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Summary

Motion Cueing Quality in Driving Simulation

by

Marius Johannes Claus KOLFF

Driving simulators are important tools in supporting the research and development
of automotive systems. By replacing real-world testing with a virtual equivalent, signif-
icant benefits can be achieved in terms of financial cost, controllability, sustainability,
and safety. The role of a simulator’s motion system is to reproduce the physical motion
cues as they would be perceived in the real vehicle. An inaccurate motion reproduction
can lead to simulator sickness, unwanted adaptations in the driver’s control behavior,
and a reduced validity of experimental results. The control of the simulator’s motion
system is performed by the motion cueing algorithm (MCA). It converts the motion of
the real vehicle to motion that fits in the constrained workspace of the simulator. This
nevertheless inevitably leads to imperfections, which are, when perceived by the driver,
known as incongruences. For an effective motion cueing and to achieve the best-possible
simulator motion, a complete understanding of the motion system control and its effect
on the human perception of the motion is thus required.

For a growing number of driving simulation use-cases, an increasing variety of differ-
ent MCAs and simulators is currently used. Motion systems range from small hexapods,
to large and advanced configurations consisting of various motion subsystems (e.g., xy-
drives, tripods, and yaw-drives). MCAs range from “filter-based” algorithms, consisting
of causal filters, to more complex, optimization-based algorithms. While perhaps en-
abling a better possible motion reproduction, using a more advanced MCA and simu-
lator can also have drawbacks, such as an increased cost or complexity of the system.
Which MCA and simulator are best suited thus depends on the use-case under consid-
eration. The MCA also requires tuning of its parameters, further increasing the scope of
available options. An obvious question arising is then how it can be determined which
combination of MCA, simulator, and tuning parameter set is best suited for a certain
driving simulation use-case. This requires an evaluation of each combination’s motion

cueing quality across the multiple dimensions that the term “quality” may entail.

In existing methods and literature, motion cueing quality is generally only evaluated
in terms of the motion reproduction itself. This dissertation shows that considering a
set of quality, cost, and tuning aspects, important to the various stakeholders involved
in an experiment, provides a broader view of the motion cueing quality. This could, for
example, include the quality of the motion, together with the energy consumption, total
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financial cost, and required tuning effort. The evaluation of this “total” motion cueing
quality can lead to a more well-founded choice of the simulator, MCA, and its parame-
ters for a driving simulator experiment. Another current limitation is that in the early
experiment design stages, the tuning of the MCA has not yet been performed. To justify
the cost and time investment required for tuning a given MCA and simulator, an eval-
uation of the quality is necessary, but this quality cannot be measured exactly, because

the tuning has not yet been performed. A key innovation presented in this dissertation
is a method to predict the total motion cueing quality that an MCA and simulator can
potentially reach, to improve the selection process of driving simulator motion cueing.

Predicting the potential quality of the motion reproduction introduces a further dif-
ficulty, as a model of subjective assessments (i.e., ratings) on the incongruence of the
motion by human test drivers is required. This is notoriously difficult due to the com-
plexity and black-box nature of human perception and subjective rating behaviour. Re-
cent work, however, introduced a continuous rating method, in which drivers are tasked
with continuously evaluating the motion incongruence of a simulated scenario through
a rating interface. This method is especially suitable for developing rating models due
to the high temporal resolution of the ratings. Restricted by the additional workload
that comes with continuously evaluating the motion, which can interfere with the task
of driving, the method is only feasible in open-loop driving, meaning that the test driver
is driven around rather than actively steering the vehicle. In most driving simulation
use-cases, however, the driver needs to actively control the vehicle in a closed-loop set-
ting instead (e.g., vehicle handling testing). While shown to be promising in modeling
approaches for simplified scenarios, the continuous rating method thus requires the val-
idation that it also produces reliable ratings relevant for closed-loop driving.

Through five novel experiments described in this dissertation, and the use of three
pre-existing data sets, an explicit investigation on the suitability of the continuous rating
method in realistic driving simulation use-cases is performed. The three main scenario
types of typical driving simulations (urban, highway, and rural) are investigated through
dedicated continuous rating experiments and subsequently compared, providing a di-
rect and unique insight in differences between scenario types. Estimates on the reliability
of the rating data show that the urban scenario produces more reliable rating data than
the highway and rural scenarios. This indicates that highway and rural simulations are
more difficult to rate, and therefore also more difficult to predict. Furthermore, inverse
relations exist between the ratings and their reliability, showing that the more congruent
(i.e., the better) the motion is rated to be, the less reliable the ratings are. Whereas con-
gruence of the motion is generally the goal, ratings of incongruent motion are thus more
useful for developing accurate rating models.

Based on the recorded continuous rating data of the experiments, models of the rat-
ings are subsequently developed, as a function of the objective mismatch signals of the
platform motion (specific forces and rotational rates). These rating models provide a
transformation of quality predictions from objective mismatch signals to subjective rat-
ings by yielding the predicted subjective rating for the average participant. The mis-
match signals are shown to be dependent on, and derived for, the variety of existing
kinematic systems. The analysis in this dissertation shows that the continuous ratings in
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urban simulations can be modeled by a low-pass filtered response of the objective mis-
matches of the lateral and longitudinal specific forces, with only a small and situational
contribution of yaw rate mismatches. The rating data of the rural and highway scenar-
ios are then subsequently used to improve the validity of the rating model. While the
balance of the mismatch channels differs per scenario type, the same motion channels
are found to be dominant in all three scenario types, which shows a high generalizability
and validity of the model across the various scenario types.

While continuous ratings are highly useful in modelling, they are less useful as met-
rics in direct comparisons of MCA and simulator quality. Comparative assessments be-
tween configurations are easier to perform based on single value (i.e., scalar) ratings,
rather than the long time series of continuous ratings. This dissertation therefore also in-
vestigates the prediction of overall ratings (a single rating representing the whole drive),
as well as maneuver-based ratings (one rating given for each maneuver). The novel
experiments described in this dissertation, where continuous, overall, and maneuver-
based ratings are collected in parallel, show that the most incongruent motion in a drive
or maneuver (as measurable by the continuous rating) strongly correlates with the over-
all or maneuver-based rating, respectively. Combined with the continuous rating model,
this allows for also predicting overall and maneuver-based ratings from objective mis-
match signals. Tuning processes can benefit from this finding by always considering the
most incongruent point as the target for motion optimization.

Most of the presented findings in this dissertation concern measuring and predicting
ratings of open-loop driving, which is not necessarily representative for the hands-on
closed-loop driving that is the focus of most driving simulator use-cases. A dedicated ex-
periment described in this dissertation shows, however, that subjective ratings of closed-
and open-loop driving in urban simulations are in fact equivalent. This confirms the
hypothesis that continuous ratings may also be representative for closed-loop driving.
Combined, this thus enables an approach in which a continuous rating model is used
to predict overall and maneuver-based ratings of closed-loop driving, as a function of
objective mismatch signals. This allows for unmatched predictions of the potential sub-
jective ratings in driving simulator experiments. Furthermore, a closed-loop drive can
never be reproduced in exactly the same way due to inherent variations in driving be-
havior. As open-loop driving allows for using recordings of a drive, it provides significant
benefits in terms of reproducibility and controllability of the experienced motion mis-
matches. This makes open-loop testing especially practical to accelerate future tuning
processes.

Engineering applications of motion cueing in driving simulators can directly bene-
fit from the presented findings. With a valid rating model based on reliable rating data,
accurate predictions on the potential quality of the motion can be made. To this end,
a method to determine the potential motion cueing quality is also required. The final
contribution of this dissertation is therefore a method to estimate the potential motion
cueing quality, in which the prediction models of subjective ratings form a pivotal role.
This potential estimation is based on the extrapolation of baseline motion mismatch sig-
nals to fully use the workspaces of the available candidate simulators. For each MCA and
simulator combination, a potential total motion cueing quality can, and should be, pre-
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dicted that represents the true capacity for motion reproduction. While not yet worked
out to enable direct quantitative trade-offs, the findings for the two considered use cases
show that the inclusion of both the potential and total motion cueing quality can signifi-
cantly affect the choice of MCA and simulator.

Future research can also directly benefit from the findings described in this disser-
tation. MCAs can be specifically designed to tailor the subjective human perception,
leading to an improved subjective experience. For example, the linear rating model can
be included in the optimization scheme of MCAs, directly optimizing for the subjective
experience of the driver. Alternatively, the weights of the motion channels in an MCA
can be tuned to match the balance of importance found in the identified rating model
weights. Finally, the knowledge on the overall and maneuver-based ratings can be used
to more heavily penalize or optimize for the most incongruent point(s) in a drive, lead-
ing to a better overall quality of the motion. These contributions all potentially lead to a
better subjective experience in driving simulator experiments.

This dissertation offers both practical guidelines and fundamental methods for im-
proving the motion cueing of future driving simulation experiments. By providing a new
view on motion cueing quality, the long lasting and complex problem of driving simula-
tor motion cueing optimization is better understood. Apart from its direct relevance to
any driving simulator, these insights are furthermore highly applicable to other research
and engineering fields involving motion-base simulators, such as flight and maritime
simulation.



Samenvatting

Bewegingsaansturingskwaliteit in Autorijsimulatie

door

Marius Johannes Claus KOLFF

Rijsimulatoren zijn belangrijke hulpmiddelen ter ondersteuning van onderzoek en
de ontwikkeling van voertuigsystemen. Door een wegtest te vervangen door een virtueel
equivalent, kunnen aanzienlijke voordelen worden behaald op het gebied van financiële
kosten, bestuurbaarheid, duurzaamheid en veiligheid. De taak van het bewegingssys-
teem van een simulator is om de fysieke bewegingsprikkels zo weer te geven als ze in
een echt voertuig zouden worden waargenomen. Een onnauwkeurige weergave van be-
weging kan leiden tot simulatorziekte, ongewenste aanpassingen in het stuurgedrag van
de bestuurder en een verminderde validiteit van experimentele resultaten. De besturing
van het bewegingssysteem van de simulator wordt uitgevoerd door het Motion Cueing

Algoritme (MCA). Dit zet de beweging van het echte voertuig om in een beweging die
binnen de beperkte bewegingsruimte van de simulator past. Dit leidt echter onvermijde-
lijk tot imperfecties die, als ze door de bestuurder worden waargenomen, incongruenties

worden genoemd. Voor een effectieve bewegingsaansturing en een zo goed mogelijke
simulatorbeweging is dus een volledig begrip nodig van zowel de bewegingsaansturing
alsook het effect ervan op menselijke bewegingswaarneming.

Voor een groeiend aantal toepassingen van rijsimulatie wordt een steeds grotere
verscheidenheid aan MCA’s en simulatoren gebruikt. Bewegingssystemen variëren
van kleine hexapods tot grote, complexe configuraties bestaande uit meerdere bewe-
gingssubsystemen (zoals XY-actuatoren, tripoden en gierplatforms). MCA’s variëren
van “filtergebaseerde” algoritmes met causale filters tot complexere, op optimalisatie
gebaseerde methodes. Hoewel geavanceerdere MCA’s en simulatoren een betere be-
wegingsweergave kunnen bieden, kunnen ze ook nadelen met zich meebrengen, zoals
hogere kosten of systeemcomplexiteit. Welke MCA en simulator het meest geschikt zijn
hangt daarom af van de specifieke toepassing. Daarnaast vereist de MCA een parametri-
satie, wat het aantal mogelijke opties verder vergroot. De voor de hand liggende vraag is
dan hoe kan worden bepaald welke combinatie van MCA, simulator en parameterinstel-
ling het meest geschikt is voor een bepaalde rijsimulatie. Dit vereist een evaluatie van
de bewegingsaansturingskwaliteit van elke combinatie over de verschillende dimensies
die het begrip “kwaliteit” kan omvatten.

In bestaande methoden en de literatuur wordt de bewegingsaansturingskwaliteit
meestal alleen beoordeeld op basis van de bewegingsweergave zelf. Dit proefschrift
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laat zien dat het overwegen van meerdere kwaliteits-, kosten- en parametrisatiesas-
pecten die voor de verschillende belanghebbenden in een experiment relevant zijn,
een completer beeld geeft van de bewegingsaansturingskwaliteit. Dit kan bijvoorbeeld
de bewegingskwaliteit omvatten samen met het energieverbruik, de totale financiële
kosten en de benodigde inspanning voor de parametrisatie van een MCA. Het beoor-
delen van deze “totale” kwaliteit kan leiden tot een beter onderbouwde keuze van
simulator, MCA en parameters voor een rijsimulatie-experiment. Een bijkomende
huidige beperking is dat de parametrisatie van de MCA vaak nog niet is uitgevoerd in
vroege ontwerpfase van een simulatie. Om de inspanning voor deze parametrisatie te
rechtvaardigen, is een evaluatie van de kwaliteit nodig, maar die kan niet nauwkeurig
worden gemeten omdat de parametrisatie nog niet heeft plaatsgevonden. Een centrale
innovatie van dit proefschrift is een methode voor het voorspellen van de totale bewe-
gingsaansturingskwaliteit die een MCA en simulator potentieel kunnen bereiken, ter
ondersteuning van het keuzeproces van de bewegingsaansturing in rijsimulatie.

Het voorspellen van potentiële bewegingskwaliteit introduceert nog een andere
uitdaging, gezien een model van subjectieve beoordelingen van door menselijke
testbestuurders waargenomen bewegingsincongruenties nodig is. De complexiteit
en het zwarte-doos-karakter van menselijke waarneming en subjectieve beoordeling
maakt dit complex. In recent onderzoek is echter een continue beoordelingsmethode
geintroduceerd, waarbij bestuurders tijdens een gesimuleerd scenario de bewegings-
incongruentie voortdurend beoordelen via een beoordelingsknop. Deze methode is
bijzonder geschikt voor de ontwikkeling van beoordelingsmodellen vanwege de hoge
temporele resolutie van de metingen. Wegens de extra belasting voor de testpersoon
die een continue beoordeling met zich meebrengt, wat de rijtaak kan verstoren, is de
methode in de praktijk enkel toepasbaar tijdens open-lus rijden, d.w.z. wanneer de
proefpersonen passief rond worden gereden in plaats van zelf actief te sturen. In de
meeste toepassingen van rijsimulatie moet echter gesloten-lus worden gereden (bv. voor
het testen van voertuigdynamica). Hoewel de continue beoordelingsmethode veelbelo-
vend bleek in vereenvoudigde scenario’s, is de bevestiging nodig dat deze methode ook
betrouwbare beoordelingen oplevert die representatief zijn voor gesloten-lus rijden.

Aan de hand van vijf nieuwe experimenten en drie bestaande datasets onderzoekt
dit proefschrift expliciet hoe geschikt de continue beoordelingsmethode is voor realis-
tische rijsimulaties. De drie hoofdscenario’s van typische rijsimulaties (stad, snelweg
en landweg) worden onderzocht via aparte continue beoordelingsstudies en met elkaar
vergeleken, wat een uniek inzicht biedt in de verschillen tussen scenario’s. Betrouwbaar-
heidsschattingen tonen aan dat stadscenario’s betrouwbaardere beoordelingen opleve-
ren dan snelweg- en landwegscenario’s. Dit wijst erop dat laatstgenoemden moeilijker te
beoordelen, en dus moeilijker te voorspellen zijn. Bovendien bestaat er een omgekeerd
verband tussen beoordeling en betrouwbaarheid: hoe meer de beweging als congruent
wordt beoordeeld, hoe lager de betrouwbaarheid van deze beoordeling. Hoewel congru-
ente beweging normaal gesproken wordt nagestreefd, zijn beoordelingen van incongru-

ente bewegingen dus nuttiger voor het ontwikkelen van beoordelingsmodellen.

Op basis van de continue beoordelingsdata uit de experimenten worden vervolgens
modellen ontwikkeld die beoordelingen voorspellen op basis van objectieve discrepan-
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ties in platformbeweging (specifieke krachten en draaisnelheden). Deze beoordelings-
modellen maken het mogelijk om objectieve discrepantiesignalen om te zetten in voor-
spellingen van beoordelingen, door de beoordeling van een gemiddelde deelnemer te
modelleren. De discrepantiesignalen zijn afhankelijk van het kinematische systeem en
worden daarvoor afgeleid. De analyse in dit proefschrift toont aan dat continue beoorde-
lingen in stadscenario’s kunnen worden gemodelleerd als een laagdoorlaatgefilterde res-
pons op objectieve discrepanties in laterale en longitudinale specifieke krachten, waar-
bij giersnelheden slechts een kleine, situatie-afhankelijke bijdrage leveren. De data uit
landweg- en snelwegscenario’s worden gebruikt om de modelvaliditeit te verbeteren.
Hoewel de kanaalweging scenario-afhankelijk varieert, blijken dezelfde dominante be-
wegingskanalen in alle drie scenariotypes terug te keren, wat wijst op een sterke genera-
liseerbaarheid en validiteit van het model in de verschillende scenario’s.

Hoewel continue beoordelingen waardevol zijn voor modelontwikkeling, zijn ze min-
der geschikt voor directe vergelijking van de kwaliteit van MCA’s en simulatoren. Verge-
lijkingen tussen configuraties zijn eenvoudiger te maken tussen enkele beoordelingen
(één waarde) dan met lange tijdreeksen van continue beoordelingen. Dit proefschrift on-
derzoekt daarom ook de voorspelling van algehele beoordelingen (één cijfer voor de hele
rit) en manoeuvre-gebaseerde beoordelingen (één cijfer per manoeuvre). Experimentele
gegevens waarin continue, algehele en manoeuvre-gebaseerde beoordelingen parallel
zijn verzameld, tonen aan dat de meest incongruente momenten (volgens de continue
beoordeling) sterk correleren met algehele en manoeuvre-gebaseerde beoordelingen. In
combinatie met het continue beoordelingsmodel maakt dit het mogelijk om algehele en
manoeuvre-gebaseerde beoordelingen te voorspellen op basis van objectieve discrepan-
ties. Parametrisatieprocessen van MCA’s kunnen hiervan profiteren door zich te richten
op de meest incongruente momenten als doel voor optimalisatie.

Hoewel de meeste resultaten betrekking hebben op open-lus rijden, is dit niet nood-
zakelijk representatief voor de gesloten-lus toepassingen van rijsimulatoren. Een spe-
ciaal experiment in dit proefschrift toont echter aan dat subjectieve beoordelingen in
open- en gesloten-lus rijden in stadscenario’s equivalent zijn. Dit bevestigt de hypothese
dat continue beoordelingen ook representatief zijn voor gesloten-lus rijden. In combi-
natie maakt dit een aanpak mogelijk waarbij een continue beoordelingsmodel wordt
gebruikt om algehele en manoeuvre-gebaseerde beoordelingen van gesloten-lus ritten
te voorspellen, op basis van objectieve discrepanties. Daardoor worden voorspellingen
van subjectieve kwaliteit mogelijk die voorheen niet mogelijk waren. Bovendien kun-
nen gesloten-lus ritten door inhererente variabiliteit nooit exact worden gereproduceerd.
Omdat open-lus ritten het afspelen van eerder opgenomen ritten mogelijk maken, zijn
ze bijzonder geschikt voor reproduceerbare, controleerbare experimenten. Dit maakt
open-lus simulaties nuttig om het parametrisatieproces te kunnen versnellen.

Technische toepassingen van bewegingsaansturing in rijsimulatoren kunnen direct
profiteren van de inzichten uit dit proefschrift. Met een gevalideerd beoordelingsmo-
del gebaseerd op betrouwbare data kunnen nauwkeurige voorspellingen worden gedaan
over de potentiële bewegingskwaliteit. Daarvoor is ook een methode nodig om de po-
tentiële bewegingsaansturingskwaliteit te schatten. Het laatste deel van dit proefschrift
beschrijft daarom een methode om de potentiële totale kwaliteit te voorspellen, waarbij
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de voorspellingsmodellen van subjectieve beoordelingen een centrale rol spelen. Deze
voorspelling is gebaseerd op bestaande metingen van discrepantiesignalen die geextra-
poleerd worden tot de volledige benutting van de bewegingsruimte van beschikbare si-
mulatoren. Voor elke combinatie van MCA en simulator kan, en zou, een potentiële
totale kwaliteit moeten worden voorspeld, die het daadwerkelijke potentieel van de be-
wegingsweergave reflecteert. Hoewel deze methode nog niet is uitgewerkt tot een direct
kwantitatieve afweging, tonen de besproken toepassingen aan dat het overwegen van zo-
wel potentiële als totale kwaliteit de keuze van MCA en simulator wezenlijk beïnvloedt.

Toekomstig onderzoek kan direct profiteren van de resultaten uit dit proefschrift.
MCA’s kunnen gericht worden ontworpen op de subjectieve menselijke waarneming, om
daarmee een betere bewegingsbeleving mogelijk te maken. As voorbeeld kan het line-
aire beoordelingsmodel direct worden geïntegreerd in een optimalisatie-algoritme om
expliciet te optimaliseren op subjectieve kwaliteit. Als alternatief kunnen de gewich-
tingsfactoren van de bewegingskanalen worden aangepast volgens de gewichting geï-
dentificeerd door de modellen uit dit proefschrift. Tot slot kan de kennis van algehele
en manoeuvre-gebaseerde beoordelingen worden gebruikt om bijzonder incongruente
momenten sterker te bestraffen of te optimaliseren, om daarmee de algehele bewegings-
kwaliteit te verbeteren. Deze bijdragen kunnen allen leiden tot een betere subjectieve
ervaring in rijsimulatiestudies.

Dit proefschrift biedt zowel praktische richtlijnen als fundamentele methoden
voor het verbeteren van de bewegingsaansturing in toekomstige rijsimulaties. Door
een nieuw perspectief te introduceren op bewegingsaansturingskwaliteit, wordt het al
lang bestaande en complexe probleem van bewegingssimulatie beter begrepen. Naast
directe relevantie voor elke vorm van rijsimulator zijn de inzichten ook toepasbaar op
andere onderzoeks- en technologiegebieden met bewegingssimulators, zoals vlieg- of
scheepssimulatie.



Zusammenfassung

Bewegungssteuerungsqualität in der Fahrsimulation

von

Marius Johannes Claus KOLFF

Fahrsimulatoren sind wichtige Werkzeuge zur Unterstützung der Forschung und Ent-
wicklung von Fahrzeugsystemen. Durch den Ersatz von realen Tests durch ein virtuel-
les Äquivalent können erhebliche Vorteile in Bezug auf finanzielle Kosten, Steuerbarkeit,
Nachhaltigkeit und Sicherheit erzielt werden. Die Aufgabe des Bewegungssystems ei-
nes Simulators besteht darin, die physikalischen Bewegungsreize so wiederzugeben, wie
sie im realen Fahrzeug wahrgenommen würden. Eine ungenaue Bewegungswiedergabe
kann zu Simulatorkrankheit, unerwünschten Anpassungen im Steuerverhalten des Fah-
rers und einer verminderten Validität experimenteller Ergebnisse führen. Die Steuerung
des Bewegungssystems des Simulators erfolgt durch den Motion Cueing Algorithmus

(MCA). Dieser wandelt die Bewegung des realen Fahrzeugs in eine Bewegung um, die in
den begrenzten Bewegungsbereich des Simulators passt. Dies führt jedoch zwangsläufig
zu Imperfektionen, die, wenn sie vom Fahrer wahrgenommen werden, als Inkongruen-

zen bezeichnet werden. Für eine effektive Bewegungssteuerung und eine möglichst gu-
te Simulatorbewegung ist daher ein vollständiges Verständnis der Bewegungssteuerung
und ihrer Wirkung auf die menschliche Bewegungswahrnehmung erforderlich.

Für eine wachsende Anzahl an Anwendungen von Fahrsimulationen wird eine zu-
nehmende Vielfalt unterschiedlicher MCAs und Simulatoren eingesetzt. Bewegungs-
systeme reichen von kleinen Hexapoden bis hin zu großen, komplexen Konfiguratio-
nen, bestehend aus verschiedenen Bewegungssubsystemen (z.B. XY-Antriebe, Tripoden
und Gierantriebe). MCAs reichen von „filterbasierten“ Algorithmen mit kausalen Filtern
bis hin zu komplexeren, optimierungsbasierten Methoden. Während fortschrittlichere
MCAs und Simulatoren eine bessere Bewegungswiedergabe ermöglichen, können sie
auch Nachteile wie erhöhte Kosten oder Systemkomplexität mit sich bringen. Welche
MCA und Simulator am besten geeignet sind, hängt somit vom jeweiligen Anwendungs-
fall ab. Zusätzlich erfordert der MCA eine Parametrierung, wodurch sich die Anzahl mög-
licher Optionen weiter erhöht. Es stellt sich daher die naheliegende Frage, wie bestimmt
werden kann, welche Kombination aus MCA, Simulator und Parametereinstellung am
besten für einen bestimmten Fahrsimulationsfall geeignet ist. Dies erfordert eine Be-
wertung der Bewegungssteuerungsqualität jeder Kombination über die verschiedenen
Dimensionen, die der Begriff „Qualität“ umfassen kann.

In bisherigen Methoden und der Literatur wird die Bewegungssteuerungsqualität
meist nur in Bezug auf die Bewegungswiedergabe selbst bewertet. Diese Dissertation
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zeigt, dass die Berücksichtigung einer Vielzahl an Qualitäts-, Kosten- und Parametrie-
rungsaspekten, die für die verschiedene Interessenvertreter eines Experiments wichtig
sind, ein umfassenderes Bild der Bewegungssteuerungsqualität liefert. Dies kann bei-
spielsweise die Qualität der Bewegung zusammen mit dem Energieverbrauch, den Ge-
samtkosten und dem erforderlichen Parametrierungsaufwand umfassen. Die Bewer-
tung dieser „totalen“ Bewegungssteuerungsqualität kann zu einer fundierteren Wahl des
Simulators, MCAs und dessen Parametern für ein Fahrsimulatorexperiment führen. Eine
weitere gegenwärtige Einschränkung besteht darin, dass die Parametrierung des MCAs
in frühen Phasen der Versuchsentwicklung noch nicht erfolgt ist. Um den für die Para-
metrierung erforderlichen Kosten- und Zeitaufwand zu rechtfertigen, ist eine Bewertung
der Qualität notwendig, diese kann jedoch nicht exakt gemessen werden, da die Para-
metrierung noch nicht erfolgt ist. Eine zentrale Innovation dieser Dissertation ist eine
Methode zur Vorhersage der totalen Bewegungssteuerungsqualität, die ein MCA und ein
Simulator potenziell erreichen könnten, um den Auswahlprozess in der Fahrsimulations-
steuerung zu verbessern.

Die Vorhersage der potenziellen Qualität der Bewegungswiedergabe bringt eine wei-
tere Schwierigkeit mit sich, da ein Modell subjektiver Bewertungen (d.h. Einschätzun-
gen) der vom Menschen empfundenen Inkongruenz der Bewegung erforderlich ist. Dies
ist aufgrund der Komplexität und Black-Box-Natur der menschlichen Wahrnehmung
und des subjektiven Bewertungsverhaltens notorisch schwierig. Aktuelle Arbeiten führ-
ten jedoch eine kontinuierliche Bewertungsmethode ein, bei der Fahrer die Bewegungs-
inkongruenz eines simulierten Szenarios fortlaufend über eine Bewertungsschnittstelle
beurteilen. Diese Methode ist besonders geeignet zur Entwicklung von Bewertungsmo-
dellen aufgrund der hohen zeitlichen Auflösung der Bewertungen. Wegen der zusätz-
lichen Belastung, die eine kontinuierliche Bewertung mit sich bringt, welche die Fahr-
aufgabe stören kann, ist die Methode nur für Fahrten mit offenem Regelkreis praktika-
bel, d.h., der Proband wird gefahren anstatt das Fahrzeug aktiv zu steuern. In den meis-
ten Fahrsimulationsanwendungen muss der Fahrer jedoch aktiv in einer Umgebung mit
geschlossenem Regelkreis steuern (z.B. bei Fahrdynamiktests). Obwohl sich die konti-
nuierliche Bewertungsmethode in vereinfachten Szenarien als vielversprechend erwies,
bedarf sie daher einer Validierung dahingehend, ob sie auch zuverlässige Bewertungen
liefert, die für Fahrten mit geschlossenem Regelkreis relevant sind.

Anhand fünf neuartiger Experimente und drei bereits existierender Datensätze wird
in dieser Dissertation explizit untersucht, wie gut sich die kontinuierliche Bewertungs-
methode für realistische Fahrsimulationsanwendungen eignet. Die drei Hauptszenari-
entypen typischer Fahrsimulationen (Stadt, Autobahn, Landstraße) werden mittels dedi-
zierter kontinuierlicher Bewertungsstudien untersucht und miteinander verglichen, was
einen einzigartigen Einblick in die Unterschiede zwischen den Szenarien liefert. Schät-
zungen zur Zuverlässigkeit der Bewertungsdaten zeigen, dass Stadtszenarien zuverlässi-
gere Bewertungen liefern als Autobahn- und Landstraßenszenarien. Dies deutet darauf
hin, dass letztere Szenarien schwieriger zu bewerten, und folglich auch schwerer vorher-
zusagen, sind. Zudem besteht ein inverser Zusammenhang zwischen Bewertung und
deren Zuverlässigkeit: Je mehr die Bewegung als kongruent bewertet wird, desto niedri-

ger ist die Zuverlässigkeit der Bewertung. Während Bewegungskongruenz grundsätzlich
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angestrebt wird, sind Bewertungen inkongruenter Bewegungen somit nützlicher für die
Entwicklung zuverlässiger Bewertungsmodelle.

Auf Basis der kontinuierlichen Bewertungsdaten aus den Experimenten werden
anschließend Modelle der Bewertungen in Abhängigkeit von objektiven Diskrepanzen
der Plattformbewegung (spezifische Kräfte und Rotationsraten) entwickelt. Diese
Bewertungsmodelle ermöglichen eine Transformation von objektiven Diskrepanzsi-
gnalen in subjektive Qualitätsprognosen, indem sie die vorhergesagte Bewertung eines
durchschnittlichen Teilnehmers liefern. Die Diskrepanzsignale hängen von der jewei-
ligen kinematischen Konfiguration ab und werden entsprechend der Konfiguration
abgeleitet. Die Analyse in dieser Dissertation zeigt, dass kontinuierliche Bewertungen in
Stadtszenarien durch eine tiefpassgefilterte Reaktion auf die objektiven Diskrepanzen
in lateralen und longitudinalen spezifischen Kräften modelliert werden können, wobei
Gierraten nur einen kleinen, situationsabhängigen Beitrag liefern. Die Bewertungsdaten
der Landstraße und Autobahnszenarien werden zur Verbesserung der Modellvalidität
verwendet. Obwohl die Gewichtung der Diskrepanzkanäle szenarienspezifisch variiert,
zeigen sich in allen drei Szenarientypen dieselben dominanten Bewegungskanäle, was
auf eine hohe Generalisierbarkeit und Validität des Modells szenarienübergreifend

hinweist.

Kontinuierliche Bewertungen sind zwar sehr nützlich für die Modellentwicklung,
aber weniger für direkte Vergleiche der MCA- und Simulatorqualität geeignet. Ver-
gleichende Bewertungen zwischen Konfigurationen lassen sich einfacher anhand von
Einzelwerten (Skalarwerten) durchführen als mit langen Zeitreihen kontinuierlicher
Bewertungen. Diese Dissertation untersucht daher auch die Vorhersage von Gesamt-
bewertungen (eine Bewertung für die gesamte Fahrt) sowie von manöverbasierten
Bewertungen (eine Bewertung pro Manöver). Die in dieser Arbeit beschriebenen Experi-
mente, in denen kontinuierliche, Gesamt- und Manöverbewertungen parallel erhoben
werden, zeigen, dass die am stärksten inkongruente Bewegung (gemessen über die
kontinuierliche Bewertung) stark mit der Gesamt- bzw. Manöverbewertung korreliert.
In Kombination mit dem kontinuierlichen Bewertungsmodell ermöglicht dies auch die
Vorhersage von Gesamt- und Manöverbewertungen aus objektiven Diskrepanzsignalen.
Parametrierungsprozesse können davon profitieren, indem stets der inkongruenteste
Moment einer Fahrt als Zielgröße für die Bewegungsoptimierung verwendet wird.

Die meisten in dieser Dissertation vorgestellten Erkenntnisse betreffen die Bewer-
tung und Vorhersage subjektiver Einschätzungen im Fahren mit offenem Regelkreis, wel-
ches jedoch nicht notwendigerweise das typische Fahren mit geschlossenem Regelkreis
vieler Simulatoranwendungen repräsentiert. Ein dediziertes Experiment in dieser Arbeit
zeigt jedoch, dass subjektive Bewertungen im Fahren mit offenem und geschlossenem
Regelkreis in urbanen Szenarien äquivalent sind. Dies bestätigt die Hypothese, dass kon-
tinuierliche Bewertungen auch für Fahrten mit geschlossenem Regelkreis repräsentativ
sein können. Kombiniert ermöglicht dies einen Ansatz, bei dem ein kontinuierliches Be-
wertungsmodell verwendet wird, um Gesamt- und Manöverbewertungen von Fahrten
mit geschlossenem Regelkreis vorherzusagen, basierend auf objektiven Diskrepanzsi-
gnalen. Dadurch werden bisher unerreichte Prognosen der potenziellen subjektiven Be-
wertungen in Simulatorversuchen möglich. Zudem kann eine Fahrt mit geschlossenem
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Regelkreis aufgrund individueller Fahrvariabilität nie exakt reproduziert werden. Da das
Fahren mit offenem Regelkreis das Abspielen zuvor aufgezeichneter Fahrten erlaubt, bie-
tet es erhebliche Vorteile hinsichtlich Reproduzierbarkeit und Steuerbarkeit der erlebten
Diskrepanzen, was Tests mit offenem Regelkreis besonders praktikabel zur Beschleuni-
gung zukünftiger Parametrierungen macht.

Ingenieurtechnische Anwendungen von Bewegungssteuerung in Fahrsimulatoren
können direkt von den vorgestellten Erkenntnissen aus dieser Dissertation profitieren.
Mit einem validierten Bewertungsmodell auf Basis zuverlässiger Daten können prä-
zise Vorhersagen über die potenzielle Bewegungsqualität gemacht werden. Dazu ist
auch eine Methode zur Bestimmung der potenziellen Bewegungssteuerungsqualität
erforderlich. Der abschließende Beitrag dieser Dissertation ist daher eine Methode
zur Schätzung der potenziellen Bewegungssteuerungsqualität, wobei die Vorhersage-
modelle subjektiver Bewertungen eine zentrale Rolle spielen. Diese Schätzung basiert
auf der Extrapolation von existierenden Diskrepanzsignalen zur vollen Ausnutzung
der Bewegungsräume verfügbarer Simulatoren. Für jede Kombination aus MCA und
Simulator kann, und sollte, eine potenzielle und totale Qualität vorhergesagt werden,
die das tatsächliche Bewegungspotenzial widerspiegelt. Auch wenn diese Methode
noch nicht zur direkten quantitativen Abwägung ausgearbeitet ist, zeigen die betrachte-
ten Anwendungsfälle, dass die Berücksichtigung sowohl der potenziellen als auch der
totalen Qualität die Wahl von MCA und Simulator wesentlich beeinflussen kann.

Zukünftige Forschung kann direkt von den Ergebnissen dieser Dissertation profitie-
ren. MCAs können gezielt auf die subjektive menschliche Wahrnehmung abgestimmt
werden, um ein verbessertes Bewegungserlebnis zu ermöglichen. So kann z.B. das linea-
re Bewertungsmodell direkt in das Optimierungsschema eines MCAs integriert werden,
um explizit auf subjektive Qualität zu optimieren. Alternativ können die Gewichtungen
der Bewegungskanäle so angepasst werden, dass sie den im Modell identifizierten Wich-
tigkeiten entsprechen. Schließlich kann das Wissen über Gesamt- und Manöverbewer-
tungen dazu verwendet werden, besonders inkongruente Punkte stärker zu bestrafen
bzw. zu optimieren, um die gesamte Bewegungsqualität zu verbessern. Diese Beiträge
können alle zu einem besseren subjektiven Erlebnis in Fahrsimulationsstudien führen.

Diese Dissertation bietet sowohl praktische Leitlinien als auch grundlegende Metho-
den zur Verbesserung der Bewegungssteuerung zukünftiger Fahrsimulationsversuche.
Durch die Einführung eines neuen Blickwinkels auf die Bewegungssteuerungsqualität
wird das lang bestehende und komplexe Problem der Bewegungssimulation besser ver-
standen. Neben ihrer direkten Relevanz für jede Art von Fahrsimulator sind die Erkennt-
nisse auch auf andere Forschungs- und Technikbereiche mit bewegungsbasierten Simu-
latoren übertragbar, wie z.B. Flug- oder Schiffssimulationen.
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1
Introduction

AUTOMOTIVE companies currently face several challenges. Global warming requires
a rapid change towards emission-free vehicles. The surge in automation leads to the
development of partially or fully autonomous vehicles. Strong urbanization, where it
is expected that 68% of the global population will live in urban areas by 2050 [United
Nations, 2018], will change the way in which vehicles are owned or shared, controlled,
and communicate. As a result, fundamental changes have to be made in vehicle design,
requiring rapid systematic testing abilities for car manufacturers.

1.1 The Need for Driving Simulation

Driving simulation is an essential tool that provides the ability to contribute towards
achieving all of these changes. Here, dedicated hardware is used to create a virtual envi-
ronment that resembles a real-life driving situation. Through simulator experiments, re-
search and development can be performed simulation-based, rather than through real-
life testing, providing significant benefits in terms of cost, safety, and practicality. Even
early prototype or hypothetical vehicles can be tested in any (virtual) situation [Freeman
et al., 1995], without being restricted to dedicated test tracks. Its high controllability com-
pared to real-life vehicle testing furthermore allows for specific conditions to be repeated
multiple times in exactly the same way [de Winter et al., 2012].

In the real world, drivers mainly rely on a combination of visual [Sivak, 1996], au-
ditory [Zhao et al., 2024], and motion cues [Markkula et al., 2019] to operate the vehicle.
Whereas some simulators only reproduce and provide the visual and auditory cues to the
driver, others have the additional ability to generate motion cues by physically moving
the simulator cabin through inertial space. These are referred to as motion-base simula-
tors. This inertial motion provides the driver with the vestibular [Markkula et al., 2019],
somatosensory [Bruschetta et al., 2021], and proprioceptive [Hlavačka et al., 1992] cues
of the simulation. In most cases, all three translational motions (x, y, and z), as well as the
three rotations (roll, pitch, and yaw), can be manipulated, resulting in six motion axes.

Due to the constrained excitation of the motion systems, a simulator only has a lim-
ited workspace in which it can move. This workspace is typically smaller than is required
to fully reproduce the motion of a real vehicle [Ellensohn, 2020]. Therefore, even with
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the largest motion-base simulators, the full vehicle motion can often not be fully repro-
duced. Especially the motion sensations one would experience when performing large
excitations, such as sustained cornering, are difficult to fully reproduce, as the simulator
can only accelerate for a limited period of time inside its workspace. This is problematic,
as inaccurate motion reproduction can decrease the realism of the simulation [Cleij et
al., 2018], affect the task performance and control behavior [Romano et al., 2019], and
lead to participants getting sick [Himmels et al., 2022b], which all negatively affect the
outcomes of experiments and prototype tests. An accurate motion reproduction is thus
paramount for a successful driving simulator experiment.

1.2 Driving Simulation Use-cases

The contents of an experiment are described by its use-case. This includes the (type of)
simulated vehicle, the scenario (e.g., urban, rural, or highway scenarios [Chanmas et al.,
2023]), and the goal of the experiment, including the task participants have to perform.
Classical examples of use-cases include the evaluation of driving dynamics of new vehi-
cles [Brems et al., 2015] and tire testing [Baldoni et al., 2011], as well as the development
and use of Human-Machine Interaction (HMI) systems (e.g., navigation and entertain-
ment systems [Jeong et al., 2013]). In an attempt to move much of the current real-life
testing to the simulated world, the number of use-cases to be handled in simulation has
further increased in recent years [Bruck et al., 2021]. Specifically for the recent develop-
ments in automated driving and Advanced Driver Assistance System (ADAS) technolo-
gies, their potential effect on the driver’s behavior is a prime focus in studies [Rossi et al.,
2020]. This includes the effect of drivers’ fatigue [Schmidt et al., 2016; Xu et al., 2018],
distraction levels [Ezzati Amini et al., 2023; Wijayaratna et al., 2019], and shared control
between the vehicle and its user [Terken and Pfleging, 2020]. Furthermore, driving simu-
lators are widely used in comparative comfort evaluations, such as to evaluate different
driving strategies for electric vehicles [Xue et al., 2024].

1.3 Motion Systems

Given the large variety of driving simulation use-cases, the required motion can be differ-
ent as well. For example, a use-case investigating braking behavior of drivers will require
the ability to reproduce strong longitudinal motion. In contrast, urban environments
involving many tight corners require a combination of lateral and yaw motion [Ellen-
sohn, 2020]. It can therefore depend on the use-case which motion-base simulator is
best suited, and whether a motion-base is needed in the first place, as specific qualities
of a given simulator might work well in combination with a certain use-case. If a large
variety of use-cases is to be tested, a range of simulators might be required, such as at the
Fahrsimulationszentrum (FSZ) (English: Driving Simulation Center) at BMW Group, see
Figure 1.1. It operates a total of ten motion-base simulators and several static ones, of
which a selection is shown in Figure 1.2. In general, prominent differences can be found
in the dimensions and kinematic configuration of motion-base simulators [Mohajer et
al., 2015], and thus in their capacity to reproduce motion, as is also visible in Figure 1.2.
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Figure 1.1: BMW’s driving simulation center in Munich, Germany. Image courtesy: BMW Group [2018].

1.3.1 Hexapod

The most common simulator motion system is the hexapod, a six-legged configuration
that is able to drive six Degrees of Freedom (DoFs). The hexapod exists since the 1960s and
is often used in flight simulation [Huang et al., 2016b]. It is otherwise known as a Stewart

[Stewart, 1965] or Stewart-Gough [Gough, 1962] platform, named after its first inventors.
An example for flight simulation is TU Delft’s SIMONA Research Simulator [Stroosma et
al., 2003] and, for driving simulation, BMW’s Vega Vector (Figure 1.2c). The six DoFs of
the hexapod allow the manipulation of the three translational and three rotational axes,
thus enabling it to move and generate motion similar to a real vehicle’s motion, even with
a relatively small system. The system is controlled by its six actuators that act in parallel
configuration to each other [Liu et al., 1993], i.e., they operate together to move a single
platform, resulting in an inherently rigid and simple design [Huang et al., 2016a].

The hexapod, however, also has several disadvantages. First, the six DoFs of the sim-
ulator are coupled, such that moving the simulator in one DoF reduces the available
workspace of the other DoFs. This is problematic especially in use-cases that require si-
multaneous motion in multiple axes. Tight cornering in urban simulations, for example,
requires relatively high excitations in both the lateral and the yaw direction [Ellensohn,
2020]. Second, hexapods inherently have a limited motion space, which means that
sustained accelerations cannot be reproduced. A common solution is tilt-coordination,
where sustained motion is generated through platform tilt [Conrad et al., 1973; Stratu-
lat et al., 2011]. Through the roll angle ϕ and pitch angle θ, part of the gravity vector is
perceived by humans as translational motion, as long as the rotational motion due to
the tilting remains below the human perceptual threshold. In flight simulation, a com-
bination of translational and rotational hexapod motion can be used to reproduce the
relatively slow translational motion of an aircraft. Driving, however, induces more dy-
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(a) Green Stage (static). (b) Ruby Space (tripod, hexapod).

(c) Vega Vector (hexapod). (d) Sirius Vector (yaw-drive, hexapod).

(e) Diamond Space (x- or y-drive,
hexapod).

(f) Sapphire Space (xy-drive, hexapod,
yaw-drive).

Figure 1.2: Four simulators of different kinematic configurations operated as part of the driving simulation
center (FSZ). Image courtesy: BMW Group.
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namic and asymmetric motion [Ellensohn, 2020], which makes the application of tilt-
coordination less suitable. This results in a larger dependence on simulator translational
motion, which the hexapod can only produce to a limited extent.

1.3.2 xy-drive

To increase the translational workspace, the hexapod can be extended with additional
motion subsystems. An example is adding (a) linear actuator(s) below the hexapod, ex-
tending the translational workspace. Examples are BMW’s Diamond Space (Figure 1.2e),
IKA’s Hochdynamischer Fahrsimulator [Wagener et al., 2023], and the Daimler-Benz
Driving Simulator [Cleij et al., 2019]. Some simulators have a two-DoF linear actuator
system, i.e., an xy-drive, which allows the cabin to move horizontally in both the x-
and y-direction, resulting in a total of eight DoFs. Examples are the FKFS’s Stuttgarter
Fahrsimulator [Baumann et al., 2014], Renault’s ULTIMATE [Fang et al., 2017], and VTI’s
Sim IV [Jansson et al., 2014]. The benefit of an xy-drive is that it can greatly increase the
translational workspace of the simulator. For example, the Diamond Space can move
over a rail of nearly twenty meters. A downside lies in the required physical space and
high cost.

1.3.3 Yaw-drive

Another system used to extend the motion workspace is the yaw-drive, a system which
can rotate the simulator to generate additional yaw motion. This motion is required to
reproduce the turning motion of the car. An inaccurate yaw motion reproduction nega-
tively affects the control behavior [Lakerveld et al., 2016] and can increase the subjective
realism [Kusachov et al., 2015], although the latter is disputed [Hogema et al., 2012].

Because a yaw-drive is a separate motion subsystem and uncoupled from the other
hexapod, it can typically move close to the full 360◦, which is valuable for, e.g., sustained
corners and roundabouts. Yaw drives can be placed on top of the hexapod structure
[Fang et al., 2017] or below, such as BMW’s Sirius Vector (Figure 1.2d). Combining an
xy-drive, hexapod, and a yaw-drive, yields a nine-DoF system. Examples are BMW’s
Sapphire Space (Figure 1.2f), Renault’s ROADS [Fang et al., 2022], and Toyota’s Driving
Simulator [Nguyen Van and Ito, 2016].

1.4 Motion Cueing Algorithms

Regardless of the simulator’s dimensions and configuration, a one-to-one inertial mo-
tion reproduction is often impossible due to workspace restrictions [Ellensohn, 2020].
Therefore, a Motion Cueing Algorithm (MCA), which converts the vehicle motion into
motion that fits in the workspace of the simulator, is required. An MCA takes the output
of a simulated vehicle model, typically specific forces and rotational rates, and converts
these to the commanded simulator platform movement. The challenge of choosing the
right motion cueing is widely applicable, also if only one simulator system is available.
Several MCAs exist, each with their own (dis)advantages.
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1.4.1 Classical Washout Algorithm

The Classical Washout Algorithm (CWA) is an MCA that uses linear scaling and filters
between the vehicle and commanded simulator movement [Conrad et al., 1973; Schmidt
and Conrad, 1970] and is therefore a “filter-based algorithm”. A schematic representation
of a CWA for a nine-DoF simulator is shown in Figure 1.3. It illustrates the various typical
steps from the simulated vehicle motion (specific forces f and rotational rates ω) to the
hexapod position ph , xy-drive position pd , hexapod rotation angles βh , and the yaw-
drive rotation angle ψd .
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Figure 1.3: Block diagram of a Classical Washout Algorithm (CWA) a nine-Degree of Freedom (DoF) simulator.
The top grey bar represents the xy-drive channel, the bottom grey bar the yaw-drive channel.

First, the magnitude of the motion is reduced by scaling and limiting. Scaling is a lin-
ear operation through a gain, such that all amplitudes are decreased by the same factor.
In limiting, values above a selected threshold are attenuated [Reid and Nahon, 1985]. Sec-
ond, the motion is split into low- and high-pass components, for both the specific forces
and rotational rates, using the body-frame filters Hl p,1(s) and Hhp,1(s), respectively. Typ-
ically, only the high-frequency components are reproduced by the translational and rota-
tional channels of the simulator. The sustained low-frequency components are then re-
produced using tilt-coordination [Conrad et al., 1973; Stratulat et al., 2011]. In case an xy-
drive is present, an additional channel with medium-frequency components (through a
band-pass filter) can be used [Fang et al., 2017]. Similarly, a band-pass filter Hbp,1(s) can
be used to determine the yaw-drive motion. The channels for both motion subsystems
are indicated by the grey bars in Figure 1.3.
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Third, the motion of the six channels is high-pass filtered in the inertial frame, such
that the simulator is always brought back to its neutral state (‘washout’), preferably with-
out the human subject noticing. This is required as the simulator might move close to
a workspace limit when the next maneuver commences, which might result in reaching
the limits. The washout is indicated in Figure 1.3 by the filters Hhp,2(s) (for translational
motion) and Hhp,1(s) (for rotational motion). To washout the motion under a constant
acceleration, the former washout component requires a second-order filter [Reid and
Nahon, 1985]. To ensure that the simulator is brought back to its neutral state, also when
the cabin is rotated, the filtering must be performed in the simulator’s inertial frame.
Therefore, the motion is first transformed using the matrices TI H

B (hexapod translational
motion), TI

B (xy-drive), and R−1 (rotational motion). The content of these matrices de-
pend on the kinematic configuration of the simulator, whereas its values depend on the
simulator’s attitude, as will be discussed in depth in Chapter 3.

1.4.1.1 Strengths

The CWA remains a popular choice with its relatively simple structure [Asadi et al., 2015],
ensuring a high degree of transparency during the tuning process. The simulation of the
linear transfer functions and lack of optimization furthermore gives the benefit of a low
computational load and high stability [Qazani et al., 2024]. Finally, as the CWA consists
of (linear) transfer functions, it is deterministic, such that a given input always yields the
same output [Jamson, 2010]. This adds to the transparency of the algorithm and makes
it easier for drivers to adapt to the motion.

1.4.1.2 Drawbacks

The CWA also has several inherent weaknesses, however. Despite its transparency, tun-
ing the CWA can be a labor-intensive process, due to a variety of factors. First, the CWA
has a large number of parameters that need to be tuned. This scales with the number
of DoFs, as each DoF requires several parameters, such as the scaling factors and cut-off
frequencies. For example, if each DoF has a gain, a split frequency, and two washout
parameters, a total of 36 parameters need to be tuned for a nine-DoF system, compared
to 24 for a hexapod. Another issue is that the tuning procedure is a largely heuristic pro-
cedure, of which the outputs depend on the tuning procedure, such that there is no guar-
anteed consistency in stimuli between virtual vehicle and simulator motion [Beghi et al.,
2012]. In practice, this also implies that the tuning often requires subjective testing and
must therefore be performed on-site by experts, a time-intensive and costly procedure.

Apart from the tuning procedure, other inherent drawbacks exist, of which a com-
prehensive overview can be found in Beghi et al. [2012]. Inherent for the CWA is the
lack of state feedback, as the simulator state is not compared to the constraints of the
platform. As a result, hard workspace constraints cannot be accounted for, but must
be accounted for in the tuning process. As the algorithm uses linear filters, the parame-
ters of the washout filters must be tuned considering the worst-case scenario, such that
the simulator just remains in its workspace for even the most extreme maneuver [Am-
inzadeh et al., 2012]. Often this leads to conservatively-tuned washout parameters for
regular maneuvers, decreasing the motion magnitude over the whole drive. Finally, as
low-pass and high-pass filters produce lag and lead, respectively, there is an inherent
phase shift of the simulator motion with respect to the vehicle reference motion. Espe-
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cially when both high- and low-frequency motions are present in a maneuver (e.g., a
roundabout), this can create artifacts in the motion. These cannot be corrected for, as
the CWA only consists of linear filters, and can thus not consider future states.

1.4.2 Variations on the CWA

1.4.2.1 Adaptive Washout Algorithm

The Adaptive Washout Algorithm (AWA) [Ariel and Sivan, 1984; Parrish et al., 1975] aims
to solve two drawbacks of the CWA: (1) the lack of simulator state feedback, and (2) worst-
case tuning. In the AWA, the parameters of the filters can be changed in real-time dur-
ing the simulation. The MCA still relies on filters that washout the motion towards the
neutral state of the simulator, but it can change its filter parameters depending on the
workspace position of the simulator. Its cost function is typically minimized for (i) the
current simulator motion state, i.e., excitations from the simulator neutral position, (ii)
errors between the vehicle and simulation, and (iii) differences between adaptive param-
eters and their nominal values.

AWA potentially increases the quality of the motion [Aykent et al., 2011] compared to
CWA and has been successfully implemented in driving simulation [Aykent et al., 2011;
Nehaoua et al., 2005]. The relative weights between these components might be more
intuitive to tune [Garrett and Best, 2010], but also add more parameters to be tuned.
Another drawback is that AWAs typically suffer from stability issues [Asadi et al., 2019].

1.4.2.2 Optimal Washout Algorithm

To mitigate the problem of complex and time-consuming tuning of CWA and AWA in a
heuristic, mostly trial and error approach, the Optimal Washout Algorithm (OWA) has
been developed [Sivan et al., 1982; Telban et al., 2005]. In this method, the MCA control-
ling the simulator is typically still a CWA. However, the filter parameters (i.e., gains and
cut-off frequencies) are chosen not through a manual tuning process, but through an
optimization problem beforehand, i.e., offline, using a cost function, that incorporates
the human perception through a vestibular model. The main benefit of an OWA is that,
through the inclusion of a vestibular model, a better consistency between the stimuli
can be achieved. Furthermore, its tuning process can arguably be easier than the tun-
ing process of a CWA, as only the balance between the motion cue reproduction and the
workspace adherence must be selected.

Its structure also gives two inherent disadvantages, however. First, as its function-
ality relies on a model of the vestibular system, its advantage over CWA is limited due
to the lack of proper vestibular models with visual integration developed specifically for
driving simulation [Jamson, 2010]. Second, in the CWA, a worst-case tuning must still
be employed [Aminzadeh et al., 2012]. An attempt at solving this issue employs adaptive
optimal control [Naseri and Grant, 2005; Telban et al., 2005] in the OWA, which allows
the parameters of the filters to be varied throughout the drive. However, as mentioned
by Aminzadeh et al. [2012], this algorithm still suffers from the same disadvantages as
the AWA, such as a high computational load and stability issues.
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1.4.3 Model-Predictive Control

The previously discussed drawbacks of filter-based cueing algorithms have resulted in a
push towards exploring other MCA solutions. The MCA architecture that has received
the most focus in driving simulation is Model-Predictive Control (MPC) [Dagdelen et al.,
2004; Dagdelen et al., 2009]. MPC works by minimizing a cost function at each time step
of the simulation in real-time. Differences between reference and simulator motion are
minimized with the goal of providing accurate motion. To explicitly include future states,
a model of the simulator’s motion system is used to find the sequence of inputs that leads
to the best control tracking over a given prediction horizon, typically with the smallest in-
puts required. Excursions of the simulator state with respect to its equilibrium condition
can also be penalized, ensuring that the simulator is brought back to its neutral position,
similar to the washout characteristic in filter-based algorithms. This term is also often
added to ensure convexity of the cost function [Katliar, 2020]. Furthermore, MPC can
incorporate explicit platform constraints in its optimization, which guarantees that the
hardware limits are not reached during the simulation [Beghi et al., 2012], even on the
actuator level [Ellensohn et al., 2019b; Garrett and Best, 2013; Khusro et al., 2020]. As
hard constraints can lead to infeasible solutions [Rengifo et al., 2019], applying soft con-
straints [Fang et al., 2017], which penalize nearing the workspace limits by increasing the
cost function value, have become the standard.
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Figure 1.4: The optimization process of a basic Model-Predictive Control (MPC) algorithm, here shown for the
longitudinal specific force. At each time step k in the simulation, an optimization with a limited prediction
horizon is solved (smaller segments at the top).

The working principle of the MPC’s primary function, the reference tracking, is
shown in Figure 1.4, where the vehicle is currently at point k. The reference tracking
term of the MPC is optimized over several points J in the future, up to the prediction

horizon (here: 2 steps). Thus, MPC calculates the sequence of future inputs that brings
the MPC closest to the reference over the prediction horizon. However, the eventual
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future states of the simulator cannot be known exactly beforehand, as they depend on
the inputs of the driver. Thus, by the time the simulation has reached point k +1, the
reference signal can have changed, such that the optimization output of point k is not
necessarily accurate anymore. For this reason, the optimization procedure is performed
again at point k +1, of which the output of that reference tracking optimization is now
taken. As the actual future states can thus deviate from the predicted future states, only
the first element of the sequence of inputs (i.e., the next time steps) is effectively used at
a given time-step.

1.4.3.1 Strengths

Unique for MPC is that it can incorporate future states in the cost function. The further
the MPC looks ahead and the better the quality of the prediction, the better it can poten-
tially anticipate vehicle motion (of upcoming maneuvers) and system constraints (such
as approaching the simulator workspace limits). Larger prediction horizons generally
lead to an improvement in motion cueing quality [Katliar et al., 2015], but also increase
the complexity of the system, hampering the real-time performance.

Because of its optimization-based nature, it also attempts to find the optimal solu-
tion for that given simulator state without explicit manual tuning beforehand. Although
the components of the cost function can be weighted relatively to each other, the tuning
process is intuitive and not necessary to ensure good motion cueing quality. Further-
more, MPC can use the full motion workspace in every separate maneuver, in contrast
with the worse-case tuning of the CWA, resulting in overall better motion cueing than is
possible with filter-based algorithms [Cleij et al., 2019].

