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the Computer Vision lab. As my daily supervisor, Robert-Jan always gives me appropriate instructions
on conducting academic research. | learned a lot from the weekly meetings with him. Additionally, |
would like to express my sincere gratitude to Jie Yang, my external committee member. | took the
information retrieval course last year taught by Jie Yang, and that experience was amazing. | also had
the pleasure of contributing to a project under the supervision of Jie Yang and learning from him. Finally,
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How to encode location in the Vision Transformer?
A study on position embeddings

Xiangxie Zhang
Delft University of Technology
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Abstract

Location information is essential for the ViT model. Im-
age data has three types of location information: abso-
lute location, relative direction, and relative distance. Var-
ious position embeddings methods have been used to in-
troduce location information to the ViT model. Some ex-
isting methods are absolute position embeddings, relative
position embeddings, fixed sinusoidal position embeddings,
and learnable Fourier position embeddings. However, it is
unclear what type of location information can be encoded
by different position embeddings methods. This paper in-
vestigates this question by conducting fully-controlled ex-
periments and feature-level analysis on synthetic datasets.
The results suggest that the relative position embeddings
cannot encode absolute location information, which leads
to inferior performance. All the position embeddings ap-
proaches that we test can encode relative location informa-
tion. However, they have different levels of relative location
bias. The learnable absolute position embeddings do not
contain any relative location bias and therefore need more
data to learn. The fixed sinusoidal and learnable Fourier
position embeddings are relatively better, but they also have
minor drawbacks. The fixed sinusoidal position embeddings
are not trainable, while the Fourier method does not have
much bias on relative location information. We propose
to make the fixed sinusoidal position embeddings learnable
and use pretraining tasks to improve the Fourier method.
Our two new approaches show promising results on the test-
ing datasets, and they are competitive compared with a sim-
ilar approach.

1. Introduction

Vision Transformer (ViT) [5] is a newly emerging model
competing with Convolutional Neural Network (CNN) in
computer vision. ViT uses a pure Transformer model [28]
without the help of convolutions and achieves state-of-the-
art performance on image classification tasks. The innova-

Robert-Jan Bruintjes (supervisor)
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Figure 1. An overview of the three types of location information
in images. This figure displays a scenario of self-driving tech-
niques. The driving directions of the red and blue vehicles are
indicated by the yellow arrows, which show that they will meet at
the intersection. To avoid a car crash with the blue car, the com-
puter vision model of the self-driving system in the red car should
know the relative direction between them, that the blue car is at
the front-right of the red car. In addition, the model should be
aware of the relative distance between the two vehicles, which can
be decomposed into horizontal and vertical distances, as shown by
the green arrows. The model should also be sensitive to the ab-
solute location to avoid problems like getting into the wrong lane.
In this paper, we are interested in investigating whether the po-
sition embeddings approach in the ViT model could encode the
three types of location information. This image is adapted from
https://www.photophoto.cn.

tion of ViT is splitting the input image into grid-like non-
overlapping patches. The global features across different
image patches can be captured through the self-attention
layers. However, the self-attention mechanism itself is
permutation-invariant to the input sequence [14]. Chang-
ing the order of the image patches does not make any dif-
ference to the outputs of the self-attention layer. Consider
the self-driving scenario shown in Figure 1, where the com-
puter vision model is applied to determine the relative lo-
cation between the red and blue vehicles. A pure self-



attention layer is insensitive to the displacements of the two
vehicles, which is not a desired property. Therefore, loca-
tion information should be introduced to the ViT models
to make them be sensitive to the order of the input image
patches [28].

Previous work identifies three types of location informa-
tion in image data: absolute location, relative direction, and
relative distance [34], as shown in Figure 1. The absolute
location information specifies where the target object is in
an image. The relative direction and relative distance to-
gether describe the relative location between different ob-
jects. Therefore, both the absolute and relative location are
important information in computer vision tasks [&].

Position embeddings are used to feed location informa-
tion into the ViT models. The original ViT uses the learn-
able absolute position embeddings [4] as the default setting,
while there are other methods like fixed sinusoidal position
embeddings [28, 3 1], relative position embeddings [21,23],
and the recently proposed learnable Fourier position em-
beddings [13]. These methods have different mechanisms
to encode locations. The relative position embeddings are
applied in the self-attention layers, and they are designed to
encode relative location information. Other methods give
each image patch a unique absolute position embedding,
and they are introduced to the ViT model before the self-
attention layers. The levels of predefined location informa-
tion injected into these models are also different. The ab-
solute and relative position embeddings are initialized with
random numbers, while the sinusoidal and Fourier meth-
ods introduce additional location information by using pre-
defined features. Another difference lies in the ability to
learn. The fixed sinusoidal position embeddings are not
learnable, while other approaches can be trained to adapt
to the datasets. Given all the differences, it is still unclear
what type of location information can be encoded by these
methods. In addition, it is not conclusive yet what the pre-
defined features bring to the model and how the inability to
learn could influence the model.

In this paper, we investigate what location information
can be encoded by different position embeddings and ex-
plore their advantages and drawbacks by conducting fully-
controlled experiments and feature-level analysis on syn-
thetic datasets. Based on the results of these experiments,
we propose solutions to improve the fixed sinusoidal and
learnable Fourier position embeddings as they have the
most desired properties compared with other approaches.
We design pretraining tasks on synthetic datasets to help
the learnable Fourier method acquire the desired relative
location bias. In addition, using a similar structure as the
Fourier approach, we construct learnable sinusoidal posi-
tion embeddings. Our methods show promising results on
realistic datasets, and they are competitive compared with a
similar state-of-the-art approach.

2. Related work

The fixed sinusoidal position embeddings [28, 31], ab-
solute position embeddings [4], and relative position em-
beddings [21, 23] are seminal position embeddings meth-
ods. Researchers have been trying to find better encod-
ing schemes for location information. There are works
that focus on modifying the structure of the relative posi-
tion embeddings to better encode relative location informa-
tion [3,7,20,34]. Some other works apply complex numbers
and rotation matrices to enhance the encoding ability of the
absolute [29] and relative position embeddings [25]. Intro-
ducing convolutions to the ViT models to enhance the spa-
tial inductive bias is also a frequently proposed method. For
example, Convolution Vision Transformer (CvT) [33] and
Convolution enhanced image Transformer [35] use convo-
lution blocks to capture low-level features and spatial infor-
mation. Conditional Position encoding Vision Transformer
(CPVT) [1] replaces the traditional position embeddings
with convolution layers. Besides directly incorporating con-
volutions to ViT models, researchers also try to enhance
ViT’s locality inductive bias by injecting Shifted Patch To-
kenization (SPT) and Locality Self-Attention (LSA) mod-
ules [12]. These works concentrate on modifying the struc-
ture of the position embeddings or the ViT model to im-
prove the ability to encode location. Unlike them, we in-
stead try to understand existing position embeddings more
deeply and improve them by injecting more location infor-
mation or making them more flexible. Our methods do not
require complex modifications to the structures.

A method related to ours is proposed in [15]. This ap-
proach attaches an additional localization MLP head to the
ViT model, which is used to predict the relative distance
between two selected image patches. A corresponding loss
function is designed for this additional relative localization
auxiliary task [15]. Similar to our method, this work also
concentrates on introducing more location information to
the ViT models, and its solution is applying self-supervised
learning. However, this work does not explicitly focus on
improving position embeddings, which is the main research
interest of our paper.

