where in the first half of the real function evaluations different selection criteria are used than in the
second half. Initially, only the angle to a reference vector is taken as the selection criterion. This will
make sure every vector has at least one solution assigned. In the second half of the optimization
process, the regular APD metric from RVEA is used, which optimizes convergence and exploitation,
while keeping diversity.

2.3.4. MAMaLGaM
Multi-objective Adapted Maximum-Likelihood Gaussian Model (MAMaLGaM) [4] is an Estimation of
Distribution algorithm (EDA). In line with other EDAs, it utilizes a sampling strategy to generate offspring
based on distribution estimates of the previous generation. Every generation, MAMaLGaM selects the
35% best solutions based on their rank to be divided into equally sized clusters based on the distance
in objective scores. For each of these clusters, a multivariate Gaussian probability distribution over all
problem variables with maximum likelihood is estimated, which in turn will be used to sample solutions
for the next generation. The purpose of these clusters is to direct the search toward different parts of
the Pareto front. This results in a more varied optimization direction, creating a better diversity among
the population. The algorithm can model the dependencies between variables by learning a covariance
matrix. Using this covariance matrix and the mean vectors, the new generation of individuals can be
sampled. A second option is to use a factorization of the covariance matrix, where only a subset of
variables is used to calculate the covariance. In the case of Univariate factorization, no dependencies
are calculated.

MAMaLGaM contains a few mechanisms to improve performance, such as anticipated mean shift.
This calculates the change of the mean between generations and adapts the parameters in that direc-
tion of the search space, aligning the shape of the estimated probability distributions with the direction
of improvement. Another such method is the Adaptive Variance Scaling (AVS) based on the Standard
Deviation Ratio (SDR). This changes the variance of the computed normal distribution: when the mean
of the distribution does not coincide with the average direction of improvement, which is measured in
terms of SDR, the AVS is used to increase the variance of the subsequent distributions. This allows for
more effective exploration and traversal through the search space since a wider range of the search
space is sampled. Expensive problems usually do not have many generations available to utilise these
mechanisms before the FE limit is reached. The algorithm also features an interleaved multi-start
scheme (IMS) where multiple populations (subgenerations) are initialized sequentially. These new
populations are double the size of the previous population. Smaller populations are terminated once
they are outperformed by a larger one, this way a new sub-generation with a larger population size
can be initialized. IMS removes a large part of population size tuning since the population will increase
automatically once a large population is deemed more successful. Finally, all non-dominated solutions
found are stored in an Elitist Archive, to avoid the archive from being infinitely large. The implemented
elitist archive is the same as described in [38] and explained earlier in section 2.1.4. MAMaLGaM also
offers the option to run multiple optimizations in parallel to reduce the variability of a single run. These
populations are completely independent except for their elitist archive.

2.4. Virtual Phantom Simulation details
The Virtual Phantom simulation is a FEM simulation of the deformation which occurs after placement
of the applicator. This simulation is used to model physically feasible deformations of the vagina/cervix
and bladder using the biomechanical properties of the regions of interest of the patient. The simulation
is executed in the FEM open-source framework SOFA (v20.12.02). The FEM suitable mesh is created
from the organ contour map and applicator contour. These contours are based on a diagnostic MRI
scan and delineated by a radiation therapy technologist. The meshes are then rotated and translated
into the brachytherapy planning MRI coordinate system of the target images. Using generic literature-
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based mechanical properties of the patient, the applicator is inserted inside the vagina-uterus mesh.
Just using these mechanical properties does not result in a satisfactory simulation due to the large

variability in mechanical properties of the organs between patients and patient-specific forces that occur
during the applicator positioning. Therefore we optimize the biomechanical properties on a patient-
specific basis. The details of each parameter can be seen in table 2.1.

Parameter Lowerbound Upperbound Unit
1: Vagina Elasticity 0.001 15 𝑁/𝑚𝑚2
2: Force in left-right direction -1 1 𝑘𝑁
3: Force in front-back direction -1 1 𝑘𝑁
4: Force in head-toe direction -1 1 𝑘𝑁
5: Padding on location 1 0 40 𝑚𝑚
6: Padding on location 2 0 40 𝑚𝑚
7: Padding on location 3 0 40 𝑚𝑚
8: Padding on location 4 0 40 𝑚𝑚
9: Bladder Elasticity 0.05 11.5 𝑁/𝑚𝑚2
10: Bladder filling 0 600 𝑐𝑐

Table 2.1: Lower and upper bound of every parameter used in the Virtual Phantom Simulation

After the deformation is simulated based on the simulation parameters, two binary images, each
containing the vagina-uterus and bladder, are created. The similarity between these images and the
target image (seen during the real brachytherapy MRI planning) is calculated. Our objectives are to
measure the similarity between the target segmentation images and the results of our simulation, re-
sulting in two objectives: Bladder similarity and vagina-uterus similarity. Since we want to measure
volumetric overlap, the dice (or F1) similarity metric [20] is used. Dice score can be formulated as
follows:

𝐷𝑖𝑐𝑒 = 2(|𝑂 ∩ 𝑇|)
|𝑂| + |𝑇| (2.6)

Where |𝑇| is the number of voxels assigned to the target image of an organ as delineated by the radia-
tion therapy technologist, |𝑂| are the number of voxels which belong to the organ after the simulation.
|𝑇 ∩ 𝑂| are the voxels where the target and output overlap and thus are correct. We use the two dice
scores (one for each organ) as our objective functions. Figure 2.4 shows the overlap between a ran-
domly chosen simulation result and the target deformation. The overlap (𝑂 ∩ 𝑇) are the voxels of the
target image within the orange contour.

(a) Head-toe

(b) Front-back (c) Left-right

Figure 2.4: Target image and a solution contour in three orthogonal directions. Bladder and Uterus targets are grey and the
contour of a solution is orange.





3
Design of Optimization Algorithm:

IDW-SAEA
In this section, the design of our Inverse DistanceWeighting Surrogate Assisted Evolutionary Algorithm
(IDW-SAEA) is described. First, a general overview is given. The later sections describe the optimiza-
tion of the surrogate (3.2) and the selection of candidates (3.3). Section 3.4 describes changes made
to improve the optimization.

3.1. Algorithm overview
The IDW-SAEA framework is shown in figure 3.1 with pseudocode in Algorithm 1. The algorithm is de-
signed with bi-objective problems inmind since the Virtual Phantom simulation is a bi-objective problem.
The problem objectives are described with 𝑓1 and 𝑓2. These objectives are expensive to evaluate and
thus approximated with a surrogate.

First, the initial population is initialized by latin hypercube sampling [39]. These samples are used
as the initial points to calculate the surrogate function for each of the problem objectives. The surro-
gate based on IDW can be computed on the fly which means it does not require any training, thus the
next step is to optimize the surrogate model (section 3.2). This is done by using the state-of-the-art
multi-objective Estimation of Distribution Algorithm: MAMalGaM [4]. However, any MOEA which is
capable of solving the surrogate model would have been a suitable candidate. After MAMaLGaM has
optimized the surrogate model a set of candidate solutions is selected (section 3.3). These solutions
are evaluated using the expensive evaluation function and are added to the set of initial points. This
process is repeated until the maximum amount of real function evaluations is reached. We use a fixed
generation-based evolutionary control where after a predefined number of evaluations by MAMaLGaM,
the surrogate model is updated. MAMaLGaM is reinitialized after every surrogate update, to reduce
the risk of convergence to local optima.

Note: When looking critically at the algorithm described, one could argue it is not a SAEA
since the EA is strictly used for the optimization of the surrogate model. In a sense, the EA
is not assisted by the surrogate model but vice versa. However, in recent literature the term
SAEA is used to describe algorithms where a similar optimization process is applied [14, 54,
42]. In particular, this type of optimization is referred to as generation-based evolution control
[30]. Therefore the choice is made to adopt the SAEA name.

3.2. Optimizing the surrogate model
Approximation of objective values with IDWwill give a weighted average based on the nearby evaluated
solutions. A large drawback of IDW is the weak extrapolation (illustrated in Figure 1.1). When a new
individual’s genotype is outside the (hyper)volume enclosed by the evaluated samples, the objective
score predicted with IDW will be an average of the (closest) neighbours and can never be better than
the best already known point. Thus when an EA optimizes this surrogate model, the individuals with
the best objective values are those identical to the non-dominated solutions of the already evaluated

15
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Figure 3.1: The optimization loop of IDW-SAEA. The initial solutions are evaluated (A). Based on these solutions the EA creates
a surrogate model and optimizes this (section 3.2) resulting in an approximation set (C). From this approximation set, a few
solutions are selected (section 3.3) to evaluate with the true evaluation (D). The selected solutions are evaluated resulting in
new evaluated solutions (E). The union between the old and new evaluated solutions (B) is used to optimize the surrogate model
again. This loop continues until the maximum amount of function evaluations is reached.

solutions. It also lacks a measure of uncertainty, which we do have in Kriging, making it not possible to
easily compute Expected Improvement. A potential solution to these problems is adding an objective
to the optimization problem: the exploration objective. The goal of this exploration objective is to create
a reason for the EA to optimize in the direction of unknown solutions. The simplest implementation of
such an exploration objective is based on the Euclidean distance between the individual in parameter
space and the known samples. The best exploration objective score then is gained by maximizing the
Euclidean distance between the individual and the closest evaluated samples (Formula 3.1.