1.4.3.2 Drawbacks

Even though MPC generally provides a higher motion cueing quality than filter-based
algorithms, the former have not fully replaced the latter. Arguably, there are three main
issues with MPC. First, the real-time requirement puts stringent requirements on the
calculation time, as the optimization procedure must be repeated at each time step. It
is common practice to have an MCA run at 10 ms at the slowest. This often restricts the
length of the prediction horizon and the complexity of the system [Munir et al., 2017].
Second, both the complexity and the calculation time also scale with the DoFs, which
makes the algorithm harder to use for more advanced driving simulators. Third, the
algorithm has a lower stability than a CWA due to its optimization nature, such that in-
feasibilities can occur and need to be actively avoided [Fang and Kemeny, 2012].

1.5 Selecting the Motion Cueing

1.5.1 Motion Cueing Quality

To make well-informed decisions in selecting the best possible simulator and MCA for
each use-case, being able to better predict and systematically compare how available
options perform relative to each other is paramount. An important part of expressing
the quality of the motion cueing is the quality of the reproduced motion itself, some-
times also referred to as fidelity [Pool, 2012]. Mismatches between the reference vehicle
and the simulator can reduce the quality/fidelity of the simulation. Since motion mis-
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matches are often inevitable in driving simulations, an important question is which of
the mismatches are the most crucial to avoid.

In behavioral fidelity/quality, the interest lies in replicating the behavior of the driver.
Mainly in the aviation domain, where training for real-life situations is the main goal,
the focus has been on behavioral fidelity [Pool, 2012]. Here, the most important goal of a
simulation is to have pilots behave in the same or similar manner as they would do in its
real aircraft equivalent. This even allows or promotes discrepancies between the aircraft
and simulator, as long as the induced behavior is consistent.

In driving simulation, the goal is often to make the simulation feel as realistic as pos-
sible. In this case, achieving perceptual fidelity/quality is the main goal. This increases
the sense of presence [Himmels et al., 2022a] and reduces simulator sickness [Himmels
et al., 2022b], which both have a positive effect on the outcome of experiments. Thus,
the importance lies not in the behavior of the driver, but in the sensory perception of the
motion. Smaller differences mean a higher fidelity, and vice versa. Perceptual fidelity
can be evaluated through both subjective and objective methods [Casas et al., 2015].

1.5.2 Quality, Cost, and Tuning Metrics

To save costs and reduce unnecessary complexity, each experiment is ideally performed
on the smallest and cheapest simulator that still meets the use-case’s requirements. Only
use-cases that require large-excitation motion in all axes (e.g., urban driving) might jus-
tify the use of the largest simulators or a complex MCA, even if these options induce
higher costs. Depending on the use-case, low-quality motion could be perfectly accept-
able and the significant time and money investment in providing high-quality motion
would not be preferred. It thus seems a natural consideration that apart from the mo-
tion cueing quality, other metrics affect the simulator and MCA selection process as well.
Nahon and Reid [1990] were the first to point out that several other metrics regarding the
tuning complexity can impact the choice of a simulator and MCA as well.

The reality is that the objective analysis and evaluation of the combination of use-
cases, simulators, and MCAs is commonly exclusively presented in terms of the quality of
the motion [Biemelt et al., 2021; Cleij et al., 2019; Lamprecht et al., 2019]. From the three
categories of metrics (quality, cost, and tuning) that potentially describe the “total” qual-
ity, it is furthermore an open question which metrics would be important to consider.
This selection of metrics might furthermore vary between experiments, depending in its
goal and the resources available. Identifying which of such metrics matter for each ex-
periment is thus an important task, and an experiment’s total quality should hence drive
the selection of the MCA and simulator. The first research goal to be addressed in this
dissertation is therefore stated as:

Research Goal 1

To develop a framework to evaluate the total motion cueing quality of an experi-
ment, explicitly including its relevant quality, cost, and tuning metrics.
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1.5.3 Subjective Motion Cueing Quality

To express the quality of the motion reproduction itself, subjective evaluations are the
standard. Here, the motion cueing quality is evaluated by a test driver, who then gives
their subjective opinion and/or a rating. When a test driver perceives a mismatch be-
tween the perceived and the motion they would expect to feel from the real vehicle, the
motion is known as incongruent [Cleij et al., 2018]. As perceptual fidelity describes that
the coherence of the stimulus (the ground truth) matters most, subjective ratings aim
to describe this ground truth, for example by using a rating scale or survey containing
questions on the subjective opinion of the test driver. This implies that the obtained
subjective evaluations are merely a representation of this ground truth, and can be biased
through several effects, such as through interaction with the experiment leader, known
as the Pygmalion effect [Rosenthal and Jacobson, 1968].

There are several methods to acquire such subjective ratings. One method is to ask
the driver several questions regarding different aspects (cornering, accelerating, braking,
etc.) of the motion [Valente Pais et al., 2009; Zhao et al., 2024]. It is also possible to let
participants rate all aspects of the motion using a single rating, for example, directly
after the drive [Biemelt et al., 2021; Rengifo et al., 2021]. The test drivers evaluate the
motion of the drive after having experienced the drive, such that the rating is known as
post-hoc. Although easy to implement, as this method does not interfere with the driving
task(s), the information obtained from a single post-hoc rating is limited: for instance,
the effects of particular maneuvers and/or aspects cannot be derived. Alternatively, it
is possible to divide a drive into smaller segments that are driven and rated separately
[Cleij et al., 2018], or by extracting ratings for each maneuver [Ellensohn et al., 2020].

By far the most detail-rich extraction method are continuous ratings [Cleij et al.,
2018], in which drivers continuously evaluate the motion throughout the whole drive
using a rating interface. Due to the high workload of this method, it is only possible in
open-loop driving, i.e., where test drivers are driven around passively rather than driving
themselves. Due to its relative novelty, however, much is still unknown about the value
of continuous ratings. For example, although the ratings are obtained continuously, it
is not necessarily the case that the obtained ratings accurately represent the continuous
subjective rating at each point in time. Rather, it could be the case that participants ef-
fectively only rate specific maneuvers, while not actively rating other segments. Another
challenge lies in the fact that the continuous rating method can only be used in open-
loop driving. This might alter the perception of motion [Nesti et al., 2016; Valente Pais
et al., 2012] compared to closed-loop driving, such that it is currently unknown whether
the obtained ratings are also representative for closed-loop driving experiments.

1.5.4 Objective Motion Cueing Quality

In the selection and tuning of simulators and MCAs, subjective ratings are generally
an expensive method, as they require extensive simulator testing with a large number
of participants. Especially when a larger number of configurations is at hand (simula-
tors and/or MCA configurations), it rapidly becomes impractical to test each possible
configuration. Even subjectively testing a selection of these configurations is generally
considered time-inefficient and costly. Ideally, the human as the evaluator can be re-
placed by objective measures, mathematical metrics of the motion cueing quality based
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Figure 1.5: Absolute difference, cross-correlation, and time delay objective metrics between the vehicle and
simulator for a synthetic signal. The shaded area represents the absolute difference between the signals.

on the difference between the vehicle and simulator motion. This enables testing and
development without on-site testing using simulator and human subjects, resulting in a
faster and a lower cost tuning and development [Fischer and Werneke, 2008; Qaisi and
Trächtler, 2012] and allow for a more systematic evaluation.

Examples of objective measures are absolute difference, cross-correlation, and time
delay metrics [Grottoli et al., 2019], as shown in Figure 1.5. Note that objective measures
do not necessarily imply the use of objective data, such as in behavioral fidelity analysis
of control behavior [Pool, 2012]. For objective measures, several qualities exist [Casas-
Yrurzum et al., 2020], of which the key challenge is validity: finding objective measures
that are valid for describing quality that can be validated through subjective measures.

Objective metrics are also extremely useful for the development of new MCAs that
are in early development stages and cannot be tested at the simulator yet. Ideally, the
objective measures can be used in an (semi-)automatic tuning process, where the val-
ues of MCA design parameters are selected by optimizing the output of the objective
metric(s). For optimization-based algorithms, such as MPC, such objective measures
are also directly used in the cost function [Cleij et al., 2020].

1.5.5 Predicting Subjective Motion Cueing Quality

Objective measures of absolute difference have been successfully used to predict contin-
uous subjective ratings [Cleij et al., 2018]. Such continuous rating models represent one
of the few options for bridging the goal between the objective and subjective measures.
If based on valid and reliable rating measurements, such models might combine the best
of both worlds by allowing for making unparalleled predictive judgments on the motion
cueing quality without the need for expensive on-site simulator testing.

Although the models of Cleij et al. [2018] might be of direct use, no predictive mod-
els for realistic driving simulation use-cases (e.g., urban, rural, and highway scenarios)
have been developed so far. The assumption on the equivalence between open-loop and
closed-loop driving also remains untested. Furthermore, questions regarding continu-
ous rating models remain regarding their systematic value, as it is currently unknown
whether such models accurately predict ratings between experiments. The second re-
search goal of this dissertation is therefore stated as:
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Research Goal 2

To objectively and systematically predict subjective motion incongruence ratings
of closed-loop driving simulator experiments in urban, rural, and highway driv-
ing scenarios.

1.5.6 Motion Cueing Method Selection

Ultimately, the goal for any driving simulation center is to provide the best-suited driv-
ing simulation experience among all experiments. Arguably, the best possible motion
cueing is only obtained when the best combination MCA and simulator (i.e., the “mo-
tion cueing method”) is identified and selected. The inter-dependency of the use-case,
simulator, and MCA opens up a multi-dimensional selection problem, as, for example,
certain characteristics of a simulator might only be relevant for certain use-cases or in
combination with certain MCAs.

Another problem pointed out by Nahon and Reid [1990] is that in the early stages of
the design process of experiments the justification for a specific MCA requires exact in-
formation on how that MCA will perform. How it will perform, however, is unknown, as
the tuning will only be performed if the MCA is selected. In other words, the justification
for tuning an MCA is given by the information on the tuned MCA, leading to a causality
problem. Similarly, exact information on the given use-case, such as driving data to eval-
uate the motion cueing quality, may not even be available in the early selection stages.
Therefore, an estimate of the potential motion cueing quality must be made. Such a
multi-dimensional selection process currently does not exist in literature. Therefore, the
third research goal can be stated as:

Research Goal 3

To develop a methodology to select the potentially best-suited motion cueing
method (simulator and MCA) of a driving simulator experiment to improve its
motion cueing.

1.6 Overall Research Goal and Outline

Combining the presented research goals, the overall research goal of this dissertation is:

Overall Research Goal

To develop a validated method to objectively assess and improve the total poten-

tial quality of motion cueing for closed-loop driving simulator experiments.

The dissertation is structured into three parts, see Figure 1.6. Each part aims to ad-
dress one of the three research goals. The main findings and implications of each chapter
and part are summarized and discussed in Chapter 10. Together, they aim to fulfill the
Overall Research Goal of this dissertation.
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Part I - Fundamentals of Motion Cueing Quality

This part aims to identify currently existing methods and the state-of-the-art of quanti-
fying motion cueing quality and to extend the concept of motion cueing quality through
operational metrics.

Chapter 2 introduces the concepts of quality, cost, and tuning metrics that can affect,
and should affect, the selection of a motion cueing method. To identify which metrics
are of importance for driving simulator experiments, it describes the results of a survey,
in which four stakeholder groups (experimenters, motion cueing engineers, participants,
and operators) were interviewed on metrics important to them in the preparation for a
driving simulator experiment.

Chapter 3 derives the kinematic relations of frequently-used motion system architec-
tures and evaluates the importance of accounting for such differences. The results will
be shown to be highly dependent on the motion system configuration and thus need to
be implemented correctly to evaluate and predict the quality of the motion. Results from
this chapter form the baseline for all later chapters involving simulator experiments.

Part II - Predicting Motion Cueing Quality

This part addresses the second research goal, by developing rating models to predict the
subjective ratings of motion cueing quality based on objective motion mismatches.

Chapter 4 describes an open-loop driving simulator experiment in a realistic urban
scenario, in which participants evaluated the quality of the motion using the continuous
rating method. Subsequently, a model is developed for the prediction of the measured
subjective ratings. This chapter, from a methodological perspective, forms the basis of
the other four chapters in Part II.

Chapter 5 then applies the urban model of Chapter 4 to rating data gathered in a
highway experiment, with an otherwise identical experiment set-up. The effect on the
ratings between the scenarios and necessary adaptations to be made in the predictive
model are investigated. To complete the triangle of common scenarios, Chapter 6 uses
the continuous rating data of three rating experiments in a rural scenario from literature.

The last two chapters of Part II return to the urban scenario. Chapter 7 investigates
the equivalence of ratings in closed- and open-loop driving by means of a dedicated
experiment. It is furthermore investigated whether the developed rating models are ap-
plicable for closed-loop driving simulator experiments, and not only for open-loop set-
tings. Lastly, Chapter 8 investigates how the findings regarding motion incongruences
can be extended towards simulator sickness under variations of axis and error type ef-
fects. Based on these results, further improvements to the rating model are proposed.

Part III - Improving Motion Cueing Quality

This part addresses the third research goal, by developing a methodology that evaluates
the total quality of various available motion cueing methods.

Chapter 9 contains an analysis of two real driving simulator use-cases. An analysis is
made of the relevant quality and operation metrics of these use-cases, and a prediction
of the potential motion cueing quality is made. Together, these form the basis of a trade-
off to select the best-suited motion cueing method for both use-cases.
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Appendices

This dissertation includes four appendices which present supplementary material. Ap-

pendix A contains the survey that was described in Chapter 2. Appendix B contains
the written briefing given to the participants before the experiment phase of Chapter 4,
which formed the basis of the briefings given in the other experiments described in this
dissertation. Appendix C describes a continuous rating experiment performed on a race
track scenario. Due to technical difficulties the experiment had only a limited sample
size and the data are thus not used in answering the dissertation’s research goals. How-
ever, as the experiment contained both closed- and open-loop driving, the experiences
gained formed the foundations of the explicit closed- and open-loop driving rating ex-
periment of Chapter 7. Finally, Appendix D shows all individual ratings given by the
participants in all experiments described in this dissertation. These ratings may provide
additional insight to the reader how individual rating strategies differ.

1.7 Scope

Driving simulator experiments become increasingly more complex, operating at the in-
terface between understanding the human operator on one side, and control theory on
the other. For this reason, several choices were made to set the scope of this dissertation.

First, the trade-off methodology presented in the dissertation always contains a sin-
gle experiment. Aspects regarding the availability of the various motion systems are also
not considered. When multiple experiments are to be distributed among several motion
systems, a logistical distribution of the experiments would be required. This, however, is
not considered in this dissertation, to limit the scope of the already complex problem.

Second, it is assumed that differences in the perceived motion only result from dif-
ferences in the reproduction of the motion cueing itself. The proposed findings and
solutions are thus assumed to be independent of the simulation architecture (e.g., sim-
ulator and mock-up). Therefore, also only simulators with a high physical fidelity are
considered, i.e., with full mock-ups of the vehicle, providing full 360◦ view to the driver.
Differences arising due to the type of visual system (e.g., the monitor displays of the
“Stage” simulators, the LED displays of the “Vector” simulators, and projector systems of
the “Space” simulators, see Figure 1.2) are not considered in the evaluation. The meth-
ods also do not explicitly consider interactions between visual and inertial motion per-
ception, e.g., through visual-vestibular integration [Markkula et al., 2019], to reduce the
complexity of the research problem.

A third scope limitation lies in the reproduction of the inertial motion itself. Many
modern simulators provide the ability of simulating tire- or road-induced vibrations
(such as by using Curved Regular Grid (CRG) technologies) [Romano et al., 2019]. These
can either be provided by the motion system directly, or through dedicated “shaker sys-
tems” in the vehicle mock-up. CRG technologies often require road surface scans and
add significantly to the complexity of the simulation, such that they are not (yet) applied
as a standard in driving simulations. In this dissertation, road rumble is therefore not
considered, in an attempt to isolate the effect of inertial motion reproduction as much
as possible. For this reason, the road rumble was turned off in all experiments. For con-
siderations and recommendations on the effect of including road rumble systems, the
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reader is referred to the work of Parduzi [2021].
Lastly, to increase the generalizability, the dissertation is limited to findings that con-

cern the “average” driver. Given that all participants of the experiments are employees
of BMW Group, differences in the degree of familiarity with vehicles may arise. Although
the experiment described in Appendix C specifically only considered “expert drivers”, the
experiments in the main chapters of this dissertation did not have a pre-selection of par-
ticipants based on vehicle familiarity, experience, or driving skill, and only estimations
for the average driver are considered.

1.8 Guidelines for the Reader

The chapters of this dissertation are written as separate papers, in most cases submitted
or published as either journal or conference papers. For published papers, it was at-
tempted to remain as close as possible to the original publications, as these works have
been peer-reviewed. A description of the publication status is given on the first page of
each chapter, together with a summary of the most important findings of that chapter. In
case two publications were merged to form one chapter, both publications are indicated
(see e.g., Chapter 4). As the methodology of many papers was similar, some information
might also repeat itself in various chapters. It was attempted, while writing the publica-
tions, to make the nomenclature as consistent as possible between the chapters.
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Key findings

• In a trade-off between various MCAs and motion systems for a driving simulator
experiment, a fairer comparison can be made if an estimation of their full motion
cueing potential is considered.

• Apart from predictions of motion incongruence ratings, including quality, cost, and
tuning metrics yields a more effective comparison and trade-off between the MCA
and simulator options.

This chapter is based on the following publication:

Title: Driving Simulator Experiment Stakeholder Perspectives on Motion Cueing Algorithm Quality.
Authors: M. Kolff, J. Venrooij, D.M. Pool, and M. Mulder.
Conference: Driving Simulation Conference 2023 Europe, Antibes, France, pp. 99–106.
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Abstract

In driving simulation, the trade-off between different motion cueing methods (the motion

cueing algorithm and the simulator) is typically made with an exclusive focus on the qual-

ity of the motion itself. In practice, however, many other metrics could affect the trade-off

as well, such as the resulting financial cost and the tuning complexity. Furthermore, in a

trade-off, sub-optimal tuning sets are commonly used, leading to possibly unfair compar-

isons between motion cueing methods. This chapter provides a framework for improved

motion cueing method trade-off and selection based on two new standards. First, the re-

sults of an expert survey show that, next to the quality of the motion, the total cost, sim-

ulator sickness, ease of use, tuning effort, tuning complexity, and stability are typically

of high importance. Second, it describes how subjective ratings on the quality of the mo-

tion can be obtained and how predictions of these ratings can be used to estimate the full

potential of motion cueing methods. The presented methods allow for a more accurate,

multi-faceted trade-off of motion cueing algorithms and simulators, improving the qual-

ity of future driving simulation experiments.
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2.1 Introduction

EXPERIMENTS in driving simulation are often performed on motion-base simulators
to increase the realism and reduce simulator sickness. Because of the inherently re-
stricted size of a motion-base, the motion of the real vehicle can generally not be fully
reproduced. Therefore, a Motion Cueing Algorithm (MCA) is required, which converts
the motion of the real vehicle to motion that fits within the simulator workspace. A wide
range of simulators and MCAs exists for a growing number of driving simulation use-
cases. Selecting the best-suited combination of a simulator and an MCA, for a given
use-case, is critical for an effective and valid experiment.

Evaluations of motion cueing can be given either objectively or subjectively. In ob-
jective metrics, signal differences between the vehicle reference and simulator are eval-
uated. Examples are absolute difference [Casas et al., 2015], cross-correlation [Grottoli
et al., 2019], and delay metrics. Most literature on comparing motion cueing, however,
focuses on evaluations through subjective Motion Incongruence Ratings (MIRs) instead
[Cleij et al., 2018], where the quality of the motion is evaluated by a human test driver.
Although there is an active discussion whether objective or subjective evaluations hold
more value [Casas et al., 2015], it is the latter that have shown to be the backbone in eval-
uating and selecting motion cueing for driving simulation, e.g., Cleij et al. [2018], Cleij
et al. [2019], Lamprecht et al. [2019], Ellensohn et al. [2019], Ellensohn et al. [2019], Ellen-
sohn et al. [2020], and Valente Pais et al. [2009].

When a large selection of simulators and MCAs is available to choose from, it be-
comes practically infeasible to tune and subjectively evaluate each available combina-
tion. In a selection process, it is thus necessary to predict the subjective MIRs that a
given combination will achieve, which is a challenging endeavor [Cleij et al., 2018]. In the
trade-off and selection of simulators and MCAs, their quality is most often based on their
current state of tuning, and not on the potential they can reach, precisely because they
are still untuned. For a fair comparison, it is thus also necessary to estimate the potential

that each combination can reach without actually performing their tuning. Furthermore,
in practice, other metrics concerning the experiment cost or the effort required to tune
a given MCA influence the MCA and simulator choice as well. Which metrics are of im-
portance in a trade-off is likely to be dependent on the experiment use-case. The only
authors that have explicitly recognized the importance of other metrics that determine
the quality of MCAs were Nahon and Reid [1990]. To be able to provide fair comparisons
between MCAs and simulators, a paradigm shift towards predicting and evaluating the
total potential motion cueing for quality evaluations is thus needed.

The goal of this chapter is to propose a basis for such quality evaluations to improve
the motion cueing selection for future driving simulator experiments. This basis consists
of two components. First, it provides a framework for the design process of motion cue-
ing experiments that explicitly includes the identification of all relevant quality, cost, and
tuning metrics, together defining the ‘total’ potential motion cueing quality. To this end,
an expert survey is performed among the stakeholders involved in motion cueing exper-
iments to identify the most important metrics of motion cueing experiments. Second,
it describes the state-of-the-art methods of measuring subjective ratings on the motion
cueing and how these ratings can be predicted to make accurate evaluations on the mo-
tion cueing of future driving simulator experiments.
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Figure 2.1: Proposed steps in the selection process of motion cueing, highlighting the role of tuning sets T ,
quality metrics M , and driving data D .

This chapter is structured as follows. First, Section 2.2 describes the framework for
motion cueing selection, including a description of the survey and its results. Section 2.3
then describes the methods in measuring motion cueing quality. A discussion is pre-
sented in Chapter 2.4. The conclusions are given in Chapter 2.5.

2.2 Framework for Motion Cueing Selection

2.2.1 Selection Process

The central aspect in a driving simulation experiment is the use-case, describing the
type of vehicle, the scenario, and the goal for which the experiment is performed (see
Chapter 1). For a successful experiment, the simulator and MCA are chosen and tuned
according to the requirements of the use-case to achieve the best-suited motion cueing,
given a set of constraints (e.g., cost, available time, man-power). Second, this choice
should always be towards the best and “cheapest” combination that still fulfills the use-
case requirements. For some experiments, a relatively low motion cueing quality may
be perfectly acceptable and a time and money investment in providing a high quality
solution is not needed [Fischer et al., 2015]. The proposed further process of selecting the
simulator, MCA, and tuning parameters consists of three steps, as shown in Figure 2.1.
First, it must be identified which metrics are of importance to the experiment, described
by the vector M . It must then be determined how well these metrics can potentially
perform, on which the simulator and MCA (the method) can be chosen. Finally, the
tuning of the MCA is performed and the experiment can commence.

2.2.1.1 Step 1: Quality, Cost, and Tuning Metric Identification

As explained in Chapter 1, the analysis and evaluation of MCAs is currently almost exclu-
sively performed in terms of the quality of the motion. Nahon and Reid [1990] noted that
other qualities can, and should, impact the choice of the motion cueing as well. These
qualities can be similar to the quality of the motion itself (such as the occurrence of
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simulator sickness as a result of bad motion cueing), but can also relate to several other
metrics considering the cost aspects of an experiment. This consideration seems natural,
as the total financial cost will be a practical consideration in the design of most experi-
ments. More broadly speaking, cost metrics can also refer to other “negative” contribu-
tors, such as energy consumption [Meike and Ribickis, 2011], noise production [Schwarz
et al., 2003], or required maintenance.

In the analysis of Nahon and Reid [1990], an Adaptive Washout Algorithm (AWA) and
an Optimal Washout Algorithm (OWA) were compared as viable alternatives to a CWA.
Even though the AWA provided a higher motion cueing quality compared to CWA, the
high tuning complexity, lower transparency in the tuning process, and inherent instabil-
ity of the AWA made it less favorable for practical application in a simulator. This also
uncovers a third category of “tuning metrics”, which describe the difficulty and practi-
cality of implementing a specific MCA (in combination with a simulator and a specific
use-case) in terms of its tuning.

When considering the quality, cost, and tuning metrics, which of the metrics are ac-
tually of importance will depend on the use-case and are thus different per experiment.
The important metrics in the vector M are ideally identified early in the experiment de-
sign process (“Step 1” in Figure 2.1), such as through a standardized survey or interview
that is presented to those involved in the experiment. Different stakeholders exist in the
design of an experiment, each with their own wishes for the experiment:

• The experimenter wants to perform an experiment to answer a research question.
Therefore, experimenters will generally want an experiment design (and associ-
ated motion cueing) that is most suitable for answering this research question.

• The motion cueing engineer designs and/or tunes the MCA according to the
wishes of the other stakeholders to achieve the best-suited motion cueing solution.
The motion cueing engineer is the expert on the design of the motion cueing.

• During the experiment, the simulator operator operates the simulator from the
control room and monitors the safety and well-being of the participant. This stake-
holder could for example be interested in a stable experiment without the occur-
rence of simulator sickness.

• Central in each experiment is the participant, as they participate in the experi-
ment and thus experience what the motion cueing solution is designed for. Al-
though their personal wishes might have the smallest impact on the design of the
experiment, they can still have clearly defined wishes during the experiment that
affect the success of the experiment, such as a low level of simulator sickness.

• Finally, the organization that owns the simulator. Their interest could for example
lie in the overall safety and keeping the cost, working hours, and energy consump-
tion as low as possible.

In some cases, the same individual may have multiple stakeholder roles. For example,
someone could be the experimenter and the simulator operator at the same time.

2.2.1.2 Step 2: Motion Cueing Method Selection

The simulator and MCA choice together define the motion cueing method of the motion
cueing for which the tuning and the later experiment are performed (see Figure 2.1). In
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practice, it is typically the simulator that has to be chosen first, as simulators often must
be reserved well beforehand. For the MCA choice, it must be determined which type of
algorithm is used. Different MCA options exist (e.g., CWA, AWA, and MPC), each with
their own (dis)advantages, as discussed in Chapter 1. The quality of an MCA can also
be strongly related to the simulator choice. For example, whereas for a hexapod system
a small angle approximation can be used [Ellensohn, 2020] to simplify the motion con-
trol problem, this simplification is no longer valid on a system with a yaw-drive (allow-
ing large yaw angles), such as BMW’s Sapphire Space simulator. Vice versa, a complex
MCA might only be able to exploit the simulator workspace better if it is given sufficient
workspace. The simulator choice can thus not be made independently of the (later) MCA
choice. The same holds for the use-case: depending on the type of motion, different
qualities of the simulator and MCA can become more or less pronounced. For exam-
ple, a yaw-drive might only be of added value in tight corners of an urban scenario, and
might only be controlled effectively using an MPC algorithm. Selecting the best-suited
simulator when various simulators are available thus requires understanding how well a
simulator will perform in combination with the MCA for a given use-case.

An inherent process uncertainty lies in the quality of the input data on which the
motion cueing method selection is performed. Because the experiment has not yet com-
menced, driving data on how the participants will drive during the experiment are gener-
ally unavailable at this point. Once the scenario and its route are fixed, “baseline driving
data” (D̃) can be gathered from a small group of test drivers or from a similar previous
experiment to form a first reference. The notation (̃·) denotes the uncertainty caused
by not having the final driving data of the experiment yet. Another uncertainty is that
although “baseline tuning” parameter sets T0 (e.g., from previous experiments) might
provide a good starting point, these tuning sets at this point may not be fully optimized
for the given use-case. A comparison between available options is only fair when these
have been tuned to their full potential [Ellensohn et al., 2020; Nahon and Reid, 1990].
This is a causality dilemma: the quality of an MCA can only be tested once it is tuned,
but its selection can only be justified if it is known how well it will perform. This would
require a large number of motion cueing methods to be tuned, which is expensive and
impractical. It is therefore difficult to make early and informed decisions on which mo-
tion cueing method suits a specific use-case best.

A potential estimation for each of the available options must thus be made to provide
a fair comparison between the available motion cueing methods. This can be based, for
example, on altering the gains of the baseline tuning sets T0 by analyzing the remaining
workspace of the simulator [Grottoli et al., 2019], giving an estimate on how the tuning
may be improved given that the workspace is fully utilized. The more accurate these
prediction tools, the better the process of motion cueing method selection can be per-
formed. Based on the potential estimation, already improved tuning sets T1 (Figure 2.1)
can be extracted. After the simulator and MCA are selected, only a single tuning set T1 is
then used for the succeeding steps.

The quality vector M̃ ′ contains an estimate on the potential of the relevant quality,
cost, and tuning metrics. The notation (·)′ indicates the estimation of the potential. It
thus also contains an estimate of the potential on the quality of the motion. A single
value for each option representing the quality during the whole experiment would likely
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be the easiest method for comparing between the various options, such as post-hoc over-
all ratings (ORP H ) [Cleij et al., 2018], as will be discussed in Section 2.3.

2.2.1.3 Step 3: Motion Cueing Solution Selection

Once a motion cueing method (simulator and MCA) is selected, the MCA tuning process
starts. In this step, the parameters of the method are changed to provide the highest pos-
sible quality, while still fitting the motion (of most participants) within the workspace
of the simulator. This can be done either through offline simulation (objectively) or
through on-site testing (subjectively) at the simulator. The parameters of the method
are then iteratively changed until a satisfactory level of motion cueing is achieved, re-
sulting in the final tuning set T2 and estimated quality metrics M̃ . Similar to the motion
cueing method, the combination of the method and the eventual set of tuning param-
eters as selected for an experiment can be defined as the motion cueing solution. The
resulting tuning parameters can be stored as a baseline tuning for a next experiment.
When the tuning process is completed, the final quality of the motion cueing method is
still uncertain, however, due to the unavailability of the experiment’s driving data.

2.2.1.4 Step 4: Experiment Phase

Once an adequate tuning is obtained, the experiment can commence. To improve the
overall process in each of the three preceding steps, it is highly beneficial if a set of repre-
sentative outputs from the experiment is acquired. A non-invasive validation of the mo-
tion cueing can be performed through overall post-hoc ratings (See Section 2.3). These
subjective ratings can be asked after a drive and therefore do not affect the driving itself.
They can therefore be obtained from practically any experiment and can thus further
validate rating predictions that were made beforehand. Furthermore, the actual vehicle
driving data D for each drive should be recorded as well, as this can serve as the repre-
sentative data on which the motion cueing of future experiments is designed.

2.2.2 Identification of Quality, Cost, and Tuning Metrics

To identify which of the metrics are of the highest importance to BMW’s driving sim-
ulator experiments, a survey was performed. This survey relies on identifying the key
metrics from a pre-defined catalogue of quality, cost, and tuning metrics.

2.2.2.1 Quality Metrics

The following metrics are proposed to present the quality of a motion cueing experiment,
which would all be ideally maximized as much as possible.

Perceptual Quality

Perceptual motion quality is often considered in driving simulation, as described in Sec-
tion 2.3. When the presented motion is perceived as unrealistic, perceptual quality is low
[Cleij et al., 2018]. To increase perceptual quality, more accurate MCAs and/or larger mo-
tion simulators are generally required. The importance of perceptual quality can differ
per experiment, as some experiments might induce so little motion (e.g., when mostly
driving straight) that perceptual quality is not of high importance.
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Behavioral Quality

The behavioral quality of the simulation is determined through the degree of similarity
in driving behavior compared to the behavior in its real world equivalent, rather than
whether what they perceive feels realistic. This can occur on various levels indepen-
dently, such as the lateral and longitudinal driving behavior [Romano et al., 2019] or the
interaction with traffic, as well as handling secondary driving tasks (such as operating a
navigation system).

Reducing Simulator Sickness

Simulator sickness can occur when the stimuli presented in the simulator are inconsis-
tent or deviate from what is expected from reality [Hogerbrug et al., 2020]. In terms of
the motion cueing, it is thus a function of the perceptual fidelity. Simulator sickness
is characterized by physical symptoms (e.g., dizziness, headache, nausea [Reason and
Brand, 1975]) and can lead to participants dropping out of the experiment (increasing
their cost), provoke unwanted changes in behavior [Cobb et al., 1999; Igoshina et al.,
2022], and lead to a decreased sense of presence [Almallah et al., 2021].

The level of simulator sickness has also been shown to depend on the use-case. For
example, urban driving generally results in more simulator sickness than rural driving
[Himmels et al., 2022b], which in turns induces more simulator sickness than highway
driving [Klüver et al., 2015; Mourant and Thattacherry, 2000]. For these reasons, simu-
lator sickness is generally to be avoided and motion cueing solutions for use-cases that
are expected to induce a high degree of sickness are ideally identified beforehand.

Stability

Unstable motion cueing solutions can crash, such that a drive cannot be continued.
Apart from loss of valuable experiment data, a motion cueing solution that is unstable
might lead to unexpected and/or dangerous behavior of the system. This can affect the
quality of the motion, but also decrease the system safety, resulting in a higher risk of
incidents. Stability can also be considered to be an important metric especially for long
drives, as restarting a drive would lead to the loss of valuable experiment time, increas-
ing the chance that an experiment session cannot be finished. Especially for MPC MCAs,
the associated inherent stability has shown to be an issue [Fang and Kemeny, 2016]. In
contrast, CWA MCAs are known for their inherent high stability [Nahon and Reid, 1990].

2.2.2.2 Cost Metrics

In contrast to quality metrics, which are preferably maximized to the extent possible,
cost metrics should be minimized as much as possible.

Financial cost

The financial cost of an experiment is a driving factor in the design of motion cueing
[Allen et al., 1995; Huang and Chihsiuh, 2003]. It is a function of the purchasing cost
of the simulator, the cost of preparing and tuning the motion cueing, and the cost of
running the simulator (energy consumption, maintenance, etc.) [Bennett, 1995], which
generally all scale with the platform size and MCA tuning complexity. For example, the
smallest simulator with the easiest to tune MCA will likely result in the lowest cost. It can
be argued, however, that the most expensive simulator or MCA in terms of purchasing
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cost are those that are not used for experiments, as the purchasing cost per hour used
goes down with increasing system usage [Kappe and Van Winsum, 2002].

Energy Consumption

Energy consumption is a metric of increasing importance [Meike and Ribickis, 2011] due
to costs, environmental impact, and hardware limitations. Although the energy con-
sumption might not be important for those involved in designing the motion cueing,
it could be important for the organization for choosing the smallest simulator with the
least motion available that is still able to answer the research question.

Noise

Noise and/or vibrations of the motion system perceived inside the cabin can possibly
decrease the perceptual quality. Larger, heavy systems (e.g., BMW’s Sapphire Space and
Diamond Space) tend to generate both more noise and vibrations due to the combina-
tion of a high weight and large platform movements [Schwarz et al., 2003].

Maintenance

Apart from increasing the cost, maintenance also reduces the time in which the simula-
tor can be operational for other experiments. Although this aspect is somewhat specific
to the simulator design, the maintenance is likely to scale with the size of the system and
the amount of platform movement.

2.2.2.3 Tuning Metrics

Finally, tuning metrics are generally only relevant to the motion cueing engineer and
describe properties of finding suitable tuning parameters for the motion cueing method.

Total Number of parameters

The total number of parameters can be considered as a measure of tuning effort and
complexity [Nahon and Reid, 1990]. Ideally, the number of tuneable parameters would
be as low as possible, as each parameter requires time and effort to tune. As an example,
a CWA requires tuning of its several gains, split frequencies, and washout parameters.
This results in 23 parameters for a typical hexapod system (e.g., Vega Vector, see Chap-
ter 1). Including a yaw-drive results in an additional split frequency and a first-order
washout parameter. An xy-drive adds another split frequency and two washout param-
eters. The total number of parameters can thus be expressed as 23+2bψd

+3bx +3by ,
with the Booleans bψd

, bx , and by indicating the presence of a yaw-drive, x-drive, and
a y-drive, respectively. This results in 25 for additionally including a yaw-drive (Sirius
Vector), and 31 for also including an xy-drive (Sapphire Space and Ruby Space). Whereas
additional motion subsystems thus potentially increase the quality of the motion, they
also increase the number of parameters to be tuned and therefore likely the tuning effort.

Note that the “cost” due to the number of parameters can also be reduced by only
considering the effective number of parameters. For example, depending on the use-
case, it is possible that not all vehicle axes require tuning. This can, for example, occur
when a use-case with only lateral motion is performed, in which the longitudinal direc-
tion does not require tuning. Thus, this metric depends on the simulator choice, MCA,
as well as the considered use-case. Furthermore, it can be chosen to use the same pa-
rameters along various axes (e.g., longitudinal and lateral motion) to make the motion
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in these axes as similar as possible, reducing the number of parameters to be tuned.

Transparency of Parameters

The cost due to the number of parameters also depends on how fast the desired change
in tuning can be obtained through changing the parameters [Casas et al., 2016; Nahon
and Reid, 1990]. Thus, the clearer it is which effect a parameter has, the better. One
benefit of a CWA, for example, is that changing parameters often has a direct and pre-
dictable effect on the motion. In contrast, changing parameters for MPC is generally less
transparent, as the optimization nature of the algorithm does not necessarily lead to a
different MCA output.

Determinism of System

Some MCA types will always give the same output when the same input is provided. An
example of this is the linear filter approach of the CWA. In contrast, MPC is based on
optimization, such that the output depends on the initial values that are given to the al-
gorithm. Thus, it is highly unlikely that the same outputs are provided, given the same
inputs. A non-deterministic system arguably leads to a higher tuning complexity, be-
cause its outcome is more difficult to predict.

Offline testing capabilities

An MCA that can be tested outside of the physical simulator allows for additional debug-
ging and testing capabilities. Thus, having no offline testing option can also lead to a
higher tuning complexity.

2.2.3 Survey

A survey was developed to identify the metrics of highest importance to driving simu-
lator use-cases at BMW. The same survey was presented to the considered stakeholder
groups to enable a direct comparison between them. The results of the stakeholder “or-
ganization” are not presented due to data protection reasons.

2.2.3.1 Methodology

The survey consisted of 35 questions (in German) on quality, cost, and tuning metrics,
divided into several categories. Answers were given on a seven-point Likert scale ranging
from fully disagree (score of 1) to fully agree (score of 7). The survey questions are shown
in Appendix A. As the last three categories (A.2.7 - A.2.9) only apply to motion cueing
engineers, these were only filled out by this group.

In total, 14 experimenters, 4 motion cueing engineers, 4 operators and 12 partici-
pants filled out the survey. The respondents filled out the survey in a document, after
receiving a short briefing on the context of the survey. They were specifically instructed
to answer the questions in a way that corresponds to the interests associated to their
role. For further analysis, questions belonging to the same metric (e.g., simulator sick-
ness) are combined by taking the mean value of these questions to obtain an insight in
the general importance of each category.
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(b) Motion Cueing Engineers (N= 4)
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Figure 2.2: Radar plots showing the box plots over all survey results for the quality, cost, and tuning aspects.
The black line (“Med.”) connects the medians of the distributions for increased visibility. The blue line (“Exp.”)
highlights the specific results of the highway driving experiment.
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2.2.3.2 Results

Figures 2.2a-2.2d show the survey results, displayed as radar charts, similar to the simu-
lator requirement analysis of Fischer et al. [2015]. For each category, a box plot is shown
along each ‘spoke’ of the radar chart. The lines on each axis represent the data ranges,
the colored areas the first and third quartiles, and the grey crosses the individual data
points. The medians of the data are visualized by the black dots, connected by black
lines for increased readability. The values (1−7) correspond to the answers of the survey
(fully disagree - fully agree). Thus, higher values indicate higher importance.

For the “experimenter”, Figure 2.2a, who requests the experiment to be performed,
the results were collected from fourteen past or planned studies. Generally, the quality
of the motion, reducing simulator sickness, and the cost of the experiment were shown
to be the most important metrics for these studies (i.e., > 4, above the answer ‘neutral’).
The large range in answers given to stability can be explained by differences in drive
lengths, ranging from 2 to 45 minutes per drive. For short drives stability is likely not so
important, as they can be easily repeated.

Four “motion cueing engineers” filled out the survey (Figure 2.2b). Note that here the
data points do not represent individual studies, but represent what these engineers gen-
erally find important. Aspects of tuning complexity and tuning effort are found most im-
portant. Ease of use (in the operations) shows to be somewhat of importance. Although
the engineer is not the stakeholder performing the actual experiment, an easy-to-use
MCA can still be beneficial when designing, debugging, or testing an MCA.

The metrics of highest importance to the “operator” (Figure 2.2c) are the ease-of-
use, which is explained by the operator having to use the motion cueing method in an
experiment. The second is stability: a stable motion cueing method avoids obstructive
situations at the simulator, where valuable time is thrown away or debugging must be
performed during the experiment.

Finally, stability is a similar issue for the “participant” group (Figure 2.2d). Here,
twelve survey respondents indicated that this metric is of medium importance, which
could be in the interest of protecting their own well-being in the simulator. Most impor-
tantly, perhaps unsurprisingly, is simulator sickness, which was indicated by all respon-
dents to be of importance (> 4).

2.2.3.3 Example Experiment: Automated Highway Driving

To highlight what important quality, cost, and tuning metrics can look like for a spe-
cific experiment, the survey results of a real driving simulation experiment at BMW are
highlighted. The experiment investigated the role of fatigue under an ADAS system. Par-
ticipants first drove for 15 minutes on a German highway scenario. After that, the au-
tonomous driving systems were engaged until the participant reported a high level of
drowsiness. This phase could take up to 90 minutes. After that, a second manual seg-
ment was performed, lasting another 90 minutes. This use-case contains mainly longi-
tudinal motion (braking/accelerating) and some lateral motion (overtaking).

The survey results of this use-case are highlighted by the blue line in Figure 2.2a. Two
large outliers compared to the overall data are present. In this experiment, as specific in-
terest is taken in fatigue while driving autonomously, the noise of the simulator was to
be reduced as much as possible, as this could influence the fatigue and attentiveness of
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Figure 2.3: A model of the motion cueing rating process in closed-loop driving simulations.

drivers. Furthermore, as it considers an experiment in a relatively long scenario (> 120
minutes) of a single drive, stability was important, as a simulator hardware or software
crash could render the long experiment sessions useless. Concluding from these results,
the metrics stability, simulator sickness, motion cueing quality, tuning effort, and tuning
complexity are determined to be the most important (> 4) metrics across all stakehold-
ers, which led to the selection of the relatively small Vega Vector simulator and a CWA as
a highly highly stable motion cueing method.

2.3 Predicting Motion Incongruence Ratings

The survey results showed that several metrics define the “total” motion cueing quality,
including the quality of the motion itself. When the potential of a motion cueing method
is to be estimated prior to its selection and implementation, subjective ratings are not yet
available, because the motion cueing cannot be tested without the actual tuning. This
metric thus differs from the other metrics, as it requires a prediction of the subjective
rating to be able to express its potential. Accurate prediction methods of the subjective
ratings are thus paramount. This section therefore focuses on current standards for mea-
suring and predicting subjective motion cueing quality.

2.3.1 Driving Task

In most driving simulation use-cases, participants will drive themselves, i.e., closed-loop

scenarios. As illustrated in Figure 2.3 by the red paths, the driver then actively controls
the steering wheel δs (t), the accelerator δa (t), and brake δb(t) pedals. These act as in-
puts to the vehicle simulation, which calculates the motion states of the simulated vehi-
cle S̃veh (t). The motion states consist of the specific forces [ fx , fy , fz ] and the rotational
rates [ωx , ωy , ωz ]. As S̃veh (t) comes from a vehicle model, it is an approximation of the
real vehicle motion Sveh (t).

The simulated vehicle motion states are sent to the Motion Control System (MCS),
which consists of the MCA and the Motion System (MS). Whereas the MCA converts
the vehicle motion states to commanded platform motion, the MS (the physical simula-
tor and its control software) provides the platform motion signals S̃sim (t) to the driver.
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0 1 2 3 4 5 6 7 8 9 10

Congruent/
perfect motion

Highly incongruent/
imperfect motion

Figure 2.4: Semantic differential rating scale, ranging from 0 (Congruent motion) to 10 (Highly incongruent
motion). It currently displays a rating value of 7.

These can differ from the commanded platform motion due to a variety of factors, such
as the motion system latency. Differences between the vehicle reference and simula-
tor motion are then the objective mismatches, i.e., ∆S̃(t) = S̃veh (t) − S̃sim(t). The hu-
man driver perceives the platform motion through their sensory system. The relation
between the inertial platform motion and the output signal S̃sim (t), in terms of specific
forces and rotational rates, depends on the kinematic configuration of the simulator and
is thus crucial in the analysis of motion incongruences. How ∆S̃(t) is properly expressed
for each motion platform will be further described in Chapter 3. Based on the inertial mo-
tion, as well as other, non-inertial motion cues (e.g., the visuals) the driver controls the
vehicle. The motor system of the human body produces the control actions [δs (t),δa(t)
and δb(t)], closing the loop.

2.3.2 Rating Task

To be able to evaluate the motion cueing quality, participants must also perform a rating
task by evaluating how well the inertial motion they perceive in the simulator matches
to what they would expect to feel from the real vehicle. This difference is defined as
their Perceived Motion Incongruence (PMI) [Cleij et al., 2018], see Figure 2.3. Drivers
must use an internal representation [Stassen et al., 1990] of the vehicle motion based on
non-motion cues (e.g., visuals) of the simulation as they do not exactly know what the
vehicle motion would feel like in a particular situation. Differences can thus arise based
on memory, as well as familiarity and experience with the simulated vehicle. Note that
thus both the expected motion and as the vehicle model motion S̃veh(t) thus likely differ
from the real vehicle motion Sveh (t). In closed-loop control, an efference copy [Mulder et
al., 2022] of the intended control actions is fed to the internal representation of motion.
It describes what drivers expect to feel, based on their own control actions.

As the PMI is an internal signal to the human, a Motion Incongruence Rating (MIR)
must be asked from the participants that represents the PMI. Several options exist to
extract MIRs. These refer to which parts of the drive the ratings represent, when they
are obtained, how they are measured, on which scale, and what part of the motion they
represent. A proper choice of these variables is crucial, because biases in the MIRs can
occur depending on them, leading to MIRs that are not representative of the PMI.

A typical choice for MIRs is an ordinal rating scale [Cleij et al., 2018]. Such rating
scales can be expressed with wording (congruent motion to highly incongruent motion)
or using associated values, e.g., ranging between values of 0 (representing congruent)
and 10 (representing highly incongruent), with steps of 1 [Kolff et al., 2024b] ( Figure 2.4).

As shown in Figure 2.3, participants use a “Rating Response” to determine their MIR.
Based on practical experience with subjective ratings, it is expected that this rating re-
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sponse (and therefore the MIR) can be affected by the following effects:

1. Task motivation describes the willingness to focus (on the motion) and actively
perform the (rating) task [McRuer and Jex, 1967; Mulder et al., 2018].

2. Cueing reference refers to what values drivers apply for the given incongruences,
which depends on which PMI-level they associate with the maximum (10) MIR
score. For example, in Cleij et al. [2018], participants were shown the full range of
the incongruences before the experiment for reference.

3. Anticipation can occur when incongruences of upcoming maneuvers are expected
based on previous drives, or from recognizing that a certain MCA setting is active.

4. Task understanding of the participant that only the PMI is to be evaluated, and no
other motion-related phenomena (e.g., visuals, engine sound or vibrations).

2.3.2.1 Rating Representation

One choice in the rating method concerns which part of a drive a rating represents. Three
categories of rating representations can be used, as shown in Table 2.1.

Overall Ratings

An Overall Rating (OR) aims to capture the impression of the whole drive using a sin-
gle rating. These ratings have been used extensively [Biemelt et al., 2021; Rengifo et al.,
2021], as the method is arguably easiest for participants to understand. The single-value
overall ratings also allow for a direct comparison and one-off evaluation between differ-
ent motion cueing settings. Inherently, overall ratings are limited in the details on how
different parts of the drive compare. A single rating for each drive provides no direct in-
formation on what this rating is mostly based on. For example, a “medium” overall rating
can be caused by a drive with a medium level of incongruences. However, it can also be
caused by a highly contrasting drive, in which moments of highly incongruent motion
are compensated by moments of congruent motion.

Depending on when the overall rating is extracted, there can also be significant time
between obtaining the rating and earlier parts of the drive. This can lead to biases caused
by short-term memory effects, such as the serial position effect [Murdock Jr, 1962] and
the peak-end-rule [Fredrickson and Kahneman, 1993].

Maneuver-Based Ratings

To obtain more detailed and informative ratings, a drive can be divided into smaller parts.
Participants then give a single rating for each of those maneuvers or sections [Ellensohn
et al., 2020], i.e., “maneuver-based” ratings (MB). This leads to more detailed ratings for
different parts of the drive. As a consequence, however, the workload for the participants
also increases, making closed-loop driving at the same time more challenging.

Current-Time Ratings

The third method, first used by Cleij et al. [2018], does not ask for a summarizing rating
of a specific part of the drive at all, but rather measures the rating that represents the
current impression of the participant at that point in time, denoted R. Although yielding
high detail, this method requires a focus on the evaluation throughout the entire drive,
adding to the workload.
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Table 2.1: Matrix of possible rating representations and timings. Dashes indicate non-viable rating methods.

Representation

Overall (OR) Maneuver (MB ) Current-time (R)

T
im

in
g Post-Hoc (P H ) ORP H MBP H -

Section-Wise Post-Hoc (SP H ) ORSP H MBSP H -
Continuously (t ) OR(t ) MB (t ) R(t )

2.3.2.2 Rating Timing

A second choice concerns when the rating is obtained from the participants, as also indi-
cated in Table 2.1.

Post-Hoc Ratings

In a Post-Hoc (PH) rating method, denoted with subscript P H , the rating is extracted after
the drive [Ellensohn et al., 2020]. This has the benefit of being non-intrusive, such that
the rating does not affect any of the closed-loop driving tasks during a drive. Post-hoc
ratings can be collected as overall (ORP H ) [Kolff et al., 2024b] or maneuver-based ratings
(MBP H ) [Cleij et al., 2018; Eppink et al., 2023]. As the post-hoc ratings are extracted after
a drive, participants will have the possibility to ask for clarification if questions arise.
Furthermore, as the rating method does not interfere with the driving task(s), post-hoc
ratings can be used in experiments with closed- or open-loop driving.

Section-Wise Post-Hoc Ratings

Section-Wise Post-Hoc (SPH) ratings, denoted with subscript SP H , refer to ratings ac-
quired during the drive, but after a specific maneuver or event. These ratings can pro-
vide a more “in the moment” extraction than the PH ratings, reducing the risk of memory
biases. Like PH ratings, SPH ratings can be acquired from experiments involving closed-
loop or open-loop driving [Ellensohn et al., 2020]. However, different than for PH ratings
is that the participants typically have limited time for providing their rating, because they
are expected to continue with the rest of the drive (see Appendix C). A too high frequency
of expected ratings could thus hinder the ability to also drive closed-loop. SPH ratings
can be combined with a maneuver-based rating [Ellensohn et al., 2020], leading to mea-
surements MBSP H . Furthermore, although not yet performed in literature, an overall
rating ORSP H could be obtained, in which the overall impression is obtained at several
points in the drive, representing the overall impression of the drive up until each point.

Continuous Ratings

Lastly, drivers can rate the motion continuously [Cleij et al., 2019] throughout the drive
reflecting their current PMI at each point in time, resulting in a rating R(t). This method
provides unmatched insight into where in the simulation (in)congruent motion occurs
while recording at a high temporal resolution. Because they are expected to rate con-
tinuously, participants will not have the chance to ask for clarifications on the method.
This thus requires full task understanding and in-depth briefing and training before the
experiment. Continuous ratings can also be recorded in distinct maneuvers only [Cleij
et al., 2018], yielding ratings MB(t). Similarly, continuous ratings OR(t), representing



2.3 Predicting Motion Incongruence Ratings

2

37

Figure 2.5: A rotary rating knob to extract rating values. Adapted from Ellensohn et al. [2019].

the whole drive up until the point of measurement, can be recorded.

To be able to give the rating continuously, a dedicated rating interface is necessary
[Cleij et al., 2018], such as a rotary knob (Figure 2.5). Additional dynamics (e.g., a hard-
ware delay) will be present in the recorded ratings, indicated by “Rating Interface” in
Figure 2.3. Since the introduction by Cleij et al. [2018], the continuous rating method
has been applied in several studies on curve driving [Cleij et al., 2019; van der Ploeg et
al., 2020], as well as realistic rural driving scenarios [Ellensohn et al., 2019a; Ellensohn
et al., 2020; Ellensohn et al., 2019c].

Because the drivers are expected to continuously evaluate their PMI use the rating
knob with the right hand, they cannot be expected to safely operate the steering wheel
with the left hand at the same time. Therefore, the continuous rating method can only
be employed in open-loop simulations, i.e., using a recording playback. While this al-
lows participants to fully focus on their subjective impression of the motion, the lack of
driving control (i.e., the red elements in Figure 2.3) implies that no efference copy can
be present. The internal representation must then be generated from the non-inertial
motion cues, such as the visuals. Apart from perceptual differences, [Nesti et al., 2016;
Valente Pais et al., 2012], the lack of an efference copy could affect the PMI of the driver,
because they know less well what motion to expect. An explicit comparison between rat-
ings of closed- and open-loop driving is discussed in Chapter 7, as shown in Figure 2.3.

2.3.2.3 Comparing Between Experiments

Whereas perfect motion can be defined and fixed to a rating scale value, there is no ab-
solute comparison for “imperfect” motion. This is problematic, as participants can have
different interpretations of what refers to as the “highly incongruent” rating (Figure 2.4).
To avoid this problem of differences in cueing reference, the ratings can be normalized
with respected to the highest value that a participant has reached in the whole experi-
ment, such that the data of all participants is always on the same scale [Cleij et al., 2018].
However, it is also possible that participants have the same cueing reference but simply
give different ratings, if their internal representation of the vehicle motion is different. In
that case, the PMI can also differ.

Comparing between experiments can also reveal relative differences between par-
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ticipant groups. What participants associate with “highly incongruent motion” might
depend on the presented motion, and therefore the capabilities of the motion simula-
tor. Cleij et al. [2019] showed that correcting for these relative experiment differences
can be done using a Model Transfer Parameter (MTP), a scaling factor that describes the
relative PMI between experiments. More research is necessary to investigate whether a
linear MTP can also be used to predict between MIRs between scenario types. For this,
Chapters 4, 5, and 6 will compare rating measurements between urban, highway, and
rural scenarios, respectively.

2.3.3 Motion Cueing Models

The final step required for the large-scale evaluation of motion cueing methods and solu-
tions without subjective simulator testing requires predicting their MIRs. Because of the
high temporal resolution, the relation between the continuous ratings and objectively
calculated mismatch signals between vehicle and simulated motion can be captured in
mathematical models, which in turn allow for predicting continuous ratings [Cleij et al.,
2018; Ellensohn et al., 2019c]. Overall and maneuver-based ratings are of such lower
resolution that they are much less suitable to be used in a modeling approach.

Whereas Cleij et al. [2018] successfully predicted continuous ratings of their simpli-
fied scenario using a moving average model between the objective mismatches ∆S̃(t)
and the measured ratings, this has not (yet) been successfully repeated for more realistic
urban, highway, and rural scenario’s, a critical lack in understanding that is covered in
Chapters 4 (urban), Chapter 5 (highway), and Chapter 6 (rural) of this dissertation.

While predictions of continuous ratings can thus be made, they are more difficult to
guide decisions on motion cueing, as they do not provide a single rating value that can
be used for decision. Therefore, it is also necessary to combine predictive power of the
continuous ratings with the simplicity of overall or maneuver-based ratings. This thus
requires investigating how these latter ratings are formed based on the continuous im-
pression of motion. For example, Cleij et al. [2018] showed that participants let the most
incongruent moment (as visible in the continuous ratings) determine the overall rating.
These critical relationships between ORP H , MBSP H and the continuous R(t) ratings are
investigated per scenario in Chapter 4 (urban), Chapter 5 (highway), and Chapter 6 (ru-
ral) of this dissertation.

2.4 Discussion

2.4.1 Metric Identification

Next to metrics of motion cueing quality (behavioral or perceptual), the survey further
revealed several other metrics that are generally of importance. the cost and the partici-
pants’ simulator sickness for the experimenter, ease of use, tuning effort, and complexity
for the motion cueing engineer, stability and ease of use for the operator, and again the
stability as well as simulator sickness for the participant. In the experiment use-case
example, an additional focus lies on noise and stability, indicated by the wishes of the
experimenter. It is possible that due to practical experience, existing metrics are refined
or more metrics are added. The presented methods and results thus aim to serve as
a broader framework rather than a solution that applies for all institutes or companies
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operating driving simulators, as also different use-cases might be covered. Other institu-
tions or companies are thus invited to share their experiences, as this could also lead to
more data for the operators and motion cueing engineers. The current results are inher-
ently limited due to being obtained from a single simulation center (in this case BMW).

Through the presented methods, it is shown that the survey can serve not only as a
one-time identification tool of important metrics, but also as the baseline for a frame-
work of a future specific experiment design, where the survey is filled-out in early exper-
iment design stages to identify the best-suited MCA for that experiment. By identifying
the important metrics for a given experiment beforehand, seemingly trivial aspects, such
as the noise production and stability, could show to in fact be of high importance, such
as in the presented fatigue experiment example. Thus, here it could be preferred to se-
lect and MCA and/or simulator that produces little noise, while a limited reproduction
of the motion cues is perfectly acceptable. In this presented example, the final chosen
simulator was indeed a smaller system (BMW’s Vega Vector).

