

Delft University of Technology

MVOC
A Lighter Multi-Client Verifiable Outsourced Computation for Malicious Lightweight Clients
Wang, Xingkai; Cao, Zhenfu; Liu, Zhen; Liang, Kaitai

DOI
10.1109/TDSC.2024.3449770
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Dependable and Secure Computing

Citation (APA)
Wang, X., Cao, Z., Liu, Z., & Liang, K. (2024). MVOC: A Lighter Multi-Client Verifiable Outsourced
Computation for Malicious Lightweight Clients. IEEE Transactions on Dependable and Secure Computing,
22(2), 1640-1654. https://doi.org/10.1109/TDSC.2024.3449770

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TDSC.2024.3449770
https://doi.org/10.1109/TDSC.2024.3449770

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the

author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

1640 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

MVOC: A Lighter Multi-Client Verifiable Outsourced
Computation for Malicious Lightweight Clients
Xingkai Wang , Zhenfu Cao , Senior Member, IEEE, Zhen Liu , and Kaitai Liang , Member, IEEE

Abstract—Gordon et al. systematically studied the Universally
Composable (UC) security of Multi-client Verifiable Computation
(MVC), in which a set of computationally-weak clients delegate
the computation of a general function to an untrusted server
based on their private inputs, and proposed a UC-secure scheme
ensuring that the protocol remains secure even when arbitrarily
composed with other UC-secure instances. However, this scheme
imposed a significant computational overhead on clients due to
the utilization of fully homomorphic encryption, and the plaintext
size scaled linearly with function input size. In this work, we
present MVOC, a more efficient UC-secure MVC protocol, that
significantly reduces the amortized overhead for clients in both
semi-honest and malicious settings, by delegating a larger portion
of the computation to the server. We enable clients to verify the
garbled circuit before entering the online phase, ensuring security
against malicious clients without incurring heavy overhead of com-
piling a semi-honest protocol into a malicious one. We present the
detailed proof and analyze the theoretical complexity of MVOC.
Furthermore, we implement our protocol and evaluate the per-
formance, and the results demonstrate that the computation and
communication overheads during the input phase can be decreased
by at least 95.55% and 87.17%, respectively.

Index Terms—Hybrid homomorphic encryption, outsourced
computation, verifiable computation.

I. INTRODUCTION

THE techniques of Verifiable Computation (VC) [1] and
Multi-client Verifiable Computation (MVC) [2], [3] have

been introduced to empower computationally weak clients by

Received 11 April 2024; revised 7 August 2024; accepted 13 August 2024.
Date of publication 26 August 2024; date of current version 14 March 2025. This
work was supported in part by the National Key Research and Development Pro-
gram of China under Grant 2020YFA0712300), in part by the National Natural
Science Foundation of China under Grant No. 62072305, Grant 62132013, Grant
62132005, and Grant 62172162, in part by European Union’s Horizon Europe
Research and Innovation Programme under Grant 101073920 (TENSOR), Grant
101070052 (TANGO), Grant 101070627 (REWIRE), and Grant 101092912
(MLSysOps), and in part by the Shanghai Technology Innovation Centre of
Distributed Privacy-Preserving Artificial Intelligence. (Corresponding author:
Zhen Liu.)

Xingkai Wang is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
starshine87@sjtu.edu.cn).

Zhenfu Cao is with the Shanghai Key Laboratory of Trustworthy Comput-
ing, East China Normal University, Shanghai 200262, China (e-mail: zfcao@
sei.ecnu.edu.cn).

Zhen Liu is with the Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai 200240, China, and also with
the Shanghai Qizhi Institute, Shanghai 200232, China (e-mail: liuzhen@
sjtu.edu.cn).

Kaitai Liang is with the Cybersecurity Group, Delft University of Technology,
2628 Delft, CD, Netherlands (e-mail: kaitai.liang@tudelft.nl).

Digital Object Identifier 10.1109/TDSC.2024.3449770

enabling them to delegate the computation of a function f on
private inputs to a remote server, achieving privacy, soundness,
and efficiency in both single-client and multi-client scenarios.
In more detail, privacy necessitates the safeguarding of sensitive
data, encompassing both input and output, in order to prevent any
unauthorized disclosure. Soundness ensures the integrity and
validity of the result produced by the server, ensuring they are
correct and trustworthy. Efficiency guarantees the cost incurred
by the client during outsourcing process remains significantly
lower compared to the computational cost of performing the
function independently.

Outsourced computing is a typical instance of verifiable
computation. The landscape comprises a multitude of devices,
ranging from smart utility systems and electric vehicles to
smartphones and smartwatches. Despite their varying compu-
tational capacities, many of these devices rely on submitting
their privacy-sensitive data to cloud servers for the computation
of intricate models. The outcomes are then retrieved and utilized
locally for enhanced functionality and convenience. As shown
in Fig. 1, upon reaching consensus among clients regarding the
function f to be executed, the server and each client generate key
pairs, and exchange a limited number of verification messages
to prepare for the online phase. These messages are represented
by solid lines in the figure. Then, in each round of the online
phase, the server computes ξ, the ciphertext representation of
input x, through function F corresponding to f in its ciphertext
form. The server then derives the ciphertext resultω and transmit
it to the clients, enabling them to obtain the plaintext result y,
using private decoding information τ . A more detailed definition
of non-interactive multi-client verifiable computation will be
shown in Section II, including the explanation of corresponding
value of e, d, ρ.

Gennaro et al. [1] introduced the definition of verifiable
computation, with the primary goal of achieving both privacy
and soundness against a potentially malicious server, assum-
ing that the client is honest. The protocol achieves efficiency
amortizedly, by combining garbled circuit [4] with a fully ho-
momorphic encryption (FHE) scheme [5]. More specifically,
after generating a garbled circuit, the client may employ a FHE
scheme to encrypt the circuit along with the encoded input labels.
The IND-CPA security of the FHE scheme enables the client to
reuse the same circuit without compromising soundness, thereby
ensuring that the computational cost for the client remains
bounded in an amortized sense. Choi et al. [2] later extended the
concept of single-client VC to a multi-client setting, resulting in
a MVC protocol, where a group of n clients collaborates to

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7625-7932
https://orcid.org/0000-0002-5250-5030
https://orcid.org/0000-0001-9268-702X
https://orcid.org/0000-0003-0262-7678
mailto:starshine87@sjtu.edu.cn
mailto:zfcao@sei.ecnu.edu.cn
mailto:zfcao@sei.ecnu.edu.cn
mailto:liuzhen@sjtu.edu.cn
mailto:liuzhen@sjtu.edu.cn
mailto:kaitai.liang@tudelft.nl

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1641

Fig. 1. Outsourcing.

compute a function f over a set of joint input {(xssid
1 , . . .,

xssid
n)}ssid. In [2], Choi et al. introduced a new primitive proxy

oblivious transfer (POT) constructed from a non-interactive key-
exchange (NIKE) scheme, and serves the propose of keeping the
clients’ input confidential, from each other and from the server.
However, the protocol cannot provide security guarantees in the
presence of client-client corruption or malicious clients. Gordon
et al. [3] systematically studied MVC in the universally com-
posable (UC) model, which captures selective failure attack and
adaptive soundness additionally, considering the participation
of malicious clients, and consequently representing a stronger
notion than the prior definitions. To achieve this “stronger”
security, Gordon et al. proposed a protocol with a new prim-
itive attribute-hiding multi-sender attribute-based encryption
(ah-mABE), which can be constructed using a combination of a
two-outcome ABE scheme with local encoding, an FHE scheme,
and a POT protocol. Gordon et al. [3] also proposed a compiler
that upgrades an MVC scheme secure against semi-honestly
corrupted clients to one that can withstand maliciously corrupted
clients, while maintaining non-interactivity. It is worth noting
that Gordon et al. [3] pointed out the inherit impossibility
of achieving security when there exists collusion between the
server and an arbitrary client.

Recognized Limitations. In the constructions of [2] and [3],
the clients remain using FHE for encrypting labels in proportion
to their input size, where FHE is a bottleneck in efficiency,
compared to other building blocks in their protocols. While
outsourcability has been achieved in these FHE-based protocols,
they still suffer from heavy client-side overheads. This is mainly
because the messages requiring fully homomorphic encryption
for the client scale proportionally with the size of function input.
Determining how to make this complexity independent of the
input size remains an interesting long-lasting problem in the
research line.

Besides the FHE-related cost, a POT-based MVC scheme
requires O(n2) instances of functionality during a single online
phase of outsourced computation, where n signifies the number
of clients. The overhead from POT rises substantially as the
number of users increases, both in terms of communication
and computation. Furthermore, the first client always carries
the majority of the computation load, since it has to encrypt the
input labels “twice” the actual length in a POT instance, leading
to an imbalance in the overall overhead distribution. Thus, a

cost-effective and efficiency-balance protocol in multi-client
context is worthy being considered, especially when n is suf-
ficiently large.

Additionally, although [3] achieves a secure MVC protocol
against malicious corrupted clients, the implementation involves
applying a compiler to a semi-honest secure construction. Gor-
don et al. only provide a proof of the compiler’s existence, and
its construction relies on the usage of zero-knowledge proofs,
whose scale is related to the size of the delegated function
and input-output length, which is never an efficient solution.
Designing a secure MVC protocol in the malicious setting while
simultaneously preserving operational efficiency constitutes a
matter of substantial practical significance.

