
Heuristics for
Multivalued Decision Diagrams

in Branch & Bound

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jonathan Tjong

Algorithmics Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

©2025 Jonathan Tjong. All rights reserved.

Heuristics for
Multivalued Decision Diagrams

in Branch & Bound

Author: Jonathan Tjong
Student id: 5232597

Abstract

Decision diagrams have steadily become more prominent in the field of combinatorial
optimization, being able to outperform the state-of-the-art in e.g. scheduling prob-
lems [13]. They have proven even more capable with the introduction of methods
such as decision diagram-based Branch & Bound. Often, layer-based binary decision
diagram (BDD) encodings are used to encode the problem domain, where a layered
structure determines the decisions and decision variables. Recently, state-based mul-
tivalued decision diagram (MDD) encodings have also been considered. These do not
rely on a layered structure, as instead, each state makes its decisions on the variables
independently of other states. This allows for more flexible decision-making as states
do not have to compromise with other states on the decisions they make.

This thesis compares these newer state-based MDDs with the commonly used
layer-based BDDs, while also introducing and evaluating heuristics for the state-based
MDDs. These heuristics include a new beam restriction heuristic that limits the branch-
ing factor of the MDDs, a dynamic variable ordering strategy adapted for the new
state-based context, and a new local bound for the maximum independent set problem
(MISP).

The experiments of this thesis show that the state-based MDDs generally out-
perform the layer-based BDDs in both runtime and search tree size. Only for some
instances with low graph densities, the state-based MDDs were slower. This is re-
solved with the newly introduced beam restrictions, which can significantly lower the
runtime. This speedup is also shown for the graph coloring problem, although the
application of the beam restrictions is not as straightforward there as with the MISP.
Both the dynamic variable ordering and the new local bound for the MISP show great
promise in increasing the efficiency of the search, but are both held back by the addi-
tional overhead they introduce. Fortunately, these two techniques can share the added
overhead while gaining the combined benefits, resulting in great performance for the
MISP when both methods are used together.

j.k.k.tjong@student.tudelft.nl

Thesis Committee:

University supervisor: Prof. Dr. M.M. de Weerdt, Faculty EEMCS, TU Delft
Weekly supervisor: Prof.Dr. W.-J. van Hoeve, Carnegie Mellon University
Committee Member: Prof. Dr. Y. Murakami, Faculty EEMCS, TU Delft

ii

Preface

With this thesis, I am nearing the end of my journey at the TU Delft. These past 5 years
flew by, but also felt twice as long. I am very happy with how these 5 years have gone, and
I feel both lucky and proud that things ended up the way they did.

I would like to thank my two supervisors, Mathijs de Weerdt and Willem-Jan van Hoeve.
I must admit, when Mathijs de Weerdt proposed the idea of doing my thesis with him and
Willem-Jan van Hoeve, it seemed a bit daunting at first. But in the end, I am very grateful
for this (lucky) opportunity to have happened. Mathijs de Weerdt guided me in the right
direction and made sure the thesis ended up in the right place. Giving good, constructive
feedback and always encouraging throughout. Willem-Jan van Hoeve was very helpful
and knowledgeable in his field. But above all, he was always enthusiastic and optimistic
whenever we discussed ideas and results.

I would also like to thank my family and friends, who have always encouraged and
supported me. No matter what choices I would make, I knew they would be with me
cheering me on.

Jonathan Tjong
Delft, the Netherlands

June 26, 2025

iii

Contents

Preface iii

Contents iv

List of Figures vi

1 Introduction 1

2 Related Work 3
2.1 Approximate Multivalued Decision Diagrams 4
2.2 Decision Diagram-Based Branch & Bound 6

3 Preliminaries 8
3.1 Decision Diagrams . 8
3.2 The Maximum Independent Set Problem 9
3.3 A BDD Encoding For the MISP . 10
3.4 An MDD Encoding For the MISP . 11
3.5 The Graph Coloring Problem . 12
3.6 Approximate Decision Diagrams . 13
3.7 Branch & Bound . 14
3.8 Variable ordering heuristics . 15
3.9 Local Bound Pruning . 17
3.10 Beam Search . 17

4 New Heuristics for Multivalued Decision Diagrams 19
4.1 Restricting the MDD Expansion . 19
4.2 Dynamic Variable Ordering . 26
4.3 Local Bound for the MISP . 28

5 Experimental Results 31
5.1 Experimental Setup . 32

iv

Contents

5.2 Metrics . 32
5.3 Static Variable Ordering Strategies . 32
5.4 Restricted MDD with Beams . 34
5.5 Beam Restrictions in Graph Coloring . 37
5.6 Dynamic Variable Ordering Strategies . 41
5.7 Local Bound Pruning . 42

6 Discussion 45

7 Conclusions and Future Work 48

Bibliography 50

A DP Models 54
A.1 MISP . 54
A.2 Graph Coloring . 56

v

List of Figures

3.1 Example of an input graph for the maximum independent set problem (MISP).
Each vertex is labelled with a number shown in each centre. 9

3.2 Example of an exact BDD for MISP example in Fig. 3.1. Each state in the
BDD shows the eligible vertices available at that particular state. The variable
decisions are represented on the left, indicating which vertex is chosen for each
layer. The solid lines represent the choice to include the chosen vertex of that
layer, while the dashed line represents the choice of not including it. 11

3.3 Example of an exact MDD for MISP example in Fig. 3.1. Each state in the
MDD shows the eligible vertices available at that particular state. The vari-
able decisions are shown with numbers in the transition lines, indicating which
vertex is chosen to be included in the independent set. 12

3.4 Example of the behaviour of the MDD encoding for the graph coloring problem.
A partially colored graph is considered, where v5 needs to be assigned a color.
Each vertex is labelled with a number shown in each centre. The available
colors are shown in the table below the graph. The coloring number χ(G) is
shown for each graph. 13

3.5 Example of a search tree traversed with beam search. Colored nodes are se-
lected by the beam search algorithm, uncolored nodes are discarded 18

4.1 (a) The original MDD, which can be seen in Fig. 3.3. It is an MDD for the
MISP example in Fig. 3.1. (b) Example of the MDD restricted with a beam
width b = 2. Each state in the MDD shows the eligible vertices available at that
particular state. The variable decisions are shown with numbers in the transition
lines, indicating which vertex is chosen to be included in the independent set.
A dashed line represents the extra no-beam transition where no vertices are
chosen, which has an objective value of 0 instead of 1. 22

vi

List of Figures

4.2 Example of the two interpretations for the no-beam transition in the graph col-
oring problem. Here, vertex vi can be colored with colors 1, 2, 3, or k+1. A
beam width of 1 is used here. a) Interpretation 1, where the decision is deferred.
b) Interpretation 2, where the leftover options are merged (resulting in vertex
vi remaining uncolored). Each state shows the eligible colors at that particular
state for the current vertex. A dashed line represents the no-beam transition.
The variable decisions are shown with numbers in the transition lines, indicat-
ing the color to assign to the current vertex (or -1 for the no-beam transition).
The color assignment of vi (normally tracked in A) is indicated in the boxes
below the graphs. 24

4.3 Example of an MDD (for the MISP example in Fig. 3.1) restricted with a beam
width of 2, following the new dynamic variable ordering. Each state in the
MDD shows the remaining subgraph at that particular state. The variable deci-
sions are shown with numbers in the transition lines, indicating which vertex is
chosen to be included in the independent set. A dashed line represents the extra
no-beam transition where no vertices are chosen, which has an objective value
of 0 instead of 1. 28

5.1 Comparison of static variable orderings using the: a) MDD encoding with a
beam=4, b) BDD encoding. The total number of B&B nodes is measured across
different input graph densities from 0.1 to 0.9, with an initial graph size of 100
and a timeout of 1 hour. 33

5.2 Comparison between the BDD encoding and the MDD encoding with various
beam widths. Measured in a) execution time in seconds, b) total B&B nodes
used. Both plots are measured across different input graph densities from 0.1
to 0.9, with an initial graph size of 100 and a timeout of 1 hour. 35

5.3 Visualization of the effects of the beam restrictions on the MISP. Two aspects of
constructing a relaxed decision diagram for the MISP are shown: the number of
merge operations and the number of state transitions. Various beam restriction
widths are compared, alongside the original method without any beam restric-
tions. 36

5.4 Comparison between the behaviour of various beam widths on the depths of
decision diagrams for a) the MISP, b) the graph coloring problem. This is mea-
sured across different input graph densities, with an initial graph size of a) 100,
b) 50 and a timeout of 1 hour. 38

5.5 Runtime of various beam widths for the graph coloring problem without spe-
cial consideration for it being a minimization problem (i.e. without custom
weights for no-beam transitions). This is measured across different input graph
densities, with an initial graph size of 50. Beam=1 is left out of the plot because
of many instances reaching the maximum time limit of 1 hour. 39

vii

List of Figures

5.6 Comparison between various beam widths applied to the graph coloring prob-
lem with extra measures for minimization problems. Measured in a) execution
time in seconds, b) total B&B nodes used. Both plots are measured across dif-
ferent input graph densities from 0.1 to 0.9, with an initial graph size of 50 and
a timeout of 1 hour. 39

5.7 Visualization of the effects of the beam restrictions on the graph coloring prob-
lem. Two aspects of constructing a relaxed decision diagram for the graph
coloring problem are shown: the number of merge operations and the number
of state transitions. Various beam restriction widths are compared, alongside
the original method without any beam restrictions. 40

5.8 Comparison between the static and dynamic max degree variable ordering for
the state-based MDD encoding. Additionally, the BDD encoding is shown us-
ing the static max degree ordering. Measured in a) execution time in seconds,
b) total B&B nodes used. Both plots are measured across different input graph
densities from 0.1 to 0.9, with an initial graph size of 100 and a timeout of 1 hour. 42

5.9 Performance of state-based B&B with and without the new local bound. When
the new local bound is not applied, the default local bound by Gillard et al. [20]
is applied. Static max cliques and the static and dynamic max degree variable
orderings are used. Measured in a) execution time in seconds, b) total B&B
nodes used. Both plots are measured across different input graph densities from
0.1 to 0.9, with an initial graph size of 100 and a timeout of 1 hour. 43

viii

Chapter 1

Introduction

Decision diagram-based optimization (DDO) [7] is the field that uses decision diagrams
to represent and solve (combinatorial) optimization problems. While decision diagrams
have been around for a long time, mainly being used to represent problem structures, they
increasingly have been used in optimization by creating bounds. With the introduction of
decision diagram-based Branch & Bound, it has become possible to actually solve NP-hard
problems and compete with other state-of-the-art solvers. This method works similarly to
the Branch & Bound algorithm used in e.g. mixed integer linear programming [28], using
upper and lower bounds from decision diagrams to search and prune the state space.

However, while the DD-based solvers have improved significantly over time, most ap-
plications still use the same layer-based structure for their decision diagrams. This is often
in the form of a layer-based decision diagram encoding, in the case of this thesis, a layer-
based binary decision diagram (BDD). Here, the search is structured in layers, and each
layer considers a specific decision variable of the optimization problem. However, this
means that decisions are restricted to each layer, and all states in the layer have to decide on
the same variable, which may not always be optimal. Sometimes the chosen variable is not
even relevant to a state in the layer, leading to redundant transitions being made.

Recently, state-based decision diagram solvers have been explored, no longer relying on
the commonly used layered architecture. Now, with state-based DDs, decisions are made
per state and are no longer restricted to layers, making decisions more flexible and elimi-
nating the need for pointless transitions. In the context of this thesis, we will specifically
look at a state-based multivalued decision diagram (MDD).

As such, the main question this thesis will try to answer is the following:

Can a state-based MDD encoding surpass the commonly used layer-based BDD en-
coding? What heuristics can further improve this MDD encoding?

This can be broken down into several subquestions:

1. What does the state-based MDD encoding do differently compared to the layer-based
BDD encoding? And do these differences positively impact the performance?

1

2. Each state does not necessarily have to expand with all available decision options. A
“beam search”-like restriction could be applied to manipulate the rate at which the
decision diagram expands. What kind of effect would different beam sizes have on
the performance of the state-based MDD encoding?

3. Could a dynamic variable ordering strategy exploit the flexible state-based structure
of the MDD encoding? How would this compare to various static variable ordering
strategies?

4. What would the effect be on the state-based MDD encoding if we improve local
bound pruning? What if it was combined with the new dynamic variable ordering
strategy?

The maximum independent set problem (MISP) will be specifically considered and used as
the main example throughout this thesis. Some of the heuristics will also be applied to the
graph coloring problem to explore their behaviour on a different problem domain.

The contributions of this thesis are as follows. We compare the state-based MDD encod-
ing with the layer-based BDD encoding. Furthermore, we introduce multiple heuristics to
improve the MDD encoding: a “beam restriction” heuristic and a dynamic variable ordering
strategy. Finally, we present an improved local bound for the MISP.

We show that the MDD encoding outperforms the BDD encoding for most instances
of the MISP in runtime and search tree size. The instances where the state-based MDDs
are slower, are those with a low input graph density. The new beam restriction heuristic
can speed up the search, such that the state-based MDDs end up faster than the layer-based
BDDs. The speedup that the beam restrictions bring is also seen with the graph coloring
problem, after some modelling modifications. The performance with the MISP can be fur-
ther improved with the new local bound for the MISP, especially when used alongside the
new dynamic variable ordering strategy.

The next chapter, Chapter 2, explores the related advancements and implementations
in literature. Afterwards, Chapter 3 explains the necessary background information for the
rest of this thesis. Chapter 4 covers the main contributions of this thesis. Chapter 5 presents
the results of the performed experiments, which are then further discussed in Chapter 6.
Finally, the main conclusions and future work can be found in Chapter 7.

2

Chapter 2

Related Work

With the introduction of approximate decision diagrams (DDs), the use of decision diagrams
in optimization has become more promising as more improvements and applications are
discovered. This chapter discusses the main advancements and relevant applications of
these approximate DDs in literature.
The questions that this chapter aims to answer are:

• How did approximate decision diagrams develop over time?
• How did this result in a DD-based Branch & Bound (B&B) algorithm?
• What heuristics and improvements have been presented and what are their benefits

and drawbacks?
• What problems were these methods used for and how well did they perform compared

to other methods?
• How much have state-based decision diagrams been explored, as opposed to the reg-

ular layer-based decision diagrams?
• Is there still a gap in research which this thesis can explore and possibly answer?