Encoding location information is also crucial for non-
ViT models in other fields, such as neural representations
for signals. The NeRF [18] model uses an MLP model be-
ing fed with coordinates as inputs to represent signals for
synthesizing views of scenes. A mapping function is de-
signed to project the input location coordinates to higher
dimensions. Possible improvements to the coordinate-MLP
models are learning instance-specific position embeddings
[22] or using other mapping functions such as the Fourier
feature [26]. The SIREN [24] model adds periodic acti-
vation functions to coordinate-MLP, which achieves bet-
ter results than the previously proposed location encoding
technique. These methods improve the ability to encode



location information for better approximation of higher fre-
quency functions. Different from them, the ViT model ap-
plies position embeddings techniques to be sensitive to the
order of the input sequence.

3. Existing position embeddings methods
3.1. Absolute position embeddings

We discuss two frequently used methods to implement
absolute position embeddings. We could either use pre-
defined fixed sinusoidal position embeddings [28, 31] or
trainable embeddings with random initialization [4]. In ViT
models, the absolute position embeddings are added to the
patch embeddings before being fed into the self-attention
layer.

Learnable absolute position embeddings are initialized
with random numbers drawn from the normal distribution
with a mean of O and a standard deviation of 0.02 [4]. Al-
though this simple approach is frequently used in ViT mod-
els, previous work has pointed out that the absolute position
embeddings method is not translation equivariant because it
gives each image patch a unique position embedding [1,2].
Translation equivariance ensures that an object’s features do
not rely on its absolute position in an image. Translation
equivariance is an important property in image tasks related
to data efficiency [9]. We will show by experiments that the
learnable absolute position embeddings are data-inefficient
compared with other methods.

Instead of using random values, the fixed sinusoidal
position embeddings method [28] applies sine and cosine
functions to initialize the position embeddings. Since we
are dealing with image data, in this paper, we use the 2D
sinusoidal position embeddings [31]:

PE(z, y, 2i) = sin(z/100007)

PE(z,y, 2i + 1) = cos(z/100005)
PE(z,y,2j + D/2) = sin(y/10000 3 )
PE(z,y,2j + 1+ D/2) = cos(y/100007 ),

where x and y represent the horizontal and vertical coor-
dinates of the image patch, and D denotes the dimension
of position embeddings. ¢ and j specify the location of the
value within each individual position embedding. The fixed
sinusoidal position embeddings use the same strategy as the
learnable absolute position embeddings, giving each image
patch a unique position embedding. We will show by ex-
periments that they are defined to contain relative location
bias, leading to higher data efficiency.

3.2. Relative position embeddings

Instead of directly adding to the patch embeddings, rel-
ative position embeddings [21, 23, 34] are used in the self-
attention layer. A self-attention operation with 2D relative

position embeddings [2 1] can be calculated as:
i J
yij = Z SOftmaXab(qz; kap + q’ilj‘rafi,bfj)vaba ()
a=0 b=0

in which ry_;,_j is the learned relative position embed-
ding. This term is only related to the relative horizontal and
vertical shift a — i and b — j between the query and key
patch, which implies that the relative position embeddings
are translation equivariant. However, since relative posi-
tion embeddings ignore the absolute position of the image
patches, which is proven to be crucial to image classifica-
tion tasks [8], relative position embeddings perform worse
than absolute position embeddings [1].

3.3. Learnable Fourier position embeddings

Recent research raises the idea of using learnable Fourier
features to encode locations in ViT models [13]. This
method uses raw coordinates of the image patches as the
inputs and trains an encoding function to extract Fourier
features. The Fourier features are calculated as:

rx = L[cos xW||sinxW,'], 3)
VD

where x is the input coordinates, D is the dimension of the
feature embeddings, and W, is the encoding function. The
|| represents concatenation. The extracted Fourier features
are then fed to an MLP layer to get the final position embed-
dings. The encoding function W, is initialized by drawing
random values from a Gaussian distribution N ~ (0,v~2),
where v is a hyperparameter. In such a way, the encoding
function is initialized to make the Fourier features contain
relative location information. According to the original pa-
per [13], given two positions x and y, the Gaussian kernel
over the two positions can now be approximated by the in-
ner product of the two Fourier features ry and ry as in:

|| — yl]?
2

As a result, a useful inductive bias of Lo distance is intro-

duced to the model. We will show by experiments that the

Fourier method actually introduces bias on both relative di-
rection and relative distance to the ViT model.

)- “)

Iy - Ty &~ exp(—

4. Fully-controlled experiments
4.1. What method can encode relative location?

For image tasks, both relative direction and relative dis-
tance are important relative location information [34], there-
fore we investigate them separately. We construct red-green
datasets and conduct fully-controlled experiments on them.
We create a binary classification task to explore what meth-
ods can encode relative direction information, and the sam-
ple images are shown in Figure 2. Images in the first class
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Figure 2. Sample images in the synthetic red-green dataset which
is used to test relative direction information. Class 1 has the green
square to the left of the red square, while the green square is to the
right of the red square in class 2.

consist of a green square to the left of a red square. On the
contrary, the green square is to the right of the red square
for images in the second class. We design a regression task
to investigate what position embeddings method can encode
the relative distance information. We still use images with
red and green squares, while the target now is the relative
horizontal and vertical distance from the green square to the
red square. We use accuracy and the R? score to evaluate
the model’s performance on the classification and regres-
sion tasks respectively. The R? score is calculated as:

S (Wi — Gi)?
S (i —9)*

A R? score of 1 indicates the best model, while it can be
arbitrarily low. If the model outputs the average value of
the true results as the prediction of all samples, the R? score
will be 0.

We use a simplified version of the ViT model, which has
only one encoder block. The rest components are the same
as the original ViT model. The benefit of using a smaller
model is that it saves time and resources, given that the
tasks are relatively more straightforward than those on re-
alistic datasets. We train the ViT model with different posi-
tion embeddings methods, and each experiment is repeated
10 times using various random seeds to obtain an accurate
measure of the performance. We use 5000 training images,
1000 validation images, and 1000 testing images. The re-
sults are shown in Table 1, which illustrates that all the po-
sition embeddings methods we test can solve the two tasks,
although they have tiny differences in performance.

To verify whether these position embeddings methods
indeed learn the left-and-right relative direction information
and the relative distance information, or they solve the two
tasks by simply hard-remembering all possible positions of
the red and green squares, we need to analyze what location
features these methods capture from the synthetic red-green
dataset. In [30], a feature-level empirical analysis is pro-

R*=1- S

Pos. emb. Direction (Acc) Distance (R?)
None 52.72 +1.08 -0.01 +0.01
Relative [21] 99.92 £+ 0.06 0.84 + 0.04
Absolute [4] 99.43 £0.36 0.92 + 0.06
Fixed sinusoidal [28] 99.81 £0.16 0.96 £+ 0.01
Learnable Fourier [13] 99.64 £+ 0.32 0.94 + 0.03

Table 1. Accuracy of the binary classification experiment testing
the relative direction and R? score of the regression experiment
testing the relative distance. The results suggest that all the posi-
tion embeddings can encode relative location information.

posed to investigate what position embeddings learn in dif-
ferent language models. In our research, we conduct similar
experiments.