Contribution. We introduce MVOC, a novel multi-client ver-
ifiable computation scheme. In the conference version of this
study [6], we primarily present an efficient solution in semi-
honest scenario. In this full version, we further address this issue
in the context of malicious model. The proposed scheme makes
several key contributions, including reduced communication
complexity and enhanced client efficiency, while ensuring ro-
bust security guarantees against both semi-honest and malicious
adversaries. Our contributions can be summarized as follows:
−We revisit the definition of garbling scheme, and introduce

enhancements, reducing the communication complexity from
O(n2l) toO(nl), where wheren represents the number of clients
and l is the input size. In the conference version [6], we present-
ing MOGC, addressing this challenge in the semi-honest model.
Building upon MOGC, this paper introduces Maliciously-Secure
Multi-client Outsourced Garbled Circuit (MS-MOGC), extend-
ing the solution to the malicious setting. This scheme utilizes a
distributed approach for generating the encoding and decoding
functions, allowing all clients to learn the garbled input wires
and to require the final garbled result without the need for OT or
POT. We further demonstrate that a secure MS-MOGC protocol
implies a UC-secure one-time MVC protocol.
−We improve the outsourcability of MVC protocol, by reduc-

ing the FHE overhead from O(l) to O(κ), which is independent
to the input size, where κ is the security parameter. Specifically,
we incorporate the technique of hybrid homomorphic encryption
into our MS-MOGC scheme, enable the construction of a UC-
secure MVC protocol against malicious server or semi-honest
client-client collusion.
− We implement the proposed MVOC using Yao’s Garbled

Circuit and the most efficient hybrid homomorphic encryp-
tion scheme, and conduct a comprehensive comparison on the
clients’ overhead in terms of both computation and communica-
tion. The experimental results clearly demonstrate the superior
efficiency of our proposed scheme compared to other existing
FHE-based works.

Technical Roadmap. In light of the proven impossibility of
achieving input privacy in the presence of collusion between
the server and any client [3], our discussion is confined to
scenarios where collusion between the clients and server is
not envisaged. Such assumptions are applicable, as discussed
in [7], [8], [9], given that outsourcing server operators, driven
by a long-term profitability prospective, typically prioritize
their reputations and refrain from engaging in collusion with

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1642 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

clients. We outline our roadmap consisting of the following two
steps.

Multi-client Outsourced Garbled Circuit. In conventional gar-
bling schemes, the generation of the garbled circuit is primarily
delegated to a single party. This poses a challenge when the
necessity arises to share the corresponding garbled labels with
other parties within the protocol. For example, in Yao’s secure
two-party computation protocol, one party (referred to as Alice)
is tasked with generating the garbled circuit, while the other
party (referred to as Bob) has to obtain the relevant garbled labels
through an OT process. The purpose of this OT is to facilitate the
secure transfer of the necessary circuit randomness from Alice
to Bob. A crucial point to emphasize is that Bob must acquire
only the garbled labels pertinent to his input. This precaution is
essential due to Bob’s dual role as both the circuit executor and
a protocol participant. Any access to extra garbled labels would
provides him with an unfair advantage.

We observe that the separation of roles between the circuit
executor and the data providers offers an effective solution to
the previously mentioned concern. According to the above ob-
servation, we first introduce a novel primitive named Multi-client
Outsourced Garbled Circuit (MOGC) in the conference version
of this study, giving a secure construction derived from Yao’s
Garbled Circuit protocol. Essentially, we introduce a (not neces-
sarily trusted) third party, the server, designated for computation
execution, while individual clients contribute their randomness
for generating the garbled circuit. This setup eliminates the need
for OT, as each client can autonomously generate its specific
garbled labels using its own randomness. Consequently, this
effectively addresses the challenge of transferring randomness
from circuit generator to the data provider. In the current ver-
sion, we enhance the primitive to Maliciously-Secure MOGC
(MS-MOGC). In comparison to to MOGC, we further tackle
the issue of transferring the randomness of data receivers, and
introduce support for verification to achieve security against
malicious clients. Notably, we establish a connection between a
secure MS-MOGC protocol and a one-time maliciously-secure
MVC protocol, the latter of which lays the foundation for further
research and advancements in MVC solutions.

Multi-client Verifiable Outsourced Computation. We employ
FHE to ensure circuit privacy, a concept akin to constructing VC
from the intuitively implied one-time VC from Yao’s Garbled
Circuit [1]. To mitigate the substantial overhead associated
with FHE, we adopt the philosophy of hybrid encryption: ini-
tially employing symmetric key encryption (SKE) scheme to
encipher the message, followed by using FHE to encapsulate
the symmetric key. This KEM-DEM-like technique efficiently
shifts the computational burden of FHE to the server, thereby
alleviating the heavy FHE overhead on the client side. More
concretely, after the generator generates the garbled circuitF for
a function f by MS-MOGC in the offline phase, each client Pi

derives its respective garbled input Xssid
i using its own encoding

function share, corresponding to its private input xssid
i . Each

client subsequently performs FHE setup to obtain the FHE
key pair (pkFHE, skFHE). It then generates a hybrid ciphertext
comprising of an SKE ciphertext of garbled input, along with
n FHE ciphertexts, each encrypting the secret key with each

Fig. 2. Protocol Data Flow.

client’s FHE public key. This hybrid ciphertext is transmitted to
the server, who can calculate the FHE ciphertext of the garbled
input wire using each client’s hybrid ciphertext, on each client’s
FHE ciphertext space. The server then performs the computation
on the garbled circuit as in MS-MOGC. Detailed data flow is
shown in Fig. 2. The three rows in the figure represent the
transformation process of data between function, inputs and
outputs through different data space: data space, garbled space,
client ciphertext space and server ciphertext space. The data to
the left of the dashed line is held by the client, while the data to
the right is managed and processed by the server. The process
within the dashed box illustrates the online phase where each
client encrypts the garbled inputs, demonstrating the efficiency
improvements mentioned before. The correctness of FHE and
the soundness of MS-MOGC ensures the result is verifiable.
With the use of a secure channel for transmitting FHE ciphertext
of the hybrid, the protocol also achieves privacy against the
clients, where the UC-secure channel can be implemented by
secure message transmitting [10], [11].

Security Against Malicious Clients. Expanding beyond the
consideration of security against semi-honest corruption of
clients, as discussed in the conference version, we further delve
into security against malicious corruption of clients in this work.
The extension is initially tackled by Gordon et al. [3], which
presented a compiler capable of upgrading a protocol secure
against semi-honest clients into one secure against malicious
clients, under the condition of perfect privacy. However, such
an approach has certain drawbacks. First, the compiler needs
an additional trusted setup FCRS, which introduces potential
security assumptions. Second, it results in significant overhead
due to the use of zero-knowledge proofs for clients, both during
the offline and online phases.

We tackle these issues by having the clients reach a con-
sensus on a valid garbled circuit. This approach is applicable
since the circuit will never actually be executed by any client
participant, aligning with our scenario. Specifically, during the
initialization phase of MS-MOGC, the client responsible for
generating the garbled circuit sends back the randomness used
during the generation process. The server also forwards the
circuit received from the generator for verification purposes.
If any client rejects the circuit, the protocol is terminated. This
method significantly enhances the efficiency of the protocol,
rendering it more practical for real-world applications.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1643

It is worth mentioning that a conference version of this paper
was previously presented by Wang et al. [6]. Our earlier con-
ference paper primarily focuses on security against semi-honest
client corruptions. As previously discussed, to achieve malicious
security, a SNARG-based compiler is required. In this paper, we
confront this challenge by enhancing MOGC to MS-MOGC,
achieving security against malicious client corruptions directly,
eliminating the need for other cryptographic tools. Additionally,
we make adjustments to the definitions of two ideal function-
alities in the manuscript, adding corrupting behaviors for the
adversary to align with malicious settings. Furthermore, we have
conducted more comprehensive experiments to showcase the
substantial efficiency improvement achieved by our work.

Related Work. Several studies have proposed different ap-
proaches to achieve verifiable computation since Gennaro et al.’s
VC protocol [1]. One such approach involves the application
of succinct functional encryption (FE) technique, initially intro-
duced by Goldwasser et al. [12]. This technique has been further
extended by Goldwasser et al. [13] to multi-input functional
encryption (MIFE), which implies an efficient MVC proto-
col. However, neither ABE nor indistinguishable obfuscation
(iO), especially the latter, is a cost-effective building block. In
particular, iO introduces a strong assumption, which limits its
practicality and makes the protocol less feasible in real-world
scenarios.

Another method to achieve private verifiable computation is
proving the correctness after computing, rather than proving
with computing. Fiore et al. [14] proposed a protocol for
verifiable delegation of computation on encrypted data by devel-
oping a novel homomorphic hashing technique that significantly
reduces overhead. The core idea is to use homomorphic hashing
to verify the correctness of computation on ciphertext, thereby
addressing the challenge posed by FHE ciphertext expansion.
Later, Fiore et al. [15] and Bois et al. [16] extended the protocol
of [14]. The former supported public verifiability, and expanded
the degree of the delegated function from two to any constant
value through well-designed zk-SNARKs for polynomial rings,
while the latter improved the efficiency of HE scheme by allow-
ing flexible choices of the encryption parameters. Nonetheless,
the incurred extra time cost on verification for client might
be unsuitable for computation-restricted devices. However, the
technique of homomorphic hashing is particularly efficient only
for specific classes of functions, such as linear combinations,
high-degree univariate polynomials, and multivariate quadratic
polynomials, which limits its general applicability in other sce-
narios. Additionally, these schemes are generally designed for
single-client scenarios and do not provide specific handling for
multi-client environments.