To find the relevant literature, a combination of Google Scholar and secondary sources
were used. The main secondary sources were surveys by Castro et al. [12] and van Hoeve et
al. [42]. For Google Scholar, examples of queries that were used (in various combinations
with each other) are: “relaxed decision diagrams”, “heuristics”, “decision diagram-based
branch and bound”, “variable ordering”. To determine the relevance of a paper, the abstract
was read, followed by the introduction and conclusion. If the paper was indeed relevant
to the questions listed before, other chapters (such as the method and experimental results)
were scanned or read.

Section 2.1 covers the conception and iterative improvement of relaxed and restricted
DDs and the bounds they provide. Afterwards, Section 2.2 goes over how these approximate
DDs are used in a DD-based Branch & Bound (B&B) algorithm, which has been modified
and improved over time.

Similarly to the works covered in this chapter, this thesis aims to improve the bounds
and performance of approximate DDs (within a DD-based B&B algorithm). However, most
of the works mentioned in this chapter rely on layer-based DD encodings of optimization

3

2.1. Approximate Multivalued Decision Diagrams

problems (where decision variables are chosen per layer), while this thesis focuses on opti-
mization problems represented by a state-based DD encoding instead (where decision vari-
ables are chosen per state).

2.1 Approximate Multivalued Decision Diagrams

In 2007, Andersen et al. [2] proposed the idea of relaxed decision diagrams for constraint
programming, whereafter Bergman et al. [3] applied them on optimization problems. Bergman
et al. discovered that these relaxed DDs can be used to find a dual bound on the solution.
And unlike exact DDs, relaxed DDs do not grow exponentially large. An exact DD has to
represent the entire solution space, which can become exponentially large in the worst case
when dealing with NP-hard problems. Relaxed DDs can limit the size of the diagram by
relaxing the problem, making for a reliable way to obtain a dual bound. Bergman et al. also
introduce a top-down construction method for the construction of the relaxed MDDs, where
layer after layer is constructed, ensuring each layer stays within the maximum width. They
show that the dual bounds from relaxed MDDs are promising in the context of optimization
and that they can outperform the commonly used linear programming (LP) bounds.

Cire and van Hoeve [13] utilized the bounds from relaxed MDDs for scheduling prob-
lems, such as constraint-based scheduling. They show that these relaxed MDDs can signif-
icantly improve state-of-the-art solvers while keeping their generality.

Furthermore, they presented a method to construct relaxed DDs incrementally, instead
of the top-down construction from Bergman et al. [3]. This method was adapted from
Hadzic et al. [23] and Hoda et al. [24], who used approximate MDDs for constraint pro-
gramming. The method starts from a 1-width MDD, whereafter nodes are split until each
layer is exact or has reached its maximum width. Infeasible and suboptimal edges are fil-
tered out in the process.

Shortly after the introduction of relaxed DDs, Bergman et al. [6] introduced their coun-
terpart: restricted DDs. The restricted DDs under-approximate the set of feasible solutions
and give a primal bound on the solution. These bounds converge to the optimal solution,
while the DD itself is easy to construct. They applied the restricted DDs to set covering and
set packing problems and compared their performance to that of a state-of-the-art integer
programming (IP) solver. The restricted DDs outperformed the latter in certain cases with
the set covering problem and worked especially well on the set packing problem.

Kinable et al. [31] combined the use of discrete relaxations from MDDs with continuous
relaxations from LP, to be used within a constraint programming (CP) framework. Specifi-
cally, they use dual information from the LP relaxations to strengthen the MDD relaxations.
The MDDs are integrated into the CP model to incorporate more information about the se-
quencing problems. This is done by making a global constraint, which is called for each
search node to construct a relaxed MDD for a dual bound. The domains of the variables in
the CP model are given to the MDD to remove unnecessary edges pre-emptively. The aim

4

2.1. Approximate Multivalued Decision Diagrams

is to be able to factor in several complex side constraints, such as time windows and prece-
dence constraints. The method was tested on various time-dependent traveling salesman
problems (TDTSP) and improved upon regular mixed-integer linear programming (MILP)
and CP models.

Cappart et al. [11] used deep reinforcement learning to find variable orderings that can
improve the bounds on relaxed and restricted DDs. The order in which variables are ex-
plored can significantly impact the efficiency of decision diagrams [5]. Deep learning is
used, as the problem is too complex and the search space is too large for regular reinforce-
ment learning. Deep reinforcement learning is able to generalize what it has learned to
states that it has not had the chance to visit yet. The method is compared to other estab-
lished variable orderings and seems to outperform them in certain contexts. However, it
needs an estimate of the density of the input graphs during training, which makes it less
general for practical use.

Maschler and Raidl [33] compared the regular top-down construction of the relaxed
DDs [3] with constructing the relaxed DDs with incremental refinement [13]. For this,
the approximate DDs computed bounds for a prize-collecting sequencing problem, the PC-
JSOCMSR from Horn et al. [26] (the prize-collecting variant of the job sequencing with
one common and multiple secondary resources problem). Both construction methods seem
to perform similarly, except for instances with skewed distributions, where the incremental
method works best.

Horn et al. [27] continued with constructing approximate MDDs for the PC-JSOCMSR.
Similarly to this thesis, they move away from the usual layer-based approach and opt for
a state-based approach instead. For the construction of the relaxed MDDs, the nodes are
put in a priority queue with a dual bound heuristic, inspired by the A* algorithm. Similar
nodes are merged when this queue gets too large, allowing for merging between layers (if
the MDD were to have layers). Moreover, they speed up the construction of the restricted
DDs by reusing the already constructed relaxed DDs. From their experiments, the new
construction method generally outperforms the other common construction methods (top-
down and iterative refinement) for the approximate DDs.

Overall, the approximate DDs have been studied and improved steadily over the years.
They have been used in a good number of applications, as they are general techniques that
can provide strong bounds on various problems. Future research could be done on com-
bining these approximate DDs with other methods such as LP, CP and deep reinforcement
learning. Furthermore, research on state-based decision diagrams (e.g. the A* approach by
Horn et al. [27]) is still limited, since most applications of approximate DDs use the stan-
dard layer-based architecture. This further motivates the need for exploration around these
state-based DDs, which this thesis aims to do.

5

2.2. Decision Diagram-Based Branch & Bound

2.2 Decision Diagram-Based Branch & Bound

After the introduction of relaxed DDs, Bergman et al. [7] proposed a decision diagram-
based Branch & Bound (B&B) algorithm in 2016. It adapts the well-known Branch &
Bound algorithm, used in e.g. mixed integer linear programming (MILP) [28], by using re-
laxed and restricted DDs (from Section 2.1) to provide the bounds instead of LP relaxations.
They found their method to be competitive with a state-of-the-art IP solver. Furthermore,
they showcase their method to be parallelizable, suitable for solving in a distributed setting.
The algorithm is further explained in Section 3.7, as this thesis will explore the use of this
DD-based B&B scheme and the approximate DDs used within.

Gillard et al. [20] improved this DD-based B&B algorithm by introducing two new
techniques to accommodate better pruning. First, local bound pruning (LocB) creates local
upper bounds for each node in the exact cutset of the relaxed DD. This can then be used to
prevent nodes from being put in the priority queue and to immediately prune nodes coming
out of the priority queue when possible.

Additionally, rough upper bound pruning (RUB) uses upper bounds to discard nodes
while compiling the relaxed and restricted DDs. Thus, ruling out nodes before they are cre-
ated and expanded while also allowing more room for nodes to fit in the maximum width.
Though, the computational cost of the RUB needs to be very small, as it is computed for
every single node of the approximate DDs. It also requires a problem-specific implementa-
tion. The two techniques show promising results individually, and even better results when
both are used simultaneously. A similar method to RUB is present in the CODD framework,
which is used in the experiments of this thesis.

Rudich et al. [39] proposed an alternative to B&B, peel-and-bound, by peeling off sub-
graphs of already constructed relaxed DDs and reusing them as starting points for con-
structing new relaxed DDs. Instead of a regular top-down construction of relaxed DDs [3],
the incremental construction method from Cire and van Hoeve [13] is used instead. With
peel-and-bound, Rudich et al. aim to reduce the repetition of filtering the same edges af-
ter splitting a node in the incremental construction method. Subgraphs are peeled off and
stored, while new relaxed DDs are created from these subgraphs instead of a 1-width MDD.
They show that peel-and-bound outperforms B&B on the sequence ordering problem (SOP)
and allows for larger scale relaxed DDs by lowering the cost of generating the diagram iter-
atively.

A year later Rudich et al. [40] revisit peel-and-bound, generalizing the method, while
introducing new (general) heuristics for peel-and-bound. In addition to the previously ex-
plored SOP, they show it performing well on the traveling salesman problem with time
windows (TSPTW).

González et al. [22] combined the DD-based B&B algorithm and integer linear pro-
gramming (ILP) to solve the maximum independent set problem (MISP) and other prob-
lems. In this work, instead of solely relying on DDs to solve the complete problem, it uses
DDs to explore and extract subproblems. Subproblems of the DD vertices are either solved

6

2.2. Decision Diagram-Based Branch & Bound

with B&B (as with regular DD strategies) or ILP. Supervised machine learning is used to
detect which of the two methods is better suited to expand certain vertices.

Parjadis et al. [38] continued the work by Cappart et al. [11] (Section 2.1), using deep
reinforcement learning to find variable orderings for the approximate DDs. In this work,
deep reinforcement learning is integrated into the B&B search. They show great improve-
ments in efficiency (as the B&B search tree is smaller, consisting of fewer nodes) when
solving instances of the MISP. However, the execution time is significantly increased, due
to the overhead from multiple calls to the deep reinforcement learning network. An attempt
at reducing the overhead is made by caching and reusing data, but it seems to not be enough
to overcome this overhead.

Nafar & Römer [36] presented two new heuristics to improve the bounds of the relaxed
DDs used in the decision diagram-based B&B algorithm. Firstly, they introduce a dynamic
variable ordering called Current Degree Sum (CDS). The method looks at the remaining
subgraphs of each state in the decision diagram. It uses a new concept called the “current
degree” of the eligible vertices i.e. their local degree in the subgraph of a state. Across a
whole layer, the “current degree sum” of a vertex is the total sum of its current degrees in
that layer. With this, the variable ordering strategy they propose is to select the vertex with
the minimum current degree sum per layer.

Secondly, they present a merge heuristic called Border Tie (BT) merging. When a
relaxed DD has to merge nodes, instead of merging all the worst nodes falling outside of the
maximum width, it first finds and merges nodes with a similar objective value to the nodes
on the cutoff point induced by the width. As such, information from still viable nodes is
preserved instead of being merged with potentially useless nodes.

Their experiments, using MISP instances, show improved bounds when either method
is used and even better performance when both are used simultaneously.

This thesis will also look at dynamic orderings similar to CDS, but with a state-based
MDD encoding for the MISP instead of a layer-based BDD encoding. With a state-based
MDD, a dynamic ordering may have even more potential, as variable decisions are made
for each state rather than each layer. Though, more reordering takes place, as the vertices
need to be reordered per state instead of per layer.

DD-based B&B has proven itself to be a viable method to solve discrete optimization
problems, especially with the introduction of various improvements and heuristics. Hybrid
approaches with ILP and deep reinforcement learning are also promising, which may lead
to further research in the future. Similarly to the previous Section 2.1 though, state-based
decision diagrams have not been fully explored within a DD-based B&B algorithm. Fortu-
nately, further research is made simpler with the newly introduced CODD framework [34],
which is made with state-based DD-based B&B as its focus. This makes it more acces-
sible to implement state-based B&B models. Thus, the aim of this thesis is to use this
opportunity to further explore state-based B&B. This is partly done by learning from these
existing advancements to layer-based B&B, modifying and applying some of them to this
new state-based architecture.

7

Chapter 3

Preliminaries

This chapter covers several related concepts that serve as the foundation for the rest of the
paper. The concept of decision diagrams is explained in the next section, Section 3.1. Fol-
lowing this, the maximum independent set problem is defined in Section 3.2, with its Binary
Decision Diagram (BDD) and Multi-Valued Decision Diagram (MDD) encoding covered in
Section 3.3 and 3.4 respectively. The graph coloring problem is also briefly explained along
with its MDD encoding in Section 3.5. Afterwards, Section 3.6 discusses approximate deci-
sion diagrams, relaxations of the regular decision diagrams. These are used in the decision
diagram-based Branch & Bound algorithm, further explored in Section 3.7. Heuristics for
the Branch & Bound method, variable ordering and local bound pruning, are covered in
Section 3.8 and 3.9. Finally, a somewhat different method, the beam search algorithm, is
explained in Section 3.10. This algorithm served as inspiration for a new method introduced
in this thesis.

For further insight on the topic of decision diagrams, a recent survey by van Hoeve [42]
is recommended. Castro et al. [12] also published a survey on recent advances surrounding
this topic. Lastly, the paper by Ow and Morton [37] covers the foundations of beam search,
while introducing filtered beam search.

3.1 Decision Diagrams

Decision diagrams (DDs) started as simple graphical representations, mainly used for Boolean
functions (for example, by Akers in 1978 [1]). However, more recently, they have also been
used in optimization [12], e.g. scheduling [13], routing [31], and regionalization [21]. Fur-
thermore, with the introduction of relaxed decision diagrams in 2007 by Andersen et al. [2],
a decision diagram-based Branch & Bound algorithm was presented by Bergman et al. [7]
in 2016. This, similarly to existing Branch & Bound algorithms, utilizes upper and lower
bounds to solve problems efficiently (further explained in Section 3.7).

A decision diagram (as described by Castro et al. [12]) is a (weighted) directed acyclic
graph or DAG D = (N,A), with a node set N and an arc set A. Unlike search trees, a DAG
allows nodes to have more than one parent node. Each arc a ∈ A represents a transition
between nodes in consecutive layers. The root node r ∈ N is the initial node (situated in the

8

3.2. The Maximum Independent Set Problem

first layer), and the leaf nodes t ∈N are the terminal nodes (all nodes in the last layer). Each
arc in the graph has a label (indicating the decision made) and an arc length. These decisions
form the graph into a layered structure, as for each decision stage, there is a corresponding
layer of nodes in the graph. A path p from the root r to any terminal node t represents a
solution to the problem (consisting of the decisions made by the transitions in the path),
along with its total length corresponding to its objective value. Furthermore, a distinction
between Binary Decision Diagrams (BDDs) and Multi-Valued Decision Diagrams (MDDs)
is made, where at each node a binary or multi-valued decision is made, resulting in each
node having two or any number of outgoing arcs, respectively. Following this, each node
can be expanded starting from the root node, resulting in the whole state-space being rep-
resented in an exact decision diagram. From this, the optimal solution (for a maximization
problem) can be found by taking the longest path p.

The manner in which decision diagrams operate is reminiscent of dynamic program-
ming (DP), where states and state transitions are traversed to efficiently solve the problem.
Hooker [25] even showed how to connect the theory of weighted decision diagrams with
that of DP transition graphs.