𝐹(𝑥) = argmax
𝑥
{min

𝑖
𝑑(𝑥, 𝑖)} (3.1)

This problem is similar to the Circles in a Square (CIAS) problem where the goal is to maximize the
minimal distance between multiple points inside a square. The CIAS problem is not an easy optimiza-
tion problem to solve [6] due to the non-smooth landscape. The problem formulation is thus relaxed.
The relaxed definition of the CIAS problem as described in [11] is given in Equation 3.2). In the min-max
approach the objective score is dominated and determined by only the closest evaluated sample, this
results in a non-smoothness which is harder to optimize. Since the new function uses a summation,
all the evaluated points are used in the objective score and because of the removal of the min-max op-
erations the function becomes smooth. This helps the EA in optimizing for this objective since smooth
functions are generally easier to optimize.
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Algorithm 1 IDW-SAEA
Input: 𝐹𝐸𝑚𝑎𝑥 = the maximum number of expensive evaluations;
𝑘 = number of nearest neighbours used in IDW interpolation;
𝑢 = number of solutions to evaluate every iteration;
𝑆𝐸𝑚𝑎𝑥 = the maximum number of surrogate evaluations used by MAMaLGaM;
Output: All expensively-evaluated solutions.

1: Initialization: Generate the initial set of evaluated solutions 𝐸 by sampling a set of solutions using
Latin Hypercube Sampling and evaluating these solutions with the expensive objective functions
𝑓1 and 𝑓2;

2: while 𝐹𝐸 ≤ 𝐹𝐸𝑚𝑎𝑥 do
/* Optimizing Surrogate */

3: 𝑆𝐸 = 0;
4: Initialize population(s) 𝑁 from MAMaLGaM using the non-dominated solutions from 𝐸 and ran-
domly generated solutions;

5: Evaluate 𝑁 with the surrogates ̂𝑓1 and ̂𝑓2 using 𝑘 neighbours in 𝐸;
6: Evaluate 𝑁 with the exploration objective;
7: while 𝑆𝐸 ≤ 𝑆𝐸𝑚𝑎𝑥 do
8: Generate offspring 𝑁′ using MAMaLGaM;
9: Evaluate 𝑁′ with the surrogates of ̂𝑓1 and ̂𝑓2 using 𝑘 neighbours;
10: Evaluate 𝑁 with the exploration objective;
11: Update Elitist Archive based on the three objectives;
12: 𝑆𝐸 = 𝑆𝐸 + |𝑁′|
13: end while

/* Updating the surrogate */
14: Compute 2D ranks of the resulting approximation set 𝐴;
15: Compute upper bound 𝑢𝑏 and lower bound 𝑙𝑏 of the selectable ranks;
16: Select 𝑢 candidate solutions from 𝐴 where 𝑙𝑏 => rank(𝑢) =< 𝑢𝑏 using greedy scattered selection;
17: Evaluate candidate solutions 𝑢 with the objective functions 𝑓1 and 𝑓2;
18: Add the new evaluated candidate solutions to the set 𝐸;
19: 𝐹𝐸 = 𝐹𝐸 + |𝑢|;
20: end while

𝐹𝐶𝐼𝐴𝑆(𝑥) = argmax
𝑥
{min
𝑖,𝑗

𝑑(𝑖, 𝑗)}

= argmin
𝑥
{max

𝑖,𝑗
1

𝑑(𝑖, 𝑗)}

= argmin
𝑥

⎧

⎨
⎩
lim
𝑝→∞

𝑝√
|𝑥|−1

∑
𝑖=0

𝑖−1

∑
𝑗=0
| 1
𝑑(𝑖, 𝑗) |

𝑝⎫

⎬
⎭

= argmin
𝑥
{ lim
𝑝→∞

|𝑥|−1

∑
𝑖=0

𝑖−1

∑
𝑗=0
𝑑(𝑖, 𝑗)−𝑝}

(3.2)

Unlike the CIAS problem where the distance between all points is calculated, the exploration objec-
tive is only based on the distance of the current individual to all the known samples. This allows for the
removal of one of the summations which results in objective function 𝐹exploration as defined in equation
3.3, with 𝑥 being the individual solution, 𝑁 the set of all evaluated solutions, 𝑛 being a single evaluated
solution, and 𝑑(𝑥, 𝑛) the Euclidean distance between those two in parameter space. The choice of p,
a parameter to increase or decrease the steepness of the resulting function, of −4 was found to be a
good value for the p norm [11].
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𝐹exploration(𝑥) = ∑
𝑛∈𝑁

𝑑(𝑥, 𝑛)−4 (3.3)

Figure 3.2 shows the exploration objective in the one-dimensional space. The exploration objec-
tive has to be minimized. The figure shows that the exploration value increases when the x value
approaches an already evaluated sample. The best objective scores can be found with 𝑥 < 3.5 or
𝑥 > 8.5. These samples are far away from the already known and therefore have the best scores in
the exploration objective. Because of the p norm value of −4 the exploration score is quick to increase
or decrease. This allows for the values between the samples to decrease making sure the exploration
does not only prioritize extrapolation but can also detect sparse regions during optimization.
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Figure 3.2: One-dimensional example containing 4 samples generated from the line 𝑦 = 𝑥/1.7 with a small amount of noise. In
blue the estimated value based on the IDW is shown, in green the exploration score for every sample value of 𝑥 is shown. The
exploration score is lower when further away from known samples.

Next to the smoothness the new exploration function (Equation 3.3) has a second smaller benefit
over using Equation 3.1: The new function prefers a sparse neighbourhood over a dense neighbour-
hood even if the closest neighbour is the same distance in every scenario. This promotes the less
densely sampled areas of the search space, further improving the exploration of the algorithm.

Without the exploration objective, only the IDW interpolation would be optimized and (given suc-
cessful optimization) the EA would always end up on the already known samples. The introduction of
the new objective increases the dimensionality of the problem. The combination of the problem ob-
jectives and the exploration objective will allow more solutions into the front. Solutions which would
be dominated based on the problem objective(s) can, with the introduction of the exploration objec-
tive, become non-dominated. In Figure 3.2 all solutions where 𝑥 is smaller than the known sample
at 𝑥 = 4.1 would not qualify for the approximation set of this one-dimensional problem, because the
IDW interpolation prediction is worse than the value achieved at 𝑥 = 4.1. The addition of the explo-
ration objective enables all these solutions to become non-dominated. The predicted objective score
is worse, however, the exploration score is better than every solution with larger 𝑥 and where 𝑥 < 4.1.
All solutions where 𝑥 is larger than 4.1 are dominated by the solutions where 𝑥 < 4.1 because in this
case, the exploration score is better as well as the objective score estimation.

Since we want to optimize multi-objective problems, especially the Virtual Phantom simulation, we
first consider bi-objective problems where adding the exploration objective would make this problem
three-dimensional. Figure 3.3 shows a two-dimensional plot of an approximation front. The third (explo-
ration) objective magnitude is visualized with a colour. The approximation front by design only contains
non-dominated solutions. Therefore we can conclude that every solution which seems dominated in the
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two-dimensional image, has a better exploration objective score than the solutions it is dominated by
in the two problem objectives. Keeping this in mind we can start looking at how to select solutions from
this approximation set in such a way that there is a good balance between exploration and exploitation.
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Figure 3.3: Approximation set of the ZDT1 problem during the optimization process. The objectives f1 and f2 are shown on the
axis. The exploration objective is shown in colour. All these three objectives are to be minimized. The image shows the trade-off
between closer to the problem minima and a better exploration score.

3.3. Selection of candidate solutions
After optimization of the three objectives, the best individuals for the real evaluation have to be selected.
These individuals will be evaluated with the true objective function and used to update our surrogate.
However, determining these best individuals a priori is a challenging task. After all, we want to evaluate
the individuals which will improve the set of evaluated solutions the most, which is not known before
evaluating. Individuals close to known samples should be avoided since they will most likely not be
very different in fitness. On the other hand, individuals that are far away, thus have good fitness in the
exploration objective, but have poor fitness in the problem objectives should also be avoided. The indi-
viduals that are only optimized on exploration objective, have a low probability of being an improvement
in 𝑓1 or 𝑓2. A balance between the problem objectives and the exploration objective has to be found
when selecting the samples. Preferably we select individuals with good problem objective scores who
are also far away from the known samples.

To help select individuals that are nearby the front but with enough distance, we introduce the 2D
ranks selection methodology. Every individual in the final population is assigned a 2D rank based on
the problem objectives, i.e., objectives 𝑓1 and 𝑓2. The first rank will always be the already known
samples, then subsequent ranks will contain solutions with a lower fitness in the problem objectives.
However, since they are in the final approximation set, all solutions are non-dominated, thus these
solutions will have a higher performance in the exploration objective. The highest ranks will have the
most exploration and the lowest predicted interpolation score. We now have one metric which can be
used to select the amount of exploitation and exploration.

By applying a selection restrictions to certain ranks we can control if we want more exploration or
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more exploitation. We propose three different methods of deciding the allowed ranks. The first method
is to allow all individuals from the approximation set to be selected. This method does not utilize the
ranks and will be used as a baseline. The second selection method is to only allow the lowest 15
percent of ranks to be selected. For example if we have in total 37 ranks, the allowed ranks would be
ranks 0 to 5 ( ⌊0.15 ⋅ 37⌋ = 5). The choice of selecting the 15% ranks is based on some preliminary
testing. When the percentage cutoff is lower (<5%) the optimization has fewer early improvements
and overall slower convergence. With a percentage cutoff which is higher (>50%), more explorative
solutions are found which impede the exploitation once the approximation front nears the Pareto front.
The 15% rank selection is a compromise that allows for some variation around the best known samples
but still has a bias towards the problem objective scores and thus exploitation. This method is depicted
in Figure 3.4b.