Gennaro et al. [17] proposed a new primitive referred to as
fully homomorphic message authenticator (HA), which enables
the receiver to verify the computation result, constructed using
FHE. However, this scheme suffers from slow verification effi-
ciency, as it is directly proportional to the circuit size. Around
the same time, Catalano et al. [18] presented a more efficient
construction of HA using different building blocks, albeit at the
expense of the maximum size of the delegated circuit, but it
imposes an upper limit on the size of the supported functions,

making it not a general-purpose solution. In the multi-client
scenario, Fiore et al. [19] introduced various constructions of
multi-key homomorphic authenticator. However, the time cost
of verifying a result for the client is not lower than executing
the computation itself. One idea to circumvent this overhead for
the client is to outsource the verification function to the server.
However, existing solutions either introduce extra communica-
tion complexity that breaks the non-interactive property, or rely
on SNARG-like proof systems, which can be computationally
expensive. Similar to previous works, these schemes also face
challenges in efficiency and applicability, making them not
general-purpose solutions.

Outline. In Section II, we show the syntax and security defini-
tions of multi-client verifiable computation, including its ideal
functionality. In Section III, we introduce the preliminaries on
corresponding building blocks, comprising of garbling scheme
and fully homomorphic encryption. In Section IV, we introduce
a novel primitive MS-MOGC, and also present a construction
which is secure against malicious adversaries. In Section V, we
present our construction for MVC, and provide the proof for
its UC-security defined in Section II. Later in Section VI, we
show the efficiency of our construction both theoretically and in
practice. The paper is concluded in Section VII.

II. MULTI-CLIENT VERIFIABLE COMPUTATION

In this section, we first introduce the syntax of multi-client
verifiable computation and then proceed to present its se-
curity definition in the UC framework by defining its ideal
functionality.

A. Syntax

We first revise the notion of non-interactive multi-client veri-
fiable computation (MVC) [3]. Let κ denote the security param-
eter. Suppose there are n clients P1,..., Pn intending to delegate
some computation tasks on an n-ary function f : Xn → Yn to a
remote server Serv for multiple times, and to require the validity
of their answers. The length of input and output message space
are polynomial in κ.

Briefly speaking, a MVC protocol can be divided into three
phases, as shown in Fig. 1:

1) In setup phase, each participant is allowed to access an
initial setup G.

2) In offline phase, each client is allowed to send a fixed
number of message to every other clients respectively, and
is also required to send a fixed number of messages to the
serverServ. Particularly, the aforementioned fixed number
remains constant, regardless of the client number, the size
of the delegated function and the data.

3) During online phase, there might be multiple subsessions
in which clients are delegating some computations on the
same function with different inputs. In a subsession, each
client is allowed to send a single message to Serv, and to
receive an output from Serv.

The detailed definition is given as follows.
Definition 1 (non-interactive Multi-client Verifiable Compu-

tation [3]). Let κ be the security parameter, n be the number

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1644 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

TABLE I
COMPARISON OF PRIVACY-PRESERVING VERIFIABLE COMPUTATION

of clients. A non-interactive multi-client verifiable computation
comprises the following three phases:

Setup Phase: All participants have access to a setup G, where
each party Pi obtains (pki, ski), and the server Serv obtains
(pkS, skS).

Offline Phase: After the delegated function f is chosen, each
client Pi receives from each other client Pj the corresponding
encoding mapping ej and decoding mapping dj . Then, one of
the clients, namely P1 for simplicity without loss of generality,
generates the garbled version of f , noted as F , from the encod-
ing and decoding mappings. P1 then sends F to all the other
participants, including the server Serv and all the other clients.
All the other clients will receive the extra random value ρ used
when generating the garbled circuit for verifying, and all clients
have the right to abort the protocol at the end of this phase.

Online Phase: During a single subsession indexed by ssid,
after input (ssid, xssid

i) provided by Pi is determined, the client
computes (ξssidi , τ ssidi). The first value will be sent to the server
while the second one is kept private by Pi. After receiving
information from all clients, the server Serv computes and sends
the result (ssid, ωssid

i) to each client Pi. Each client then decodes
the encrypted result and obtains yssidi \ ⊥, where ⊥ indicates
that the client is not convinced by the server’s result, and will
no longer continue executing the protocol unless restarting from
Setup Phase.

Remark 1. Compared with [3], our definition is different in
two aspects. In offline phase, we allow each client to send
several message to others. This does not increase communication
complexity amortizedly, since offline phase would be executed
only once before multiple computation queries being carried
out. After receiving a failure result from Serv, our clients will no
longer trust the server and abandon the present protocol. Clients
may re-select another trusted outsourcer or rollback to the setup
phase, in order to obtain a new trusted environment. Besides,
a client may also abandon the protocol because the dishonest
of P1, and this abort will occur in offline phase. With theses
features, our definition captures the soundness against malicious
client adversaries.

Remark 2. Compared with the conference version of this
paper [6], our definition is different in offline phase. Only one
client generates the garbled function, not all clients. After the
generation, it broadcasts the garbled function to all the other
participants including clients, rather than only to the server. This

modification ensures the privacy considering the existence of a
malicious garbler, by allowing the non-garbler client verifying
the correctness of the garbled circuit.

B. Security Definition

We follow the UC framework in [10]. We formally define
the ideal functionality for MVC in Table II, which captures
the correctness and privacy, while notably addressing adaptive
soundness and selective failure attack. The server and clients
are either semi-honest or malicious in our model. Due to the
proven impossibility of achieving input privacy in the presence
of collusion between the server and any client [3], it is ensured
that no server-client collusion will occur in any circumstances
within our scenario. This assumption is applicable and is also
discussed in the subsequent works [7], [8], [9] which are based
on [3].

Remark 3. We note our security definition is different from [3]
in the behavior of server S. Since server-client collusion is
prohibited, we claim that there is no difference between the
behavior of a corrupted and an uncorrupted server S. This may
be seen as a special case of the definition in [3], which does
not show contradiction. Because the indices set of corrupted
clients is always empty, no information will gained from the
blackbox oracle where the simulation could query on function
f for different inputs provided by corrupted clients.

Definition 2 (Universal Composability [10]). A protocol Π
UC-realizes ideal functionality F if for any PPT adversary
A there exists a PPT simulator S such that, for any PPT en-
vironment E , the ensembles EXECΠ,A,E and EXECIDEALF ,S,E
are indistinguishable, where the ensembles denotes the set of
random variables describing the outputs of the execution on
different inputs, whose formal definition is defined in [10].

Definition 3 (UC-security of. MVC) A protocol MVC is UC-
secure if MVC UC-realizes FMVC, against malicious server and
clients, without client-server collusion.

Adaptive soundness against selective failure. There are multi-
ple subsessions in our definition, which enables the functionality
to capture adaptive soundness. We allow clients to report the
output to environment and thus, the definition captures security
against selective failure attacks.

Static malicious corruption. We assume a static corruption
model, with malicious corrupted participants, same as the model

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1645

TABLE II
IDEAL FUNCTIONALITY OF MULTI-CLIENT VERIFIABLE COMPUTATION

in [3]. In such a model, the adversary can only corrupt parties at
the beginning of protocol execution, instead of corrupting any
party once the protocol has been executed. A malicious corrupted
party may arbitrarily deviate the original protocol.

Communication model. We assume that all of the communica-
tion channels among participants are secure. We can implement
such channels with the ideal functionality FSMT [10]. All of the
protocols are described assuming in FSMT-hybrid world.

Outsourceability. The outsourceability defines the improve-
ments of client efficiency brought by outsourcing tasks to servers
(i.e., how much computational and storage costs could be of-
floaded to servers). It is articulated to guarantee the overheads
of clients in the online phase should be less that the costs
incurred by a client-side self execution. We later will focus on
discussing online efficiency for the clients in terms of time and
communication costs. For the former, as FHE is an expensive
component in MVC, we should require that the plaintext of
FHE is independent of the input size in an outsourceable MVC
protocol. As for the latter, we may require the communication
size to be constraint to at most proportional to the input size,
particularly in the presence of a substantial number of clients.

III. BUILDING BLOCKS

A. Garbling Scheme

The technique of garbled circuits was first proposed by
Yao [4]. We follow the well-designed definition in [20] culled
out by Bellare et al. The garbled circuit is generated by a single
party named garbler.

Definition 4 (Garbling Scheme [20]). A garbling scheme
for a family of functions F whose arbitrary element f is a
mapping that can be efficiently computed, comprises five al-
gorithms GS = GS.{Gb,En,De,Ev, ev}. The first algorithm is
probabilistic and the others are deterministic. Specifically,
� (F, e, d)← Gb(1κ, f). Taking as input the security param-

eter κ and a object function f , output the garbled circuit
F , encoding function e, and decoding function d.

� X = Ev(e, x). Taking as input the encoding function e and
input x, output garbled input X .

� y = De(d, Y). Taking as input the decoding function d and
garbled output Y , obtain the final output y.