The next three sections (Section 3.2, 3.3 and 3.4) define the maximum independent set
problem and show how decision diagrams could be used to encode this problem in different
ways, either with a BDD or an MDD.

3.2 The Maximum Independent Set Problem

The maximum independent set problem (MISP) [19], a well-known NP-Hard problem, is
the main example problem considered in this thesis.

Given a graph G = (V,E), with a set of vertices V and a set of edges E, the aim of the
MISP is to find the maximal subset of vertices Z ⊆V , such that no vertices in Z are directly
connected to each other by an edge in E.

Figure 3.1 shows an example of a graph G with five vertices. The optimal solution for
this instance of the MISP is the following set of vertices: {1, 4, 5}. These vertices are
not neighbours of each other. Including either vertex 2 or 3 would not be allowed, as they
are directly connected to some of the vertices that are already in the set. Any other set of
vertices would either violate the rules of the problem or be smaller than the optimal solution.

Figure 3.1: Example of an input graph for the maximum independent set problem (MISP). Each
vertex is labelled with a number shown in each centre.

9

3.3. A BDD Encoding For the MISP

3.3 A BDD Encoding For the MISP

The MISP is commonly encoded with a Binary Decision Diagram (BDD) [4], where each
state contains a set of eligible vertices S⊆V . A BDD can be seen in Fig. 3.2, encoding the
example problem of the MISP in Fig. 3.1. For the ith layer Li, a vertex vi is chosen according
to the variable ordering strategy assigned at the start. Then, all nodes (i.e. states) in layer
Li make the decision to include or exclude vi in the solution. This is done by each state
transitioning to two other states (one transition for including vi, one transition for excluding
vi). These transitions follow the state transition function f (S,vi) seen in Equation (3.1).

f (S,vi) =

{
S\{N(vi),vi} if include vi in solution
S\{vi} if exclude vi from solution

(3.1)

If vi is included in the solution, vi and all adjacent vertices are excluded from the set
of eligible vertices S (since no adjacent vertices are allowed in the independent set of the
MISP). If instead, vi is chosen not to be included in the solution, it transitions to the state
where only vi is excluded from S. This is repeated until no further decisions can be made
(when the set of eligible vertices S is empty). A more detailed DP model can be found in
Appendix A.1.2.

Note that it is possible that a state in Li does not contain vi. In these cases, the state does
not make a transition to include vi, only making the transition where it excludes vi (to an
identical state, as no changes are made to the set of eligible vertices).

There are some BDD variants with arcs that traverse multiple layers (by skipping unnec-
essary layers). One such example is Minato’s Zero-Suppressed BDD [35], which eliminates
nodes that point to the terminal node. These decision diagrams can become more compact,
though they still follow the same decision-making as regular BDDs.

10

3.4. An MDD Encoding For the MISP

Figure 3.2: Example of an exact BDD for MISP example in Fig. 3.1. Each state in the BDD shows
the eligible vertices available at that particular state. The variable decisions are represented on the
left, indicating which vertex is chosen for each layer. The solid lines represent the choice to include
the chosen vertex of that layer, while the dashed line represents the choice of not including it.

3.4 An MDD Encoding For the MISP

While the MISP is commonly encoded with a BDD as described in Section 3.3, another way
to encode the MISP is with a Multi-Valued Decision Diagram (MDD), introduced by Curry
et al. [15]. An example of an MDD for the example MISP instance from Fig. 3.1 can be seen
in Fig. 3.3. In a BDD, for each state S in a layer, the decision is made to include or exclude a
single vertex in the independent set. However, with an MDD, a state S makes |S| transitions
to other states, where each transition represents the decision to include a different eligible
vertex in the independent set. The transitions follow the state transition function f (S,vi)
seen in Equation (3.2).

f (S,vi) = S\ (N(vi)∪{v1, ...,vi}) ∀vi ∈ S (3.2)

where N(vi) indicates the set of neighbors of vertex vi. Again, each transition represents
including a vertex vi from state S in the solution. Including a vertex vi ∈ S in the solu-
tion excludes vi and the neighboring vertices N(vi) from the next state according to the
rules of the MISP. Additionally, the state S is sorted, meaning vertices with a lower num-
bered label v1...vi−1 can be excluded for symmetry breaking (hence why the set of vertices
{v1, ...,vi} is removed from S in the transfer function). The full DP model can be found in
Appendix A.1.2.

11

3.5. The Graph Coloring Problem

With this encoding, decisions are not confined to the layered structure like with a regular
BDD. Decisions depend entirely on each individual state, rather than being the same for a
whole layer. As such, more informed decisions can be made locally. This also avoids the
cases in a BDD, where a decision is made for a certain variable vi across a whole layer,
while some states in that layer may not contain vi. For these states, only the decision to
exclude vi is possible and as such, a redundant transition is made (generating an identical
state).

Figure 3.3: Example of an exact MDD for MISP example in Fig. 3.1. Each state in the MDD shows
the eligible vertices available at that particular state. The variable decisions are shown with numbers
in the transition lines, indicating which vertex is chosen to be included in the independent set.

3.5 The Graph Coloring Problem

Another NP-hard problem that is used in some of the experiments in this thesis is the graph
coloring problem [30]. Given a graph G = (V,E), with the sets of vertices V and edges E,
each vertex can be assigned a color. An assignment of colors where no adjacent vertices
share the same color is called a “vertex coloring”. The aim of the problem is to find the
chromatic number χ(G), i.e. the minimum number of colors needed to create a valid vertex
coloring for the graph G.

This thesis adapts the MDD encoding used in the CODD framework [34]. Each state S
in the MDD tracks the color assignment for the already covered vertices. For each vertex
vi ∈ V , its set of available colors Ci is considered. Ci consists of all k previously assigned
colors plus a new color k+1, minus the colors of neighbouring vertices. The current state
Si makes a transition for each available color in Ci, where each transition assigns a different
color to vi in the next state Si+1. A more detailed DP model for the graph coloring problem
can be seen in Appendix A.2

12

3.6. Approximate Decision Diagrams

Figure 3.4 shows an example of a state transitioning into other states when following
this MDD encoding. At the top of this example is a partially colored graph where vertex
v5 still needs to be assigned a color. The state makes a transition for each color in C5 =
{0,1,3}. The previously assigned colors are {0,1,2} and the next color 3 is also considered.
However, the neighbour v2 already has color 2, which invalidates that color for v5.

Figure 3.4: Example of the behaviour of the MDD encoding for the graph coloring problem. A
partially colored graph is considered, where v5 needs to be assigned a color. Each vertex is labelled
with a number shown in each centre. The available colors are shown in the table below the graph.
The coloring number χ(G) is shown for each graph.

3.6 Approximate Decision Diagrams

Often it is infeasible to use only exact decision diagrams to represent the state space to
solve a particular problem. The state space is usually exponential in size, so the diagram
will grow accordingly. Therefore, approximate diagrams are used to make traversing the
state space more feasible.

Approximate decision diagrams can be either a relaxed decision diagram or a restricted
decision diagram. Both types restrict each layer of the decision diagram with a maximum
allowed width, a maximum number of nodes per layer.

A relaxed decision diagram does this by merging nodes in a layer until the maximum
width is achieved. The merge is allowed to introduce infeasible solutions, as long as no
feasible solutions are lost and the objective function is dual-approximated (i.e. the approx-
imate solution or path from root to terminal is not worse than the exact solution or path).
Therefore, the relaxed solution space is a superset of the original solution space, resulting
in a dual bound on the solution.

13

3.7. Branch & Bound

Alternatively, a restricted decision diagram adheres to the maximum width by removing
the least promising nodes, losing feasible solutions while still guaranteeing that the remain-
ing solutions remain feasible. This results in a subset of the original solution space and a
primal bound on the solution.

It is worth noting that merging or removing exact nodes does not always have to result
in adverse effects. This is the case with node domination. Node n1 dominates node n2 iff
any partial solution after n2 can also be applied after n1, while n1 has the same or a better
objective value than n2 [14]. In the special case that a node dominates another node, the
dominated node can be removed without preventing the optimal solution from being found.

Furthermore, the MDD encoding of the MISP explained in Section 3.4, does not actually
use the concept of layers. As such, to still group states similar enough to be merged together,
Curry et al. [15] propose a merge condition where states are only merged if they share the
same last selected vertex. For this thesis however, we define the merge condition to allow
states to only merge if they have made the same number of transitions from the root state.
This is functionally the same for the regular MDD encoding. However, the latter works
better for one of the new methods introduced in this thesis (beam restrictions).

3.7 Branch & Bound

Bergman et al. [7] introduced a decision diagram-based Branch & Bound algorithm, which
can be used to compute the exact solution using these approximate decision diagrams. A
general outline of the algorithm can be seen in Alg. 1. First, the initial state of the problem
is represented in the root state (line 2). This state is put into the priority queue Q, which
keeps track of the unexplored states.

For each iteration of the loop, the next state S is popped from Q according to the objec-
tive function (line 4). A restricted and relaxed DD is constructed from S to get a primal and
dual bound respectively (lines 5 & 6). Additionally, an exact cutset C is extracted from the
relaxed DD. This means that all nodes in C are exact (not merged) and that every path in
the relaxed DD from the root vertex to a leaf vertex has to pass through one of these nodes
in C (i.e. to get any possible solution, the path has to pass through a node in C). Because of
this, and the fact that the nodes in C are independent of each other, the completeness of the
algorithm is ensured [7]. The CODD framework (a layerless framework used in this thesis)
uses a method similar to the frontier cutset [7], where the cutset C consists of all exact nodes
where after the next decision step, any of the nodes are merged if needed [34].

If the dual bound is smaller than the primal bound, the state S is non-optimal and can
be pruned (line 7). Otherwise, all states S′ in the cutset C are added to Q (line 8), serving as
new starting points to explore further. Then, the next iteration begins, popping a new state
from Q. Once Q is empty, the entire search space has been sufficiently explored and the
problem has been solved.

14

3.8. Variable ordering heuristics

Algorithm 1 Outline of DD-based B&B
Input: w = maximum width

1: Initialize empty priority queue Q
2: Add root state to Q
3: while |Q|> 0 do
4: Pop state S from Q (according to objective function)
5: Create restricted DD to get primal bound
6: Create relaxed DD to get dual bound and exact cutset C
7: if dual bound > primal bound then
8: for each state S′ in C do
9: Add S′ to Q

10: end for
11: end if
12: end while

3.8 Variable ordering heuristics

The order in which the vertices are selected is one of the most important factors in deter-
mining the efficiency of decision diagrams. This is already well-known for BDDs, as it has
a big influence on the final width (and therefore size) of the BDD, as well as the strength of
the bounds of relaxed BDDs [4, 5]. However, finding the optimal ordering is also known to
be an NP-complete problem [8], hence why variable ordering heuristics are often used.

There are two main variants of variable orderings: static and dynamic. Static variable
orderings precompute a variable ordering before any search is done. This means that it only
has to compute an ordering once, making it relatively cheap to compute in the long run.
However, as a result, it can only rely on the limited information available from the initial
problem state, which may be less relevant to a state encountered later on during search. On
the other hand, the dynamic variable orderings change the order of the variables while ex-
ploring the search space. It has information on the current state during search, which allows
for better decision-making on the go. Though, keeping track of this information dynami-
cally introduces more complexity and overhead, which may be more time-consuming than
the efficiency gained with the improved decision-making.

This thesis explores the effect of various variable ordering heuristics on the performance
of state-based MDD encodings. This is done for the MISP as our main running example.
The following existing static variable orderings for the MISP are considered in the experi-
ments of this thesis:

Maximum Degree

This is a straightforward variable ordering, where the vertex with the maximum degree is
repeatedly selected. After a vertex is selected, it is removed from the graph and the degrees
of the neighboring vertices are updated accordingly.

15

3.8. Variable ordering heuristics

Min Width

Remove the vertex with the minimum degree from the graph, removing any edges it may
share with other vertices [17]. Then add it in front of any previously selected vertices in the
ordering (s.t. the first vertex removed from the graph will be considered last in the ordering).
Repeat until the graph is empty.

Maximum Connectivity

Repeatedly select an unselected vertex that shares the most edges with other previously
selected vertices [41]. To break ties, select the vertex with the maximum degree among the
tied vertices.

Maximal Paths

Create a maximal path by selecting a vertex in the graph [4]. Then extend the tail of the
path by repeatedly including an unselected neighbouring vertex (sharing an edge with the
tail) to the path, attaching it to the tail, and becoming the new tail. Repeat until this is no
longer possible, after which the head of the path is extended in a similar matter. Whenever
any vertex (including the first one) is added to the path, it is also added to the ordering in
the same order. When both the head and the tail of the path cannot be extended further, it
has become a maximal path. The maximal path is removed from the graph. Create new
maximal paths in the same way until the graph is empty.

Maximal Cliques

Start creating a clique by selecting the vertex with the maximum degree [29]. Add vertices
that can maintain this clique, until this is no longer possible. Create new cliques in a sim-
ilar manner by selecting the next unselected vertex with the maximum degree, eventually
creating a maximal clique decomposition of the graph. Finally, add the largest clique to
the ordering, then iteratively add the clique that shares the most edges with the previously
added clique.

3.8.1 Graph Coloring

Aside from the MISP, where different variable orderings are compared in this thesis’ exper-
iments, the graph coloring problem is also considered in other experiments of this thesis.
For the graph coloring problem, the experiments use the DSATUR variable ordering strat-
egy by Brélaz [10], which is specifically made for the graph coloring problem. It uses the
“saturation degree” of the vertices to order them, hence the name DSATUR.

DSATUR

Take the vertex with the maximum degree and give it color 1. Then, for each iteration,
select an uncolored vertex with a maximal saturation degree, i.e. the vertex adjacent to
the largest number of different colors. To break ties, select the vertex with the maximum

16

3.9. Local Bound Pruning

degree. Give the selected vertex the lowest possible color (such that it shares no color with
the neighbouring vertices). Repeat until all vertices are colored. The order in which the
vertices were selected determines the variable ordering used in the B&B algorithm.

3.9 Local Bound Pruning

Another effective heuristic for B&B search is local bound pruning, which allows for early
pruning and reducing the solution space during search. This technique is introduced by
Gillard et al. [20] under the name “rough upper bound pruning”, but since this thesis mainly
uses the CODD framework [34], we use their terminology of “local bound pruning” instead.
With an already computed lower bound (from a restricted DD), an approximate upper bound
can be computed for the next state to determine if they can be pruned before being created.
This also means that nodes pruned by this method do not count towards the maximum width
of the approximate DDs, leaving more room for more promising states. The approximate
upper bound is problem-specific though. It also needs to be fast to compute, as it is com-
puted for every node in the approximate DDs.