We build a binary classification dataset for the relative
direction task by obtaining pairs of learned position embed-
dings. For each pair of position embedding (x;,x;) that
represent position (p;, p;), we construct the feature embed-
ding X (i, j) as x; — x;, while the target is 0 if position p; is
to the left of p; otherwise 1. We then train a logistic regres-
sion model on this dataset. If the learned position embed-
dings capture the horizontal left-and-right relative direction
information, then the logistic regression model should be
able to solve the binary classification problem. For compar-
ison, we make another binary classification dataset whose
target is the vertical up-and-down relative direction infor-
mation, which is not present in the red-green dataset and
therefore cannot be learned by the position embeddings. We
also conduct experiments on the initial position embeddings
before training on the red-green dataset. Applying the same
feature-level analysis for the relative distance task, we con-
struct a dataset by collecting pairs of position embeddings,
and the target is the relative shift between the two positions.
We train a linear regression model on this dataset to see
whether the learned embeddings indeed contain relative dis-
tance information. We conduct all experiments using 10-
fold cross-validation for each of the 10 trained models on
the red-green datasets.

The average accuracy and R? score of the 10 models in
the above experiments can be found in Table 2, while the
full results are shown in Appendix A. The absolute posi-
tion embeddings method uses random initialization, there-
fore it does not contain any relative location information at
the initial state. This is reflected in both the logistic regres-
sion and the linear regression experiments. Before training,
the logistic regression classifier only gives random outputs
with an average accuracy of around 50%, while the linear
regression model also has random outputs with an average
R? score of around 0. However, after training, the logis-
tic regression model reaches above 99% average accuracy
on the left-and-right relations and remains around 50% av-
erage accuracy on the up-and-down relations. The linear
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Figure 3. The learning curve of the relative direction experiment (left) and the relative distance experiment (right), targeting on testing
the data efficiency in learning relative location information. The figures show that the fixed sinusoidal position embeddings are more

data-efficient than the Fourier and the absolute position embeddings.

Pos. emb.
Abs  Sinusoidal Fourier

left-right before ~ 51.47 100.00 92.41

DIR left-right after 99.99 100.00 99.71
" up-down before  50.69 100.00 92.47
up-down after 49.61 100.00 92.55

before 0.00 1.0 0.91

DIS. after 0.93 1.0 0.96

Table 2. Average accuracy of the logistic regression experiments
for testing relative direction (DIR.) and average R? score of the
linear regression experiments for testing relative distance (DIS.)
before and after training on the synthetic red-green dataset. The
feature-level analysis verifies that the position embeddings meth-
ods can learn relative location information since the accuracy and
R? score increase after training. We also conclude that these meth-
ods have different levels of relative location bias as the accuracy
and R? score are different before training.

regression model has an average R? score of approximately
0.93 after training. These results imply that the absolute
position embeddings truly learn the relative location infor-
mation existing in the training dataset. For fixed sinusoidal
position embeddings, the logistic regression model could
achieve 100% accuracy on both horizontal and vertical di-
rections, while the linear regression model can reach a R?
score of 1. These results indicate that the sinusoidal posi-
tion embeddings are pre-defined to have a robust relative
location bias. We also conduct experiments for the learn-
able Fourier position embeddings method, where the logis-
tic regression model could reach 92% average accuracy on
both horizontal and vertical directions before training. After
training, the average accuracy on the left-and-right direction
is around 99% while on the up-and-down direction is still
92%. The linear regression model can reach an average R2
score of 0.91 before training, while after training, this figure
increases to 0.96. We conclude that both sinusoidal position

embeddings and Fourier position embeddings have a bias on
relative location before training, while the sinusoidal posi-
tion embeddings have a stronger one. The absolute position
embeddings do not have any bias on relative location, but
they can acquire this knowledge through training.

Based on the above results, we expect the sinusoidal po-
sition embeddings to be the most data-efficient method in
learning relative location information as they have bias on it.
In contrast, the absolute position embeddings are not data-
efficient and need more data to learn. To verify this point,
we conduct experiments to test the data efficiency of differ-
ent position embeddings approaches. We still train simpli-
fied ViT models with different position embeddings tech-
niques on classification and regression tasks using the syn-
thetic red-green dataset. However, we vary the number of
training samples this time and plot the learning curve. The
result is displayed in Figure 3. The figure demonstrates that
the sinusoidal position embeddings method is more data-
efficient than the Fourier position embeddings and learnable
absolute position embeddings, as its learning curve is higher
than the other two.

4.2. What method can encode absolute location?

Previous work has stated the importance of absolute lo-
cation to image tasks [8]. For ViT models, each image patch
should be given a unique position embedding to encode the
absolute location. The absolute position embeddings, si-
nusoidal position embeddings, and Fourier position embed-
dings can handle this task. However, when the relative po-
sition embeddings take place in the self-attention layer, the
model only takes the relative location between the query
and key image patch into account and neglects the abso-
lute location of each image patch. Therefore, the relative
position embeddings cannot encode absolute location. We
construct another binary classification dataset to verify this
statement, in which the images in class 1 have two squares
in the upper part of the image while images in class 2 have



Accuracy
None 49.79 £+ 1.86
Fixed sinusoidal [28] 99.94 + 0.10
Absolute [4] 99.85 £0.13
Relative [21] 54.02 £7.12
Learnable Fourier [13]  99.99 £ 0.03

Table 3. Accuracy of the binary classification experiment testing
the absolute location. The results suggest that the relative position
embeddings cannot encode the absolute location information.

both squares in the bottom part of the image. The relative
location between the two squares does not matter anymore
in this dataset, while their absolute locations play an impor-
tant role. The results are shown in Table 3, which demon-
strates that the relative position embeddings cannot encode
the absolute location information, while the other three ap-
proaches can handle it.

4.3. Weakness of fixed sinusoidal position embed-
dings

Previous sections suggest that the fixed sinusoidal posi-
tion embeddings contain useful relative location bias, and
therefore they are more data-efficient than other methods.
However, do fixed sinusoidal position embeddings have
drawbacks? Previous research state that the fixed sinusoidal
position embeddings method is not flexible and cannot
adapt to learn the location features of the datasets [13, 15].
We design another synthetic red-green dataset to determine
how its inflexibility may influence the model. The dataset
is similar to the one we use in 4.2. However, in this experi-
ment, we use different colors for training images and testing
images. Figure 4 shows some sample images.

Training Testing

I i . . .
! ! . . -

Figure 4. Sample images in the synthetic red-green dataset which
is used to test the influence of the inflexibility of the fixed sinu-
soidal position embeddings. The color of the squares are different
between the training and testing set.

The result of using different position embeddings on this
dataset is shown in Table 4. This task still requires the
position embeddings method to encode absolute location.
However, the fixed sinusoidal position embeddings do not

Accuracy
None 50.06 + 0.16

Fixed sinusoidal [28] 57.03 £ 14.90
Absolute [4] 97.46 £ 3.26
Relative [21] 49.70 4+ 0.60
Learnable Fourier [13]  98.49 + 3.97

Table 4. Accuracy of the binary classification experiment testing
the influence of inflexibility of the fixed sinusoidal position em-
beddings. The results suggest that the fixed sinusoidal position
embeddings do not work anymore when the color is changed.
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Figure 5. The cosine similarity heatmap of using learnable po-
sition embeddings methods. The heatmap is able to display the
similarity of position embeddings between a selected image patch
and all other image patches. The left images show the heatmaps
before training, while the right images show the heatmaps after
training. The heatmaps illustrate that the learnable position em-
beddings can adapt themselves to capture the location information
in the datasets.

work anymore when the color is changed. On the other
hand, the learnable absolute position embeddings and learn-
able Fourier position embeddings could still solve the prob-
lem. To find out why this happens, we analyze what the
position embeddings learn by plotting the cosine similarity
heatmaps, which are displayed in Figure 5.