In assessing a single survey for a given experiment, it would be recommended, how-
ever, to let the individual questions of the survey have more impact on the trade-off (e.g.,
offline testing capabilities), rather than only considering the average value of a given
metric (i.e., "tuning effort") and as a summary for each group.

2.4.2 Limitations and Next Steps

Several limitations in the presented work should be mentioned. First, the trade-off
between the identified metrics would benefit from a more objective measurement
approach, rather than applying the ordinal scale (1-7) directly from the survey results.
Several metrics would be suitable for this due to their quantifiable nature, such as
noise, energy consumption, and cost. Others, such as determinism of the system or
stability, are much harder to quantify. Here, qualitative categorization of the metrics
(i.e., low-medium-high) may be an effective approach.

A trade-off between the metrics will always be subjective. It is possible to make this
choice by setting lower bounds to eliminate MCAs that do not meet certain key require-
ments or, if no defined lower bounds exist for the experiment, calculating the “overall
quality”, by calculating a total cost. This trade-off can also be made more objective
by taking the relative importance of the various metrics into account. Finally, the pre-
sented methods only apply to metrics related to the motion cueing. In practice, espe-
cially when considering different motion systems, other metrics might be of importance
as well, such as the availability of specific mock-ups in a given simulator or the (type of)
visual system and/or the associated synchronization between the visual scene and the
motion. Future work could thus aim to include such properties as well.

As a further outline for future work, several points have been discussed, which will
be dealt with in Part II of this dissertation. These include the measuring and predictive
modeling across urban, highway, and rural scenarios, which will be discussed in Chap-
ter 4, Chapter 5, and Chapter 6, respectively. The assumption that (models of) ratings of
open-loop driving are representative of closed-loop driving will be verified in Chapter 7.
As the basis for the models that will be discussed in Part II, Chapter 3 will derive the
analytical mismatch relationships for the kinematic configurations available at BMW.

The second part of this work (Chapter 9) will deal with a key open question that has
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not been covered so far, which is how predictions of MIRs contribute to assessing the to-
tal quality of a motion cueing method and how the various other metrics can be quanti-
fied. This requires calculating the potential of a motion cueing method without actually
tuning it. This can be done, for example, by using an extrapolation of the MIRs based
on the remaining available workspace [Grottoli et al., 2019] of currently available tun-
ing. Similarly, quantifiable metrics, such as energy consumption or cost, are then also
expressed in terms of their potentials. Whereas the present chapter presented the theo-
retical concept, Chapter 9 will thus cover the practical use of the proposed method as an
example trade-off between motion cueing solutions.

2.5 Conclusion

This chapter described new standards to describe the MCA and simulator selection (the
“motion cueing method”) for future driving simulation experiments with motion cue-
ing. This includes always considering a prediction of the motion cueing potential of a
method, rather than using existing sub-optimal tuning sets in comparisons. The results
of the stakeholder survey further showed that, next to the quality of the motion itself,
the total cost, simulator sickness, easy of use, tuning effort, complexity, and stability are
typically of high importance in motion cueing experiments. Better motion cueing can
thus be obtained when these specific wishes of the various experiment stakeholders are
taken into account. Combined, these new standards provide a fairer and more effective
method to properly select an MCA and simulator. This ensures that the best motion
cueing can be selected for future driving simulator experiments.
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Kinematics of Motion Systems

Key findings

• The specific forces and rotational rates relations depend on the relative position of
the motion subsystems. A correct implementation of the kinematic relations is key
for correctly expressing the mismatches between vehicle and simulator motion.

• A yaw-drive located above the hexapod greatly complicates the motion control.

• For large-excitation yaw-drives (> 20◦), the offset between the Motion Reference
Point (MRP) (the point where the motion applies) and the Cueing Reference Point
(CRP) (the position where the driver is located) must be corrected for in the motion
control to avoid erroneous simulator motion.

This chapter is based on the following publication:

Title: The Importance of Kinematic Configurations for Motion Control of Driving Simulators.
Authors: Maurice Kolff, Joost Venrooij, Markus Schwienbacher, Daan. M. Pool, and Max Mulder.
Proceedings: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC),

Bilbao, Spain, pp. 1000-1006.
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Abstract

This chapter describes how the kinematic configuration of a driving simulator’s motion

system affects the rendered inertial motion. The specific force and rotational rate equa-

tions between the point where the motion is applied [Motion Reference Point (MRP)], and

the point in which the driver perceives the motion [Cueing Reference Point (CRP)], are de-

rived for three kinematic configurations: (i) a hexapod, (ii) a hexapod with an xy-drive

and a yaw-drive below, and (iii) the same system as (ii), but with the yaw-drive on top.

The rotational rate equations show that having a yaw-drive on top greatly complicates

the motion control. Furthermore, simulation results show that, regardless of the yaw-drive

location, the difference between MRP and CRP becomes noticeable for large yaw-drive ex-

citations. For such driving simulators, the positional offset between MRP and CRP can

therefore not be ignored, complicating the motion control.
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3.1 Introduction

DRIVING simulators are important tools for automotive research as they provide a safe,
cost-efficient, and controlled-environment alternative to real vehicle testing. Typical re-
search examples are human-machine interaction [Lindner et al., 2022], human-in-the-
loop testing of vehicle safety systems [Chai et al., 2020], and human factors research on
automated driving and traffic safety [Bazilinskyy et al., 2020]. When employed with a mo-
tion system, its goal is often to mimic the inertial motion of the real vehicle as closely as
possible to make the simulation more realistic. This conversion is performed by the MCA
[Stahl et al., 2014], which converts the simulated vehicle motion (typically, specific forces
and rotational rates) to motion that retains the physical limits of the simulator. Poor mo-
tion reproduction can lead to decreased realism [Casas-Yrurzum et al., 2020], simulator
sickness [Himmels et al., 2022b], and unwanted adaptation of control behavior [Romano
et al., 2019]. All of these consequences can negatively affect simulator testing.

Many motion systems consist of a six DoF hexapod [Ghafarian et al., 2023], also
known as Stewart [Stewart, 1965] or Stewart-Gough [Gough, 1962] platform. To improve
the potential motion reproduction, simulators are increasingly equipped with additional
motion subsystems to extend the available workspace. This is commonly done using lin-
ear xy-drives (e.g., FKFS’s simulator [Baumann et al., 2014]), rotational yaw-drives (e.g.,
BMW’s Sirius Vector [Kolff et al., 2022]), or a combination of both (e.g., Toyota’s Driving
Simulator [Chiew et al., 2008], Renault’s ROADS [Fang et al., 2022], and BMW’s Sapphire
Space [Kolff et al., 2022]). Although the additional workspace can improve the motion re-
production, the complexity of the motion control also inherently increases, as the MCA
needs to correctly incorporate the kinematics of the additional motion subsystems.

The kinematic relations between the various simulator motion subsystems depend
on where these subsystems are located (e.g., yaw-drive above or below the yaw-drive
[Fang et al., 2017]), and affect the specific forces and rotational rates as presented in
the simulator cabin. Although the kinematic relations for hexapods are known (e.g., [Br-
uschetta et al., 2018a]), to the best of our knowledge, a complete, formal derivation of
the kinematics of driving simulators with additional motion systems has not been pre-
sented yet. Furthermore, there can be a difference in motion between the point where
the simulator motion is applied (Motion Reference Point (MRP)) and where the driver is
actually seated and perceives the motion (Cueing Reference Point (CRP)), which is often
neglected to simplify the control problem. However, if simulators with additional subsys-
tems are used, it is possible that this positional offset cannot be neglected. If this offset
is not accounted for through the correct kinematic relations, unwanted perceivable dif-
ferences could occur between the MRP and the CRP. Thus, the difference between MRP
and CRP as a function of the simulator configuration must be investigated.

The contribution of this chapter is threefold: First, the kinematic relations of the spe-
cific forces and rotational rates are derived for the MRP. This is done for three general
simulator configurations: (i) a hexapod, (ii) a hexapod on an xy-drive and yaw-drive
combination, and (iii) the same configuration as (ii), but with the yaw-drive above the
hexapod. Using these results, the kinematic relations of many other motion simulators
can be derived analogously. Second, the equations of motion relating the MRP and the
CRP are derived. Third, by simulating the kinematic configurations using sinusoids, the
differences in motion between the MRP and the CRP are quantified.
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The structure of this chapter is as follows. Section 3.2 describes the motion system
kinematic relations. Section 3.3 describes the simulation results, followed by the discus-
sion in Section 3.4, and the conclusion in Section 3.5.

3.2 Kinematics of Motion Systems

3.2.1 Vehicle System

When driving in a simulator, ideally the motion of the simulator comes as close as pos-
sible to the real vehicle. The human perception of motion primarily occurs through the
vestibular system [Houck et al., 2005], located near the inner ears, defining the Vehicle
Reference Point (VRP), see Figure 3.1. The specific forces and rotational rates occurring
at this point in the real vehicle are the motion that the simulator should reproduce. An In-
ertial Measurement Unit (IMU) measures specific forces and rotational rates [Nogueira
et al., 2021], which can be in an arbitrary position. The specific forces and rotational
rates must be transformed from the position of the IMU to the VRP. The vector rIV re-
lates these points, see Figure 3.1.

IMU

VRP

VIS

rIV
xV

I

zV
I

xV
V

zV
V

xV I S

zV I S

Figure 3.1: The vehicle system, indicating the position of the Vehicle Reference Point (VRP) with respect to the
Inertial Measurement Unit (IMU). The IMU measures the vehicle’s specific forces and rotational rates. The
vehicle’s position and attitude are defined in the Vehicle Inertial System (VIS).

3.2.2 Simulator Systems

The aim of the MCA is to convert the vehicle model specific forces and rotational rates,
as acting on the VRP, to generate platform motion acting on the human as close as pos-
sible to those experienced in a real vehicle. The specific forces and rotational rates are
therefore required as inputs of the MCA and are generated by a vehicle model. Therefore,
similar to the VRP in the real vehicle, for the simulator the CRP exists, in which the mo-
tion is perceived, e.g., see Figure 3.2a. Thus, the motion applied in the MRP must aim at
producing the proper motion in the CRP.

The three kinematic configurations studied in this chapter are based on two systems
present at BMW Group. First, the Ruby Space (RS, Figure 3.2a) consists of a hexapod
on top of a tripod. The latter acts as a combination of an xy-drive (by moving in x and
y) and a yaw-drive (by rotating around the z-axis) [Kolff et al., 2021; Kolff et al., 2024b].
Second, the Sapphire Space (SS, Figure 3.2b), consisting of a large xy-drive at the bottom,
a hexapod, and a yaw-drive. Both systems therefore have nine DoFs to manipulate the
three translations and three rotations of the vehicle mockup. The platform workspace
limits are shown in Table 3.1. Next to differences in size, the fundamental difference
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between the systems is where the additional yaw rotations are applied. To calculate the
resulting forces and rates acting on the vehicle mockup body frame B, as a function of
the motion applied in the Simulator Inertial System (SIS), (conveniently located in the
geometric center of the lowest simulator component), the contributions of the different
DoFs must be combined. Because the hexapod of the Ruby Space is rotated through
the tripod rotation, a local Tripod Inertial System (TIS) fixed to the tripod is defined, see
Figure 3.2a. In practice, the vector rB

MC
between MRP and CRP can also be different per

simulator and vehicle mockup combination. To allow for a fair comparison, it is assumed
that rB

MC = [x, y, z]= [−0.185, 0.40, 1.4]⊤ for both systems.

CRP

MRP

SI S

T I S

rB
MC

Tripod

Hexapod

xS

zS

xT

zT

xT
M

zT
M

xT
C

zT
C

(a) The Ruby Space. Tripod actuators are
not displayed.

CRP

MRP

SI S

Yaw-drive

Hexapod

X-drive

Y-drive

xSI S

zSI S

rB
MC

xS
M

zS
M

xS
C

zS
C

(b) The Sapphire Space.

Figure 3.2: Side views of the motion systems, showing the Motion Reference Point (MRP) and Cueing Reference
Point (CRP). These are defined in the Tripod Inertial System (TIS) (superscript T) and Simulator Inertial System
(SIS) (superscript S).

Table 3.1: Uni-directional workspace limits of the two motion systems, RS = Ruby Space, SS = Sapphire Space.

hexapod xy-drive yaw-drive
xh yh zh ϕh θh ψh xd yd ψd
m m m deg deg deg m m deg

RS 0.28 0.25 0.2 20 20 20 0.75 0.75 20
SS 1.4 1.2 0.8 25 25 35 9.57 7.85 180

3.2.3 Kinematic Chains

3.2.3.1 Six Degrees of Freedom

For a six DoF simulator, the attitude of the system with respect to the inertial reference
system SIS is defined by the set of three Euler angles ϕ, θ, and ψ, describing the roll,
pitch, and yaw angles, around the x-, y-, and z- axes, respectively. In driving kinematics,
the x-axis typically points forwards, the y-axis to the left (seen from the drivers perspec-
tive), and the z-axis upwards. The subsequent rotations over each angle are based in-
trinsically on the newly created coordinate system of the object by the previous rotation,
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such that the rotation sequence matters, see Figure 3.3. The most common sequence
is z − y ′ − x′′ [Diebel, 2006], i.e., the yaw rotation is applied first, followed by the pitch
rotation, and then the roll rotation. The transformations due to these angles are calcu-
lated using the Euler transformation matrices, where the rotation angles are defined as
counter-clockwise positive:

Rx (ϕ) =




1 0 0
0 cosϕ −sinϕ

0 sinϕ cosϕ


 , Ry (θ) =




cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


 , (3.1)

and Rz (ψ) =




cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 . (3.2)

A clockwise system would result in switched signs of the sin-terms. Commands to the

x0

y0

z0

x′

y ′

ψ

(a) Rotation 1: ψ around
z.

x0

y0

z0

x′

y ′
x′′

z ′′

θ

(b) Rotation 2: θ around
y ′.

x0

y0

z0

x′

y ′
x′′

z ′′

y ′′′
z ′′′

ϕ

(c) Rotation 3: ϕ around
x′′.

Figure 3.3: Three consecutive rotations using the order z − y ′−x′′ (ψ−θ−ψ).

motion system are generally defined in the inertial reference system SIS, or relative to
its predecessor. To calculate the specific forces (including the gravity) on the cabin in its
body-fixed system, one has to rotate the accelerations over the angles ψ, θ, and ϕ:




fx

fy

fz




B

M

= R⊤
x (ϕ)R⊤

y (θ)R⊤
z (ψ)






ax

ay

az




hex

+




0
0
g






SI S

. (3.3)

Note that, in order to express the specific forces in terms of the motion in the inertial
system, the inverse of the rotation sequence must be taken. This equals its transpose,
because the rotational matrices are orthogonal (i.e., R−1 = R⊤). Because of the rotations,
the specific forces in the body system of the simulator depend on the simulator orien-
tation. This shows how sustained specific forces can be generated: rotations over the
angles ϕ and θ induce sustained lateral or longitudinal specific force, respectively, due
to the gravity component (“tilt-coordination”, see Stratulat et al. [2011]).

For the rotational rates, a conversion from the Euler to body rates is necessary. Due
to the importance of the rotation order, the body rates depend on any previously made
rotation. The roll rate does not require a transformation, as it is the last rotation applied.
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The pitch rate is next in the sequence and must be transformed over the roll angle. Fi-
nally, the yaw rate must be transformed over the roll and pitch angles:



ωx

ωy

ωz




B

M

=



ϕ̇

0
0


+R⊤

x (ϕ)




0
θ̇

0


+R⊤

x (ϕ)R⊤
y (θ)




0
0
ψ̇




=




1 0 −sinθ

0 cosϕ sinϕcosθ
0 −sinϕ cosϕcosθ






ϕ̇

θ̇

ψ̇


 .

(3.4)

The resulting rotational rate vector ωB contains the rotational rates of the cabin, i.e., the
body rates as a function of the Euler rates. (3.4) furthermore shows that only for small
angles (< 5◦) the matrix can be linearized to an identity matrix, such that the body rates
equal the Euler rates.

3.2.3.2 Nine Degrees of Freedom, Yaw-drive Below Hexapod

Second, a configuration is investigated with an xy-drive and a yaw-drive at the below
the hexapod. This configuration corresponds to the BMW’s Ruby Space simulator, see
Figure 3.2a. As mentioned, it allows for additional translation in xd and yd , as well as
additional rotation over an angle ψd . This latter, secondary rotation thus occurs below
the hexapod. As the hexapod base moves with the tripod, the rotation sequence of the
whole system is ψd −ψ− θ −ϕ. As the two yaw contributions are consecutive, these
contributions to the total yaw angle are additive, as they rotate around the same axis. The
contribution of the hexapod accelerations do not rotate with the angle ψd , as they are
defined in the local frame of the tripod TIS, on which the hexapod is located. Therefore,
the total specific forces in the body frame become:




fx

fy

fz




B

M

= R⊤
x (ϕ)R⊤

y (θ)R⊤
z (ψ)







ax

ay

az




T I S

hex

+R⊤
z (ψd )






ax

ay

0




tr i

+




0
0
g






SI S


 . (3.5)

And similar to (3.4), the rotational rates are:



ωx

ωy

ωz




B

M

=



ϕ̇

0
0


+R⊤

x (ϕ)




0
θ̇

0


+R⊤

x (ϕ)R⊤
y (θ)




0
0

ψ̇+ ψ̇d




=




1 0 −sinθ

0 cosϕ sinϕcosθ
0 −sinϕ cosϕcosθ







ϕ̇

θ̇

ψ̇+ ψ̇d




(3.6)

The resulting rotational rate vector ω contains the rotational rates of the cabin. Note
that the presence of a yaw-drive at the bottom thus does not affect the effect of the lin-
earization, i.e., it is identical to (3.4). Thus, for small angles ϕ and θ, the body rates might
approximate the Euler rates.
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3.2.3.3 Nine Degrees of Freedom, Yaw-Drive above Hexapod

Finally, the kinematic chain is considered for the same system, but with the yaw-drive
above the hexapod (corresponding to BMW’s Sapphire Space, see Figure 3.2b). Again,
its rotation sequence is fixed, although the yaw-drive rotation is here always the last in
the chain, i.e., the order is ψ−θ−ϕ−ψd . A benefit of this is that the yaw-drive rotation
can be fully used to generate yaw motion, as it is unaffected by the rotations of the other
DoF. This is opposed to the case with the yaw-drive below, where the yaw motion is
always entangled with the roll and pitch motion. An important drawback, however, is
that the yaw rotation contributions of the yaw-drive and the hexapod are not additive
anymore, as these do not rotate around the same axis if ϕ and θ are non-zero. Therefore,
an additional rotation matrix Rz (ψd ) is required, such that the specific forces are:




fx

fy

fz




B

M

= R⊤
z (ψd )R⊤

x (ϕ)R⊤
y (θ)R⊤

z (ψ)


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

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
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x y

+



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

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
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
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SI S

. (3.7)

Furthermore, the rotational rates become:



ωx

ωy

ωz




B

M

=




0
0
ψ̇d


+R⊤

z (ψd )



ϕ̇

0
0


+R⊤

z (ψd )R⊤
x (ϕ)




0
θ̇

0


+R⊤

z (ψd )R⊤
x (ϕ)R⊤

y (θ)




0
0
ψ̇




=




0 cosψd sinψd cosϕ −cosψd sinθ+cosθ sinϕsinψd

0 −sinψd cosψd cosϕ sinψd sinθ+cosψd sinϕcosθ
1 0 −sinϕ cosϕcosθ







ψ̇d

ϕ̇

θ̇

ψ̇




(3.8)

This shows a key difference compared to (3.4) and (3.6), because here the transformation
matrix includes terms of the yaw-drive as well. Due to the larger allowable rotations of
this device, the small angle approximation is not valid anymore. Therefore, it cannot be
assumed that the body rates equal the Euler rates. This complicates the motion control,
as it must include the non-linear conversion matrix of (3.8). Note that the kinematic
relations of other simulator systems can be derived analogously, see Table 3.2.

3.2.4 Reference Point Shift

The previously derived specific force and rotational rate definitions apply in the MRP.
As the motion of the simulator is to be calculated in the CRP, the positional offset rB

MC

between these two points should be accounted for. When assuming the simulator is a
rigid body, the body rates do not depend on location of the reference point (ωB =ωB

M =

ωB
C ) [Diebel, 2006]. The specific forces require a transformation, however. As vector rB

MC

points from the MRP to the CRP:

rI
C = rI

M +rI
MC = rI

M +TI B rB
MC , (3.9)
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Table 3.2: Overview of typical kinematic structures and their expressions for the specific forces and rotational rates (for counter-clockwise rotations).

Configuration Specific forces fB Rotational rates ωB

xy-hex-yaw

(Sapphire Space) R⊤
z (ψd )R⊤

x (ϕ)R⊤
y (θ)R⊤

z (ψ)







ax

ay

0




x y

+



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ay

az




hex

+




0

0

g







SI S 


0 cosψd sinψd cosϕ −cosψd sinθ+cosθ sinϕsinψd

0 −sinψd cosψd cosϕ sinψd sinθ+cosψd sinϕcosθ

1 0 −sinϕ cosϕcosθ







ψ̇d

ϕ̇

θ̇

ψ̇




x/y-hex

(Diamond Space) R⊤
x (ϕ)R⊤

y (θ)R⊤
z (ψ)





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x y
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
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


0

0

g







SI S 


1 0 −sinθ

0 cosϕ sinϕcosθ

0 −sinϕ cosϕcosθ






ϕ̇

θ̇

ψ̇




tri-hex
(Ruby Space) R⊤

x (ϕ)R⊤
y (θ)R⊤

z (ψ)







ax

ay

az




T I S
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+R⊤
z (ψd )






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0




t r i

+




0

0
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





SI S





1 0 −sinθ

0 cosϕ sinϕcosθ

0 −sinϕ cosϕcosθ





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ϕ̇

θ̇

ψ̇+ ψ̇d




hex
(Vega Vector) R⊤

x (ϕ)R⊤
y (θ)R⊤

z (ψ)







ax
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

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+




0

0

g





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SI S 


1 0 −sinθ

0 cosϕ sinϕcosθ

0 −sinϕ cosϕcosθ


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

ϕ̇

θ̇

ψ̇




yaw-hex

(Sirius Vector) R⊤
x (ϕ)R⊤

y (θ)R⊤
z (ψ)R⊤

z (ψd )


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

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+


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
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0 cosϕ sinϕcosθ

0 −sinϕ cosϕcosθ







ϕ̇

θ̇

ψ̇+ ψ̇d


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with I short for the inertial SIS frame and B for the body-fixed frame. When taking the
time derivative to obtain the velocity:

vI
C =

drI
C

dt
=

drI
M

dt
+

d(TI B rB
MC )

dt

= vI
M + ṪI B rB

MC +TI B ṙB
MC ,

(3.10)

Note that (TB I = Rx (ϕ)Ry (θ)Rz (ψ))⊤ for a hexapod, (TB I = Rx (ϕ)Ry (θ)Rz (ψ+ψd ))⊤ for
Ruby Space, and (TB I = Rz (ψd )Rx (ϕ)Ry (θ)Rz (ψ))⊤ for Sapphire Space, as derived ear-
lier. Taking the time derivative to obtain the acceleration and transforming to the body
system:

aB
C = TB I

(
dvI

M

dt
+

d(ṪI B rB
MC )

dt
+

d(TI B ṙB
MC )

dt
+TI B r̈B

MC

)

= TB I

(
aI

M + T̈I B rB
MC + ṪI B ṙB

MC + ṪI B ṙB
MC +TI B r̈B

MC

)

= aB
M +TB I T̈I B rB

MC +2TB I ṪI B ṙB
MC +aB

MC .

(3.11)

Because the rotational matrices are orthogonal, the transformation matrix TI B , which is
a product of the rotational matrices, is also orthogonal, such that T−1

I B
= TT

I B
and there-

fore TI B T⊤
I B = I. The derivative of the transformation matrix TI B can then be expressed

through a tensor matrix [Buschmann, 2014; Diebel, 2006; Olivari et al., 2019]:

S(ω) = ṪI B T⊤
I B → ṪI B =

S(ω)

T⊤
I B

= S(ω)TI B (3.12)

with:

S(ω) = S(ωx )+S(ωy )+S(ωz ) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


. (3.13)

The derivative of ṪI B can be found using the chain rule:

T̈I B =
d(S(ω)TI B )

dt
= Ṡ(ω)TI B +S(ω)ṪI B

= Ṡ(ω)TI B +S2(ω)TI B .
(3.14)

Subsequently, (3.12) and (3.14) can be substituted into (3.11):

aB
C = aB

M + Ṡ(ω)rB
MC +S2(ω)rB

MC +2S(ω)ṙB
MC +aB

MC , (3.15)

where Ṡ(ωC ) contains the time derivatives of the elements in S(ωC ), i.e., the rotational
accelerations. This expresses the total acceleration in the CRP, which is converted to the
total specific force in the CRP by substituting aB

M with fB
M :

fB
C = fB

M︸︷︷︸
(i)

+ Ṡ(ω)rB
MC︸ ︷︷ ︸

(ii)

+S2(ω)rB
MC︸ ︷︷ ︸

(iii)

+2S(ω)ṙB
MC︸ ︷︷ ︸

(iv)

+aB
MC︸︷︷︸
(v)

. (3.16)
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This is the main kinematic relation for rigid bodies. It consists of (i) the acceleration
of the MRP in the body system, (ii) the tangential acceleration, (iii) the centripetal ac-
celeration, (iv) the Coriolis acceleration, and (v) the relative acceleration between the
CRP and MRP [Ellensohn, 2020]. The relation itself does not depend on the kinematic
configuration of the motion system. However, the centripetal, tangential, and Coriolis
acceleration depend on the rotational rates ωB

C of the rigid body, corresponding to (3.4),

(3.6), or (3.8), and are thus implicitly configuration-specific. The element fB
M contain the

specific forces in the MRP in the body frame, which corresponds to (3.3), (3.5), or (3.7).

3.3 Simulations

3.3.1 Testing Procedure

A testing procedure was used to compare the specific forces between the MRP and the
CRP, based on (3.16):

∆fB
C M = fB

C − fB
M

= Ṡ(ω)rB
MC +S2(ω)rB

MC +2S(ω)ṙB
MC +aB

MC .
(3.17)

The following motion configurations are tested, based on the three system introduced in
Section 3.2.2:

C1: An xy-drive and a hexapod.

C2: An xy-drive, a yaw-drive (ψd =±20◦), and a hexapod.

C3: An xy-drive, a yaw-drive (ψd =±180◦), and a hexapod.

C4: An xy-drive, a hexapod, and a yaw-drive (ψd =±20◦).

C5: An xy-drive, a hexapod, and a yaw-drive (ψd =±180◦).

Comparing conditions C1, C2, and C4 allows for investigating the role of the presence
and location of the yaw-drive for an excitation angle similar to that of Ruby Space. C3
and C5 show the extent to which additional yaw-drive excitation affects the difference
between MRP and CRP.

Note that the size of the xy-drive and the translational channels of the hexapod are
in fact irrelevant: as we look at the difference between MRP and CRP, both scale up
equivalently in terms of acceleration if the size of the xy-drive changes. Thus, this has no
effect on any further analyses on differences between the points.

A sinusoidal input was applied to the position signal of the various DoF of the con-
sidered motion configurations of the shape:

p(t)= A sin (ω̃t +φ), (3.18)

with its derivative as the velocity signal:

v(t) = ω̃A cos(ω̃t +φ), (3.19)
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and the double derivative as the acceleration signal:

a(t)=−ω̃2 A sin (ω̃t +φ), (3.20)

with the frequency ω̃ in rad/s, and the phase φ in rad. The amplitudes A were chosen to
fit the workspace of the simulator in each DoF, i.e., the positional workspace limits of Ta-
ble 3.1. The amplitudes of the rotational channels were set smaller (±10◦, a typical angle
used for tilt-coordination [Stratulat et al., 2011]) than the rotational limits of the motion
systems (See Table 3.1), as hexapods cannot fully rotate in all three rotational DoFs at
the same time [Ellensohn, 2020] due to their coupled DoFs. To represent representative
motion of a vehicle, such as a 90◦ corner taken in a 3s time span [Kolff et al., 2024b], the
frequency was set at ω̃=

π·90◦

180·3 = 0.5 rad/s in all motion channels.
To avoid situations where contributions of the sinusoids may (partially) cancel each

other out, the phases were set different in each DoF: φ= 2π·[ 1
9 , 2

9 , 3
9 , 4

9 , 5
9 , 6

9 , 7
9 , 8

9 , 9
9 ] for

[xh , yh , zh , φh , θh , ψh , xd , yd , ψd ]. The sinusoids were simulated for 20 s (Figure 3.4).
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Figure 3.4: Forcing functions of the nine Degrees of Freedom (DoFs), simulated for ω= 0.5 rad/s.

3.3.2 Results

Figures 3.5a-3.5c show the difference in simulated specific forces for fx , fy , and fz , re-
spectively, between the MRP and the CRP. The rotational rates ω are not shown, as for a
rigid body these are unaffected by a reference point shift, see Section 3.2.4, and thus the
difference between the MRP and the CRP is zero. The positive and negative perceptual
threshold are plotted as dashed lines, corresponding to values of ±0.05m/s2 [Reymond
and Kemeny, 2000]. Differences above these thresholds can be expected to lead to per-
ceivable differences between the MRP and the CRP. For conditions C1, C2, and C4, differ-
ences between the reference points are present, but only sometimes marginally exceed
the perceptual threshold. For conditions C3 and C5, corresponding to the large yaw-
drive excursions of ±180◦, the difference becomes noticeable and reaches its largest dif-
ference in fy (−1.5m/s2). Some care should be taken with the interpretation, as a higher
amplitude of the sinusoidal forcing functions between the conditions also implies that
the Euler angle derivatives are different between the conditions. This subsequently re-
sults in higher rotational rates. The forcing functions applied to the different motion
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Figure 3.5: The difference between the specific forces simulated in the MRP (rB
MC

= [0, 0, 0]T ) and the CRP

(rB
MC

= [−0.185, 0.40, 1.4]T ), for the five considered motion system configurations with ω = 0.5 rad/s. The
colors correspond to the conditions defined in Figure 3.4, the black dashed lines are the perceptual threshold
of ±0.05m/s2 from Reymond and Kemeny [2000].

systems are therefore not the same. However, this shows a inherent property of larger
yaw-drives, as these allow for, and practically will have larger rotational rates.

To generalize the results of the yaw-drive excitation, the results are generated for the
complete range of yaw-drive amplitude Aψd

, corresponding to the maximum excitation
of the yaw-drive, between 0◦ and ±180◦. To quantify the overall difference between the
MRP and the CRP specific force signals in x, y , and z direction, the norm [Pouliot et al.,
1998] is used:

∆ fn (t)=
√

(∆ f B
xC M

)2 + (∆ f B
yC M

)2 + (∆ f B
zC M

)2. (3.21)

For each yaw-drive angle, the maximum absolute values of the norm values
(max[|∆ fn (t)|]) are calculated, i.e., the largest occurring mismatch, see Figure 3.6.
These are plotted as function of the yaw-drive amplitude Aψd

for the configurations
with the yaw-drive below (grey) and above (black). The perceptual threshold is again
plotted as a dashed line, of which also the norm of the three directions is calculated,
such that the line corresponds to 0.087m/s2 . The figure shows that for C1 (without a
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Figure 3.6: Maximum norm of the difference in specific force between the Motion Reference Point (MRP) and
the Cueing Reference Point (CRP), as a function of yaw-drive forcing function amplitude.

yaw-drive), the difference between the MRP and the CRP can already be noticed, as it
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lies above the perceptual threshold at 0.09m/s2 . When a yaw-drive is added and excites
to ±20◦, corresponding to the conditions C2 and C4, the differences are still limited at
0.11m/s2 and 0.12m/s2 . At larger yaw-drive angles, the norm difference increases more
than linearly. At the conditions C3 and C5, with a ±180◦ yaw-drive, the norm differences
are 1.05m/s2 and 1.53m/s2 . This will lead to erroneous accelerations perceived in the
simulator.

3.4 Discussion

The simulation results show that the configurations with the large excitation yaw-drive
(±180◦), i.e., C3 and C5, lead to large differences in the specific forces between the MRP
and CRP. For simulators with extended yaw-drive capabilities, these results emphasize
the crucial importance of utilizing the correct reference point in an MCA. Incorrect ref-
erence point selection will directly lead to significant spurious specific forces, which can
affect driving simulator experiments and increase the occurrence of simulator sickness.
For smaller yaw-drive angles (±20◦, C2 and C4) or no yaw-drive at all (C1) the differences
are smaller (0.11m/s2 , 0.12m/s2 , and 0.09m/s2 , respectively), but still slightly above the
perception threshold (0.087m/s2). This shows that even for such smaller systems, the
difference cannot be ignored in the current simulator configurations.

Although condition C5, with the ±180◦ yaw-drive above leads to smaller differences
than C3, both show large deviations between the MRP and the CRP. A yaw-drive at the
bottom shows an another, important benefit: for small roll and pitch angles (5 − 10◦

[Diebel, 2006]) of the hexapod, see (3.6), the system can be linearized. This reduces the
complexity compared to the yaw-drive on top, as here the additional contribution of the
yaw-drive (see (3.8)) implies that the same linearization procedure cannot be made. This
could be of great impact on MPC MCAs [Lamprecht et al., 2021], as the linearization can
lead to a simplified MCA. For example, in an MPC MCA, the non-linear structure of (3.16)
could be avoided, resulting in an easier control problem. A benefit of a yaw-drive at the
top is that its contribution to the yaw rate does not require a transformation between
ψd and ωz . Which configuration is superior might thus depend on the properties of the
MCA under consideration.

As a note on limitations, it must be stressed that the presented results on the devia-
tions between the MRP and the CRP are a function of several variables. First, note that
the perceptual thresholds used in this chapter by Reymond and Kemeny [2000] were
measured unidirectionally, which are likely higher when measured under motion in all
directions. In practice the deviation for the smaller systems (C1, C2 and C4) might there-
fore be of no practical meaning. The specific forces are also directly a function of the
distance between the MRP and the CRP (rB

MC ), see (3.16). Most simulator systems and
mock-up combinations at BMW (See Kolff et al. [2022]) are similar in this regard, such
that the values of rB

MC in this chapter are representative. If a simulator is considered
that is smaller than the one presented in this chapter, the degree of erroneous specific
forces also decreases. Therefore, the results and interpretations presented in this chapter
should be used as guidelines, rather than a one-fits-all answer.
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3.5 Conclusion

This chapter presented the derivation of the kinematic relations (specific forces and rota-
tional rates) of three types of driving simulators as currently in use at BMW: a hexapod, a
hexapod and an xy-drive with a yaw-drive below, and the same system, but with the yaw-
drive on top. The results show that increasing the excitation of a yaw-drive increases the
difference between the Motion Reference Point (MRP) (the point where the motion is
applied) and the Cueing Reference Point (CRP) (where the driver perceives the motion).
For a hexapod, with or without a ±20◦ yaw-drive, this difference is close to the perceptual
threshold, such that the motion control of the simulator might be simplified by not cor-
recting for the difference between MRP and CRP. For systems with a ±180◦ yaw-drive,
such large differences between the motion in the MRP and the CRP are present, that
erroneous specific forces in the order of 1 m/s2 are present. Here, the motion control
should account for the difference in MRP and CRP, complicating the motion control.
This finding is irrespective of whether the yaw-drive on top or below the hexapod, al-
though the difference between MRP and CRP are larger when the yaw-drive is below the
hexapod. However, when the yaw-drive is on top, the resulting non-linear relations to
calculate the body rates greatly increase kinematic complexity, which is a crucial factor
for state-of-the-art MPC-based MCAs. With increasing kinematic complexity of state-of-
the-art driving simulators, this increased understanding of the kinematic relations and
the effects of the MCA reference point position is crucial knowledge for engineers and
scientists testing and developing intelligent vehicles.
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Key findings

• In urban simulations, subjective ratings of the motion cueing are dominated by the
lateral and longitudinal specific force mismatches.

• A linear rating model can predict a high degree (90%) of the measured continuous
rating variance.

• The better the motion cueing is rated, the less reliable these ratings are, and vice
versa.

• The overall rating of motion cueing in an urban drive is dominated by the worst
rating during that drive.

This chapter is based on the following publications:

Title: Quality Comparison of Motion Cueing Algorithms for Urban Driving Simulations.
Authors: M. Kolff, J. Venrooij, M. Schwienbacher, D.M. Pool, and M. Mulder.
Proceedings: Driving Simulation Conference 2021 Europe, Munich, Germany, pp. 141–148.

Title: Reliability and Models of Subjective Motion Incongruence Ratings in Urban Driving Simulations.
Authors: M. Kolff, J. Venrooij, M. Schwienbacher, D.M. Pool, and M. Mulder.
Journal: IEEE Transactions on Human-Machine Systems, 54(6), pp. 634-645, 2024.
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Abstract

In moving-base driving simulators, the sensation of the inertial car motion provided by

the motion system is controlled by the Motion Cueing Algorithm (MCA). Due to the diffi-

culty of reproducing the inertial motion in urban simulations, accurate prediction tools

for subjective evaluation of the simulator’s inertial motion are required. In this chapter, an

open-loop driving experiment in an urban scenario is discussed, in which 60 participants

evaluated the motion cueing through an overall rating and a continuous rating method.

Three MCAs were tested that represent different levels of motion cueing quality. It is in-

vestigated under which conditions the continuous rating method provides reliable data in

urban scenarios through the estimation of Cronbach’s Alpha and McDonald’s Omega. Re-

sults show that the better the motion cueing is rated, the lower the reliability of that rating

data is and the less the continuous rating and overall rating correlate. This suggests that

subjective ratings for motion quality are dominated by (moments of) incongruent motion

while congruent motion is less important. Furthermore, through a forward regression ap-

proach it is shown that participants’ rating behavior can be described by a first-order low-

pass filtered response to the lateral specific force mismatch (66.0%), as well as a similar

response to the longitudinal specific force mismatch (34.0%). By this better understand-

ing on the acquired ratings in urban driving simulations, including their reliability and

predictability, incongruences can be more accurately targeted and reduced.
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4.1 Introduction

URBAN driving is an important use-case in driving simulation due to its high impor-
tance in vehicle development. Especially for the design of autonomous vehicles, driving
in urban environments proves to be one of the most challenging use-cases. Interactions
with the surroundings have a higher level of complexity [Zhan et al., 2016] and the like-
lihood of motion sickness due to the vehicle movements increases [Irmak et al., 2021;
Salter et al., 2019; Turner and Griffin, 2000] compared to other scenarios. Driving simula-
tors offer a unique ability to support the development of vehicle technologies by creating
safe and repeatable test conditions [Bruschetta et al., 2018a]. Many driving simulators
are equipped with a motion system to recreate the inertial motion of the simulated ve-
hicle as closely as possible through the reproduction of its specific forces and rotational
rates. This conversion is performed by the MCA. Especially for urban driving, with its
characteristic sharp curves, roundabouts and lane changes (strong lateral motion) and
frequent decelerations/accelerations (strong longitudinal motion) [Qazani et al., 2020],
the workspace-constrained motion system can often not (fully) reproduce the reference
motion [Ellensohn, 2020], such that mismatches occur. Not all mismatches are neces-
sarily problematic, however, since some can go unnoticed by the driver [Berthoz et al.,
2013]. Only when a driver notices a deviation between their expectation of the real ve-
hicle motion and what they actually perceive can the simulator motion be considered
incongruent [Cleij et al., 2018]. In an urban simulation, the presence of incongruences
combined with the strong visual stimuli can induce relatively high simulator sickness
levels [Himmels et al., 2022b]. Understanding which mismatches lead to incongruences
is therefore paramount for improving these simulations.

Evaluating the (in)congruence of motion is most commonly based on subjective eval-
uations obtained from drivers. Such subjective ratings provide a direct measurement of
the perceived quality of the presented motion cueing. Thus, they are crucial when de-
sign choices in motion cueing have to be made for (upcoming) driving simulator experi-
ments, such as selecting a simulator, motion cueing algorithm, and/or MCA parameters.
Several different subjective rating methods exist. For example, it is possible to extract
an overall rating that summarizes a single maneuver [Cleij et al., 2018] or a whole drive
[Biemelt et al., 2021; Rengifo et al., 2021]. A problem with these subjective rating meth-
ods is that they can only be obtained when the motion cueing is tested by human test
drivers. In practice, it is not realistic to obtain statistically relevant rating data for all
possible variations of motion cueings. Furthermore, some novel MCAs in development
might not even be testable in a simulator yet. Only with an understanding of the rela-
tive importance of the various mismatch channels can attempts to improve the motion
cueing be performed with a focus on the most critical mismatches. Thus, predicting sub-
jective ratings would be a crucial development, which requires models on the expected
subjective rating data. However, the subjective ratings methods that are generally ap-
plied in simulator driving experiments (e.g., maneuver-based and overall ratings) are of-
ten not of sufficiently high resolution that they can be used for extracting models. Cleij et
al. [2018] therefore introduced a continuous rating method: while being driven around,
drivers continuously give a rating that aims to reflect their impression at each point in
time. The method has since been used in van der Ploeg et al. [2020] (same scenario as
Cleij et al. [2018]), Ellensohn et al. [2020],Ellensohn et al. [2019],Ellensohn et al. [2019]
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(rural scenarios), and Cleij et al. [2019] (rural-urban scenario). These continuous ratings,
with their high temporal resolution, do allow for modeling how objective motion mis-
matches relate to perceived motion incongruences. Thus, they are the missing link in
predicting motion cueing quality for driving simulator experiments.

Cleij et al. [2018] showed that for a scenario with three basic maneuvers (braking/ac-
celeration, cornering and these combined), participants are generally able to success-
fully perform the continuous rating task and provide useful data. The latter was investi-
gated by estimating the reliability of the data through the estimation of Cronbach’s Alpha,
although the relationship between the (in)congruence of the motion and the associated
reliability has not yet been investigated. Furthermore, Cleij et al. [2018] showed that
the worst-rated segment of the maneuver correlates most with the overall rating of that
maneuver. This gives rise to the hypothesis that incongruent motion generally shapes
the overall impression of drivers more than congruent motion. Whether this holds for
longer drives (containing multiple maneuvers), where the worst-rated maneuver would
also correlate most to the overall rating of this complete drive, is unknown, as the overall
ratings could be biased through short-term memory effects, such as the serial position
effect [Murdock Jr, 1962] or the peak-and-end-rule [Fredrickson and Kahneman, 1993].
Finally, Cleij et al. [2018] showed that their continuous rating data can be described by
a moving average filter of weighted lateral and vertical specific force, as well as roll and
yaw rotational rate mismatches terms. However, Ellensohn et al. [2019] showed that such
moving average dynamics are not sufficient to predict the ratings in a more complex and
longer rural scenario. It is thus unknown what model structure should be used for real-
istic urban scenarios, and what relative weightings best describe the data, as this could
be different for each scenario. Due to the strong longitudinal motions in urban driving,
it can be hypothesized that these motions strongly affect the ratings, in contrast to the
findings of Cleij et al. [2018].

This chapter presents four contributions. First, it investigates whether the continu-
ous rating method of Cleij et al. [2018] yields useful results for a realistic urban driving
scenario. Second, it examines whether a general relation exists between the maximum of
the continuous ratings in each maneuver and the overall ratings for a long and realistic
urban scenario, in contrast to the short scenario described in Cleij et al. [2018]. Third, the
relation between the ratings and their reliability is investigated through the estimation
of Cronbach’s Alpha and McDonald’s Omega. The latter has shown to provide better es-
timates of reliability, as Cronbach’s Alpha is known to underestimate reliability [Sijtsma,
2009]. Fourth, a rating model is developed, which was fit on the mismatch signals; these
signals are selected based on their contribution to the fit.

To support these contributions, this chapter uses data from a driving simulator exper-
iment in a realistic urban scenario with 60 participants, in which both continuous and
overall ratings were recorded. Three MCA settings were tested: (i) a classical washout al-
gorithm without tilt-coordination, with large mismatches in the longitudinal and lateral
specific forces, expected to provide low motion cueing quality; (ii) the same algorithm
with tilt-coordination, with smaller specific force mismatches (medium quality), and
(iii) an optimization-based algorithm with perfect prediction, best able to reproduce the
specific forces (highest quality). This range of motion cueing settings allows for a better
understanding of the impact of (in)congruent motion on reliability and predictability.
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Figure 4.1: Block diagram of the rating process. PMI = Perceived Motion Incongruence, MIR = Motion Incon-
gruence Rating. In the present experiment, the latter is extracted using a continuous rating R(t ) and an overall
rating ORP H . The red path represents the closed-loop driving control, not active in the present experiment.

The chapter is structured as follows. Section 4.2 introduces the rating task, reliability
estimates, and the modeling method. The experiment set-up is explained in Section 4.3.
Results are presented in Section 4.4, followed by a discussion in Section 4.5. Concluding
remarks are given in Section 4.6.

4.2 Methods

4.2.1 Rating Task

In the experiment, participants were driven around passively (referred to as “open-
loop”), rather than driving themselves. Their task was to evaluate how well the perceived
inertial motion in the simulator matched to what they would expect to feel from the
simulated vehicle, i.e., their PMI [Cleij, 2020]. A block diagram of the human rating
process in such tasks is shown in Figure 4.1. As participants do not know exactly
what the vehicle would feel like in a particular situation, they must form an internal
representation [Stassen et al., 1990] of the expected motion based on non-motion cues
(such as the visuals) of the simulation. This internal representation can be affected
by “expectation effects”, i.e., the participant’s level of experience with the task (driving)
and with the vehicle that is simulated. While the simulator motion is identical for
all test drivers, the expected motion signal can thus be different for each participant.
The simulator motion is perceived through the human vestibular and proprioceptive
systems, indicated as “Sensory System”. The internal representation and sensory system
combined are indicated in Cleij et al. [2018] as the “Perceptual System (PS)”. Further-
more, most driving simulations would drive closed-loop. In that case, an additional
path representing the driving control would be present (Figure 4.1, red elements). Given
the open-loop driving in the present experiment, this path is thus not active.

The PMI defines a participant’s impression of what is (in)congruent, and would be
the most useful quantity to measure. It is, however, internal to the human and not di-
rectly measurable. Instead, Cleij et al. [2018] proposed to measure a subjective Motion
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Incongruence Rating (MIR) that represents the PMI. The Response System (RS) between
the PMI and MIR can include the rating strategy, which can vary between drivers, as
well as any dynamics of the rating interface. In the case of continuous ratings, the MIR
is typically given through a rotary knob that can be adjusted at any time, resulting in a
time signal R(t). After each run, an overall rating representing the overall impression is
given verbally, yielding a single rating measurement ORP H . The subscript P H denotes
post-hoc, as the rating is taken after the completion of the drive. For both methods, the
MIR varies between 0 and 10, in steps of 1, where 0 indicates “fully congruent motion”
and 10 indicates “highly incongruent motion” [Cleij et al., 2019; Ellensohn et al., 2019a;
Ellensohn et al., 2020; Ellensohn et al., 2019c]. Based on earlier experience with partici-
pants, it is expected that, especially for the continuous ratings, the RS can be affected by
a number of rating “strategy effects”:

1. Task motivation describes the willingness to focus (on the motion) and actively
perform the (rating) task [McRuer and Jex, 1967; Mulder et al., 2018].

2. Cueing reference refers to what values drivers apply for the given incongruences,
which depends on which PMI-level they associate with the maximum (10) MIR
score. In Cleij et al. [2018], participants were shown the full range of the incongru-
ences before the experiment. In the present experiment, they were presented with
a false cue in the training sessions to anchor to the highest MIR (10).

3. Anticipation can occur when incongruences of upcoming maneuvers are expected
based on previous drives or from recognizing that a certain MCA setting is active.

4. Task understanding of the participant that only the PMI is to be evaluated, and no
other motion-related phenomena (e.g., visual motion, sound or vibrations).

4.2.2 Reliability

Recordings of continuous ratings over various conditions yield a collection of rating time
signals Rc j p (t), with c the condition, j the condition repetition and p the participant. If
along one of these elements the average is taken, this element is taken out of the sub-
script, such that, for example, R(t) represents the rating of the average participant across
all repetitions in a given condition.

In the experiment described in the current chapter, each run lasted 255 s, with con-
tinuous rating data being recorded at 100 Hz (∆t = 10 ms); each recording Rc j p contains
N = 25,500 samples. In psychometric theory, the total score is the sum of the run items
Xc j p =

∑
t Rc j p (t), where σ2

Xcp
is the variance of total scores over multiple repetitions.

Theoretically, if an infinite number of identical and independent repetitions were per-
formed by a participant, the average of all total scores would result in the true score, i.e.,
the expected value of the rating: Tcp = E [Xc j p ]. Each separate test result is bound to end
up with a random, stochastic measurement error Ec j p = Xc j p −Tcp . Reliability is defined
by how much of the test score variance can be explained by the true score variance [Si-
jtsma, 2009]. As the true score cannot be determined, only estimations of a lower bound
of reliability can be made. Here, the most common method (for continuous ratings [Cleij
et al., 2019; Cleij et al., 2018; Ellensohn et al., 2019b]) is by determining Cronbach’s Alpha,
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which represents a reliability value for each participant p [Cronbach, 1951]:

αcp =
J

J −1

∑
j σ

2
c j p

σ2
Xcp

. (4.1)

Here, J is the total number of repetitions and σ2
c j p

is the variance of the individual sam-

ples. The coefficient α is unbounded on the lower side, i.e., [−∞ < α ≤ 1], where the
upper bound of 1 indicates full reliability. The main assumption in the derivation of
Cronbach’s Alpha is “tau-equivalence” [Sijtsma, 2009], meaning that all repetitions of a
single condition share the same true score. Due to this constraining assumption, the use
of Cronbach’s Alpha has been criticized [Sijtsma, 2009] as it can lead to underestimations
of reliability. As an alternative, McDonald’s Omega [Sijtsma, 2009; Trizano-Hermosilla
and Alvarado, 2016], as introduced in McDonald [2000], is calculated as:

Ωcp =
(
∑

j λc j p )2

(
∑

j λc j p )2 +
∑

j (1−λ2
c j p

)
, (4.2)

where λc j p are the factor loadings. McDonald’s Omega is in the same range as Cron-
bach’s Alpha. As a crucial difference, however, McDonald’s Omega allows the variation
of the true scores, i.e., does not require the assumption of tau-equivalence. This pro-
vides a more accurate estimation on reliability than Cronbach’s Alpha. Due to the true
score variation, McDonald’s Omega is always equal to or higher than Cronbach’s Alpha
[Sijtsma, 2009]. The factor loadings λc j p were determined using factoran in MATLAB
R2018b, yielding Ωcp using (4.2).

4.2.3 Explanatory Model

4.2.3.1 Model Selection

To develop a response system model (Figure 4.2), a Multiple-Input-Single-Output
(MISO) AutoRegressive eXogenous (ARX) model is fitted. Its polynomial relationships
Bm(z)
A(z) , with the discrete-time complex variable z, represent the transfer functions Hm(z)

between the measured mismatches P̃m(t) (inputs) and a modeled rating signal R̃(t)
(output):

R̃(t)=
1

A(z)
ǫ(t)+

∑
m

Bm (z)

A(z)
P̃m(t), (4.3)

with polynomials of the form:

A(z) = 1+a1z−1
+a2z−2

+ . . .+ana z−na , (4.4)

Bm(z) = bm,1z−1
+bm,2z−2

+ . . .+bm,nb
z−nb (4.5)

Here, m represents the channel of the mismatch, e.g., m ∈ [ fx , fy , . . .]; na and nb are the
orders of the dynamics and ǫ(t) is the error term reflecting the noise to the system.

The signals P̃m (t) are formed by a model of the perceptual system (P̃S), with the
mismatches ∆S̃m (t) between the vehicle motion S̃veh,m (t) and the simulator motion
S̃sim,m (t) as inputs. The absolute value represents that both positive and negative mis-
matches result in an increase of the rating. Km represents the gains of the mismatches.
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zτ

z∆t

R̃(t)

| · | KP̃m

∑
mBm(z)

A(z)

1
A(z)

PS model (P̃S) RS model (R̃S)

∆S̃m(t)

mismatch channel m

P̃m(t)

+

++

−

ǫ(t)

S̃veh,m (t)S̃sim,m (t)

Figure 4.2: Proposed human rating model structure in open-loop driving. The rectangle layers represent the
various mismatch channels present in the model.

To express the fit quality, the Variance-Accounted-For (VAF) is determined using
e(t) = R(t)− R̃(t):

VAF =

[
1−

σ2
e(t )

σ2
R(t )

]
·100%. (4.6)

The σ2
(·)-terms indicate the variances. The VAF indicates how much of the variance of

the difference between the modelled and measured signals can be explained by the mea-
sured signal variance [van der El et al., 2018]. A value of 100% indicates a perfect fit,
whereas it is unbounded on the lower side, i.e., [−∞< VAF≤ 100%].

To only select and include the most influential mismatch signals ranked on their con-
tribution to the model quality of P̃S, a Forward Regression (FR) algorithm is used [Demir
et al., 2021]. At the start of the selection, the mismatch signals in the translational accel-
eration and jerk, as well as the rotational velocity, acceleration, and jerk are considered
as possible candidates. These signals only relate to the mismatches in the inertial mo-
tion. Any mismatches in the visual motion channels (i.e., the realism of the visuals) are
not explicitly considered, as the prime research motivation lies in understanding incon-
gruences as a function of inertial motion mismatches. However, note that the definition
of an incongruence considers the difference between the perceived simulator motion
and what the participants would expect to perceive in the real vehicle. In reality, this ex-
pected motion is primarily based on what the participant sees through the visuals of the
simulation. Thus, this visual information is implicitly incorporated in the perception of
motion incongruence.

Starting with an empty model, each mismatch signal is fit separately to the data. The
signal that provides the highest VAF is selected. In the second iteration, all other remain-
ing signals are tested in combination with the signal of the first iteration, selecting the
second signal for the model. This process is repeated until no term provides at least an
increase of 1% VAF. This method allows for testing all mismatch signals, such that only
the most influential signals are included, and unnecessary model complexity is avoided.

The time delay in P̃S is modeled by a term z−τ/∆t , where τ is the time delay constant.
As the ARX-structure cannot estimate a time delay, the FR method is repeated for de-
lay constants ranging between 0 s and 2.5 s with steps of 0.05 s, considering the delay of
1.45 s found by Cleij et al. [2018]. The method is again repeated with orders N = na = nb

ranging from 1 upwards until less than a 1% increase in VAF is observed.
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Figure 4.3: Top-down view of the driven route with urban maneuvers with acceleration (ACC), corners (CR),
decelerations (DEC), lane changes (LC) and a roundabout (RBT).

4.2.3.2 Parametric Model

The FR ARX method delivers transfer functions Hm (z) in the z-domain to the most in-
fluential mismatch channels. These are converted to transfer functions Hm (s) using the
bilinear transformation. To obtain more flexibility in the model structure and to acquire
explicit parameter values, a parametric model is fitted using the same mismatch chan-
nels as estimated by the FR method. As in the FR ARX fit, a fixed A(z) term for all mis-
match channels is assumed, such that all mismatch channels pass through the same
rating response filter. The model is fitted in the time-domain through the minimization
of a cost function:

arg min
Θ

J =
∑

t

[R(t)− R̃(t |Θ)]2, (4.7)

where Θ is the parameter set. In contrast to an ARX fit, this method does not guaran-
tee to find the global optimum. Therefore, 50 iterations are performed with uniformly
distributed random numbers between 0 and 3 as initial conditions. The parameter set
leading to the lowest cost is then selected.

4.3 Experiment Set-up

4.3.1 Scenario

In the experiment all participants experienced the same recording of a drive through typ-
ical urban maneuvers (Figure 4.3), consisting of lateral/yaw maneuvers (corners (CR),
lane changes (LC) and roundabout (RBT)) as well as longitudinal maneuvers (acceler-
ations (AC) and decelerations (DEC)). As later runs might induce more anticipation ef-
fects, the driving direction (left/right) was shown, together with the vehicle velocity.



4

68 4. Incongruences in Urban Simulations

(a) The Ruby Space simulator while mov-
ing.

(b) A test driver using the rating knob.

Figure 4.4: The experiment set-up (photos adapted from Ellensohn et al. [2019]).

0 1 2 3 4 5 6 7 8 9 10

Congruent/
perfect motion

Highly incongruent/
imperfect motion

Figure 4.5: The rating scale, ranging from 0 (Congruent motion) to 10 (Highly incongruent motion). It currently
displays a rating value of 7.

4.3.2 Apparatus

BMW Group’s Ruby Space simulator (Figure 4.4a) was used, with nine DoFs. It consists
of a hexapod on a tripod system, where the latter adds additional workspace in longitu-
dinal, lateral and yaw directions. The kinematic relations are summarized in Table 3.2
in Chapter 3. The iDrive knob on the center console was used by participants to give
the continuous rating (Figure 4.4b). The 240◦ projection screen showed the visuals and
a “rating bar” [Cleij et al., 2018], displaying the current continuous rating value. The size
and color of the rating bar changed from 0 (short, white) to 10 (long, red).