As an example, the local bound Gillard et al. [20] give for the MISP is shown in Theo-
rem 1. The theorem is modified by removing the weight of vertices, as this thesis focuses
on an unweighted version of the MISP.

Theorem 1. Given a graph G = (V,E), the size of any maximum independent set in G, the
independence number α(G), is upper bounded by:

α(G)≤ |V |

This upper bound follows from the fact that the total set of vertices V of graph G is the su-
perset of the optimal solution for graph G. The upper bound can be applied to any subgraph
of the original problem instance, potentially allowing for early pruning during search if the
subgraph is proven to be suboptimal.

3.10 Beam Search

The following section goes over the beam search algorithm. While not often associated with
B&B search, it served as inspiration for certain modifications made to the method of this
thesis. Beam search is a simple method that restricts the number of paths that are explored
in parallel. This way, it tries to approximately solve the problem while greatly reducing the
memory needed to do so.

Beam search, first introduced in 1976 by Lowerre [32], is a heuristic search algorithm.
It tries to find an approximate solution by only expanding the most promising paths of
the search tree and pruning the rest. By only exploring a fixed number of paths, it be-
comes a polynomial-time algorithm instead of an exponential-time one. This is done in a
breadth-first search manner, as it expands nodes per layer, without backtracking. Notably,
the concept of only exploring promising paths (by keeping a fixed width) while discarding
the rest is similar to that of restricted decision diagrams (explained in Section 3.6).

17

3.10. Beam Search

Fig. 3.5 shows an example of a search tree T . With a beam width k, for each layer of the
tree, only the best k nodes are expanded according to the evaluation function. This is done
layer-by-layer (similar to breadth-first search). The other nodes in the layer are discarded.
As such, only k paths or “beams” are explored at a time and the beam search algorithm be-
comes polynomial in the size of the problem. However, it remains an approximate method,
so it relies on the accuracy of its evaluation function. With a larger k, the risk of accidentally
discarding an optimal solution is reduced, with the downside of increasing the computation
cost.

Figure 3.5: Example of a search tree traversed with beam search. Colored nodes are selected by the
beam search algorithm, uncolored nodes are discarded

Generally, two types of evaluation functions are used to determine which nodes to in-
clude in the beam. “One-step priority evaluation functions” concern themselves only with
the next decision to be made, looking at a local scale. Methods that look at a more global
view, are called “total cost evaluation functions”. These are generally more accurate, but
also more expensive to compute.

A trade-off can be made by introducing a “filter width”, first introduced by Ow and
Morton [37]. All nodes of a layer are evaluated by a cheap local function (one-step priority
evaluation). Then, given a filter width f , only the f best nodes are evaluated by a more
expensive global function (total cost evaluation). Finally, the best k nodes are selected from
these filtered nodes to form the beam.

The method introduced by this thesis, which is inspired by beam search, follows the
notion of prioritizing the most promising paths. However, since we would like to keep
the method exact, we introduce an additional path that preserves the dismissed options.
This makes the new method more of a heuristic to guide the search, rather than an actual
approximation of the solution. The approximation is already covered by the restricted DDs
of the B&B algorithm, which provide a primal bound on the solution.

18

Chapter 4

New Heuristics for Multivalued
Decision Diagrams

Since state-based multivalued decision diagrams (MDDs) have seen limited exploration,
there is still plenty of opportunity for improvement. This chapter introduces several new
heuristics specifically made for these state-based MDDs with the aim of improving their
performance. Chapter 4.1 covers the new “beam restriction” technique, which prioritizes
the most promising paths and makes the most out of the transitions that are made. Next,
a dynamic variable ordering strategy is adapted to fit into this new state-based context in
Chapter 4.2. Finally, Chapter 4.3 presents a new local bound for the maximum indepen-
dent set problem (MISP) that benefits from being used alongside the new dynamic variable
ordering.

4.1 Restricting the MDD Expansion

A Multi-Valued Decision Diagram (MDD) encoding, such as the one for the MISP covered
by Section 3.4, may come with potential benefits over its BDD counterpart. Smarter de-
cisions due to being state-based instead of layer-based can prevent suboptimal transitions.
This also potentially enhances the effect of heuristics such as variable orderings, since they
can now be applied on a state-by-state basis and do not have to compromise between all
states in a layer.

However, the state-based MDD encoding can run into issues with the imposed maxi-
mum width of the approximate DDs used by B&B. This maximum width follows the merge
condition where states are only merged if they have made the same number of transitions
from the root state. With certain problem domains such as the MISP, the rate at which states
expand does not interact well with the maximum width. If the root state S0 expands, it will
generate |V | states (with V being the total number of vertices in the case of the MISP). In
the worst case, each of these states will generate again close to |V | states, etc. The imposed
maximum width of the approximate DDs used by B&B will quickly be exceeded, leading to
an excess amount of state generation and merging. For the MDD encoding to work on prob-
lems like the MISP, there needs to be a way to prevent the branching factor from becoming

19

4.1. Restricting the MDD Expansion

too large to handle.
Other search algorithms with similar issues have tried to limit the exploration rate be-

fore, using techniques such as the beam search algorithm (explained in Section 3.10). Beam
search restricts the number of paths that are explored in parallel, by limiting the number of
states that expand for each layer. Since the MDD encoding is more state-based rather than
layer-based, the restriction would apply to the number of transitions made per state instead
of the number of states per layer. Applying the beam restriction to the MISP encoding gives
the following transition function, described by Equation (4.1). For each state S, instead of
exploring all vertices in S, only the “beam” B, i.e. the best b vertices vi ∈ B, make a tran-
sition to a new state. Additionally, an extra transition, the “no-beam” transition, with label
i =−1 is created to cover the unexplored vertices.

f (S, i) =

{
S\ (M(vi)∪{v1, ...,vi}) if vi ∈ B
S\B if i = -1

(4.1)

The first line of f denotes that for each vertex in the beam vi ∈ B, a transition is made
that includes vi in the solution. Which vertices are put in the beam B is determined by
the variable ordering function applied to the algorithm. Following the MISP, choosing to
include vi in the solution means excluding vi and its neighbors M(vi) from the eligible set
of vertices in future states. And similarly to the old transition function from Equation (3.2),
along with vi, the lower numbered vertices v1, ...,vi−1 are excluded for symmetry breaking.
These are already covered by previous paths since the order of elements in the independent
set does not matter (e.g. the independent set {v1,v2,v3} is the same as the set {v3,v2,v1}).

However, while regular beam search is an approximate algorithm, the aim of our method
is to compute the exact solution. Therefore, each state needs to make an extra transition,
where no vertices are selected to be included in the solution. The extra no-beam transition
with label i =−1 is represented in the second line of f from Equation (4.1). This no-beam
transition only removes the vertices vi ∈ B from future states. As such, it represents all
possible solutions that include none of the vertices vi ∈ B. The exploration of the leftover
vertices is saved for later, in case the exploration of the promising vertices vi ∈ B fails. With
this, all possible solutions are still preserved and encoded by the decision diagram. The
weight of this transition is set to 0 (as opposed to a weight of 1 with the other transitions)
to not interfere with the objective value of the solution. A weight of 0 also makes this a less
desirable option for the solver, ensuring that other transitions are considered first.

Unfortunately, the new no-beam transition does not work as well with the original merge
condition proposed by Curry et al. [15], where states are only merged if they share the same
last selected vertex. If a state followed any no-beam transitions, it would fall behind and
merge suboptimally since its “last selected vertex” would be from a few decisions ago. This
is why for this thesis, the merge condition is changed to only merge states with the same
number of transitions from the root state. As such, the maximum width of the approximate
DDs applies to each series of states that have the same number of transitions from the
root state. This still groups relevant states together for merging while including the states
following the no-beam transitions. Though it makes the method more of a hybrid between
state-based and layer-based compilation.

20

4.1. Restricting the MDD Expansion

How these changes alter the existing construction of relaxed and restricted DDs can be
seen in Alg. 2. The best b vertices are selected with a variable ordering (line 4), after which
(line 5) b+1 states are created (b decisions to include a particular vertex and one decision
to not include any of them). How these changes affect the DP model (mainly the label
generation function and the state transition function) can be seen in Appendix A.1.3.

Algorithm 2 Outline of relaxed/restricted DD construction with beam restrictions
Input: Root state R, beam width b, maximum width w

Definition: Li = Set of states at decision stage i, i transitions from the root
1: i← 0, Add Root state R to L0
2: while |Li|> 0 do
3: for each state S in Li do
4: Select b vertices according to the variable ordering
5: Create b+1 states for each decision + the extra no-beam transition
6: Add these states to Li+1
7: end for
8: if |Li+1|> w then
9: Merge or prune states in Li+1 until |Li+1| ≤ w

(depending on if it is a relaxed or restricted DD)
10: end if
11: i← i+1
12: end while
13: return Completed relaxed/restricted DD (with bounds)

A graphical example of the beam restriction can be seen in Fig. 4.1, where the MISP
example MDD from Section 3.4 is restricted with a beam width b = 2. Notably, at the
expansion of the root node, the number of explored paths is restricted from five to three.
In practice, this reduction would be far greater, as problem sizes are much larger than this
example problem of five vertices, going from |V | paths to b+1 paths.

21

4.1. Restricting the MDD Expansion

Figure 4.1: (a) The original MDD, which can be seen in Fig. 3.3. It is an MDD for the MISP example
in Fig. 3.1. (b) Example of the MDD restricted with a beam width b = 2. Each state in the MDD
shows the eligible vertices available at that particular state. The variable decisions are shown with
numbers in the transition lines, indicating which vertex is chosen to be included in the independent
set. A dashed line represents the extra no-beam transition where no vertices are chosen, which has
an objective value of 0 instead of 1.

4.1.1 The No-Beam Transition

Previously, the no-beam transition was defined as saving the leftover decisions that were
not chosen by the beam for later. However, what does this actually mean and how does this
apply to other problem domains?
The main way the no-beam transitions are interpreted in this thesis is as follows:

1. We defer the decisions that the beam did not cover.

The beam restrictions method was modelled after interpretation 1 for the MISP. No vertices
are included in the independent set, and instead, the options covered by the beam are simply
removed from the eligible set. As a result, the weight of the transition is 0 instead of 1.
However, there is an alternative way to interpret the no-beam transitions:

2. The leftover options are pre-emptively merged together into one state.

For the MISP, the no-beam transition also acts like interpretation 2, as the leftover options
are “merged” into one new state. The only difference with an actual merged state is that
the weight of the no-beam transition is 0, not 1. This is not an issue, since the relaxed
decision diagram will prioritize the options from the beam and the no-beam state can act as
a “pre-emptively merged” state that would result from the excess state creation and merging
whenever the maximum width is reached. Even if the no-beam state is further explored by

22

4.1. Restricting the MDD Expansion

the relaxed DD, the state is still exact and a weight of 0 would still be correct since no vertex
was included in the independent set.

These two interpretations are more distinct when looking at another problem domain, the
graph coloring problem. Here, the two interpretations lead to different models, as one
single model does not reflect both at once like with the MISP. This may result in different
behaviour when applying the beam restrictions on the MISP compared to on the graph
coloring problem, depending on which model is used.

Each state in the graph coloring problem is defined as S = (A,v,k,C), where A is the
color assignments of the already colored vertices, v is the current vertex that needs to be
colored, k is the highest numbered color used so far, and C is the set of eligible colors for
vertex v. First, with interpretation 1, if we simply defer the decisions outside of the beam,
the following transition function applies, as seen in Equation (4.2). Here, c is the label of
the chosen color to assign to vertex vi, or the label for the no-beam transition if c =−1. The
set of colors in the beam is denoted by B. A′ is the resulting color assignment list where
vertex vi is colored with color c.

f (S,c) =


(A′,vi+1,k,Ci+1) if 0≥ c≥ k
(A′,vi+1,k+1,Ci+1) if c = k+1
(A,vi,k,Ci \B) if c =−1

(4.2)

Here, vertex vi is colored with color c for all colors in the beam B. For the no-beam transition
(where c =−1), the new state stays on the same vertex vi, while the eligible colors Ci shrink
by removing the beam B.

Interpretation 2 on the other hand, follows the transition function from Equation (4.3).

f (S, i) =


(A′,vi+1,k,Ci+1) if 0≥ c≥ k
(A′,vi+1,k+1,Ci+1) if c = k+1
(A,vi+1,k,Ci+1) if c =−1

(4.3)

Now, the no-beam transition moves on to the next vertex vi+1 to mimic a regular merged
state. Since this is a pre-emptively merged state, A remains unchanged, as when merging
states with different color assignments for a vertex, the vertex becomes uncolored as a
relaxation. This results in a very optimistic relaxed state, where vi remains uncolored.

A graphical example of the two interpretations can be seen in Figure 4.2, where a beam
width of 1 is used (with an extra transition for the special case of the new color k + 1).
Vertex vi can be colored with colors 1, 2, 3, or a new color k+ 1. Interpretation 1 defers
the decisions that are not covered by the beam of 1. Interpretation 2 merges the remaining
decisions into a relaxed state. For the graph coloring problem, an option could be to treat
the new color k+1 as a special case and keep it separate from the relaxed state.

23

4.1. Restricting the MDD Expansion

Figure 4.2: Example of the two interpretations for the no-beam transition in the graph coloring
problem. Here, vertex vi can be colored with colors 1, 2, 3, or k+1. A beam width of 1 is used here.
a) Interpretation 1, where the decision is deferred. b) Interpretation 2, where the leftover options
are merged (resulting in vertex vi remaining uncolored). Each state shows the eligible colors at that
particular state for the current vertex. A dashed line represents the no-beam transition. The variable
decisions are shown with numbers in the transition lines, indicating the color to assign to the current
vertex (or -1 for the no-beam transition). The color assignment of vi (normally tracked in A) is
indicated in the boxes below the graphs.

Both of these interpretations are natural ways to interpret the behaviour of the no-beam
transitions. Interpretation 1 is more common from an AI heuristic search perspective, where
custom labels are introduced to denote specific actions. An example of this is the giant-tour
representation of vehicle routing problems by Funke et al. [18], which uses special labels
for partial moves such as opening and closing trucks. Interpretation 2 leans more towards
a decision diagram perspective, as it essentially follows the main idea of a relaxed decision
diagram and relaxes the problem even further.