Since the learnable absolute position embeddings are ini-
tialized with random values, there is no specific pattern be-
fore training. For a certain image patch, the cosine simi-
larities between its position embedding and all other image
patches are the same. However, after training on the dataset,
a clear boundary that separates the upper and bottom parts



Relative [21]

Absolute [4]

Learnable Fourier [13] Fixed sinusoidal [28]

Encode absolute location X
Encode relative direction v
Encode relative distance v
Have relative direction bias X
Have relative distance bias X

Learnable v

AR TR T N NN

'8 N NN
> NSNS

Table 5. A summary on properties of different position embeddings. v'means the method holds this property while X indicates that
the method does not have the corresponding property. ~ implies that it is questionable that whether the method completely hold the the

property. It depends on other factors like the setting of hyperparameter.

of the image can be observed. This implies that the absolute
position embeddings can know that all image patches in the
same half are more similar to each other than those image
patches in the other half. For the learnable Fourier posi-
tion embeddings, we could observe a clear pattern showing
relative location bias before training. Each image patch is
more similar to the image patches close to it than those fur-
ther away. However, after training, a completely different
pattern could be observed, that images in the same half are
similar to each other. These heatmaps clearly illustrate that
the learnable position embeddings can adapt to capture the
location information in the dataset through training.

The fixed sinusoidal position embeddings are not learn-
able, and their relative location bias does not fit the dataset.
Therefore, the ViT model using fixed sinusoidal position
embeddings cannot solve this problem simply depending
on position embeddings. The solution relies on the fused
appearance and position features used in the self-attention
layer. Therefore, when the color is changed in the test-
ing set, the fixed sinusoidal position embeddings no longer
work. However, the learnable position embeddings can
adapt to capture crucial location information in the dataset.
Therefore, the ViT models using learnable position embed-
dings can decouple the appearance features and the location
features.

In a nutshell, the fixed sinusoidal position embeddings
are not trainable, leading the ViT model to be trained in
a different manner from those models using learnable posi-
tion embeddings, which may result in inferior performances
under certain situations.

5. Methods

Based on the analysis in the previous section, we make
a summary of properties that different position embeddings
methods hold in Table 5. For realistic datasets, both ab-
solute and relative location information is important, and
therefore we need position embeddings methods that could
encode both. From the data-efficiency perspective, an ideal
position embeddings method should have a bias on rela-
tive location. In addition, it should be sufficiently flexible

to adapt to the dataset. From Table 5, we believe that the
Learnable Fourier position embeddings and the fixed sinu-
soidal position embeddings have the most required proper-
ties.

5.1. Improving the learnable Fourier method

The learnable Fourier position embeddings almost meet
all the requirements of an ideal position embeddings
method. However, from the fully-controlled experiments in
4.1 we show that it does not have sufficient relative location
bias compared with the sinusoidal position embeddings. In
fact, when conducting the fully-controlled experiments, we
find that the Fourier method’s relative location bias heavily
depends on the hyperparameter . It needs careful tuning to
obtain a satisfying relative location bias, which may require
a long time.

Tuning the hyperparameter does not ensure an optimal
result. Instead, we propose to pretrain the Fourier position
embeddings to acquire desired relative location bias without
the need to tune the hyperparameter. Pretraining is a helpful
technique in computer vision that enable a model to learn
from one dataset and generalize to other datasets [36]. In
our case, we propose to pretrain the Fourier position embed-
dings on two designed red-green datasets. The first task is a
classification problem where the model needs to determine
the relative direction between the red and green squares in
both horizontal and vertical directions. Therefore there are
four classes in total. The second task is the same as what we
used to test relative distance in 4.1. We pretrain the model
on these two tasks linearly. After pretraining, we apply the
logistic regression and linear regression experiments again
to evaluate the level of relative location bias that the Fourier
position embeddings obtain. The accuracy of the logistic
regression classifier on both directions increases from 92%
to 99%, while the R? score of the linear regression model
also increases from 0.91 to 0.98. These results demonstrate
that the Fourier method acquires more relative location bias
by the pretraining tasks compared with the initial state.

Our method has two advantages compared with pretrain-
ing on a large-scale dataset like ImageNet or JFT-300M.
First, our pretraining tasks are simple and do not require a



large amount of training data. Therefore they are not time
nor resource consuming. We use 5000 training data in both
pretraining datasets, and the training completes within 15
minutes using a single V-100 GPU for each task. As the
pretraining datasets are constructed ourselves, we could use
as much data as possible. Moreover, the Fourier position
embeddings only learn the relative location bias from the
red-green dataset. However, if we pretrain it on a realis-
tic dataset, it may learn other knowledge specific to that
dataset, which could hurt the performance on the target task.
For example, previous research points out that vision tasks
related to medical images may not benefit from pretraining
on ImageNet because of the modality difference between
medical images and natural images [32].

5.2. Improving the fixed Sinusoidal method

The fixed sinusoidal position embeddings have sufficient
bias on relative location information, while its main weak-
ness is its inability to be trained. Therefore, we propose
to make the sinusoidal position embeddings learnable. Ob-
serving Eq 1 and 3, we find that the Fourier features are
similar to the sinusoidal features, while the only difference
lies in the ordering of the sine and cosine functions. For a
single position embedding, the first half of the Fourier fea-
tures is computed by using the cosine function, while the
second half comes from the sine function. On the other
hand, the sinusoidal features alternately apply cosine and
sine functions. Based on this observation, we propose to
construct learnable sinusoidal position embeddings using a
similar structure as the learnable Fourier method. We use
raw 2D-coordinate x = [z, y] as the input, and a linear layer
W € RZ*2 as the encoding function, where D specifies
the dimension of the position embeddings. The encoding
function is initialized in such a way that the elements in the
resulting vector y = xW7 satisfies
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which are the same as those inside the cosine and sine
bracket in Eq 1. We then apply cosine and sine function
on y and get two new Vvectors Ycos and ysin . Afterwards,
instead of directly concatenating y¢os and ysin as in Eq 3,
we concatenate each of their values alternately such that the
results are the same as the values of the sinusoidal posi-
tion embeddings. The sinusoidal position embeddings can
be trained now and adapt to capture location information in
the datasets, as the encoding function W is trainable.

6. Experiment
6.1. Experimental setup

To investigate how the properties in Table 5 influence
the model and whether our proposed methods could im-

prove on realistic datasets, we test these methods based on
the image classification task using some common bench-
mark datasets. We use Oxford Flower-102 [19], ImageNet-
tiny [11], CIFAR-10 and CIFAR-100 [10]. The statistics
of these datasets can be found in Table 6. We train the
ViT-base model using different position embeddings meth-
ods from scratch. To test the data efficiency, we change the
number of training samples per class and analyze the learn-
ing curve. We repeat each experiment five times to get a
reliable measure of the model’s accuracy and record the av-
erage accuracy and standard deviation. In addition, we also
compare our methods with a similar method which uses a
self-supervised learning task to introduce relative location
information [16], using full images of these four datasets.