� Y = Ev(F,X). Taking as input a garbled circuit F and
garbled input X , obtain the garbled output Y .

� y = ev(f, x). Taking as input the delegated function f and
input x, obtain the plaintext output y.

We require a garbling scheme satisfying the following prop-
erties. The correctness ensures that the final output decoded
from the result of garbled circuit is the exact function value, i.e.
f = e ◦ F ◦ d. The obliviousness ensures that a party acquiring
(F,X), but not d, should not learn anything about f , x, or y.
The authenticity means that a party acquiring (F,X) should not
be able to produce a valid garbled output Y ′ �= F (X) such that
De(d, Y ′) �=⊥. The formal definition of authenticity is shown
as follows.

Definition 5 (Authenticity of Garbling Scheme [20]). For a
garbling scheme GS = GS.(Gb,En,De,Ev,ev), and for any
PPT adversary A, consider the following experiment:
ExpAut

A [GS, κ] :

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1646 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

(F, e, d)← Gb(1κ, f); X ← En(e, x); Y ′ ← A(F,X);
y′ ← De(Y ′);

If y′ �=⊥ and Y ′ �= Ev(F,X), output 1, else 0.
The garbling scheme GS is authentic, if for any PPT ad-

versary A, there is a negligible function negl(·) such that
Pr[ExpAut

A [GS, κ]] ≤ negl(κ).
Side-information function. As pointed out in [20], it is unable

to achieve absolute privacy for a garbling scheme. The infor-
mation we expected to reveal is captured by a side-information
function Φ, which is a deterministic mapping from a function f
to a side-information set φ = Φ(f).

Definition 6 (Obliviousness of Garbling Scheme [20]). For a
garbling scheme GS = GS.(Gb,En,De,Ev,ev), and for any
PPT adversaryA, for any two functions f0, f1 such thatΦ(f0) =
Φ(f1), and for any two valid input x0, x1, consider the following
experiment:
ExpObv

A [GS, κ] :

b
$←− {0, 1}; (F, e, d)← Gb(1κ, f); X ← En(e, x); b′ ←

A(F,X);
If b′ = b, output 1, else 0.
The garbling scheme GS is oblivious, if for any PPT ad-

versary A, there is a negligible function negl(·) such that
Pr[ExpObv

A [GS, κ]]− 1
2 ≤ negl(κ).

Textbook Yao [4] and its optimizations. Yao’s Garbled Circuit
protocol is a two-party computation (2PC) protocol whose algo-
rithms satisfy the definition of Garbling Scheme as mentioned
above. There is a garbler and an evaluator in the protocol, and the
garbler acquires the final result. Next, we will discuss existing
optimizations to improve the efficiency of Yao’s protocol. The
typical techniques are free-XOR [21], which enables XOR gates
to be computed without encryption, and half-gates [22], which
reaches the lower bound of the GC construction per AND gate,
while keeping compatible with free-XOR. These optimizations
are secure under the assumption of circular correlation-robust
hash function (circular crHF), and this function can be imple-
mented from a fixed-key blockcipher [23].

B. Fully Homomorphic Encryption

The syntax and definition of the IND-CPA security of fully
homomorphic encryption (FHE) is shown as follows.

Syntax. For a permitted circuit set C, a fully homomorphic
encryption scheme FHE comprises four PPT algorithms:
� (pk, sk)← Gen(1κ). The key generation algorithm out-

puts public-private key pair of FHE.
� c← Enc(pk,m). The encryption algorithm takes message
m as input and outputs ciphertext c.

� m := Dec(sk, c). The decryption algorithm takes cipher-
text c as input and outputs plaintext message m ∈M.

� ceval := Eval(C, {ci}). The evaluation algorithm executes
the circuit C ∈ C on ciphertext input collection {ci}, and
outputs ciphertext result ceval.

Properties. The correctness of FHE requires that the key pair
generated by Gen allows Dec to produce the same message m
as the input ciphertext from Enc. The homomorphic correctness
requires that the output of Eval decrypts to the result of applying
C to plaintext inputs {mi}. The compactness entails that the

size of homomorphic ciphertext should be independent of the
size, depth, or number of inputs to C, and less than poly(κ).

Definition 7 (IND-CPA Security of FHE [5]). For a fully
homomorphic encryption scheme FHE = (Gen,Enc,Dec,
Eval), and for any PPT adversary A, consider the following
experiment:
ExpCPA

A [FHE, κ] :
(pk, sk)← Gen(1κ); (m0,m1, τ)← AEnc(pk,·);

b
$←− {0, 1}; cb ← Enc(pk,mb); b̂← A(τ, cb);

If b̂ = b, output 1, else 0.
We define A’s advantage in the experiment above as:

AdvCPA
A (FHE, κ) = |2Pr[ExpCPA

A [FHE, κ] = 1]− 1|.
The fully homomorphic encryption scheme FHE is CPA-

secure, if for any PPT adversaryA, there is a negligible function
negl(·) such that: AdvCPA

A (FHE, κ) ≤ negl(κ).

C. Symmetric Key Encryption

The syntax and definition of the semantic security of symmet-
ric key encryption (SKE) is shown as follows.

Syntax. A symmetric key encryption scheme SKE comprises
three PPT algorithms:
� k ← Gen(1κ). The key generation algorithm generates a

valid symmetric key k.
� c← Enc(k,m). The encryption algorithm takes a key k

and a plaintext m, and outputs a ciphertext c.
� m := Dec(k, c). The decryption algorithm takes a key k

and a ciphertext c, and outputs a plaintext m ∈M.
The semantic security of SKE requires that an adversary

cannot derive any information about the plaintext from the
ciphertext.

Definition 8 (Semantic Security of SKE [24]). For a symmet-
ric key encryption SKE = (Gen,Enc,Dec), and for any PPT
adversaryM, consider the following experiment:

ExpCPA
A [FHE, κ] :

k ← Gen(1κ); (m0,m1, τ)← AEnc(k,·);

b
$←− {0, 1}; cb ← Enc(k,mb); b̂← A(τ, cb);

If b̂ = b, output 1, else 0.
We define A’s advantage in the experiment above as:

AdvCPA
A (SKE, κ) = |2Pr[ExpCPA

A [SKE, κ] = 1]− 1|.
The symmetric key encryption scheme SKE is semantically

secure, if for any PPT adversaryA, there is a negligible function
negl(·) such that: AdvCPA

A (SKE, κ) ≤ negl(κ).

IV. MALICIOUSLY SECURE MULTI-CLIENT OUTSOURCED

GARBLED CIRCUITS

In this section, we will revisit the definition of Garbling
Scheme [20], and introduce a novel primitive called Maliciously
Secure Multi-client Outsourced Garbled Circuits (MS-MOGC).
Subsequently, we will present a specific construction of MS-
MOGC and prove its security even in the presence of malicious
adversaries.

In the conventional Yao’s garbled circuits protocol for two-
party computation [4], there are two parties, Alice “the garbler”
and Bob “the evaluator”, aiming to jointly execute a computation
of function f(·, ·) using their respective private inputs xa and

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1647

xb. Specifically, Alice generates a garbled circuit F based on
the function f , and transmits it to Bob, along with her garbled
version of the private input Xa. Then, through an OT protocol,
Bob learns the garbled version of his private inputXb: (i) without
revealing any information about b to Alice, and (ii) ensuring Bob
not to obtain any information about other garbled inputs except
Xb. Subsequently, Bob carries out the computation on F and
obtains the garbled result Y . After receiving Y from Bob, Alice
can extract the final result y = f(xa, xb) from the garbled result.
Note that Yao’s GC protocol is a secure two-party computation
against semi-honest adversaries. We intend to extend the previ-
ous definition to multi-client outsourced scenarios.

In an MS-MOGC protocol, the computation is carried out by
a third party, not necessarily trusted, who does not provide any
input of their own. Specifically, there is a generator, a server and
at least one collaborator. The generator and the collaborator(s)
jointly outsource the computation of a function f : Xn → Yn

on their input data collection vector �x. As a result, all the clients
learn its corresponding output f(�x)[i], where i denotes the client
index. Under the setting of outsourcing, it is required that the
server does not to collude with any client, since security cannot
be achieved in such circumstances.

In addition to security, we extra require the protocol to be
efficient. Specifically, the protocol should be non-interactive,
which indicates that each party could only send a single message
to another party during one instance of the protocol. The con-
firmation message is an exception, as it carries no information
regarding the delegated function, input or output. Consequently,
OT technique cannot be employed straightforwardly, hence the
randomness for the garbled circuits should be contributed by
all data providers, rather than solely the circuit generator. We
will first present the syntax of MS-MOGC, and then construct a
secure MS-MOGC protocol based on Yao’s garbled circuit. The
security is proved in the presence of malicious adversaries.

A. Syntax of MS-MOGC

Definition 9 (Maliciously Secure Multi-client Outsourced
Garbled Circuits). An MS-MOGC for a family of func-
tion F whose arbitrary element f is a mapping that can
efficiently compute, comprises seven algorithms: MOGC =
MOGC.{Ma,Gb,Ve,En,De,Ev,ev}. The first two algo-
rithms are probabilistic, while the remaining algorithms are
deterministic.
� (ec, dc)← Ma(1κ, f, c). The client generates its corre-

sponding part of encoding and decoding mappings, where
c represents the client index.