It is more likely for interpretation 2 to prevent excess state creation and merging, as it al-
lows for far fewer states to be created by making this pre-emptively merged state. However,
one critical problem with interpretation 2 lies with the implementation of the method. As
this thesis implements its models in the CODD framework [34], CODD treats the no-beam
state as an exact state instead of a relaxed state. This can be problematic, as it interferes with
the frontier cutset of the Branch & Bound algorithm. This cutset would be able to include
these relaxed no-beam states, while it should only contain exact states. Currently, it is not
possible to define these no-beam states as a relaxed state at the modelling level. It would
require changing the internal design of CODD to directly implement the beam restrictions
to follow interpretation 2. Since we focus on the modelling level in this thesis, we cannot
currently implement interpretation 2. Therefore, we will focus on interpretation 1 for the
graph coloring problem in this thesis and recommend the developers of CODD to consider
interpretation 2 in the future as well.

24

4.1. Restricting the MDD Expansion

4.1.2 A Layerless BDD

Interestingly, setting the beam width to b = 1 results in a “layerless” version of the regular
BDD encoding of the MISP. A “layered” BDD is one where each layer is associated with a
single decision, where all nodes in that layer make a decision on the same decision variable
(e.g. to include or exclude a vertex for the MISP). This layerless version is more state-based,
as decisions are made based on each individual state, rather than across a whole layer. This
is the only major difference; the models are mostly similar otherwise. The extra no-beam
transition where none of the vertices from the beam are included in the solution acts like the
“do not include” transition from the BDD encoding, resulting in two transitions per state
like a BDD. The new merge condition also mimics the behavior of a layered BDD, since all
states in a layer have the same number of transitions from the root state. The BDD restricts
merging to be within a layer, which is the same as restricting the merging to states that have
the same transition count.

In theory, the layerless BDD should be strictly better than the layer-based BDD. Deci-
sions are now made per state instead of per layer. Because of this, each state can choose the
most optimal vertex or variable to make a decision on instead of having to go through all
vertices or variables for each layer. This would result in certain paths finishing earlier, as
irrelevant decisions are skipped.

As for the difference between a beam size of 1 as opposed to 2 or more, the beam=1
version can only explore one decision per expansion; it can only select one vertex to include
in the solution. For each decision, a no-beam transition is created. On the other hand, the
“multiple beams” version can explore several paths at once (and potentially prune some of
these paths), while creating only one extra no-beam transition. Though, it should be noted
that the better the variable ordering strategy, the smaller the beam width can be. With a
better ordering, the first few vertices chosen have more potential, while more transitions for
further exploration are unnecessary.

Furthermore, the “multiple beams” version can be slowed down by the maximum width
of the decision diagram, imposed by the approximate decision diagrams used by the Branch
& Bound algorithm. The larger the beam width, the more states are created and the more
the maximum width is exceeded. As such, more states need to be merged at once, which
requires more computation. This additional cost means that smaller beam widths are likely
to be more preferable.

4.1.3 Minimization Problems

Minimization problems, unlike maximization problems such as the MISP, have another
aspect to consider before applying the beam restrictions to their MDD encoding. With the
MISP, the weight of the no-beam transition can be set to 0 to ensure other transitions (with
higher weights) get prioritized. However, with a weight of 0, the no-beam transition is
prioritized in minimization problems. Rather than deferring the decisions of the no-beam
transitions, they are exhaustively explored instead, which defeats their purpose. Thus, a
different weight needs to be considered for minimization problems.

The graph coloring problem (explained in Section 3.5) is such a minimization problem.

25

4.2. Dynamic Variable Ordering

To deprioritize the no-beam state, the weight of the no-beam transition needs to be higher
than 0, which is the weight of the other transitions where one of the k previously assigned
colors is selected. Though this new custom weight cannot be too high, as multiple no-beam
transitions can then cost more than introducing a new color k+1 (where taking a new color
has a weight of 1), resulting in the solver possibly ruling out solutions where introducing
a new color could have been prevented. As such, we decide to set the custom weight to a
small value, e.g. 1/(|V |+1). With this, the accumulated weight of taking multiple no-beam
transitions will not exceed the weight 1 of taking a new color.

To correct the artificially added weights of the no-beam transitions, an extra step needs
to be added to the MDD. After the terminal state T , it now always goes to a new terminal
state T ′, where the weight of the transition T → T ′ subtracts the accumulated weights of the
traversed no-beam transitions. The number of no-beam transitions can be tracked for each
state, and can thus be corrected at the end of the diagram. This is quite a general solution
that can be applied to any minimization problem. However, the specific weight of the no-
beam transitions (1/(|V |+1) for the graph coloring problem) may not universally work on
any problem and should be specially considered for each problem. The new DP model for
the graph coloring problem can be seen in Appendix A.2.2.

Additionally, when applying the beam restrictions to the graph coloring problem, the
order in which the colors are considered for each vertex becomes relevant. Before, without
any beam restrictions, each state simply made a transition for each of the available colors
(following the MDD encoding from Section 3.5). Fortunately, the DSATUR variable or-
dering strategy [10] (as explained in Section 3.8.1), which is used for the graph coloring
experiments in this thesis, suggests using the lowest numbered colors first. Therefore, we
make the beam (of beam size b) consist of the b lowest numbered available colors.

4.2 Dynamic Variable Ordering

With the use of an MDD encoding and its state-based nature, dynamic variable orderings
behave differently than in a layer-based context. In a layer-based scheme, a dynamic vari-
able ordering has information on the states in the current layer and chooses a single decision
variable to decide on for all those states in that layer. On the other hand, in a state-based
context the ordering only has information on the current state and, as such, can make dif-
ferent decisions for each state. This allows for better decision-making, since each decision
is specially made for each individual state, with the most relevant information available.
However, this may introduce even more complexity and overhead, as each state now has to
track relevant information dynamically and reorder the decision variables.

This thesis explores a dynamic variable ordering for the state-based MDD encoding of
the MISP, inspired by the variable ordering strategy from Nafar and Römer [36] (discussed
in Section 2.2). The ordering relies on the remaining subgraphs in each state, i.e. what
remains of the initial problem graph in the current state after previous decisions have been
made. From the subgraph, the local degree of each vertex (i.e. the number of neighbour-
ing vertices in the subgraph) can be determined. In practice, instead of keeping track of
subgraphs for each state, it is sufficient to only track the local degrees, which reduces com-

26

4.2. Dynamic Variable Ordering

plexity and memory usage. Furthermore, the information about the local degrees is passed
from state to state and updated dynamically rather than being recomputed from scratch to
avoid redundant computation.

Unlike the strategy of Nafar and Römer, which prioritizes the vertex with the minimum
local degree, we propose selecting the vertex with the maximum local degree. In our expe-
rience, maximizing pruning potential and decreasing the search space (as discussed in Sec-
tion 3.8) is more important than aiming for the optimal solution from the start. Especially in
a state-based context, where more pruning allows the improved decision-making (decisions
made per individual state) to make more diverse decisions, while eventually reaching the
optimal solution without specific guidance from the variable ordering.

Normally, the complexity of such a dynamic variable ordering would be increased with
an MDD encoding. With a BDD encoding, only a single vertex is chosen, which requires
a single pass over the vertices to find the best vertex. With a regular MDD encoding, the
worst case is when |V | vertices are chosen at a time, which would require fully sorting
the vertices with a worst-case time complexity of O(|V | log(|V |)). However, this can be
prevented with the use of the beam restrictions from Section 4.1. When restricted, only
b vertices are chosen, where b is the beam width. As a result, only b passes through all
vertices are required to find the b best vertices with a time complexity of O(|V | ·b). This is
preferable when the beam width b is relatively small compared to |V |.

An example of an MDD that applies this new dynamic variable ordering strategy can
be seen in Figure 4.3. The beam restriction method from Section 4.1 is also applied here.
The subgraphs are shown in the states, from which the local degrees of the vertices can be
deduced (for illustration purposes only, as the method only keeps track of the local degrees).
Although the local degree is not used as much in this example, it is due to the fact that the
vertices with the maximum local degree are chosen at the root node (vertex 2 and 3) that a
lot of neighbouring vertices are pruned in the subgraphs. On top of the pruned neighbours,
symmetry breaking also shrinks the subgraphs further (removing vertices with a number
lower than the chosen vertex from the subgraph).

27

4.3. Local Bound for the MISP

Figure 4.3: Example of an MDD (for the MISP example in Fig. 3.1) restricted with a beam width of
2, following the new dynamic variable ordering. Each state in the MDD shows the remaining sub-
graph at that particular state. The variable decisions are shown with numbers in the transition lines,
indicating which vertex is chosen to be included in the independent set. A dashed line represents the
extra no-beam transition where no vertices are chosen, which has an objective value of 0 instead of
1.

4.3 Local Bound for the MISP

As explained in Section 3.9, a local bound can significantly improve the efficiency of the
DD-based B&B algorithm, as it allows for early pruning during B&B search. In this section,
we introduce a new local bound on the MISP and discuss how this local bound interacts with
various variable ordering strategies.

The new local bound is defined in Theorem 2, followed by its proof, which combines
known graph-theoretic results. The local bound is only applicable if the maximum degree
∆(G)> 0. In the case where ∆(G) = 0 (i.e. when the graph G has no edges), a local bound
of α(G)≤ |V | is used instead.

28

4.3. Local Bound for the MISP

Theorem 2. Given a graph G = (V,E) and its maximum degree ∆(G) > 0, the size of any
maximum independent set in G, i.e. α(G), is upper bounded by:

α(G)≤ |V |−⌈ |E|
∆(G)

⌉

Proof. Let M ⊆V be a maximum independent set of G, with α(G) = |M|. The complement
of M gives a minimal vertex cover C =V \M (i.e. a set of vertices that covers each edge in
G, with no proper subset of C also being a vertex cover). Each vertex in C can only cover
∆G edges in E. Therefore, the size of C has the following lower bound:

|C| ≥ ⌈ |E|
∆(G)

⌉

with a ceiling on the fraction, since |C| ∈ N and there need to be sufficient vertices to cover
all edges in E. Given that |V |= |M|+ |C| (Corollary 7.1 in Graph Theory with Applications
by Bondy and Murty [9]), we can derive the following:

|M|= |V |− |C|
α(G) = |V |− |C|

α(G)≤ |V |−⌈ |E|
∆(G)

⌉

This local bound is almost always better than the original local bound for the MISP (The-
orem 1) proposed by Gillard et al. [20]. Since |E| ≥ 0 and ∆(G) ≥ 0, the local bound is
almost always strictly lower than |V |. The only exception to this is whenever there are no
edges in the remaining subgraph (|E|= 0). Then, this local bound will default to the origi-
nal one by Gillard et al. (α(G) ≤ |V |), which means the new local bound cannot be worse
than the original one.

The new local bound works particularly well with variable ordering strategies that pri-
oritize vertices with the maximum degree. Since these vertices are chosen and removed
first, the maximum degree of the remaining subgraphs decreases, which consequently low-
ers the local bound from Theorem 2 (by lowering the denominator ∆(G)). This brings the
bound closer to the optimal solution and allows for more pruning. While the nominator |E|
also decreases, this decrease is usually less impactful than that of the denominator, as often
|E| ≫ ∆(G).

However, as noted by Gillard et al. [20], the local bound needs to be very inexpensive
to compute, since it is computed for each state in the approximate DDs. For the bound
presented here, the local degrees of the vertices in the subgraph of each state need to be
tracked. Fortunately, this is already tracked by the new dynamic variable ordering strategy
of Section 4.2, which means the bound can be computed with minimal overhead when
combining the two methods.

Furthermore, since the new dynamic variable ordering is essentially a maximum degree
variable ordering strategy, it should be able to strengthen the bound even faster than its

29

4.3. Local Bound for the MISP

static counterpart. A static variable ordering only has access to the initial problem graph
G when it fixes the ordering at the start. On the other hand, the dynamic ordering tracks
the local degrees of the vertices during search, which means it knows the vertex with the
maximum degree of the actual remaining subgraph of the current state. This allows for
smarter decision-making by targeting the local maximum degree vertex to lower the local
bound even faster.

30

Chapter 5

Experimental Results

This chapter covers the setup and results of the experiments performed for this thesis. The
main goals of the experiments are to compare the state-based MDD encoding with the layer-
based BDD encoding and to evaluate the impact of various heuristics, which were either
adapted or made for the state-based MDD encoding. More specifically, the following ques-
tions are considered:

• How does a state-based MDD encoding perform compared to a layer-based BDD
encoding?

• How do different beam restriction widths affect the performance?

• How do various static variable ordering strategies perform with a state-based MDD
encoding?

• How well does the new dynamic variable ordering for the state-based MDD encoding
work compared to its static counterpart?

• What impact does the new local bound for the MISP have on the performance and
how does this differ with various variable ordering heuristics?

Since the maximum independent set problem (MISP) is the main example problem con-
sidered in this thesis, the experiments are performed on (randomly generated) instances
of the MISP with its respective encodings. The beam restrictions are also applied to the
graph coloring problem to also experiment with a minimization problem (as the MISP is a
maximization problem).

The experimental setup is discussed in Section 5.1, while the metrics are further ex-
plained in Section 5.2. As for the experiments, the static variable ordering strategies are
compared in Section 5.3 to determine which strategy to use in the following experiments.
Next, Section 5.4 compares the state-based MDD with the layer-based BDD, while also
incorporating different beam widths into the comparison. The beam restrictions are also
applied to the graph coloring problem in Section 5.5. The experiment involving the new
dynamic variable ordering strategy is covered in Section 5.6. Lastly, the new local bound
for the MISP is tested with various variable orderings in Section 5.7.

31

5.1. Experimental Setup

5.1 Experimental Setup

All solvers were implemented and run within the CODD [34] framework, a DD-based solver
for combinatorial optimization. Important to note is that CODD is a state-based solver,
which allows for the implementation of the new techniques for state-based MDD encodings
presented in this thesis. The regular BDD encoding of the MISP was also implemented
using CODD, where the layer-based behavior of a regular BDD encoding is mimicked by
traversing the vertices one by one (with the state variable n seen in Appendix A.1.1). By
default, the MISP uses the existing local bound from Gillard et al. [20].

The instances consist of randomly generated graphs with predetermined sizes and den-
sities. For each unique combination of size and density, 25 instances were created. The
instances in the experiments use graphs of size 100 for the MISP and size 50 for the graph
coloring problem, with densities ranging from 0.1 through 0.9. These sizes were chosen, as
bigger sizes would result in the solver consistently reaching the maximum timeout of one
hour with the harder instances.

The experiments were run on the Delftblue [16] supercomputer. Each instance was run
on a “standard compute node”, i.e. an Intel Xeon E5-6248R 24C 3.0GHz with 3.9GB of
memory. The time limit was one hour per instance.