It was checked at the beginning of every experiment session (i.e., for each new par-
ticipant) whether the participant could comfortably and fully rotate through the rating
range (0-10) with one hand movement, which all participants were able to do without
problems. During the experiment, participants could rest their right arm on the center
console. Feedback obtained from the participants showed that they generally found the
knob easy and intuitive to operate. No comments or complaints regarding discomfort
and/or difficulty operating the rating knob were made. A typical (fast) transition time of
the rating recorded in the experiment required 40 ms per rating step. The rating knob
was connected to the CAN bus of the simulator, which is synced with the central simula-
tion software, together with the MCA control data and the motion system. This ensured
that the recorded ratings were always synchronized with the motion of the simulator.
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4.3.3 Independent Variables

Three MCAs were tested, reflecting different levels of (expected) quality. Their resulting
mismatch signals are shown in Figure 4.6, of which the specific forces were calculated
using (3.5) and the rotational rates using (3.6). As the first condition, a CWA [Conrad et al.,
1973; Reid and Nahon, 1985] was used, where the vehicle motion is distributed over the
hexapod (high-frequency) and tripod (low-frequency) channels, and washed-out with
second-order high-pass filters. There was no tilt-coordination (“NTC”), such that large
mismatches in the fx and fy channels (Figure 4.6) are present. This is expected to result
in high ratings (i.e., highly incongruent), as tilt-coordination can be used to improve the
cueing of sustained longitudinal and lateral specific forces, as long as the tilting rates
are not noticeable [Stratulat et al., 2011]. Therefore, it is expected that this condition
provides a reference for ‘low’ quality.

Second, a variant of the same classical washout algorithm was used, with active tilt-
coordination (‘CWA’). Due to the tilt-coordination, the sustained specific forces in fx and
fy cause the mismatches to be smaller. The yaw rate remains unaffected, as shown in
Figure 4.6f. The tilt-coordination was tuned aggressively such that the roll rate could be
noticeable (> 3 deg/s [Reymond and Kemeny, 2000], see Figure 4.6b) to obtain a better
reproduction of lateral specific force. The aim of this condition is to represent a state-of-
the-art algorithm that can potentially be used in real-time simulations. The condition
“CWA” is expected to represent “medium” quality due to two inherent limitations: as it
uses linear filters, a CWA must always be tuned to account for the worst-case maneuver,
limiting the simulator motion in all other maneuvers. Second, as the algorithm uses
causal filters, it cannot incorporate future states in the motion cueing.

As the third condition, an optimization-based algorithm was tested [Ellensohn et al.,
2019c], where the simulator motion along the complete recorded drive was optimized
offline, the Oracle (“ORC”). This algorithm can only be used in open-loop simulations,
but allows for the investigation of how the available simulator workspace may be fully
exploited. As a result, this condition has the smallest mismatches (Figure 4.6). Therefore,
this condition is expected to represent ‘high’ quality. The rotational rates ωx and ωy were
below the perceptual threshold (<3 deg/s).

4.3.4 Participants and Procedures

60 subjects participated (50 men, 10 women), all employees of the BMW Group with
a European car driver’s license B (M = 22.38 yrs, SD = 10.16 yrs) and an average yearly
driven distance of M = 18,833 km (SD = 13,207 km). The average age was M = 40.1 yrs
(SD = 10.1 yrs). 33 participants had previous experience in driving simulators. Partici-
pants provided informed consent. The experiment was approved following BMW’s inter-
nal ethics review procedure.

The experiment started with two training runs, after which participants drove with
either CWA, NTC or ORC. Each condition was repeated three times, yielding nine runs.
After every third run a five minute break was taken. Ten participants were unable to
finish the experiment due to various reasons.
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Figure 4.6: Mismatches of the three algorithms (NTC, CWA, ORC). Grey vertical lines indicate the maneu-
vers, with the grey text entries in (a) the urban maneuvers from Figure 4.3. The dashed horizontal lines in
(b) and (d) indicate the rotational threshold of 3 deg/s [Reymond and Kemeny, 2000], relevant for the use of
tilt-coordination.

4.4 Results

For nine participants, the experiment could not be finished (eight due to simulator sick-
ness, one due to technical problems). The data of these participants were discarded.
Figure 4.7 shows the continuous ratings (left) and overall ratings (right) of the remaining
51 participants. For the former, the lines indicate the mean ratings over the participants
and repetitions, R(t); the shaded areas represent the standard deviation. Lower ratings
indicate better perceived motion cueing quality. The individual rating data are included
in Appendix D.1.

4.4.1 Overall ratings

For the overall ratings, Lilliefors tests (p ≤ 0.01) showed that the data were normally
distributed. When analyzing the means of the ratings, ORC (µ = 2.44, σ = 1.04) is
rated better than CWA (µ = 3.89, σ = 1.79). The classical washout condition without
tilt-coordination, NTC, is rated the worst with µ= 5.18 and σ= 2.17.

Furthermore, it was checked whether there were significant differences between the
three MCA pairs (CWA-NTC, CWA-ORC and NTC-ORC). Within these pairs of indepen-
dent variable settings, a repeated measures one-way ANOVA was performed. A post-hoc
analysis showed very significant differences (p ≤ 0.01) between the CWA-NTC pair and
highly significant differences for the other two pairs (p ≤ 0.001). A Bonferroni correction
was used to correct for multiple comparisons, as each data set is used twice.
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4.4.2 Continuous ratings

The continuous ratings are shown in Figure 4.7 (left). The lines indicate the continuous
ratings, averaged over the participants. The shaded areas indicate the standard devia-
tion. Here, it is clear that the NTC algorithm performs the worst overall (highest rat-
ing), whereas ORC is the lowest rated. The means and standard deviations are for ORC:
µ= 0.44, σ= 0.44, for CWA: µ= 0.72, σ= 0.67, and for NTC: µ= 1.35, σ= 1.14. Thus, the
order of quality is in line with the overall ratings.

Figure 4.7 also shows the division of the maneuvers. Ratings within each maneuver
were analyzed by averaging the rating in that maneuver. As these data were not normally
distributed for any of the maneuvers except for ’Corner 4’, the Friedman’s test with Bon-
ferroni correction was used for all maneuvers to check for significance. Similar to the
overall ratings, the mean values are compared between the three MCA pairs to look for
significance. These results are shown in Table 4.1.

These results show that when analyzing the pair ’CWA-NTC’, the condition NTC is
the worst rated of the two, as all other mean values are higher than those of the CWA
conditions. Only for the initial acceleration the NTC has a slightly lower mean value, but
this difference is not a significant. Furthermore, it was found that only the maneuvers
at the start of the run (ACC, CR1, CR2 and LC1), which are relatively weak compared
to the rest of the run, do not have significant differences between the two conditions,
whereas all other maneuvers do. This indicates that participants generally do prefer the
CWA condition with tilt-coordination. Especially the roundabout, where constant tilt-
coordination is the only method to produce the sustained lateral acceleration, sees a
strong beneficial effect of adding tilt-coordination.

Furthermore, when comparing CWA with ORC, the latter results in lower average rat-
ings compared to the classical washout strategy. In all maneuvers that contained major
longitudinal cues (ACC, DEC1, ACR1 and DEC2), no significant differences were found.
However, all cornering maneuvers are rated significantly better for ORC than for CWA.
This indicates that for the highly dynamic 90◦ corners, typical for urban environments,
there is an advantage when using an optimization-based algorithm. Even though the
latter is not possible in real-time, human-in-the-loop driving, optimization-based algo-
rithms, also those that are capable of supporting human-in-the-loop driving, might im-
prove cueing quality in urban simulations compared to washout algorithms.

It is clear from the average values that NTC and ORC are the worst- and best-rated
conditions, respectively, meaning that their respective differences compared to the CWA
algorithm are most interesting. Nevertheless, Table 4.1 also includes this pair for com-
pleteness. Significant differences for almost all maneuvers were found.

4.4.3 Rating Relationships

To better understand the relation between the continuous (R(t)) and overall ratings
(ORP H ), the Pearson correlation ρ between ORP H and the maximum of R(t) within each
maneuver is calculated (Figure 4.8a, note that the horizontal axis is sorted by the aver-
age correlation over the three conditions for increased readability), similar as in Cleij et
al. [2018]. Some maneuvers correlate well (for CR6 and CR3 in NTC, ρ = 0.88) with the
overall ratings, similar to values as found in Cleij et al. [2018]. There is a clear difference
between the three conditions, where the lower rated (i.e., better) condition ORC also
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Table 4.1: Average MIR per MCA and significance levels per maneuver between each MCA pair. A * is significant
(p < 0.05), ** is very significant (p < 0.01) and *** is highly significant (p < 0.001).

Average R(t ) Significance pairs
Maneuver Abbr. CWA NTC ORC CWA-NTC CWA-ORC NTC-ORC

Acceleration ACC 0.31 0.24 0.25 - - -

Corner 1 CR1 0.95 1.22 0.56 - *** ***

Corner 2 CR2 1.02 1.48 0.63 - * ***

Lane change 1 LC1 0.44 0.54 0.32 - - *

Roundabout RBT 1.05 2.85 0.79 *** - ***

Deceleration 1 DEC1 0.40 0.89 0.22 *** * ***
Acceleration + Corner ACR1 0.94 1.58 0.49 ** - ***

Lane change 2 LC2 0.57 1.04 0.26 ** *** ***

Corner 3 CR3 1.08 1.76 0.62 *** * ***

Lane change 3 LC3 0.60 0.87 0.32 ** - ***

Corner 4 CR4 1.30 2.32 0.71 *** *** ***
Lane change 4 LC4 0.48 0.91 0.34 * - ***

Corner 5 CR5 1.09 1.86 0.60 ** ** ***

Corner 6 CR6 1.01 1.85 0.60 ** ** ***

Deceleration 2 DEC2 0.46 0.91 0.26 ** - ***

correlates the least to its own overall ratings and NTC correlates best. To further investi-
gate the relation between the rating and the correlation, the same values of ρ are plotted
as a function of the given rating in Figure 4.8b. A positive linear relationship exists be-
tween the continuous rating and its correlation with the overall rating. The maneuver
with the highest correlation, CR4, predict the overall ratings through the relationship
ORP H = 2.0+0.8 ·max[R(t)].

4.4.4 Reliability Estimates

Figure 4.9 shows the estimated reliability coefficients for the continuous MIR data for all
participants, split over the three conditions. The average reliabilities of NTC, CWA, and
ORC are for Ω: 0.79, 0.68 and 0.65 and for α: 0.74, 0.62 and 0.55, respectively. The reli-
ability values per participant are also shown as a function of the corresponding average
rating in that condition (hence, the rating averaged over time and averaged over three
runs). The overall trend shows that the higher the ratings, the more reliable the obtained
data is. This again confirms our expectation that more incongruent motion results in
more reliable data, and vice versa.

The figure contains both reliability metrics α and Ω, where Ω is by definition equal or
higher compared to α (see Section 4.2.2). The vertical bars show the difference between
both metrics. Differences are prominent (up to 0.3) for participants for whom α is low, in
line with predictions by Savalei and Reise [2019]. The spread of the reliabilities between
participants also becomes larger for smaller average ratings. It is thus at more congruent
motion where the use of Ω is beneficial, as it provides a higher lower bound of reliability,
avoiding the false conclusion that some participants’ data are unreliable at this point.

A regression of the form r = a − 1/(bR̄p + c) is fit to the data, with a, b, and c the
fit coefficients and R̄p , the average rating (over time and repetitions) per participant p.
This follows the range of both α and Ω, i.e., [−∞< r ≤ 1] and describes the trend of the
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Figure 4.7: Left: The averaged MIRs per MCA (as a function of time in seconds) with the standard deviation
displayed as shaded areas. Right: Box plots of the three distributions of the overall ratings; their means are
indicated by horizontal lines.

reliability. This function allows for predicting reliability based on measured ratings.

Reliability is also calculated for the overall ratings. For the continuous ratings, the
presented values represent within-subject reliability. This cannot be calculated for the
overall ratings, as per subject and per condition only one data point exists. Therefore,
the between-subject reliability is calculated, i.e., the reliability of the whole group. The
values for Ω are 0.91, 0.89 and 0.73, for conditions NTC, CWA, and ORC, respectively.
For the overall ratings, the values of Ω for the between-subject reliability are 0.92, 0.81
and 0.72. These values also indicate a decrease in reliability of the overall ratings, such
that the decrease can be considered inherent to the difficulty of rating congruent motion,
rather than a limitation in the continuous ratings.

4.4.5 Model Predictions

4.4.5.1 ARX Forward Regression

Results of the ARX FR method are shown in Figure 4.10. Note that the method was ap-
plied for the ratings of the three conditions separately (referred to as models a-CWA, a-
NTC, and a-ORC), as well as for all conditions grouped together in a single rating signal
(a-ALL). The estimated time delay parameter τ was 0 s (a-NTC and a-ALL) and 0.05 s
(a-CWA and a-ORC), independent of the model order. For N = 1, in all models except
a-CWA, the mismatch signal P̃ fy

(lateral specific force) forms the most important con-

tribution to the model followed by the longitudinal specific force mismatch P̃ fx
. Model

a-ORC contains an additional yaw rate term P̃ωz . The model fit on the CWA data (a-CWA)
has a different structure: its most important term is the yaw rate mismatch P̃ωz , followed
by the longitudinal specific force and yaw acceleration mismatches. Higher orders, as
shown in Table 4.2, do not provide a meaningful contribution to the model fits.

To calculate the relative contributions of the most important terms to the (first-order)
models, an influence factor is calculated as:

Im =

∑
t P̃m(t)

∑
t P̃ (t)

·100%, (4.8)
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Figure 4.8: Pearson correlation coefficients between the overall ratings (ORP H ) and the maximum of the con-
tinuous ratings within each maneuver (R̂man ).

with P̃m(t) = KP̃m
|∆S̃m (t)|, see Figure 4.2, and m the mismatch channel. This value rep-

resents the relative contributions of the mismatches of the channels, such that the sum
of all channels in the model is always 100%. This metric was introduced by Cleij et al.
[2018] and thus allows for a direct comparison to their reported values. The values are
shown in Table 4.3 under “ARX FR”, showing similar contributions of P̃ fy

and P̃ fx
, except

for a-CWA. In the latter, the P̃ωz also provides a strong contribution at 72.0%. Note that
although P̃αz was included in the model a-CWA, its contribution relative to the other
terms is negligible.

When repeating the process for higher orders (i.e., N = 2, N = 3), the same orders of
contributions are obtained and negligible increases in VAF are observed, such that it is
concluded that first-order dynamics are sufficient to explain the rating data and are thus
used for further analysis. The Bode plots in Figures 4.11a-4.11h show the estimated first-
order dynamics. The responses resemble those of low-pass filters, such that participants
apply smoothing to form their ratings. Furthermore, the phase responses in each model
are generally equal, due to the equal A(z) terms in all mismatch channels (as shown
in (4.3)). These phase shifts are within 0◦ and −90◦, indicating that the low-pass filters
have positive gains: An increase of the mismatches also leads to an increase in the rating.
The phase responses further reveal that possibly an additional response exists at high
frequencies, however, with negligible impact on the magnitude (< 10−3).

4.4.5.2 Parametric Model

The parametric models (denoted “p-”) are based on the estimated dynamics of the ARX
FR method. The additional dynamics at high frequencies, as estimated by the ARX FR
method, are not included, as it provided only negligible contributions to the magnitude
of the estimated dynamics. In addition, as the lack of a time delay cannot be readily
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Figure 4.9: Reliability coefficients αp and Ωp of all subjects per condition, showing that reliability decreases
with lower ratings. The legend in Subfigure 4.9b also applies to the same elements visible in the other subfig-
ures.

explained, a delay is still included in the parametric model; the model is fit in the form:

H( jω) =
∑
m

KP̃m

ωc

jω+ωc
e−τ jω. (4.9)

Each mismatch channel has a gain KP̃m
, whereas ωc is the cut-off frequency and τ the

time delay constant, assumed equal in all mismatch channels. The parameter sets that
describe the dynamics are Θ= [τ ωc KP̃ fy

KP̃ fx
]T for p-NTC and p-ALL,

Θ= [τ ωc KP̃ fy
KP̃ fx

KP̃ωz
]T for model p-ORC, and Θ= [τ ωc KP̃ωz

KP̃ fx
KP̃αz

]T for model

p-CWA. The resulting parameters are shown in Table 4.4. Generally, similar values are ob-
tained between the models, indicative of the same rating dynamics and similar weight-
ings being applied by participants between the various conditions.

Notable is that the time delay, as in the ARX FR, is estimated as 0 s, although it is
expected that humans would require a processing delay [van der El et al., 2018]. The
work of Cleij et al. [2018] also found a non-zero delay of 1.45 s. Their applied model
for the RS dynamics was a moving average of the form (1+ z−1 + z−2 . . .+ z−Nma+1)/Nma

with a window Nma of 300 samples (= 3 s). If the same model structure is used on our
data and the delay τma = Nma/100 is estimated for maximization of the cross-correlation
between the ratings and moving averaged mismatch signals, a similar value of τma =
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Figure 4.10: Variance-Accounted-For (VAF) values of the AutoRegressive eXogenous (ARX) Forward Regression
(FR) method, showing the consecutive contribution of the mismatch signals from left to right for the delay
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Figure 4.11: Bode diagrams (magnitude (top row) and phase (bottom) of Hm (s) as a function of frequency in
radians/sec) of the first-order AutoRegressive eXogenous (ARX) Forward Regression (FR) estimations, showing
low-pass filter dynamics in all mismatch channels.
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Table 4.2: Variance-Accounted-For (VAF) values of the AutoRegressive eXogenous (ARX) Forward Regression
(FR) method, showing the consecutive contribution of the mismatch signal for the first, second, and third
order systems. Bold face indicates the selected model components.

NTC CWA ORC ALL
P̃(·) VAF P̃(·) VAF P̃(·) VAF P̃(·) VAF

N
=

1

f y 78.38% ωz 65.10% f y 68.99% f y 72.21%
fx 89.72% fx 78.70% fx 78.49% fx 87.27%
αz 89.92% αz 82.50% wz 79.96% ωx 87.42%
αy 89.93% wx 83.42% fz 81.22% wz 87.42%
α̇y 89.93% α̇x 83.66% αx 81.53% ḟy 87.45%

N
=

2

fy 78.90% wz 65.75% fy 69.11% fy 72.46%
fx 89.90% fx 78.53% fx 78.52% fx 87.24%
αz 89.93% fy 82.56% wz 79.74% fz 87.25%
ḟx 89.95% wx 83.46% fz 81.30% wz 87.34%
αy 89.96% α̇x 83.71% wx 82.03% ḟx 87.35%

N
=

3

fy 78.99% ωz 65.83% fy 69.26% fy 72.59%
fx 89.92% fx 78.60% fx 78.79% fx 87.24%
ḟx 89.97% fy 82.67% wz 80.25% fz 87.28%
αz 90.00% wx 83.69% fz 81.75% wz 87.39%
αy 90.02% α̇x 83.88% wx 82.27% ḟx 87.41%

1.88 s is obtained for all conditions grouped together. This shows that although a phase
shift is present between the mismatches and ratings, the phase of the estimated low-pass
filter response currently captures all of the phase present in the system.

4.4.5.3 Model Fits and Generalizability

The model fits are shown in Figure 4.12. Each figure shows the measured ratings of that
condition, as well as how well the four parametric models predict the ratings in terms of
VAF. Note that each conditions has two models that were fit on the ratings, the respective
condition and the p-ALL model. The two other conditions were fit on the other two
conditions and thus provide an insight in the generalizability between the conditions.
From these results, it is clear that the model p-CWA generalizes the worst. However, for
the CWA data, the p-NTC, p-ORC, and p-ALL models provide reasonable VAF values at
71.8%, 80.4%, and 76.9%, respectively. When considering all three conditions, using only
two model terms, the model p-ALL explains most of the measured rating data well. Thus,
a surprisingly simple model description can be used to predict the continuous rating
data of all three conditions.

A notable exception is maneuver CR3, where all models underestimate the actual rat-
ings as given by the participants. One explanation that followed from participant feed-
back is that this corner is specifically tight and was taken at a relatively high velocity,
which might have resulted in measured ratings that are higher than the models predict.

Note that the right of the figures also includes the measured overall ratings (“◦”-
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Table 4.3: Influence factors of the identified channels for the AutoRegressive eXogenous (ARX) Forward Regres-
sion (FR) and parametric models, as well as reported values by Cleij et al. [2018]. Dashes indicate channels
were not present in the model.

IP̃ fx
IP̃ fy

IP̃ fz
IP̃ωx

IP̃ωy
IP̃ωz

IP̃αz

[%] [%] [%] [%] [%] [%] [%]

A
R

X
F

R a-NTC 25.4 74.6 - - - - -
a-CWA 28.0 - - - - 72.0 0.0
a-ORC 13.0 76.2 - - - 10.9 -
a-ALL 24.6 75.4 - - - - -

P
ar

am
et

ri
c p-NTC 31.0 69.1 - - - - -

p-CWA 35.5 - - - - 64.5 0.0
p-ORC 24.9 63.0 - - - 12.2 -
p-ALL 34.0 66.0 - - - - -

Cleij et al. [2018] 0 37 18 26 2 17 -

Table 4.4: Estimated parameters for the four parametric models.

τ ωc K fx
K fy

Kωz Kαz

model [s] [rad/s] [-] [-] [-] [-]

p-NTC 0.00 0.33 0.89 1.66 - -
p-CWA 0.04 0.37 0.78 - 6.71 3.71
p-ORC 0.07 0.52 0.62 1.11 1.08 -
p-ALL 0.00 0.36 0.91 1.50 - -

symbols), as well as the predicted (“+”-symbols) overall ratings, using the relation
ORP H = 2.0+0.8 ·max[R̃(t)]. This again shows the generalizability of the p-ALL model,
which can predict the overall ratings of all three conditions with reasonable accuracy.

4.4.5.4 Individual Predictions

The developed models deliver a prediction for the “average” participant. However, to
form an indication on prediction power of individual ratings, Figure 4.13 shows the VAF
values calculated between the “ALL” model and the three data sets together. On the in-
dividual level, individual scaling differences in the rating strategy become prominent,
which lead to low VAF values. In three cases, the VAF is lower than 0. Therefore, the val-
ues are manually set to a value of 0. With an average VAF of 34.5%, these values are lower
than the model fits of the average rating data.

4.5 Discussion

The presented experiment applied the continuous rating task of Cleij et al. [2018], who
tested short drives each with a single maneuver, in a realistic setting: a long scenario
combining a large number of maneuvers characteristic for urban driving. Overall, the 51
participants were well able to distinguish the differences in incongruences between the
motion cueing conditions and rate these accordingly. Whether the rating task provides
useable results is discussed below, in terms of how the continuous and overall ratings
correspond, their reliability, and the ability to model and predict the acquired ratings.
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Figure 4.12: The measured continuous (left) and overall (right) ratings of three conditions, each with the four
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4.5.1 Continuous and Overall Rating Correlations

Analyzing the correlation between the maximum of the continuous ratings per maneu-
ver and the overall ratings revealed that the most in congruent motion dominates a par-
ticipant’s overall impression of the provided simulator physical motion. Recency effects,
in which maneuvers occurring later in the scenario have a stronger influence on the over-
all rating, were not observed. This confirms the findings of Cleij et al. [2018], but also
extends this finding for longer-duration and realistic urban driving scenarios containing
a large number of maneuvers.

4.5.2 Reliability

Reliability estimates, mainly based on the estimation of McDonald’s Omega, show that
the urban driving scenario is generally rated in a consistent manner with reliability levels
of α (0.6−0.8) similar as reported by Cleij et al. [2018],Cleij et al. [2019],Ellensohn et al.
[2019] and Ellensohn et al. [2020]. The most striking result regarding reliability estimates
of the continuous MIR data is that they were found to be inversely related to the rating
power: the lower the ratings, i.e., the better the motion is rated, generally the less reliable
the ratings are. A possible explanation is that it is easier for participants to point out that
something is wrong, incongruent, rather than that something is right, congruent. This
also explains why the worse-rated maneuvers correlate more to the overall ratings.

This leads to a paradoxical situation, as the more one improves the simulator mo-
tion cueing, the less reliable the subjective assessment methods to confirm so become.
This conclusion is independent of the choice between Cronbach’s Alpha and McDonald’s
Omega. However, in continuous rating studies where reliability estimates are used as a
cut-off requirement (such as in Ellensohn et al. [2019]), i.e., by removing data that do not
meet a certain value of reliability, Omega can be beneficial, as it is shown that for more
congruent motion, the difference between Omega and Alpha becomes significant. Thus,
it is at these points that Alpha often underestimates the reliability, which can lead to the
wrongful conclusion that certain rating data are unreliable. Generally, if incongruences
are to be further reduced, reliability can become an issue, such that increasing the num-
ber of repetitions or deliberately inducing incongruences in the motion are required to
boost reliability.

4.5.3 Model Predictions

In the model predictions, no effect of the reliability is directly observed: The four models
(NTC, CWA, ORC and ALL) provide reasonable fits and a decent level of cross-validation
when predicting ratings of the other data sets. Overall, the system identification results
show that the ratings can be modeled by a low-pass filter response and are dominated
by the lateral specific force mismatch. In Cleij et al. [2018] a similar finding was reported,
with 37% of the measured ratings attributed to this channel. In our case, this contribu-
tion ranges from 33.2% to 70.5%. The lagged response to the mismatches can likely be
attributed to the rating dynamics. For example, operating the rating knob to change the
rating from a 1 to a 7 requires rotating the knob through all in-between rating values.

Similar as in Cleij et al. [2018], a contribution of the yaw rate mismatch was found,
but only in the CWA and ORC conditions. One explanation, strengthened by partici-
pants’ comments, is that whereas the lateral specific force mismatches were more promi-
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nent and easier to identify, yaw motion mismatches were not. That is, the yaw rate mis-
matches can be sensed, but are secondary to the lateral specific force mismatches. NTC
and CWA had identical yaw rate mismatches, but NTC also had large lateral specific force
mismatches, which therefore became dominant in the rating. For ORC, the yaw rate mis-
match was smaller and might have been less noticeable, yielding a smaller contribution.

A notable difference is that an fx term is identified between 24.9%-35.5%, which is
0% in Cleij et al. [2018]. The obtained values are indeed realistic for an urban scenario in
which strong accelerations and decelerations are present. Significant is also that other
channels, such as ωx (which was tuned above the perceptual threshold of 3 deg/s) and
ωy , did not provide a meaningful contribution, such that these were not noticeable or
too short to have a meaningful impact on the rating.

When only fitting on one condition, and validating on the other, some generalizabil-
ity issues are revealed. Due to its different terms and associated weightings, the CWA
condition performs less in cross-validating the other two conditions. However, the ALL
model (with only contributions of P̃ fy

and P̃ fx
), which is fit to all data together, provides

a reasonably good quality of the fit on all conditions and could thus be used as a general
model for predicting incongruences, independent of the motion cueing architecture.

4.5.4 Future Work

4.5.4.1 Experiment Differences

The present experiment investigated the applicability of measuring and modeling con-
tinuous and overall ratings in a realistic urban scenario. The main motivation for this
investigation is to use the gained knowledge to make predictions on the motion cue-
ing of future driving simulation experiments. This can, for example, be used to support
decision making when selecting an appropriate simulator and motion cueing settings,
and offline tuning of MCA parameters. Other, future experiments for which these eval-
uations are used might be performed on the exact same urban scenario, on a different
urban scenario, or on a completely different scenario type (e.g., highway, rural). There-
fore, it is suggested to investigate how the ratings are affected under each of these three
steps. The presented model is thus an explanatory model, as it provides an explanation
on what formed the ratings under the circumstances of the experiment. Its validity needs
to be confirmed as a predictive model, such that it has the quality to predict the ratings
under different circumstances as well.

First, if the scenario would be exactly the same, future work should investigate how
ratings are affected by a different participant group and/or a different simulator or mo-
tion cueing settings. Cleij [2020] showed that when two experiments expose a different
range of motions (for example by using a larger and a smaller simulator), the obtained
ratings of these experiments need to be corrected for through a linear scaling factor. The
next step, using a different urban scenario could explicitly investigate whether possibly
the length or a different order in which maneuvers are presented affects the provided
ratings. Finally, extending the results to completely different scenario types would be an
important step. For example, a highway scenario might have more interaction with sur-
rounding traffic, which could induce different types of motion (e.g., more lane changes),
which might affect the balance between the mismatch channels. Furthermore maneu-
vers might be harder to rate, as their occurrence might be harder to anticipate than the
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visually clear corner maneuvers in an urban scenario. As a result, such scenarios might
inherently have a lower reliability.

4.5.4.2 Open-loop Driving Experiments

A main motivation for the presented work is to leverage continuous rating prediction
models, which can only be extracted from data collected in open-loop driving experi-
ments, for predicting the quality of closed-loop driving simulator experiments. How-
ever, a central assumption so far made in the existing continuous rating literature is that
open-loop ratings are also representative for closed-loop driving. However, it is possi-
ble that differences between open-loop and closed-loop driving occur due to perceptual
differences [Nesti et al., 2016; Valente Pais et al., 2012]. Thus, future work should ex-
plicitly investigate whether motion cueing in closed-loop and open-loop driving are in
fact rated equivalently. Explicitly proving this would further increase the validity of the
continuous rating method for closed-loop testing. An example for which the continuous
rating method may be applied is studying the effect of masking of cues [Greig, 1987].

4.5.4.3 Error Types

In the present work, the mismatches in the motion were analyzed through objective dif-
ference functions between the vehicle reference and simulator motion. As a result, the
rating models linearly depend on the overall magnitude of the mismatch, without mak-
ing any distinction between what type of cueing error is present. However, humans may
have different sensitivities to different error types. For example, Grant and Reid [1997]
defined three different types of errors for flight simulation motion cueing: false cues,
missing/scaling error cues, and phase-error cues. In their definition, false cue motion
results in errors in the opposite direction of the true vehicle motion, or a motion cue
whereas no motion is expected from the vehicle. A scaled cue is correct in its direction,
but mismatched in magnitude compared to the vehicle reference motion, of which the
missing cue is a special case (i.e., no simulator motion). Phase errors were also defined
by Grant and Reid [1997], in which the simulator’s motion is shifted in time (i.e., leading
or lagging) with respect to the vehicle reference motion. Variations of these definitions
exist, such as defined in Cleij [2020] and Kolff et al. [2022]. Grant and Reid [1997] noted
that false cue motion was generally perceived as worse than scaled or missing motion, al-
though without providing experimental proof. Following on preliminary investigations
by Cleij [2020], future research should investigate explicitly how these error types com-
pare and if predictive rating models may be improved when different error types are
weighted independently in the rating model.

4.6 Conclusion

The difficult trade-off and selection of motion cueing settings would greatly benefit from
accurate prediction methods of subjective ratings. This chapter describes the applica-
tion of continuous and overall motion incongruence ratings in a realistic urban driv-
ing experiment through reliability and predictability. From analyzing the correlation
between the continuous and overall ratings, it is concluded that incongruent motion
strongly determines the overall impression of drivers. This is explained by the reliabil-
ity of the acquired continuous ratings, which is generally high, but inversely related to
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the incongruence ratings: the more congruent the presented motion is, the less the ac-
quired ratings can be trusted. Reducing incongruent motion thus requires more effort
in the subjective confirmation. This is done either through the deliberate presentation
of incongruent motion cues or by increasing the number of repetitions. For the rating
data presented in this chapter, the reliability of the data is sufficient, as the estimates
are similar to values in literature and no effects on the predictability of the rating data
are observed. Non-delayed, first-order linear low-pass filtered responses to the lateral
(66.0%) and longitudinal (34.0%) specific force mismatches are sufficient to predict the
measured motion incongruence ratings in an urban scenario. Through this model and
the gained knowledge on its associated reliability, incongruences can be accurately tar-
geted and reduced in the development, selection, and tuning of future motion cueing.
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Incongruences in Highway

Simulations

Key findings

• As in urban simulations, ratings of highway simulations become less reliable the
better the motion cueing is rated, and vice versa. However, highway simulations
induce a lower overall reliability of the ratings, showing that the scenario type is
more difficult to rate.

• The linear rating model of Chapter 4 can predict the measured continuous rating in
highway simulations, although an additional response to the lateral specific force
mismatches in lane change maneuvers is present.

• As in urban simulations, continuous ratings of highway simulations are dominated
by the lateral and longitudinal specific force mismatches. However, a stronger con-
tribution (45%) to the longitudinal specific force mismatch is present compared to
urban driving (55%).

This chapter is based on the following publication:

Title: Subjective Motion Incongruence Ratings in Highway Driving Simulations
Authors: M. Kolff, J. Venrooij, M. Schwienbacher, D.M. Pool, and M. Mulder.
Journal: To be submitted.
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Abstract

This chapter investigates the reliability and model predictions of subjective motion in-

congruence ratings in highway driving simulations. A simulator experiment was per-

formed in which participants evaluated the motion incongruences using both continu-

ous and overall rating methods. The experiment had the same set-up as an earlier urban

experiment, to compare scenario-specific differences between urban and highway simula-

tions. Three motion cueing algorithms were tested that represented different levels (low-

medium-high) of motion cueing quality. Results show that the more congruent the mo-

tion is, the less reliable the ratings become, a result reproduced from the urban experi-

ment. However, the reliability of the highway scenario data is overall lower, indicating

highway driving is more difficult to rate than its urban counterpart. The linear rating

model, previously fitted to the urban experiment’s data, is nevertheless successfully used

to predict the ratings based on the longitudinal (45.0%) and lateral (55.0%) specific force

mismatches. The rating data can be better described when including a term describing

the lateral motion in lane changes. Together, these findings further validate the continu-

ous rating method and the previous proposed rating models, strengthening the ability to

make assessments of motion cueing quality without the need for expensive on-site simu-

lator testing.
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5.1 Introduction

HIGHWAY driving is a crucial use-case in driving simulation due to its ability to sup-
port the development of important novel vehicle technologies, such as ADAS [Rossi et al.,
2020], high-speed driving [Weiss and Gerdes, 2023], and connected vehicle applications
[Schrapel and Vinel, 2024]. Driving simulators provide a cheaper and more controllable
alternative to real vehicle testing [de Winter et al., 2012]. Especially for highway driving,
where the vehicle velocity is relatively high compared to other driving scenarios (e.g., ur-
ban or rural), the inherent safety provided by driving simulators is another important
benefit. The goal of the motion system of the simulator is to recreate the sensation of
inertial motion as closely to the real-life vehicle as possible. However, it is generally not
possible to fully reproduce the motion due to the limited size of driving simulators’ mo-
tion systems and limitations in the MCA, which controls the motion system. This results
in mismatches between the vehicle reference and simulator motion. The generated mis-
matches depend on the simulator, the MCA, and its tuning parameters [Kolff et al., 2023].
In highway simulations, mismatches can negatively affect driving behavior [Wang et al.,
2023], reduce realism, and induce simulator sickness [Himmels et al., 2022b]. Those mo-
tion mismatches that are perceived by the driver are known as incongruences [Cleij et
al., 2018]. Experimental measurements of the (in)congruence of motion are most com-
monly based on subjective evaluations from drivers [Biemelt et al., 2021; Cleij et al., 2018;
Kolff et al., 2024b; Rengifo et al., 2021]. Providing accurate motion for a highway simu-
lation thus in practice requires the subjective verification of the motion by test drivers
through dedicated, and costly, simulator tests.

Being able to identify and predict how motion cueing settings affect subjective eval-
uations would therefore be a crucial tool. This would allow for improving the inertial
motion reproduction of the simulator and more rapid testing and selection of various
motion cueing settings, without the need for expensive on-site simulator testing. Cleij
et al. [2018] introduced a continuous subjective rating method suitable for model devel-
opment. While being driven around (“open-loop” driving), drivers then continuously
give a rating that reflects their perceived motion incongruence at each point in time.
The method has since been successfully used in [van der Ploeg et al., 2020] (same sce-
nario as [Cleij et al., 2018]), [Ellensohn et al., 2019a; Ellensohn et al., 2020; Ellensohn et
al., 2019c] (rural scenarios) and [Cleij et al., 2019] (rural-urban scenario). In Chapter 4,
this approach was furthermore shown to be valid in realistic urban simulations: the ob-
tained average continuous ratings could be predicted using a first-order low-pass filter
response to a weighted sum of the lateral and longitudinal specific force mismatches.
The reliability of the (continuous) subjective ratings, however, was shown to decrease
with higher motion cueing quality. While highly useful for modeling, overall ratings (a
single rating value representing the whole drive) are more practical for a direct trade-off
of motion cueing settings or parameter sensitivity analyses. Both Cleij et al. [2018] and
Chapter 4 also showed that overall ratings strongly correlate with the most incongruent
point in the continuous ratings.

In the current state-of-the-art, no similar work on measuring and predicting subjec-
tive ratings in highway simulations exists. The motion of highway simulations is typically
easier to reproduce on driving simulators than the more dynamic urban scenarios [Ellen-
sohn, 2020]. The resulting smaller motion mismatches may affect the reliability, rating
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relationships, and predictability of the subjective ratings. The decreased reliability of the
ratings in congruent motion, as described in Chapter 4, makes it then likely that less reli-
able rating data will be collected on highway simulations, complicating the assessment
of motion cueing settings. Furthermore, as the relative weighting of the mismatch chan-
nels may be different in highway driving, a different parametrization of the rating model
may also be necessary.

This chapter therefore describes an open-loop driving experiment in which 33 par-
ticipants provided continuous and overall ratings for a realistic highway simulation. The
findings on rating reliability, the correlation between continuous and overall ratings, and
predictability are directly compared to those acquired in the urban simulations of Chap-
ter 4, where a highly similar experiment set-up was used (simulator, experimenter, brief-
ing, and training procedures). Three different MCAs were tested in a within-subjects
design: a Classical Washout Algorithm (CWA), the same algorithm with increased tilt-
coordination gains, and an optimization-based algorithm (“Oracle”), having full knowl-
edge of the future states, only possible in open-loop driving. First, the rating model of
Chapter 4 is applied to the current highway driving data to test its application without
adaptations, which would be the ideal case. Second, the model is refitted to the highway
data, allowing different mismatch channels and parameters than the model of Chapter 4.
Finally, an extended model is fit that also includes a response to the simulator motion it-

self, rather than the corresponding mismatch, which will be shown to positively impact
the match with the continuous rating data.

The chapter is structured as follows. Section 5.2 introduces the model structures.
Section 5.3 shows the experiment set-up. The results are shown in Section 5.4, followed
by the discussion in Section 5.5. The chapter is concluded in Section 5.6.

5.2 Methods

5.2.1 Driving Task

The vehicle simulation produces the reference motion signal S̃veh (t) that is sent to the
Motion Control System (MCS), as shown in Figure 5.1. During the experiment, the ref-
erence vehicle simulation was a pre-recorded drive, meaning that participants passively
(i.e., as passengers) experienced the vehicle’s motion (“open-loop” driving). The MCS
block consists of two parts, the Motion Cueing Algorithm (MCA) and the Motion System
(MS). The latter is the physical component of the simulator, together with its control soft-
ware, that produces the actual inertial platform motion. The MS receives its setpoints
from the MCA, which, using knowledge of the configuration and dimensions of the mo-
tion system, converts the vehicle motion to simulator motion that can be reproduced by
the motion system. Therefore, using the input signal S̃veh (t), the MCS gives the output
S̃sim (t). Differences between these signals (vehicle reference and simulator motion) are
then the objective mismatches of the simulator motion, i.e., ∆S̃(t) = S̃veh (t)− S̃sim (t).
The mismatches highly depend on the simulator configuration used [Kolff et al., 2023].

5.2.2 Rating Task

During the open-loop driving scenario, the participants performed a rating task, com-
paring the perceived simulator motion to the motion expected of the real vehicle. This is
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Figure 5.1: Block diagram of the driving and rating tasks from Chapter 4, highlighting the difference between
the subjective PMI and objective mismatches ∆S̃(t ). The part “Driving Control” (red, dashed lines) is only
present in closed-loop driving, and therefore not active in the present experiment.

described in Figure 5.1 by the block Perception of Motion. The participant cannot exactly
know what the real vehicle’s motion would feel like in a particular situation (i.e., the real
vehicle motion signal Sveh is unavailable to them). They must therefore use an internal

representation [Stassen et al., 1990] of the vehicle motion, for example based on previous
experience and the non-inertial motion cues (e.g., visuals) provided in the simulation.
Individual variations can arise due to different familiarity or experience with the simu-
lated vehicle (Chapter 4), as indicated by the “expectation effects” in Figure 5.1. Both the
expected and the vehicle model motions can thus differ from the real vehicle motion.

In closed-loop driving (i.e., when driving the car oneself), the red path in Figure 5.1
would be active, denoted by Driving Control. The expected motion is then not only based
on what drivers expect to feel from the non-inertial motion cues, but also what they ex-
pect to feel as a result of their own intended control actions of the steering wheel, ac-
celerator pedal, and braking pedal deflections (δs(t), δa(t), and δb(t), respectively). In
open-loop driving (as in the present experiment), the lack of driving control implies that
no efference copy is available. This means that the internal representation of motion,
and in turn the expected motion, is only based on the non-inertial motion cues.

If a participant notices a difference between the perceived and expected motion, an
incongruence occurs. The Perceived Motion Incongruence (PMI) defines a participant’s
perception of what is (in)congruent over time [Cleij et al., 2018]. Hence, the PMI would
be a highly useful quantity to measure; it is, however, internal to the human and thus
not directly measurable. Instead, a Motion Incongruence Rating (MIR) can be asked
from the drivers Cleij et al., 2018. This is a subjective rating that functions as a proxy
for the PMI. The PMI and MIR can differ, as the latter can be affected by the rating re-

sponse (Figure 5.1). This shows that the rating can be affected by several “strategy effects”
(Chapter 4): 1) the participants’ motivation to actively perform the rating task, 2) their
reference of what counts as congruent or incongruent motion, 3) the anticipation of mo-
tion of upcoming maneuvers, and 4) their understanding of what is to be rated.

Especially the anticipation of upcoming maneuvers can be different between urban
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and highway open-loop driving scenarios. In urban driving, the motion of the vehicle
and simulator can, to a large extent, be predicted through the fixed geometry of the sur-
roundings. In contrast, highway driving is less deterministic, as certain maneuvers (e.g.,
accelerations and lane changes) are difficult to predict without knowing the intention of
the driver represented in the recording.

In the present experiment, rating data were acquired continuously (during the drive),
as well as post-hoc (after each drive), to remain close to the work described in Chapter 4.
For both rating methods, the MIR values were on a semantic differential scale, ranging
between values of 0 (fully congruent) and 10 (highly incongruent), with steps of 1, to
remain close to the work of Cleij et al. [2018] and Chapter 4. In the case of continuous
ratings (denoted by R(t) in Figure 5.1), the MIR is given through a rotary knob that can be
adjusted at any time, yielding continuous recordings over time. These ratings therefore
aim to represent the subjective opinion of the subject at any point in time.

For overall ratings (denoted ORP H ), only a single rating value is acquired after each
drive. This rating aims to represent the quality of the whole drive. In principle, partici-
pants can decide for themselves what determines their overall rating. However, previous
research [Cleij et al., 2018; Kolff et al., 2024b] has shown that this rating strongly corre-
lates with the highest continuous rating during a drive, i.e., the most incongruent point
during a drive.

5.2.3 Rating Model

The “p-ALL” rating model of Chapter 4, see Figure 5.2, is used to predict the continuous
ratings as function of mismatch signals, i.e., the difference in inertial motion (specific
forces and rotational rates) between the vehicle motion S̃veh,m (t) and the simulator mo-
tion S̃sim,m (t), i. e., ∆S̃m (t), with P̃m(t) = KP̃m

|∆S̃m(t)|. Here, m represents the mismatch
direction. The model was developed on the combined (hence: “ALL”) rating data of two
CWA variants and the Oracle MCA, as in the present experiment.

The signals P̃m(t) are formed by a model of the perceptual system (P̃S), with the
mismatches ∆S̃m(t) between the vehicle motion S̃veh,m (t) and the simulator motion
S̃sim,m (t) as inputs. The absolute value block in Figure 5.2 indicates that both positive
and negative mismatches result in an increase of the rating value. KP̃m

represents the
gains on the mismatches m, e.g., m ∈ [ fx , fy , . . .].

The parametric “p-ALL” model of Chapter 4 predicts the continuous rating of the
average participant using low-pass filter transfer functions Hm (s) between the measured
mismatch signals P̃m(t) (inputs) and a modeled rating signal R̃(t) (output):

̂̃R( jω) =
∑
m

KP̃m

(
ωc

jω+ωc

)
∆

̂̃Sm( jω), (5.1)

with the cut-off frequency ωc and KP̃m
being the weights on the different mismatch chan-

nels. Chapter 4 showed that the continuous ratings as measured in that study could be
largely explained when considering the mismatch channels P̃ fy

and P̃ fx
, with respective

gains of 1.50 and 0.91, together with ωc = 0.36 rad/s.

5.2.4 Model Fitting Procedure

Several models of increasing complexity are tested for the current highway dataset:
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Figure 5.2: The linear model “p-ALL urban” from Chapter 4.

1. In the ideal case, the existing parametric model “p-ALL urban”, extracted from an
urban driving simulation experiment in Chapter 4, would apply one-to-one. In
this case, the exact same model, with the same mismatch channels and parameter
values, is applied.

2. Second, the same model structure as “p-ALL” is applied, but the fitting process
is revisited to allow for different parameter values that may better match the cur-
rent highway data. This can result in a better fit, if, for example, the participants
weighted the mismatch channels differently than in the urban data. This model is
referred to as “p-ALL highway”.

3. Third, an extended model is considered, in which the fitted model includes a re-
sponse to the simulator lateral motion magnitude during the lane change maneu-
vers, see Section 5.4, denoted as “p-ALL highway + LC”.

For the second and third cases, the models are fitted in the time-domain using a
Nelder-Mead simplex algorithm [van der El et al., 2018] through the minimization of a
sum-of-squared-errors cost function:

arg min
Θ

J =
∑

t

[R(t)− R̃(t |Θ)]2, (5.2)

where Θ = [ωc , K fx
, K fy

] is the parameter set. This gradient-based method does not
guarantee attaining the global optimum. Therefore, 30 iterations are performed with
uniformly distributed random numbers between 0 and 3 as initial conditions. The pa-
rameter set leading to the overall lowest cost is then selected as the final solution. The
fit was always performed on all the rating data of the three conditions grouped together,
similar to the “ALL” strategy in Chapter 4.

5.2.5 Variance Accounted For

The Variance-Accounted-For (VAF) is used to quantify the quality of the fit, with e(t |Θ)=
R(t)− R̃(t |Θ):

VAF(Θ)= [1−σ2
e(t |Θ)/σ2

R(t )] ·100%, (5.3)

where R(t) is the measured continuous rating signal (i.e., the reference) and R̄(t |Θ) is the
modeled signal. The VAF describes how much of the measured signal’s variance can be
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explained by the modeled signal: a VAF of 100% describes a perfect fit, whereas there is
no lower bound that represents the “poorest of fits”.

To calculate the relative contribution of the mismatch channels to the ratings, the
influence factor [Cleij et al., 2018] is calculated as:

Im =
∑

t

P̃m (t)/
∑

t

P̃ (t) ·100%, (5.4)

with P̃m(t) = KP̃m
|∆S̃m (t)|, see Figure 5.2, and m the mismatch channel. P̃ (t) is the total

modeled PMI. The influence factor therefore represents the relative contribution of the
different mismatch channels. The sum of all channels’ influence in the model is there-
fore always 100%. This metric allows for a comparison on the relative importance of the
different mismatch channels with those in Chapter 4.

5.2.6 Reliability

In Chapter 4, reliability of the continuous ratings was explicitly investigated. Although
the continuous ratings are continuously recorded during a drive, the recorded ratings
can be unreliable, for example if the participants do not consistently perform the rating
task. The reliability then quantifies the extent to which the obtained continuous ratings
can be trusted.

Recording continuous ratings over various conditions yields a collection of rating
time signals Rc j p (t), with c the condition, j the condition repetition and p the partici-
pant. If along one of these elements the average is taken, this element is taken out of the
subscript. Rc (t), for example, represents the rating of the average participant across all
repetitions in a given condition. In the experiment used in the current chapter, each run
lasted 430.83 s, with continuous rating data being recorded at 100 Hz (∆t = 10 ms); each
recording Rc j p contains N = 43,083 samples. The total score is the sum of the run items
Xc j p =

∑
t Rc j p (t), where σ2

Xcp
is the variance of total scores over multiple repetitions.

Theoretically, if an infinite number of identical and independent repetitions would
be performed by a participant, the average of all total scores would result in the true score,
i.e., the expected value of the rating: Tcp = E [Xc j p ]. Each separate test result contains a
random, stochastic measurement error Ec j p = Xc j p −Tcp . Reliability is defined by how
much of the test score variance can be explained by the true score variance [Sijtsma,
2009]. As the true score cannot be determined, only an estimation of a lower bound of
reliability can be made. Here, the reliability is calculated using Cronbach’s Alpha:

αcp =
J

J −1

∑
j σ

2
c j p

σ2
Xcp

(5.5)

where J is the total number of repetitions of each test condition and σ2
c j p

is the variance

of the individual samples. The coefficient α is unbounded on the lower side, i.e., [−∞<

α≤ 1], whereas a value of 1 indicates perfect reliability.
Chapter 4 showed that, for the urban rating data, more congruent motion leads to

lower reliability. The following relationship was found to predict the average reliability
of the participants:

α̃= a −
1

bR̄ +c
, (5.6)
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with the coefficients a = 0.89, b = 19.65, and c = 1.39, which were found to well describe
the obtained reliabilities and can be used to predict reliability based on the continuous
rating signal. R̄ is the average rating across time.

In Chapter 4, the reliability estimates, and thus the resulting fits, were based on three
repetitions of each condition, allowing the calculation of the more accurate reliability
metric McDonald’s Omega rather than Cronbach’s Alpha. This, however, requires at least
three repetitions of the same condition. In the present highway experiment, there were
only two repetitions, due to constraints on the experiment length. Therefore, the calcu-
lation of McDonald’s Omega was not possible.

Furthermore, a comparison of the reliability of the present highway data (with two
repetitions) to the urban data fit (based on three repetitions) would be unfair, as increas-
ing the number of repetitions also increases the reliability of that data. Therefore, the
calculation of Cronbach’s Alpha described in Chapter 4 was repeated three times, once
for each repetition pair (runs 1 & 2, runs 2 & 3, and runs 1 & 3), of which the average
value for α was taken. This allows for a direct comparison of the reliability between the
highway and urban datasets. This yields the coefficients a = 0.82, b = 15.89, and c = 1.42
for (5.6).

5.3 Experiment Set-up

5.3.1 Scenario

All participants experienced the same recording of a drive on a fictional German highway.
It consisted of various typical highway maneuvers, as shown in Figure 5.3. The drive
accelerated (“ACC”) from a parking place, including several lane changes, after which
the highway was entered (“ENT”). Traffic was present and always exactly the same (i.e.,
part of the recording). Driving by a static traffic accident of two other road users (see
Figure 5.3) and corresponding slow traffic were simulated to induce additional decelera-
tions and accelerations (“D/A”). Furthermore, a sustained curve (“CUR”) (see Figure 5.3)
to change highway and several lane changes (“LC”) to overtake traffic were simulated, ei-
ther to the left (“[L]”) or right (“[R]”). After a section of constant braking (“CB”) and two
double lane changes (“DLC”), the vehicle entered the same urban environment as was
simulated in the urban experiment of Chapter 4. Drivers experienced the same two last
corners (“CR”) as in that work to allow for a comparison of identical maneuvers between
the experiments.

5.3.2 Apparatus

For maximal comparability, the experiment had the exact same experiment-setup as
in Chapter 4: BMW Group’s Ruby Space simulator (Figure 5.4a) was used, with nine
DoFs. It consists of a hexapod on top of a tripod system, where the latter adds addi-
tional workspace in the longitudinal ( fx ), lateral ( fy ) and yaw (ωz ) degrees-of-freedom.
BMW’s iDrive navigation knob on the center console was used by participants to give
their continuous rating (see Figure 5.4b), recorded at 100 Hz. The 240◦ projection screen
showed the visuals, and the current rating value in the form of a “rating bar” [Cleij et al.,
2018]. The size and color of the rating bar changed from 0 (small, white) to 10 (long,
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Figure 5.3: Overview of the driven route with the maneuvers indicated. Three representative screenshots are
shown.

red), which makes the rating system more intuitive for participants to use. The driving
direction (left/right arrows) was also shown, together with the vehicle velocity.

5.3.3 Independent Variables

Three MCA were tested. First, a classical washout algorithm (“CWA”) [Conrad et al.,
1973; Reid and Nahon, 1985] was used, where the vehicle motion is distributed over
the hexapod (high-frequency), tripod (medium-frequency) channels and washed-out
with second-order high-pass filters. The low-frequency forward and lateral accelerations
were reproduced by tilt-coordination, in which rotations over roll and pitch are used to
create the sensation of a sustained acceleration. This somatogravic illusion is only com-

(a) BMW Group’s Ruby Space simulator. (b) A test driver using the iDrive rat-
ing knob.

Figure 5.4: The experiment set-up (adapted from Ellensohn et al. [2019]).
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plete as long as the accompanied tilting rates are not noticeable [Stratulat et al., 2011].
The aim of this condition is to provide a reference of a state-of-the-art algorithm that
can be used in real-time. Due to the worst-case tuning and the “blindness” of the CWA
to future states, it cannot utilize the simulator’s full potential at all moments during the
scenario. The CWA tuning set was exactly the same as that of Chapter 4, to maximize
comparability.

Second, a variant of the same CWA was used, which used increased tilt-coordination
(“HTC”). Here, the gains of the tilt-coordination channels were increased (31% in longitu-
dinal direction, 80% in lateral direction), such that the roll and pitch rates were above the
perceptual threshold (> 3 deg/s [Reymond and Kemeny, 2000], see Figure 5.5d), poten-
tially increasing motion incongruence due to spurious rotations. The associated benefit
is that a smaller mismatch is present in the longitudinal (Figure 5.5a) and lateral (Fig-
ure 5.5b) specific forces, potentially decreasing ratings. The purpose of this condition is
to investigate the trade-off between specific force and rotational rates, often an impor-
tant focus point in an MCA tuning process.

Third, an optimization-based algorithm was tested [Ellensohn et al., 2019c] as in
Chapter 4, where the simulator motion along the complete recorded drive was optimized
offline: the Oracle (“ORC”) MCA. This algorithm can only be used in open-loop simula-
tions, but allows for the investigation of how the available simulator workspace may be
fully exploited. It serves as the upper bound of motion cueing quality possible on the
simulator. The rotational rates ωx and ωy are constrained to remain below the percep-
tual threshold (< 3 deg/s). Figure 5.5 illustrates that even ORC is not able to perfectly
reproduce the vehicle motion of the six channels, although it comes the closest in repro-
ducing the longitudinal and lateral specific forces, as well as the yaw rate. It is therefore
hypothesized that this condition will receive the best (i.e., lowest) ratings.

5.3.4 Participants and Procedures

Thirty-three participants (25 males, 8 females) performed the experiment. All of them
were employees of BMW Group with a European driver’s license B (M = 25.3 yrs SD =

10.10 yrs) and an average yearly driven distance of M = 22,230 km (SD = 13,599 km). The
average age was M = 41.1 yrs (SD = 9.9 yrs). Ten participants had previous experience in
driving simulators. All participants provided informed consent and the experiment was
approved following BMW’s internal ethics review procedure.

The experiment started with a training run to familiarize participants with the sce-
nario and rating method. After that, the experiment phase started, in which participants
started with either CWA, HTC or ORC. Each condition was repeated two times, yielding
six runs. After every second run, a five minute break was taken. 30 complete data sets
were obtained, as three participants were unable to finish the experiment due to techni-
cal reasons or simulator sickness. For the latter, the Motion Illness Symptoms Classifi-
cation (MISC) [Bos et al., 2005; Reuten et al., 2021] questionnaire was asked after every
drive. The experiment was stopped if participants reached a value of 6 two drives in a
row, or if a single 7 or higher was reached, as in Hogerbrug et al. [2020].
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Figure 5.5: Mismatches induced by the three algorithms. Grey vertical lines indicate the separate maneuvers.
The grey areas indicate the urban maneuvers, which were excluded from the model fitting step. The dashed
lines indicate the rotational threshold of 3,deg/s [Reymond and Kemeny, 2000], relevant for the use of tilt-
coordination.
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Figure 5.6: Left: measured continuous ratings, with the lines the mean and the shaded areas the standard
deviation. The maneuvers from Figure 5.3 are also indicated. Right: overall ratings, displayed as box plots,
showing the medians and the inter-quartile ranges. The horizontal lines show the means.

5.4 Results

5.4.1 Rating Measurements

Figure 5.6 shows the continuous ratings (left), with the maneuvers from Figure 5.3 an-
notated with vertical lines and their acronyms. The individual rating data are included
in Appendix D.2. Generally, the ratings are low, especially compared to the rating values
found in Chapter 4, where the highest peaks in the average ratings were around 4.0. In
the present data, the highest peak value is 2.8 and occurs for the HTC and CWA condi-
tions, for the initial acceleration maneuver (ACC). Overall, the ORC motion receives the
lowest (i.e., the best) ratings on average for all maneuvers. CWA and HTC are highly sim-
ilar. Furthermore, the right subplot in Figure 5.6 shows the distributions of the collected
overall rating data. The overall ratings for CWA and HTC are highly similar, and that ORC
was better rated. HTC is rated at µ = 3.32 (σ = 1.94), while the CWA condition is rated
only marginally better at µ= 3.28 (σ= 2.09). The overall ratings for ORC are substantially
lower on average: µ= 2.44 (σ= 0.96).