The third selection method is adaptive. This selection method is designed to increase performance
in cases where the optimum is far away from the current population, in such a case there is no trade-off
between the problem objectives (yet). Resulting in an approximation set which is shaped like a comet
with a tail (Figure 3.4a). To decide if we are in this scenario we introduce a new metric called the Rank
Sparsity (RS) metric. Ranks Sparsity is defined as:

RS = |𝐴|
|𝑅| (3.4)

Where |𝐴| is the number of individuals in the approximation set and |𝑅| is the number of ranks in the
population. In cases where the samples are far away from the optimum, the algorithm will not yet find
a large trade-off between the two problem objectives. This results in many ranks which only contain
one or two individuals since the largest trade-off is between the exploration objective and problem
objectives. Thus if the Rank Sparsity becomes higher it is more likely for the algorithm to be far away
from the optimum. This is an indication that more exploration is required. In the adaptive selection
method, once the rank sparsity reaches a value higher than 0.55, individuals from ranks between 65%
to 95% of the total ranks will be allowed for selection. This way we promote more diversity between
the known solutions and the candidates. By increasing the lower bound of the available ranks we force
the candidate solutions to be further away from the known solutions. This creates more explorative
solutions which have the possibility of a larger improvement compared to the lower rank solutions. We
never allow the ranks 95% to 100% to be selected. These ranks are too focused on optimizing the
exploration objective and have poor surrogate objective performance and consequently a very high
probability of poor real-problem performance.
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(a) The comet-shaped approximation set where there is no trade-
off between objectives and a high rank-sparsity.
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Figure 3.4: Ranks selection illustrations

If the Rank Sparsity is lower than 0.05, meaning there are on average 20 individuals in the same
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rank, the approximation front models the trade-off between both objectives. In such a case it is likely
the approximation front is near the Pareto front. We want to perform small variation near the front
since the solutions with a small deviation are the most promising to achieve actual improvements of
the approximation set. Therefore we allow only the selection of solutions in rank 1. Rank 0 are the
known individuals, which are always found since we introduce them in the starting population of the
EA, thus rank 1 is the first rank consisting of new solutions. Selecting rank 1 will focus mainly on
exploitation since we do not allow for far-away solutions and are only looking for small improvements
to the best known samples. The choice of only rank 1 solutions is based on preliminary experiments with
benchmark problems, these showed the rank 1 solutions containing the best solutions of the population
when a low RS was obtained.

If neither of these two criteria hold, the adaptive selection will just select ranks lower than 30% to
have some form of balance between exploration en exploitation. The formula of the rank selection can
be seen in 3.5 and 3.6

lowerbound = {
1 if 𝑅𝑆 ≤ 0.05
|𝑅| ∗ 0.65 if 𝑅𝑆 ≥ 0.55
1 otherwise

(3.5)

upperbound = {
1 if 𝑅𝑆 ≤ 0.05
|𝑅| ∗ 0.95 if 𝑅𝑆 ≥ 0.55
|𝑅| ∗ 0.3 otherwise

(3.6)

In every selection phase, ten individuals are selected to be expensively evaluated. In the VIR-
SIM problem, the individuals can be evaluated in parallel. This allows for selecting multiple candidate
solutions in every selection phase, allowing for faster optimization in the same amount of time. The
individuals selected for evaluation are selected by doing a greedy selection method between lower
bound and upper bound, inclusive. We want to evenly select solutions between these bounds. The
selection algorithm starts by selecting the best performing individual in a random objective, followed by
iteratively selecting the furthest away individual based on Euclidean distance in the normalized objec-
tive space from the already selected individuals. This is repeated until the ten individuals are selected
to be subject to a real evaluation.

3.4. Additional challenges and improvement of optimization algo-
rithm

With the addition of the exploration objective, solving the surrogate model with MAMaLGaM becomes
a three-dimensional problem and therefore more difficult to optimize. This especially becomes harder
the closer samples get to the Pareto front and when the number of evaluated samples increases in size.
Since the selection of solutions to be evaluated depends on the individuals in the resulting approxima-
tion set, it is of importance that the surrogate is solved to at least acceptable quality. Acceptable quality
is when the EA finds the previously evaluated solutions on which the surrogate model is built. In this
section implemented strategies to improve the quality of the approximation set are described.

In standard IDW all samples will have a weighted influence on the interpolation point. This causes
the objective space to be influenced by the closest few neighbours and the average of the whole set.
This average creates a large number of local minima in cases where the interpolation point is not nearby
a good sample. To reduce the effect of the global average the IDW is calculated using only the k nearest
neighbours. To do this we replace the set of all known solutions (𝑁) in Equation 2.1 and 2.2 with the
set of k nearest neighbours.

This results in the interpolation of only the nearby samples and less influence of the further away
samples which reduces the difficulty of the landscape. A difference in approximation set between the
different number of neighbours used in the IDW can be seen in figure 3.5b and 3.5a.

A second improvement is to use an alternative weighting function for IDW as introduced in [35]
given in equation 3.7 which replaces equation 2.3. This new weighting function additionally reduces
the effect of points which are far away. This reduces the effect of neighbours who are still far away from
the individual’s location to make sure the predicted objective score is not generalized to the mean.
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Figure 3.5: Comparison of 6 nearest neighbours and 300 nearest neighbours. In 3.5b can be seen what happens when the
number of nearest neighbours is too large: All the objective values get pushed towards the mean value of the known samples.

𝑤𝑖(𝑥) =
𝑒−𝑑2(𝑥,𝑖)
𝑑2(𝑥, 𝑖) (3.7)

To help MAMaLGaM optimize the surrogate model, the best known samples are included in its
initial population. This is done by calculating the non-dominated solutions of the evaluated samples
and adding these to the initial population of MAMaLGaM. In this way, we try to include as much prior
knowledge as we have of the best solutions in the initial population.

Another challenge of the IDW interpolation is that a small change in the parameters will also give a
small change in the objective space. After all, a small parameter change creates only a small change in
the weights and since the IDW interpolation is smooth the effect will be small. This is a very good prop-
erty of the algorithm since it allows the creation of a ”front” of individuals between samples. However, it
also allows for many extremely similar solutions. In some cases a single MAMaLGaM cluster became
centered around a sample, only generating almost identical solutions. These inflated the total amount
of 2D ranks in the final population when calculating the ranks. Additional to this, the elitist archive also
becomes very similar which again degrades the performance of the algorithm. This is solved by setting
the elitist archive size to a small enough number (in our case 1500) such that the maximum capacity
is achieved relatively quick, at least before the optimization on the surrogate model is finished. This
will trigger the hypercube-based archive pruning (as described in Section 2.1.4) and therefore remove
solutions which are too similar.



4
Experiments

In this section, the experimental setup is described. First, we describe the benchmark problems and
algorithms used in the experiments. This is followed by a baseline test for the MAMaLGaM algorithm.
MAMaLGaM is not designed with expensive optimization in mind, hence the parameters need to be
tuned to increase performance with the low number of function evaluations. Thirdly experiments with
the IDW-SAEA parameter settings are described. Thereafter, we compare the results of the MAMaL-
GaM baseline and IDW-SAEA with a few state-of-the-art expensive evolutionary algorithms utilizing the
Gaussian Process on the benchmark problems. Lastly, the results are shown on the Virtual Phantom
simulation problem.

4.1. Setup
This section defines the test problems and discussed the specifics of how the experiments are con-
ducted.

4.1.1. State of the Art algorithm settings
In the benchmarks, we compare the IDW algorithm to the well-known MOAE/D-EGO algorithm and the
two other kriging state-of-the-art expensive optimization algorithms: K-RVEA and AB-SAEA. Addition-
ally, the performance of IDW-SAEA is also compared with MAMaLGaM without IDW implementation.
Every algorithm has a budget of 1000 function evaluations (FE). Every algorithm is run 10 times to gain
insights into the variability. Every expensive optimization algorithm is run using 11⋅𝐷−1 initial samples
initialized using random Latin hypercube sampling, with 𝐷 being the number of parameters to optimize.
This is in line with state-of-the-art algorithms. The Latin hypercube sampling is implemented using the
latinize C library 1. MOEA/D-EGO, K-RVEA and AB-SAEA are all implemented using PlatEMO [51]
and ran using default parameters. The hyperparameters of the SotA algorithms are the same as in
their original papers.

4.1.2. Benchmark optimization problems
The algorithms were tested on the benchmark ZDT [58] problems, except for ZDT5 since this is a dis-
crete parameter problem. In addition to these benchmarks, the genMED problem [5] with initialization
range of [-10,10] and [5, 10] was included. These two genMED problems were chosen to see how the
algorithm performs on a relatively simple problem, but with a large exploration range. The [5, 10] prob-
lem was included to see the performance where the optimum is outside the initialization range. The
last considered benchmark problem is BD2 (scaled) [8], which was chosen because of the difference
in difficulty between the two objectives. The definitions of the problems are given in Figures 4.1 to 4.7.
All problems are run with 10 parameters since the Virtual Phantom simulation also contains 10 param-
eters. Additionally, 10 dimensions is also a reasonable difficulty to be able to judge the performance
of the algorithms.

1https://people.sc.fsu.edu/~jburkardt/c_src/latinize/latinize.html

23



24 4. Experiments

ZDT1
ZDT1 (Figure 4.1 is an 𝑛-dimensional bi-objective problem with a convex Pareto front. The definition
of the objective functions can be seen in Figure 4.1a. As is the case with all ZDT problems, the first
objective is defined by the first parameter. The second objective is defined by the other 𝑛−1 parameters.
The parameter range is equal for all parameters and ranges between 0 and 1.

ZDT2
ZDT2 (Figure 4.2) is a non-convex bi-objective function closely resembling the ZDT1 function, with a
concave Pareto front.

ZDT3
ZDT3 (Figure 4.3) features a discontinuous front. The Pareto front is divided into five disconnected
segments which are introduced by the sine function. In parameter space, there is no discontinuity.

ZDT4
ZDT4 (Figure 4.4) contains many local optima in the second objective which increases the difficulty
of the problem. The parameter boundaries are also changed to a range of -5 to 5 except for the first
parameter 𝑥0.