The code used for the experiments in this thesis can be found on the following Github
page: https://github.com/JonathanTjong/Thesis DD

5.2 Metrics

Various metrics are used to measure the performance of the methods in the experiments.
First there is execution time (in seconds), which measures how fast a method is in prac-
tice. However, the execution time can vary each time the program is run due to extraneous
factors. Therefore, the required number of B&B nodes is also measured. The number of
nodes indicates the size of the B&B search tree used in CODD when solving a particular
problem. This gives a good measure of the efficiency of the program, as it is not as prone to
the interference of these extraneous factors.

Each value of the final results is the median of the 25 iterations on a unique instance
type, i.e. random instances with the same size and density. The median is used to account for
outliers in the results, as with combinatorial optimization problems, each implementation
has different instances that happen to be disproportionately more difficult than the other
instances (due to factors such as the initialization or variable ordering). The variability
of the results is measured with the median absolute deviation (MAD), which is shown as
transparent regions around the median lines in the experiment plots.

5.3 Static Variable Ordering Strategies

To compare the various beam widths for the MDD encoding, we first have to decide on
which variable ordering would be most suitable. Therefore, the first experiment compares
various existing static variable ordering strategies used with the BDD and MDD encodings.

32

https://github.com/JonathanTjong/Thesis_DD

5.3. Static Variable Ordering Strategies

The new dynamic variable ordering strategy is covered separately later on (in Section 5.6).
The following static variable orderings are considered in this experiment:

• Random
• Max Degree
• Min Width
• Max Connectivity
• Maximal Paths
• Max Cliques

More detailed explanations on these variable orderings can be found in Section 3.8. For this
experiment, the MDD uses a beam width of 4, which appeared to be a good general beam
width in early experiments. Further exploration of various beam widths will be covered in
other experiments of this thesis.

Expectations

These variable ordering strategies (excluding random ordering) have proven to be effective
in the literature. As such, they should perform quite well (at least better than random),
especially with the state-based MDDs, which allow for more flexible decision-making while
following these variable orderings.

Results

(a) MDD encoding (with beam=4) (b) BDD encoding

Figure 5.1: Comparison of static variable orderings using the: a) MDD encoding with a beam=4, b)
BDD encoding. The total number of B&B nodes is measured across different input graph densities
from 0.1 to 0.9, with an initial graph size of 100 and a timeout of 1 hour.

Figure 5.1 shows that for both the MDD and BDD encoding, the different static variable
orderings perform well overall, outperforming the random ordering in harder instances (in-

33

5.4. Restricted MDD with Beams

stances with lower densities). Only the graphs measuring B&B nodes are shown here, as the
runtimes also show a similar relative performance between the methods. What is remark-
able, is that the max degree ordering seems to outperform the others when using the MDD
encoding (by at least one order of magnitude) with the harder instances. The main thing that
differentiates it from the other methods is the fact that it is quite a greedy approach, whereas
other strategies try to also pick subsequent vertices that are close to each other in the graph.
Perhaps a greedy approach works well with the flexible decision-making of the state-based
MDD encoding. Since the max degree variable ordering works well for both the BDD and
MDD encoding, it will be used in the other experiments as the main variable ordering.

5.4 Restricted MDD with Beams

This section compares the performance of the state-based MDD encoding with the layer-
based BDD encoding. Additionally, the impact of different beam restriction widths will be
analysed. The variable ordering strategy used in this experiment (for both the MDD and
BDD encoding) is the max degree ordering, as this ordering performed well for both the
MDD and BDD encoding in the previous experiment (Section 5.3).

Expectations

Given the differences between these encodings, the expectation is that the MDD encoding
outperforms the BDD encoding, due to its state-based nature. Decisions can be made per
state instead of per layer, with the aim of reducing the number of transitions and nodes
needed to solve the problem.

As for the beam widths, we expect lower beams to be faster than higher beams. A high
beam could exceed the maximum width of the relaxed DDs more quickly, spending more
time creating and merging nodes. However, a lower beam would need to create more no-
beam transitions (where no vertices from the beam are chosen), possibly being less efficient
in B&B nodes compared to higher beams. Though, the better the variable ordering strategy
is, the lower the beam width can afford to be, as fewer options need to be explored at a time.
Important to note, using no beam restrictions is essentially the same as having the highest
possible beam width, since it allows all possible transitions to be explored.

34

5.4. Restricted MDD with Beams

Results

(a) (b)

Figure 5.2: Comparison between the BDD encoding and the MDD encoding with various beam
widths. Measured in a) execution time in seconds, b) total B&B nodes used. Both plots are measured
across different input graph densities from 0.1 to 0.9, with an initial graph size of 100 and a timeout
of 1 hour.

Figure 5.2 shows that the MDD encoding outperforms the BDD encoding for instances
of the MISP, with the exception of the MDD with higher beams (and no beams) being
slower for lower-density instances. This shortcoming of the MDD encoding is fixed with a
sufficiently low beam restriction. However, it should be noted that both methods are closer
in runtime and use a similar amount of B&B nodes for a density of 0.1. This might be
due to the fact that with a low density, pruning is limited, as there are inherently fewer
edges and neighbours in the graph. With the MISP, pruning takes place when a vertex is
selected and the neighbouring vertices are dismissed, which is why the input graph density
affects the pruning potential. The strength of the state-based MDD encoding is its more
flexible decision-making, aiming to prune more of the search space. With these low density
instances, this strength is diminished, bringing the performance of the BDD and MDD
encoding closer together.

As for the beam widths, it seems that a very high beam (or no beam restrictions) can
be very efficient in B&B nodes, but has the downside of being slower than the BDD encod-
ing. This is likely due to the excess node generation and merging that comes with larger
beam widths, running into problems with the maximum width of the relaxed DD. Apply-
ing (smaller width) beam restrictions can significantly improve the runtime of the MDD
encoding, while still being competitive in terms of B&B nodes.

35

5.4. Restricted MDD with Beams

5.4.1 Effects on Relaxed DDs

The main goal of the beam restrictions are to prevent the excess state creation and merging
whenever the maximum width is reached when constructing the relaxed DDs. To see if
this indeed is the case, two experiments were conducted to measure the number of merge
operations and the number of state transitions performed during the construction of a relaxed
decision diagram for the MISP, the results of which are shown in Figures 5.3a and 5.3b
respectively.

(a) Number of merge operations performed. (b) Number of state transitions performed, i.e. the number of arcs in the
relaxed decision diagram.

Figure 5.3: Visualization of the effects of the beam restrictions on the MISP. Two aspects of con-
structing a relaxed decision diagram for the MISP are shown: the number of merge operations and
the number of state transitions. Various beam restriction widths are compared, alongside the original
method without any beam restrictions.

Figure 5.3a shows that with a sufficiently low beam restriction width, the construction
always requires fewer merge operations than when no beam restrictions are used. This
difference is several orders of magnitude for most densities higher than 0.2. (The vertical
drops indicate that no merges take place at higher densities.)

To confirm that the decrease in merge operations comes from the prevention of excess
state creation and merging, we can look at the number of state transitions in the DD con-
struction. Looking at the final number of states would not be as useful, since the excess
states are merged until the maximum width is adhered to. However, the state transitions
(i.e. the arcs in the decision diagram) from when the excess states were created are still
present, now pointing to the newly merged state. As such, the number of state transitions
can be seen as a direct representation of the number of created states throughout the DD
construction process.

Indeed, as seen in Figure 5.3b, the number of state transitions decreased significantly,
by several orders of magnitude. This indicates that the beam restrictions do have a major
impact on the reduction of the excess state creation and merging. The decrease in merge

36

5.5. Beam Restrictions in Graph Coloring

operations with higher input graph densities seems to be more due to the decreased difficulty
of the instances, as the number of state transitions does not drop as fast.

Only towards the higher input graph densities (higher than 0.7) does the original method
without beam restrictions catch up. This is likely due to these instances being too simple, as
indicated by the previous experiments in Figure 5.2. Also, because no merge operations are
performed in the instances with a density of 0.9, the number of transitions actually becomes
lower when using no beam restrictions. This is because with no merge operations, the no-
beam transitions do not prevent any excess state creation and merging. Though, this is not
that concerning, as this only happens with easy instances to begin with.

5.5 Beam Restrictions in Graph Coloring

We would like to see whether or not the beam restrictions and our understanding of it applies
more generally. Therefore, we experiment on another problem domain aside from the MISP,
the graph coloring problem (explained in Section 3.5). This problem domain has a different
structure compared to the MISP, which may lead to different behaviour of the model with
the beam restrictions heuristic. Instead of a maximization problem, the graph coloring is a
minization problem, which leads to extra measures that need to be taken (as discussed in
Section 4.1.3). Additionally, the branching factor (which the beam restrictions are supposed
to restrict) grows significantly the further the solution space is explored as more colors are
assigned and the number of possible colors grows, whereas with the MISP, the branching
factor is at its largest at the start.

5.5.1 Decision Diagram Depths

Another important aspect to keep in mind is that these two problem domains behave differ-
ently when beam restrictions are applied. Specifically, the beam restrictions have a different
impact on the depths of the decision diagrams (and consequently the overall size of the dia-
grams, since the width is restricted for approximate decision diagrams). This is mainly due
to the different problem encoding structures and how the beam restrictions are applied. As
discussed in Section 4.1.1, a model following interpretation 1 is used for the graph coloring
problem.

Figure 5.4 shows this behaviour for both problem domains. For the MISP, the depth
of the diagram depends on how fast the eligible set of vertices shrinks with each decision
(with the MDD encoding). Though, for very low beam widths the depth is prevented from
shrinking, as beam 1 has to consider every vertex in V for some solutions, resulting in a
depth of |V |= 100. Beam 2 converges to 50 transitions, but here it is already apparent that
for most instances in this example this is not an issue, as most diagram depths are above
that limit.

On the other hand, Figure 5.4b shows that for graph coloring (given the MDD encoding
that is used here) the depth of the decision diagrams can only increase with lower beams.
This is because each vertex in the input graph has to be assigned a color, making the mini-
mum depth |V | (in Figure 5.4b |V |= 50). With no beam restrictions, all colors are explored

37

5.5. Beam Restrictions in Graph Coloring

(a) MISP (b) Graph coloring

Figure 5.4: Comparison between the behaviour of various beam widths on the depths of decision
diagrams for a) the MISP, b) the graph coloring problem. This is measured across different input
graph densities, with an initial graph size of a) 100, b) 50 and a timeout of 1 hour.

at once, but with lower beam widths, the number of transitions made for each vertex in-
creases. As a result, lower beam widths should be used with caution on the graph coloring
problem, whereas with the MISP this is not necessarily the case. It should be noted that for
the graph coloring problem, if one were to follow interpretation 2 instead, the depth would
stay at |V | and not increase due to the introduction of a custom relaxed state.

5.5.2 Custom Weights for Minimization Problems

As discussed in Section 4.1.3, the beam restriction heuristic needs to be slightly altered for
minimization problems such as the graph coloring problem.

Figure 5.5 shows what happens if beam restrictions are applied to the graph coloring
problem without any changes for minimization problems. Unlike with the MISP, the beam
restrictions are not able to improve the runtime and only increase it with lower beam widths.
This is because the no-beam transitions are prioritized, which is the opposite of the intention
of the heuristic.

After applying the method discussed in Section 4.1.3 (adding custom weights to no-
beam transitions), we get the results shown in Figure 5.6. These results are more similar to
those of the MISP. Lower beam widths can reduce the runtime, while needing slightly more
B&B nodes. This is most apparent with the harder instances around input graph densities
0.5 and 0.6. Now, it properly disincentivises taking the no-beam transition and applies the
minimum color ordering of the DSATUR variable ordering.

38

5.5. Beam Restrictions in Graph Coloring

Figure 5.5: Runtime of various beam widths for the graph coloring problem without special consid-
eration for it being a minimization problem (i.e. without custom weights for no-beam transitions).
This is measured across different input graph densities, with an initial graph size of 50. Beam=1 is
left out of the plot because of many instances reaching the maximum time limit of 1 hour.

(a) (b)

Figure 5.6: Comparison between various beam widths applied to the graph coloring problem with
extra measures for minimization problems. Measured in a) execution time in seconds, b) total B&B
nodes used. Both plots are measured across different input graph densities from 0.1 to 0.9, with an
initial graph size of 50 and a timeout of 1 hour.

39

5.5. Beam Restrictions in Graph Coloring

5.5.3 Effects on Relaxed DDs

Similarly to the experiments for the MISP (Section 5.4.1), we can observe the number of
merge operations and state transitions for the construction of the relaxed DDs to determine
if the beam restrictions worked well.

(a) Number of merge operations performed. (b) Number of state transitions performed, i.e. the number of arcs in the
relaxed decision diagram.

Figure 5.7: Visualization of the effects of the beam restrictions on the graph coloring problem. Two
aspects of constructing a relaxed decision diagram for the graph coloring problem are shown: the
number of merge operations and the number of state transitions. Various beam restriction widths are
compared, alongside the original method without any beam restrictions.

Figure 5.7a shows that the merging behaviour does not change that much, as opposed
to the MISP. Furthermore, Figure 5.7b shows that the number of transitions actually grows
instead of shrinks. This indicates that the improved runtime (and slightly improved merging
behaviour) likely comes from the imposed ordering of the color choices. Because with beam
restrictions the lowest numbered colors are prioritized, which is in line with the DSATUR
ordering. With no beam restrictions there is no such order, as all colors are considered at
once.

The increase in state transitions is related to the problem pointed out in Section 5.5.1.
Due to the encoding of the graph coloring problem, the structure of the decision diagram is a
lot more rigid than with the MISP, as each vertex needs to be assigned a color. This makes it
difficult for the beam restrictions to prevent excess state creation and merging, as the options
that fall outside of the beam still pertain to the same decision, not the next one. Important to
note is that this would not be a problem for interpretation 2 of the beam restrictions method,
discussed in Section 4.1.1. There, the leftover options are directly merged together into a
single relaxed state, decreasing the number of transitions instead of increasing it.

40

5.6. Dynamic Variable Ordering Strategies

5.6 Dynamic Variable Ordering Strategies

This experiment compares the new dynamic variable ordering strategy (proposed in Sec-
tion 4.2) with its static counterpart, the static max degree ordering. Instead of looking at the
degrees of the vertices in the initial graph, the local degrees (tracked during search) are used
to order the vertices. The dynamic and static orderings will both be applied to a state-based
MDD encoding with a beam width of 4. Additionally, the BDD is shown with the same
static variable ordering (max degree) for comparison. Unfortunately, no dynamic ordering
for the BDD encoding was implemented, as this would be difficult in the CODD framework
due to the lack of layers and layer information in CODD.