Dataset name  Train size Testsize Num of classes
CIFAR-10 50000 10000 10
CIFAR-100 50000 10000 10
Flower-102 6552 818 102

ImageNet-tiny 100000 10000 200

Table 6. The statistics of the realistic datasets

6.2. Results

Figure 6 demonstrates the modified learning curves of
different position embeddings approaches on the four differ-
ent testing datasets. The curves illustrate the amount of im-
provements in accuracy compared with the baseline model.
The baseline model uses the default learnable absolute po-
sition embeddings.

When the number of training samples is small, the rela-
tive position embeddings can perform better than the base-
line model, which uses learnable absolute position embed-
dings. However, as the number of training samples in-
creases, the relative position embeddings become worse.
This could be explained by the fact that the relative po-
sition embeddings are translation equivariant. However, a
small amount of training samples is insufficient to make the
learnable absolute position embeddings learn relative loca-
tion information, and the absolute position embeddings are
not translation equivariant. Therefore, the relative position
embeddings are better. When there is more data, the ab-
solute position embeddings can encode relative location in-
formation, enhancing translation equivariance. The draw-
back of relative position embeddings becomes more promi-
nent because they cannot encode absolute location informa-
tion, resulting in lower accuracy. The fixed sinusoidal and
Fourier position embeddings have bias on relative location
information, and therefore they are always better and more
data-efficient than the learnable absolute position embed-
dings. In a nutshell, the properties of different position em-
beddings we explore on synthetic datasets could influence
the performance on realistic datasets.
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Figure 6. Modified learning curves. The plots record the amount of accuracy that different methods improve on the baseline model,
which uses learnable absolute position embeddings. The baseline model is represented by the black dashed line, while other methods are
represented by colored lines. The plots illustrate that our proposed methods have improvements on the existing position embeddings.

CIFAR10 CIFAR100  Oxford Flower-102  ImageNet-Tiny
Absolute 80.61 £0.10 55.03 +0.43 70.80 4 0.80 42.36 + 0.32
Regularization by self-supervision [16] 84.83 = 0.11 57.93 4+ 0.27 75.76 4+ 0.49 44.80 + 0.18
Learnable sinusoidal 85.82 +0.40 59.37 + 0.23 76.35 +0.83 45.46 + 0.28
Pretrained learnable Fourier 85.60 £ 0.35 57.89+0.25 76.78 £+ 0.65 46.02 + 0.36

Table 7. The accuracy on full datasets using learnable absolute position embeddings, our proposed methods and a similar method which
applies self-supervised learning for regularization. The results indicate that our methods are competitive.

For our proposed pretraining method, Figure 6 illus-
trates that the learning curve of the pretraining method is
always higher than the one of the original Fourier method
on all four datasets. These results imply that our pretrain-
ing method helps the learnable Fourier position embeddings
enhance the data efficiency by introducing more relative
location bias. The learnable sinusoidal method also im-
proves the original fixed sinusoidal position embeddings, al-
though with a relatively smaller increase compared to what
pretraining brings to the Fourier method. On CIFAR-10
and CIFAR-100, when there are a small amount of train-
ing data per class, there is no difference between the learn-

able and fixed sinusoidal method. The learnable sinusoidal
method gradually improves as the number of training sam-
ples increases. This could be explained by the fact that
the learnable method still needs data to learn to show its
effectiveness. On the Oxford flower and ImageNet-tiny
dataset, the improvements brought by the learnable sinu-
soidal method are more prominent. Across different meth-
ods, on CIFAR10/100 and Oxford flower dataset, the learn-
able sinusoidal position embeddings are more data-efficient
than the Fourier position embeddings, even with the pre-
training technique applied. However, on the ImageNet-tiny
dataset, the pretrained Fourier method is better. In conclu-



sion, our proposed methods show promising results on real-
istic datasets.

Table 7 display the comparison in accuracy between us-
ing our proposed methods and the regularization method
by self-supervision [16], which also focuses on introduc-
ing more relative location information to the ViT model.
The results indicate that our proposed methods are compet-
itive compared to this similar approach, as our accuracy is
slightly better on all testing datasets.

7. Conclusion

In this paper, we investigate how the location informa-
tion is encoded in the ViT model. We compare differ-
ent position embeddings methods and analyze their advan-
tages and drawbacks based on fully-controlled experiments
and feature-level analysis on synthetic datasets. The de-
fault learnable absolute position embeddings lack the rel-
ative location bias, and they are not translation equivariant.
The relative position embeddings are not sensitive to abso-
lute location information, which is crucial in visual tasks.
The fixed sinusoidal position embeddings are not flexible
enough, while the learnable Fourier position embeddings
do not contain much relative location bias. We propose pre-
training tasks to enhance the relative location bias of the
Fourier method, and we also make the fixed sinusoidal po-
sition embeddings learnable. The results on four realistic
datasets show the effectiveness of our new methods and
suggest that they are competitive compared with a similar
state-of-the-art approach.

In this research, we only focus on the original ViT
model. For future research, we could investigate whether
our proposed methods generalize to other ViT-based mod-
els like Deit [27], Levit [6] or Swin-transformer [17]. We
could also research whether our methods also contribute to
convolution-enhanced ViT models.
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A. Results of the logistic regression and linear regression experiments

left-right acc before  left-right acc after up-down acc before up-down acc after

Absolute pos. emb.  model 0 51.50 + 18.76 99.97 + 0.08 53.69 + 27.51 52.38 £ 26.94
model 1 50.64 £ 17.51 100.00 £ 0.00 46.10 £ 24.70 45.44 £ 26.45
model 2 50.53 £+ 16.62 100.00 £ 0.00 49.26 £29.14 47.36 £ 29.60
model 3 51.45 £ 15.64 100.00 £ 0.00 47.81 £ 28.45 45.99 £ 28.51
model 4 52.76 £ 18.34 100.00 £ 0.00 52.60 + 23.04 50.57 £ 23.93
model 5 51.28 £ 18.89 100.00 £ 0.00 52.30 £ 29.19 51.88 £ 28.11
model 6 4991 £ 16.19 100.00 £ 0.00 51.29 + 28.45 51.88 £ 27.76
model 7 52.14 £17.74 100.00 £ 0.00 54.33 £25.36 53.27 £ 25.30
model 8 52.12 £ 18.83 100.00 £ 0.00 47.78 £25.13 46.52 £25.92
model 9 52.34 £ 18.13 99.94 £ 0.17 51.71 £ 25.78 50.85 £+ 26.20
Fourier pos. emb. model 0 92.34 +4.32 99.98 £+ 0.01 92.21 £3.78 92.43 +3.97
model 1 92.99 + 3.12 99.78 + 0.01 92.09 + 3.62 91.92 £ 3.09
model 2 93.29 £ 4.31 99.99 £ 0.01 92.64 £3.19 92.93 +£2.78
model 3 91.53 £ 4.65 99.45 + 0.04 9243 £ 3.51 92.98 +£3.31
model 4 93.13 £2.89 100.00 £ 0.00 92.49 £3.77 92.23 +£3.53
model 5 92.11 £3.45 99.77 £+ 0.03 92.94 +3.32 91.99 £ 3.13
model 6 92.23 £3.04 100.00 £ 0.00 92.18 £3.74 92.44 £+ 3.89
model 7 91.19 £ 3.52 99.16 £ 0.04 92.47 + 3.64 92.68 £ 3.59
model 8 93.49 £+ 3.01 100.00 £ 0.00 93.83 £3.14 93.57 £3.28
model 9 91.79 £3.03 98.97 £ 0.02 91.46 £3.15 92.29 +3.45
Sinusoidal pos. emb. model O 100.00 £ 0.00 100.00 £ 0.00
model 1 100.00 £ 0.00 100.00 £ 0.00
model 2 100.00 £ 0.00 100.00 £ 0.00
model 3 100.00 £ 0.00 100.00 £ 0.00
model 4 100.00 £ 0.00 100.00 £ 0.00
model 5 100.00 £ 0.00 100.00 £ 0.00
model 6 100.00 £ 0.00 100.00 £ 0.00
model 7 100.00 £ 0.00 100.00 £ 0.00
model 8 100.00 £ 0.00 100.00 £ 0.00
model 9 100.00 £ 0.00 100.00 £ 0.00

Table 8. Results of the logistic regression experiments on the position embeddings before and after the ViT model being trained on the
left-and-right red-green dataset, using different position embeddings approaches.