5.4.2 Reliability

The Cronbach’s Alpha reliability estimates for the continuous rating data are shown in
Figure 5.7a-5.7c. The observation from Chapter 4, i.e., that reliability goes down with
decreasing rating values (i.e., better motion quality), is confirmed here: the better the
motion cueing is rated, the less we can trust the acquired ratings. The average relia-
bilities (dot-dashed lines) are 0.47 for HTC, 0.39 for CWA, and 0.25 for ORC. These are
substantially lower than found for an urban scenario in Chapter 4, where the Alpha aver-
ages of its CWA, NTC, and ORC conditions were 0.74, 0.62, and 0.55, respectively, based
on three repetitions. When the average of each two-pair Cronbach’s Alpha, as described
in Section 5.2, is taken, the averages are 0.65, 0.53, 0.47, for the urban’s CWA, NTC, and
ORC conditions, respectively.

In Figure 5.7, the black line is the fit of the reliability model of (5.6), thus best de-
scribing the reliability estimates of the recorded data. The grey dashed line is the fit of
Chapter 4 estimated on three repetitions. For the fairer comparison, the solid grey line
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shows the fit performed on two repetitions (“fit α2 urban”), which allows for comparing
to the present highway data. The latter is indicated by the black line (“fit α2”). The α2

urban fit again shows considerably higher reliability compared to the α2 highway fit of
the present data.
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Figure 5.7: Reliability coefficients αp of all subjects per condition, as function of the average of their continu-
ous ratings R̄p , showing that reliability decreases with lower ratings.

5.4.3 Rating Relationships

Previous research in Chapter 4 showed a strong correlation between the most incongru-
ent point in a simulated scenario (highest continuous rating value) and the overall rating,
yielding the regression relation: ORP H = 2.0+0.8 ·max[R(t)]. This analysis is repeated
here. Figure 5.8a shows that the highest correlation coefficient occurs for the maneuver
“LC3[R]”, at 0.81. This gives the regression relation ORP H = 1.2+0.6 ·max[R(t)]. Further-
more, Figure 5.8b shows the correlation coefficients as a function of the average contin-
uous rating. Here, no clear trends are visible, in contrast to the urban data. This shows
that the most incongruent point in the continuous rating did not correlate most with
the overall ratings for the current highway driving data. In fact, the “LC3[R]” maneuver
received relatively low continuous ratings (see Figure 5.6).
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Figure 5.8: Pearson correlation coefficients between the overall ratings (ORP H ) and the maximum of the con-
tinuous ratings within each maneuver (R̂man ).

5.4.4 Rating Models

The continuous ratings predicted by the model “p-ALL urban”, as well as the refitted
model (“p-ALL highway”, allowing for different parameter values), are shown in Fig-
ure 5.9, together with the measured ratings. As visible in the figure, and confirmed by
the VAF values of the fits in Table 5.1, both models capture the general trends of the
measured ratings reasonably well. For the model “p-ALL highway”, the VAF is slightly
higher than of the model “p-ALL urban”, which indicates a better model fit. However,
the VAF values are clearly lower compared to the 80−90% described in Chapter 4.

Some maneuvers are not predicted well. First, the variations in maneuver D/A2,
which was the simulation of the traffic accident and subsequent traffic jam, are not
modeled accurately. Here, it is likely that the close interaction with the traffic at low
speeds affected the ratings, which is not captured in the rating model, which only pre-
dicts changes in ratings due to changes in physical motion mismatches.

Second, specifically the variations that occur in the lane change maneuvers (“LC#”,
as well as “ACC”), are not described well. From informal comments of the participants,
it was also noted that specifically the lane change maneuvers were difficult for them to
anticipate, considering that a pre-recorded drive was used. These maneuvers may thus
have lead to a sense of surprise from the sudden lane change movement. To represent
this response, the mismatches in the lane changes were added to the model fitting as a
separate response.

This signal is shown in Figure 5.10 and is only defined in the lane change maneu-
vers. Therefore, additional high-pass filter dynamics Hy,lc ( jω) to the lane changes were
included:

Hy,lc ( jω) =
jω

jω+ωc ,lc
, (5.7)

with the cut-off frequency ωc ,lc . The adapted model structure is shown in Figure 5.11.
This furthermore includes the gain Ky,lc , which is zero outside of the lane change ma-
neuvers. The model fits are thus repeated with these additional dynamics, leading to the
model “p-ALL highway + LC’. As shown in Figure 5.9 and Table 5.1, this indeed leads to a
better fit for all three conditions, as confirmed by the increase in VAF.
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Figure 5.9: The measured average continuous (left) and overall (right) ratings of three conditions, each with the
three applied models. The grey areas represent the urban maneuvers, which were not included in the fitting.
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Table 5.1: VAF values for the three considered continuous rating models.

p-ALL urban p-ALL highway p-ALL highway + LC

CWA 48.9% 49.2% 55.0%

HTC 58.3% 61.7% 65.1%

ORC 31.9% 30.0% 33.4%

Table 5.2: Estimated parameters for the parametric models.

ωc K fx
K fy

Ky,l c ωc,l c

model [rad/s] [-] [-] [-] [rad/s]

p-ALL urban 0.36 0.91 1.50 - -
p-ALL highway 0.21 1.09 1.46 - -
p-ALL highway + LC 0.24 1.10 1.29 2.1 0.052

The parameter values of the three models are shown in Table 5.2. The values between
the models “p-ALL urban” and “p-ALL highway” are highly similar, although the gain K fx

to the longitudinal mismatches is higher. This shows that participants rated the longitu-
dinal specific force mismatches more strongly than in the urban driving experiment. The
lower cut-off frequency of the low-pass filter indicates the participants’ stronger filtering
to high-frequency motion. Finally, Table 5.2 also shows the parameters of the longitu-
dinal, lateral, and lane change specific force mismatch channels, as well as the cut-off
frequency of the low-pass filter, remain largely unaffected when considering the “p-ALL
highway + LC” model, although the gain K fy

slightly decreases, from 1.46 in the “p-ALL
highway” model to 1.29 in the “p-ALL highway + LC” model.

The models’ influence factors (always summing up to 100%) are shown in Table 5.3.
The bottom row shows the influence factors from the urban data sets from Chapter 4 for
reference. In all three highway models the influence of the longitudinal specific force is
larger than observed for the urban data. This can be explained to the stronger longitu-
dinal motion in highway driving compared to urban driving [Bosetti et al., 2014], which
was also the case between the present highway and urban experiments, when consider-
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Figure 5.10: Lateral specific force contributions during the lane changes in the three conditions.
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Figure 5.11: The linear model from Chapter 4, describing the additional response to the lateral simulator mo-
tion in lane change maneuvers (“p-ALL highway + LC”).

Table 5.3: Influence factors of the identified channels in the parametric models, as well as the values for the
urban data set of Chapter 4. Dashes indicate channels were not present in the model.

data model IP̃ fx
IP̃ fy

IP̃y,lc

H
ig

h
w

ay p-ALL urban 40.0% 60.0% -
p-ALL highway 45.0% 55.0% -
p-ALL highway + LC 44.0% 47.1% 8.9%

U
rb

an

p-ALL 34.0% 66.0% -

ing the ratio of the average vehicle motion strength in both scenarios:

r f =
mean[|S̃veh, fx

(t)|]

mean[|S̃veh, fy
(t)|]

, (5.8)

which yields r f = 1.01 for the highway experiment and r f = 0.83 for the urban experi-
ment. Furthermore, although having a clear impact on the model fits, the lane change
component only provides a contribution of 8.9% to the rating model, as it is only active
for short periods of time.

The considered recorded driving scenario ended in the exact same urban environ-
ment tested in the experiment of Chapter 4, which allows for a direct comparison of the
rating model’s prediction quality between both experiments. The grey areas in Figure 5.9
indicate these urban maneuvers, which were not included in the model fitting described
above, and are thus only analyzed descriptively. All models are found to describe the
ratings in the urban part of the scenario surprisingly well, further showing the transfer-

ability of the rating model between experiments and thus predictive validity.
Finally, Figure 5.9 (right) also shows the measured (“o”-symbols) and predicted (“+”-

symbols) overall ratings, based on the earlier determined mapping from continuous rat-
ings to overall rating. Regardless of the relatively low VAF values for modeling the con-
tinuous ratings, the models are able to predict the overall ratings within one unit on the
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rating scale. This falls within its measurable resolution, as participants can only change
the rating value by discrete steps of 1.

5.5 Discussion

5.5.1 Rating Measurements

The experiment described in this chapter applied the continuous rating method of Cleij
et al. [2018] – who tested short drives each with a single curve driving maneuver – in a re-
alistic setting: a long highway scenario containing maneuvers characteristic for highway
driving. Overall, the 30 participants were well able to distinguish the differences in in-
congruences between the different tested motion cueing conditions. The optimization-
based Oracle (ORC) condition, with the objectively lowest motion mismatches, was in-
deed rated as having the most congruent motion. The CWA and HTC conditions were
rated equivalently, indicating that no clear improvement due to the increased rotational
rate gains in the HTC condition was found.

Generally, the experiment’s motion cueing was rated positively, with the highest oc-
curring average rating being just below 3. This is lower than the ratings of the urban ex-
periment, as well as the rural rating data of Ellensohn [2020], where the highest ratings
were around 5. This can be explained by the comparatively small mismatches present in
the highway experiment, where max[∆S̃ fx

]= 1.8 m/s2 and max[∆S̃ fy
]= 2.0 m/s2 . For the

urban experiment, the largest mismatches were max[∆S̃ fx
] = 2.0 m/s2 and max[∆S̃ fy

] =

3.2 m/s2 . On the other hand, considering that participants could have used the whole
scale for rating the full range of incongruences that is specific to the current experiment,
it can be considered surprising that participants only gave such low ratings. In previous
research, it was such differences in interpretation of the continuous rating scale that re-
quired a Model Transfer Parameter (MTP) to predict between different sets of experiment
data [Cleij et al., 2019]. However, considering that the training, before the measurement
phase started, contained a strong false cue motion in the “CB” maneuver, inducing a mis-
match of similar strength (∼ 6 m/s2) as in the urban experiment, this may have served as
an “anchoring”, resulting in rating measurements that occur on the same relative rating
range. Such anchoring with mismatches of equal strength between experiments is thus
beneficial, as it increases the comparability of the acquired results.

5.5.2 Reliability

Consistent with the findings in Chapter 4, the reliability decreased with decreasing rating
values (i.e., less incongruence), and vice versa. This implies that the better the motion
cueing is rated, the less these ratings can be trusted. The reliability estimates are, how-
ever, lower than those found for the urban reliability model of Chapter 4. This shows that
the lower reliabilities are not only caused by a lower number of repetitions (2 instead of
3), but also by the data generally being less reliable in the highway scenario. There are
various causes for this, such as participants understanding the rating task better in the
urban experiment than in the highway experiment. However, considering that the ex-
periment set-up (simulator, briefing, experimenter, training procedure) were identical
in both experiments, there is no specific reason to assume this was the case. Instead, a
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more likely explanation is that the highway scenario is simply more difficult to rate for
participants.

This could by due to the fact that maneuvers are more difficult to anticipate. In the ur-
ban scenario of Chapter 4, it was likely more clear where certain maneuvers took place
(e.g., by visually recognizing upcoming corners and traffic lights). In the current high-
way scenario, the maneuvering is mainly based on the traffic surroundings, which may
be more difficult to anticipate or remember from earlier runs. Thus, the more unpre-
dictable maneuvers may have had a negative effect on the participants’ ability to reliably
evaluate the motion in every repetition. To further improve the reliability the anticipa-
tion of the more unexpected maneuvers, such as lane changes, the indicator sound may
be simulated, or the future path of the vehicle in the simulation itself may be explicitly
shown. This reduced ability to recognize the maneuvers between runs may also be re-
lated to the length of each drive: in urban the urban experiment of Chapter 4 each run
lasted 255 s, whereas in the current highway experiment, each run lasted 430 s. Another,
arguably the easiest method of boosting reliability is to increase the number of repeti-
tions of each tested condition to three (as in Chapter 4) or more.

Another explanation for the lower reliability may come from the fact that the highway
simulation contained relatively short (e.g., lane change) maneuvers for 430 s of driving,
in combination with large parts of inactivity, compared to the longer maneuvers (e.g.,
curves, roundabout) in the shorter 255 s urban simulation of Chapter 4. As the reliability
is calculated over the whole drive, and the ratings at all points in time contribute equally
to the reliability, the reliability estimates of the present highway simulation may be dom-
inated by the parts in the drive where not so much motion, and therefore not so many
mismatches occur. In accordance with the findings of Chapter 4, the “local” reliability of
the ratings in these inactive parts is likely to be low, even if the reliability of the ratings
in the more active maneuvers is high. These relatively long parts with a low reliability
would then bias the reliability of the whole drive, explaining the observed low values.
This hypothesis will need explicit testing in future work. It would, however, also make
it difficult, especially for continuous ratings, to define a cut-off value for reliability un-
der which the ratings should be discarded, as is often done in literature (e.g., Ellensohn
et al. [2019]). Nevertheless, as mainly the most incongruent moments in the simulation
determine the overall impression, the presented approach of predicting continuous and
overall ratings still upholds. Thus, whereas obtaining reliable data is important, and the
reliability estimates are lower than literature suggests for considering the data reliable,
the level of reliability obtained in the present ratings was adequate to predict the ratings
with sufficient quality.

5.5.3 Rating Relationships

Chapter 4 showed that the most incongruent motion dominates participants’ overall im-
pression of the provided simulator physical motion in urban simulations. From the anal-
ysis of the correlation between the continuous and overall ratings for the current high-
way experiment, this finding could not be directly reproduced. It should be noted, how-
ever, that the analysis on these rating relationships may have suffered due to the choice
of including the urban maneuvers at the end of the drive. While this had benefits for
comparing the continuous rating model between both experiments, the overall ratings
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may have been confounded due to the mixture of highway and urban contents. Whereas
this approach showed to work well for the present simulation, it is thus recommended to
develop explicit highway driving rating relationships for simulations in which only high-
way driving occurs. Nevertheless, the accuracy in predicting the overall ratings through
the rating model and the rating relationship show that using the most incongruent point
in the motion is still a well-functioning approach.

5.5.4 Model Predictions

Whereas the urban model of Chapter 4 worked well in predicting the general trends of
the measured continuous ratings of all three conditions, the fit quality improved using
the highway-specific model parameters. Considering the reasonable fit quality, the con-
ditions were also not analyzed separately, e.g., by fitting condition-specific model param-
eters. The generalizability, by using an identical model structure and a simple change of
model parameters, is a major strength for evaluating the motion cueing across a large
selection of available MCAs.

Including an additional lateral specific force mismatch term, representing a response
to the lane changes, resulted in the best prediction of the ratings. Through a lack of possi-
ble anticipation, as discussed in Subsection 5.5.2, these lane changes may have lead to a
“surprise” response to participants, in which their response to the perceived mismatches
is stronger than for the other maneuvers. Whereas this lane change model structure it-
self is still linear, the identification of lane changes to predict the ratings introduces addi-
tional difficulties, especially in closed-loop simulations. For example, whereas the urban
model may be directly used as a cost function in future MPC algorithms, an additional
prediction method to identify upcoming lane changes must be part of the optimization.
In fact, this additional response may be the a result of the open-loop driving, as these ma-
neuvers are difficult for the participant to anticipate. As this lack of anticipation is not
present in closed-loop driving, as the driver knows its own intentions, this additional re-
sponse may thus be less pronounced or even absent in closed-loop driving. Future work
should therefore explicitly investigate the equivalence of closed- and open-loop driving
in highway simulations.

5.6 Conclusion

This chapter described measuring and modeling continuous motion incongruence and
overall ratings for a realistic highway driving scenario. The same experiment setup and
procedures also considered for the urban experiment of Chapter 4, were used, to enable
a direct comparison between the urban and highway scenario types. For the current
highway experiment data, a lower reliability of the continuous rating data was found,
which indicates that that the highway scenario was more difficult to rate than the pre-
viously tested urban scenario. However, the previous finding that rating reliability de-
creases for lower (i.e., more positive) ratings is reproduced, confirming that the more
congruent the presented motion is, the less the measured ratings can be trusted. A sim-
ple model accounting for a first-order low-pass filter response to a weighted sum of lat-
eral and longitudinal specific force mismatches, as introduced in Chapter 4, was found
to still accurately predict the measured ratings. However, especially for the included



5

106 5. Incongruences in Highway Simulations

lane-change maneuvers the measured ratings were consistently underpredicted, likely
due to the unpredictable nature of these maneuvers in open-loop driving settings, re-
quiring an additional response to the lane change mismatches. As this improved the
prediction of the most incongruent point in the continuous ratings, an improvement in
the prediction quality of the overall ratings was subsequently obtained. Hier mist nog
een statement over de overall ratings. Overall, these findings strengthen the validity of
the proposed method for modeling continuous and overall ratings and, as a result, oc-
curring incongruences can be more accurately analyzed across scenarios for evaluating
and improving future motion cueing.
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Incongruences in Rural

Simulations

Key findings

• Like in urban and highway simulations, the reliability of ratings in rural simulations
decreases with increasing congruence of the motion.

• The linear rating model of Chapter 4, which was already validated for urban and
highway simulations, is also applicable to rural driving simulations.

• Ratings of the motion cueing are explained as a weighted response to the longitudi-
nal (46%) and lateral (54%) specific force mismatches.

• A linear correction factor, scaled to the relative mismatches, is necessary to correct
for experiments with different rating mismatch magnitudes.

This chapter is based on the following publication:

Title: Models of Motion Incongruence Ratings in Rural Driving Simulations.
Authors: M. Kolff, J. Venrooij, D.M. Pool, and M. Mulder.
Journal: To be submitted.
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Abstract

This chapter investigates the reliability and model predictions of subjective motion incon-

gruence ratings in rural driving simulations. The continuous rating data of three exper-

iments from literature were used, in which participants evaluated the motion incongru-

ences through continuous and overall rating methods. The experiments were highly sim-

ilar to the set-up of earlier urban and highway simulation experiments, to allow for a

comparison of scenario differences between the three scenario types. Several motion cue-

ing algorithms were tested that represent different levels (low-medium-high) of motion

cueing quality. The results show that – as in the urban and highway data – the more con-

gruent the motion is, the less reliable the ratings become. The linear rating model is valid

for predicting the rural continuous ratings based on the perceived longitudinal (46.0%)

and lateral (54.0%) specific force mismatches. However, as earlier research has shown, a

linear correction factor, describing the ratio of the relative mismatches, is necessary to gen-

eralize between experiments. Combined, these findings further show the validity of the

continuous rating method, and complete the validation of the linear rating model across

main driving simulation scenario types. This greatly improves assessment and prediction

of motion cueing quality, without the need for expensive on-site simulator testing.
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6.1 Introduction

RURAL driving is one of the most important driving scenario types, together with ur-
ban and highway driving, for automotive vehicle development. To support the develop-
ment of novel automotive technologies in such scenarios, simulators are highly useful
tools. When equipped with a motion system, their limited workspace often results in
an imperfect inertial motion reproduction. This causes mismatches between the vehi-
cle reference and the simulator motion. When a mismatch is sensed by the test driver,
the motion is incongruent [Cleij et al., 2018]. The presence of incongruences can af-
fect driving behavior [Wang et al., 2023], reduce realism, and induce simulator sickness
[Himmels et al., 2022b], which all negatively affect driving simulator experiment validity.
For this reason, the design of the Motion Cueing Algorithm (MCA), which is the algo-
rithm that drives the simulator motion, typically aims to reduce incongruences as much
as possible. Being able to predict these incongruences beforehand would be a crucial
tool, as that would allow for selecting the best-possible MCA and simulator combination
without expensive on-site simulator testing.

To this end, Cleij et al. [2018] introduced a continuous rating method: while being
driven around (“open-loop driving”), test drivers continuously give a subjective rating
that aims to reflect their impression of the simulation quality at each point in time. The
continuous rating data recorded in the relatively straight-forward driving scenario of
Cleij et al. [2018] could be successfully predicted using a moving average model struc-
ture with the objective mismatches as inputs, i.e., the absolute difference between the
vehicle reference and simulator motion. In Chapter 4, however, an improved model was
proposed for a realistic urban simulation, which was shown to be also valid for high-
way simulations in Chapter 5. A first-order low-pass filtered response to a weighted sum
of longitudinal and lateral specific force mismatches showed to adequately predict the
measured continuous ratings. In both the urban and highway experiments, however, the
reliability of the measured continuous ratings was shown to decrease with more congru-
ent motion. Furthermore, the overall rating, a single rating that represents the overall
quality of a drive and is feasible in closed-loop simulations (i.e., the test driver actively
controlling the car), was shown to strongly correlate with the most incongruent point
during that drive. Together with a continuous rating model, this thus provides a com-
plete model for predicting subjective overall post-hoc ratings from objective simulator
motion mismatches; a crucial tool in the analysis and trade-off of MCAs, simulators, and
parameter settings.

The final step in the rating model development, and a current gap in literature, is
the extension of the model validity to rural driving simulations. Three recent works have
gathered valuable continuous and overall rating data in realistic rural simulations [Ellen-
sohn et al., 2019a; Ellensohn et al., 2020; Ellensohn et al., 2019c]. These experiments
were all performed on the same rural road and evaluated the quality of various types of
MCAs. In these more realistic and complex rural simulations, the moving average model
proposed by Cleij et al. [2018] was shown to be of limited predictive power [Ellensohn
et al., 2019c]. Thus, the natural question arising is whether the findings regarding ur-
ban (Chapter 4) and highway (Chapter 5) simulations are valid in rural simulations as
well, and whether the low-pass filter model of Chapter 4 can successfully predict the
measured continuous ratings of the readily available rural data sets. This is especially
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Figure 6.1: Block diagram of the driving and rating tasks, highlighting the difference between the subjective
PMI and objective mismatches ∆S̃(t ). The part “Driving Control” (red, transparent) is only present in closed-
loop driving, and therefore not active in the present experiment.

challenging as it has been shown that participants use the available rating scale relative
to the magnitude of the incongruences present in an experiment [Cleij, 2020], requiring
a Model Transfer Parameter (MTP) to linearly correct for the scale of the mismatches
between experiments of different mismatch magnitudes.

The contribution of this chapter is to analyze the reliability and predictability of the
available rural data sets in an explicit comparison with the urban and highway rating
data, respectively. To this extent, the modeling methodology of Chapter 4 is applied to
the rating data sets presented in Ellensohn et al. [2019], Ellensohn et al. [2019], and El-
lensohn et al. [2020]. First, the extent to which the low-pass filter model of Chapter 4 can
be used without adaptations is verified. As a second approach, the model structure of
Chapter 4 is refitted on the rural data sets, allowing variations in the relative weighting
of the mismatch channels. Furthermore, the similarity of the three rural experiments is
used to compared differences in the relative rating scale, which require a correction of
an MTP in the model.

The chapter is structured as follows. Section 6.2 introduces the measuring and mod-
eling methods. The experiment set-up and results of the considered experiments are
described in Section 6.3. The results are shown in Section 6.4, followed by the discussion
in Section 6.5. The chapter is concluded in Section 6.6.

6.2 Methods

6.2.1 Rating Task

In all three considered experiments, participants performed a rating task while being
driven through a rural scenario, i.e., participants were driven around passively, rating
than driving themselves. Open-loop driving allows the participant’s full focus to be on
evaluating the motion. The combined driving and rating task is shown in Figure 6.1. As
both have been described extensively in Chapter 4 and Chapter 5, only the details of the
rating task are repeated here.
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For the rating task, drivers compared the perceived motion from the simulator to
the expected motion from the real vehicle’s motion, where the difference defines the Per-
ceived Motion Incongruence (PMI). The simulator motion is perceived through the hu-
man vestibular and proprioceptive systems, indicated as “Sensory System”. The internal
representation and sensory system combined are indicated in Cleij et al. [2018] as the
“PS”. Participants must use an internal representation [Stassen et al., 1990] to form their
expected motion based on the non-motion cues (such as the visuals) of the simulation.
The internal representation can be affected by the participant’s level of experience with
the task (driving) and with the vehicle that is simulated, and can thus be different be-
tween participants, see Chapter 4.

Whereas the PMI defines what is (in)congruent according to the participant, it is in-
ternal to the participant and cannot be measured directly. Therefore, a subjective Mo-
tion Incongruence Rating (MIR), which represents the PMI, can be measured [Cleij et al.,
2018; Kolff et al., 2024b]. Differences between the PMI and MIR can occur due to differ-
ences in the rating strategy, i.e., how a participant converts the PMI to a rating, as well
as any dynamics of the rating interface. Combined, these are described by the RS. As in
Chapters 4 and 5, the MIR is given through a rotary knob [Cleij et al., 2018], which can
be adjusted at any time, resulting in a time signal R(t). The rating scale of the present
experiments varied between 0 to 10, with steps of 1, where 0 indicates “fully congruent
motion” and 10 indicates “highly incongruent motion”.

In the experiments, participants rated the motion continuously, yielding a rating sig-
nal R(t). Figure 6.2 shows the continuous (left) ratings as described in Ellensohn et al.
[2019] (Experiment “A”, Figure 6.2a), Ellensohn et al. [2019] (Experiment “B”, Figure 6.2b),
and Ellensohn et al. [2020] (Experiment “C”), Figure 6.2c. The various conditions will be
explained in Section 6.3.3. The differences between the rating measurements have been
described in the respective publications and are therefore not further analyzed in-depth.
As in Chapter 4, the present experiments also recorded an overall post-hoc rating from
the participants, as shown in Figure 6.2 on the right side. Overall post-hoc ratings aim to
represent the overall quality of a drive. This rating were given verbally, yielding a single
rating measurement ORP H .

Although lacking temporal detail, overall post-hoc ratings have the benefit of being
easy to extract and are viable for closed-loop driving simulator experiments, making
them especially useful for validating rating predictions. Chapter 4 showed that the most
incongruent point in an urban simulation correlates most with the overall post-hoc rat-
ings, giving the linear relation ORP H = 2.0+0.8 ·max[R(t)]. Such a relation is especially
useful to predict the overall ratings, suitable for closed-loop simulations, based on con-
tinuous rating models.

6.2.2 Reliability

Although the continuous ratings are continuously recorded during a drive, the recorded
ratings can be unreliable, for example if the participants do not properly understand the
task. The reliability then describes how well the obtained data sets (in this case, the con-
tinuous ratings) can be trusted. Chapter 5 explicitly compared the reliability estimates
of the continuous ratings between highway and urban simulations. To allow for an ad-
ditional comparison to the present rural data, the reliability of the continuous ratings is
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(a) Data set “A” from Ellensohn et al. [2019].
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(b) Data set “B” from Ellensohn et al. [2019].
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(c) Data set “C” from Ellensohn et al. [2020].

Figure 6.2: Continuous rating signals of the three experiments.
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calculated using Cronbach’s Alpha:

αcp =
J

J −1

∑
j σ

2
c j p

σ2
Xcp

. (6.1)

Here, J is the total number of repetitions and σ2
c j p

is the variance of the individual sam-

ples. The coefficient α is unbounded on the lower side, i.e., [−∞ < α ≤ 1], where the
upper bound of 1 indicates full reliability.

In Chapter 4, it was described that McDonald’s Omega [McDonald, 2000] provides
a more accurate estimation of reliability than the commonly used Cronbach’s Alpha as
the latter has been criticized [Sijtsma, 2009] as it can lead to underestimations of reli-
ability. McDonald’s Omega [Sijtsma, 2009; Trizano-Hermosilla and Alvarado, 2016], as
introduced in McDonald [2000], is calculated as:

Ωcp =
(
∑

j λc j p )2

(
∑

j λc j p )2 +
∑

j (1−λ2
c j p

)
, (6.2)

where λc j p are the factor loadings. McDonald’s Omega is always equal to or higher
than Cronbach’s Alpha [Sijtsma, 2009]. The factor loadings λc j p were determined using
factoran in MATLAB R2018b, yielding Ωcp .

6.2.3 Rating Model

The linear rating model of Chapter 4 is employed to predict the measured continuous
ratings R(t) as function of mismatch signals. Its structure is shown in Figure 6.3. The mis-
matches represent the difference in inertial motion (specific forces and rotational rates)
between the vehicle motion S̃veh,m (t) and the simulator motion S̃sim,m (t), i. e., ∆S̃m (t),
with P̃m(t) = KP̃m

|∆S̃m(t)|. m represents the mismatch channel, e.g., m ∈ [ fx , fy , . . .].
The model of Chapter 4 predicts the continuous rating of the average participant. Its
structure consists of a first-order low-pass filter transfer function Hm ( jω) between the
absolute mismatch signal P̃m(t) and a modeled rating signal R̃(t):

̂̃R( jω) =
∑
m

KP̃m

(
ωc

jω+ωc

)
∆

̂̃Sm ( jω), (6.3)

with the low-pass filter’s cut-off frequency ωc and the gains of the mismatch channels
KP̃m

. The (̂·)-terms indicate the Fourier transforms. The low-pass filter represents the
participants’ lagged response (representing the RS dynamics as shown in Figure 6.1) to
the mismatches P̃m(t). Chapter 4 showed that the continuous ratings of the conditions
measured in that study could be largely explained when considering the longitudinal
specific force mismatches P̃ fx

, as well as the lateral specific force mismatch P̃ fy
(i.e., m ∈

[ fx , fy ]), with the parameters: ωc = 0.36 rad/s, K fx
= 0.91, and K fy

= 1.50.

6.2.4 Model Fitting Procedure

The model is fitted in the time-domain using a Nelder-Mead simplex algorithm [van der
El et al., 2018], as in Chapters 4 and 5. This method minimizes a sum-of-squared-errors
cost function:

arg min
Θ

J =
∑

t

[R(t)− R̃(t |Θ)]2, (6.4)
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Figure 6.3: The linear rating model from Chapter 4.

where Θ = [ωc , K fx
, K fy

] is the parameter set. As the gradient-based method does not
guarantee attaining the global optimum, 30 iterations are performed with uniformly dis-
tributed random numbers between 0 and 3 as initial conditions. The parameters that
lead to the lowest cost function value J are then selected as the final solution. The fit was
always performed on all the rating data of the three conditions grouped together, similar
to the “ALL” strategy in Chapter 4, as well as the models in Chapter 5.

6.2.5 Root Mean Square Error

The Root Mean Square Error (RMSE) is used to quantify the quality of the fit:

RMSE =

√
1
N

J =
√

1
N

∑
t

[R(t)− R̃(t |Θ)]2, (6.5)

where R(t) is the measured continuous rating signal (i.e., the reference) and R̄(t |Θ) is the
modeled signal. The RMSE represents the quadratic mean of the difference between the
measured and modeled signals. An RMSE of 0 thus describes a perfect fit, whereas there
is no lower bound that represents the “poorest of fits”.

Furthermore, the relative contribution of the mismatch channels to the ratings is
calculated through the influence factor [Cleij et al., 2018]:

Im =
∑

t

P̃m (t)/
∑

t

P̃ (t) ·100%, (6.6)

where P̃m(t) = KP̃m
|∆S̃m(t)|, see Figure 6.3, m is the mismatch channel, and P̃ (t) is the to-

tal modeled PMI, i.e., P̃ (t) =
∑

m P̃m (t). The influence factor represents the relative con-
tribution of each mismatch channel. The sum of all channels’ influence in the model is
therefore always 100%. The calculation of the influence factor allows for comparing the
contribution of each mismatch channel balance between the urban (Chapter 4), high-
way (Chapter 5), and rural ratings.

6.3 Experiment Set-up

6.3.1 Scenario

The scenario was the same in all three experiments. It consisted of typical rural maneu-
vers, as shown in Figure 6.4:
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• ACC: Acceleration
• OVL1: Overland 1
• RBT: Roundabout
• OVL2: Overland 2
• HT1: Hill top 1
• LC1: Left corner 1
• SC: S-curve
• OVL3: Overland 3
• HT2: Hill top 2
• DEC: Deceleration

ACC

OVL1

RBT OVL2 HT1

LC1

SC

OVL3

HT2

DEC

Figure 6.4: Overview of the rural route with the maneuvers indicated.

6.3.2 Apparatus

In all three experiments, the experiment-setup was highly similar as in Chapter 4 and
Chapter 5: BMW Group’s Ruby Space simulator (Figure 6.5a) was used. Its motion sys-
tem consists of a hexapod on top of a tripod system, resulting in nine DoFs. The tripod
adds additional workspace in longitudinal, lateral and yaw directions. Participants could
give their rating using the iDrive knob on the center console (Figure 6.5b), which was
sampled at 100 Hz. The 240◦ projection screen of the simulator showed the visuals, the
current velocity, and the current rating value in the form of a “rating bar” [Cleij et al.,
2018]. The size and color of the rating bar changed from 0 (small, white) to 10 (long, red),
representing the current rating given by the participant. These settings were all identical
to the experiments in Chapters 4 and 5.

6.3.3 Independent Variables

In the experiments, various experimental conditions were tested, as shown in Figure 6.2.
These conditions were based on different MCA architectures and thus have different
mismatches between the vehicle reference and simulator motion, see Figure 6.6. Ex-
periment “Rural A” [Ellensohn et al., 2019a] evaluated three different MCAs. First, a
“benchmark algorithm” (BM) was used [Bruschetta et al., 2017], which was not specifi-
cally tuned for the simulation. The algorithm filters the motion into low, medium, and
high frequency components. An optimization-based approach is then used to solve an



6

116 6. Incongruences in Rural Simulations

(a) The simulator while moving. (b) A test driver using the rating knob.

Figure 6.5: The experiment set-up, as in the experiments of Chapters 4 and 5. Figures adapted from Ellensohn
et al. [2019]).

optimization problem using a MPC approach. Second, a full MPC was used, also capable
of real-time simulation. Third, an optimization-based algorithm was used, which opti-
mizes the simulator motion along the complete recorded drive offline [Ellensohn et al.,
2019c], denoted as the Oracle (“ORC”). This algorithm can only be used in open-loop
simulations, but allows for the investigation of how the available simulator workspace
may be fully exploited [Kolff et al., 2022]. This MCA provides the lowest possible mis-
matches on the simulator, mainly visible in the longitudinal (Figure 6.6a) and lateral
(Figure 6.6b) specific force mismatches, as well as the yaw rate mismatch (Figure 6.6f).
It thus serves as the upper bound of motion cueing quality possible on the simulator. In
experiment “B” [Ellensohn et al., 2019c], the same BM and ORC algorithms from experi-
ment “A” were again tested.

In experiment “C” [Ellensohn et al., 2020], two MCAs were tested. First, a CWA was
used [Conrad et al., 1973; Reid and Nahon, 1985], where the vehicle motion is distributed
over the hexapod (high-frequency), tripod (medium-frequency), and tilt-coordination
(low-frequency) channels, and washed-out using second-order high-pass filters. In the
second, “hybrid algorithm”, the optimal simulator motion is calculated beforehand us-
ing an Oracle strategy. Then, the algorithm can be applied in real-time by “washing out”
any deviations from the optimal control output. Therefore, this MCA is also real-time ca-
pable and may potentially approximate the Oracle motion cueing in closed-loop simula-
tions. In all conditions, the rotational rates ωx and ωy were tuned to be close to the per-
ceptual threshold (< 3 deg/s) [Reymond and Kemeny, 2000], see Figures 6.6d and 6.6e.

In each of the three experiments, a pre-recorded drive was used, such that the same
drive was used for all tested conditions. The recording of the drive, however, differed be-
tween the three experiments, such that slight differences in the driving style are present
between the three experiments. Most notably, the initial acceleration of the vehicle in
experiment “C” was later than that of experiments “A” and “B”, leading a slight shift of ca.
5 s in when the maneuvers occurred (see Figure 6.6a). This has no effect on any of the
results. Furthermore, participants were instructed to not actively rate the acceleration
(“ACC”) and deceleration (“DEC”) maneuvers at the beginning and the end of the drive,
respectively.
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Figure 6.6: Mismatches of the experimental conditions tested in the three experiments. Grey vertical lines
indicate the separate maneuvers. The dashed lines indicate the rotational threshold of 3 deg/s [Reymond and
Kemeny, 2000], relevant for the use of tilt-coordination.
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6.3.4 Participants and Procedures

The participant groups and experiment procedures have been discussed in detail in the
respective source publications. Considering the importance for calculating reliability,
the number of participants are nevertheless restated here: 35 participants in experiment
“A”, 30 in experiment “B”, and 12 in experiment “C”. Furthermore, experiment “A” had
3 repetitions of each condition (9 runs in total per participant), experiment “B” had 4
repetitions (8 runs in total), and experiment “C” had 2 repetitions (4 runs in total). All ex-
periments contained a training segment before the actual experiment to let participants
get accustomed to the simulation environment and the rating task. Although the rat-
ing task was the same, the present experiments had a different experiment leader than
in the urban and highway experiments, which may cause differences in the instruction
and strategy effects (see Chapter 4) compared to the urban and highway experiments.

6.4 Results

6.4.1 Reliability

The reliability estimates of the three experiments’ continuous rating data are shown in
Figures 6.7a-6.7c. The average reliabilities over the participants are indicated by the dot-
ted lines, their values are given in Table 6.1. The average reliabilities are highest for ex-
periment “B”, followed by experiment “A” and then “C”. This follows the number of repe-
titions of each condition of the experiments (four, three, and two, respectively). Because
only two repetitions of each condition were tested in experiment “C”, Ω could not be cal-
culated here. Therefore, only values of α are displayed in Figure 6.7c and Table 6.1 for
the conditions C-CWA and C-HYB. For experiment “A” and “B”, both reliability metrics α
and Ω were calculated.

The individual data points in Figures 6.7a-6.7c represent the reliability estimates per
participant, displayed for each condition separately, as a function of the corresponding
average rating in that condition R̄p (i.e., the rating averaged over time and averaged over
the repetitions for a given participant). The vertical bars show the difference between
both metrics (experiments “A” and “B” only). As described in Savalei and Reise [2019]
and Chapter 4, values of Ω should be always equal to or higher than those of α, which
is indeed the case here. Differences are prominent (up to 0.4), mainly for participants
for whom α is low, in line with predictions by Savalei and Reise [2019]. It is thus at more
congruent motion where the use of Ω is beneficial, as it provides a significantly higher
estimate of the true reliability, avoiding the wrongful conclusion that some data sets are
unreliable.

A key finding of Chapter 4 was that the lower the ratings are (i.e., more congruent),
the more unreliable they are. The regression fit of Chapter 4 of the form r = a−1/(bR̄p+c)
is used to describe this, with a, b, and c the fit coefficients, and r either α̃ or Ω̃. In
Figures 6.7a-6.7c, these fits (a = 0.89, b = 19.65, c = 1.39 for α̃, a = 0.90, b = 21.50, c = 2.05
for Ω̃) are represented by the grey dashed (α̃) and solid (Ω̃) lines. Similarly, the regression
fit is performed on the present rural data sets, represented by the black dashed (α̃) and
solid (Ω̃) lines. For experiment “B” (Figure 6.7b), the data indeed follow the trend of
decreasing reliability for lower ratings, although the reliabilities are lower than what the
regression fit of Chapter 4 predicts. Despite the additional repetition (four) compared to
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Figure 6.7: Reliability coefficients αp and Ωp of all subjects per condition, showing that reliability decreases
with lower ratings.
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Table 6.1: Reliability values for the seven conditions of the experiments “A”, “B”, and “C”. For the continuous
ratings (“Cont.”), the values represent the average of the reliabilities per subject. For the overall (“Ovrl.”), the
reliabilities are calculated over all subject, yielding one value per subject.

A-BM A-MPC A-ORC B-BM B-ORC C-CWA C-HYB

C
o

n
t. α 0.62 0.56 0.46 0.71 0.61 0.56 0.47

Ω 0.68 0.63 0.57 0.76 0.66 - -

O
vr

l. α 0.95 0.88 0.86 0.85 0.81 0.66 0.80
ω 0.96 0.88 0.87 0.85 0.82 - -

the urban data of Chapter 4 (three repetitions), the reliability is lower. This can indicate
either a lower rating task understanding of the participants or the rural simulation being
inherently more difficult to rate.

For experiment “A”, this effect is only partially reproduced: one group of the data
follows the regression fit of Chapter 4 (top/top left), with reliability decreasing for lower
ratings. The remaining data show a more scattered distribution of reliability, without any
apparent dependency on the rating magnitude. The presence of this grouping suggests
that the lower reliability of some participants is caused by a lower rating task understand-
ing, rather than rural simulations being inherently more difficult to rate (as the motion
was the same for all participants). As a result of these two groups, the best-fit regres-
sion fit is in this case a linear model, which still describes decreased reliability for lower
ratings (i.e., more congruent motion). Finally, for experiment “C”, no clear patterns are
visible due to the low number of participants (12). Reliability of the continuous ratings
here is generally low, which is at least partly caused by only having two repetitions of
each condition.

The reliability values of the overall post-hoc ratings are also shown in Table 6.1. These
values summarize the reliability of the whole data set and are thus a function of the
amount of subjects. The values are therefore also inherently higher than the estimated
reliability estimates of the continuous ratings. Similar trends are visible, however, where,
with the exception of C-HYB, the best rated conditions (i.e., A-ORC and B-ORC) have the
lowest reliability.

6.4.2 Rating Relationships

Chapter 4 showed that a strong correlation between the most incongruent point and
the overall rating existed in urban driving simulation. This analysis is repeated here for
the rural experiment data. Figure 6.8a shows that the highest Pearson correlation (ρ =

0.90) between the continuous and overall post-hoc ratings occurred for the maneuver
“LC1” (left corner 1), in the “HYB” condition of experiment “C”. Figure 6.8b shows the
correlation coefficients as a function of the average continuous rating. Here, no clear
trends are visible, in contrast to the urban data. This shows that the most incongruent
point in the continuous rating did not necessarily correlate most with the overall ratings.
For further model predictions, the linear regression relation ORP H = 2+0.8 ·max[R(t)],
found in the urban analysis (Chapter 4), is still used.
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Figure 6.8: Pearson correlation coefficients between the overall ratings (ORP H ) and the maximum of the con-
tinuous ratings within each maneuver (R̂man ).

6.4.3 Rating Models

The model predictions, together with the measured continuous ratings, are shown in
Figure 6.9. The “p-ALL urban” model from Chapter 4 generally underestimates the mea-
sured ratings, although it describes the variations in the ratings reasonably well. The
three models “p-ALL rural A/B/C”, fitted on each of the respective data sets, provide a
better fit. As both the urban and rural models generally thus describe the variations in
the ratings reasonably well, the VAF (as used in Chapters 4 and 5) was considered less
suitable to compare between the models. This was the prime motivation for calculating
the RMSE instead, whose values are shown in Table 6.2. These values confirm that the
rural-specific models indeed performed better than the “p-ALL urban” model. Note that
the acceleration (“ACC”) and deceleration (“DEC”) maneuvers were not actively rated by
the participants, and therefore also not included in the analysis.

Table 6.2: RMSE values for the three considered continuous rating models.

p-ALL urban p-ALL rural A p-ALL rural B p-ALL rural C

E
xp

.

“A
”

BM 1.52 0.85 - -
MPC 0.85 0.70 - -
ORC 0.67 0.57 - -

E
xp

.

“B
” BM 1.32 - 0.76 -

ORC 0.56 - 0.70 -

E
xp

.

“C
” CWA 1.67 - - 1.18

HYB 0.96 - - 0.69

There is a clear difference visible in the prediction quality, however, between different
test conditions. For the conditions with low ratings (e.g., “ORC”), the ratings are not
well predicted. This may be due to the low reliabilities of these data sets (see Table 6.1).
Specifically for experiment “C” (Figures 6.9f and 6.9g), the low prediction quality may be
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Figure 6.9: The measured continuous (left) and overall (right) ratings of three conditions, each with the four
applied models.



6.4 Results

6

123

Table 6.3: Estimated parameters of the parametric models, including the parameters of the urban and highway
models. For the rural models, the corrected parameters are calculated by multiplying with the MTP.

ωc K fx
K fy

MTP K fx
·MTP K fy

·MTP

model [rad/s] [-] [-] [-] [-] [-]

p-ALL rural A 0.35 2.36 2.07 0.67 1.57 1.38
p-ALL rural B 0.42 1.75 2.34 0.75 1.31 1.76
p-ALL rural C 0.25 1.34 2.50 1.11 1.49 2.78

p-ALL urban 0.36 0.91 1.50

p-ALL highway 0.21 1.09 1.46

explained by both the low number of participants and the number of repetitions (2) per
condition, leading to unreliable rating data, as shown in Table 6.1 and Figure 6.7c.

The parameter values of the three fitted models are shown in Table 6.3, together with
the estimated parameters found for the urban (Chapter 4) and highway (Chapter 5) mod-
els. The gains in the models of the three rural experiments are clearly higher than in the
urban and highway simulations. This shows that participants gave higher ratings for in-
congruences of similar magnitude in the rural simulations compared to the urban and
highway simulations. Using the approach of Cleij [2020], by introducing a Model Trans-
fer Parameter (MTP) to correct for the difference in relative PMI between the experiments,
this can be corrected for. The MTP is calculated as the ratio of the largest PMI occurring
over time t and in the mismatch channels m in two experiments a and b:

MTPa→b =

(
max
m,t

[KP̃m
∆S̃m (t)]

)

a(
max
m,t

[KP̃m
∆S̃m(t)]

)

b

. (6.7)

The MTP is calculated using, for rural “A” and “B”, max
m,t

[∆S̃m (t)]= 2.9 m/s2 , for rural “C”:

max
m,t

[∆S̃m (t)]= 4 m/s2, which in all three cases comes from the lateral specific force. For

the urban and highway data sets, the largest mismatches were induced in the training
drives: max

m,t
[∆S̃m(t)] = 6 m/s2 , also in the lateral specific force. This yields values of

MTP = 0.48 for experiments rural “A” and “B”, and MTP = 0.67 for experiment rural “C”,
when comparing to both the urban and highway experiments. In words, this means
that the mismatches in the rural experiments were smaller compared to the urban and
highway experiments, such that participants likely adapted their use of the rating scale
accordingly Using these MTP values, the “corrected” parameter values are also shown in
Table 6.3, which indeed results in more comparable parameter values between all five
experiments. Considering that the model “p-ALL rural A” of experiment “A” performed
best (Table 6.2), and is based on three data sets, rather than two, this model is considered
the most representative for rural driving.

To investigate the balance of the longitudinal and lateral specific force contributions,
the corresponding influence factors are calculated. These are shown in Table 6.4, includ-
ing the values found in the urban (Chapter 4) and highway (Chapter 5) experiments, for
reference. A difference in balance between the contributions of P̃ fx

and P̃ fy
is visible
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Table 6.4: Influence factors of the identified channels in the parametric models.

data model IP̃ fx
IP̃ fy

Rural “A” p-ALL rural A 45.8% 54.2%
Rural “B” p-ALL rural B 37.8% 62.2%
Rural “C” p-ALL rural C 44.0% 56.0%

urban p-ALL urban 34.0% 66.0%

highway p-ALL highway 45.0% 55.0%

between the three rural experiments. For the model “p-ALL rural A”, a highly similar bal-
ance of influence factors to the highway data exists. This contains a higher influence of
the longitudinal specific force mismatch than the urban rating data, and a lower influ-
ence of the lateral specific force mismatch. Whereas rural simulations may indeed con-
tain more longitudinal accelerations and higher speeds, this may also be caused by the
hills that characterize the rural scenario, which also induce longitudinal specific force
mismatches.

The final analysis step concerns the prediction of the overall ratings based on the
modeled continuous ratings. These predictions are shown on the right in Figure 6.9, to-
gether with the measured overall ratings. As done for the continuous ratings, the overall
ratings are predicted using the ‘p-ALL urban” model, as well as using the three refitted
rural models. The overall rating predictions are reasonably accurate (0-2 rating points
deviation), but in some cases less accurate than in the urban and highway simulations;
there the difference was always within a single rating point. This may have two reasons.
First, the most incongruent point according to the rating models was always the “LC1”
(left corner 1) maneuver, for which the models generally overestimated the participants’
rating response. This then automatically results in an overestimation in the prediction
of the overall ratings as well. Second, as no precise relation between the continuous
and overall ratings could be established, the urban relationship of Chapter 4 is used here
(ORP H = 2+0.8 ·max[R(t)]), which may not be fully representative of the rural scenario.
Nevertheless, for the conditions with the most accurate continuous rating predictions
in the “LC1” maneuver (A-BM, B-BM, C-CWA), these predictions fall within half a rating
point.

6.5 Discussion

6.5.1 Reliability

As also done for the urban (Chapter 4) and highway (Chapter 5) simulations, the reli-
ability of the acquired ratings was explicitly investigated. The phenomenon in which
reliability decreases for more congruent motion, as consistently observed in the urban
and highway simulations, was only partly observed. Especially in experiment “A”, there
were many participants that provided continuous rating data that were less reliable than
the reliability model predicted. Considering this was the case for a selection of partic-
ipants, this may be a sign of insufficient training or rating task understanding. Future
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work should investigate the effect of task understanding on the data reliability in more
detail.

Another important aspect in the analysis, however, is the magnitude of the continu-
ous ratings. The fact that an MTP was required to predict the ratings shows that partic-
ipants used a different mapping of perceived PMI to the rating scale than in the urban
and highway simulations. Linearly correcting measured ratings for this should be done
with great care, however. Instead, it is recommended to acquire rural rating data with
mismatches equal in magnitude to those in the urban and highway experiments, such
that this effect can be verified and explicitly corrected for.

6.5.2 Rating Relationships

A relationship between the incongruence of the motion, and the correlation between the
overall and continuous ratings, could not be established with strong confidence for the
rural experiment datasets analyzed in this chapter. An explanation for this is that maneu-
vers were more long-lasting compared to the urban simulation of Chapter 4, such that
the maneuvers could not be captured by a single overall rating. The fact that the urban
regression fit provided accurate predictions of the overall ratings, however, still shows
that the most incongruent point provides a good predictor for the overall ratings, also in
rural simulations. Future work should thus provide a more fundamental perspective on
the formation of the overall ratings and, specifically, scenario differences. This is ideally
done by comparing overall ratings of different scenarios within a single experiment. This
could reveal whether inherent scenario differences exist, or if the lack of a strong relation-
ship was a result of the experiments themselves, such as a lack of task understanding on
the overall ratings.

6.5.3 Rating Models

The analysis of the rating models further confirmed the validity of the urban rating
model structure, with the response to the longitudinal and lateral specific force mis-
matches, and comparable similar parameters. This shows that, like in urban and
highway simulations, these two mismatch channels are the primary cause of incongru-
ent motion in rural driving. The larger dependency on the longitudinal specific force
mismatches, which matched that of highway simulations, may be explained through
the higher speeds and additional hills in the simulations, which are typical for rural
simulations.

Whereas the variations could be described using the urban model, the rating signal
nevertheless needed to be corrected for using an MTP, as proposed in Cleij [2020]. Con-
sidering the similarity of the largest motion mismatches in the experiments of Chapters 4
and 5, this also explains why no MTP was necessary in the comparison of those data
sets. Note that in future model predictions no MTP is required to predict between exper-
iments, provided that equivalent parameters are used. Only when the predicted ratings
would also be validated subjectively, would an MTP-based correction be necessary to
correct between the predicted and measured ratings.

Whereas the continuous rating data of the urban and highway experiments con-
tained mostly short “peaks” of mismatches in distinct maneuvers, the mismatches in
the present rural data were more long lasting, causing overall trends in the ratings over
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time. These trends were of added difficulty in predicting the ratings, as especially the
magnitude of the continuous ratings showed to be difficult to predict using a single,
linear rating model. As the magnitude is of high importance for determining the
most incongruent motion, future work may thus investigate the suitability of a more
advanced, non-linear rating model that can weigh mismatches differently over time,
for example depending on the type of maneuver. This may be the necessary step to,
for example, the C-CWA condition described in this chapter, in which the variations,
but not the magnitude could be predicted accurately. For these approaches, model
evaluations using the RMSE, as used in the present analysis, rather than the VAF (used
in Chapters 4 and 5), are recommended.

Nevertheless, the successful model predictions, especially based on the rating data
of conditions with large mismatches (i.e., A-BM, B-BM), can be directly applied in the
analysis and trade-off of future MCA settings. With the validity of the linear rating model
tested in the rural scenario as well, the trinity of rating predictions on the three most
important scenario types (urban, highway, and rural) is now complete. Whereas the pa-
rameters differ slightly between the scenario types, given the fixed model structure, the
model can be universally applied. In the evaluation and trade-off of various MCAs and
simulators across the three scenario types, which is the primary use-case in this disserta-
tion, the model can predict the quality of the motion without expensive on-site simula-
tor testing. Another use-case is that the model can be used in MPC applications, where
its linear model structure can be directly applied in the cost function to include a subjec-
tive component as part of the optimization. The subjective experience between different
scenarios can then be directly implemented using a different parameter setting.

6.6 Conclusion

This chapter described measuring and modeling continuous motion incongruence rat-
ings in realistic simulated rural driving scenarios. By analyzing the continuous and over-
all rating data of three existing rural driving experiments, a direct comparison to the
other two main scenario types, urban (Chapter 4) and highway (Chapter 5), was made.
Like in urban and highway simulations, reliability decreases for lower (i.e., more posi-
tive) ratings, confirming that the more congruent the presented motion is, the less the
acquired ratings can be trusted. The generally lower reliability of the rural simulation
shows that it is more difficult to rate than urban simulations. The low-pass filter response
to the lateral and longitudinal specific force mismatches are again sufficient for predict-
ing the measured ratings. However, an additional linear correction factor in the ratings
was required to successfully predict between experiments. These findings complete the
validation of the rating measurement and modeling methods in the three main scenario
types (urban, highway, and rural), providing unmatched insights across scenarios in the
evaluation, trade-off, and development of future motion cueing.
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Key findings

• In urban simulations, participants being driven rate the motion cueing equiva-
lently to when driving themselves.

• Similar to the findings of Chapter 4 on the overall impression of a whole drive, the
summarizing impression of a maneuver’s motion is dominated by the most incon-
gruent point during that maneuver.

• The linear continuous rating model of Chapter 4, developed on data of a differ-
ent participant group and simulator, can predict continuous ratings across experi-
ments.

This chapter is based on the following publication:

Title: Predicting Motion Incongruence Ratings in Closed- and Open-Loop Urban Driving Simulation.
Authors: M. Kolff, J. Venrooij, E. Arcidiacono, D.M. Pool, and M. Mulder.
Journal: IEEE Transactions on Intelligent Transportation Systems, 26(1), pp. 517-528, 2025.
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Abstract

This chapter presents a three-step validation approach for subjective rating predictions

of driving simulator motion incongruences based on objective mismatches between ref-

erence vehicle and simulator motion. This approach relies on using high-resolution rat-

ing predictions of open-loop driving (participants being driven) for ratings of motion in

closed-loop driving (participants driving themselves). A driving simulator experiment in

an urban scenario is described, of which the rating data of 36 participants was recorded

and analyzed. In the experiment’s first phase, participants actively drove themselves (i.e.,

closed-loop). By recording the drives of the participants and playing these back to them-

selves (open-loop) in the second phase, participants experienced the same motion in both

phases. Participants rated the motion after each maneuver and at the end of each drive.

In the third phase they again drove open-loop, but rated the motion continuously, only

possible in open-loop driving. Results show that a rating model, acquired through a dif-

ferent experiment, can well predict the measured continuous ratings. Second, the maxi-

mum of the measured continuous ratings correlates to both the maneuver-based (ρ = 0.94)

and overall (ρ = 0.69) ratings, allowing for predictions of both rating types based on the

continuous rating model. Third, using Bayesian statistics it is then shown that both the

maneuver-based and overall ratings between the closed-loop and open-loop drives are

equivalent. This allows for predictions of maneuver-based and overall ratings using the

high-resolution continuous rating models. These predictions can be used as a trade-off

method of motion cueing settings of future closed-loop driving simulator experiments.
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7.1 Introduction

DRIVING simulators are essential tools in the development of future driving technolo-
gies due to their ability to create safe and repeatable test conditions. When equipped
with a motion system, their limited workspace often induces mismatches between ve-
hicle and simulator inertial motion [Qazani et al., 2022]. While some mismatches are
not perceived by the driver, the motion is incongruent if the driver does notice a devia-
tion between their expectation of the real vehicle motion and the simulator motion they
actually perceive [Cleij et al., 2018; Kolff et al., 2024b]. Incongruent motion can lead to
an impaired perceptual fidelity of the simulation and induce simulator sickness [Irmak
et al., 2021]. Therefore, the development, evaluation, and trade-off of MCAs typically
aim at selecting the option with potentially the least incongruences. Acquiring and vali-
dating this information currently requires performing subjective evaluations in a driving
simulator. Being able to predict such ratings through objective measures would be a cru-
cial advancement [Casas-Yrurzum et al., 2020]. They would allow for rapid, systematic,
and cost-efficient assessment of MCAs and guide developments, e.g., of MPC algorithms
[Lamprecht et al., 2021]. However, making such predictions is notoriously difficult. For
example, it is known that drivers generally consider scaled motion as more realistic than
fully congruent one-to-one simulator motion [Berthoz et al., 2013], of which the cause is
not yet understood.