Expectations

The main purpose of the dynamic variable ordering strategy is that it is able to make smarter
decisions compared to its static counterpart. Rather than being fixed at the start, decisions
are made at each state depending on the current situation at that particular state. Therefore,
we expect it to be more efficient with fewer B&B nodes. However, a static variable ordering
in the state-based MDD is already quite dynamic, as decisions are different for each state
(compared to layer-based BDDs, where decisions are restricted to each layer). This might
mean that the potential gain from a dynamic variable ordering is lower with state-based
MDDs.

Furthermore, the static variable ordering is likely to end up being faster than the dynamic
ordering. A static ordering only has to compute an ordering of the vertices once, while the
dynamic ordering does so at each state. Additionally, information needs to be tracked from
state to state, leading to even more overhead.

41

5.7. Local Bound Pruning

Results

(a) (b)

Figure 5.8: Comparison between the static and dynamic max degree variable ordering for the state-
based MDD encoding. Additionally, the BDD encoding is shown using the static max degree order-
ing. Measured in a) execution time in seconds, b) total B&B nodes used. Both plots are measured
across different input graph densities from 0.1 to 0.9, with an initial graph size of 100 and a timeout
of 1 hour.

As expected, Figure 5.8a shows that the dynamic variable ordering is unfortunately slower
than its static counterpart. It is even slower than the BDD, which shows that the gain in
decision-making is not enough to make up for the additional overhead and complexity.
Fortunately, the smarter decision-making was able to improve efficiency with fewer B&B
nodes compared to the static variable ordering in both the MDD and BDD. It is still able to
improve with an order of magnitude, even with the static variable ordering MDD already
being more flexible with its decision-making than the BDD.

5.7 Local Bound Pruning

The experiment in this section tests the performance of the new local bound proposed in
Section 4.3 to the existing one from Gillard et al. [20] using various variable ordering strate-
gies. Specifically, the static max cliques and the static and dynamic max degree variable
orderings are used. The max cliques ordering is used to measure how local bound pruning
performs with an ordering that does not necessarily prioritize vertices with the maximum
degree. The variable orderings are applied to the MDD encoding with a beam width of 4.
Furthermore, the default implementation (without the new local bound) actually uses the
local bound from Gillard et al. [20] (Theorem 1) by default. Important to note, when the
local bound is used with a static variable ordering in this experiment, similar code is used
to that of the dynamic variable ordering in order to track the necessary local information

42

5.7. Local Bound Pruning

for the local bound. This introduces the same overhead of tracking additional information,
but does not include the overhead of the changing ordering from state to state (since a static
ordering is used instead).

Expectations

As the new local bound should be strictly better than the default local bound (except for
trivial cases), we expect an increase in performance compared to the default implementa-
tion. Furthermore, it is expected to work better with the max degree variable orderings, as
these prioritize reducing the maximum degree of the subgraphs, tightening the upper bound
further. Lastly, the local bound does introduce extra overhead, since accurate information is
needed on the current state. However, this is mitigated with the dynamic variable ordering,
which needs to track the exact same information, resulting in no additional overhead when
adding local bound pruning. The static variable orderings are likely to be slowed down by
the overhead though, the experiment will show if this is mitigated by the gain in pruning
potential.

Results

(a) (b)

Figure 5.9: Performance of state-based B&B with and without the new local bound. When the new
local bound is not applied, the default local bound by Gillard et al. [20] is applied. Static max cliques
and the static and dynamic max degree variable orderings are used. Measured in a) execution time
in seconds, b) total B&B nodes used. Both plots are measured across different input graph densities
from 0.1 to 0.9, with an initial graph size of 100 and a timeout of 1 hour.

Figure 5.9b shows that indeed, the new local bound improves the efficiency of the B&B
search significantly, by several orders of magnitude. This improvement is slightly more
with the max degree variable orderings, as opposed to the max cliques ordering (for the
lower density instances). This difference between the variable orderings is not as big as

43

5.7. Local Bound Pruning

expected; it is likely that the max cliques ordering also sufficiently brings down the overall
maximum degree of the subgraphs for the lower bound to work well.

For the runtime (Figure 5.9a), the new local bound significantly improves the dynamic
variable ordering, even outperforming the static ordering strategies with the harder (low den-
sity) instances. The two methods can share the overhead, while combining their strengths.
Furthermore, the dynamic ordering is able to maximize the potential of the new local bound
by being able to make the optimal decision per state to lower the maximum degree. Interest-
ingly, for the static variable orderings, the new local bound only improves the runtime with
the harder instances. For easier instances, adding the new local bound makes them slower,
as the overhead becomes a relatively larger detriment compared to the diminished benefits
gained.

44

Chapter 6

Discussion

This chapter discusses the results from Chapter 5 and the overall insights gained from this
thesis. We go over the research questions from Section 1 and see if we can answer them
with our obtained results.

1. What does the state-based MDD encoding do differently compared to the layer-based
BDD encoding? And do these differences positively impact the performance?

The state-based MDDs are more flexible and efficient than the layer-based BDDs, due to
the fact that states can make their own decisions instead of having to decide on the same
decision variable as the other states in a layer. The experiments show that even with no
additional heuristics, the state-based MDD generally outperforms the layer-based BDD,
both in runtime and B&B nodes. The only notable exception to this is with very low density
instances, where the state-based MDD is likely slowed down due to fewer neighbouring
vertices being pruned when a vertex is selected (as there are fewer neighbours in general
with low-density instances). This is a bigger problem for the state-based MDDs, as their
branching factor can be quite large at the start, which does not shrink fast enough if few
vertices are pruned. This is further supported by the fact that the new beam restrictions
heuristic improves the runtime significantly, mostly by restricting the branching factor of
the MDDs. Still, even without any beam restrictions, we encourage further exploration of
state-based encodings for other problem domains because of their overall efficiency.

2. Each state does not necessarily have to expand with all available decision options. A
“beam search”-like restriction could be applied to manipulate the rate at which the
decision diagram expands. What kind of effect would different beam sizes have on
the performance of the state-based MDD encoding?

The new beam restrictions method significantly speeds up the performance of the state-
based MDD encoding for the MISP. This can be explained by the other experiments, which
show that the beams have a major impact on the construction of the relaxed DDs. Both
the number of merge operations and created nodes are significantly reduced. With this, the
construction of the relaxed DDs requires way fewer operations and is faster as a result.

45

When applying the beam restrictions on another problem domain, the graph coloring
problem, it does not necessarily result in the same behaviour. While the runtime does im-
prove, the construction of the relaxed DDs becomes worse, requiring the creation of more
B&B nodes. This indicates that the beam restrictions do help in other areas, likely with
the imposed ordering of the color choices, but fail to replicate the positive impact on the
construction of the relaxed DDs. To properly generalize the beam restrictions method, we
would need to integrate it into the solver instead of only changing the model, as we identi-
fied in Section 4.1.1. We suspect that this would improve the relaxed DD construction rather
than worsening it. The benefit of the current version with the imposed ordering would also
apply, leading to an overall improved and general heuristic.

Important to note, while we do suggest integrating the beam restrictions into the solver,
we also recommend still applying problem-specific design choices when modelling. In
some cases there are special situations that may warrant special treatment, such as the new
color k+ 1 in the graph coloring problem. This can help structure the model and further
improve the effect of the beam restrictions.

3. Could a dynamic variable ordering strategy exploit the flexible state-based structure
of the MDD encoding? How would this compare to various static variable ordering
strategies?

The dynamic variable ordering strategy showed that it was capable of making smarter deci-
sions compared to its static variant. The number of B&B nodes was decreased (or at least
similar) across all densities. However, this improvement did not translate into faster run-
times because of the additional overhead introduced by the more complex strategy. It seems
that with the current implementation, the static variable ordering is “efficient enough”, while
being very lightweight with comparatively little computational cost. Another reason why
the dynamic variable ordering may not perform very well is that, in a state-based context,
the vertices are reordered per state instead of per layer. This multiplies the additional work
that comes with a dynamic ordering, resulting in relatively more overhead compared to a dy-
namic ordering in a layer-based context. It should also be noted that for the static ordering,
the state-based MDD encoding is inherently more “dynamic” compared to the layer-based
BDD encoding. Instead of adhering to the decisions of the layers, each node in the state-
based encoding can make different decisions compared to other nodes in the same layer.
This could also be a reason why going from a static ordering to a dynamic one may not
result in as much of a benefit as is normally seen with layer-based encodings.

For this thesis, the dynamic variable ordering was only applied to the MISP (within the
context of a state-based DD encoding). If it were to be applied to other problem domains
in a state-based context, we would similarly expect improved efficiency in terms of B&B
nodes since the point of a dynamic ordering is the ability to make smarter decisions on
the fly. Whether the runtime would also be affected similarly is less clear, as this is more
problem-specific. On the one hand, the increase in speed depends on the difference between
the static and dynamic ordering. The dynamic ordering benefits more if the states or nodes
change a lot from the root node. If this is not the case, a precomputed static order would
suffice, since the root node would contain enough information for a decent variable ordering.

46

On the other hand, whether the dynamic ordering is slowed down too much is dependent
on the overhead of tracking extra local information and reordering the vertices. Still, we
encourage further exploration of dynamic variable orderings for state-based DDs, as with
more complex problems, they may be able to leverage the complexity of the problem to
make decisions that improve upon the precomputed decisions even further.

4. What would the effect be on the state-based MDD encoding if we improve local
bound pruning? What if it was combined with the new dynamic variable ordering
strategy?

The new local bound for the MISP resulted in a significant increase in efficiency, indicated
by the major decrease in created B&B nodes. As for the runtime, only for the harder in-
stances does it improve the speed of the static variable ordering. But for the other instances,
the improved efficiency seems to not outweigh the extra overhead. The fact that the over-
head can be shared with the dynamic variable ordering does make the combination of the
two a viable option (especially for the harder instances), unlike each of the two approaches
on their own. This combination is more efficient in B&B nodes, while being similar in
runtime to the static variable ordering. We suspect that this combination would perform
even better with more complex problem instances, as it performed well for harder instances
and with increased complexity, the two methods have more opportunity to make use of the
increase in efficiency.

47

Chapter 7

Conclusions and Future Work

This thesis explores the recently introduced state-based multivalued decision diagram (MDD)
encodings, which depart from the commonly used layer-based binary decision diagram
(BDD) encodings by making decisions per state instead of per layer. Aside from showing
that the former generally outperforms the latter for the maximum independent set problem
(MISP), this thesis also introduces new heuristics on graph problems for these new state-
based MDDs, which can significantly improve both the runtime and search tree size for the
MISP. Some of these heuristics may not be able to improve the method on their own, but
show major improvements when combined.

We show that the state-based MDD encoding outperforms the layer-based BDD en-
coding with the MISP. Though, this is only when applying the new beam restrictions on
the state-based MDDs, as without these, the MDDs can become slower than the regular
layer-based BDDs for harder MISP instances, likely due to the large branching factor of
the unrestricted MDDs. This speedup with the beam restrictions is also seen in the graph
coloring problem, after applying some modifications to mitigate modelling issues that arise
with minimization problems. Additionally, we show that the decision-making of the new
dynamic variable ordering strategy can improve upon the decision-making of its static coun-
terpart, but the additional overhead still makes it slower overall with the current implemen-
tation. Furthermore, we present a new local bound for the maximum independent set prob-
lem (MISP), which can significantly reduce the search tree needed to solve instances of the
MISP. The extra overhead does cancel out most of the performance gain in runtime, except
for low-density problem instances. It also greatly improves the new dynamic variable order-
ing, with which it can share the same overhead. This makes it possible for this combination
of techniques to outperform the regular static variable ordering heuristics in B&B nodes,
while having a similar runtime to its static counterpart. With larger density instances, the
instances used in our experiments are not difficult enough for the efficiency gain to outweigh
the additional overhead. We suspect that for harder instances (that are perhaps larger) this
performance difference is more prominent.

For future work, the state-based MDD encodings are promising, and with the introduc-
tion of state-based decision diagram solvers such as CODD [34] there is great potential for
further exploration. This thesis only covers the MISP and the graph coloring problem, so
other problem domains are still left unexplored.

48

As for the heuristics, the beam restrictions method could be further generalized by fully
integrating them into the solver instead of applying them when modelling. This would
make them more straightforward to apply to other problem domains. It would also become
more user-friendly by preventing any issues that may arise when manually changing the
weights of transitions for each different encoding. However, there is still merit in including
problem-specific design choices at the modelling level (such as taking a new color k+1 in
the graph coloring problem). Lastly, local bounds can be very effective at increasing the
efficiency of the model, as some of our experiments show. Even though they need to be
custom-made per problem domain, it can be worth to look into small manners to tighten the
local bound to allow for early pruning, by utilizing more information on the current state
or perhaps adding even more information per state. This additional information could then
also be used to strengthen the dynamic variable ordering strategy.

Each of these avenues for future work has the potential to further improve the perfor-
mance of the DD-based solvers and to help them solve more challenging combinatorial
optimization problems. Especially shifting from the regular layer-based encodings to state-
based ones opens up many possibilities, introducing a different perspective on modelling
these optimization problems.

49

Bibliography

[1] Akers. Binary decision diagrams. IEEE Transactions on computers, 100(6):509–516,
1978.

[2] Henrik Reif Andersen, Tarik Hadzic, John N Hooker, and Peter Tiedemann. A con-
straint store based on multivalued decision diagrams. In Principles and Practice of
Constraint Programming–CP 2007: 13th International Conference, CP 2007, Prov-
idence, RI, USA, September 23-27, 2007. Proceedings 13, pages 118–132. Springer,
2007.

[3] David Bergman, Willem-Jan Van Hoeve, and John N Hooker. Manipulating mdd re-
laxations for combinatorial optimization. In International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial Optimization Problems,
pages 20–35. Springer, 2011.

[4] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John N Hooker. Variable
ordering for the application of bdds to the maximum independent set problem. In
Integration of AI and OR Techniques in Contraint Programming for Combinatorial
Optimzation Problems: 9th International Conference, CPAIOR 2012, Nantes, France,
May 28–June1, 2012. Proceedings 9, pages 34–49. Springer, 2012.

[5] David Bergman, Andre A Cire, Willem-Jan van Hoeve, and John N Hooker. Opti-
mization bounds from binary decision diagrams. INFORMS Journal on Computing,
26(2):253–268, 2014.

[6] David Bergman, Andre A Cire, Willem-Jan van Hoeve, and Tallys Yunes. Bdd-based
heuristics for binary optimization. Journal of Heuristics, 20:211–234, 2014.

[7] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision
diagrams for optimization, volume 1. Springer, 2016.