ZDT6
ZDT6 (Figure 4.5) contains two challenges: the solutions are non-uniformly distributed along the front
and the density of solutions is lower near the front.

genMED
genMED (convex) [5] (Figure 4.6) is quite a simple problem defined by the distance to the point [1, 0, 0
.. 0] for objective 1 and distance to point [0, 1, 0 .. 0] for the second objective. The problem is smooth,
equally scaled and does not contain local minima. Additionally, both objectives are dimension-wise
decomposable. The Pareto set is given by the formula 𝑥1 = −𝑥1 + 1 with 𝑥0 ∈ [0, 1] and all other
parameters equal to zero. The only challenge of this problem is the unconstrained parameter range.
For practical purposes the parameters were constrained to [−1 × 1010, 1 × 1010]. The initialization
contained two versions, one with an initialization range of [−10, 10] and a second initialization range of
[5, 10]. These problems will be referred to as genMED[-10, 10] and genMED[5,10] respectively.

BD2 (scaled)
BD2 (scaled) [8] (Figure 4.7) is a bi-objective function which utilizes the Rosenbrock’s function for its
second objective while the first objective is the sphere function. This difference in difficulty between
objectives will likely lead to premature convergence on objective 1. This benchmark is added to inves-
tigate if expensive optimization algorithms can optimize problems where one objective is substantially
more challenging than the other.
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Figure 4.1: Equation and Pareto front of ZDT1
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Figure 4.2: Equation and Pareto front of ZDT2
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Figure 4.3: Equation and Pareto front of ZDT3
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Figure 4.4: Equation and Pareto front of ZDT4
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Figure 4.5: Equation and Pareto front of ZDT6
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Figure 4.6: Equation and Pareto front of genMED convex version.
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Figure 4.7: Equation and Pareto front of BD2.
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4.2. MAMaLGaM parameter tuning
This section describes the experiments conducted to find the best MAMaLGaM settings when ran with
a low number of available evaluations. MAMaLGaM is not designed as an expensive optimization al-
gorithm, therefore some benchmark settings might not be applicable. Especially the number of clusters
and the choice between univariate or full factorization are important to be set correctly. The number
of clusters directly influences the population size which in turn is important to determine the number of
generations possible. The factorization influences which covariances are calculated in the covariance
matrix. The full covariance matrix includes all the interactions between parameters. This calculation of
the full covariance matrix is more time-consuming than using the Univariate factorization.

4.2.1. MAMaLGaM settings
MAMaLGaM, both full and univariate, was restricted to 1000 FE. The algorithm was run with the guide-
lines settings from [7]. The population size was determined by using the single-objective AMaLGaM
formulas as described in the same publication and then multiplied by 0.5 × 𝑘 where k is the number
of clusters to create the population size for MAMaLGaM. This results in the following formulas with 𝐷
representing the number of dimensions and 𝑘 the number of clusters:

𝑛 = 0.5 ⋅ 𝑘 ⋅ (17 + 3 ⋅ 𝐷1.5) (4.1)

and

𝑛 = 0.5 ⋅ 𝑘 ⋅ (10 ⋅ 𝐷0.5) (4.2)

for the full covariance matrix and univariate factorization, respectively. We want the algorithm to
have at least two generations, thus the population size must not be larger than 500. If the population
size is larger we cannot do any variation and are thus doing random search. Therefore the following
cluster sizes were experimented with: k = [2, 3, 4, 5, 8, 10] for both the univariate factorization and full
covariance matrix, and k = 15 for the Univariate model only. The overview of the settings used during
this experiment can be seen in table 4.1. Each setting is run 30 times to reduce variability.

Parameter Value
tau 0.35

population size Equation 4.1 or 4.2
number of populations 1
number of clusters k
distribution multiplier 0.9

standard-deviation ratio 1
Elitist archive size 100

maximum number of evaluations 1000
number of subgenerations 4

Table 4.1: Settings used when experimenting with cluster size for MAMaLGaM with 1000 evaluations. After the experiments k =
4 is chosen with the Univariate model resulting in population size = 63.

4.2.2. Results MAMaLGaM tuning
For each run, the hypervolume metric is calculated using [10,10] as the reference point for the ZDT
benchmark problems except for ZDT4 where a reference point of [250,250] is used. The reference
point was set on [30,30] for the BD2 and genMED benchmarks. As can be seen in figure 4.8 the
Univariate model performs better in all cases except ZDT4. In ZDT4 the performance of the Univariate
and Full factorization are equal. The Univariate model with 2 to 5 clusters performs best, which specific
version is problem dependent and not clearly defined. Therefore the Univariate model with 4 clusters
is chosen since it is a balanced middle way. This will be the setting that is used for MAMaLGaM in the
next sections. The results with the IGD metric can be found in the Appendix (Figure A.3).
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Figure 4.8: Hypervolume scores of MAMaLGaM with 1000 FE on different benchmark problems. Different numbers of clusters
were experimented with in combination with the Univariate factorization (U) and Full covariance matrix (F), the number of clusters
is indicated with the number after the U of F.

4.3. IDW-SAEA parameter tuning
The inverse distance weighting adaptation of MAMaLGaM has two settings: the number of neighbours
to be used in the IDW calculation and the method for selecting ranks from which candidate solutions
can be selected. A large number of neighbours results in a more averaged estimation of the objective
space, which in turn has as an advantage a more robust estimation which is less sensitive to local
minima. However, it also has a disadvantage in not always being capable of exploiting the best solutions
since the objective value prediction will be influenced by more samples which can negatively impact
the prediction. The difference between the final set of individuals can be seen in Figure 3.5. Too
many neighbours restrict the optimization from finding candidate solutions which are near the problem
objective front (Figure 3.5b). Preliminary testing showed good performance with a few neighbours.
Therefore experiments with 2, 5 and 15 neighbours were conducted. The final parameters used by
MAMaLGaM when optimizing the surrogate model in the IDW-SAEA loop can be found in table 4.2.
IMS was used to potentially increase the population size to a size of 1600.

The second setting is the ranks from which the candidate solutions can be selected as described in
section 3.3. Here we designed the adaptive selection rule and the fixed selection rule. Both of these
were compared with the baseline where no rank-based selection occurs. These settings are referred to
as S1, S2 and S3, respectively. These three selection methods were combined with 3 different sizes of
nearest neighbours: 2, 5 and 15 neighbours to create 9 different setups to run experiments with. These
combinations of settings are indicated with, e.g., S2N5 for selection setting 2 and number of neighbours
equal to 5. These setups were each run 10 times on all the benchmark problems to investigate the
performance of the setups.
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Parameter Value
tau 0.35

population size 400
number of populations 3
number of clusters 30
distribution multiplier 0.9

standard-deviation ratio 1
Elitist archive size 1500

maximum number of evaluations 150000
number of subgenerations 4

Table 4.2: Settings used for MAMaLGaM inside the IDW-SAEA. A full covariance matrix was used.

4.3.1. Results settings IDW-SAEA

[10,10] ZDT1 [10,10] ZDT2 [10,10]* ZDT3 [250,250] ZDT4 [10,10] ZDT6
Setting IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)
s1n2 0.9911 0.9931 0.9941 0.8983 0.9070 0.9671 0.8505 0.8700 0.9027 0.8537 0.8997 0.9439 0.6892 0.7483 0.7658
s1n5 0.9928 0.9950 0.9954 0.8986 0.9616 0.9862 0.8391 0.8891 0.8963 0.7969 0.8910 0.9586 0.7108 0.7312 0.7478
s1n15 0.9909 0.9932 0.9948 0.9130 0.9788 0.9867 0.8406 0.8679 0.8944 0.8128 0.8814 0.9404 0.6379 0.7342 0.7801
s2n2 0.9825 0.9892 0.9920 0.9410 0.9713 0.9783 0.8624 0.8781 0.9011 0.7993 0.8976 0.9746 0.6624 0.6913 0.7086
s2n5 0.9858 0.9888 0.9932 0.8994 0.9664 0.9810 0.8592 0.8866 0.8992 0.8192 0.8582 0.9474 0.6233 0.7094 0.7705
s2n15 0.9854 0.9877 0.9919 0.9525 0.9711 0.9781 0.8772 0.8915 0.9052 0.8258 0.8781 0.9105 0.6475 0.6797 0.7534
s3n2 0.9575 0.9674 0.9818 0.8939 0.9312 0.9658 0.8146 0.8484 0.8749 0.7991 0.8467 0.9082 0.5461 0.5906 0.6937
s3n5 0.9711 0.9804 0.9891 0.9023 0.9204 0.9745 0.8521 0.8621 0.8886 0.7698 0.7952 0.8298 0.5441 0.6205 0.6702
s3n15 0.9667 0.9810 0.9897 0.9445 0.9586 0.9733 0.8607 0.8765 0.9058 0.7540 0.8129 0.9169 0.5361 0.5693 0.6355

[6,6] GENMED [-10,10] [30,30] GENMED [5, 10] [40,40] BD2 [1,1] VIRSIM
Setting IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)
s1n2 0.9854 0.9929 0.9942 0.8961 0.9972 0.9986 0.9674 0.9715 0.9763 0.7230 0.7306 0.7343
s1n5 0.9229 0.9853 0.9927 0.9932 0.9980 0.9990 0.9735 0.9751 0.9754 0.7189 0.7273 0.7342
s1n15 0.9732 0.9793 0.9898 0.9637 0.9949 0.9977 0.9580 0.9728 0.9746 0.7215 0.7254 0.7283
s2n2 0.0092 0.9028 0.9797 0.9201 0.9669 0.9820 0.9471 0.9675 0.9750 0.7236 0.7274 0.7321
s2n5 0.8933 0.9666 0.9898 0.9652 0.9924 0.9989 0.9705 0.9744 0.9763 0.7233 0.7276 0.7311
s2n15 0.8056 0.9719 0.9898 0.2229 0.7598 0.9893 0.9087 0.9679 0.9737 0.7163 0.7234 0.7282
s3n2 0.9330 0.9510 0.9648 0.8579 0.9660 0.9901 0.9148 0.9721 0.9739 - - -
s3n5 0.9407 0.9729 0.9838 0.9322 0.9896 0.9969 0.9586 0.9715 0.9748 - - -
s3n15 0.8849 0.9550 0.9702 0.2285 0.5961 0.9819 0.8410 0.9671 0.9743 - - -

Figure 4.9: Hypervolume results of the different settings in all benchmark problems and the Virtual Simulation. For every problem,
the reference point is indicated left of the name. *ZDT3 uses the point [-0.773368556, -0.773368556] as the origin since the
second objective can achieve negative values.