� (F, ρ)← Gb(1κ, f, �e, �d). The generator uses the encoding
and decoding mappings to compute the garbled circuit,
incorporating the randomness ρ that is employed during
the circuit generation process.

� {0, 1} ← Ve(f, F, ρ). The collaborators verify the correct-
ness of the garbled circuit by using all the randomness
provided by the garbler, and then return the verification
result.

� Xc = En(ec, xc). The client derives the garbled input from
its private input using the corresponding encoding function.

� Y = Ev(F, �X). The server performs the computation on
garbled circuits and obtains the encoded output.

� y\ ⊥= De(d, Y). The generator decodes the output ob-
tained from the server using the decoding function, thus
recovering the final output.

� y = ev(f, �x). An auxiliary function is employed to execute
the original function f .

Remark 4. Different from [20], our definition is specifically
formulated for multi-party computation scenarios where n ≥ 3.
We have adapted the definition from [6], including supports to re-
sist malicious adversaries, allowing participants to deviate from
the protocol arbitrarily. A verification algorithm is introduced for
collaborators to validate the legitimacy of the circuit provided
by a potential malicious generator.

A secure MS-MOGC protocol should satisfy several proper-
ties. First, correctness ensures that the final output of the protocol
matches the actual result of function evaluation. Second, privacy
guarantees that each client’s input remains confidential and is not
disclosed to other client(s) or the server. This property protects
the sensitive data of individual clients. Lastly, authenticity en-
sures that the server cannot provide an incorrect result that can
be correctly decoded by client. This property prevents the server
from manipulating the output to deceive the clients.

Before proceeding to the MS-MOGC construction, it is es-
sential to analyze how Yao’s garbled circuits can be utilized to
achieve secure two-party computation (S2PC). In the context
of S2PC, Alice and Bob each possess private inputs and wish
to jointly compute a function on their inputs while preserving
privacy. Alice acts as the circuit generator and creates a garbled
circuit that obscures the function’s logic and the input values,
while Bob takes the role of the circuit evaluator and performs
the actual computation using the garbled circuit. The privacy
against Bob is guaranteed by the randomness introduced during
circuit generation, which is provided by the generator Alice.
Meanwhile, the privacy against Alice is protected through the
use of an OT protocol, which delivers the necessary randomness
from Alice to Bob.

An important observation is that the circuit executor should
not simultaneously act as the circuit generator, since authenticity
is protected by the randomness of encoded values, which is
also the reason why using the same garbled circuit multiple
times can compromise security. Fortunately, in MS-MOGC
settings, the circuit execution is taken over by a third party
“server”, which is independent of the data providers. Hence
there is no concern about such an authenticity crisis in the
protocol.

Moreover, if the garbling scheme is separable, meaning that
the randomness used in the encoding and decoding mappings
can be considered as individually provided by each client, we
may construct a protocol without adopting OT. More precisely,
once the generator obtains the encoding and decoding mappings
shares from each client, it can compute the garbled circuit
using those encoding and decoding information. The definition
of separability is provided as follows, and its proof will be
presented shortly afterward.

Definition 10 (Separability of Garbling Scheme). We say that
a garbling scheme is separable if its garbling algorithm Gb can

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1648 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

be equivalently regarded as the following, where there are |I|
input wires indexed by [|I|], and |O| output wires indexed by
[|O|] with I being the set of all input wires and O being the set
of all output wires, and two sub-algorithm ran and garb:

1) randomly select |I| randomness r0,1, . . ., r0,|I| and |O|
randomness r1,1, . . ., r1,|O|;

2) compute ei ← ran(f, r0,i) for i ∈ [|I|], set e =
(e1, . . ., e|I|);

3) compute di ← ran(f, r1,i) for i ∈ [|O|], set d =
(d1, . . ., d|O|);

4) compute F ← garb(f, e, d);
Theorem 1. Assuming the existence of a correct, private and

authentic garbling scheme with the property of separability, there
exists a correct, private and authentic maliciously secure multi-
client outsourced garbled circuit protocol, even in the presence
of malicious adversaries.

Proof. We prove the theorem through a construction.
For Ma, given input f and the client index c (which determines

the corresponding |I| and |O|), each client executes Step 1,
2 and 3 on its corresponding input/output labels in the above
definition. For Gb, given input f and all gathered encoding and
decoding mapping shares �e and �d , the generator executes Step
4in the above definition. In particular, ρ includes �e, �d, and all the
randomness used during the generation of F . Taking textbook
Yao as an example, this randomness refers to the garbled wire
values of all intermediate parameters in the circuit.

For Ve, given the entire randomness ρ, a non-garbler client
may check the correctness of garbled circuit F by verifying the
validity of each gate in the circuit. If the check does not hold, the
client aborts the protocol. The remaining algorithms are identical
to the original garbling scheme, respectively.

The construction of MS-MOGC and a garbling scheme is
merely different in the generation of encoding function e, decod-
ing function d, and the verification procedure. The definitions of
correctness, privacy (including obliviousness), and authenticity
in semi-honest model are not affected by how e and d are
generated. These properties can easily be inherited from those
of a garbling scheme. Therefore, in the following, we will only
discuss the security definitions in the presence of malicious
adversaries.

For a malicious garbler, it may attempt to provide an invalid
garbled circuit to obtain sensitive information from other clients.
However, the verification algorithm Ve prevent this security
crisis, and the probability of successful cheating is constrained
by the security of the symmetric encryption scheme used in
circuit generation. For a malicious server, it may attempt to
provide a wrong garbled output as the result to deceive clients.
However, an invalid garbled output that cannot be recognized by
clients is negligible according to the definition of authenticity
of the garbling scheme. �

B. Construction of MS-MOGC

We propose a protocol for MS-MOGC from conventional
Yao’s Garbled Circuits. In textbook Yao’s circuits, each circuit
gate is represented by a garbled gate. Let xA and xB be the
input wires of a gate G, and xC be the output wire. The

generator Alice randomly chooses six values for each gate,
denoted aswb

t where t ∈ {A,B,C} and b ∈ {0, 1}, representing
the values 0 and 1 for the three wires, respectively. Each garbled
gate consists of four ciphertexts γij

G = Ewi
A
(Ewj

B
(wC)

g(i,j)),

where i, j ∈ {0, 1}, andE represents a well-designed symmetric
encryption scheme.

It is evident that the textbook Yao’s Garbled Circuits protocol
is a separable garbling scheme. If we use |I| different input
randomness, r0,1, . . ., r0,|I|, along with |O| different output
randomness, r1,1, . . ., r1,|O|, to derive the encoded values, as
opposed to generating |I| encoded input labels and |O| encoded
output labels using the same randomness r, a PPT adversary
is unable to distinguish between two sets of random values
with merely different sources of randomness. Next, we partition
the |I| input wires and |O| output wires into n buckets. When
generating the encoded values for these input and output wires,
we employ the same randomness within each bucket, while
employing distinct randomnesses across different buckets. In
this setup, a PPT adversary is still unable to distinguish the
random values from the encoding values produced by Yao’s
protocol.

Based on the above observations, we give a secure MS-MOGC
construction as follows. At first, each client Ci chooses his own
randomness ri. For each input or output wire that is relevant to
the client Ci’s input or output, we let Ci choose two random
values of this wire using his own randomness ri and then
publish all the values to the generator, denoted as ρi. Then,
after gathering all garbled input and output wires, the generator
chooses random values of other intermediate wires, noted as
ρ̄, and computes the garbled circuit F using those values, and
publishesF to all the other participants, while sending the entire
randomness ρ to other clients, where ρ = (ρ1, . . ., ρn, ρ̄). Each
non-garbler client check the validity of F with ρ and choose
to whether continue or abort the protocol. After acquiring F
and all encoded inputs from clients, the server carries on the
computation on F and obtains the encoded output, and handles
each output label to its corresponding client it to the generator.
The generator finally checks the output wire and recovers the
final result. Since Yao’s protocol is separable, our protocol is a
secure MS-MOGC according to Theorem 1.

It is worth noting that our construction does not disrupt the
adaptability of existing optimizations, as these optimizations
do not introduce additional randomness. As for the reduced
randomness, we can simply ignore it within the protocol to
ensure compatibility.

V. CONSTRUCTION

We present our construction for MVC and give the proof for
its UC-security in the malicious setting. We start the construction
from designing a one-time MVC protocol from MS-MOGC. We
defineFOT-MVC as the ideal functionality of one-time MVC, and
show that the proposed protocol UC-realizes the functionality.
Then we construct an MVOC scheme that UC-realizes FMVC.
In the conference version of this paper, as discussed in [2], [3],
we focus on a specific scenario in the subsequent construction:
the case where only client P1 can retrieve the output, without

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1649

TABLE III
IDEAL FUNCTIONALITY OF ONE-TIME MULTI-CLIENT VERIFIABLE COMPUTATION

loss of generality. To cater to other clients, the protocol can be
executed n times in parallel. Our distinctive approach, unlike
prior schemes, permits each client to procure its individual
output within a single execution of the online phase, which
substantially minimizes overhead.