Absolute pos. emb. R? score Fourier pos. emb. R? score Fourier pos. emb. R? score

before training

after training

before training

after training

before training

after training

model 0 0.0153 £0.47 09176 £0.06 0.9123 £0.04 0.9621 + 0.03 1.00 + 0.00
model 1  -0.1051 £0.50 0.9428 £0.02 0.91924+0.03 0.9679 + 0.04 1.00 &+ 0.00
model 2 -0.0377 £0.50 0.9332£0.04 0.9155+0.02 0.9597 + 0.05 1.00 + 0.00
model 3 -0.0527 £0.51 0.9408 £0.03 0.9237 £ 0.02 0.9699 + 0.01 1.00 &+ 0.00
model 4 0.0807 £0.41 0.9326£0.02 0.9152+0.05 0.9636 + 0.04 1.00 + 0.00
model 5 -0.0419 =045 09319 £0.03 09194 +£0.02 0.9633 £ 0.02 1.00 £ 0.00
model 6 -0.0271 £0.49 0.9463 £0.01 0.9258 £0.03 0.9741 £ 0.02 1.00 + 0.00
model 7 0.0297 £0.44 0.9337£0.02 0.9169 +0.01 0.9648 + 0.02 1.00 £ 0.00
model 8 -0.0151 +£0.44 0.9504 £0.03 09170+ 0.03 0.9614 £ 0.01 1.00 + 0.00
model 9  0.0311 £0.43 0.9239£0.02 0.9093 £0.05 0.9528 +0.03 1.00 £ 0.00

Table 9. Results of the logistic regression experiments on the position embeddings before and after the ViT model being trained on the

left-and-right red-green dataset, using different position embeddings approaches.
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Introduction

In 2017, the transformers model was proposed for Natural Language Processing (NLP) task [34],
in which the self-attention mechanism plays an essential role. In recent years, numerous work has
focused on adapting the transformers model to the field of Computer Vision (CV). One pioneering work
is the Vision Transformer (ViT) [7]. Before ViT came out, the Convolutional Neural Network (CNN)
was dominant in CV. However, the ViT model uses the structure of a pure transformers model without
the help of convolutions and achieves state-of-the-art performances on image classification tasks. Un-
like CNN, the revolutionary innovation of ViT is splitting the input image into grid-like non-overlapping
patches and treating each patch as a token, like a word in a sentence for NLP tasks. This allows the
global features across different image patches to be captured through the self-attention layers. Building
upon the ViT models, there are many variants such as DeiT [33], LeViT [11], and Swin-Transformer [26].
With more and more advantages of ViT have been revealed, the interest in research of ViT models has
grown.

Figure 2.1: An overview of the three types of location information in images. This figure displays a scenario of self-driving
techniques. The driving directions of the red and blue vehicles are indicated by the yellow arrows, which show that they will
meet at the intersection. To avoid a car crash with the blue car, the computer vision model of the self-driving system in the red
car should know the relative direction between them, that the blue car is at the front-right of the red car. In addition, the model
should be aware of the relative distance between the two vehicles, which can be decomposed into horizontal and vertical
distances, as shown by the green arrows. The model should also be sensitive to the absolute location to avoid problems like
getting into the wrong lane. In this paper, we are interested in investigating whether the position embeddings approach in the
ViT model could encode the three types of location information. This image is adapted from https://www.photophoto.cn.

2.1. Motivation

Previous work identifies three types of location information in image data: absolute location, relative
direction, and relative distance [40], as shown in Figure 2.1. The absolute location information specifies
where the target object is in an image. The relative direction and relative distance together describe
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the relative location between different objects. Therefore, both the absolute and relative location are
important information in computer vision tasks [17].

Position embeddings are used to feed location information into the ViT models. The original ViT uses
the learnable absolute position embeddings [6] as the default setting, while there are other methods like
fixed sinusoidal position embeddings [34, 38], relative position embeddings [30, 31], and the recently
proposed learnable Fourier position embeddings [21]. These methods have different mechanisms to
encode locations. The relative position embeddings are applied in the self-attention layers, and they
are designed to encode relative location information. Other methods give each image patch a unique
absolute position embedding, and they are introduced to the ViT model before the self-attention layers.
The levels of predefined location information injected into these models are also different. The absolute
and relative position embeddings are initialized with random numbers, while the sinusoidal and Fourier
methods introduce additional location information by using predefined features. Another difference
lies in the ability to learn. The fixed sinusoidal position embeddings are not learnable, while other
approaches can be trained to adapt to the datasets. Given all the differences, it is still unclear what
type of location information can be encoded by these methods. In addition, it is not conclusive yet what
the predefined features bring to the model and how the inability to learn could influence the model.

2.2. Research questions

Driven by the above motivations, in our research, we try to answer the following main research
question:

» What location information can be encoded by different position embeddings methods?

We conduct several fully-controlled experiments to answer the above research question. The re-
sults indicate that the relative position embeddings cannot encode absolute location information, while
other methods can encode it. All the position embeddings methods we test can encode relative loca-
tion information, while they have different levels of bias on it. The absolute position embeddings do
not have any bias, while the fixed sinusoidal position embeddings and learnable Fourier position em-
beddings have. The fixed sinusoidal position embeddings have a stronger one. Based on the results
of the experiments, we believe that the fixed sinusoidal position embeddings are the best since they
can encode both absolute and relative location information. In addition, the fixed sinusoidal position
embeddings have relative location bias, leading to higher data efficiency in learning relative location
information. However, the fixed sinusoidal position embeddings are not trainable, which is the main
difference compared with those learnable position embeddings. Therefore, we have the following re-
search question:

* How would the inability to learn influence the model?

We conduct another fully-controlled experiment, and the results suggest that the inability to learn
leads the ViT model to be trained in a different manner compared with those learnable methods, which
may cause inferior results under certain situations.

We summarize the properties of all position embeddings methods based on the above results. We
believe that the learnable Fourier position embeddings and fixed sinusoidal position embeddings have
the most required properties of an ideal position embeddings method. Therefore, we propose improve-
ments to these two approaches. We design pretraining tasks to introduce more relative location bias to
the learnable Fourier method. In addition, we make the fixed sinusoidal position embeddings trainable
using a similar structure as the learnable Fourier method. We then conduct experiments on realistic
datasets to investigate whether our proposed methods work. We also compare with a related state-of-
the-art approach.



Vision Transformer

In this project, we are interested in investigating the Vision Transformer (ViT) model [7] as it has
shown promising performances in vision tasks. In this section, we will give an introduction to how
ViT works. We will discuss some critical components in the ViT structure. In addition, we will briefly
introduce some variants that are built based on the original ViT model.