The results of the different settings are shown in Figures 4.9 and 4.10. For the ZDT problems,
a reference point of [10,10] was chosen except for ZDT4 where a reference point of [250,250] was
required to dominate all the solutions. The genMED[-10,10], genMED[5,10] and BD2 had a reference
points of [6,6], [30,30] and [40,40] respectively. The Virtual Phantom simulation (VIRSIM) problem
uses a reference point of [1,1]. The tables show the 1st decile, median and 9th decile. Each column
is coloured based on the performance of the settings with the worst performances in red and the best
performance in green.

When we compare the results of the IGD metric and the HV metric the results are similar in most
cases, this indicates that the algorithm does not have a large bias towards one of the two metrics. The
VIRSIM does not have a known Pareto front which makes it impossible to compute the IGD metric for
this problem. Figures 4.9 and 4.10 indicate that the HV metric is a good indication for the performance
since the best HV scores often match the best IGD scores. Comparing the settings we see the 3rd
selection method performing the worst with almost every problem achieving a worse result compared
to selection methods 1 and 2.

The aggregated results from every selection setting (e.g. S1Nx) were compared with the use of
the Mann-Whitney-Wilcoxen test. The pairwise comparison of the three selection settings over eight
different problems results in 48 significance tests. To avoid false positives a Bonferroni correction is
applied resulting in a significance value of 0.05/48 = 0.0010. The results of these significance tests
are shown in Table 4.3. Each test checked if the value of the aggregated selection is greater in the
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ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
Setting IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)
s1n2 0.04811 0.05418 0.06258 0.08029 0.41360 0.61852 0.10192 0.17407 0.25731 13.70935 24.73167 36.24438 1.98258 2.21895 2.84751
s1n5 0.02464 0.03022 0.04429 0.03831 0.09908 0.61608 0.09383 0.10900 0.26583 10.03331 26.92465 50.42925 2.25751 2.44252 2.63589
s1n15 0.02952 0.03842 0.04427 0.05099 0.06508 0.31988 0.11518 0.15752 0.24578 14.57213 29.32907 46.46635 1.87897 2.38453 3.30733
s2n2 0.09289 0.11846 0.12817 0.11275 0.13789 0.25553 0.16553 0.21987 0.31210 6.05755 25.26938 49.84028 2.60176 2.79493 3.04704
s2n5 0.05927 0.06706 0.08749 0.06655 0.11014 0.61431 0.15019 0.17565 0.24056 12.84416 35.10288 44.85750 1.93329 2.63781 3.45167
s2n15 0.05769 0.06929 0.08706 0.08540 0.11334 0.14737 0.10151 0.14966 0.19812 21.98235 30.15350 43.21747 2.09490 2.86881 3.15278
s3n2 0.19195 0.24638 0.30011 0.20669 0.33787 0.53605 0.37070 0.42206 0.54503 22.50259 37.96795 49.88894 2.71493 3.72682 4.22902
s3n5 0.10929 0.13519 0.16406 0.12518 0.29027 0.41414 0.22525 0.25400 0.31174 42.22491 50.84723 57.20683 2.96398 3.47992 4.26348
s3n15 0.10474 0.13563 0.19576 0.10887 0.16834 0.20990 0.16822 0.20102 0.25072 20.39329 46.40304 61.16764 3.33704 4.00563 4.27995

GENMED [-10,10] GENMED [5, 10] BD2
Setting IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)
s1n2 0.00911 0.01525 0.04107 0.02136 0.04811 2.47138 0.90997 1.08518 1.23838
s1n5 0.01212 0.03727 0.28930 0.01618 0.04120 0.11485 0.94400 0.95682 1.01236
s1n15 0.02550 0.06111 0.07914 0.03883 0.08648 0.68415 0.97161 1.03537 1.58464
s2n2 0.05968 0.30337 7.26908 0.29206 0.45852 1.53353 0.96100 1.23142 2.00449
s2n5 0.02493 0.11398 0.35762 0.02231 0.09618 0.49924 0.91079 0.98012 1.11962
s2n15 0.01897 0.07883 1.02576 0.17547 5.01041 22.03513 1.00580 1.21831 3.44079
s3n2 0.11845 0.15387 0.24840 0.20688 0.53531 2.93094 0.99692 1.06227 3.27807
s3n5 0.04523 0.07777 0.17378 0.07072 0.14758 1.13439 0.96615 1.08374 1.56428
s3n15 0.10403 0.13412 0.34720 0.25297 9.31410 21.94239 0.98452 1.24347 6.15565

Figure 4.10: IGD results of the different settings on all the benchmark problems. S1 stand for selection setting = 1 (adaptive
selection), S2 is the fixed selection and S3 means no selection limits are enforced. The number after n indicated the number of
neighbours. The results are highlighted with a comparative colour scale for each column. The table shows the top and bottom
values of the interdecile range (IDR) in combination with the median.

Hypervolume Inverted Generational Distance
Comparison S1 >S2 S1 >S3 S2 >S3 S1 <S2 S1 <S3 S2 <S3
ZDT1 4.92E-08 4.96E-11 1.76E-07 4.05E-10 1.51E-11 1.46E-09
ZDT2 0.7940 0.1556 3.10E-04 0.2601 0.0328 1.99E-04
ZDT3 0.9548 0.0667 3.65E-04 0.0512 1.08E-06 7.15E-06
ZDT4 0.1521 7.65E-06 1.50E-04 0.1521 7.65E-06 1.59E-04
ZDT6 4.28E-04 4.88E-10 5.78E-08 0.0016 1.22E-09 7.37E-08
genMED [-10, 10] 2.80E-05 3.54E-08 0.5206 3.38E-05 3.54E-08 0.5088
genMED [5,10] 1.06E-05 1.34E-06 0.3205 2.16E-05 1.44E-06 0.2410
BD2 0.0481 0.0012 0.1141 0.0425 0.0011 0.1170
VIRSIM 0.1290 - - - - -

Table 4.3: Significance results of comparing selection setting with Mann-Whitney-Wilcoxen test. Bonferroni correction is applied
on the significance value of 0.05 resulting in a new significance value of 0.001. All significant results are shown in bold.

case of the HV metric or less in the case of the IGD metric. In almost all cases it is better to select one
of the newly introduced selection methods (S1, S2) over the baseline (S3). The difference between
selection methods 1 and 2 is more subtle: only in the ZDT1 problem and both the genMED problems
S1 consistently outperforms S2.

An interesting case where the IGD and HV metrics contradict each other is ZDT3. When looking at
the hypervolume metric the best performing selection method is the fixed selection range (S2) while if
we use the IGD metric the adaptive selection method (S1) performs best. Figure 4.11a compares the
S1 solutions with the S2 solutions. It clearly shows the adaptive selection converging more towards
the Pareto front than fixed selection. Figure 4.11 shows the individual approximation fronts of all 10
runs of both S1N5 (Figure 4.11b) and S2N15 (Figure 4.11c) which respectively have the best IGD and
HV scores on the ZDT3 problem. We see that S1N5 again converges more towards the Pareto front,
but it only manages to discover the rightmost disconnected component 3 out of 10 times whereas
S2N15 manages to discover it all 10 times. This indicates the trade-off which exists in the current
selection methods, the adaptive selection converges faster but sometimes is too exploitative and thus
unable to achieve a good spread. This trade-off between exploitation and exploration is a well-known
trade-off which has to be balanced in EAs in general. This problem also occurs in the S1N2 version
of ZDT2. Figure 4.14a shows adaptive selection again approaching the front more closely, however
when comparing S1N2 (Figure 4.14b) with S1N15 (Figure 4.14c) we can see that the two neighbour
variant has more clustered solutions in a single run which indicates a more local searching strategy.
This time the trade-off is not with selection settings but with the amount of nearest neighbours used in
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(a) Comparison of Adaptive selection method (S1) in blue and fixed selection method in orange on the ZDT3 problem.
The adaptive selection approaches the Pareto front more than the fixed selection.
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(b) S1N5: the best performing variant on IGD metric
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(c) S2N15: the best-performing variant on HV metric

Figure 4.11: Comparison of selection methods 1 and 2 on the ZDT3 problem. Overall and individual runs between setting S1N5
and S2N15. S1N5 converges closer to the Pareto front than S2N15 however it does not manage to find the 5th disconnected
component only 3 out 10 times.

the prediction of the objective values.
In the genMED problems, the adaptive selection performs significantly better than the other two

approaches. The initial solutions are far away from the Pareto front thus the algorithm usually has to
use the first few generations to more closely approach this. This is exactly the scenario in which the
adaptive selection is targeted at. Being far away from the optimum values in both objectives results
in the comet-shaped approximation set. Figure 4.12 shows the hypervolume over time for the three
selection methods. This shows the advantage of adaptive selection with faster exploration in the early
stages (<500 FE) and continuous exploitation in the later stages (>500FE). The fixed selection method
has limited exploration which causes a slower convergence, whereas the baseline selection method
(no selection criteria) explores fast initially. However, in the later stages, there does not exist enough
focus on exploitation to pushmore toward the Pareto front. In the genMED problems, adaptive selection
manages to balance the exploitation and exploration to achieve increased performance.

The number of neighbours used in the surrogate model does sometimes have a large influence
on the performance (eg. ZDT2 S1N2 vs S1N15), however, there is no clear trend which indicates
one number of neighbours is consistently better than another. The differences seem to be problem
specific. Generally speaking, five neighbours seems to never be the worst choice, but the differences
seem minimal.
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Figure 4.13: All solutions of the BD2 4.13a and ZDT4 4.13b problem with different selection settings.