A. One-Time Multi-Client Verifiable Computation (OT-MVC)

There are n clients and a server participating in an OT-MVC
protocol. All clients reach a consensus on the function f :
Xn → Yn to be computed. Each client Pi contributes its private
input xi. The primary objective is to facilitate each client Pi

in acquiring f(x1, . . ., xn)[i], representing its component of the
function result vector, while the server only knows the authorized
side-informationΦ(f). The server and all the clients are assumed
to be malicious in this model, with the added condition that
client-server collusion is not permitted. The ideal functionality
FOT-MVC aligns with FMVC, but with the distinction that the
outsourcing phase occurs only once. The formal definition of
the ideal functionality FOT-MVC is shown in Table III.

We give a construction ofFOT-MVC from a secure MS-MOGC
protocol. Let f : ({0, 1}l)n → ({0, 1}l)n be the outsourced
function, P1 be the generator, P2, . . .,Pn be the collaborators,
and Serv be the server. Assuming that all communication
channels among the participants are secure and private, i.e. all
communication is implemented by FSMT. The parties work as
follows:
− Each client Pi executes the algorithm Ma to generates its

respective encoding and decoding mappings, denoted as ei and
di, on input of the delegated function f and its client index i.
Then, all the collaborators send their mappings to the generator
P1.

−P1 executes the algorithmGb to generate the garbled circuit
F and the aggregated circuit randomness ρ. Then P1 sends F to
the server and sends ρ to all the collaborators.

After receiving F , the server Serv forwards it to all the
collaborators.
− Each collaborator Pi, where i ∈ [n]\{1}, executes the

algorithm Ve to verify the correctness of F . If the validity does
not hold, the protocol is aborted.
− All clients execute the algorithm En on their respective

private input x1, . . ., xn to obtain the garbled input X1, . . ., Xn,
which are then sent to the server Serv.
− The server Serv executes the algorithm Ev on the garbled

inputs, resulting in the garbled outputs Y1, . . ., Yn, which are
then transmitted back to their respective client.
− Each client Pi executes the algorithm De on the encoded

output Yi to recover the final result. If Yi is a valid garbled
output, the client accepts the final result as yi. Otherwise, the
client rejects it and outputs ⊥ as the result.

Theorem 2. Suppose MOGC is a maliciously secure multi-
client outsourced garbled circuit protocol, then the previously
described protocol UC-realizes FOT-MVC against malicious cor-
ruption of the server, or any fixed subset of clients, in the
FSMT-hybrid model.

Proof. Let Π represent the above protocol. Our objective is
to construct a simulator S, such that for any PPT adversary A
capable of corrupting the server or a fixed subset of clients
maliciously, for any PPT environment E , the two ensembles
EXECΠ,A,E and EXECFOT-MVC,S,E are indistinguishable. For the
simulator S: Upon receiving input from the environment E , it
writes this input on A’s input tape. Upon obtaining an output
value from the adversary A, it writes this output on E’s output
tape.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1650 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

Specifically, utilizing FSMT as the secure communication
channel enables the simulator S to simulate the protocol with
dummy messages when none of the clients or the server is
corrupted. If any participant is corrupted, S can learn the actual
message and obtain all the necessary information to accurately
simulate the communication.

Case 1: Honest server and clients. Since we assume the
channel is private, the simulator S can use the ciphertext of a
random string to simulate the communication script. Because the
server and all the clients are honest, the communication script
is the only thing that the simulator S should simulate.

Case 2: Honest server and partially corrupted clients. The
simulator S starts simulating internally the real world ex-
ecution of the protocol, consisting of Serv, honest clients
{Pi}i∈I∗ , and the adversary A that controls corrupted clients
{Pj}j∈I\I∗ , where I is the honest client index set. For an honest
client who causes halting of the Π or FOT-MVC, we have the
following:

(1) During the initialization phase, the probability that
FOT-MVC halts, which is the probability of corrupted P1 respond-
ing with (Init,Cheat), is the same as the probability of P1

providing an invalid garbled circuit that cannot be verified, which
is the probability of abortion by the honest client in the real
world.

(2) During the outsourcing phase, the probability thatFOT-MVC

halts withABORT is 0, since the server is honest. The probability
that honest clients receives (Output,Cheat), which is the
probability of any corrupted client Pj inputting (Cheat,Pj),
is the same as the probability of the corrupted client providing
an invalid garbled input that cannot be verified, which is the
probability of the result ⊥ being received by an honest client in
the real world.

Hence we just need to construct a simulator that can simulate
the transcript and the view of all corrupted clients. The former
can be easily simulated by using the ciphertext of a random
string, since the communication channel is private. The latter
contains the garbled circuitF and its randomness ρ, the encoded
input Xi and output Yi for each client Pi.

For generating the garbled circuit F , the simulator first
randomly chooses two strings as the encoded wires for each
intermediate wires in the circuit, and then uses the strings along
with all encoding and decoding mappings to compute the garbled
circuit F̄ . After that, it denote ρ̄ as the combination of the
intermediate randomness and all encoding (decoding) mappings.
Then, the simulator S sets the encoded input (output) to the
exact string corresponding to the input (output). Apparently, it
is impossible to tell the difference between ρ and ρ̄. And F̄ is
also indistinguishable from F because of the property of the
garbling scheme used in MS-MOGC. It is also impossible to tell
the difference between the encoded input (output) wires in the
encoding (decoding) mappings and the newly generated random
strings.

Case 3: Corrupted server and honest clients. The simulator
S starts simulating internally the real world execution of the
protocol, consisting of honest clients {Pi}i∈I , and the adversary
A that controls corrupted server Serv. For an honest client who
causes halting of the Π or FOT-MVC, we have the following:

1) During the initialization phase, the probability thatFOT-MVC

halts, which is the probability of corrupted Serv responding with
(Cheat,Serv,Pi) for any i ∈ I, is the same as the probability
of Serv forwarding a wrong garbled circuit to some client, which
is the probability of abortion by the honest client in the real
world.

2) During the outsourcing phase, the probability thatFOT-MVC

halts with ABORT, which is the probability of corrupted Serv
inputting (Cheat,Serv, I∗), is the same as the probability of
the corrupted server providing an invalid garbled output that
cannot be verified, which is the probability of the result⊥ being
received by some honest client in the real world, because of the
authenticity of MOGC.

Specifically, besides the communication script, the simulator
S needs to simulate the server Serv’s view, including (F, {X}n).
The simulator S randomly chooses the encoded input wires
which are not chosen by clients, denoted as ¯{X}n. Then S
merges the two sets into the universal encoding function. Con-
cretely speaking, encoded wires in{X}n and ¯{X}n are regarded
as the encoded wires of 0’s and 1’s, respectively. After ran-
domly choosing the encoded intermediate and output values,
the simulator generates the garbled circuit F ′, and sets the
decoding function to d′. If there exists a distinguisher that could
distinguish (F, {X}n) from (F ′, ¯{X}n), then we can construct
an adversary B that uses (f, f ′, {x}n, {�0}n) as input to break
the obliviousness of MS-MOGC.

In conclusion, the two ensembles EXECΠ,A,E and
EXECFOT-MVC,S,E are indistinguishable in all cases. �

B. Construction of MVOC

We give a construction that UC-realizes FMVC from a secure
MS-MOGC scheme, a fully homomorphic encryption scheme
FHE and a symmetric-key encryption schemeSKE. The protocol
is in the (FSMT,GFHE)-hybrid world, Specifically, GFHE serves
as a self-registered PKI which allows any client to generate FHE
key pair and register the public key, and it returns pkFHE when the
server or any other party queries it. FSMT is the functionality of
Secure Message Transmission [10], providing private channels
between clients and server. The construction is described as
follows. For simplicity, we omit the superscript ssid of the
variables in online phase.

1) In the initialization phase, each client Pi executes the
algorithm MOGC.Ma to generate the encoding and de-
coding mapping shares pair (ei, di), for i ∈ [n]. Then, all
non-garbler clients send their pairs to P1.

2) After gathering all shares of encoding and decoding map-
pings, the generator P1 executes the algorithm MOGC.Gb
to obtain the garbled circuit F , along with the randomness
ρ used during circuit generation. Then, P1 sends F to the
server and sends ρ to all the other clients.

3) After receiving F , the server Serv forwards it to all the
collaborators.

4) All non-garbler clients execute the algorithm MOGC.Ve
on the circuit and corresponding randomness. If the vali-
dation does not holds, the protocol is aborted.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1651

Fig. 3. Construction of MVOC.

5) In the outsourcing phase, each client Pi communicates
with GFHE to obtain a current FHE key pair (pki, ski),
for i ∈ [n]. After all the clients have registered the FHE
public key, each client acquires all keys of other clients by
callingGFHE. Then, for i ∈ [n], each client Pi computes its
garbled input Xi by executing the algorithm MOGC.En
on its own private input xi, randomly chooses a sym-
metric key ki ← SKE.Gen(1κ), and computes mi0 =
SKE.Enc(ki, Xi) and mij = FHE.Enc(pkj , ki) for j ∈
[n]. Pi finally sends mi = (mi0, . . .,min) to the server
Serv.

6) After parsing mi = (mi0, . . .,min), the server Serv com-
putes X̂ij = SKE.Dec(mi0,FHE.Enc(mij)), for i, j ∈
[n]. Then, Serv computes FHE ciphertexts of the gar-
bled circuit, by computing F̂j = FHE.Enc(pkj , F), for
j ∈ [n]. Next, it executes the algorithm MOGC.Ev on
{X̂ij}i∈[n] and obtains circuit result set {Ŷij}i∈[n], and

sends the output Ŷjj to the corresponding output object
Pj , for j ∈ [n].