In most driving simulations, drivers control the simulated vehicle themselves
(“closed-loop”). Due to differences in driver behavior and driving style, each drive is
different, resulting in different experiences of motion. Existing models to objectively
predict subjective ratings [Cleij et al., 2018; Ellensohn et al., 2019c; Kolff et al., 2024b]
are based on ratings of “open-loop” driving. Here, human drivers are driven around as
passengers. The fact that they do not need to provide any steering control inputs has two
crucial advantages. First, open-loop driving allows for performing multiple identical
repetitions of exactly the same drive, e.g., to obtain more reliable subjective rating data
[Kolff et al., 2024b]. Second, the absence of a driving task allows for a more invasive
rating task, such as letting drivers continuously rate the motion cueing through a rating
knob [Cleij et al., 2018; Kolff et al., 2021], providing unmatched insights into when and
where in the simulation (in)congruent motion occurs. Due to the high temporal resolu-
tion of continuous ratings, their relation to objectively calculated mismatches between
vehicle and simulated motion can be captured in mathematical models, which in turn
allow for predicting continuous ratings [Cleij et al., 2018; Ellensohn et al., 2019c; Kolff
et al., 2024b]. However, as drivers are expected to continuously assess their perceived
motion and operate a rating knob with one hand, the continuous rating method cannot
be used in closed-loop scenarios, i.e., when drivers need to operate the steering wheel
with both hands. Rating methods that are suitable for closed-loop driving, such as
providing a single rating after each drive or maneuver, are of such lower resolution that
they are much less suitable to be used in a modelling approach.

Thus, it would be extremely useful if the high-resolution open-loop prediction mod-
els of continuous ratings can be used in the design, evaluation, and testing of motion
cueing for closed-loop driving simulation. However, the central assumption of the con-
tinuous rating method, i.e., that it is representative of closed-loop simulations, has never
been tested. Differences between the two driving methods might occur due to percep-



7

130 7. Incongruences in Closed-loop Driving

tual differences [Nesti et al., 2016; Valente Pais et al., 2012] or due to changes to the inter-
nal representation of motion [Kolff et al., 2024b]. With both the strengths and limitations
of the continuous rating method in mind, three gaps are identified that would need to
be answered to investigate whether continuous ratings of open-loop driving, and their
predictions models, can be used to predict ratings of closed-loop driving. First, a rating
model must be used to predict measured continuous ratings. This is challenging because
existing rating models [Cleij et al., 2018; Ellensohn et al., 2019c; Kolff et al., 2024b] have
not yet been confirmed to hold predictive power between experiments. Second, explicit
rating relationships must be developed, that can link the continuous rating method to
rating methods that are possible in closed-loop driving, such as after each maneuver or
after the whole drive. Finally, no work so far has investigated the equivalence of open-
loop and closed-loop driving. Their equivalence would be a requirement to be able to
make predictions of closed-loop drives based on the open-loop rating models.

This chapter presents a comprehensive driving simulator experiment consisting of
three phases, all performed in the Sapphire Space simulator at BMW Group. Subjective
ratings were obtained from 42 drivers in both closed-loop and open-loop driving sim-
ulations. By recording the closed-loop drives of the individual drivers (first phase) and
playing these back to themselves in the open-loop phase (second phase) of the experi-
ment, it is ensured that exactly the same motion is presented. In both driving methods,
the motion is evaluated through overall and maneuver-based ratings. In the third phase,
drivers again perform the open-loop rating task for the same recorded drives, but rate
using the continuous rating method.

This chapter’s main contribution is a complete, three-step approach that allows for
predicting overall and maneuver-based subjective ratings of closed-loop driving as a
function of objective motion cueing mismatch signals. First, a model for predicting con-
tinuous motion incongruence ratings from previous work [Kolff et al., 2024b] (Chapter 4)
is employed to test whether the recorded continuous ratings (third phase) can be pre-
dicted. Although the same urban scenario of Kolff et al. [2024] is simulated, a different
simulator, MCA parameters, and participant group were used. Second, it is investigated
whether predictive relations exist from the continuous rating (third phase) to the over-
all and maneuver-based ratings which can be obtained in closed-loop driving (second
phase). Kolff et al. [2024] (Chapter 4) showed that the maximum of the continuous rating
highly correlates to the overall rating. These methods are extended by also considering
the mean and median, as well as providing a similar analysis for the maneuver-based rat-
ings. The rating model is then used to make predictions of both rating methods. Third,
Bayes’ theorem [Jeffreys, 1961] is used to verify whether maneuver-based and overall
motion incongruence ratings provided in closed-loop and open-loop driving (first and
second phases) are equivalent.

The chapter is structured as follows. The driving and rating tasks are discussed in
Section 7.2. The experiment set-up is explained in Section 7.3. Results are presented in
Section 7.4, and discussed in Section 7.5. Conclusions are stated in Section 7.6.



7.2 Methods

7

131

7.2 Methods

7.2.1 Driving Task

When driving closed-loop, illustrated in Figure 7.1 including the red elements, the driver
controls the steering wheel δs (t), the accelerator δa (t) and brake δb(t) pedals. In a sim-
ulation, the vehicle simulation then calculates the corresponding vehicle motion states
S̃veh(t), i. e., the specific forces f (t) and rotational rates ω(t). As S̃veh (t) comes from a
vehicle model, it is an approximation of the real vehicle motion Sveh (t), hence the no-
tation (̃·). The motion states are sent to the Motion Control System, consisting of the
MCA and the Motion System (MS). The MCA converts the vehicle motion states to com-
manded platform motion. These are sent to the MS, i.e., the physical simulator, which
determines the actual platform motion S̃sim (t) [Kolff et al., 2023]. These can differ from
the commanded platform motion due to a variety of factors, such as the motion system
latency. Differences between the vehicle reference and simulator motion are then the
objective mismatches, i.e., ∆S̃(t) = S̃veh (t)− S̃sim(t).
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Figure 7.1: Block diagram of the driving and rating tasks. The part “Driving Control” (red) is only present in
closed-loop driving. The top left image shows the Sapphire Space simulator (Image: BMW Group), the top
right image shows the continuous rating interface, adapted from Ellensohn et al. [2019].

The platform motion is sensed by the driver through their sensory system. Based
on the perceived inertial motion and all other non-inertial motion cues in the simula-
tion, such as the visuals [Sivak, 1996], the driver chooses their intended control actions
based on a desired state. The motor system of the body produces the actual control ac-
tions [δs (t),δa(t) and δb(t)], which are sent to the vehicle simulation, closing the driving
control loop. In an open-loop driving task (Figure 7.1, excluding the red elements), the
driver does not actively control the vehicle and the vehicle simulation is represented by
a playback.

7.2.2 Rating Task

Next to the driving task, the participants also performed a rating task. They were tasked
with evaluating how well the inertial motion they perceive in the simulator matched to
what they would expect to feel from the simulated vehicle. This difference is defined as
their PMI [Cleij et al., 2018], see Figure 7.1. As the driver does not exactly know what
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the vehicle motion would feel like in a particular situation, they must use an internal

representation [Stassen et al., 1990] of the vehicle motion based on non-motion cues (e.g.,
visuals) of the simulation. Individual differences can therefore arise due to familiarity
or experience with the simulated vehicle [Kolff et al., 2024b]. Note that thus both the
expected and the vehicle model motion S̃veh (t) can differ from the real vehicle motion
Sveh (t).

Additionally, in closed-loop control, an efference copy [Mulder et al., 2022] of the in-
tended control actions is used to form the expected motion. The expected motion is then
not only based on what drivers expect to feel from the non-inertial motion cues, but also
what they expect to feel as a result of their own intended control actions. In open-loop
driving, the lack of driving control implies that no efference copy can be present. This
means that the internal representation can only be generated from the non-inertial mo-
tion cues. It is therefore possible that the PMI of open-loop driving is different than in
closed-loop driving, for example, because drivers might know less well what motion to
expect.

As the PMI is not measurable, a MIR was asked from the drivers. A typical choice is a
numeric rating scale [Cleij et al., 2018], e.g., ranging between values of 0 (fully congruent)
and 10 (highly incongruent), with steps of 1 [Kolff et al., 2024b], see Chapter 4. Another
choice relates to the rating method, i.e., when and how these ratings are acquired. In the
experiment, three types of rating methods were used:

7.2.2.1 Overall Ratings (ORP H )

After each simulation drive, a single rating value between 0 and 10, representing the over-
all impression of the drive, was asked from the drivers. As they do not interfere with the
driving task(s), overall ratings can be used in closed-loop and open-loop driving. They
can be extracted through various methods, such as verbally or through a rating interface.
While beneficial due to their non-intrusive nature, the single rating values provide no
direct information on which parts of the drive the overall rating is mostly based on. It
has been shown that overall rating of PMI correlate with the most incongruent moment
in the simulated drive [Cleij et al., 2018; Kolff et al., 2024b].

7.2.2.2 Maneuver-based Ratings (MBP H )

Here, a scenario is divided into different maneuvers and drivers give a single rating after
those maneuvers [Ellensohn et al., 2020]. Like overall ratings, maneuver-based ratings
can be acquired from closed-loop and open-loop driving, and can be given verbally or
through a rating interface. A benefit compared to overall ratings is that maneuver-based
ratings provided detailed information for each maneuver separately. A downside is that
they require that drivers give their rating while driving, which may cause a slight distrac-
tion from the driving task.

7.2.2.3 Continuous Ratings (R(t))

Here, drivers rate continuously throughout the drive using a rating interface [Cleij et al.,
2018], reflecting their current PMI at each point in time. The main benefit of this method
is its high temporal resolution, which allows for modelling approaches [Cleij et al., 2018;
Ellensohn et al., 2019c; Kolff et al., 2022; Kolff et al., 2024b]. As it requires operating the
rating interface with one hand (see Figure 7.1, top right), it is not possible to drive closed-
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loop at the same time, which requires both hands on the steering wheel. Therefore, this
task can only be performed in open-loop driving experiments.

7.2.3 Validation of Rating Predictions

As explained in Section 7.1, a main motivation is to predict how a certain motion cueing
setting will be rated subjectively in closed-loop driving, based on objective signals of
platform motion. For this, a three-step approach is used (Figure 7.2).

7.2.3.1 Rating Model Validation

First, a rating model is used to predict continuous ratings based on objective mismatch
signals [ path 1 in Figure 7.2 ]. The latter are defined as the differences in inertial mo-

tion (specific forces and rotational rates) between the vehicle motion S̃veh,m (t) and the
simulator motion S̃sim,m (t), i. e., ∆S̃m (t), with P̃m (t) = KP̃m

|∆S̃m (t)|. Here, m represents
the mismatch direction, e.g., m ∈ [ fx , fy , . . . , ωz ].

In Kolff et al. [2024] (Chapter 4) a linear model was proposed that predicts the contin-
uous rating of the average participant. Its structure consists of a first-order low-pass filter
transfer function Hm( jω) between the absolute mismatch signal P̃m (t) and a modeled
rating signal R̃(t):

̂̃R( jω) =
∑
m

KP̃m

(
ωc

jω+ωc

)
̂̃Pm( jω), (7.1)

with the low-pass filter’s cut-off frequency ωc and the gains of the several mismatch
channels KP̃m

. The (̂·)-terms indicate the Fourier transforms. The low-pass filter repre-
sents the participants’ lagged response (Response System (RS) in Figure 7.1) to the mis-
matches P (t). In Kolff et al. [2024] it was shown that the continuous ratings of a CWA
MCA condition as measured in that study could be largely explained when considering
the longitudinal specific force mismatches P̃ fx

, as well as the yaw rate mismatch P̃ωz (i.e.,
m ∈ [ fx ,ωz ]), with the parameters: ωc = 0.37 rad/s, K fx

= 0.78 and Kωz = 6.71. This model
is denoted as “p-CWA”.

To express how well the model is able to predict the measured ratings, the VAF is
used:

VAF =

(
1−

var
[
R(t)− R̃(t)

]

var[R(t)]

)
·100%, (7.2)

with R(t) and R̃(t) the measured and modeled rating signal, respectively. The VAF is
a measure of how much of the measured signal’s variance is explained by the modeled
signal [Kolff et al., 2024b]. A value of 100% indicates a perfect fit, whereas it is unbounded
on the lower side, i.e., [−∞< VAF≤ 100%].

7.2.3.2 Rating Relationships

In Kolff et al. [2024] it was shown that the maximum of the continuous ratings strongly

correlate with the overall ratings [ path 2a in Figure 7.2 ], such that a linear relationship

of the form ORP H = fORPH [R(t)] = αORPH ·max[R(t)]+βORPH exists. A similar relation-

ship, between maneuver-based and continuous ratings [ path 2b in Figure 7.2 ], does

currently not exist. In the present work, the mean and median of the continuous ratings
will also be considered as possible predictor for the overall ratings and the maneuver-
based ratings.
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Figure 7.2: Contribution steps, representing (from left to right): Open-loop continuous ratings are predicted

from objective mismatches using a rating model 1 . Second, rating relationships between the continuous

ratings to both the open-loop 2a overall (ORP H ) and 2b maneuver-based (MBP H ) ratings are determined.

Third, equivalence testing relates 3a overall and 3b maneuver-based ratings of open-loop and closed-loop

driving.

7.2.3.3 Equivalence Testing

Finally, to investigate whether ORP H and MBP H ratings of open-loop driving can be

used for closed-loop driving, their equivalence is investigated [ paths 3a and 3b in

Figure 7.2, respectively ]. In frequentist statistics, data are typically tested for significant
differences, i.e., tested for a 95% probability that H0 (null hypothesis; the data are equiv-
alent) can be rejected in favour of H1 (alternate hypothesis; the data are different). In
the present case, the interest lies not in differences, but in equivalence, requiring proof
of H0. This cannot be tested through the same frequentist statistics procedure, as the
lack of significant differences does not necessarily imply equivalence. Instead, it only
shows that an effect cannot be proven [Lakens, 2017], which can also occur in the case of
a lack of statistical power. Thus, using frequentist statistics, the H0 cannot be accepted.
This implies that the frequentist approach is not a suitable method for investigating the
equivalence of the open-loop and closed-loop ratings. Specially developed alternative
frequentist methods, such as the Two One-Sided Tests (TOST) [Lakens et al., 2018], re-
quire normally distributed data. Furthermore, the TOST method is considered to be
less reliable for testing equivalence when the sample size is relatively small [Linde et al.,
2023].

As an alternative, it is possible to use Bayesian statistics [Jeffreys, 1961], which does
allow for explicit testing for equivalence of data. In Bayesian statistics, a degree of be-
lief in a hypothesis is expressed as a form of conditional probability. An estimation of
the distribution function is made about the data before even analyzing the data, result-
ing in a prior belief, which holds the ratio of the probability estimates of the hypotheses,
i.e, P (H1)

P (H0) . The prior belief can stem from existing knowledge on the process under in-
vestigation, e.g., from previous experiments or from knowledge of underlying physical
processes. No explicit assumptions on the distributions of the data, such as normality,
are necessary [Jeffreys, 1961]. After the data are observed, the degree of belief is updated
[Bolstad and Curran, 2007] to a posterior belief. This is expressed as P (H1|D)

P (H0|D) , with D the
observed data (in this case, the maneuver-based ratings of open-loop and closed-loop
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driving). The Bayes Factor can then be expressed through:

BF10 =
P (D|H1)

P (D|H0)
=

( P (H1)

P (H0)︸ ︷︷ ︸
Prior
Belief

)−1
×

P (H1|D)

P (H0|D)︸ ︷︷ ︸
Posterior

Belief

(7.3)

The Bayes Factor, denoted BF10, represents the ratio in proof of H1 over H0. Therefore,
the factor BF01 = BF−1

10 equals the ratio of proof of H0 over H1. A value of BF10 > 1 indi-
cates that H1 is more probable [Jeffreys, 1961], but only BF10 > 3 is considered evidence
for H1. In contrast, BF10 < 1 means that H0 is more probable, whereas only BF10 < 0.3 is
considered evidence for H0 (equivalence). Thus, to prove that the open-loop and closed-
loop ratings are equivalent, BF10 must be calculated and be shown to be below 0.3. For
this analysis, the Bayes factors are calculated using the JASP software [JASP Team, 2023],
which calculates values of BFincl . This Bayes factor indicates the change from prior to
posterior inclusion odds [Kelter, 2020]. The same range of degrees of belief holds as for
BF10 [Jeffreys, 1961].

7.3 Experiment Set-up

7.3.1 Experimental Conditions

Using the driving- and rating tasks presented in Section 7.2, the experiment was per-
formed with the following three conditions: i) Closed-loop driving, maneuver-based rat-
ing (“CLMB”), ii) Open-loop driving, maneuver-based rating (“OLMB”), and iii) Open-
loop driving, continuous rating (“OLCT”). To guarantee that drivers experienced exactly
the same motion in the open and closed-loop tasks, the CLMB condition was performed
first, such that in the open-loop conditions drivers could be presented with played-back
recordings of their own drives. The overall rating was the only rating that was recorded
in all three conditions. An overview of the conditions with the applied rating methods is
shown in Table 7.1.

Table 7.1: Overview of the experimental conditions.

Condition

Driving

task
Overall

rating [ORPH ]
Maneuver-based

rating [M BPH ]
Continuous
rating [R(t )]

CLMB Closed-loop X X -
OLMB Open-loop X X -
OLCT Open-loop X - X

7.3.2 Scenario and Data Acquisition

For increased comparability, the driven route is exactly the same as in Kolff et al. [2024]
(Chapter 4), see Figure 7.3. The maneuvers to be rated in the maneuver-based conditions
were indicated on the road using green bars and consist of several typical urban driving
maneuvers: corners (‘CR’), lane changes (‘LC’), as well as decelerations (‘DEC’). A traffic
light was present after ‘DEC1’, before which drivers had to stop, wait, and accelerate
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CR1

CR2
RBT

RBE

DEC1

CR3

CR4
DLC

CR5

CR6
DEC2

Figure 7.3: Top-down view of the driven route, as in Kolff et al. [2024]. The green areas were visible in the CLMB
and OLMB simulations (see screenshot) and represent the maneuvers to be rated: corners (CR), decelerations
(DEC), a double lane change (DLC) and a roundabout turn (RBT) and exit (RBE).

again. Compared to Kolff et al. [2024], there are two changes: First, the roundabout is
split-up into the roundabout turn (‘RBT’) and exit (‘RBE’) to obtain separate maneuver-
based ratings for both, increasing the amount of rating information. Second, three lane
change maneuvers in Kolff et al. [2024], namely after ‘CR2’, after ‘DEC1’, and after ‘CR3’
were not used in the current experiment, as they were not found to result in informative
ratings in Kolff et al. [2024]. Furthermore, this allowed for more time between the various
‘CR’ maneuvers for drivers to rate. Note that in Kolff et al. [2024] (Chapter 4) the division
of the maneuvers was not visible to the participants at all, as in that experiment they only
rated the motion continuously. In Kolff et al. [2024] (Chapter 4), the maneuvers were only
introduced and shown for clarity to the reader. Therefore, the changes of the maneuvers
compared to Kolff et al. [2024] is expected to only minimally impact the results.

7.3.3 Drive Matching Approach

Due to differences in driving style, all recorded closed-loop drives are inherently unique
in terms of velocity and lane position. To visualize the differences in the motion that was
presented in each drive, a “drive matching approach” was developed. Here, all recorded
time signals are related to a common ‘reference drive’ (see Figure 7.4). Here, the data
points of each drive of interest (black points) are linearly interpolated (black lines). For
each data point i (red points) in the reference run, a line is constructed perpendicular
to the closest linear line piece of the drive of interest, representing the shortest distance
between point i and the line piece. The point where these lines intersect (red cross) is
used to calculate the ratio r = nk+1/nk . The continuous rating signals are evaluated at
these two points and the weighted average based on the ratio r is calculated.

This leads to a vector of indices of equal length for all analyzed drives at which the
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Figure 7.4: Drive matching method, in which for each of the points i of the reference drive (red), the ratio of
the linear line segment that connects two points n yielding the shortest distance is calculated.

rating signal is evaluated. As it is arbitrary which trajectory is used as the reference drive,
as long as the same one is used for all drives of all drivers, the trajectory of drive 1 of
driver 1 is used. The method allows for relating individual drives with different velocities
and lane positions, but inherent differences in driving behaviour can still be present: for
example, the point in time at which drivers apply the brake can be different.

Note that the drive matching method is useful for comparing the driving behaviour
of various drives. However, as the method is purely based on the position of the vehi-
cle with respect to the reference vehicle, the method will likely not work when a certain
point in the scenario is passed more than once within a single drive. In that case the
method might incorrectly link these instances together. However, this did not occur in
the present experiment. Furthermore, note that expressing the drives relative to a ref-
erence drive also implies that their time signals are expressed relative to the reference
drive. This implies that time-domain operations need to be considered with caution.

7.3.4 Apparatus

The experiment was performed on the “Sapphire Space” simulator at BMW Group in Mu-
nich (see Figure 7.1, top left), a custom designed simulator constructed by Van Halteren
Technologies in 2021. Its kinematic structure consists of three motion subsystems: the
base is formed by a 19.14 m×15.70 m xy-drive that allows for large excursions in the x

and y directions. On top of the xy-drive stands a large 1.15 m stroke hexapod that can
move in all six DoFs. Finally, on top of the hexapod, a 360◦ yaw-drive is installed, allow-
ing for additional yaw rotations of ±180◦. The total motion system thus has nine DoFs.
The rating model of Kolff et al. [2024] was derived from data collected on the similar, but
smaller, “Ruby Space” simulator at BMW Group (xy-drive: 1.6×1.5 m, yaw-drive: ±25◦,
hexapod stroke: 0.34 m).

A one-to-one mock-up of a BMW 3 series (G20) was used, which was fully enclosed
by the simulator dome. Visuals were rendered on the inner dome wall using 12 Norxe P1
projectors, resulting in a full 360◦ projection around the mock-up. During the open-loop
drives, the steering wheel remained stationary. The iDrive navigation knob on the cen-
ter console was used as the rating interface by the drivers to give the continuous (R(t))
and maneuver-based ratings (MBP H ), see Figure 7.1. The overall rating was extracted
verbally for consistency with Kolff et al. [2024]. The 360◦ projection screen showed the vi-
suals and the current rating value in the form of a “rating bar” [Cleij et al., 2018]. The size
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and color of the rating bar changed (See screenshot in Figure 7.3) from rating 0 (short,
white) to rating 10 (long, red), to make the rating method more intuitive for drivers to
use. The velocity of the vehicle was visible on the tachometer on the dashboard and in
the out-of-the-window visuals, together with the driving direction (arrows). The rating
knob was connected to the central simulation computer using a CAN bus. This allowed
for the accurate and consistent synchronization between recordings of the simulator mo-
tion and the rating signals of the participants.

7.3.5 Motion Cueing Algorithm

A CWA was used as the MCA, as its linear filter-based structure ensures a deterministic
output. As the motion cueing is calculated in real-time (see Figure 7.1), this is required to
ensure that identical simulator motion is generated between the closed and open-loop
driving conditions. The median mismatch signals of the MCA are shown in Figure 7.5,
with the grey areas the interquartile ranges, and with the green areas representing the
maneuvers. The CWA tuning did not fully utilize the motion system capabilities, to en-
sure that the limits were never reached. Tilt-coordination was used and tuned to keep
the roll and pitch rate mismatches (Figures 7.5b and 7.5d) below the perceptual thresh-
old of 3 deg/s [Reymond and Kemeny, 2000] (dashed lines). In longitudinal direction,
drivers drove more aggressive than expected, resulting in the median pitch rate slightly
exceeding its perceptual threshold mismatch (Figure 7.5b).
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Figure 7.5: Median mismatches (grey lines) and interquartile ranges (grey shaded areas) over all drives between
the reference and simulator as a function of equivalent time in seconds (participant 1, run 1). Green areas are
the maneuvers; dashed lines in 7.5b and 7.5d are the perceptual thresholds (±3 deg/s, Reymond and Kemeny,
2000).

The scaling factors used in the MCA were set to 0.5 for the specific forces and 0.6 for
the rotational rates. These values lie well within the range of scaling factors considered
to be the most realistic, i.e., 0.4− 0.8 found by Berthoz et al. [2013]. First-order filters
were used to distribute the low- and high-frequency motion across the motion subsys-
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tems (i.e., the xy-drive, the hexapod, and the yaw-drive). The break frequencies were
set to 30 rad/s for the translational axes, such that motion below that frequency was re-
produced by the xy-drive, whereas high-frequency accelerations were reproduced by the
hexapod. A higher value of 50 rad/s was used for the yaw motion, such that the majority
of yaw motion was reproduced by the yaw-drive, giving the hexapod more workspace to
reproduce the roll and pitch motion. Finally, the lowest-frequency specific force motions
in x and y directions were reproduced by the hexapod tilt-coordination, implemented
using a low-pass filter break frequency of 0.5 rad/s.

Because all drivers drove themselves, the MCA output of each closed-loop drive is
different. It is the longitudinal specific force mismatch (∆S̃ fx

, Figure 7.5a) that shows the
largest spread, larger than ∆S̃ fy

(lateral specific force mismatch, Figure 7.5c) and ∆S̃ωz

(yaw rate mismatch, Figure 7.5f). This can be explained by the more varying nature of
the driving behaviour in the longitudinal direction (i. e., braking and accelerating at dif-
ferent points in time) [Eppink et al., 2023], whereas the lateral and yaw mismatches are
mostly determined by the road shape [Bosetti et al., 2014] and result in more similar ex-
periences across all drives. Furthermore, although there were only two distinct braking
maneuvers in the maneuver-based conditions (DEC1 and DEC2), this does not mean
that there was no longitudinal maneuvering present in the other maneuvers. In fact, as
is visible in Figure 7.5a, the longitudinal specific force mismatch was also present dur-
ing corner maneuvers, where participants braked into and accelerated out of the corner.
Thus, the ratings of these corner maneuvers should also partially consist of a response
to the longitudinal specific force mismatch.

Between 10-20 s, and 90-110 s, a constant average mismatch is present in all six sig-
nals. In the reference drive, the vehicle is standing still here, such that the drive matching
approach selects the same position of the other drives. In these other drives, however,
the vehicle can still be moving. This leads to constant values for as long as the reference
vehicle is standing still. Therefore, all further time-domain operations (such as applying
the rating model) are calculated for each drive separately, rather than using the median
mismatch.

7.3.6 Participants and Procedures

The experiment was performed by forty-two participants to ensure a large enough sam-
ple size [Cai and Wang, 2024] and to account for possible dropouts due to simulator
sickness and/or technical problems. All participants were BMW employees and had a
European car driver’s license B for at least five years (M = 14.5 years, SD = 9.1 years) and
an average yearly driven distance of M = 16,278 km (SD = 16,408 km). The average age
was M = 32.9 years (SD = 9.4 years). Thirty drivers had previous experience in driving
simulators. All drivers provided informed consent and the experiment was approved fol-
lowing BMW’s internal ethics review procedures. Due to drop-outs (technical issues or
simulator sickness), 36 complete data sets were obtained. The incomplete data sets of
the drop-outs are not considered in further analysis.

All experiment sessions were ran by a single experimenter to ensure consistency in
the interaction with the participants. All participants completed the experiment in a sin-
gle session. Before entering the simulator, they all read a written briefing that explained
the three rating methods, as well as the rating scale. All drivers performed one training
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drive for each of the three conditions, to get accustomed to the simulator, the sensation
of motion, and the rating methods. The training drive of the OLCT condition contained
inverted longitudinal ( fx ) motion, to create large false cues and anchor the highest value
of the rating scale (10), as in [Kolff et al., 2024b]. The OLCT and OLMB training drives
were not based on the participant’s own CLMB training drive, but used a pre-recorded
drive, such that the anchoring of the rating scale was identical for all participants.

Drivers were instructed to drive as they normally would. As the closed-loop drive
recordings were played back in the open-loop conditions, the CLMB condition was al-
ways tested first. For half of the drivers this was followed by OLMB and then by OLCT.
For the other half, the order of the open-loop conditions was switched to average out
order effects. Drivers performed three repetitions of each condition, resulting in a total
of nine runs. The open-loop drives followed a different order than the closed-loop drives
(1-2-3): For OLMB (2-3-1) and for OLCT (3-1-2), to minimize recognition of the drives.

For the maneuver-based ratings, drivers were asked to give their impression of the
maneuvers (Figure 7.5) using the rating knob. Drivers were instructed to rotate towards
their intended rating, leave the rating at this value for at least two seconds, and then
rotate back to zero. The selected maneuvers were spaced to give drivers enough time to
give their rating and refocus on the driving task.

The recorded continuous, maneuver-based and overall rating signals are represented

by Rc j p (t), MB
c j p

P H
, and OR

c j p

P H
, respectively. Here, subscript c represents the experimen-

tal condition, j the condition repetition and p the driver. Note that if, in further notation,
the subscript is missing, this indicates that the average along this dimension is taken.

7.4 Results

7.4.1 Modeling of Continuous Ratings

Figure 7.6 shows the measured median continuous ratings (blue) over all drives. The
individual rating data are included in Appendix D.3. Given that the rating scale runs from
0 (congruent motion) to 10 (highly incongruent motion), ratings are generally low (< 2),
i.e., the MCA setting was rated well. The rating peaks generally coincide with the end
of the maneuver (vertical line), showing the lagged response to the incongruences, as
expected from the estimated rating dynamics represented in the rating model in Eq. 7.1.
The figure also shows the p-CWA model of Kolff et al. [2024] (Chapter 4 in grey, which
predicts the peaks of the continuous ratings quite well, although the quality of the fit is
low at VAF= 11.0%. This VAF excludes the initial acceleration (between 0 and 20 s) and
final deceleration ‘DEC2’ sections, as these were generally ignored by most participants;
it might have been unclear to them that these were also to be rated. A second point of
interest lies at the plateau between 90-110 s which is, as explained in Subsection 7.3.5,
caused by the drive matching approach. For further model calculations, the modeled
ratings of the rating model are calculated for each drive separately, such that this plateau
is not present (but cannot be compared in a single figure).
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Figure 7.6: Mean continuous motion incongruence rating (blue line) and standard error (blue shaded area)
over all OLCT drives as a function of equivalent time in seconds (participant 1, run 1). The predicted rating
based on the p-CWA model of Kolff et al. [2024] (Chapter 4) is displayed by the grey line. Green areas are the
maneuvers, although these were not highlighted to the participants in this OLCT condition.

7.4.2 Rating Relationships

Relationship Overall/Continuous Ratings

A relationship linking the continuous rating to the overall (ORP H = fORPH [R(t)])

[ path 2a in Figure 7.2 ] is investigated. For the overall ratings, these fits are determined
for each maneuver separately. Thus, each maneuver has a regression coefficient as
to how much it correlates to the overall rating. As this requires a single data point
for the continuous ratings in each maneuver, the continuous ratings are summarized
through three methods: i) the maximum of R(t) of the maneuver (CLMB: ρ = 0.46,
OLMB: ρ = 0.69, ii) the mean (CLMB: ρ = 0.46, OLMB: ρ = 0.65), and iii) the median
(CLMB: ρ = 0.40, OLMB: ρ = 0.44). A value closer to 1 indicates a stronger linear
relationship, such that the maximum best explains the relationship between the rating
methods. These values correspond to the roundabout (‘RBT’), for which the correlation
was always highest. Figure 7.7a shows how well the overall rating correlates to the
maximum rating of each maneuver, expressed as the maximum continuous rating of
that maneuver. Here, the grey values show the correlation values as determined by
Kolff et al. [2024], the dark grey indicates such data points that correspond to a CWA
condition. The red (CLMB) and orange (OLMB) points indicate the present study. To
obtain an explicit predictive relationship, the regression fit with the highest Pearson
correlation (ρ = 0.69, indicated by the arrow in Figure 7.7a) in the OLMB condition is
taken: ORP H = 0.79 ·max[R(t)]+1.63. This is similar to the relationship determined in
Kolff et al. [2024] (Chapter 4), where the relationship ORP H = 0.8 ·max[R(t)]+ 2.0 was
found.

Relationship Maneuver-Based/Continuous Ratings

To investigate the relationship between continuous and maneuver-based ratings

(MBP H = fMBPH [R(t)]), [ path 2b in Figure 7.2 ], also the Pearson correlation is calcu-

lated. Here, the applied method differs from the overall rating. As a single data point
exists in each maneuver for both the continuous and maneuver-based rating methods,
a single regression fit can be made on all data points of the various maneuvers together.
The continuous ratings are again summarized through three methods: i) the maximum
of R(t) in that maneuver (CLMB: ρ = 0.93, OLMB: ρ = 0.94, ii) the mean (CLMB: ρ = 0.80,
OLMB: ρ = 0.76), and iii) the median (CLMB: ρ = 0.59, OLMB: ρ = 0.49). Similar
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Figure 7.7: Correlations between the maximum of the continuous ratings and the overall ratings (a) /
maneuver-based ratings (b). The data points represent each maneuver as defined in Figure 7.5. In (a), the
arrow indicates the maneuver (‘RBT’) with the highest correlation. In (b), the lines are the regression fits, the
dotted lines represent the 95% confidence bounds.

to the overall ratings, it is the maximum of the continuous rating in the maneuver
with the highest Pearson correlation (Figure 7.7b) that is the best predictor for the
maneuver-based ratings: MBP H = 1.32 ·max[R(t)]−0.29.

7.4.3 Equivalence of CL/OL ratings

Overall Ratings

The overall rating distributions are shown in Figure 7.8a. The OLCT is also shown for
reference, as the overall ratings were recorded in all three conditions. The box plots
show the median (circles), the box edges indicate the 25th and 75th percentiles, and
the whiskers show the range of the non-outlier data points. All individual data points are
plotted as dots. The horizontal bars represent the means of the distributions. The data
are normally distributed; the means for the CLMB, OLMB, and OLCT conditions are 2.78,
2.70, and 2.40, respectively, showing that the OLCT condition was rated slightly lower.

The Bayes factor of the single effect between the CLMB and OLMB conditions [ path 3a

in Figure 7.2 ] is BFincl = 0.263 (Table 7.2 under ‘ORP H ’), indicating moderate evidence
of equivalence (< 0.3) [Jeffreys, 1961]. Note that when including the overall ratings ob-
tained in the OLCT condition, the Bayes factor increases to BFincl = 0.419, providing no
more evidence of equivalence. However, as the prime focus here is on the comparison
between CLMB and OLMB, this does not affect any further conclusions on equivalence
between closed-loop and open-loop driving.

Even though the CLMB and OLMB overall ratings are equivalent, individual differ-
ences can still be present. For example, two drivers could have rated the two conditions
differently, but in exactly opposite ways. Although this would lead to equivalent data, it
would ignore insights into individual differences. Figure 7.8b shows the distributions of

∆OR
c j p

P H
, i.e., the difference in overall ratings per condition pair of each individual run

pair. With the presence of the OCLT condition, this results in three ∆OR
c j p

P H
distributions.

As this only has one distribution per condition pair, no statistical test is possible. The
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Figure 7.8: Overall ratings of the three tested conditions.

Table 7.2: Bayes factors of the driving method, maneuver, and their interaction, for the overall (ORP H ) and
maneuver-based (MBP H ) ratings. Bold values indicate evidence of equivalence (< 0.3).

Effect B Fincl

ORP H
CLMB/OLMB 0.263

CLMB/OLMB/OLCT 0.419

MBP H

CLMB/OLMB 0.143

Maneuver 1.018 ·1014

CLMB/OLMB×Maneuver 0.023

horizontal bars indicate the means: 0.074 for CLMB - OLMB (median = 0), showing that
individuals rated the CLMB and OLMB conditions the same. Furthermore, for OLMB -
OLCT the mean is 0.31 (median = 0), and for CLMB - OLCT: 0.38 (median = 0). These
mean values show that OLCT was also rated slightly lower within individuals.

Maneuver-based Ratings

Equivalence of the maneuver-based ratings is investigated next [ path 3b in Figure 7.2 ].

Figure 7.9a shows the distributions of the maneuver-based ratings of the CLMB and
OLMB conditions for each maneuver. Differences exist between the maneuvers, with
CR3 the worst rated maneuver (i.e., the highest means). The corners (involving lateral
and yaw motion) are generally rated the worst (e.g., CR3 and CR4), whereas maneuvers
involving longitudinal motion (DEC1 and DEC2) are rated best.

To investigate the equivalence of the two conditions, the Bayes factors are calculated.
The results are shown in Table 7.2 under ‘MBP H ’. Three possible effects are analyzed for
the MBP H data: ‘CLMB/OLMB’, ‘Maneuver’ and ‘CLMB/OLMB×Maneuver’, where the
latter represents the interaction effect. For the maneuver effect, the BFincl is 1.018 ·1014 ,
indicating extremely decisive evidence (> 30) [Jeffreys, 1961] that the maneuvers were
rated differently.

In contrast, when considering CLMB/OLMB, BFincl = 0.143, providing moderate to
strong evidence [Jeffreys, 1961] that the maneuver-based ratings of the two conditions
are equivalent, supporting the earlier findings on equivalence of the overall ratings. For
the combination of the two effects, no interaction effect exists between the CLMB/OLMB
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Figure 7.9: Maneuver-based ratings for CLMB and OLMB conditions per maneuver.

and the maneuvers (BFincl = 0.023). This indicates that the equivalence within the driv-
ing method does not depend on the (type of) maneuver. Thus, although the maneuvers
are rated differently, these differences are equivalent in the CLMB and OLMB conditions.

Similar to the analysis on the overall ratings, Figure 7.9b shows the distributions of

∆MB
c j p

P H
, i.e., the difference of each individual run pair. All medians are 0, and the means

are generally very close to 0 (highest ∆MB
c j p

P H
= 0.24, for ‘RBT’). This provides further

evidence that the drivers rated both conditions equivalently.

7.4.4 Rating Prediction Framework Evaluation

The three steps defined in Figure 7.2 have now been evaluated. First, due to their equiv-
alence, maneuver-based ratings of open-loop drives can be used to predict ratings of
closed-loop drives (see red and orange data in Figure 7.10, representing their means).
Second, using the estimated regression fits that relate the overall and maneuver-based
ratings to the (measured) continuous ratings, both the overall and maneuver-based rat-
ings can be predicted (blue). This holds for both ratings of open-loop and closed-loop
driving due to their equivalence. Third, the continuous ratings can be predicted using
a rating model, based on objective mismatch signals (grey). Therefore, the steps com-
bined allow for predicting maneuver-based and overall ratings of closed-loop drives us-
ing a continuous rating model. Between the predicted maneuver-based ratings of the
rating model and the measured closed-loop ratings, the deviations are smaller than half
a rating point. Considering a ten-point rating scale, where only steps of 1 were possible,
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Figure 7.10: Steps of determining maneuver-based (left) and overall (right) ratings.

these errors can be considered acceptable. Exceptions are ‘RBE’ and ‘DEC2’, where the
differences are 0.65 and 0.79, respectively. For the overall post-hoc ratings, the rating pre-
dictions also work well, with a difference between the measured closed-loop (red) and
the modeled (grey) ratings of 0.16.

7.5 Discussion

7.5.1 Model Predictions

The model proposed by Chapter 4 was used to predict the measured continuous ratings
as a function of the objective mismatch between vehicle reference and simulation mo-
tion. Using the same model parameters of Kolff et al. [2024] resulted in a reasonably accu-
rate prediction of the ratings. Although the VAF was low, the resulting predictions of the
maneuver-based and overall ratings were accurate. Between the present work and the
model of Chapter 4, the scenario, the rating set-up, instructions, and the MCA were the
same. However, the simulator, the MCA parameters, and the participant group were dif-
ferent, which may have affected the ratings. Overall, the presented results show that the
model still provides accurate results across these variables when the averages of these
participant groups are considered. For these three variables there is thus no combined
effect. This shows that the rating prediction methodology is effective even across these
experiment variables and can thus be applied for predictions of motion cueing quality
of future, as of yet untested, driving simulator studies. This highlights the validty of the
model as a predictive model between experiments as well.

Especially the difference in simulator is notable. The nine DoF Sapphire Space simu-
lator used in the present study was significantly larger than the nine DoF Ruby Space sim-
ulator, on which the model of Kolff et al. [2024] was developed. The smaller workspace of
the simulator in Kolff et al. [2024] resulted in larger mismatches compared to the present
experiment, on which the rating model was fit. This thus also shows that the model
still works when considering different ranges of incongruent motion. This is an impor-
tant quality, as it shows the general applicability of the model across various simulators,
which is an important property considering the various simulators to choose from at
BMW’s Driving Simulation Center. For smaller, hexapod-only systems, the rating model,
including its ability to predict ratings of closed-loop driving, can be further tested by
applying it to predict the motion cueing quality of practical driving experiments. For ex-
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ample, the effectiveness of the rating model can be confirmed by comparing predictions
and actually obtained overall post-hoc ratings, as the latter can be obtained with limited
interference in the experiment itself.

Predicting ratings for significantly smaller simulators (e.g., small hexapods) might in
fact prove to be the largest future difficulty, especially for systems that cannot approxi-
mate the high cueing quality of the Sapphire Space and the Ruby Space. As the applied
rating scale has a fixed lower anchoring (‘no incongruence = 0’), but no upper anchoring
(‘large incongruence = 10’), it is possible that the rating that drivers associate with ‘large
incongruence’ can depend on the intensity of the incongruences presented in the ex-
periment. Cleij [2020] showed that in some cases, transferability between experiments
can be an issue if the difference in presented motion is too large (e.g., between a low-
and high-fidelity simulator). She introduced a MTP to apply a linear scaling between
the acquired ratings, normalized for the presented motion in each experiment. A further
investigation on transferability between experiments is therefore suggested, in which
larger differences between the motion are present, as this would need to be corrected for
in the rating model.

Another crucial direction for future work is to investigate the validity of the findings
and the rating model prediction in different driving scenarios. Here, the first step would
be to test a different urban route, as this might alter the balance of the presented mis-
matches and therefore require the introduction of an MTP. Second, extending the results
to completely different scenario types (e.g., highway or rural) is another important step.
As discussed in Kolff et al. [2024], different scenario’s can, for example, induce more inter-
action with surrounding traffic, which may induce different types of motion (e.g., more
lane changes in highway scenarios). Here, maneuvers may be more difficult to rate, as
anticipating responses to traffic is more difficult than the road-geometry driven maneu-
vers of an urban scenario.

7.5.2 Relationships between Rating Signals

To understand how the overall (ORP H ) and maneuver-based (MBP H ) ratings relate to
the continuous ratings (R(t)), it was determined which metrics best correlate. Analyz-
ing the correlation between the maximum of the continuous ratings per maneuver and
the overall ratings, it can be concluded that the higher the maximum of the continu-
ous ratings, the more these ratings correlate with the overall ratings. This reproduces
findings by Kolff et al. [2024]. The point with the highest correlation (ρ = 0.69) was the
roundabout maneuver ‘RBT’. The analysis between the maneuver-based and continuous
ratings shows a similar result: the maneuver-based ratings are highly correlated with the
maximum of the continuous ratings in that maneuver (ρ = 0.94). These results show that
maneuver-based and overall ratings can be predicted using continuous ratings.

Two limitations remain, however. The correlation analysis could only be applied on
the average driver level, rather than for each drive separately. This analysis might there-
fore be somewhat confounded due to the inherently different drives that were present,
which can affect the correlation. Second, the acquired relations could only be evaluated
for a limited part of the rating scale. Although this range of presented motion in the
present experiment corresponded to a realistic MCA for the considered simulator, fur-
ther research could investigate how these relationships hold at better or worse motion
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cueing. Similarly, it is suggested to extend the findings on correlations towards other
scenarios. As the urban driving scenario generally results in reliable rating data [Kolff et
al., 2024b], less strong relationships might be present in scenarios that inherently have a
lower reliability, such as rural [Ellensohn et al., 2020] or highway scenarios.

The maneuver-based rating method itself, using the rating knob after each maneuver,
worked well and was noted by participants to be an intuitive task. This might thus be a
suitable alternative to the commonly used overall ratings.

7.5.3 Equivalence of Closed- and Open-loop Ratings

Through the estimation of Bayes factors, the ratings of closed-loop and open-loop driv-
ing of the overall ratings were shown to be equivalent. For the maneuver-based ratings,
the driving methods (CL/OL) also show equivalence, whereas the maneuvers are rated
differently. No interaction effect exists between the driving methods and the maneuvers.

The equivalence analysis further shows that the differences in simulator motion as
perceived in the various maneuvers did have an impact on the provided ratings, as ex-
pected based on the between-maneuver objective cueing error variations. The lack of
a significant interaction effect indicates that these differences between maneuvers are
equivalent for closed-loop and open-loop driving. Differences in ratings are therefore
caused by the differences in maneuver, and not by whether closed-loop or open-loop
driving is active. The implications of these results are two-fold. First, it enables using
(predictions of) the continuous rating method to identify where and to which extent in-
congruences occur with high resolution. Second, it enables predicting maneuver-based
and overall ratings with high accuracy, which is especially useful for comparisons of mo-
tion cueing (i.e., MCA “A” is better than MCA “B”).

A main application for these results is to improve methods to objectively select the
best possible motion cueing settings (simulators, MCAs, parameters) prior to inviting
participants for closed-loop testing. To do this well, a prediction of drivers’ PMIs as a
function of a simulator’s (objective) movement (i.e., the chapter’s main contribution) is
crucial. While the application of the findings is useful for all driving simulators, it is espe-
cially important for experiments at BMW, due to the wide range of different simulators
and MCAs available. Thus, the presented work can be directly used to improve the deci-
sion making for driving simulation motion cueing selection.

Even though the ratings were equivalent, note that the underlying perception does
not necessarily have to be equivalent as well. It has been shown [Nesti et al., 2016; Va-
lente Pais et al., 2012] that perceptual thresholds can in fact change under closed-loop
and open-loop single-axis settings, hinting at differences in perception. However, even
if these perceptual differences would be present in multi-axis car driving simulations,
the equivalent ratings show that these differences are small enough to not be of practical
significance.

A point of attention lies within the fact that the participants had to rate their own
drives, also in the open-loop conditions. This was a crucial choice, as it allowed for the
explicit comparison between open-loop and closed-loop driving. Although participants
were not told that they would rate their own drives in the open-loop conditions, a po-
tential bias could occur when participants recognize their own drives: then their rating
could be affected by their memory of what the motion felt like in the closed-loop con-
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dition. To mitigate this, the order in which the three drives were presented in the open-
loop conditions was different than that of the closed-loop drives. Furthermore, while the
vehicle’s trajectory was replicated directly, the traffic in the simulation was still random
every time.

The final point of attention concerns the OLCT condition, which resulted in consis-
tently lower overall ratings, relative to both the CLMB and OLMB conditions. It is possi-
ble that the continuous rating method itself affects the rating measurements. For exam-
ple, continuous ratings require more workload than maneuver-based ratings, potentially
decreasing drivers’ sensitivity to motion incongruences. Furthermore, in the OLCT con-
dition participants rated the complete driving scenario, while in the maneuver-based
drives (OLMB and CLMB) participants only focused on the outlined maneuvers. Even
though the overall rating is intended to represent the whole drive, it is possible that the
OLMB and CLMB conditions are biased towards the maneuvers rated in those condi-
tions, which are the most incongruent points. Therefore, the overall ratings in these
conditions might be higher than the OLCT results.

7.6 Conclusions

This chapter described a driving simulator experiment of which the data of 36 partici-
pants was used to develop a method to predict motion incongruence ratings of closed-
loop driving through three key findings. First, a model of continuous rating signals from
literature was validated by showing it can successfully predict the measured continu-
ous ratings. Second, the maximum of the continuous ratings (i.e., the worst motion)
was shown to correlate strongly with the drivers’ overall (ρ = 0.69) and maneuver-based
ratings (ρ = 0.94). This allows for predicting such ratings based on measured and mod-
elled continuous rating signals. Third, performing a Bayes analysis showed that both
maneuver-based and overall ratings are equivalent between closed-loop and open-loop
driving methods. All findings combined show that the open-loop continuous rating
method is a valid method for obtaining high-resolution information on incongruences
of closed-loop driving. Moreover, it shows that both overall and maneuver-based ratings
of closed-loop driving can be predicted through objective mismatch signals between ve-
hicle and simulator motion. Both allow for improved objective predictions of subjective
ratings to guide the design, testing, and assessment of future motion cueing algorithms,
while greatly reducing the required on-site simulator testing time.
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Incongruences and Simulator

Sickness

Key findings

• Continuously obtained sickness ratings support that the occurrence and severity
of simulator sickness and can be traced back to mismatches in simulator motion of
specific maneuvers.

• In urban driving simulations, mismatches in the reproduction of the lateral specific
force induce the highest subjective motion incongruence ratings, followed by the
longitudinal specific force, and then the yaw rate, reproducing the order found in
Chapter 4. The order is longitudinal specific force, yaw rate, and then lateral spe-
cific force for simulator sickness.

• False cues induce the most simulator sickness and highest subjective motion in-
congruence ratings, followed by missing cues, and then scaled motion. For false
and missing cue motion these ratings are disproportionally worse than what the
linear mismatch models of Chapter 4 predict.

This chapter is based on the following publication:

Title: Effect of Motion Mismatches on Ratings of Motion Incongruence and Simulator Sickness in
Urban Driving Simulations.

Authors: M. Kolff, C. Himmels, J. Venrooij, A. Parduzi, D.M. Pool, A. Riener, and M. Mulder.
Journal: Transportation Research Part F: Traffic Psychology and Behaviour, accepted.
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Abstract

This chapter investigates the effects of motion mismatches on simulator sickness and sub-

jective ratings of the motion. In an open-loop driving simulator experiment, participants

were driven through a recorded urban drive twelve times, in which mismatches were in-

duced by manipulating the following three aspects in motion cueing: (i) mismatches in

specific vehicle axes, (ii) mismatch types (scaling, missing, and false cues), and (iii) incon-

sistent scaling between different motion axes. Subjects (N=52) reported simulator sickness

post-hoc (after each drive), as well as continuously during each drive, a first in simulator

sickness research. Furthermore, subjective post-hoc motion incongruence ratings on the

quality of the motion were extracted. Results show that longitudinal motion mismatches

lead to the most simulator sickness and the highest ratings, followed by mismatches in lat-

eral motion, then yaw rate. False cues induce the most sickness, followed by missing and

then scaled motion. Inconsistent scaling between the axes has no significant effect. The

continuous sickness ratings support that the occurrence and severity of simulator sick-

ness are indeed related to mismatches in simulator motion of specific maneuvers. This

chapter contributes to an improved understanding of the relationship between motion

mismatches and simulator sickness, allowing for more targeted motion cueing strategies

to prevent and reduce sickness in driving simulators. These strategies may include the ap-

propriate selection of the simulator, the motion cueing, and the sample of participants,

following the presented results.
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8.1 Introduction

SIMULATOR SICKNESS poses a crucial issue in driving simulator when conducting
user studies [Caird and Horrey, 2011; de Winter et al., 2012]. Although often considered
a form of motion sickness [Johnson, 2007], simulator sickness can also occur without ac-
tual physical movement, e.g., in static driving simulation. Symptoms of simulator sick-
ness include dizziness, headache, sweating, stomach awareness, and even nausea [Rea-
son and Brand, 1975], making it an unpleasant experience. Apart from leading to a de-
creased sense of presence [Almallah et al., 2021], simulator sickness can cause subjects
dropping out of experiments, resulting in incomplete data sets, requiring larger samples
and increasing the costs of studies. It also negatively affects the validity of simulator
studies, as subjects may behave systematically different when experiencing symptoms
of simulator sickness [Cobb et al., 1999; Igoshina et al., 2022]. For these reasons, sim-
ulator sickness is generally to be avoided and driving simulations that are expected to
induce a high degree of sickness are ideally identified beforehand.

The occurrence of simulator sickness in driving simulators has been shown to de-
pend on a variety of experiment variables, such as the participant age [Keshavarz et al.,
2018], as well as the driving scenario. For example, both Klüver et al. [2015] and Mourant
and Thattacherry [2000] found simulator sickness to be more severe when simulating
driving on rural roads compared to highway driving. Similar results were obtained by
Himmels et al. [2022], who additionally found that urban scenarios induce even more
sickness than rural scenarios. Real-life urban driving itself may already cause a high de-
gree of motion sickness [Irmak et al., 2021; Salter et al., 2019; Turner and Griffin, 2000]. An
additional issue for urban simulations is that the dynamic maneuvers involved, such as
sharp corners and frequent acceleration/deceleration, come with strong visual stimuli,
while the corresponding physical motion is difficult to reproduce on the motion plat-
form. This can induce mismatches between expected and perceived motion. If a driver
notices these mismatches, the motion is defined as incongruent [Cleij et al., 2018].

Subjective ratings on motion incongruences are valuable information to obtain, as
they can be used to identify the most critical mismatches in the simulator motion and
through mitigating these mismatches the simulation realism can be increased. Although
it does not necessarily occur to all drivers, one of the main theories in motion sickness
research is that simulator sickness is the result of sensory conflicts [Bos, 2011; Reason,
1978], and can arise in the presence of incongruent motion. If so, the question arising
is then which mismatches induce incongruences and simulator sickness the most, such
that these can be systematically avoided. With knowledge on both phenomena, studies
inducing motion incongruences and/or a high degree of simulator sickness could then
be identified before-hand, such that the most appropriate simulator, MCA, and subject
sample size can be selected.

In literature, apart from investigating the effect of scenario choice, most investiga-
tions focus on the benefits of particular motion (sub)systems, as these designs often
have the specific potential to reduce mismatches in a certain simulator DoF. For small,
3-DoF systems, Parduzi [2021] found no difference in simulator sickness compared to
a static simulator. Zöller [2015] even found an increase in sickness in a 3-DoF driving
simulator, which was attributed to the limited motion space. More recent work showed
beneficial effects of using larger hexapod motion system with Y-drives (although small)
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[Klüver et al., 2015] or even XY-drives [Himmels et al., 2022b]. Although these studies
provide insight in general qualities of various motion systems, the surplus in available
motion space does not inherently lead to smaller mismatches. For example, simulators
combined with redundant rail systems, such as the BMW Group’s Sapphire Space sim-
ulator, offer large potentials to drive urban scenarios with larger motion scaling factors.
However, they also have the potential to do more wrong, as false cues that might be neg-
ligible on a small system, also become enlarged using higher scaling factors. Clearly, the
top priority of any motion cueing system must be to minimize all cueing errors. How-
ever, one could argue that the better the motion cueing can potentially be, it may be
more important to focus on mitigating what the simulator could be doing wrong instead
of further optimizing what it is doing right.

Crucial for the prediction of simulator sickness would be to have a more refined un-
derstanding of how the mismatches between expected and simulator motion actually
contribute to the development of sickness symptoms. General scenario descriptions
such as “rural”, “highway”, or “urban” are not very informative about the tested route. To
transfer (often expensively) gained knowledge to scenarios that were not tested before,
one must be able to attribute the emergence of simulator sickness to much more spe-
cific properties during the scenario, such as mismatches in inertial motion while driving
through curves, accelerating/decelerating, or along roundabouts. Current sickness mod-
els lack any distinction between the different types of errors (e.g., scaled, missing, and
false cues) that may occur in such maneuvers: all different types of errors are treated
as equally sickening [Irmak et al., 2023]. Furthermore, these models do not include the
relative importance of the vehicle axes, such as longitudinal, lateral, and yaw motion.

Recent work [Kolff et al., 2024b] (Chapter 4) found that in the evaluation of the Per-
ceived Motion Incongruence (PMI) (i.e., a driver’s opinion on the (in)congruence of the
simulator motion), mostly the accurate reproduction of the lateral and longitudinal spe-
cific force channels are important (in this order), with an additional, minor, role of the
yaw rate. If simulator sickness is caused by inertial motion mismatches, this might sug-
gest a similar division of the vehicle motion channels on simulator sickness. Currently,
most research deals with the topic at hand by acquiring sickness evaluations after a drive
(“post-hoc”) [Himmels et al., 2022b; Mourant et al., 2007]. Such evaluations are not de-
tailed enough to link to specific mismatches during the drive. Continuous sickness rat-
ings have been used previously to overcome these issues [Irmak et al., 2021; Qiu et al.,
2023]. However, a systematic investigation on the importance of mismatches in differ-
ent vehicle axes as contributors to simulator sickness does not yet exist.

This chapter aims at improving the understanding and the predictive capabilities
regarding simulator sickness and motion incongruence ratings based on objective mis-
matches of the simulator motion. In a dedicated driving simulator experiment, 52 partic-
ipants were driven as passengers (“open-loop”) through an urban simulation on BMW’s
largest driving simulator “Sapphire Space”. Twelve variations of motion cueing were
tested, inducing scaled, missing, and false cue motion in the vehicle’s three main axes:
longitudinal ( fx ), lateral ( fy ), and yaw (ωz ). Subjects provided a MISC rating [Reuten
et al., 2021] on their level of simulator sickness, as well as a subjective rating on the
(in)congruence of the motion after each drive (“post-hoc”). Subjects also identified their
current level of simulator sickness continuously during each drive using a rating knob,
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resulting in a continuous measurement, similar to continuous ratings of motion incon-
gruences [Cleij et al., 2018] but a first in simulator sickness research. This allows relating
sickness increments to specific events in the simulation, such as different driving ma-
neuvers. An investigation of the importance of (1) the three main axes, (2) the criticality
of scaling, missing, and false cue motion, and (3) the importance of axis inconsistency
for simulator sickness is performed. The main contribution of this chapter lies in pro-
viding a better understanding of how motion mismatches cause simulator sickness and
motion incongruence to increase.