ZDT4 and BD2 are challenging problems which are not solved by the IDW-SAEA in the 1000 FE
budget. In both cases, the IDW-SAEA only manages to optimize the first objective with some small
explorations towards the second objective, but nowhere near the optimal value. The metrics do indi-
cate a statistical difference between selection methods, however, Figure 4.13 demonstrates that this
improvement isn’t a better approximation front but just a few solutions which are closer to the Pareto
front.
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Figure 4.14: Comparison of the 10 individual runs between setting S1N2 and S1N15 on the ZDT2 problem. S1N2 is much more
sparse than s1n15. The low amount of neighbours contributes to a more localized search which in the ZDT2 problem does not
allow for a good exploration of the complete Pareto front.
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4.4. Comparison state of the art on benchmarks
The comparison with the state-of-the-art algorithms is as follows: We compare IDW-SAEA with the best
parameter settings to K-RVEA, MOEA/D-EGO, AB-SAEA and a normal version of MAMaLGaM using
4 clusters which was a good choice as shown in Section 4.2.2. The best IDW-SAEA variant is defined
as the highest median HV score. HV was chosen over IGD because the VIRSIM does not have an IGD
metric since the Pareto front is unknown.

The MOAE/D-EGO algorithm was not able to handle negative parameter ranges or large objective
values. This would sometimes result in a negative mean value which subsequently was taken the
square root of, resulting in imaginary numbers. To counteract this problem, when running MOEA/D-
EGO on the genMED problem, the parameter range was scaled down to a range between 0 and 1.
Before evaluation, the parameters would be multiplied by 1𝑒10 to achieve the same ranges as the
other algorithms. After evaluation, the outcome was divided by 1𝑒20 to again reduce the objective
values. Additionally, the k-means clustering distance was changed from 1𝑒 − 5 to 1𝑒 − 15 to account
for the difference in parameter values.

[10,10] ZDT1 [10,10] ZDT2 [10,10] ZDT3 [250,250] ZDT4 [10,10] ZDT6
IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)

IDW-SAEA 0.99279 0.99499 0.99538 0.91304 0.97882 0.98669 0.87719 0.89151 0.90522 0.85372 0.89975 0.94389 0.68924 0.74827 0.76576
AB-SAEA 0.97574 0.98515 0.99448 ( + ) 0.99305 0.99317 0.99321 ( - ) 0.83572 0.83975 0.89917 ( ≈ ) 0.83886 0.92520 0.95121 ( ≈ ) 0.91946 0.94643 0.95670 ( - )
K-RVEA 0.99613 0.99639 0.99651 ( - ) 0.99321 0.99322 0.99323 ( - ) 0.92179 0.92180 0.92182 ( - ) 0.81565 0.87712 0.91580 ( ≈ ) 0.85799 0.88524 0.90703 ( - )
MOEA/D-EGO 0.96583 0.97679 0.98674 ( + ) 0.92690 0.95901 0.97074 ( ≈ ) 0.83200 0.85819 0.88335 ( ≈ ) 0.65460 0.69738 0.73446 ( + ) 0.72108 0.79973 0.94244 ( ≈ )
MAMaLGaM 0.93428 0.95079 0.96469 ( + ) 0.85821 0.89668 0.92323 ( + ) 0.82026 0.83747 0.85763 ( + ) 0.79608 0.80909 0.86324 ( + ) 0.44707 0.48473 0.50149 ( + )

[90,90] GENMED [-10,10] [230,230] GENMED [5, 10] [30000,30000] BD2
IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)

IDW-SAEA 0.99929 0.99983 0.99991 0.99913 0.99976 0.99989 0.99996 0.99997 0.99997
AB-SAEA 0.90277 0.95130 0.98523 ( + ) 0.14041 0.17141 0.19247 ( + ) 0.39161 0.99931 0.99995 ( ≈ )
K-RVEA 0.04971 0.13916 0.25497 ( + ) 0.00205 0.00737 0.02817 ( + ) - - -
MOEA/D-EGO 0.13046 0.25540 0.50825 ( + ) 0.02264 0.05163 0.12516 ( + ) 0.88553 0.96558 0.98147 ( + )
MAMaLGaM 0.99696 0.99859 0.99912 ( + ) 0.99562 0.99738 0.99867 ( + ) 0.99996 0.99996 0.99997 ( + )

Figure 4.15: Hypervolume scores of all the algorithms on the benchmark problems. For every problem, the reference point is
indicated left of the name. The significance value of the metric compared to IDW-SAEA is given after each problem. ZDT3 uses
the point [-0.773368556, -0.773368556] as the origin since the second objective can achieve negative values.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)

IDW-SAEA 0.02464 0.03022 0.04429 0.05099 0.06508 0.31988 0.09383 0.10900 0.26583 13.70935 24.73167 36.24438 1.98258 2.21895 2.84751
AB-SAEA 0.00858 0.03561 0.09008 ( ≈ ) 0.00498 0.00616 0.00830 ( - ) 0.03380 0.25542 0.28417 ( ≈ ) 11.88240 18.37771 39.95631 ( ≈ ) 0.09033 0.17334 0.42936 ( - )
K-RVEA 0.00642 0.00685 0.00818 ( - ) 0.00772 0.01091 0.01256 ( - ) 0.01096 0.01228 0.01381 ( - ) 20.72259 30.39294 45.75456 ( ≈ ) 0.54737 0.77603 1.15340 ( - )
MOEA/D-EGO 0.05161 0.08683 0.17078 ( + ) 0.06303 0.08109 0.20791 ( ≈ ) 0.22019 0.25945 0.42746 ( + ) 66.01739 75.27001 85.99327 ( + ) 0.14610 1.49941 2.36964 ( ≈ )
MAMaLGaM 0.29149 0.39712 0.46011 ( + ) 0.40359 0.58362 0.80437 ( + ) 0.41249 0.51885 0.59917 ( + ) 33.85138 47.40053 50.65259 ( + ) 4.68243 4.86336 5.24804 ( + )

GENMED [-10,10] GENMED [5, 10] BD2
IDR (10) median IDR (90) IDR (10) median IDR (90) IDR (10) median IDR (90)

IDW-SAEA 0.00911 0.01525 0.04107 0.01618 0.04120 0.11485 0.94400 0.95682 1.01236
AB-SAEA 0.71282 2.92594 6.09934 ( + ) 182.11446 190.15992 202.97536 ( + ) 6.35018 18.49600 18245.68225( ≈ )
K-RVEA 62.801 79.642 98.083 ( + ) 270.238 296.936 310.230 ( + ) 16805.662 35935.545 53245.599 ( + )
MOEA/D-EGO 36.129 62.590 82.099 ( + ) 209.728 250.902 275.859 ( + ) 551.692 1027.681 3427.877 ( + )
MAMaLGaM 0.08136 0.11979 0.20413 ( + ) 0.29479 0.33439 0.74009 ( + ) 0.86804 0.97831 2.34678 ( ≈ )

Figure 4.16: IGD of all the algorithms on the benchmark problems. Significance is indicated after each problem with (+) for
better, (-) for worse and (≈) for equal.

ZDT
The best IDW version is compared to the state of the art algorithms and 4 cluster Univariate variant
of MAMaLGaM in Figures 4.15 and 4.16. These figures show a clear pattern in the ZDT problems.
K-RVEA and AB-SAEA perform very well. MOEA/D-EGO performs worse. Except for ZDT4, MAMaL-
GaM consistently performs worse than all expensive algorithms. IDW-SAEA competes relatively well,
on the ZDT problems it achieves one statistically better performance, two equal performances and two
problems where IDW-SAEA performs worse. IDW-SAEA statistically performs equal to or better than
MOEA/D-EGO. K-RVEA is outperforming IDW-SAEA, with only the ZDT4 problem having equal per-
formance and all other ZDT problems having a worse performance when using IDW-SAEA. Looking
at the IGD values of the ZDT4 problem we discover that no algorithm managed to come close to the
Pareto front with the lowest median IGD of 18.377. Therefore we can conclude the solutions for this
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Figure 4.17: Hypervolumes over time on two Benchmark problems

problem are still very far away from the Pareto front because of the difficulty, making it a challenging
problem to solve in 1000 FE.

Figure 4.17a shows the hypervolume value over time of all the algorithms on the ZDT1 problem. It
shows the three SotA algorithms flatten out to a certain degree when passing the 300 evaluation mark
whereas MAMaLGaM and IDW continuously improve over the complete function evaluations. These
last two algorithms do have a slower start. However, IDW-SAEA overtakes MOEA/D-EGO at around
400 FE and AB-SAEA at around 700FE. This is an indication that with additional function evaluations
the IDW-SAEA can continue to improve. This behaviour is replicated on all the ZDT problems which
can be found in the Appendix.

GenMED and BD2
The performance of IDW-SAEA is significantly better on the genMED and BD2 problems than the state-
of-the-art algorithms. Firstly we see that MOEA/D-EGO and K-RVEA are unable to handle the large
parameter search space of these problems. Both these two algorithms start by exploring the edge of the
large search space and from there slowly improve their solutions, but they do not successfully use the
initial samples to quickly point them in the direction of the Pareto front. This results in no improvements
after the first few FE. Figure 4.17b shows AB-SAEA and MOEA/D-EGO failing to improve after 200 FE
and K-RVEA failing to improve at all. IDW-SAEA and MAMaLGaM do continuously improve over time
and significantly outperform the SotA. Comparing IDW and MAMaLGaMwe can conclude that the IDW-
SAEA starts earlier than MAMaLGaM but both algorithms improve similarly based on the FE. This late
start of MAMaLGaM is caused by the algorithm having to initialize its subgenerations before it can start
optimizing. One would expect it to start improving faster than IDW-SAEA once these subgenerations
are initialized, but this is not the case. Similar behaviour is shown on genMED[5,10] (Figure A.2 in the
Appendix).