7) After receiving the encrypted result, each client Pi com-
putes Yi = FHE.Dec(ski, Ŷii), and recovers the final re-
sult by executing the algorithm MOGC.De. If Y is a valid
garbled output, then Pi accepts and outputs the final result
y. Otherwise, Pi rejects it and output ⊥ as the result, and
the protocol is aborted.

As shown in Fig. 3, Step 1, 2 and 3 are in offline phase, and the
rest are online. Step 4 and 7 are locally executed by each client
and the generator respectively with no data transmission between
participants. After Step 7 is executed without the result being
⊥, the protocol comes back to Step 4; otherwise, it terminates.
This abortion makes the advantage that the server gained from
providing incorrect result cannot be carried over to the next sub-
session.

Theorem 3. Suppose FHE is an IND-CPA secure public-key
fully homomorphic encryption scheme, SKE is a semantically
secure symmetric-key encryption scheme, and MOGC is a mali-
ciously secure multi-client outsourced garbled circuit protocol,
then the aforementioned protocol UC-realizes FMVC against
malicious corruption of any fixed subset of clients, or against
malicious server corruption, in the (FSMT,GFHE)-hybrid model.

Proof. Let Π represents the above protocol. Our objective
is to construct a simulator S, such that for any PPT adversary
A capable of corrupting the server or a fixed subset of clients
maliciously, for any PPT environment E , the two ensembles
EXECΠ,A,E and EXECFMVC,S,E are indistinguishable. For the

simulator S: Upon receiving input from the environment E , it
writes this input on A’s input tape. Upon obtaining an output
value from the adversary A, it writes this output on E’s output
tape. In this proof, we omit the corruption analysis on abortion,
which is the same as the proof of Theorem 2.

Similar to the proof of Theorem 2, using FSMT as the secure
communication channel allows the simulator S to simulate the
protocol with dummy messages when no clients or the server are
corrupted. If any participant is corrupted, S can learn the actual
message and obtain all the necessary information to accurately
simulate the communication.

Case 1: Honest server and client. Since we assume the chan-
nel is private, the simulatorS could use the ciphertext of a random
string to simulate the communication script. Because the server
and all the clients are honest, the communication script is the
only thing that the simulator S should simulate.

Case 2: Honest server and partially corrupted clients. Similar
to the proof of Theorem 2, we just need to construct a simulator
that can simulate the transcript and the view of all corrupted
clients. The former can be easily simulated by using the ci-
phertext of a random string, since the communication channel
is private. The latter contains a series of FHE public keys,
circuit information, and the message sent to and received from
the server for each corrupted client. Concretely speaking, the
view of a client Pi in the real world contains FHE public keys
(pk1, . . ., pkn), its own FHE secret key ski, the garbled circuit
F along with its randomness ρ, the message sent to the server
(mi0, . . .,min) and the message received from the server Ŷii.

Apparently, FHE keys can be easily simulated by interact-
ing with the self-registered PKI GFHE. For the remaining part,
the simulator S could just randomly choose two strings for
each wire in the circuit as the encoded or decoded mapping
shares, noted as ρ′. Specifically, we denote the encoding and
decoding mapping of client Pi as ei and di respectively. Then,
S uses it to compute a garbled version of function f , noted
as F ′. Since the circuit labels are chosen randomly, the ad-
versary cannot distinguish the difference of circuits with ran-
domness between the real and ideal worlds. Next, the sim-
ulator S randomly choose a symmetric key k′i ← SKE.Gen,
and uses the key to encrypt its garbled input X ′i = e′i(xi)
from input xi, and obtains the ciphertext SKE.Enc(k′i, X

′
i),

denoted as m′i0. After that, S uses the public keys of all clients
that are provided by GFHE to encrypt the symmetric key k′i
and obtains n encapsulated keys FHE.Enc(pk′i, k

′
i), denoted

as m′i1, . . .,m
′
in respectively. The IND-CPA security of FHE

and the semantic security of SKE ensures that a PPT adver-
sary cannot distinguish the views between the ideal and real
worlds.

Case 3: Corrupted malicious server and honest clients. Simi-
lar to the proof of Theorem 2, we just need to construct a simula-
tor that can simulate the transcript and the view of S. The former
can be easily simulated by using the ciphertext of a random
string, since the communication channel is private. The latter
contains a series of FHE public keys, the garbled circuit, and
all the message sent to and received from the server. Concretely
speaking, the view of S in the real world contains FHE public
keys (pk1, . . ., pkn), the garbled circuit F , the message sent to

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

the server (mi0, . . .,min) and the message received from the
server Ŷii for each client Pi, for i ∈ [n].

Upon receiving Φ(f), the simulator randomly generates a
circuit F ′ with the circuit structure information revealed by
Φ(f). During online phase, the simulator interacts with GFHE

to obtain all the FHE public key (pk1, . . ., pkn). Then, for each
i ∈ [n], the simulator chooses two random strings s1 and s2 of
length k and w respectively, where k is the length of a valid
SKE key and w is the length of a valid garbled wire. S computes
m′i0 := SKE.Enc(s1, s2) and m′ij := FHE.Enc(pk′j , s1), for
j ∈ [n]. If there exists a distinguisher that could tell the views
of the ideal and real worlds, it either distinguishes F from
F ′, or distinguishes (mi1, . . .,min) from (m′i0, . . .,m

′
in). If

the former happens, then we can construct an adversary B
using (f, f ′, {x}n, {�0}n) as input to break the obliviousness
of MS-MOGC. If the latter happens, there exists a j ∈ [n] such
that the adversary can distinguish the difference between mij

and m′ij . Hence, we can construct an adversary C that uses
(mij ,m

′
ij) as input to break either the semantic security of SKE

or the IND-CPA security of FHE, respectively.
Thus EXECΠ,A,E and EXECFMVC,S,E are indistinguishable in

all cases. �

VI. EVALUATION

A. Efficiency Analysis

As discussed earlier, outsourcability is a concept synonymous
with efficiency improvement for the client side. To assess the ef-
ficiency of our approach, we conduct a comparative analysis with
Choi et al.’s work [2]. Their solution in multi-client settings is
theoretically more efficient than the general UC-secure solution
presented by Gordon et al. [3]. We break down the incurred costs
in both offline and online phases. In contrast to the conference
version of our work, we no longer need to execute the protocol
n times within a single computing period. This is due to the fact
that the final result is now distributed to each respective client
by the server. Specifically,
• In offline phase, each client generates the randomness of its

corresponding inputs and outputs labels. Besides, the generator
client generates the garbled circuit using the randomnesses,
while each of the non-generator client verifies the garbled cir-
cuit. In all, the total computational complexity of each client
is O(Φ(f) + nl). For communication, each non-garbler client
sends a message of size O(l) to the generator, and receives
messages of total size O(Φ(f) + nl) from the generator and
the server. The generator client receives messages of total size
O(nl) from the collaborators, and sends a message of size
O(Φ(f) + nl) to the server and each other client. The total
verification cost for each collaborator is also O(Φ(f) + nl).
• In online phase, the generator runs an FHE key generation

algorithm. Then each client executes a symmetric key encryption
with size O(lκ), and executes a fully homomorphic encryption
with size O(κ). During result recovering, each client executes
a fully homomorphic decrypting algorithm with plaintext size
O(lκ) . For communication, each client sends the ciphertext
generated above.

TABLE IV
OVERHEADS FOR CLIENTS

B. Implementation and Evaluation

We conducted our protocol implementation and experiments
on an Ubuntu 22.04 Server featuring an Intel i5-12600KF CPU
(3.7 GHz) and 64 GB DDR5 4400 MHz RAM. Our focus was
primarily on simulating the client-side execution. To implement
the garbling scheme, we chose TinyGarble [25], known for its
maturity and integration of recent optimizations in the Gar-
bled Circuit (GC) protocol. We used the AES-128 encryption
algorithm as the computation benchmark. For simplicity, we
configured the number of clients to be 2, where one provided a
128-bit key, and the other used a 128-bit plaintext. The original
circuit consisted of 38,031 gates, with 6,400 non-XOR gates.
The total size of the garbled circuit amounted to 300 KB. There
were 38,287 wires in the circuit, including 256 input wires and
128 output wires. It is worth noting that the experiments con-
ducted in the conference version and this version were performed
in different environments. Specifically, the CPUs used in each
experiment had different core counts. Our code is optimized
for multi-core processors, which contributed to the variants in
the data. In terms of communication complexity, we recalcu-
lated the amortized communication overhead to ensure more
accurate efficiency testing in the context of this paper. For the
Fully Homomorphic Encryption (FHE) scheme, we employed
TFHE [26], as it supports boolean value encryption and can be
optimized for fast gate bootstrapping. For symmetric encryption
scheme, we used DASTA [27], a 6-round scheme, chosen for its
efficient encryption capability and compatibility withTFHE. We
set security parameter κ to 128, the key-size ofDASTAwas cho-
sen as 351. All the experiments were conducted in single-thread
mode. Our implementation was compared against [2] and [6],
and the results are presented in Table IV. As mentioned earlier,
the scalability of our protocol is directly related to the number of
clients and the input size. In cases where only two clients were
involved, each with a minimal input size of 128, which is roughly
equivalent to the ciphertext extension rate of FHE, our protocol
showed the least advantage. Under these specific conditions,
we achieved a communication efficiency improvement of at
least 7.80 times and a time cost reduction of at least 22.49
times compared to [2]. However, as the data size increased,
the efficiency improvement ratio gradually converged to a rate
that was proportional to the throughput of the two schemes. In
our evaluation, the SKE throughput was 1594.05 b/ms, while
TFHE provided a rate of 107.6 b/ms. Consequently, with larger
input sizes, we achieved efficiency improvements of 24 times
and 29.63 times, respectively.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MVOC: A LIGHTER MULTI-CLIENT VERIFIABLE OUTSOURCED COMPUTATION FOR MALICIOUS LIGHTWEIGHT CLIENTS 1653

It is important to note that the evaluation of efficiency im-
provement is based on the worst-case scenario, where the num-
ber of non-server participants is 2. As indicated in Table I, greater
values of n result in higher efficiency improvements.