The chapter is structured as follows. Section 8.2 introduces the considered methods.
Section 8.3 describes the performed experiment. Its results are then described in Sec-
tion 8.4. This is followed by a discussion in Section 8.5 and conclusions in Section 8.6.

8.2 Methods

8.2.1 Perceived Motion Incongruence

During the simulation, the vehicle model produces the reference motion (specific forces
and rotational rates) that is to be reproduced by the simulator. This motion, described by
S̃veh(t), as shown in Figure 8.1, is fed to the Motion Control System. This block consists
of two parts, the Motion Cueing Algorithm (MCA) and the Motion System. The latter is
the physical component of the simulator that produces the actual inertial motion. It is
driven by the MCA, which, using knowledge of the configuration and dimensions of the
motion system, converts the vehicle motion to simulator motion that can be reproduced
by the motion system. Therefore, using the input signals S̃veh (t), the Motion Control

System gives the output S̃sim(t). Differences between the vehicle reference and simulator
motion signals are then the objective mismatches, i.e., ∆S̃(t)= S̃veh (t)− S̃sim (t).

The blocks indicated by Perception of Motion then describe how humans perceive
the simulator motion. They can notice a difference (∆) between the physical motion
they perceive in the simulator and the motion they would expect to feel from the simu-
lated vehicle. This is known as the PMI [Cleij et al., 2018; Kolff et al., 2024b], see Figure 8.1.
As the driver does not exactly know what the vehicle motion would feel like in a partic-
ular situation (i.e., the signal Sveh is unavailable to them), they must use their internal

representation [Stassen et al., 1990] of the vehicle motion based on previous experience
and the non-motion cues (e.g., visuals) provided in the simulation. Individual variations
can arise due to different familiarity or experience with the simulated vehicle [Kolff et
al., 2024b] (Chapter 4). Note that thus both the expected motion and the vehicle model
motion S̃veh (t) are approximated versions of the real vehicle’s motion Sveh .

Although ideally the PMI would be measured directly, this is not possible, as it is “in-
ternal” to the driver. Instead, a Motion Incongruence Rating (MIR) was asked from the
drivers [Cleij et al., 2018]. This is a subjective rating that represents the PMI. The PMI
and MIR can differ, as the latter can be affected by the rating response (Figure 8.1). This
can be affected by a variety of factors concerning the experiment [Kolff et al., 2024b]
(Chapter 4), such as the participant’s understanding of the rating method, as well as the
(participants response to the) type of rating method used. In the present case, the rating
aims to summarize the PMI across the whole drive. Such overall ratings, denoted ORP H

(see Figure 8.1), are known to correlate well with the worst considered maneuver during
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Figure 8.1: Block diagram of the driving and rating tasks, adapted from Kolff et al. [2024] (Chapter 7). The part
“Driving Control” (red) is only present in closed-loop driving, and not active in the present experiment.

a drive [Cleij et al., 2018; Kolff et al., 2024a; Kolff et al., 2024b]. The subscript P H denotes
that the rating was acquired at the end of each drive, i.e., post-hoc. In the current experi-
ment, the rating values were on a semantic differential scale, ranging between values of
0 (fully congruent) and 10 (highly incongruent), with steps of 1, to remain close to the
work of Kolff et al. [2024] and Kolff et al. [2024] (Chapter 7).

Additionally, in closed-loop control (when driving the car oneself), the red path in
Figure 8.1 would be active, denoted by Driving Control. In closed-loop control, an effer-

ence copy [Kolff et al., 2024a; Mulder et al., 2022] of the intended control actions is used to
form the expected motion. The expected motion is then not only based on what drivers
expect to feel from the non-inertial motion cues, but also what they expect to feel as a
result of their own intended control actions of the steering wheel, accelerator pedal, and
braking pedal deflections (δs (t), δa(t), and δb(t) respectively). In “open-loop” driving
(being driven as passengers, as in the present experiment), the lack of driving control
implies that no efference copy is present. This means that the internal representation
of motion, and in turn the expected motion, is only fed by the non-inertial motion cues.
Kolff et al. [2024] (Chapter 7) has shown that closed-loop and open-loop driving are rated
equivalently in an urban scenario.

8.2.2 MIR Rating model

A rating model is used to predict the ratings based on objective mismatch signals. The lat-
ter are defined as the differences in inertial motion (specific forces and rotational rates)
between the vehicle motion S̃veh,m (t) and the simulator motion S̃sim,m (t), i. e., ∆S̃m (t),
with P̃m(t) = KP̃m

|∆S̃m(t)|. Here, m represents the mismatch type (specific force or rota-
tional rate) and direction, e.g., m ∈ [ fx , fy , . . . , ωz ].

In Kolff et al. [2024] (Chapter 4) a linear model was proposed that predicts the contin-
uous rating of the average participant. Its structure consists of a first-order low-pass filter
transfer function Hm( jω) between the absolute mismatch signal P̃m (t) and a modeled
rating signal R̃(t):

̂̃R( jω) =

(
ωc

jω+ωc

)∑
m

KP̃m

̂̃Pm ( jω), (8.1)
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with the low-pass filter’s cut-off frequencyωc and the gains of the several mismatch chan-
nels KP̃m

. The (̂·)-terms indicate the Fourier transforms. The low-pass filter represents
the participants’ lagged response to the mismatches. In Kolff et al. [2024] (Chapter 4)
it was shown that the continuous ratings of an Oracle MCA condition as measured in
that study could be largely explained when considering the longitudinal specific force
mismatch P̃ fx

, lateral specific force mismatch P̃ fy
, as well as the yaw rate mismatch P̃ωz

(i.e., m ∈ [ fx , fy , ωz ]), with the parameters: ωc = 0.52 rad/s, K fx
= 0.62, K fy

= 1.11, and
Kωz = 1.08. This model, denoted “p-ORC” was fitted on rating data of the same Oracle
algorithm as in the present chapter. It is used instead of the more general “p-ALL”, which
was fitted on a combination of Oracle and CWA rating data, as that model does not in-
corporate a yaw rate mismatch component.

Kolff et al. [2024] (Chapter 4) also investigated the relationship between continuous
and post-hoc rating signals, from which it was found that the latter is well described by
the most incongruent point in the simulation (i.e., the point with the highest continuous
rating). Furthermore, the explicit rating relationship OR = 2.0+0.8·max[R(t)] was found.
Thus, using simulations of the continuous rating signals, a prediction of the overall post-
hoc can be made.

8.2.3 Simulator Sickness

The second quantity evaluated by the subjects was their own perceived level of simula-
tor sickness. One of the main theories in motion sickness research considers sensory-
expectancy conflict as the prime cause for sickness [Bos, 2011; Reason, 1978]. Here, the
conflict refers to a mismatch between the sensed sensory signals and the expected sen-
sory signals [Irmak et al., 2023]. Considering the similarity with PMI here, it is likely that
in the context of (driving) simulation, simulator sickness might result from PMI. How-
ever, simulator sickness is a phenomenon that does not necessarily occur to everyone.
Not only can individuals have different susceptibility to motion and/or simulator sick-
ness (some get sick easily, some never), expectation of the motion has also been shown
to affect motion sickness [Kuiper et al., 2020]. Therefore, individuals with a lot of driving
experience might get sick earlier than those without, as they might notice the motion
to be incongruent while their less-experienced colleagues may not. The “Sickness Re-
sponse” block in Figure 8.1 represents this individual response.

For measuring the participants’ level of simulator sickness, the Motion Illness Symp-
toms Classification (MISC) [Bos et al., 2005; Wertheim et al., 2001] is often used. This
11-point symptom-based questionnaire ranges from 0 (no sickness) to 10 (vomiting),
see Table 8.1. Its intermediate values represent different levels of motion sickness, in-
cluding dizziness, headache, sweat, or stomach awareness [Reason and Brand, 1975]. It
relies on the fact that stronger sickness symptoms (nausea, vomiting) are usually pre-
ceded by lighter symptoms (headache, sweating, etc.) [Reason and Brand, 1975]. Reuten
et al. [2021] found that there is a particular order in which sickness symptoms develop,
confirming the progressiveness of the symptom-based MISC. MISC ratings were further
found to be highly correlated to unpleasantness ratings [de Winkel et al., 2022; Reuten
et al., 2021]. The MISC is a more refined and single-item alternative to, for example, the
sixteen-item Simulator Sickness Questionnaire (SSQ) [Kennedy et al., 1993], which is too
extensive for real-time use. The MISC is easy to understand and can be used with little
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training [Bos et al., 2010].

Table 8.1: The Motion Illness Symptoms Classification (MISC), adapted from Bos et al. [2005].

Symptom Score

No problems 0

Slight discomfort but no specific symptoms 1

Dizziness, warm, headache, vague 2
stomach awareness, sweating, etc. some 3

medium 4
severe 5

Nausea some 6
medium 7
severe 8

Vomiting 10

The MISC-value is usually given verbally after each drive, i.e., post-hoc, as will also
be done here. This results in values of MP H , as shown in Figure 8.1. Another possibility
is to ask for MISC values during a drive after a given interval, like every minute [Diels
et al., 2023; Hogerbrug et al., 2020] or every 30 or 40 seconds [Irmak et al., 2022; Irmak et
al., 2021]. A benefit of the latter approach is the higher temporal resolution, as sickness
symptoms might build up and/or disappear during a drive, which cannot be measured
using post-hoc ratings. A drawback, however, is that repeatedly asking subjects to rate
their well-being, reminds them to think about how they feel, which may lead to higher
MISC values. Furthermore, even a 30-seconds resolution might be insufficient to relate
specific maneuvers and sickness, especially in very dynamic urban scenarios.

In the present experiment a novel approach to obtaining MISC ratings during the
drive was tested. Here, participants could provide the MISC rating at any time during
the drive, through a rating interface (See Figure 8.1), and were instructed to only change
their rating when they noticed a change in their well-being. As a novelty in simulator
sickness research, but similar to its use in general motion sickness research [Qiu et al.,
2023], the resulting ‘real-time’ rating M(t), yields a continuous rating of simulator sick-
ness, rather than measuring on fixed intervals. Through obtaining the MISC as soon
as it changes, it should become more clear which maneuvers or parts of a drive affect
simulator sickness. While this approach potentially reduces the impact of measurement
interference mentioned above, a potential risk is that, in due time, some participants
forget to change the rating.

8.3 Experiment Set-up

8.3.1 Sample

In total, 52 subjects participated in the experiment (43 men, 9 women). All participants
were in the possession of a European car driver’s license B. The average age was M =
41 yrs (SD = 8 yrs). 43 participants had experience with simulator driving. The experi-
ment was terminated if a participant reached a post-hoc MISC value of six in two succes-
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sive drives (some nausea), or a value of seven or higher in a single drive (medium nausea;
for an explanation of MISC ratings, see Table 8.1. This was the case for four participants,
all males. In two additional cases the experiment could not be completed due to tech-
nical issues. A total of 46 (52−6) complete data sets were obtained. The six incomplete
data sets were excluded from analysis.

All participants were employees of the BMW Group and participated in the study on a
voluntary basis during their regular working hours. Participants were not specifically se-
lected for their own estimated sensitivity to simulator sickness, to obtain a representative
group of participants. They were informed about the purpose of the study. The partici-
pation could be ended at any time on the participants’ initiative without consequences.
The experiment was approved following BMW’s internal ethics review procedures. All
participants provided informed consent.

8.3.2 Scenario

A single recorded drive through an urban environment was used, see Figure 8.2a. This
scenario was based on the driven route used in Kolff et al. [2024] (Chapter 4), although a
new recording was used and the route was shortened to last 133.8 s. It consisted of sev-
eral maneuvers typical for urban driving: accelerations (‘ACC#’), decelerations (‘DEC#’),
three 90◦ corners (‘CR#’), and a roundabout (‘RBT’). The highest occurring speed in the
recording was 50 km/h. Traffic was not simulated, i.e., there were no other road users.

8.3.3 Apparatus

The experiment was performed on the BMW Group’s Sapphire Space simulator, see Fig-
ure 8.2b. The motion system has nine DoFs, consisting of three subsystems: a 19.14 m
× 15.70 m XY-drive, a 1.15 m stroke hexapod and a 360◦ yaw-drive. The simulator is fully
enclosed by a dome, in which a BMW X5 series (G05) vehicle mockup was placed. The
steering wheel rotated corresponding to the simulated drive.

The iDrive navigation knob on the center console (Figure 8.2c) was used as the rating
interface by the drivers to provide the continuous MISC rating (denoted as M(t)). Inside
the dome, visuals were rendered using Unreal Engine and displayed using 12 Norxe P1
projectors, resulting in a full 360◦ projection in the dome. The current MISC rating value
in the form of a ‘rating bar’ was visible in the central field of view in a type of head-up
display. The size and color of this rating bar changed (see screenshot in Figure 8.2d)
from rating 0 (short, white) to rating 10 (long, red), to make the rating method more
intuitive for drivers to use. The current numerical MISC value of the participants was
also displayed on the rating bar. The full MISC including verbal anchors was furthermore
displayed on the vehicle Central Information Display (CID) throughout the drives. The
velocity of the vehicle was visible on the tachometer on the dashboard and in a head-up
display alike screen projection, together with the driving direction (arrows).

8.3.4 Independent Variables

The experiment tested twelve variations of motion cueing using the optimization-based
MCA described in Ellensohn et al. [2019]. Here, the simulator motion is optimized be-
forehand by minimizing the difference between the reference drive and simulator mo-
tion along the whole drive. It is referred to as Oracle motion cueing due to its knowledge
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(a) Top-down view of the driven
route, containing corners (CR#),
accelerations (AC#) decelerations
(DC#), and a roundabout (RBT#).

(b) The Sapphire Space simulator (Image: BMW
Group)

(c) The iDrive rating knob, used
for the extraction of the contin-
uous Motion Illness Symptoms
Classification (MISC) values.

(d) The Motion Illness Symptoms Classification
(MISC) value given by the participants as visible in
the simulated scene, consisting of a coloured bar
and the numeric value (currently set to 7).

Figure 8.2: The experiment set-up.

of all future states (only possible when using a pre-recorded drive) and represents the
best-possible motion cueing for a given simulator and recorded drive [Kolff et al., 2022].
The combination of Oracle motion cueing and the Sapphire Space’s large and dynamic
workspace allows for motion cueing with high scaling factors [Kolff et al., 2022]. For the
considered urban scenario, it was iteratively found that values of 0.8 were the highest
possible scaling factors in all directions that still fit in the workspace of the simulator. A
higher scaling factor would have resulted in the simulator reaching its limits. The cor-
responding motion was used as the baseline condition ‘A’. The other eleven experimen-
tal conditions (labeled ‘B’ to ‘L’) were variations of the baseline condition ‘A’, but then
containing scaled, missing, and false cue motion in the three main vehicle directions
(longitudinal, lateral, and yaw).

To investigate the dependency on these specific vehicle axes, the specific forces and
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rotational rates that act on the simulator cabin must be manipulated. These are the out-
puts of the Oracle algorithm. Because of the presence of the simulator’s yaw-drive, a
simulator motion in a certain direction in its inertial frame does not necessarily equate
to a motion in the same direction as acting on the simulator cabin. For example, a lon-
gitudinal simulator motion under a 90◦ yaw-drive angle will result in a lateral motion
acting on the simulator cabin [Kolff et al., 2023]. Thus, to manipulate the forces acting
on the cabin, it is not possible to turn off a specific simulator axis. Rather, the non-linear
simulator motion must be optimized using Oracle to produce the manipulated motion
as its output. Therefore, Oracle was run twelve times separately, once for each condition,
using scaling factors on the vehicle reference data (0.4 for scaled, 0 for missing, and −0.8
for false cue motion) in the relevant directions, see Table 8.2. This thus allows for investi-
gating the effect of scaled, missing, and false cue motion in the three main vehicle DoFs.
Note that this also includes the overall scaling factor of 0.8. Although Oracle would also
be able to scale down the motion itself as a result of its optimization, this ‘pre-scaling’ of
the vehicle reference input was used to ensure that the motion channels that were not

manipulated in a specific condition were always scaled down using the same factor. Oth-
erwise, depending on the condition, Oracle could have either less or more workspace
available in the other directions, resulting in different scaling factors between the con-
ditions in the non-manipulated axes. The results of these optimizations are shown in
Figure 8.3. In two conditions (‘E’ and ‘I’), the motion was manipulated in all three axes,
such that the axis manipulations are consistent with each other. The scaling factors for
the baseline motion (0.8) and scaled motion (0.4) were chosen as they correspond to
the upper and lower scaling factor values considered to be acceptable by participants in
driving simulation [Berthoz et al., 2013].

Note that only the scaling factors of the fx , fy , and ωz motion channels were varied.
The vertical ( fz ) channel, as well as the rotational roll (ωx ) and pitch (ωy ) rate channels
were not necessarily zero, even in the no motion condition ‘I’; their magnitudes are very
small (grey lines in 8.3e-8.3d). This resulted in a fairer comparison with the conditions
in which the motion was dominant and active. Considering the terrain flatness in the
scenario and the corresponding small roll and pitch rotational rates, this is likely to be a
negligible effect. In all conditions, Oracle applied tilt-coordination, in which a rotation of
the simulator cabin is used to generate a sustained specific force through the gravity vec-
tor [Stratulat et al., 2011]. For this to be also perceived as a pure sustained acceleration by
the participants, the associated rotational motion must be below the perceptual thresh-
old. Therefore, the Oracle was constrained to keep the rotational rates ωx and ωy below
<3 deg/s [Reymond and Kemeny, 2000]. As a rotation around the z-axis does not result
in a sustained specific force [Kolff et al., 2023] and cannot be used for tilt-coordination,
the ωz channel was not constrained.

8.3.5 Procedures

The participants first completed a pre-questionnaire including demographic questions
as well as questions related to simulator sickness experience. The latter was done using
the Motion Sickness History Questionnaire (MSHQ) [Griffin and Howarth, 2000]. Partic-
ipants were then led to the simulator and given a safety briefing. Each subject experi-
enced all twelve cueing variants, resulting in twelve rides of 133.8 s each (total driving
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Table 8.2: Scaling factors of the vehicle data in each direction for each condition. Bold values highlight the
manipulated motion channels.

Baseline Scaling Missing False
Axis A B C D E F G H I J K L

long. ( fx ) 0.8 0.4 0.8 0.8 0.4 0.0 0.8 0.8 0.0 −0.8 0.8 0.8
lat. ( fy ) 0.8 0.8 0.4 0.8 0.4 0.8 0.0 0.8 0.0 0.8 −0.8 0.8

yaw (ωz ) 0.8 0.8 0.8 0.4 0.4 0.8 0.8 0.0 0.0 0.8 0.8 −0.8

time: about 27 minutes per subject). The order of the conditions was counter-balanced
between participants using the Latin-square method to minimize order effects between
the conditions. With 46 participants and 12 conditions, the Latin square was unfinished.

During the drives, the participants’ task was to continuously evaluate their MISC-
level using the rating knob. After each drive (post-hoc), participants verbally answered a
questionnaire on their MISC level at that moment, as well as their subjective rating on
the overall quality of the motion (MIR). The questionnaire further included a question
related to the perceived match of motion and visuals, a question on perceived realism,
and a question on the sense of presence. Any question wordings and scales, including
the MISC, were displayed continuously on the central display inside the vehicle for refer-
ence. Only MISC and MIR are further evaluated in the present chapter.

After the sixth drive, a five-minute break was held, in which participants were also
allowed to step out of the simulator. This break was included to allow for some relief for
the participants’ eyes and from the rating tasks, as well as to reduce the level of simulator
sickness to make sure that more participants could finish the whole experiment. Due to
this break, it is possible that the carry-over effect of simulator sickness that is present
between all conditions is not present between the conditions directly before and after
the break, thus affecting the simulator sickness results. However, due to the different
order in which the conditions were presented to the participants, the condition after
which this break occurred differed per participant, which should thus cancel out over all
participants.

8.3.6 Hypotheses

The two dependent measures in the experiment, MIR and MISC, are clearly related. How-
ever, their exact relation is unknown and likely to be nonlinear, as high MIR ratings may
not necessarily lead to high MISC ratings (i.e., motion can be mismatched, but not sick-
ening). Furthermore, some participants can be expected to be quite capable of indicat-
ing incongruent motion while for them this incongruent motion does not lead to simu-
lator sickness.
The following hypotheses are tested with regard to motion incongruences (MIR):

H1: False cues (conditions J-K-L) receive the highest MIR values, followed by missing
cues (conditions F-G-H-I), and then the scaled motion cues (conditions B-C-D-E).

H2: Mismatches in the fy (lateral), fx (longitudinal), and ωz (yaw) channels lead to an
increase in MIR, in this order of severity (confirmation of Kolff et al. [2024] (Chap-

ter 4)).
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Figure 8.3: Motion mismatch profiles of the various conditions. In this figure the black lines represent the
vehicle data, grey lines the baseline simulator output (0.8), green lines the scaled output (0.4), yellow lines the
missing output (0.0), and red lines the false direction output (−0.8).

The following hypotheses are tested with regard to simulator sickness (MISC):

H3: False cues (conditions J-K-L) receive the highest MISC values, followed by missing
cues (conditions F-G-H-I), and then the scaled motion cues (conditions B-C-D-E).

H4: Mismatches in the fy (lateral), fx (longitudinal), and ωz (yaw) channels lead to an
increase in MISC, in this order of severity.

8.4 Results

The experiment had an incomplete factorial design with two varied factors: the ‘axis’ in
which a mismatch was induced, and the ‘error type’ corresponding to that mismatch.
The levels of one factor were not always present in all levels of another factor (e.g., condi-
tion ‘A’ does not have a manipulation in ‘axis’). This makes the use of a two-way Analysis
of Variance (ANOVA) for statistical analysis of the data infeasible. While in the experi-
mental design, post-hoc MISC and MIR were considered depending on the applied cue-
ing condition, the main interest lies in the effects of ‘error type’ and ‘axis’ rather than in
the effect of ‘cueing condition’. Cueing condition, however, can be considered nested
within the factors error type and axis, applying a hierarchic ANOVA.
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Table 8.3: Effects considered in the model. The fixed effect is nested within the levels of the random effects.

effect type levels

cueing condition fixed A-L (see Table 8.2)
axis inconsistency random yes, no
axis random fx , fy , ωz

error type random scaling, missing, false

Table 8.4: Cueing condition as nested in ‘axis inconsistency’, ‘axis’, and ‘error type’. Empty cells (·) indicate that
no level was assigned to the cueing condition, resulting in a different number of observations depending on
the random effects included in each tested model.

condition axis inconsistency axis error type

A (0.8 0.8 0.8) no · ·

B (0.4 0.8 0.8) yes Long. scaling
C (0.8 0.4 0.8) yes Lat. scaling
D (0.8 0.8 0.4) yes Yaw scaling
E (0.4 0.4 0.4) no · scaling
F (0.0 0.8 0.8) yes Long. missing
G (0.8 0.0 0.8) yes Lat. missing
H (0.8 0.8 0.0) yes Yaw missing
I (0.0 0.0 0.0) no · missing
J (−0.8 0.8 0.8) yes Long. false
K (0.8 −0.8 0.8) yes Lat. false
L (0.8 0.8 −0.8) yes Yaw false

Although not part of the hypotheses, the variable ‘axis inconsistency’ was further con-
sidered, to exploratively investigate whether there are effects of manipulating one axis in
isolation in contrast to manipulating all axes at the same time. Therefore, ‘axis incon-
sistency’, ‘axis’, and ‘error type’ are considered as (higher level) random effects in a linear
model, in which the ‘cueing condition’ (considered as fixed effect) is nested, see Table 8.3.
The levels of the random effects were assigned to the cueing condition levels as described
in Table 8.4.

8.4.1 Post-hoc MIR Ratings

The post-hoc overall MIR ratings of the twelve conditions are illustrated in Figure 8.4. For
these ratings, linear models were built with several fixed and random predictors: ‘condi-
tion’ (fixed) nested within the random factors ‘axis inconsistency’, ‘axis’, and ‘error type’
(Table 8.3). Then, it was determined which of these predictors explain a relevant share
of variance in post-hoc MIR (see Table 8.5).

Here, for the predictors ‘subject’ and ‘condition’, the Intraclass Correlation Coeffi-
cient (ICC) and R2 values are displayed. Residual maximum likelihood was applied as
method for mixed models, as this is more suitable than maximum likelihood when in-
terested in the relevance of random effects. Note that significance tests are not reported,
as the likelihood ratio test’s p values are known to be conservative [Pinheiro and Bates,
2000]. Further, step-wise testing has been criticized in the past as a misuse of hypothesis
testing [Whittingham et al., 2006]. Instead, the data are analyzed based on Akaike’s Infor-
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mation Criterium (AIC). Here, the measure of fit is calculated based on deviance, while
penalizing complexity [Bolker et al., 2009]. While the AIC avoids step-wise procedures,
it may still over fit, and thus suffer from the same issue like the likelihood ratio test’s p.
Differences in AIC values of 2 or more are considered relevant [Burnham et al., 1998].

The random effects were first added to the model independently, to see whether they
can be considered relevant at all [Field et al., 2012]. This step shows only a small decrease
in AIC when including ‘axis inconsistency’ and will therefore not be considered further.
A better model fit is obtained when including ‘axis’ and ‘error type’ as random factors.
Especially the ‘axis’ provides a large decrease in AIC and is thus the most critical predictor
to include in the model. Including both axis and error type (model 5 in Table 8.5) results
in the lowest AIC value and is therefore the best model. It performs better than model
1 (fixed-effect only) and the models including only one random effect (models 3 and 4),
confirming that there are indeed effects of axis and error type on the MIR, see Figure 8.4a.

Table 8.5: Model performance comparison with varying predictors, dependent measure: post-hoc Motion In-
congruence Rating (MIR). The values of Intraclass Correlation Coefficient (ICC) and R2 cannot be provided for
the random effects models. Model 5 (bold) performs best in terms of the Akaike’s Information Criterium (AIC).

model # predictors
ICC

(adj.)
ICC

(unadj.)
R2

(conditional)
R2

(marginal) AIC

0 subject .08 .08 .08 .00 2976.93
1 condition; subject .24 .13 .59 .45 2575.28
2 condition, subject, axis inconsistency 2574.31
3 condition, subject, error type 2566.34
4 condition, subject, axis 1934.49
5 condition, subject, error type, axis 1925.96

Figure 8.4b shows the comparison of the error type (levels tested: baseline, scaling,
missing, false). The baseline cueing condition A was included as a fourth level. The
MIRs were lowest for baseline and scaling, followed by missing and then false cues in
ascending order, confirming Hypothesis H1. The effects were subjected to Bonferroni-
corrected pairwise post-hoc tests to determine which factor levels of the random effects
actually differ. These tests indicated no difference between baseline (A) and scaling, but
significant differences across all other conditions. As the number of observations and
conditions with each level considered in the post-hoc test vary, the consistent cueing
conditions A (0.8 0.8 0.8), E (0.4 0.4 0.4), and I (0.0 0.0 0.0) were also considered sepa-
rately, see Figure 8.4c. This comparison confirms that there was no significant difference
between the baseline (A) and scaled motion (E), but both of them being advantageous
over missing motion (I). As there was no condition with full, consistent false cue motion
(−0.8 −0.8 −0.8), a similar comparison for false cue motion was not possible.

Finally, Figure 8.4d shows the MIRs grouped per axis. The lateral specific force ma-
nipulations result in the highest MIR (i.e., worst ratings), followed by the longitudinal
specific force and then the yaw rotational rate. This order is the same as described in
Kolff et al. [2024] (Chapter 4) and supports Hypothesis H2. However, the post-hoc tests
show a significant difference only between the lateral and the yaw axis. This indicates
that a mismatch in the yaw rate (ωz ) affects the MIRs less negatively than a mismatch in
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the lateral specific force ( fy ) does. Thus, decreasing the lateral specific force mismatches
are more important for reducing MIRs than the yaw rate mismatches. There were no sig-
nificant differences across the mismatches of fx and fy or fx and ωz . Thus, Hypothesis
H2 can only be partially confirmed with statistical significance.
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Figure 8.4: Post-hoc Motion Incongruence Rating (MIR) values and model predictions for the considered levels.
Green, yellow, and red indicate scaling, missing, and false cue errors, respectively. Grey (condition ‘A’) is the
baseline. For each condition in Figure 8.4a, the manipulated Degree of Freedom (DoF) is indicated (longitudi-
nal, lateral, or yaw). LLY indicates manipulations in longitudinal, lateral, and yaw directions. The star symbols
indicate significant differences.

8.4.2 MIR Rating Predictions

The p-ORC model of Kolff et al. [2024] (Chapter 4) is now applied to check its validity
under the various motion manipulations. Figure 8.4a shows the model (crosses), pre-
dicting the overall ratings per condition. The model overestimates ratings of the scaling
conditions and underestimates those of the missing and false cue conditions. Further-
more, more clearly visible in Figure 8.4d, a different balance in the three axes is present
than what the rating model predicts. Based on the presented findings of the experiments’
measured MIRs, two improvements to the rating model can be proposed.

First, considering the finding that there is no significant difference between the base-
line (scaling of 0.8) and scaling motion (scaling of 0.4), which is in line with the preferred
scaling range of 0.4−0.8 found by Berthoz et al. [2013], an adaptation to the input of the
rating model can be made. Instead of taking the full vehicle reference in the calculation
of S̃m(t) in (8.1), a reference scaling of 0.6S̃m (t) is applied. This results in the new model
“p-ORC SR”, with SR indicating “Scaled Reference”. This model is indeed better able to
predict the scaled conditions (as indicated by the triangles, also visible in Figures 8.4c
and 8.4b), but underpredicts the error type and axis levels.
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The second improvement applied to the model was therefore to consider additional
gains on the missing and false cue conditions, i.e., Kmc and K f c . The rationale is that
humans might rate these types of motion disproportionally worse than that the linear
rating model predicts [Cleij, 2020]. These gains were only applied on the mismatch
signals in which the missing or false cue motion was active. The gains of the three
axes are also adjusted, i.e., K fx

, K fy
, and Kωz to find updated values compared to Kolff

et al. [2024] (Chapter 4). Together, the gains are optimized to minimize the average
quadratic difference between the measuring and predicted post-hoc overall ratings, i.e.,∑

(ORP H −ÕRP H )2/Ncond , with Ncond = 12 the number of conditions. The optimization
was performed using a Nelder-Mead algorithm in Matlab. As this procedure does not
guarantee finding a global optimum [Kolff et al., 2024b], the procedure was repeated 50
times with randomly generated initial values of the five gains. To simplify the procedure,
the missing and false cue gains Kmc and K f c were only allowed to attain more physically
interpretable values, i.e., rounded to half values, e.g., Kmc ∈ [0.0, 0.5, 1.0, . . . 4.0].

The resulting weighted mismatches (WM) model also includes the SR logic and is
therefore denoted as p-ORC SR/WM. This model, with updated weights, indeed per-
forms much better in predicting the overall post-hoc ratings, as visible by the circles
in Figure 8.4a. Table 8.6 shows the parameters of the various models as well as the fit
quality, confirming that the model p-ORC SR/WM strongly outperforms both the p-ORC
and p-ORC SR models. The weights for the missing and false cue motions, Kmc = 3.0
and K f c = 3.0, respectively, were best found to measure the rating data. This indicates
that these error types were rated three times higher than the linear rating model p-ORC
predicts. The model also outperforms a variant without the SR logic, i.e., fitted to the full
reference motion (p-ORC WM).

Table 8.6: Gains and cost function values of the four evaluated MIR rating models. The gains of the models
p-ORC/p-ORC SR come from Kolff et al., 2024b (Chapter 4).

model ref. scaling K fx
K fy

Kωz Kmc K f c
∑

(ORP H − ÕRP H )2/12

p-ORC 1.0 0.62 1.11 1.08 1.0 1.0 3.82
p-ORC SR 0.6 0.62 1.11 1.08 1.0 1.0 5.55
p-ORC WM 1.0 1.12 0.73 3.49 2.0 2.0 0.33
p-ORC SR/WM 0.6 1.05 0.65 4.51 3.0 3.0 0.20

8.4.3 Post-hoc MISC Ratings

The post-hoc MISC data were subjected to the same analysis steps as the post-hoc MIR
ratings. An analysis on the AIC of the various model predictors (Table 8.7) shows that,
similar to the post-hoc overall MIR analysis, the model fit did not improve significantly
when adding ‘axis inconsistency’ as random effect. The fit did improve when adding
‘error type’ and ‘axis’ independently compared to the fixed effect-only model. Similar
to the post-hoc overall MIR predictors, the largest AIC reduction of a single predictor is
achieved using the ‘axis’. Furthermore similar, the random intercept model 5, including
axis and error type, has the lowest AIC value and thus performed best. This indicates
effects of both error type and axis on simulator sickness.
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Figure 8.5: Post-hoc Motion Illness Symptoms Classification (MISC) values for the considered levels. Green,
yellow, and red lines indicate scaling, missing, and false cue errors, respectively. Grey line (condition ‘A’) is the
baseline. For each condition in Figure 8.4a, the manipulated Degree of Freedom (DoF) is indicated (longitudi-
nal, lateral, or yaw). LLY indicates manipulations in longitudinal, lateral, and yaw directions. The star symbols
indicate significant differences.

Figure 8.5a shows the post-hoc MISC distributions per condition. Note that here
it is clear that, when considering the whole group, the participants did not get very
sick, considering MP H < 3. The distributions grouped per error type are shown in Fig-
ure 8.5b. Here, the groups differ significantly except for baseline and scaling (similar
to the MIR results), with baseline and scaling inducing the lowest ratings of simulator
sickness, followed by missing and false. Conditions A (0.8 0.8 0.8), E (0.4 0.4 0.4), and
I (0.0 0.0 0.0) were again also considered separately, confirming that there was indeed
no significant difference between the baseline and scaled motion conditions, but both
the baseline and scaled motion conditions being advantageous over missing motion (see
Figure 8.5c); Hypothesis H3 can therefore be confirmed. Finally, Figure 8.5d shows the
conditions grouped by axis. Here, the longitudinal specific force motion induces most
sickness, followed by the yaw rate motion, and then the lateral specific force motion. The
post-hoc tests did not yield any significant results, indicating that effects were too small
(and hence: practically less relevant) to be detected by the corrected post-hoc tests (Fig-
ure 8.5d); Although the nested model analysis from Table 8.7 points at the existence of
an effect, Hypothesis H4 cannot be confirmed.

One possible concern in simulator sickness research is the occurrence of carry-over
effects between the runs. Figure 8.6a shows the increase in MP H over the twelve runs
during the experiment, averaged over the participants. Note that, due to the different or-
der of the experimental conditions presented to the participants, the actual underlying
tested condition in each run differs per participant. The black line represents a linear
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Table 8.7: Model performance comparison with varying predictors, dependent measure: post-hoc Motion Ill-
ness Symptoms Classification (MISC). Intraclass Correlation Coefficient (ICC) and R2 values cannot be pro-
vided for the random effects models. Model 5 (bold) performs best in terms of the Akaike’s Information Cri-
terium (AIC).

model # predictors
ICC

(adj.)
ICC

(unadj.)
R2

(conditional)
R2

(marginal) AIC

0 subject .53 .53 .53 .00 1568.49
1 condition, subject .58 .55 .61 .06 1527.93
2 condition, subject, axis inconsistency 1529.93
3 condition, subject, error type 1497.96
4 condition, subject, axis 1205.59
5 condition, subject, error type, axis 1179.26

regression to the data points with a slope of 0.011. This implies that over the twelve runs,
there is a slight build-up in MISC, resulting in an overall MISC increase of 12·0.011 = 0.13.
This low value shows that participants barely got more sick throughout the experiment,
showing that the carry-over effects between the conditions were indeed limited. How-
ever, the break that was taken between runs 6 and 7 is visible, as this holds the largest
decrease in MP H between any two runs. When performing separate regression fits for
the data before and after the break (blue and red lines), larger slopes are present (0.043
and 0.052, respectively), indicating a stronger, but still limited build-up of the MISC over
the conditions.

8.4.4 Relating Post-hoc MIR and MISC Ratings
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Figure 8.6: Relations of the post-hoc Motion Illness Symptoms Classification (MISC) ratings.

Considering that the extraction of the post-hoc MIR and MISC values occurred at
the same point in time, it is possible that participants’ answer for both are directly cor-
related. Therefore, Figure 8.6b shows, for each subject, the Pearson correlation between
the post-hoc MISC and MIR values as a function of the average post-hoc MISC value.
The figure shows that for subjects that do not get sick (i.e., low MP H , the correlation val-
ues show a large range between −0.4 and 1.0. For most subjects (83%) the correlation is
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low (< 0.6), indicating that they answered the questions on MIR and MISC in different
ways. However, for subjects with higher MISC values, these values correlate better to
the MIR, up to a correlation of 1.0, whereas low correlations do not occur anymore. For
these subjects, how sick they feel corresponds to how they disapprove the motion. This
might indicate that the MIR can indeed be affected by the participants’ current level of
simulator sickness. The participants with a negative correlation gave lower MIR values
for conditions where they indicated to get more sick (higher MISC), although this only
happened to five participants and with low correlation values (<−0.2), which might not
be of practical significance.

8.4.5 Continuous MISC Ratings

The continuous MISC ratings obtained during the simulations are shown in Figure 8.7.
The individual rating data are included in Appendix D.4. Note that the subfigure names
correspond to the conditions (‘A’ to ‘L’). The lines represent the mean values over all par-
ticipants; the spreads indicate the 95% confidence intervals. The maneuvers as defined
in Figure 8.2a are indicated as a reference. Note that the values are generally low (<2), as
they also include the participants that rated their simulator sickness with 0 all the time.

The colors green, yellow, and red indicate the scaling, missing, and false cue con-
ditions, respectively, similar to Figures 8.4 and 8.5. In all figures, the coloured circles
indicate the post-hoc MISC values given after each drive, averaged over all participants.
As explained in Section 8.3.5, participants were instructed to let the post-hoc MISC value
represent the level of simulator sickness at that point in time, i.e., after the run. There-
fore, this should be similar to the last continuous rating given, although there is some
time (approximately ten seconds) between their extraction. Generally, these values in-
deed correspond well; in 76% of the cases the same value was given (over all conditions),
which shows the validity of the continuous MISC rating method. Note that the continu-
ous rating value was not reset to 0 at the start of each run. Therefore, at the start of each
run it starts at the last logged value of the previous run. As is visible in most conditions
(such as Figure 8.7K), participants here decrease the M(t) value. This is likely caused by
the small ‘breaks’ between the conditions, lasting around 30 seconds, allowing for some
relief and resulting in participants decreasing the rating right at the start of the next run.

Considering the difficulty of statistically analyzing differences in continuous ratings,
the analysis on the differences between the conditions is only provided qualitatively.
Comparing the conditions without axis inconsistency (Figures 8.7A and 8.7E) shows that
whereas lower MCA gains do not result in an increase in simulator sickness, even though
mismatches are present, providing no motion in the three main axes does, see Figure 8.7I.
The ratings are even similar in magnitude to the conditions with false cue motion (8.7J-
8.7L). For the scaled conditions with axis inconsistencies (Figures 8.7B-8.7D), i.e., con-
ditions were only one axis was scaled down to 0.4, no clear increase in sickness is vis-
ible over time. Comparing scaled and missing motion (with axis inconsistencies, Fig-
ures 8.7B-8.7D vs. Figures 8.7F-8.7H), the MISC-values do increase over time. This shows
that providing a form of scaled motion, even in case of inconsistencies, has a benefi-
cial effect on simulator sickness compared to when a motion channel is not active at
all. Finally, for the false cue conditions (Figures 8.7J-8.7L), the MISC values are the high-
est. Here, it is also visible that the MISC-values increase as a function of specific ma-
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neuvers. For the condition ‘J’, with false cue motion in the longitudinal channel, the
reported MISC values especially increase after strong longitudinal false cues, for exam-
ple at ‘DEC3’, the final braking maneuver. Similarly, conditions ‘K’ and ‘L’ increase most
after corner maneuvers, such as the roundabout (‘RBT’).

8.5 Discussion

The presented study investigated the effects of motion mismatches on motion incon-
gruence ratings as well as simulator sickness. Scaled, missing, and false motions were
systematically applied to the longitudinal ( fx ), lateral ( fy ), and yaw (ωz ) channels.
Participants rated their level of simulator sickness using the MISC [Reuten et al., 2021;
Wertheim et al., 2001], both continuously during the drive as well as directly after
(post-hoc). They also rated the incongruence of the motion, using a post-hoc MIR. They
also rated their level of simulator sickness using the MISC [Reuten et al., 2021; Wertheim
et al., 2001], both continuously during the drive as well as post-hoc.

8.5.1 Post-hoc MIR Ratings

The post-hoc MIR ratings show strong evidence of an effect of error type, with false cues
inducing the highest MIRs, followed by missing and scaled cues, confirming Hypothesis
H1 with regard to post-hoc ratings. There was no significant difference across baseline
and scaled motion. There was evidence of an effect of the axis. The lateral specific force
( fy ) mismatch was indeed found to be the most critical for the MIRs, followed by longitu-
dinal specific force ( fx ), then yaw rate (ωz ) mismatches. This is in line with the findings
of Kolff et al. [2024] (Chapter 4). Significant differences were only found between ωz and
fy . Concluding, these findings only partially conform Hypothesis H2.

8.5.2 MIR Rating Predictions

Applying the model of Kolff et al. [2024] (Chapter 4) resulted in overall values that under-
estimated rating of the missing and false cue conditions. The model that best predicts
the data uses a combination of vehicle reference input scaling of 0.6 and applying addi-
tional weights of 3 to the missing and false cue motion. This thus results in an updated
model structure, compared to (8.1):

̂̃R( jω) =

(
ωc

jω+ωc

)∑
m

KMFC KP̃m

(∣∣∣0.6 ̂̃Sveh,m ( jω)− ̂̃Ssim,m ( jω)
∣∣∣
)

, (8.2)

with KMFC the gain for the missing and false cue motion. Furthermore, the weights of
the three mismatch channels were retuned through a fitting procedure to accurately pre-
dict the ratings of the twelve conditions tested in the experiment. Due to the “extreme”
conditions, where full false cue motion is not representative of realistic driving simulator
experiments, the found mismatch weights might be less representative than the param-
eters found in Kolff et al. [2024] (Chapter 4), which was further validated in Kolff et al.
[2024] (Chapter 7). However, the reference scaling and weights on missing and false cue
motion can be used for future experiments while remaining at a linear model structure.
Although in the experiment the conditions were explicitly configured to have scaling,
missing, and false cue motion, and therefore easy to identify, realistic motion profiles
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Figure 8.7: Average continuous Motion Illness Symptoms Classification (MISC) ratings as a function of time
(left) and Post-Hoc (PH) MISC ratings (right) for each condition. The shaded areas represent the confidence
intervals. The circles are the average post-hoc MISC values, with the vertical bars representing the confidence
intervals.
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will need specialized algorithms to identify which error types are present in the motion,
such as proposed by Cleij [2020] and Kolff et al. [2022].

8.5.3 Post-hoc MISC Ratings

The analysis of the post-hoc MISC ratings indicated no relevant effect of axis mismatches.
Regarding effects of different error types, false cues had the most negative effect on rated
simulator sickness, followed by missing cues, and then scaled motion, confirming Hy-
pothesis H3. Ratings for scaled motion did not significantly differ from those obtained
in baseline motion. Although the model comparisons suggest an effect of the axis, the
pairwise post-hoc tests were all non-significant, such that Hypothesis H4 cannot be ac-
cepted. Longer exposure times or more distinctions between the conditions would likely
have been beneficial to find stronger differences in the post-hoc MISC ratings.

The confirmed Hypothesis H3 stated that false cues are worse than missing cues, and
these are worse than scaling errors. Similar to the confirmed Hypothesis H1, both hy-
potheses can be interpreted differently, namely that false cues are not just worse than
missing cues, but also disproportionately worse. The fact that false cues are rated worse
than missing cues might explained by their larger objective mismatch. Hence, it is rec-
ommended to further investigate the roles of scaling, missing, and false cues in the case
of equal mismatch magnitudes, as this could reveal whether the type of error induces
relatively high or little simulator sickness and/or MIRs.

8.5.4 Continuous MISC ratings

For the first time in simulator sickness research, continuous MISC ratings of the level
of simulator sickness were also recorded. These acquired ratings provided results that
seem intuitively correct, namely that the ratings increase for maneuvers relevant for
the specific condition (corners for lateral and yaw motion, accelerations/decelerations
for longitudinal motion). Considering the similarity of the last given values and the
post-hoc MISC – with post-hoc ratings being widely accepted as a measure of simulator
sickness – this supports that the simulator sickness is a direct result of the motion mis-
matches, making the continuous rating method seem valid for measuring MISC values.
The continuous MISC rating results furthermore allow an investigation how unpleasant-
ness and/or simulator sickness is directly related to the mismatches of specific maneu-
vers. Reducing these mismatches will then automatically reduce simulator sickness. For
experiments focusing on the modelling of motion or simulator sickness, such as Irmak
et al. [2023], the continuous rating method thus also provides a useful alternative tool for
obtaining high-resolution data on sickness.

8.5.5 Implications

The presented quality levels in terms of MIR and MISC provide useful insights for
planning future simulator experiments. Missing motion was shown to be the second
strongest contributor to simulator sickness and the MIR. This suggests that dynamic
simulators are beneficial over static ones for a dynamic urban scenario. No significant
difference was found between scaled and baseline motion. This shows that for the
present urban simulation, the scaled motion (scaling of 0.4) is just as good as the base-
line motion (scaling of 0.8), which was the maximal motion possible in the simulator
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workspace. This corresponds to the range of acceptable scaling factors (0.4−0.75) found
by Berthoz et al. [2013]. Even if the baseline motion is possible on a given simulator
(Such as BMW’s Sapphire Space simulator), working with a lower scaling factor might
be beneficial when designing motion cueing for a driving simulator study. Possible
inaccuracies in the motion cueing or the vehicle model might be less amplified, making
the motion cueing easier to design or tune. Thus, for a scaling of scaling of 0.4, an
acceptable state of motion cueing might be reached earlier and/or with less effort while
at the same time reaching a similar level of MIR and MISC compared to applying a
scaling of 0.8. For smaller simulators, with allowable scaling factors of 0.2 or 0.1, it is
suggested that future work investigates whether similar levels of MIR and MISC uphold,
or if these levels tend more towards the higher (i.e., worse) levels observed for the
missing motion.

In the present experiment, the false cue motion, in which the motion was inverted,
was found to be the strongest contributor to simulator sickness. Hence, it is of utmost im-
portance to minimize false cues when conducting simulator experiments. Even though
the false cue conditions themselves are not realistic motion conditions for a whole drive,
the false cue motion in the maneuvers (partially) do correspond to washout motion. In
washout, the simulator is moved back to its neutral position after a maneuver. This phe-
nomenon, common in filter-based algorithms, is applied in motion cueing to ensure
that the simulator is “ready” to cue the next maneuver. The present results regarding
simulator sickness highlight the importance of methods to reduce washout effects, such
as optimization-based methods that not only better exploit the available motion space,
but can also keep the washout motion under the perceptual threshold.

Note, however, that the presented inverted motion is a form of false cue motion,
whereas also other forms of false cue motion exist. For example, even though the false
cue motion was completely inverted in the experiment, it is still derived from realistic car
motion (in the present case, the baseline motion). However, false cue motion could also
occur completely random. For example, pre-positioning can be employed by MCAs to
move the simulator below the perceptual threshold of the humans to increase the avail-
able workspace of the simulator. If this motion is perceived, for example by faulty MCA
tuning, this can create a false cue without any relation to the currently presented vehicle
motion. The lower predictability of this motion might result in more sickness [Kuiper
et al., 2020]. Specific future research in this direction is thus recommended.

With regard to axis effects, the acquired findings are especially helpful when planning
the use of a dynamic simulator system with one rail (X or Y), which can usually be used
to either redundantly provide fy or fx motion. When there is no specific dynamic phe-
nomenon that is of interest, the findings suggest using the simulator with a redundant
fy axis to achieve the lowest (i.e., best) motion incongruences in an urban scenario.

The analysis of the post-hoc MISC evaluations is supported by the continuous MISC
ratings. Although the latter were only analyzed descriptively, the severity of the various
effects in the continuous ratings corresponds to the post-hoc ratings. Therefore, the
continuous rating method can be considered promising with regard to identifying the
maneuver-specific causes of sickness. The method can therefore be recommended for
use in future investigations, as it reduces the workload compared to extraction MISC-
values at a fixed point in time, such as in Diels et al.; Hogerbrug et al.; Irmak et al. [2023;
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2020; 2021]. Furthermore, future work can explicitly look into modelling the continuous
ratings, similar to models applied to predict MIR [Cleij et al., 2018; Kolff et al., 2024b].
Considering the strong relationship between the continuous and post-hoc MISC, this
would be a useful method to be able to predict post-hoc MISC ratings. This would then
allow for identifying simulators, MCA settings, and scenarios that induce a high degree
of simulator sickness prior to a driving simulator experiment.

This also highlights another strength of the continuous method and the importance
of the post-hoc MISC interpretation: post-hoc MISC ratings correspond to the state of
the driver at the end of each drive, but do not necessarily represent sickness experienced
throughout the drive, which can vary significantly over time. The continuous evalua-
tion method provides the benefit of being useable in closed-loop (participants driving
themselves) driving experiments, compared to the interval-based methods [Diels et al.,
2023; Hogerbrug et al., 2020], as it can be changed on the participant’s own initiative and
induces little intervention and/or distractions to any other tasks, such as driving.

A final point of consideration considers the extraction of the post-hoc MIR and MISC
values. It was found that the worse subjects feel, the better the post-hoc MIR values
correlate to the post-hoc MISC. It is possible that the adapted physical state affects the
perception of motion, leading them to consider more motion as incongruent motion. In
that case, the MIR might become more of a representation of the MISC and less of the
actual quality of the motion. Further research in this direction is recommended.

8.5.6 Limitations

Participants only drove open-loop (i.e., driven as passengers) throughout the whole
experiment. Despite the fact that Kolff et al. [2024] (Chapter 7) showed that similar
MIRs can be obtained with closed- and open-loop driving, this does not necessarily
apply to MISC ratings. Closed-loop driving is known to induce less motion sickness
in closed-loop driving [Rolnick and Lubow, 1991] compared to open-loop. As a con-
sequence, closed-loop driving experiments might induce less simulator sickness than
the presented results of this chapter suggest. Whether this also holds in simulators
rather than real vehicles is unknown, although Kolff et al. [2024] (Chapter 7) suggests
here there are no differences in closed-loop and open-loop driving. Furthermore, part
of the motivation of the present study is to support the experiment design of other,
upcoming driving simulator studies, such as simulator selection. It therefore had a
focus on understanding relative differences between the tested conditions, which are
likely similar in active driving. Having less simulator sickness in closed-loop driving
than the open-loop results suggest would also make proper sample size selection more
conservative.

The open-loop driving also allowed for testing a baseline variant (A) that was theo-
retically the best possible motion, as the simulator motion fully exploited the available
workspace. This was only possible because all future vehicle states were known in ad-
vance, as a result of using a pre-recorded (open-loop) drive, allowing for fully optimiz-
ing the simulator motion in its available workspace. In closed-loop driving, future vehi-
cle states are not known, as the speed, curvature, and lane position that drivers choose
are not deterministic [Kolff et al., 2024a] and can only be predicted statistically [Eppink
et al., 2023]. This would result in all drives being inherently different from each other.
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Full optimization based on the whole workspace is then not possible, because extreme
workspace positions must be avoided such that unpredictable actions from the driver
still do not result in reaching the simulator workspace limits. As a result, closed-loop
driving generally only allow less strong motion, such as by using smaller scaling factors.
Consequently, the representation of the baseline motion tested in the experiment might
not be representative of the baseline motion possible in closed-loop driving.

It should be further noted that the applied experiment design was not fully factorial,
as this would have required a cueing condition with inverted motion in all three axes,
where too many dropouts were feared. Scaled, missing and false motion may be dif-
ferently relevant depending on the axis in which the incorrect motion is applied, while
interaction effects could not be explicitly tested in the mixed effects models. Tentatively,
there is no indication of the existence of such interaction effect (see Figure 8.5a). The
qualitative data of the MIR, however, do suggest that the negative effects of missing and
false motion in the ωz axis may be most severe.

One limitation of the continuous MISC rating task is its passivity. Some subjects
might have simply forgotten to change their continuous MISC rating, as they were not
explicitly asked to do so while driving, such that lower values were recorded than actu-
ally was the case. This might also explain why in some conditions (mainly the false cue
variants), the post-hoc MISC ratings were slightly higher than the continuous ratings at
the end of each run. In the ideal case, these ratings would be the same, as they should
measure the same simulator sickness phenomenon. Another explanation for their differ-
ence might be that simulator sickness symptoms might continue to get worse after each
simulation (i.e., between the extraction of both rating methods). In contrast, symptoms
of simulator sickness also could have decreased due to a relief from the sickening mo-
tion, although the observed higher values of the post-hoc MISC ratings compared to the
last measured continuous ratings do not support this hypothesis.

A further point of consideration is that the measured continuous ratings also con-
tain “fast responses”, which can be attributed to feelings of discomfort. This does not
have to be a specific limitation of the continuous rating method, as in fact, the same
phenomenon can be present in post-hoc MISC ratings. An example of this is visible in
Figure 8.7J, in which the post-hoc MISC value is dominated by the last maneuver. This
also shows a prime benefit of the continuous ratings, as they provide insight in how the
post-hoc ratings are potentially ‘biased’ by what occurred at the end of a run. For exam-
ple, in the analysis of the post-hoc MISC, it was found that manipulations in fx induce
the most simulator sickness. Considering Figure 8.7J, this is not necessarily representa-
tive of how sickening the whole drive is. For the fx channel, the post-hoc MISC value is
likely largely influenced by the last maneuver, the false cue deceleration cue (‘DEC3’).

Last, the short duration of the drive may have been a real limitation of this study.
With one run lasting 134 s, the drive may have been too short to evoke strong symptoms
of simulator sickness, with the frequent breaks in which the post-hoc ratings were col-
lected further mitigating symptoms. There were, however, several considerations for
choosing shorter drives with moments of recovery in between. It ensured that symp-
toms did not get too severe, which allowed for more testing and reduced the risk of carry-
over effects to subsequent conditions. Indeed, it was shown that these carry-over effects
were limited, although truly eliminating these is impossible for a single-session experi-
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ment. More incongruent motion might have extended the validity of the findings, but
also likely would have increased the more severe and long-lasting sickness symptoms,
but potentially would also increase the risk of carry-over effects. Another consideration
was to remain close to realistic experiments, which often contain many short drives, for
which the experiments are intended to be used. The limited length and lack of carry-
over effects might have been a reason that generally low MISC values were obtained.
This might indicate that the presented results are valid in this range. More research is
required for investigating the validity under more severe simulator sickness symptoms.

8.6 Conclusion

This chapter investigated the effect of simulator motion mismatches on ratings of simu-
lator sickness and motion incongruence in urban driving simulations. In a driving sim-
ulator experiment, subjects were driven as passengers (“open-loop”) and experienced
baseline, scaling, missing, and false cue motion mismatches in manipulations of the lon-
gitudinal ( fx ), lateral ( fy ), and yaw (ωz ) directions. The subjects evaluated their level of
simulator sickness using the Motion Illness Symptoms Classification (MISC), both con-
tinuously during the drive as well as afterwards (post-hoc). The Motion Incongruence
Rating (MIR), their subjective rating on the (in)congruence of the motion, was only ex-
tracted post-hoc.

For both the post-hoc MISC and MIR, it can be concluded that false cues produce
significantly higher (i.e., worse) ratings than missing cues. The post-hoc MIRs are dispro-
portionally higher ratings than the linear rating model of Kolff et al., 2024b (Chapter 4)
suggest, requiring additional weighting on missing and false cue motion. Furthermore,
scaling errors do not result in higher MISC and MIR than the baseline motion. The order
found by Kolff et al., 2024b (Chapter 4) was confirmed with regard to MIRs: the repro-
duction of the lateral specific force motion is most important for minimizing motion
incongruences, followed by the longitudinal specific force, and then the yaw rate. While
there were no significant differences of the manipulated axis for simulator sickness, here
the order was longitudinal specific force, yaw rate, and then lateral specific force.

The continuous MISC measurements furthermore support that the level of simula-
tor sickness depends on the mismatches of the simulator motion. This also highlights
the usefulness of this novel evaluation method to attribute the emergence of simulator
sickness to explicit driving maneuvers during a simulation. Through this better under-
standing of the effect of mismatches on motion incongruence and simulator sickness,
both can be more accurately avoided in the development and tuning of future urban
driving simulations.





III
Improving Motion Cueing

Quality





9
Motion Cueing Selection

Key findings

• Including the potential quality that each motion cueing method can reach leads to
a fairer and more effective comparison between the cueing methods.