3.1. Overall structure

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

e - G @é e e)e @f;

* Extra learnable

[class] embedding Lmear PTOJSCI]OH of Flattened Palches
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Figure 3.1: An overview of the Vision Transformer model. This figure is adapted from the original ViT paper [7].

Figure 3.1 illustrates the overall structure of the Vision Transformer model. Given an input image,
the pre-processing step splits the image into grid-like non-overlapping image patches of size P x P.
Suppose the original image has a resolution of H x . In that case, we would have N image patches,
where N = HW /P?. Afterwards, the image patches are flattened and reshaped. The results are
sequential 2D patches in the size of N x (P? - C'), where C represents the number of channels of the
original image, typically 3 for color images. The flattened patches are then sent to a trainable linear
projection layer and mapped to the dimension D. The resulting patch embeddings are then added
with position embeddings, and we now get the feature embeddings. Similar to the design of the BERT
model [6], for the image classification task, a class embedding is appended at the beginning of the
feature embeddings. These embeddings are then fed into the Transformer encoder. The size of the
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resulting encoded embeddings is not changed. The encoded embedding of the class token is then fed

into an MLP head to predict the class of the image.

3.2. Encoder

A
L x

(D=

Multi-Head
Attention

Embedded
Patches

Figure 3.2: An overview of an individual encoder block in the ViT model. This figure is adapted from the original ViT paper [7].

The Transformer encoder consists of several encoder blocks. Figure 3.2 displays the structure of
an individual encoder block. The multi-head attention layer and the MLP layer are two primary com-
ponents of the encoder block. These two layers are connected sequentially. A layer normalization is
applied before the attention layer and the MLP layer. Inspired by the structure of ResNet [13], residual
connections are applied to both the attention and MLP layers. All the encoder blocks have the same
structure. The number of encoder blocks is a hyperparameter and is determined before training. Us-
ing more encoder blocks enables the model to have a more powerful encoding function, while it also

requires longer time and more resources to execute.
3.3. Self-attention
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Figure 3.3: An overview of the self attention layer (left) and the multi-head attention layer (right). This figure is adapted from

the original Transformer paper [34]

The self-attention mechanism, which is able to capture global features, plays a crucial role in the ViT
model. It was originally proposed in the Transformer model for Natural Language Processing (NLP)
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tasks [34]. The principle of the self-attention mechanism is similar to that of an information retrieval
system or a recommendation system. The patch embeddings are first fed into three linear projection
layers separately to get the query embeddings, key embeddings, and value embeddings. For each
query embedding, a similarity score between it and all the key embeddings is calculated by the inner
product. Afterwards, the weights between the query and all the keys could be calculated by mapping
the similarity scores to the range from 0 to 1, using the softmax function. Finally, a weighted sum over
the value embeddings is calculated to get the resulting encoded embedding. The whole process can
be done in parallel by applying matrix multiplication:

QK"
Vi,

where the term d, is the vector dimension of the query and key embeddings. \/d}. is used as a scaling
factor to prevent the gradient vanishing problem.

Instead of applying the single-head self-attention mechanism, we could also use a multi-head atten-
tion layer in which multiple groups of query, key, and value embeddings are involved. The self-attention
mechanism is applied for each group individually. Eventually, the results of these groups are concate-
nated to get the final encoded embeddings. The advantage of a multi-head attention layer is that richer
information or features can be captured by it.

Attention(Q, K, V') = softmax(

)V, (3.1)

3.4. Position embeddings

The self-attention mechanism itself is permutation-invariant to the input sequences [23]. Changing
the order of the input image patches does not influence the final results. This is not a desired feature
in vision tasks. Therefore, position embeddings are introduced such that the ViT model can be aware
of the spatial relations between the input image patches [34]. This section introduces the widely used
methods for position embeddings.

3.4.1. Absolute position embeddings

The absolute position embeddings approach is initially proposed in the BERT model [6] for NLP
tasks, which is also used as the default method in the ViT model. This method initializes the learnable
position embeddings with random numbers drawn from the normal distribution with a mean of 0 and a
standard deviation of 0.02. The absolute position embeddings have the same vector dimension as the
patch embeddings, and they are directly added together before being fed into the encoder. During the
training, the absolute position embeddings and the patch embeddings are updated simultaneously.

3.4.2. Sinusoidal position embeddings
The fixed sinusoidal position embeddings are used in the original transformer model [34], which are
calculated as:

PE(pos, 2i) = sin(pos /100005 )

0 (3.2)

PE(pos, 2i 4+ 1) = cos(pos/100007 ),
where pos represents the position of the current token, i is the location of the value within an individual
position embedding. As we mainly work on image data in this research, we use the 2D sinusoidal
position embeddings [38], which are calculated as:

PE(z,y, 2i) = sin(z/100005)

PE(z,y,2i + 1) = cos(z/10000 )

PE(z,y,2j + D/2) = sin(y/100003 ) (3:3)
PE(z,y,2j + 1 4+ D/2) = cos(y/100003 ),

where x and y represent the horizontal and vertical coordinates of the token, D denotes the total dimen-

sion of position embeddings, i and ; specifies the location of the value within each individual position
embedding.
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Similar to the absolute position embeddings, the sinusoidal position embeddings have the same
size as the patch embeddings, and they are directly added together before being fed into the encoder.
However, the sinusoidal position embeddings are fixed. In other words, they do not get updated during
the training.

3.4.3. Relative position embeddings

Another line of method is the relative position embeddings [30, 31, 40]. Instead of directly adding to
the patch embeddings, relative position embeddings are used in the self-attention layer. A self-attention
operation with 2D relative position embeddings [30] can be calculated as:

i J
Yi =Y Y softmaxay(a/Ka, + AjFa_in—j)Vab, (3.4)

a=0 b=0

in which ra_j p_; is the learned relative position embedding. The relative position embeddings take the
relative shift between the query and the key patch into account, both vertically and horizontally.

3.4.4. Learnable Fourier position embeddings

The learnable Fourier method is a recently proposed position embeddings method which matches
our research interest. This method uses raw coordinates of the image patches as the inputs, and train
a encoding function to extract Fourier features. The Fourier features are calculated as:

1
rx = ——[cos xW || sinxW[], 3.5
= 5l I ] (3:5)
where z is the input coordinates, D is the dimension of the feature embeddings, and W, is the encoding
function. The || represents concatenation. The extracted Fourier features are then sent to an MLP layer
to get the final position embeddings. The encoding function W.. is initialized by drawing random values
from a Gaussian distribution N ~ (0,v~2), where v is a hyperparameter.

3.4.5. Other position embeddings methods

A lot of research focuses on building new methods for position embeddings in the Transformer
model. The deep learning models like LSTM [15] can encode positions by nature as it takes the inputs
sequentially. Inspired by this idea, the FLOATER [25] is proposed, which uses a continuous dynamic
model to encode position information. There is also research that uses complex numbers to encode
positions [35]. Using the similar idea of applying complex numbers to the Transformer model, the Ro-
Former model [32] uses a rotation matrix to encode absolute position information and incorporates
relative position information. Another popular idea to improve position embeddings is building a hy-
brid model by introducing convolutions. For example, CPVT [4] uses convolutions to build positional
encoding generators that can encode positions dynamically.