VII. CONCLUSION AND FUTURE WORK

We proposed a lighter multi-client privacy-preserving ver-
ifiable outsourced computation scheme, designed to operate
even in the presence of malicious participants. To adapt garbled
circuits for use in a malicious multi-client environment, we
developed a novel primitive called MS-MOGC, which builds
on the garbling scheme and improves upon the previous work
on MOGC. In our approach, each participant generates its own
randomness, allowing every client to independently verify the
circuit. Furthermore, we established that a secure MS-MOGC
protocol implies a one-time multi-client verifiable computation.
To construct an efficient MVOC protocol, we leveraged the
hybrid encryption technique to mitigate the costly overhead
associated with Fully Homomorphic Encryption (FHE). Our
protocol’s security in Universal Composability (UC) Frame-
work was rigorously proven. We conducted a comprehensive
theoretical analysis of its efficiency and also implemented our
scheme. The results clearly demonstrate the effectiveness of our
protocol in enhancing the efficiency of the input phase, with
improvements of 7.80 times in communication efficiency and
22.49 times in computation cost, even in the worst case.

In the context of improving the efficiency of outsourced com-
putation, this study opens up several avenues for future research.
First, within the same technical framework as this paper, an
under-explored area is the overhead associated with the fully ho-
momorphic encryption (FHE) decrypting process. Reducing the
computational cost of decryption presents a promising research
direction that could significantly enhance the overall efficiency
of outsourced computation. Second, while there are various
technical approaches to addressing the problem of outsourced
computation. However, comparing the efficiency of these dif-
ferent approaches is relatively complex. Future research could
focus on defining a standardized benchmark to systematically
compare the implementations of different technical routes. This
would help in identifying the most suitable approach for various
application scenarios.

REFERENCES

[1] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers,” in Proc. 30th Annu.
Cryptol. Conf., 2010, pp. 465–482.

[2] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid, “Multi-client non-
interactive verifiable computation,” in Proc. 10th Theory Cryptogr. Conf.,
Springer, 2013, pp. 499–518.

[3] S. D. Gordon, J. Katz, F.-H. Liu, E. Shi, and H.-S. Zhou, “Multi-client
verifiable computation with stronger security guarantees,” in Proc. Theory
Cryptogr. Conf., Springer, 2015, pp. 144–168.

[4] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. IEEE 27th
Annu. Symp. Found. Comput. Sci., 1986, pp. 162–167.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169–178.

[6] X. Wang, Z. Cao, Z. Liu, and K. Liang, “Lighter is better: A lighter
multi-client verifiable outsourced computation with hybrid homomorphic
encryption,” in Proc. 27th Eur. Symp. Res. Comput. Secur., Copenhagen,
Denmark, Springer, 2022, pp. 105–125.

[7] K. Peng, X. Shen, L. Gao, B. Wang, and Y. Lu, “Communication-efficient
and privacy-preserving verifiable aggregation for federated learning,” En-
tropy, vol. 25, no. 8, 2023, Art. no. 1125.

[8] C. Hahn, H. Kim, M. Kim, and J. Hur, “VerSA: Verifiable secure aggrega-
tion for cross-device federated learning,” IEEE Trans. Dependable Secure
Comput., vol. 20, no. 1, pp. 36–52, Jan./Feb. 2023.

[9] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, and Y. Li, “Efficient multi-party private
set intersection against malicious adversaries,” in Proc. ACM SIGSAC
Conf. Cloud Comput. Secur. Workshop, 2019, pp. 93–104.

[10] R. Canetti, “Universally composable security: A new paradigm for crypto-
graphic protocols,” in Proc. IEEE Annu. Symp. Found. Comput. Sci., 2001,
pp. 136–145.

[11] R. Canetti, P. Jain, M. Swanberg, and M. Varia, “Universally composable
end-to-end secure messaging,” in Proc. Annu. Int. Cryptol. Conf., Springer,
2022, pp. 3–33.

[12] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich,
“Reusable garbled circuits and succinct functional encryption,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2013, pp. 555–564.

[13] S. Goldwasser et al., “Multi-input functional encryption,” in Proc.
33rd Annu. Int. Conf. Theory Appl. Cryptogr. Techn., Springer, 2014,
pp. 578–602.

[14] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifiable computation on
encrypted data,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2014, pp. 844–855.

[15] D. Fiore, A. Nitulescu, and D. Pointcheval, “Boosting verifiable compu-
tation on encrypted data,” in Proc. 23rd IACR Int. Conf. Pract. Theory
Public-Key Cryptogr., 2020, pp. 124–154.

[16] A. Bois, I. Cascudo, D. Fiore, and D. Kim, “Flexible and efficient verifiable
computation on encrypted data,” in Proc. 24th IACR Int. Conf. Pract.
Theory Public-Key Cryptogr., Springer, 2021, pp. 528–558.

[17] R. Gennaro and D. Wichs, “Fully homomorphic message authenticators,”
in Proc. 19th Int. Conf. Theory Appl. Cryptol. Inf. Secur., Springer, 2013,
pp. 301–320.

[18] D. Catalano and D. Fiore, “Practical homomorphic MACs for arithmetic
circuits,” in Proc. 32nd Annu. Int. Conf. Theory Appl. Cryptogr. Techn.,
Springer, 2013, pp. 336–352.

[19] D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin, “Multi-key homo-
morphic authenticators,” IET Inf. Secur., vol. 13, no. 6, pp. 618–638, 2019.

[20] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled cir-
cuits,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2012,
pp. 784–796.

[21] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Proc. Int. Colloq. Automata, Lang., Program.,
Springer, 2008, pp. 486–498.

[22] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” in
Proc. Annu. Int. Conf. Theory Appl. Cryptographic Techn., Springer, 2015,
pp. 220–250.

[23] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling
from a fixed-key blockcipher,” in Proc. IEEE Symp. Secur. Privacy, 2013,
pp. 478–492.

[24] J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles
and Protocols, London, U.K.: Chapman and Hall/CRC,” 2007.

[25] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequen-
tial garbled circuits,” in Proc. IEEE Symp. Secur. Privacy, 2015,
pp. 411–428.

[26] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34–91, 2020.

[27] P. Hebborn and G. Leander, “Dasta–alternative linear layer for rasta,” IACR
Trans. Symmetric Cryptol., vol. 2020, no. 3, pp. 46–86, 2020.

Xingkai Wang received the BE degree in com-
puter science from Shanghai Jiao Tong University,
in 2015. He is currently working toward the PhD
degree with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
His research interests include verifiable computation,
privacy-preserving computing, and applied cryptog-
raphy.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 22, NO. 2, MARCH/APRIL 2025

Zhenfu Cao (Senior Member, IEEE) is currently
a distinguished professor with East China Normal
University, China. Since 1981, more than 500 aca-
demic papers have been published in journals or
conferences. His research interests include number
theory, cryptography, and information security. He
serves as a member of the Expert Panel of the Na-
tional Nature Science Foundation of China. He has
received a number of awards and the Leader of
Asia 3 Foresight Program (61161140320), and key
project (61033014,61632012) of the National Natural
Science Foundation of China.

Zhen Liu received the PhD degree in computer sci-
ence from the City University of Hong Kong and
Shanghai Jiao Tong University, in 2013. He is cur-
rently an associate professor with the Department of
Computer Science and Engineering at Shanghai Jiao
Tong University. His primary interest is applied cryp-
tography, studying provable security and designing
cryptographic primitives for the research problems
motivated by practical applications. Currently, he
is working on post-quantum cryptography, privacy-
preserving computing, and cryptographic primitives
for blockchain.

Kaitai Liang (Member, IEEE) is a tenured faculty
member with the Delft University of Technology.
His research, featured in international information
security journals and conferences like USENIX Se-
curity, NDSS, Asiacrypt, ESORICS (with a best re-
search paper award), IEEE Transactions on Informa-
tion Forensics and Security, and IEEE Transactions
on Dependable and Secure Computing, addresses
cybersecurity challenges using information security
and cryptographic tools. As a principal investigator
in various EU funded projects, he has demonstrated

real-world security impact through collaborations with academic and industrial
partners. He has served TPC member, general chair, and steering committee for
international security and privacy conferences, e.g., USENIX Security, IEEE
Euro S&P, ESORICS, IEEE CSF, and PoPETs, and an associate editor for
international journals. He has also contributed to ISO standards as a member of
the standards committee 381027 “Cybersecurity & Privacy” at NEN.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 15,2025 at 10:18:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