The BD2 problem is very challenging. None of the algorithms managed to make any substantial
progress in the difficult second objective. IDW-SAEA and MAMaLGaM did manage to discover the
easy end of the Pareto front. Out of the SotA algorithms, AB-SAEA performed best by getting into the
general vicinity of the Pareto front, but it did not consistently reach the front. This can be seen by looking
at the difference between the IDR in Figure 4.16. This Figure shows a median IGD of around 18.5 for
AB-SAEA with IDR values around 6.35 and 18245.68 indicating a very high variance in solutions. K-
RVEA did not make any progress in solving BD2. After initialization, the algorithm became stuck in a
very small area of the search space. This was because of the small relative values between the data
points making the cosine metric effectively zero. MOEA/D-EGO did achieve progress in the correct
direction, but with a median IGD of 1027.68, the front is comparatively far away. The performance was
more consistent than AB-SAEA with much lower variance in the IDR, 551.69 and 3427.88 as 10th and
90th percentile.
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4.5. Virtual phanton simulation
The runtime of a single evaluation with the Virtual Phantom simulation takes between 15 and 25 min-
utes. Due to time constraints, only the most promising settings were run instead of all the possible
combinations of the IDW version. This resulted in not running the third selection setting: No selection.
The runs were all ran for 1000 evaluations similarly to the benchmark problems and each setting was
run 10 times to get a measure of the variance between runs. The IDW results are compared with the
pure MAMaLGaM results and K-RVEA. MAMaLGaM uses the same parameters as described in section
4.2.2: Univariate factorization with 4 clusters and guideline parameters otherwise. The hypervolume
calculation uses reference point [1,1].

4.5.1. Comparison of IDW-SAEA settings
In Figure 4.9 we see the different versions of the IDW-SAEA on the VIRSIM problem. It can be seen that
the S1N2 setting performs the best, but with a p-value of 0.0606 compared to S2N2 we can not consider
this result significant. Nevertheless, we do see that the settings with a large number of neighbours do
not perform very well. This is because of an interesting property of the Virtual Phantom Simulation:
this problem is a FEM simulation thus it can crash. In the current design, these crashing runs get a
dice score of 0, the lowest possible value resulting in an objective score of 1. When a large number
of neighbours are utilized during the prediction, the possibility of one or multiple of these neighbours
being a crashing run increases. The addition of such a crashing run in the weighting will heavily skew
the objective score towards an objective score of 1 for both objectives. This could be an advantage to
staying away from the crashing parameter setting, but it can also be a disadvantage if the best settings
are nearby crashing simulations. These experiments indicate that it is more likely to be of disadvantage.

4.5.2. Comparison between IDW-SAEA, MAMaLGaM and K-RVEA
Figure 4.18a shows the comparison of IDW-SAEA (S1N2) with MAMaLGaM and K-RVEA. We see the
IDW-SAEA achieving higher hypervolume than the other algorithms: p-value = 0.03783 compared to
MAMaLGaM, p-value = 0.0006574 compared to K-RVEA. Looking at the behaviour of IDW-SAEA it
starts with quick improvements early in the optimization process and continues to gradually improve.
MAMaLGaM has a slow startup time and then quickly starts to catch up to IDW-SAEA. It achieves a
better HV score than K-RVEA after the first 300 FE, which coincides with the first generation. Instead,
K-RVEA has some early improvement until the 300FE and then stops with the improvement. This is
similar behaviour to the benchmark problems where after some quick improvement K-RVEA optimiza-
tion slowed down substantially. In contrast to the benchmarks, however, the solutions found in the first
300 FE are not as good.

The final non-dominated points can be seen in figure 4.18b. We see IDW-SAEA resulting in more
solutions closer to the origin compared to the other algorithmswhile keeping a good spread with the best
value in either objective also belonging to the IDW method. Interestingly the approximation front does
not seem to contain the complete trade-off between the objectives: there are no solutions which are
optimized entirely on one objective disregarding the score of the other objective. Figure 4.18c shows
a more zoomed view of the front with an additional plot of the non-dominated solutions of the best
MAMaLGaM run with 12000+ FE. This indicates that the IDW-SAEA approaches the possible Pareto
front quite closely. One advantage of MAMaLGaM over IDW-SAEA is a smaller variance between
runs. Figure 4.18b shows one run from IDW-SAEA where the solutions are worse than K-RVEA, this
indicates that although the IDW method on average outperforms, it is not always capable of finding the
best solutions in the first 1000 FE.
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Figure 4.18: Comparison of IDW, K-RVEA and MAMaLGaM on the Virtual Phantom Simulation





5
Discussion

In this section, we first analyze the overall performance of the algorithms and secondly give the weak-
nesses with potential improvement for the IDW Algorithm. Last some limitations to the study are dis-
cussed.

5.1. Performance Analysis
The results show that the IDW adaptation of MAMalGaM does succeed in improving the algorithm
to perform better with 1000 FE compared to the standard MAMaLGaM version. However, we also
see that the state of the art is much better in quickly increasing the quality of its solutions in the ZDT
problems. The SotA all are designed with a smaller limit of function evaluations, in their papers [57,
14, 54] the experiments only go up to 300 function evaluation maximum. We see this is reflected in
their performance: The algorithms have a quick improvement in the first 400 FE. After these early
evaluations, the improvement slows down considerably.

This directly relates to one of the strengths of the IDW-SAEA method. It continues to improve over
time, albeit slower. Because of this, it manages to catch up onMOEA/D-EGO in many of the benchmark
problems between the 500 and 800 function evaluations. The expectation is that if more function
evaluations are allowed IDW-SAEA will continue to improve and eventually outperform the expensive
SotA since these algorithms seem to stagnate. Eventually, non-expensive evolutionary algorithms such
as MAMaLGaM will outperform all the SAEAs. The number of FE where this occurs will of course differ
between problems. In the 0 to 1000 FE the IDW algorithm outperforms MAMaLGaM on every problem.

Overall comparing IDW-SAEA to SotA has different results highly dependent on the test problem.
IDW-SAEA performs much better in the genMED, BD2 and the Virtual Simulation problems, whereas
in the ZDT problems it only consistently manages to outperform MOEA/D-EGO. In every problem, it
outperforms our non-expensive baseline EA: MAMaLGaM.

GenMED and BD2 are problems where the SotA performs especially poor. While the genMED
problems in themselves are not particularly difficult, the chosen initialization and large parameter space
seem to be very challenging for the SotA algorithms. Only AB-SAEA manages to gain real improve-
ments compared to the initialization values, and even then these solutions are not on or near the Pareto
front. Again after 300 FE it stops improving and gets stuck on its current location with only very small
variations. In the genMED and BD2 problems, the IDW-SAEA performs better because of its robust-
ness in exploration. In every iteration, the algorithm selects a few solutions with promising problem
objectives and a few with promising exploration objectives. By doing this the algorithm will always
have a few candidate solutions which are focused on exploitation and not waste all its evaluations ex-
ploring unknown regions in the search space like K-RVEA and MOEA/D-EGO. The only exception here
is when the adaptive selection is in the exploration setting (low rank-density), however, in this scenario
exploration is required.

Another reason why the IDW algorithm is relatively robust is because of the large amount of ran-
domness still included in the algorithm. The estimation of objective scores is quite inaccurate when
extrapolating. This results in a large set of individuals who have similar predicted objective scores but
vary a decent amount. This incidentally adds to exploration and reduces the chance of the algorithm
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Figure 5.1: Comparison of the different selection settings on two Benchmark problems

achieving premature convergence. A disadvantage of this is of course the inability to directly make
large progress at the start which is something the SotA is capable of doing.

Overall IDW-SAEA performs very well on problems which have a large parameter range and where
the budget of FE is between 400 and 1000 FE. It requires a few function evaluations to get started
because it cannot directly extrapolate to the Pareto front, however once started it does continue to
improve. Future work would have to investigate how many FE IDW-SAEA outperforms non-expensive
EAs since the expectation is that eventually, these non-expensive EA will outperform the expensive
versions given enough FE.

The performance of IDW-SAEA on the Virtual Phantom simulation is good. One could argue that
the performance of K-RVEA is subpar since on the ZDT problem it outperformed MAMaLGaM. The
genMED problems had the difficulty of extremely large parameter space but in the VIRSIM this range
is not as large with the largest being the bladder filling between 0 and 600. Comparing the HV over
time of K-RVEA in Figure 4.18a and Figure 4.17a, we do see similar functioning with the fast increase
in first 300 FE and then a substantial reduction of the improvement. However, the early results are
not as good as in the ZDT problems indicating that the VIRSIM problem is more challenging. Overall
IDW-SAEA outperforms both K-RVEA and MAMaLGaM.

Selection method 3 is consistently the worst-performing selection method. With this selection
method, the Pareto front improvesmore slowly thanwith the other twomethods. Since selectionmethod
3 does not put any restrictions on the candidate solutions many of the solutions selected will be very far
away from the 2D front. This is made worse by the fact that finding solutions with a good exploration
objective score (far away from other solutions) is much easier than a solution which is predicted to
have a good objective score. Thus not putting any restrictions on the selection method results in the
exploration objective dominating the solutions selected by this method. This is not desirable since the
exploration objective is a tool for exploration and not an intrinsic goal to optimize. This large amount
of exploration does allow method 3 to sometimes get a head start compared to the other selection
methods, since it takes more risks by selecting individuals with a good exploration it can make larger
progress if it is lucky, but as shown this strategy is not sustainable. Figure 5.1a illustrates this behavior
clearly.