[8] Beate Bollig and Ingo Wegener. Improving the variable ordering of obdds is np-
complete. IEEE Transactions on computers, 45(9):993–1002, 1996.

50

Bibliography

[9] John Adrian Bondy, Uppaluri Siva Ramachandra Murty, et al. Graph theory with
applications, volume 290. Macmillan London, 1976.

[10] Daniel Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

[11] Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau.
Improving optimization bounds using machine learning: Decision diagrams meet deep
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 1443–1451, 2019.

[12] Margarita P Castro, Andre A Cire, and J Christopher Beck. Decision diagrams for
discrete optimization: A survey of recent advances. INFORMS Journal on Computing,
34(4):2271–2295, 2022.

[13] Andre A Cire and Willem-Jan Van Hoeve. Multivalued decision diagrams for sequenc-
ing problems. Operations Research, 61(6):1411–1428, 2013.

[14] Vianney Coppé, Xavier Gillard, and Pierre Schaus. Modeling and exploiting domi-
nance rules for discrete optimization with decision diagrams. In International Confer-
ence on the Integration of Constraint Programming, Artificial Intelligence, and Oper-
ations Research, pages 226–242. Springer, 2024.

[15] Timothy Curry, Laurent Michel, and Willem-Jan van Hoeve. Pyddopt: A modeling
interface for decision diagrambased optimization. Presented at DPSOLVE 2023, 2023.

[16] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase
2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.

[17] Eugene C Freuder. A sufficient condition for backtrack-free search. Journal of the
ACM (JACM), 29(1):24–32, 1982.

[18] Birger Funke, Tore Grünert, and Stefan Irnich. Local search for vehicle routing and
scheduling problems: Review and conceptual integration. Journal of heuristics, 11:
267–306, 2005.

[19] Michael R Garey and David S Johnson. “strong”np-completeness results: Motivation,
examples, and implications. Journal of the ACM (JACM), 25(3):499–508, 1978.

[20] Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto Cire. Improving
the filtering of branch-and-bound mdd solver. In International Conference on Inte-
gration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 231–247. Springer, 2021.

[21] Nicolas Golenvaux, Xavier Gillard, Siegfried Nijssen, and Pierre Schaus. Partition-
ing a map into homogeneous contiguous regions: A branch-and-bound approach us-
ing decision diagrams (short paper). In 29th International Conference on Principles
and Practice of Constraint Programming (CP 2023), pages 45–1. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2023.

51

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

Bibliography

[22] Jaime E Gonzalez, Andre A Cire, Andrea Lodi, and Louis-Martin Rousseau. Inte-
grated integer programming and decision diagram search tree with an application to
the maximum independent set problem. Constraints, 25(1):23–46, 2020.

[23] Tarik Hadzic, John N Hooker, Barry O’Sullivan, and Peter Tiedemann. Approxi-
mate compilation of constraints into multivalued decision diagrams. In International
Conference on Principles and Practice of Constraint Programming, pages 448–462.
Springer, 2008.

[24] Samid Hoda, Willem-Jan Van Hoeve, and John N Hooker. A systematic approach
to mdd-based constraint programming. In Principles and Practice of Constraint
Programming–CP 2010: 16th International Conference, CP 2010, St. Andrews, Scot-
land, September 6-10, 2010. Proceedings 16, pages 266–280. Springer, 2010.

[25] John N Hooker. Decision diagrams and dynamic programming. In Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems: 10th International Conference, CPAIOR 2013, Yorktown Heights, NY, USA,
May 18-22, 2013. Proceedings 10, pages 94–110. Springer, 2013.

[26] Matthias Horn, Günther R Raidl, and Elina Rönnberg. An a* algorithm for solving
a prize-collecting sequencing problem with one common and multiple secondary re-
sources and time windows. In Proceedings of PATAT, pages 235–256, 2018.

[27] Matthias Horn, Johannes Maschler, Günther R Raidl, and Elina Rönnberg. A-based
construction of decision diagrams for a prize-collecting scheduling problem. Comput-
ers & Operations Research, 126:105125, 2021.

[28] Lingying Huang, Xiaomeng Chen, Wei Huo, Jiazheng Wang, Fan Zhang, Bo Bai, and
Ling Shi. Branch and bound in mixed integer linear programming problems: A survey
of techniques and trends. arXiv preprint arXiv:2111.06257, 2021.

[29] Anthony Karahalios and Willem-Jan van Hoeve. Variable ordering for decision dia-
grams: A portfolio approach. Constraints, 27(1):116–133, 2022.

[30] Richard M Karp. On the computational complexity of combinatorial problems. Net-
works, 5(1):45–68, 1975.

[31] Joris Kinable, Andre A Cire, and Willem-Jan van Hoeve. Hybrid optimization meth-
ods for time-dependent sequencing problems. European Journal of Operational Re-
search, 259(3):887–897, 2017.

[32] B.T. Lowerre. The HARPY speech recognition system. Ph.D. Thesis. 1976.

[33] Johannes Maschler and Günther R Raidl. Multivalued decision diagrams for prize-
collecting job sequencing with one common and multiple secondary resources. Annals
of Operations Research, 302:507–531, 2021.

[34] Laurent Michel and Willem-Jan van Hoeve. Codd: A decision diagram-based solver
for combinatorial optimization. In ECAI 2024, pages 4240–4247. IOS Press, 2024.

52

Bibliography

[35] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial prob-
lems. In Proceedings of the 30th International Design Automation Conference, pages
272–277, 1993.

[36] Mohsen Nafar and Michael Römer. Strengthening relaxed decision diagrams for max-
imum independent set problem: Novel variable ordering and merge heuristics. In 30th
International Conference on Principles and Practice of Constraint Programming (CP
2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

[37] Peng Si Ow and Thomas E Morton. Filtered beam search in scheduling. The Interna-
tional Journal Of Production Research, 26(1):35–62, 1988.

[38] Augustin Parjadis, Quentin Cappart, Louis-Martin Rousseau, and David Bergman.
Improving branch-and-bound using decision diagrams and reinforcement learning. In
Integration of Constraint Programming, Artificial Intelligence, and Operations Re-
search: 18th International Conference, CPAIOR 2021, Vienna, Austria, July 5–8,
2021, Proceedings 18, pages 446–455. Springer, 2021.

[39] Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Peel-and-bound: Gen-
erating stronger relaxed bounds with multivalued decision diagrams. arXiv preprint
arXiv:2205.05216, 2022.

[40] Isaac Rudich, Quentin Cappart, and Louis-Martin Rousseau. Improved peel-and-
bound: Methods for generating dual bounds with multivalued decision diagrams. Jour-
nal of Artificial Intelligence Research, 77:1489–1538, 2023.

[41] Willem-Jan van Hoeve. Graph coloring lower bounds from decision diagrams. In In-
teger Programming and Combinatorial Optimization: 21st International Conference,
IPCO 2020, London, UK, June 8–10, 2020, Proceedings, pages 405–418. Springer,
2020.

[42] Willem-Jan van Hoeve. An introduction to decision diagrams for optimization. In
Tutorials in Operations Research: Smarter Decisions for a Better World, pages 117–
145. INFORMS, 2024.

53

Appendix A

DP Models

This appendix chapter describes the dynamic programming (DP) models of the methods
used in this thesis. A DP model consists of the following:

• A set of states, including the initial and terminal states.

• A label generation function λ : S → U which generates the different decisions that
can be made when a state is expanded. The label that it produces is denoted by l in
the DP models.

• A state transition function τ : S ×U → S which transitions a state to another state
based on a given label (corresponding to a decision).

• A state cost function c : S ×U→ R which gives the cost or weight of a transition.

• A merge operator ⊕ : S ×S → S which merges two states together.

A.1 MISP

The DP model uses an input graph G = (V,E). The aim is to find an independent set of
vertices such that no two vertices in the set are neigbours in G. N(v) is the set of neighbour-
ing vertices of vertex v. The vertices V are ordered beforehand when using a static variable
ordering (or ordered dynamically with a dynamic ordering).

A.1.1 BDD encoding

• State definition: < S,n > where S ⊆ V is the set of eligible vertices still available to
be included in the independent set and n is the current vertex for which a decision is
made.

– Initial state: <V,0 >

– Terminal state: < /0, |V |>

• Label generation function: λ(< S,n >) = {0,1}

54

A.1. MISP

• State transition function: τ(< S,n >, l) =


< /0, |V |> if |S|= 0
< S\ (N(vn)∪{vn}),n+1 > if l = 1
< S\{vn},n+1 > if l = 0

• State cost function: c(< S,n >, l) = 1

• Merge operator: ⊕(< S1,n1 >,< S2,n2 >) =< (S1∪S2),n1 > if n1 = n2

A.1.2 MDD encoding

Important to note, for the dynamic variable ordering, the states are defined by < S, t,D >
instead. Here, D tracks the local degrees of each vertex in S. The label generation function
uses D to determine the label l dynamically. D is updated in the state transition function
and by the merge operator to accurately reflect the local degrees.

• State definition: < S, t > where S⊆V is the set of eligible vertices still available to be
included in the independent set and t is the number of transitions from the root node

– Initial state: <V,0 >

– Terminal state: < /0, |V |>

• Label generation function: λ(< S, t >) = S

• State transition function: τ(< S, t >, l)=

{
< /0, |V |> if |S|= 0
< S\ (N(vl)∪{v1, ...,vl}), t +1 > else

• State cost function: c(< S, t >, l) = 1

• Merge operator: ⊕(< S1, t1 >,< S2, t2 >) =< (S1∪S2), t1 > if t1 = t2

A.1.3 MDD encoding with Beam Restrictions

The DP model now also uses a beam width b. The beam B is the set of vertices chosen to
be included in the beam in the label generation function.

• State definition: < S, t > where S⊆V is the set of eligible vertices still available to be
included in the independent set and t is the number of transitions from the root node

– Initial state: <V,0 >

– Terminal state: < /0, |V |>

• Label generation function: λ(< S, t >) =

{
S if |S| ≤ b
B∪{−1} else

• State transition function: τ(< S, t >, l)=


< /0, |V |> if |S|= 0
< S\ (N(vl)∪{v1, ...,vl}), t +1 > if vl ∈ B
< S\B, t +1 > if l =−1

55

A.2. Graph Coloring

• State cost function: c(< S, t >, l) =

{
0 if l =−1
1 else

• Merge operator: ⊕(< S1, t1 >,< S2, t2 >) =< (S1∪S2), t1 > if t1 = t2

A.1.4 Local Bounds

The DP model for the MISP also uses a local bound, either the old bound by Gillard et
al. [20] or the new local bound introduced in this thesis. The new local bound requires
the same structure as that of the dynamic variable ordering, where the states are defined as
< S, t,D >. The additional state parameter D tracks the local degrees in S.

• Old local bound: f (< S, t >) = |V |

• New local bound: f (< S, t,D >) = |V |−⌈ |E|
∆(G)⌉

A.2 Graph Coloring

The DP model uses an input graph G = (V,E). The aim is to find a color assignment A
such that no neighbouring vertices share the same color. A in the states represents the color
assignments of the vertices. In the state transition function, A′ is used to indicate a new
color assignment, where the current vertex v is colored according to the chosen color. A′

in the merging function represents a merged version of the color assignments, where the
vertices are uncolored if they differed between A1 and A2, otherwise keeping their color.
The vertices V are ordered beforehand when using a static variable ordering (or ordered
dynamically with a dynamic ordering).

A.2.1 MDD encoding

• State definition: < A,v,k,C > where A represents the color assignments of the ver-
tices, v is the current vertex that needs to be colored, k is the highest numbered color
used so far, and C is the set of eligible vertices for v.

– Initial state: < A,0,0,{0,1}>
– Terminal state: < A,0, |V |,C >

• Label generation function: λ(< A,v,k,C >) =C

• State transition function: τ(<A,v,k,C >, l)=


< A,0, |V |,C > if v = |V |
< A′,v+1,k,{0,1, ...,k+1}> if 0≤ l ≤ k
< A′,v+1,k+1,{0,1, ...,k+2}> if l = k+1

• State cost function: c(< A,v,k,C >, l) =

{
0 if 0≤ l ≤ k
1 if l = k+1

56

A.2. Graph Coloring

• Merge operator: ⊕(< A1,v1,k1,C1 >,< A2,v2,k2,C2 >) =< A′,v1,k1,C1 ∪C2 > if
v1 = v2∧ k1 = k2

A.2.2 MDD encoding with Beam Restrictions

Here, the DP model uses a beam width b. The beam B is the set of vertices chosen to be
included in the beam in the label generation function.

• State definition: < A,v,k,C,e > where A represents the color assignments of the
vertices, v is the current vertex that needs to be colored, k is the highest numbered
color used so far, C is the set of eligible vertices for v, and e is the number of no-beam
transitions taken so far.

– Initial state: < A,0,0,{0,1},0 >

– Terminal state: < A,0, |V |,C,0 >

• Label generation function: λ(< A,v,k,C,e >) =

{
C if |C| ≤ b
B∪{−1} else

• State transition function: τ(<A,v,k,C,e>, l)=


< A,0, |V |,C,0 > if v = |V |
< A′,v+1,k,{0,1, ...,k+1},e > if 0≤ l ≤ k
< A′,v+1,k+1,{0,1, ...,k+2},e > if l = k+1
< A,v,k,C \B,e+1 > if l =−1

• State cost function: c(< A,v,k,C,e >, l) =


0 if 0≤ l ≤ k
1 if l = k+1

1
|V |+1 if l =−1

1
|V |+1 · e if v = |V |

• Merge operator: ⊕(<A1,v1,k1,C1,e1 >,<A2,v2,k2,C2,e2 >)=<A′,v1,k1,C1∪C2,max(e1,e2)>
if v1 = v2∧ k1 = k2

57

	Preface
	Contents
	List of Figures
	Introduction
	Related Work
	Approximate Multivalued Decision Diagrams
	Decision Diagram-Based Branch & Bound

	Preliminaries
	Decision Diagrams
	The Maximum Independent Set Problem
	A BDD Encoding For the MISP
	An MDD Encoding For the MISP
	The Graph Coloring Problem
	Approximate Decision Diagrams
	Branch & Bound
	Variable ordering heuristics
	Local Bound Pruning
	Beam Search

	New Heuristics for Multivalued Decision Diagrams
	Restricting the MDD Expansion
	Dynamic Variable Ordering
	Local Bound for the MISP

	Experimental Results
	Experimental Setup
	Metrics
	Static Variable Ordering Strategies
	Restricted MDD with Beams
	Beam Restrictions in Graph Coloring
	Dynamic Variable Ordering Strategies
	Local Bound Pruning

	Discussion
	Conclusions and Future Work
	Bibliography
	DP Models
	MISP
	Graph Coloring