3.5. Variants of ViT

Building upon the original ViT model, there are many variants that enhance the performance. The
DeiT model [33] adds a distillation token to the ViT model to implement knowledge distillation and
achieve efficient training. The LeViT model [11] proposes a multi-stage architecture for Vision Trans-
former. The attention mechanism is used as a down-sampling technique in LeViT. Similarly, the Pyra-
mid Vision Transformer (PVT) [37] proposes hierarchical structure for ViT. An improved version named
PVTv2 [36] has also been built. The Swin-Transformer model [26] builds a multi-stage hierarchical struc-
ture based on the ViT model. This model uses local windows where the local self-attention mechanism
is applied. This idea of computing self-attention locally is also used in the Transformer in Transformer
(TNT) model [12].

The original ViT model is proposed for the image classification task. However, ViT has been applied
to many other visual tasks. For object detection, the detection Transformer (DETR) [2] is a pioneering
work. Researchers have also tried to replace the CNN module in traditional object detection models with
Vision Transformer. For example, ViT-FRCNN [1] uses ViT as the backbone for object detector. Image
segmentation is also a popular task in computer vision, and there are many works that try to apply ViT to
this task. SETR [42] considers semantic segmentation tasks from a sequence-to-sequence perspective
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and proposes a pure transformer model to encode images as sequential patches. TransUnet [3] applies
Vision Transformer to UNet as a powerful encoder for medical image segmentation tasks. ViT can also

be applied to many other vision tasks, such as pose estimation [16, 24, 41], action recognition [8, 9,
10], or re-identification [14, 22, 27].



Translation equivariance

4.1. Definition
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Figure 4.1: An illustration of translation equivariance adapted from an online blog [39]. An input image from the MNIST dataset
contains a digit 4. A feature mapping function ¢ is used to get the feature map. If the digit is translated from the left to the right,
then the corresponding feature map also has the same translation.

Translation equivariance is an essential property in visual tasks. It denotes the idea that the transla-
tion of an object in an image leads to the same translation on its corresponding feature map. Translation
equivariance ensures that the visual features do not depend on the absolute position in an image.

4.2. Translation equivariance in CNN

Translation equivariance naturally holds in convolutions, and it is an essential inductive bias in
CNN models. This is realized by the weight-sharing mechanism of the convolution kernels. Figure
4.2 illustrates how convolution kernels work. The kernel is used as a feature detector applied to any
part of the image without being modified. In other words, the weight w;_; in a convolution kernel, which
corresponds to the position i and j, only relies on the relative shift i —j but is not sensitive to the absolute
locations of i and j [5]. This ensures that convolutions have translation equivariance. With the usage of
the global pooling layer, the CNN models are translation invariant. Therefore, the translation of objects
will not influence the final output of CNN models. This property enables CNN models to generalize well
and be trained in a data-efficient manner. The translation equivariance and invariance can be utilized
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by applying the data augmentation technique, in which we could apply different kinds of transformation
like translation, rotation, or scaling to enrich the dataset [28].

Figure 4.2: An illustration of how convolution kernels work. A kernel is used to detect the same visual features at every part of
the image. This is done by sliding the small kernel H over the whole image F' to get the feature map G. This figure is adapted
from the slides of TU Delft CS4240 Deep learning course.

4.3. Translation equivariance in ViT

Previous work claims that the usage of absolute position embeddings destroys the translation equiv-
ariance in ViT models [4]. This is because the absolute position embeddings method gives each image
patch a unique position embedding. Therefore the relative position information between two image
patches relies on their absolute positions. Our research shows that absolute position embeddings can
encode relative location information, enhancing its translation equivariance.



Datasets

In this section, we will give an introduction to the dataset that we use in our research. There are
two types of datasets. The first one is the designed red-green dataset, which is used to conduct fully-
controlled experiments to test some hypotheses. The second one is the realistic dataset, which is used
to conduct experiments to compare our proposed methods with previous approaches.

5.1. Red-green dataset

Inspiring by this paper [18], we design red-green datasets to test some hypotheses. The red-green
datasets consist of images that only have a red square and a green square, while the background is
black. An example dataset can be found in 5.1. The advantage of using red-green datasets is that
researchers can inject any features that they want to investigate into the datasets. The datasets are
constructed in a target-driven way. In addition, the red-green datasets are light and do not require
too much time and resources. In our research, we construct several red-green datasets containing
different position features to test different aspects of location information in image data. Compared
with realistic datasets, whose images come from the real world and have various visual features, the
red-green datasets allow us to test what we want to investigate.

- . - o
. . . o

Figure 5.1: An example red-green dataset that is used in our research. This dataset presents a binary classification task.
Images in class 1 have a green square to the left of a red square, while images in class 2 have a green square to the right of a
red square. This dataset is used to test whether the position embeddings method could encode relative direction information.

5.2. Realistic dataset

To determine whether our proposed methods generalize well and compare with other approaches,
we need to test the models on realistic datasets. The four datasets we used in this research are
relatively smaller compared with commonly used datasets like ImageNet-1k. The reason is that we
want to test the data efficiency of various position embeddings methods. This section gives a brief
introduction to the datasets that we use.
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5.2.1. CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 [19] datasets are commonly used small-scale image classification datasets
in the computer vision research community. Both datasets contain 60000 32x32 color images. 50000
images are used as the training data, while the rest 10000 are used for testing. The CIFAR10 dataset
has 10 labels, and each label has 6000 images. On the other hand, the CIFAR100 dataset has 100
labels, and each label has 600 images. Figure 5.2 displays some sample images in the CIFAR10

datasets.
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Figure 5.2: Sample images in the CIFAR10 dataset which is present in this paper [19]

deer

5.2.2. Oxford flower 102

The Oxford flower 102 dataset [29] is a widely used image classification dataset. It contains 102
different types of flowers found in United Kingdom. It is an imbalanced dataset as different flower cat-
egories have various amounts of image samples. In addition, the images in this dataset have different
sizes. In our research 6552 images are used for training, while 818 images are used for testing. Figure
5.3 displays some sample images.
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Figure 5.3: Sample images in the Oxford flower 102 dataset which is present in this paper [29]
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5.2.3. ImageNet-tiny

The tiny ImageNet dataset [20] is a subset of the ImageNet dataset. This dataset contains 200
categories, and each category has 550 64x64 images. Among them, 500 images are used for training,
while 50 images are used for testing. Therefore, there are in total 100000 images in the training dataset
and 10000 images in the testing dataset. The ImageNet-tiny dataset was originally used for a course
challenge. Figure 5.4 displays some sample images.

Figure 5.4: Some sample images in the ImageNet-tiny dataset which is present in this paper [20]



Conclusion

In this paper, we investigate how the location information is encoded in the ViT model. We compare
different position embeddings methods and analyze their advantages and drawbacks based on fully-
controlled experiments and feature-level analysis on synthetic datasets. The default learnable absolute
position embeddings lack the relative location bias, and they are not translation equivariant. The relative
position embeddings are not sensitive to absolute location information, which is crucial in visual tasks.
The fixed sinusoidal position embeddings are not flexible enough, while the learnable Fourier position
embeddings do not contain much relative location bias. We propose pretraining tasks to enhance the
relative location bias of the Fourier method, and we also make the fixed sinusoidal position embeddings
learnable. The results on four realistic datasets show the effectiveness of our new methods and suggest
that they are competitive compared with a similar state-of-the-art approach.

In this research, we only focus on the original ViT model. For future research, we could investigate
whether our proposed methods generalize to other ViT-based models like Deit [33], Levit [11] or Swin-
transformer [26]. We could also research whether our methods also contribute to convolution-enhanced
ViT models.
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