Selection methods 1 and 2 are very comparable in performance on the ZDT problems and it is un-
clear to decide which method is the better performing version. Selection method 1 seems to have a
slight edge but it is often not significant as seen in Figure 4.3. In the genMED and BD2 case selection
method 1 is superior. The method allows for a quick early increase by selecting ranks with good explo-
ration scores and also can continue exploitation once the front has been reached. Figure 5.1b shows
this performance on genMED[5,10].

Overall the Adaptive selection method seems to be the best and a necessary introduction to select
promising candidate solutions when using IDW in combination with the exploration objective. Even
when introducing multiple mechanisms (keep best known solutions in population, calculate IDW with k-
nearest-neighbours, filtering of solutions which are too similar) to help the optimization of the surrogate
model, the selection method still makes a large difference in performance.
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Figure 5.2: Approximation set during optimization of ZDT3. Figure 5.2b shows a sparse amount of solutions discovered in the
second and third disconnected front. This indicates that MAMaLGaM inside of IDW-SAEA can not always consistently solve
the surrogate model. Figure 5.2a shows a large number of the approximation set far away from the problem from around the f2
objective score of 4 and higher. This is a wasted effort in the optimization process since these samples will never be selected in
this stadium.

5.2. Potential Improvements
Some possible improvements to the algorithm are discussed. First, some smaller changes are dis-
cussed. Followed by IDW in combination with a regression model and a problem-specific idea for the
Virtual Phantom simulation is discussed.

5.2.1. Exploration objectives as tool
The performance of the IDW algorithm can still be improved. There are two main areas where it can
be improved: the generation of candidate solutions and the selection of these solutions. Improving the
candidate generation automatically improves selection, if all candidate solutions are viable to select
there is no need for complicated selection strategies. The main problem currently with the generation
of candidate solutions is the introduced exploration objective. This objective is required to promote
exploration of the search space, however as already mention in the section above: there is currently
too much importance on this objective resulting in situations like Figure 5.2a. We see a large number
of individuals around the f2 objective score of 4 and higher, which will never be included in the final
selection in this stage of the optimization process. When there are this many individuals far away from
the front the performance of MAMaLGaM degrades: a large part of the computational power is invested
in optimizing the ’useless’ individuals, when this effort could be put into creating better solutions near the
front. We want the final individuals to consist of many solutions with promising 2D objective scores with
a varying degree of exploration and not be full of individuals which only exist because of their excellent
exploration without having at least somewhat promising problem objective scores. This degradation
at the problem objective can be seen in Figure 5.2b where the second and third components are only
sparsely filled with the approximation set. Preferably every disconnected component would be densely
filled like the fourth one.

There are some idea’s still left to explore on how to achieve this result. Firstly to change the initializa-
tion of MAMaLGaM, because current random MAMaLGaM initialization does not utilize the knowledge
of the current front in a very efficient way. Only the best solutions found so far are included, the rest
is randomly initialized. Initializing all or more of the solutions based on the currently known samples
we can avoid the effort of rediscovering the surrogate front every iteration. Allowing the algorithm to
use this front as a starting point, it can immediately begin with exploring that specific area. The ex-
pectation is that this will result in a higher density of solutions near the front which are still optimized
based on the exploration objective and additionally have a promising problem objective score. In short,
we approach the problem from a different direction: Instead of finding the front from random solutions,
we find faraway solutions starting from the front. There is an increased risk of premature convergence
when using the approach, so the precise initialization procedure has to be designed with that in mind.

The second idea is to utilize Adaptive Steering [2]. This procedure reduces the available search
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space by introducing constraints. Then utilizing constraint domination [18] the algorithm will avoid these
areas and directly focus on exploring the preferred space. The constraints would have to be gradually
introduced during the optimization and thoughtfully tuned to make sure they do not inhibit all forms
of exploration. An example of a reasonable constraint for Figure 5.2a could be: only allow solutions
where the f2 objective value is lower than 3. This would force all the solutions in the direction of the
front leaving some space for exploration. Which setting would leave enough exploration space would
have to be empirically tested, however since the current selection methodology already disregards all
the solutions which are not in the first 30% ranks constraining these solutions should not be a problem,
given the selection methodology would be adapted to this constraint.If adaptive steering would be
successful there is no need for a selection strategy since all solutions are viable candidates. In the
case of a low rank density (which occurs at the start of the genMED problems), the adaptive steering
method should not be utilized. The experiments have shown that selecting very explorative samples
is the best strategy in this case. Therefore adaptive steering should only begin when the optimization
seems to slow down.

Another simple way to reduce the complexity of the surrogate model is to remove evaluated sam-
ples. During the research of this thesis, preliminary experiments have been done with removing sam-
ples: Keeping only the best 100 samples and trimming every other sample based on objective score.
When trimming was used there was no improvement in regards to solving the surrogate model. Keep-
ing the best 100 samples did allow for a better approximation set fit to the surrogate model: many
solutions were found nearby the best samples so far. However, this filtering had a large drawback:
The predicted objective scores were not accurate. This was caused by the loss of information by re-
moving samples, i.e., individuals who had been evaluated with bad fitness before were not kept and
the new ’unexplored’ regions were seen as promising by MAMaLGaM.

5.2.2. Inverse distance weighted regression
Another area of weakness is the weak extrapolation with IDW. The best objective scores possible are
those which have already been discovered. In [21] Emmendorfer and Dimuro introduce inverse dis-
tance weighted regression (IDWR): a combination between inverse distance weighting and weighted
linear regression. This function could increase the performance by allowing the algorithm to extrapolate
and therefore move in the direction of the Pareto front faster. If this would result in the same behaviour
as the SotA (quick improvement and flattening out fast) has to be discovered empirically. Addition-
ally, Emmendorfer and Dimuro have only shown an improvement in performance on two-dimensional
problems. It is unknown how the formula performs with 10 decision variables.

5.2.3. Future work in Virtual Phantom optimization
Being a FEM simulation, the virtual phantom has the possibility of crashes and the possibility of organs
intersecting after simulating, resulting in non-feasible solutions. When a crash or intersection occurs,
it is impossible to assign a fitness score to it. Currently, the worst possible objective score of [1,1] is
assigned. A bad score does drive the population away from these crashing parameters. However,
when one of these [1,1] samples is included as a neighbour in the IDW, it heavily skews the predicted
objective score. Deleting these samples is not a good idea, since in that case the crashing runs would
be rediscovered and reevaluated again. This would cost valuable function evaluations.

Therefore a good alternative to experiment with would be to instead of using the [1,1] score when a
crashing sample is included as a neighbour of interpolation, the crashing score is replaced in the inter-
polation weighting. We still want to include the information of this crashing sample, thus the surrogate
prediction of this sample is used and the resulting predicted score is increased with the use of a crash
penalty (for example +0.2 objective score). Doing this will reduce the negative effect when this solution
is included as a neighbour while still making it a non-desirable location to be. Additionally, this would
smooth the objective space of the Virtual Phantom Simulation allowing for easier optimization.

5.3. Limitations
There are a few limitations to this study. The first limitation is the relatively small number of runs for
each test problem. Because the runtime of IDW-SAEA is currently not very optimized, the experiments
took a long time to be executed. A single 1000 FE run on a benchmark problem took on average
1 hour, with a single VIRSIM run taking on average about 30 hours. On benchmark problems, most
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of the time was spent computing the nearest neighbours for the surrogate and the covariance matrix
of MAMaLGaM. Especially nearest neighbour computation could still be sped up by utilizing a more
efficient implementation than repeated linear search. Because of the long runtimes in combination with
the 9 different combinations of settings, the choice was made to only run every experiment for 10 runs.
Although this often resulted in significant enough differences, more runs would give an even clearer
indication of the difference in performance.

The second limitation is the test problems. The ZDT problems are quite diverse and with the addition
of genMED and BD2 most types of two objective problems have been investigated, but it is still a limited
amount. Especially the Virtual Simulation is very limited since only a single dataset from one patient was
used in this experiment. More investigation with more datasets would be needed to more accurately
determine the performance. The parameters of the adaptive and fixed selection methods would also
benefit from more test problems and more thorough testing.

A third limitation is a difference in underlying algorithms when comparing Kriging to IDW. AB-SAEA
and K-RVEA both use the RVEA algorithm to optimize the surrogate model, whereas IDW-SAEA uses
MAMaLGaM. Although in theory, the underlying algorithm should be interchangeable, this should be
investigated in the future to know for sure if the IDW with exploration objective is a good alternative to
Kriging.





6
Conclusion

In this work, we have shown the design of an evolutionary algorithm for expensive optimization, using a
surrogate based on inverse distance weighting interpolation, called IDW-SAEA. The design introduced
a third exploration objective which was used to stimulate the discovery of new solutions. The original
problem objectives, for which a surrogate was estimated using IDW interpolation, and the exploration
objective were optimized simultaneously. From the resulting solutions, a few were selected using the
introduced adaptive selection methodology based on a new metric called rank density. The results of
this algorithm were compared with three expensive SAEAs: AB-SAEA, K-RVEA and MOEA/D-EGO.
IDW-SAEA was shown to be competitive with the SotA SAEAs, achieving slightly worse hypervolume
and IGD scores in the ZDT test problems, but performing significantly better than the SotA in the gen-
MED, BD2 and VIRSIM problems. IDW-SAEA starts slower than SotA SAEAs but continues improving
when the other SA algorithms stagnate. The IDW-SAEA consistently outperforms non-expensive EA
MAMaLGaM on every problem in the first 1000 function evaluations. With regards to the Virtual Phan-
tom Simulation, IDW-SAEA manages to optimize this problem better than MAMaLGaM and K-RVEA.
These results open the door to more experimenting on SAEAs with an seperate objective dedicated
towards exploration.
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Figure A.1: Hypervolume over time of the ZDT problems
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Figure A.3: IGD scores of MAMaLGaM with 1000 FE on different benchmark problems. Different number of clusters were
experimented with and also the Univariate FOS (U) and Full FOS (F), number of clusters is indicated with the number after the
U of F.
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