• Next to the achieved quality of a simulator’s motion, including the potential of the
quality, cost, and tuning metrics relevant for an experiment greatly determines the
quality of a motion cueing method (simulator and MCA) and should thus guide the
method’s selection process.
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Abstract

In driving simulation, the trade-off between different motion cueing methods (the mo-

tion cueing algorithm and the simulator) is typically made with an exclusive focus on the

quality of the motion provided. In practice, however, many other quality, cost, and tuning

characteristics may also affect the motion cueing quality and should therefore be included

in the trade-off. This chapter provides an example assessment of how such metrics (quality

of the motion, energy consumption, tuning effort, cost, and noise) can be evaluated based

on the potential motion that a given MCA and simulator combination can reach once the

tuning is performed. This potential motion was estimated using a non-linear optimiza-

tion of the simulator motion based on a baseline tuning, defining an upper limit that an

MCA may reach once the tuning would be performed, leading to a fairer and more effective

trade-off. Example assessments of two real driving simulator experiments with motion

cueing show that the best-suited simulator indeed differs when including the proposed

metrics. This assessment may serve as an example for a more accurate, better-balanced,

multi-faceted trade-off, and effective selection of motion cueing algorithms and simula-

tors, improving the quality of future driving simulation experiments.



9.1 Introduction

9

181

9.1 Introduction

SELECTING the proper motion cueing settings is an important, but difficult process in
driving simulator experiments, for which few guidelines exist. Improper settings create
differences between what a driver perceives in the simulator and what they would expect
from the real vehicle, known as incongruences. The goal of the MCA, which drives the
simulator’s motion system, is to avoid these incongruences as much as possible, while
remaining in the constrained workspace of the simulator. A proper definition and as-
sessment of the motion cueing quality, suitable for the experiment in question, is thus
paramount as the guiding principle in the comparison of MCAs and simulators.

Most analyses on motion cueing quality solely focus on the quality of the generated
motion accelerations and rotations. As a consequence, many other properties of MCAs
and/or simulators (e.g., tuning effort, energy consumption) are often not considered
when analyzing the motion cueing quality. In contrast, Nahon and Reid [1990] described
a qualitative comparison between three filter-based MCAs by comparing several metrics,
such as the number of tuneable parameters as a measure of tuning effort, and the com-
putational load. Their central notion, that a trade-off is more effective and fair when
considering all relevant metrics for an experiment, gives rise to the question which met-
rics are then of actual importance to a specific driving simulator experiment, and how
the identification of these metrics can lead to an improved trade-off of the available mo-
tion cueing methods. To this end, Chapter 2 introduced a variety of quality, cost, and
tuning metrics, as well as a survey method to identify the most important metrics for
each experiment.

Chapter 2 also described that a trade-off is even more fair if the potential of the mo-
tion cueing quality that each motion cueing method can reach is considered. Only then
can it be evaluated whether it is worth the time and cost investment to tune an MCA
for a specific simulator. Measuring this potential is currently not possible, however, pre-
cisely because the tuning has not yet been performed. It would be highly time- and
cost-inefficient to tune all available motion cueing methods. The potential must there-
fore be estimated without knowing the exact tuning parameters yet. This also requires
models of the various quality, cost, and tuning metrics, to be able to express how these
metrics would change between the currently available tuning parameters and the poten-
tial that the motion cueing method can reach. Especially the metrics that depend on the
human’s subjective evaluation, such as the quality of the motion and simulator sickness,
are inherently difficult to predict. It is here where the motion incongruence rating mod-
els developed in Chapters 4 to 6 provide a crucial contribution. Only with such models
can the potential of the motion cueing be accurately included in terms of their impact
on subjective metrics.

The contribution of this chapter, and the final step in this dissertation, is to demon-
strate an example assessment of motion cueing methods for two real driving simulator
experiments that have been performed at BMW. Simplified calculation methods for the
most important metrics of the experiments are proposed and used to extend the concept
of “motion cueing quality” among various quality, cost and tuning metrics. Both the ex-
act simulator characteristics and MCA properties differ from their true values, however,
due to data protection regulations. However, the goal of the chapter is not to define ab-
solute metrics on the exact assessment of the two experiments in question, but rather to
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present a methodological framework on how motion cueing quality should be assessed
for future driving simulator experiments. As part of this, a method to estimate the poten-
tial of the motion cueing method is proposed, based on an optimization to fully exploit
the remaining workspace. Combined, the chapter thus shows how the inclusion of qual-
ity, cost, and tuning metrics, as well as their potential for MCAs and simulators, may
impact the choice of the motion cueing method.

The chapter is structured as follows. First, Section 9.2 describes the two driving sim-
ulator experiments, the proposed metrics, and the method for the potential estimation
step. Section 9.3 describes the results of the analysis. This is followed by a discussion in
Section 9.4 and conclusions in Section 9.5.

9.2 Methods

9.2.1 Experiment Use-cases

To demonstrate the calculation of relevant quality, cost, and tuning factors, together with
the estimation of the cueing potential, two driving simulator experiments are analyzed.

9.2.1.1 Experiment A: Fatigue in Automated Driving

The first experiment under consideration concerns the role of fatigue when driving with
an ADAS system, and has previously been described in Chapter 2. First, participants
drove for 15 minutes on a German highway scenario. After that, the autonomous driv-
ing systems were engaged until the participant reported a high level of drowsiness. This
phase could take up to 90 minutes. For this reason, the noise of the simulator was to be
reduced as much as possible, as this could affect the fatigue and attentiveness of drivers.
After the first phase, a second manual segment was performed, lasting another 15 min-
utes. The three main vehicle signals for a representative reference drive are shown in Fig-
ure 9.1a. The use-case contains longitudinal motion (braking/accelerating) and lateral
motion (overtaking and changing to a different highway, for this trace between 200-300 s
and 900-1,000 s).

The goal here is to find the most suitable simulator for the experiment use-case. As
determined in Chapter 2, the most important metrics in the experiment were the qual-
ity of the motion, stability, simulator sickness, tuning effort, and tuning complexity. To
represent the wishes of the organization, the financial cost and the energy consumption
are also considered.

9.2.1.2 Experiment B: Motion System Comparison Study

The second experiment under consideration performed a “motion system comparison
study” of motion systems in an urban, rural, and highway simulation. The goal here is
to identify the most suitable simulator for all three scenarios, although allowing for pa-
rameter differences in the MCA. The vehicle reference signals of three representative ref-
erence drives (urban, rural, and highway), gathered from a similar, representative exper-
iment, are shown in Figures 9.1b to 9.1d. Especially the highway scenario (Figure 9.1d)
contains little motion, as only slight accelerations and decelerations are present. For
this experiment, the most important identified metrics through the survey of Chapter 2
include the quality of the motion, simulator sickness, tuning effort, energy consumption,
and financial cost.
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(a) Experiment A: Fatigue in Automated Driving
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(b) Experiment B: Motion System Comparison Study, urban
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(c) Experiment B: Motion System Comparison Study, rural
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(d) Experiment B: Motion System Comparison Study, highway

Figure 9.1: The vehicle reference longitudinal and lateral specific forces, as well as the yaw rates for the two
considered experiments.
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9.2.2 Simulators

The simulators under consideration are the same ones as introduced in the introduction
chapter of this dissertation:

• The Green Stage (Cruden B.V., 2021, Figure 9.2a) is a static simulator. Its visual
system consists of ten displays, providing a field-of-view of approximately 180◦.

• The Ruby Space (VI-Grade, 2015, Figure 9.2b) is a 9-DoF system (hexapod on tri-
pod). The tripod can rotate ±25◦ and also has a 1.5 m workspace in both x and
y-directions.

• The Vega Vector (Cruden B.V., 2021, Figure 9.2c) is the smallest simulator under
investigation and consists of a 6-DoF hexapod with an actuator stroke of 64 cm.
Its cylindrical 220◦ LED-wall allows for high contrast visuals combined with high
brightness and vivid colors.

• The Sirius Vector (Cruden B.V., 2021, Figure 9.2d) is similar in design as the Vega
Vector, but has an additional ±180◦ yaw-drive underneath, resulting in a 7-DoF
system. The LED-wall is also similar to the Vega Vector, but covers the full 360◦

horizontal field-of-view.

• The Sapphire Space (Van Halteren Technologies B.V. and AVSimulation, 2021, Fig-
ure 9.2e) is BMW’s largest simulator (9-DoF). It includes a large 6-DoF hexapod
(total stroke of 1.15 m) with a single DoF ±175◦ yaw-drive on top. Its XY-drive un-
derneath allows additional movement over an area of 19.14 m×15.7 m. Visuals are
projected by a full 360◦ projection system inside the enclosed dome.

9.2.3 Motion Cueing Algorithms

Two MCAs are considered for the analysis in this chapter. First, a typical CWA is included
[Conrad et al., 1973; Reid and Nahon, 1985], as also used in Chapters 4-7. Due to the
worst-case tuning and the CWA’s “blindness” to future states, it cannot utilize a simula-
tor’s full potential. Typical for CWA motion cueing is the need for tuning its large number
of parameters, a time-consuming process.

Second, the “Oracle” approach is considered as MCA, as previously used in Chap-
ters 4-6 and 8. This method employs a non-real-time optimization-based cueing strategy
with infinite prediction horizon. This MCA calculates the simulator’s motion by minimiz-
ing a cost function. The algorithm contains the full non-linear kinematic descriptions of
the analyzed simulators and is based on the implementation of Ellensohn et al. [2019].
The Oracle algorithm and its output motion can only be used in simulations where par-
ticipants are driven through the environment (“open-loop”) rather than driving them-
selves, as for real-time driving the future states are inherently unknown.

Considering the high focus on automated driving in Experiment A, the open-loop
Oracle strategy is a considered a possible MCA here, next to the CWA (possible in both
open- and closed-loop simulations). For Experiment B, where closed-loop driving is a
vital part of the experiment, only the CWA is considered as the MCA.
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(a) Green Stage (static). (b) Ruby Space (tripod, hexapod).

(c) Vega Vector (hexapod). (d) Sirius Vector (yaw-drive, hexapod).

(e) Sapphire Space (xy-drive, hexa-
pod, yaw-drive).

Figure 9.2: The five simulators considered in the evaluation. Image courtesy: BMW Group.



9

186 9. Motion Cueing Selection

Table 9.1: Parameters of the incongruence rating models in the three scenarios types.

ωc K fx
K fy

model [rad/s] [-] [-]

p-ALL rural A 0.35 1.14 1.00
p-ALL urban 0.36 0.91 1.50
p-ALL highway 0.21 1.09 1.46

9.2.4 Motion Cueing Quality Metrics

A set of quality, cost, and tuning metrics is defined that represents the motion cueing
quality. It is important to note that these metrics are not intended as absolute measures,
but rather serve as examples of how their implementation may be realized. Each of the
metrics has been discussed in Chapter 2, such that the focus here lies on providing ex-
amples on how the metrics can be evaluated.

9.2.4.1 Motion Incongruence Ratings

To evaluate the various combinations in terms of the motion cueing quality, predictions
on overall subjective ratings are made based on the linear rating model introduced in
Chapter 4. This method relies on two steps.

First, a prediction of the continuous ratings [Cleij et al., 2018] is made based on the
mismatches between vehicle reference and simulator motion. Chapter 4 proposed a lin-
ear model that predicts the continuous rating of the average participant using low-pass
filter transfer dynamics Hm (s) between the measured mismatch signals P̃m(t) (inputs)
and a modeled rating signal R̃(t) (output), with m the mismatches:

̂̃R( jω) =

(
ωc

jω+ωc

)∑
m

KP̃m

̂̃Pm ( jω) (9.1)

Chapter 4 showed that in urban simulations, the continuous ratings can be largely ex-
plained when considering the mismatch channels P̃ fy

and P̃ fx
. Similarly, Chapters 5

and 6 validated the model for highway and rural simulations, respectively. The different
model parameter values that represent these scenario types are shown in Table 9.1.

The second step is the conversion to predictions of overall ratings (OR), which repre-
sent the whole drive. This rating is predicted using the most incongruent point occurring
in a drive, i.e., the maximum of the modeled continuous rating:

OR = 2.0+0.8 ·max[R̃(t)] (9.2)

This allows for comparing the various motion cueing methods of the experiment using a
single scalar value.

9.2.4.2 Tuning Effort

Tuning of an MCA is an important aspect of the motion cueing process, as the output mo-
tion depends on the selection of the parameters. Especially for filter-based algorithms
such as the CWA, few guidelines exist for tuning, such that it is often an iterative, trial-
and-error process. As a measure of the tuning effort and complexity, the number of pa-
rameters is used (Chapter 2). As described in Chapter 2, the number of parameters of
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Table 9.2: Example weights of the motion subsystems in kg. Actual weights differ.

hexapod x-drive y-drive yaw-drive tripod

Green Stage - - - - -
Ruby Stage 500 - - - 1,500
Vega Vector 1,500 - - - -
Sirius Vector 1,500 - - 1,000 -
Sapphire Space 2,000 60,000 5,000 1,000 -

an MCA generally depends on the number of DoFs of the simulator. For the CWA under
consideration the number of parameters can be expressed as np = 23+2bψd

+3bx +3by ,
with the booleans bψd

, bx , and by indicating the presence of a yaw-drive, x-drive, and a
y-drive, respectively. As an example, the tuning effort F may be expressed by:

F [hrs]=

√
np

2
· (ORT0 −ORT1 ), (9.3)

with the (predicted) overall ratings OR of the potential and baseline tunings T1 and T0,
respectively. Here the rationale is that a tuning set that is still far away from the poten-
tial best result, will require more effort to tune. The combined relationship between the
number of parameters and deviation from the cueing potential is likely to be nonlin-
ear, as especially in the fine-tuning a significant time investment is required. Vice versa,
when starting the tuning process using a baseline tuning with a large tuning potential,
improvements are likely quickly made. This relation is thus described by the square root.
For the Oracle MCA, the six weights of the three translational and three rotational chan-
nels can be chosen, but it generally does not require a lengthy tuning process due to the
optimization nature.

9.2.4.3 Noise

Currently, no models exist to predict the noise production of the various simulators.
From experience, however, the noise largely depends on the weight of the motion sys-
tem involved and its motion. The noise is thus estimated through its power by:

N (t) [W] =
∑

d

md |vd (t)Id (t)|, (9.4)

with vd the velocity of the respective motion subsystem, md its weight, and I the mo-
tion of the motion subsystem component in the DoF d in the inertial system. Example
values for the weights of the various motion subsystems of the simulators under consid-
eration are shown in Table 9.2. Note that the individual weights need to be added; the
noise of the x-drive of the Sapphire Space (the lowest subsystem) is caused by moving all
other components on top as well, with a total weight of (60,000+5,000+2,000+1,000 =

68,000 kg). In the present application, the average noise occurring during a drive is con-
sidered. Other approaches may include the peak induced noise level, or a metric express-
ing noise in specific frequency bands (e.g., to avoid resonance).
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9.2.4.4 Simulator Sickness

Previous research has shown that for highway scenarios, simulator sickness is generally
low on all considered systems [Himmels et al., 2022b]. Although no explicit information
on the Ruby Space exists, the dimensions of the motion system are in-between Sirius Vec-
tor and Sapphire Space, such that motion-induced simulator sickness is likely similarly
low. No accurate models currently exist to predict simulator sickness due to the difficulty
of integrating the visual-vestibular interaction [Kotian et al., 2024]. As Chapter 8 showed
incongruent motion to be related to simulator sickness, the motion incongruence rat-
ings are considered as a suitable proxy for simulator sickness.

9.2.4.5 Stability

Stability is considered to be an important metric in the evaluation due to the experi-
ment length. An instability may potentially crash a simulation and will likely require
restarting the scenario, such that large parts of the data must be discarded. Stability is
difficult to quantify and is thus only described qualitatively here. The use of filters in the
CWA generally results in a stable simulation [Nahon and Reid, 1990], although the closed-
loop driving may still result in participants driving the simulator into the workspace lim-
its, potentially crashing the simulation. All simulators thus perform equally well here
(“medium”). In contrast, the output of the Oracle MCA is fixed (open-loop), such that
stability is “high”. Although not considered here, an MPC algorithm can suffer from low
stability, as its real-time optimization can cause unstable behavior [Fang and Kemeny,
2016].

9.2.4.6 Energy Consumption

As described in Chapter 2, energy consumption is a metric of increasing importance
[Meike and Ribickis, 2011] due to the induced financial cost, environmental impact, and
hardware limitations. Determining the exact energy consumption of a simulation is a
complex task [Ordoñez et al., 2017], made additionally difficult by the various types of
motion systems under investigation. As an estimate, the kinematic energy required to
move the simulator is calculated. The main benefit of this approach is the high compa-
rability in relative energy consumption in terms of the amount of motion. The kinetic
energy is calculated by integrating the power over time:

E [kWh] =

∫
Pd t = md

∫
vd |

d vd

d t
|d t , (9.5)

with vd the velocity of the respective motion subsystem and md its weight. t represents
the time in which the simulator is active, i.e., the longer the experiment lasts, the higher
the energy consumption. As in the calculation of the noise, the weight moved by each
subsystem is the cumulative weight of the subsystem itself and other subsystems on top.

9.2.4.7 Financial Cost

In many cases, financial cost is an important factor in the design of driving simulator
experiments. In terms of the motion cueing, cost is determined by preparing and tun-
ing the MCA, as well as the cost of running the simulator (energy consumption, mainte-
nance, etc.) [Bennett, 1995]. To express the cost of the motion cueing, a fictional “cueing
currency” ¢ is introduced. In the present applications, the total cost of the simulation
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(considering only the motion cueing) consists of the energy cost and the labor costs for
tuning the motion cueing:

C [¢]= E ·CkWh +F ·Cl abor , (9.6)

with CkW h the price per kWh and Cl abor the labor cost in designing the tuning. As an
example, the prices are set to CkW h = 0.50¢/kWh and Cl abor = 50¢/hour.

9.2.5 Motion Cueing Quality Potential

To estimate how a motion cueing method will perform without performing the actual
tuning, an estimation of the cueing method’s potential must be made. For this, an opti-
mization problem is solved. Generally, a tuning process aims to reduce incongruences,
which are predicted using the objective mismatches between the vehicle reference mo-
tion S̃veh,m (t) and the simulator motion S̃sim,m (t), i. e., ∆S̃m(t) = S̃veh,m (t)− S̃sim,m (t),
with P̃m(t) = KP̃m

|∆S̃m (t)|. Here, m represents the mismatch direction. The simulator
motion vector, containing the various mismatch signals, can be calculated as:

S̃sim (t)= TI B (β)I (t). (9.7)

Here, I (t) represents the motion signals of the simulator in the inertial system. The ma-
trix TI B (β) describes the transformation from the inertial to the simulator’s body system,
as a function of the Euler angles β= [ϕ, θ, ψ]. The contents of this transformation matrix
depend on the kinematic configuration of the simulator, as derived in Chapter 3.

The potential tuning T1 is now determined by optimizing the gains kd on the inertial
motions IT0 (t) of the baseline tuning T0 to fully utilize the simulator workspace, i.e.:

Id ,T1 = kd Id ,T0 , (9.8)

where the subscript d indicates the motion in each DoF. The number of gains (i.e., op-
timization parameters) thus equals the total number of DoFs of a simulator’s motion
system. The optimization is then performed using rating model as the cost function:

J (kd ) =
∑
m

∑
t

K 2
P̃m

[
S̃veh,m (t)−TI B (β)kd Id ,T0 (t)

]2
. (9.9)

Note that the right-hand side represents the signals S̃sim,m (t). The resulting nonlinear
optimization is then solved using a the “fminsearch” function in Matlab, using a Nelder-
Mead algorithm. As this does not guarantee obtaining the global optimum, 30 iterations
with randomly generated initial conditions (i.e., the gains on each DoF) are performed.
Each optimization is constrained to the workspace limits of the simulator’s motion sys-
tem under consideration, shown in Table 9.3. Furthermore, the angular derivatives ϕ̇

and θ̇ are constrained to 3 deg/s [Reymond and Kemeny, 2000] to remain under the rota-
tional threshold when using tilt-coordination.

Note that this method requires a baseline tuning set to begin with (T0), as it can only
increase or decrease the magnitude of an existing motion trajectory. It thus differs from
an auto-tuning approach, such as described in Pham and Nguyen [2022].

An example of the potential estimation of Experiment B (Motion System Comparison
Study), the urban simulation, is shown in Figure 9.3. The baseline tuning T0 here came
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Table 9.3: Considered workspace limits of the motion systems in the potential estimation.

hexapod xy-drive yaw-drive
xh yh zh ϕh θh ψh xd yd ψd
m m m deg deg deg m m deg

Vega Vector 0.40 0.40 0.3 15 15 25 - - -
Sirius Vector 0.40 0.40 0.3 15 15 25 - - 180
Ruby Space 0.28 0.25 0.2 15 15 25 0.75 0.75 20
Sapphire Space 1.4 1.2 0.8 15 15 25 9.57 7.85 180

Õ
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Figure 9.3: Predicted continuous and overall ratings of the baseline, potential, and actual tuning, for the Sirius
Vector in the urban motion system comparison experiment.

from a similar urban driving experiment on the Vega Vector simulator. The potential tun-
ing T1 clearly provides better specific force cueing, as the predicted continuous ratings
are lower. For example, the peak near 300 s shows a near halving of the predicted rat-
ing. The actual tuning T2, defined after the assessment described in this chapter, forms
a middle ground solution, indicating there was a better tuning to be performed than the
baseline. Note, however, that because the maximum value of the predicted continuous
ratings is not reduced as much between the T1 and T2 tunings (even though the most
incongruent point is different, i.e., around 170 s and 320 s, respectively), the differences
in the overall ratings are less pronounced.

9.3 Results

9.3.1 Fatigue in Automated Driving

The evaluation of the different considered metrics for the experiment A use case is shown
in Figure 9.4. Figure 9.4a shows the predicted overall ratings of the CWA for the baseline
T0, potential T1, and actual T2 tunings. The Green Stage, as a static simulator, can clearly
only produce “no motion”. For all other simulators, and especially for the Sapphire Space,
a strongly improved potential tuning T1 exists, based on the initial tuning T0.

Furthermore, the predicted ratings of the Oracle MCA are shown, which clearly out-
performs even the potential tuning of the CWA, as expected [Ellensohn et al., 2019c].
Based on only the predicted ratings as a metric, the Oracle and Sapphire Space combi-
nation would be thus best for the given use-case. However, the additional motion in this
case comes at a clear downside. As shown in Figures 9.4b and 9.4c, both the energy con-
sumption and tuning effort strongly increase. Both also further increase the financial
cost (Figure 9.4d). Finally, the noise power is strongly increased as well (Figure 9.4e).
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As described in Section 9.2, a potential quantitative selection is not further analyzed.
Although important for the presented experiment, the stability of a CWA is generally not
problematic. Furthermore, simulator sickness is assumed to be a proxy for motion in-
congruences, which are already included in the analysis via the predicted overall ratings.
Based on the consideration of the combined metrics, and the requirement to perform
the experiment partly closed-loop during the manual control phase (for which the Ora-
cle is not suitable), the final experiment in this case in fact used the Vega Vector simulator.
The present analysis shows that the Sirius Vector does indeed not provide a benefit over
the Vega Vector, whereas the Sapphire and Ruby Space provide significant drawbacks
in the metrics other than the motion cueing quality. From this argumentation, it thus
follows that the Vega Vector was indeed a logical choice. However, considering that the
Oracle clearly outperforms the CWA in terms of the predicted ratings and the financial
cost (due to the lack of required tuning), the results suggest that Oracle may be a viable
consideration. Considering the main focus on the autonomous driving part, in which
the Oracle is a suitable solution, it may be opted to make an adaptation to the experi-
ment itself to only offer autonomous driving. This would, in combination with the Vega
or Sirius Vector, make the Oracle MCA the superior choice in the motion cueing method.

9.3.2 Motion System Comparison Study

The metric evaluations of the second experiment are shown in Figures 9.5 to 9.7. Here,
Oracle is definitely not feasible and is therefore not considered as an option. Similar
trends as in the first use case are visible, where the potential of the Sapphire Space clearly
outperforms all other simulators, while coming at the cost of a higher energy consump-
tion, tuning effort, cost, and noise power. Note that especially in the highway simulation
(Figure 9.7a), there are only small differences between the predicted overall ratings of
the various tuning configurations, explained by the lack of maneuvers with strong mo-
tion (see Figure 9.1d).

In reality the simulator was already known beforehand (Sirius Vector), which fol-
lowed as a requirement of the experiment design. Although the predicted ratings show
that the Sirius Vector is indeed a suitable simulator for the experiment, a large improve-
ment in motion cueing quality could have been obtained by opting for the Sapphire and
Ruby Space simulators, given that the cost and noise metrics were of lower importance
compared to the fatigue study. Furthermore, given that the differences between the Vega
Vector and Sirius Vector are marginal, the former may have been just as suitable for the
experiment as the Sirius Vector. This may be an important consideration in the logistical
distribution of experiments, for example if another experiment would have to be per-
formed on the Sirius Vector at the same time slot. Furthermore, to increase the compa-
rability in the experiment itself, it was chosen to use the same tuning parameters across
all three scenarios, restricting the freedom of parameters between the scenarios. Never-
theless, in all three simulations, the actual tuning “T2” comes reasonably close (within
one rating point) to the potential tuning.

In this case, measured overall post-hoc ratings were in fact obtained after the final
experiment. These are included in Figures 9.5 to 9.7 with the “*” symbol at the Sirius
Vector results. To correct for the relative differences between experiments, as described
in Chapter 6 and Cleij [2020], an MTP of 1.57 was used. The ratings thus vary from those
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Figure 9.4: The calculated metrics of the tuning configurations for the five simulators (Experiment A: Fatigue
in Automated Driving).
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shown in Figure 9.3. These ratings are close (within one rating point) to the predicted
ratings, further validating the rating prediction method.

9.4 Discussion

9.4.1 Metric Evaluation

In all experiments, the Sapphire Space showed to be the simulator with the highest po-
tential quality of the motion. This is not surprising, considering its large workspace in
three separate motion subsystems. The additional quality, cost, and tuning metrics pro-
vided in this chapter show to have a strong effect on the motion cueing quality as well.
While providing the relatively high-quality motion of the Sapphire Space, this comes with
drawbacks in all other four considered metrics (energy consumption, tuning effort, cost,
and noise power). This shows that, depending on the importance of these metrics in an
experiment, the Sapphire Space may not always the best-suited simulator. Similarly, the
same can be said about the Oracle MCA considered in Experiment A, although this MCA
has the additional benefit of having little to no required tuning effort.

The absolute metrics will depend on the exact motion system and MCA character-
istics, which likely differ between driving simulator institutes. Apart from the identifi-
cation of the most important metrics itself, future work may investigate how the metric
models can be made more accurate. Furthermore, once more accurate metrics are es-
tablished, it would be useful to identify the effect of changing tuning parameters on the
various metrics, i.e., through a dedicated sensitivity analysis.

A large part of this dissertation focused on the prediction of subjective motion incon-
gruence ratings, which also formed a large part of the present analysis. The no-motion
benchmark used in this chapter was based on the rating models of this dissertation, by
calculating the predicted ratings based on having no simulator motion. To verify this ap-
proach, it would be more accurate to actually measure the continuous ratings in a sim-
ulator where no motion is applied. These ratings of a complete lack of motion are likely
to be independent on the motion system itself, as the sense of motion is then obtained
from the visual system only. Using this approach, tuning parameters that may lead to a
motion cueing with worse ratings than no motion could be identified more accurately.

9.4.2 Potential Estimation

The potential estimation of the tuning provides a benchmark of how much the motion
cueing can still be improved. This is a highly useful, and more fair, method of comparing
motion cueing methods. For example, an MCA and simulator combination with a large
potential, but badly tuned parameters, would then not automatically be neglected as a
poor option. Once the method is applied more frequently and many baseline, potential,
and actual tuning sets are collected, is nevertheless recommended to perform an addi-
tional on whether the current potential cueing estimation method is able to accurately
predict the actual tuning set, or whether adaptations to the method are required.

To further improve the potential analysis, future work should also consider the archi-
tecture of the MCA and simulator. In the method presented in this chapter, a full non-
linear optimization method was applied to estimate the potential. Some MCAs, such as
the CWA, may not be able to fully exploit the non-linear kinematics of the motion system.
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Figure 9.5: The calculated metrics of the tuning configurations for the five simulators (Experiment B: Motion
System Comparison Study, urban)
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Figure 9.6: The calculated metrics of the tuning configurations for the five simulators (Experiment B: Motion
System Comparison Study, rural)
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Figure 9.7: The calculated metrics of the tuning configurations for the five simulators (Experiment B: Motion
System Comparison Study, highway)
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In that case, the predicted potential describes a state that the motion cueing method can
never reach. In other approaches, such as MPC, the potential may even be calculated
exactly by optimizing the motion beforehand, which often requires little tuning, as the
optimization itself takes care of determining the proper motion output. Furthermore,
for the potential method here presented for the CWA, more advanced methods can be
applied, as the current method only used an adaptation of the MCA gains, rather than a
full optimization of all available tuning parameters.

9.4.3 Motion Cueing Method Selection

How the various metrics may be traded off with each respect to each other is not yet per-
formed in an objective manner in the current analysis. Here, the recommendation is to
consider the various motion cueing methods in consultation with the various stakehold-
ers in the experiment. Attempts to objectify this process, for example by weighing the
various metrics in a cost function and selecting the method with the lowest cost func-
tion value, will likely always remain highly subjective, however.

For future work, apart from improving and/or standardizing this selection process
of the method, one should look into validating the method as much as possible. For ex-
ample, as also presented in Experiment B, overall post-hoc ratings can be obtained from
the participants to confirm the validity of the selected method. Furthermore, the method
can be systematically improved by applying it and collecting the various data. For exam-
ple, the more driving data are available through the variety of analyzed experiments, the
more representatively driving data can be used in the motion cueing selection for a new
experiment. Similarly, if a motion cueing method is decided upon and actually tuned,
this tuning set can serve as the baseline tuning for the next experiments, as shown in
Figure 2.1.

9.5 Conclusion

This chapter described the analysis and trade-off for the MCA and simulator selection
(the “motion cueing method”) for future driving simulation experiments with motion
cueing. A first attempt at providing measurable and quantitative metrics of motion cue-
ing quality, including all relevant quality, cost, and tuning metrics was made for two
real driving simulator experiment cases. This analysis further includes a straightforward
method for predicting the available motion cueing potential of a certain method, rather
than having to solely rely on existing sub-optimal baseline tuning sets in the comparison.
The results showed that these additional metrics, next to the quality of the motion itself,
can greatly affect the choice of MCA and simulator. Better motion cueing can thus be
obtained when other metrics are taken into account, as well as by considering the poten-
tial that each motion cueing method can reach. This provides a fairer and more effective
method to properly select an MCA and simulator, ensuring that future driving simulator
experiments can truly use the best available motion cueing method.
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Conclusions and

Recommendations

DRIVING simulators operate at the forefront of automotive research. Properly de-
signed motion cueing improves the validity of driving simulator experiments, and is
thus crucial in guiding research and development. Determining how the motion cueing
is best laid out for each separate experiment, by selecting the best-suited simulator,
MCA, and tuning parameters, is a complex and multi-faceted design problem. Key
difficulties are the (objective) identification of the most important quality metrics, the
difficulty in measuring and predicting subjective ratings of the perceived motion cueing
quality, as well as combining and efficiently weighing these aspects in an objective
evaluation process. Therefore, the overall goal of this dissertation, as stated in Chapter 1
is:

Overall Research Goal

To develop a validated method to objectively assess and improve the total poten-

tial quality of motion cueing for closed-loop driving simulator experiments.

To accomplish this overall goal, research was divided into three parts, each with its
own goal, corresponding with the three dissertation parts. The main findings, conclu-
sions, and recommendations for future work are discussed in this final chapter.

10.1 Part I - Fundamentals of Motion Cueing Quality

Part I described several fundamental principles that are used in this dissertation. The
goal of Part I was:

Research Goal 1

To develop a framework to evaluate the total motion cueing quality of an experi-
ment, explicitly including its relevant quality, cost, and tuning metrics.
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Figure 10.1: A description of the motion cueing rating process in closed-loop driving simulations used through-
out the dissertation.

10.1.1 A Framework for Motion Cueing Quality

As a means to this research goal, Chapter 2 described a framework to describe the mo-
tion cueing selection and tuning process that takes place prior to an experiment. Chap-
ter 2 then proposed to identify and include quality, cost, and tuning metrics as part of the
“total” quality, through an expert survey performed by the most important stakeholder
groups for a typical driving simulator experiment. The survey revealed that apart from
the quality of the motion itself, the financial cost, simulator sickness, ease of use, tun-
ing effort, complexity, and stability together define the total motion cueing quality for
driving simulator experiments. Including these metrics results in a more effective com-
parison and trade-off between different MCA and simulator options (the motion cueing

method). Whereas this framework aimed to accomplish Research Goal 1, future work
arose through the need for more objective trade-off methods of the various metrics.

In a trade-off between various MCAs and motion systems, a more objective compar-
ison can be made if an estimation of their full motion cueing potential is considered.
This in turn requires predictions of the motion cueing quality, as hypothetical “poten-
tial” motion cueing methods cannot be tested in a simulator yet. Whereas a method to
provide this estimation thus needs to be developed, a crucial element of the framework
is the ability to predict subjective ratings. The rating process of motion cueing is shown
in Figure 10.1, which has been the main recurring figure throughout the dissertation,
as it forms the basis for understanding and predicting subjective Motion Incongruence
Ratings (MIRs). Chapter 2 therefore also gave an outline on how ratings on the quality of
the motion can be predicted through objective metrics (such as through rating models),
which forms the basis of Part II. Important open questions showed to be how humans
perceive and rate motion cueing mismatches in a variety of driving scenarios (Chapters 4,
5, and 6), as well as the investigation on possible differences between open-loop and
closed-loop driving (Chapter 7).

10.1.2 Kinematics of Motion Systems

Before subjective rating models can be developed, the objective mismatches that occur
between the vehicle reference and simulator motion must be calculated correctly, taking
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into account the full motion system kinematics. An important element of the frame-
work is thus the derivation of the mismatch signals ∆S̃(t) (see Figure 10.1) for different
simulator motion systems. Chapter 3 first derived the kinematic relations for a six DoF
hexapod simulator. The chapter then investigated the relations for the nine DoF Sap-
phire Space (yaw-drive on top) and Ruby Space (yaw-drive at the bottom) simulators at
BMW, as these were the two motion systems used in the experiments of Part II.

The chapter first showed that the specific forces and rotational rates relations
strongly depend on the order of the motion subsystems. A correct implementation of
the kinematic relations is therefore key for correctly expressing the mismatches between
vehicle and simulator motion. Second, this difference showed to also strongly affect the
complexity of the motion control problem, as having a yaw-drive located on a hexapod’s
upper platform greatly complicates the rotational rate relations. The third finding
of Chapter 3 was that for large-excitation yaw-drives (> 20◦), the offset between the
Motion Reference Point (MRP) (the point where the motion applies) and the CRP (the
position where the driver is located) must be corrected for in the motion control to avoid
erroneous simulator motion. Combined, the derivations of the kinematic relations of
the Sapphire Space and Ruby Space, as well as the relations for the MRP corrections
are highly relevant due to their fundamental kinematic differences. These relations
also laid the foundation for the incongruence models discussed in Part II, in which the
mismatches in the motion channels are analyzed and used for modelling (Figure 10.1).

10.2 Part II - Predicting Motion Cueing Quality

Part II aimed to fulfill Research Goal 2, which was stated as:

Research Goal 2

To objectively and systematically predict subjective motion incongruence ratings
of closed-loop driving simulator experiments in urban, rural, and highway driv-
ing scenarios.

For this purpose, Chapters 4, 5, and 6 investigated whether the acquired rating data
were reliable and predictable for realistic urban, highway, and rural simulations, respec-
tively, by analyzing and comparing the rating response in these simulations (Figure 10.1).
The rating models were developed based on objective mismatches derived in Chapter 3.
An investigation of the applicability of the open-loop rating methods for closed-loop
driving was presented in Chapter 7. Finally, Chapter 8 represented an extension of Re-
search Goal 2 by applying the same methods to simulator sickness prediction.

10.2.1 Reliability

Predicting subjective MIRs requires a model of the subjective ratings. Developing a rat-
ing model requires reliable rating data to be fitted on. Chapter 4 described an experi-
ment in which participants rated the quality of the motion using the continuous rating
method developed by Cleij et al. [2018], but then applied in a realistic urban simulation.
A core finding of Chapter 4 was that the better the motion cueing is rated, the less reliable
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these ratings are. Vice versa, motion that is rated worse leads to higher reliability. This
implies that improving the quality of the motion simultaneously requires a greater effort
in the validation of the improved quality.

Chapter 5 focused on a similar rating experiment on a highway scenario. The same
simulator, experiment leader, experiment set-up, briefing, MCAs, and highly similar con-
ditions were used; only the participant group and the scenario were different. This al-
lowed for a unique direct comparison with the reliability estimates of Chapter 4. Sim-
ilarly, Chapter 6 directly compared three previously performed rating experiments in
rural simulations [Ellensohn, 2020]. To compare the reliability between the different sce-
narios, the fits acquired on the reliability estimates of the continuous ratings acquired in
the urban, highway and rural “B” experiments are shown in Figure 10.2.

Note that the urban and rural “B” experiments had three repetitions of each condi-
tion, whereas the highway experiment only had two repetitions. A lower number of rep-
etitions automatically leads to a lower reliability of the data. To perform a fair compari-
son between the reliability trends of the scenarios, this must thus be taken into account.
Therefore, the fits of the urban and rural “B” data sets were also evaluated for two repeti-
tions only. This indeed leads to a decrease of the reliability compared to the fit based on
three repetitions. Figure 10.2 furthermore shows that the highway and rural “B” ratings
were less reliable than the urban ratings. An explanation is that in open-loop driving, up-
coming maneuvers in rural and highway simulations (e.g., lane changes, accelerations)
are more difficult to anticipate, and harder to rate than the more predictable maneuvers
in urban simulations (e.g., corners, stopping in front of a traffic light).

The lower reliability for more congruent motion was visible in these three rating ex-
periments, and to a lesser degree also in the rural “A” and “C” experiments analyzed in
Chapter 6. As the ratings decrease (more congruent motion), their reliability also de-
creases. Understanding the associated reliability of obtained rating data is thus crucial
in the evaluation of motion. It is advisable to always include an evaluation of reliability
of the provided subjective ratings. The cost of improving motion cueing might thus not
only be a higher required tuning effort in achieving this, but it will also become more
difficult for drivers to confirm that the motion has indeed been improved.

Measuring a low reliability is not necessarily a sign of high motion cueing quality,
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however, as low reliability could also be caused by a poor task understanding, in which
a participant provides a rating that does not truly correspond to the sensed incongru-
ences. Future work should also investigate whether test drivers use the continuous rat-
ing method in an actually continuous manner, or whether they only actively rate when
incongruent motion appears. If the latter is the case, the continuous rating method may
have an inherently time-varying reliability, where the points in the continuous rating
recorded at congruent motion are less reliable than the points of incongruent motion.

10.2.2 Rating Relationships

The second key contribution of Part II is explicitly relating the continuous ratings to over-
all and maneuver-based ratings. The value of this contribution is that the overall and
maneuver-based rating methods can be measured, and thus validated, in closed-loop
driving experiments, whereas the continuous ratings cannot. Understanding these ‘rat-
ing relationships’ is thus necessary to be able to comply with Research Goal 2.

Chapter 4 showed that the overall rating of motion cueing in an urban drive strongly
correlates with the worst motion occurrence during that drive. Furthermore, Chapter 7

also found this to be true for maneuver-based ratings, where the highest rating (i.e., most
incongruent) point in a maneuver was fully consistent with the participants’ maneuver-
based rating. Whereas the rating relationships provide a practical approach for estimat-
ing the overall and maneuver-based ratings based on the continuous ratings, a more
fundamental perspective would be beneficial.

Especially the degree to which a maneuver is incongruent compared to the rest of
the drive may affect the rating relationships. For example, a point of highly incongruent
motion in an otherwise perfectly congruent drive may indeed strongly affect the overall
rating. Vice versa, the most incongruent maneuver that occurs in an already mediocre
motion cueing experience likely has a reduced impact on the overall rating.

10.2.3 Rating Models

The main focus of the chapters in Part II was to develop a predictive model of the subjec-
tive MIRs based on the objective mismatch signals derived in Chapter 3. For the urban
rating data, Chapter 4, a linear rating model was shown to explain a high degree (90%) of
the measured continuous rating variance. This model contains a low-pass filter response
(with cut-off frequency ωc ) to the modeled PMI (P̃m = KP̃m

|∆S̃m |), weighted per motion
channel m:

̂̃R( jω) =

(
ωc

jω+ωc

)∑
m

KP̃m

̂̃Pm( jω). (10.1)

In the urban driving experiment of Chapter 4, the subjective ratings of the motion cueing
were dominated by the lateral and longitudinal specific force mismatches. Only a small
and situational contribution of the yaw rate was found. This explanatory rating model
was further validated in Chapter 7, which used different rating data acquired from a dif-
ferent participant group and simulator, thus showing the ability of the rating model to
predict continuous ratings across experiments, an important step for Research Goal 2.

The succeeding Chapter 5 investigated how the acquired urban model transferred
when used on highway scenarios. Furthermore, Chapter 6 investigated rural scenarios
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and therefore aimed to complete the set of the three main scenario types (urban, high-
way, and rural). Rather than performing a new experiment, existing data sets from El-
lensohn [2020] were used for the modeling. Here, the model structure of (10.1), with the
response to the longitudinal and lateral specific force mismatches, was shown to success-
fully predict the continuous ratings for these scenarios as well. Although the balance in
the contributions of the two channels were slightly different between the scenarios, this
shows the explanatory validity of the rating model across three typical driving simulator
scenario types. The linear model furthermore allows for a variety of applications, such
as its use in linear optimization schemes. In that way, they can potentially be applied
in MCAs to optimize for the subjective experience, rather than the purely objective cost
function approaches in the state-of-the-art.

A central assumption in the work above has been that rating data acquired in open-
loop experiments (participants being driven as passengers) are also representative
for closed-loop driving (participants driving themselves). The experiment described
in Chapter 7 explicitly verified the equivalence of ratings given by participants in an
open-loop setting compared to them driving themselves, i.e., closed-loop. In the open-
loop conditions, participants were presented with played-back recordings of their own
closed-loop drives, allowing for the direct comparison between closed- and open-loop
driving for identical motion cueing. Both maneuver-based and overall ratings were
found to be equivalent in open- and closed-loop driving. This thus confirms that open-
loop driving and the continuous rating method can be applied to make assessments on
the motion cueing quality of closed-loop driving simulator experiments.

Combined, this shows that the model proposed in this dissertation can predict rat-
ings in all three scenario types and is valid in closed-loop driving, thus fulfilling Research
Goal 2. The end result is a transparent and relatively simple rating model that bypasses
the need for complex visual-vestibular perception models (e.g., Markkula et al. [2019])
and works across MCAs, simulators, and participant groups. This allows for the model
to be used independently of the motion cueing architecture. Clear benefits arise in sav-
ing on-site testing time and costs, as well as in determining the potential that a motion
cueing method can reach based on its objective mismatch signals.

10.2.4 Simulator Sickness

Low motion cueing quality can lead to simulator sickness in driving simulators. As dis-
cussed in Chapter 2, avoiding simulator sickness is of importance in most driving simula-
tion experiments. Chapter 8 therefore presented an experiment in which the primary fo-
cus was to quantify the link between motion incongruences and simulator sickness, i.e.,
a sidestep of Research Goal 2. Next to post-hoc ratings, the continuous rating method
was, for the first time, applied to rate simulator sickness. The continuous simulator sick-
ness ratings indicate that the occurrence and severity of simulator sickness are directly
linked to mismatches in simulator motion during specific maneuvers, similar to motion
incongruences.

Specific manipulations in the motion cueing – i.e., applying scaled, missing, and false
cue motion – showed that the latter induce the most simulator sickness, followed by
missing cues and then scaled motion. Furthermore, results showed that mismatches in
longitudinal motion induce the most simulator sickness, followed by the lateral motion,
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and then the yaw rate. Similar research for highway and rural simulations, as performed
in this dissertation for the MIRs, is strongly recommended. Furthermore, a next step
in the measurement of continuous and post-hoc simulator sickness ratings would be
to evaluate their reliability similar to the MIR data presented in this Chapters 4-7. This
would, however, require several repetitions of the same condition. This experiment de-
sign was considered infeasible in the present experiment, where each of the twelve con-
ditions was tested only once due to the already high number of conditions. This trade-off
between the number of conditions and the amount of repetitions is, in fact, highly rep-
resentative for the trade-off required for any driving simulator experiment where sub-
jective ratings are involved. A final step in this line of research would be predicting the
continuous Motion Illness Symptoms Classification (MISC) ratings, similar to the MIR
models, which was not performed in Chapter 8 due to time constraints. Nevertheless,
this is a crucial next step to enable evaluating the potential simulator sickness in the
motion cueing selection of a future experiment.

10.3 Part III - Improving Motion Cueing Quality

Research Goal 3

To develop a methodology to select the potentially best-suited motion cueing
method (simulator and MCA) of a driving simulator experiment to improve its
motion cueing.

Chapter 9 provided an example assessment of how the metrics proposed in Chap-
ter 2 can be used to predict the motion quality that a given MCA and simulator combi-
nation can potentially reach. This potential was estimated using a direct non-linear op-
timization of the simulator motion’s scaling with respect to a baseline tuning, defining
a limit in the quality that the motion cueing method may reach once the tuning would
be performed. As shown by applying this methodology to two real driving simulator
use cases, this potential estimation thus provides a fairer and more effective trade-off
in selecting between different candidate MCA and simulator combinations, which was
shown to have a large impact on the motion cueing method choice. Although the chap-
ter provided several objective metrics used in the trade-off, the main goal was to provide
a framework for a more accurate, multi-faceted, and complete trade-off in the selection
of motion cueing algorithms and simulators, improving the quality of future driving sim-
ulation experiments.

10.4 Conclusions

Based on the previous discussion, the main conclusions drawn in this dissertation are:

• Next to the achieved quality of a simulator’s motion, a mix of quality, cost, and
tuning metrics determine the total quality of a motion cueing method (simulator
and MCA) and should thus guide the method’s selection process.
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• Including the potential quality that each motion cueing method can reach leads
to a fairer and more effective comparison between the methods.

• The objective mismatches between vehicle and simulator motion that are required
for the prediction of motion incongruence ratings strongly depend on the kine-
matic configuration of the motion system.

• Subjective motion incongruence ratings become less reliable when the quality of
the simulator motion increases.

• Continuous ratings in urban, highway, and rural driving scenarios can be accu-
rately predicted through computing a first-order low-pass filtered response to a
weighted sum of the objective lateral and longitudinal specific force mismatches.

• Overall and maneuver-based ratings that summarize a test driver’s perceived in-
congruence across (part of) a simulated scenario strongly correlate with the most
incongruent point.

• Subjective motion incongruence ratings in open- and closed-loop driving are
equivalent, validating the continuous rating method and open-loop rating models
for predicting closed-loop driving performance. Motion cueing can thus be
systematically improved by employing open-loop driving during development
and testing phases.

Finally, this implies that the Overall Research Goal of this dissertation is achieved:

• The motion cueing selection and design of future closed-loop driving simulator
experiments can be assessed using the workspace potential that the motion cueing
quality can reach, described by the objective simulator mismatches. This includes
accurate predictions on subjective ratings of the motion using an open-loop rating
model, and experiment-specific quality, cost, and tuning metrics. This results in
more objective assessments and an improved selection process for the available
motion cueing methods.

10.5 Recommendations

Five key recommendations are identified that, if followed, can further enhance the qual-
ity of future driving simulator experiments, as well as form the basis for future work.

10.5.1 Improvements Quality Evaluations

The findings of Part I discussed that the comparison of motion cueing methods is more
objective when considering their full potential, as well as quality, cost, and tuning met-
rics. In the design of future driving simulator experiments, it is thus recommended to
identify the metrics that can determine the quality of the motion cueing, as well as of the
wishes of the stakeholders involved in the experiment.

There are, furthermore, a variety of directions in which future work can improve the
selection method proposed in this dissertation. This includes a more objective, detailed
and measurable definition of the considered metrics, such as energy consumption; in
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this dissertation simplified calculations were used to highlight the metrics applicability,
rather than providing truly accurate estimates. This was done to limit the complexity
of the dissertation and to keep the application as general as possible. The exact metric
definition, as well as their relative importance, will likely differ per institution, such that a
“one-size-fits-all” approach is unlikely to exist. For this purpose, the survey may be used
by a wider audience. Similarly, an improved and more objective trade-off framework,
including a formal weighting between the different metrics, is a crucial next step.

Even if only the quality of the motion itself would be considered, such as in evalu-
ation studies of novel MCAs (e.g., [Cleij et al., 2019; Ellensohn et al., 2020]), it is highly
recommended to evaluate the motion cueing quality in terms of the potential that each
MCA can reach for a fair comparison. The estimates of the potential cueing themselves
can also be further improved. For example, automatic tuning approaches can be devel-
oped, rather than the presented workspace extrapolation method. Even if estimating
this potential is not possible, at least the awareness that near optimally-tuned MCAs are
used in a comparison would already be beneficial.

10.5.2 Ensuring the Reliability of Subjective Ratings

This dissertation has shown that subjective MIRs become less reliable when motion con-
gruence increases. Great care should therefore be taken when using subjective ratings,
especially for cases where highly congruent motion is achieved.

The reliability of subjective incongruence ratings can be increased by increasing the
incongruence of the motion or by increasing the number of repetitions. If the reliability
of the whole data set (i.e., all subjects) is considered, reliability can of course always be
further improved by increasing the number of subjects. The findings also highlight that
while a rating or evaluation may always be recorded, it does not necessarily have to be
reliable, especially when the sample size is small. In the tuning phase of an experiment,
in which only a handful of test drivers typically evaluate the motion, it is thus paramount
to estimate or at least be aware of the reliability of the rating data. A tuning process
based on formal rating scales would thus be a large benefit, as current tuning approaches
often involve the test drivers giving informal comments whenever they want, rather than
presenting quantitative ratings that have a specific range, timing and focus.

Generally, it is recommended to always perform identical repetitions of a single test
drive to increase the number of repetitions and boost reliability. This is especially recom-
mended in experiments where the motion cueing is expected to be highly congruent, for
example on BMW’s Sapphire Space. The reliability estimates described in Part II showed
that three repetitions were generally sufficient to result in reliable data. This furthermore
allows for the calculation of McDonald’s Omega, which requires at least three data points.
This reliability metric is a more accurate estimation of the true reliability and produced
higher reliability estimates in all three driving simulation scenarios (urban, highway, and
rural) tested in this dissertation.

10.5.3 Benefits of Open-Loop Driving

So far, the need for open-loop driving in rating experiments has been described as a re-

striction necessary to allow for more “invasive” rating methods, such as the continuous
rating method. In some experiments, such as expert evaluations of driving dynamics,
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closed-loop driving is a necessity to be able to give relevant ratings. In other experiments,
such as for the design of motion cueing, open-loop driving may in fact also offer advan-
tages due to its inherent benefits that can aid the evaluation process of motion cueing.
As the explicit comparison of ratings of open-loop and closed-loop driving in Chapter 7
showed the ratings to be equivalent, open-loop driving can thus be effectively utilized as
a useful tool in the design and verification of motion cueing methods.

For example, open-loop driving allows for a more systematic testing of motion cue-
ing, as repeatability increases: it is possible to replay specific recordings several times,
even to different test drivers, such that the same motion cueing is produced every time,
which is impossible in closed-loop driving. This has benefits in terms of the reliability
of the obtained rating data, as discussed earlier. Furthermore, open-loop driving also
has benefits in terms of controllability, as specific situations can be purposefully tested.
These benefits can thus accelerate the tuning process and, in turn, reduce the MCA tun-
ing effort.

10.5.4 Toward Human-Centered Motion Cueing

Objective metrics of motion cueing quality are generally used in the current state-of-the-
art design of MCAs, such as in the cost function of an MPC, whereas subjective ratings
methods are used to evaluate the final designed motion. Novel MCAs can directly ben-
efit from the findings on subjective ratings, however, by using a more human-centered
approach in the MCA design and implementation.

The high resolution of the continuous rating data, as well as of the maneuver-based
rating method, has given detailed insights in how humans evaluate motion. This knowl-
edge can be more directly implemented in MCAs. For example, the continuous rating
models can be implemented as a dominant cost function contribution in optimization-
based algorithms. Furthermore, the balance in the weighting of the various motion chan-
nels can be altered to match the relative importance of the different motion channels
[Cleij et al., 2020] as described in Chapters 4, 5, and 6. Current methods often apply
weights of [1, 1, 1]⊤ for the specific forces and [10, 10, 10]⊤ for the rotational rates. These
are based on the typical standard deviations of the motion signals [Katliar et al., 2015]
and aim to make the translational and rotational cueing error contributions of roughly
the same order of magnitude despite unit differences, without necessarily leading to the
optimal motion cueing quality for drivers.

Furthermore, the insight that the most incongruent point in the motion greatly deter-
mines the overall impression of the participants can be leveraged as well. For example,
the tuning process of the motion cueing can be accelerated when always first consider-
ing the worst segment of a drive. By weighing the maneuvers that would receive higher
ratings more heavily, rather than also optimizing already good motion cueing, the overall
impression of motion cueing can be improved.

10.5.5 Flight Simulation Applications

Whereas this dissertation solely focused on driving simulation, several approaches can
be applied directly to flight simulation. In general, flight simulation has a different focus
due to its higher importance of behavioral fidelity [Pool, 2012] and use for pilot training,
in which subjective ratings are less suitable. Nevertheless, subjective ratings are widely
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adopted [Mallery, 1987; Perfect et al., 2014; Pool, 2012; Wong et al., 2012]. The contin-
uous rating method has already found an application in flight simulation, such as in
aircraft upset [Bakker et al., 2025] and helicopter [Miletović, 2020] simulations, to eval-
uate different MCA types. Similar to the methods presented in this dissertation, both
the reliability and predictability of such provided ratings can be further investigated to
better understand subjective rating methods in flight simulation.
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A
Survey

The appendix contains the questions as presented to the stakeholders (in German) as
described in Chapter 2. The questions and possible answers translated from German to
English are indicated in italic.

A.1 Possible Answers

Stimme
überhaupt

nicht zu
Stimme
nicht zu

Stimme eher
nicht zu Teils / teils

Stimme
eher zu Stimme zu

Stimme voll
und ganz zu

Ich verstehe
die Frage nicht

ä (1) ä (2) ä (3) ä (4) ä (5) ä (6) ä (7) ä (-)

Fully

disagree Disagree

Slightly

disagree Neutral Slightly agree Agree
Fully
agree

I don’t
understand
the question

Table A.1: Possible answers, with the score values corresponding to Figure 2.2.

A.2 Survey Questions

A.2.1 Immersion

Während der Simulation kann das Gefühl entstehen, in der virtuellen Welt da zu sein
(Immersion). Bitte beantworten anhand der nachfolgenden Fragen, ob es für Sie wichtig
ist, dass:
During the simulation, a feeling of being in the virtual world can arise (immersion).

Please use the following questions to answer whether it is important to you that:

Q1 die Bewegung im Simulator so realistisch ist, wie möglich.
the motion in the simulator is as realistic as possible.

Q2 man in die virtuelle Welt reingezogen wird.
one is immersed into the virtual world.

Q3 die Simulatorbewegung sich nicht unerwartet verhält.
the simulator motion does not behave unexpectedly.
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Q4 nie in die Grenzen des Bewegungssystems gefahren wird.
the simulator is never driven into its limits.

Q5 die Simulation einer Fahrt nie abstürzt.
the simulation of a drive never crashes.

A.2.2 Simulatorkrankheit (Simulator sickness)

Während einer Fahrt kann Simulatorkrankheit auftreten. Manchmal muss dadurch der
Versuch abgebrochen werden. Bitte bewerten Sie anhand der nachfolgenden Fragen, ob
es für Sie wichtig ist, dass:
Simulator sickness can occur during a ride. Sometimes the attempt has to be stopped be-

cause of this. Using the following questions, please rate whether it is important to you that:

Q6 schwere Simulatorkrankheitsymptome (Übelkeit, übergeben) so viel wie möglich
vermieden werden.
heavy simulator sickness symptoms (nausea, throwing up) are avoided as much as

possible.

Q7 die gesamte Ausfallsrate des Experiments so niedrig wie möglich ist.
the overall drop-out rate of the experiment is as low as possible.

Q8 leichte Simulatorkrankheitssymptome (Kopfschmerzen, Schwindel, Schwitzen) so
viel wie möglich vermieden werden.
light simulator sickness symptoms (headache, dizziness, sweating) are avoided as

much as possible.

Q9 der Versuch bis zum Ende gefahren werden kann (keine Ausfälle).
the experiment can be driven until the end (no drop-outs).

Q10 nach dem Versuch Probanden noch in der Lage sind, zu arbeiten.
participants are still able to work after the experiment.

Q11 die aufgezeichneten Daten immer vollständig sind.
the recorded data are always complete.

A.2.3 Verhalten des Fahrers (Behavior of the driver)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q12 der gleiche Fahrstil in Querrichtung (Lenken) erzeugt wird, wie in einem Real-
fahrzeug.
the same driving style in the lateral direction (steering) is induced as in the real ve-

hicle.
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Q13 der gleiche Fahrstil in Längsrichtung erzeugt wird (Pedalerie und/oder Schalten),
wie in einem Realfahrzeug.
the same driving style in the longitudinal direction (pedals and/or shifting gears) is

induced as in the real vehicle.

Q14 das gleiche Verhalten mit bestimmten sekundären Komponenten (z.B. Navigation
oder Radio) erzeugt wird, wie in einem Realfahrzeug.
the same behavior with certain secondary components (e.g., navigation or radio) is

induced as in the real vehicle.

Q15 das gleiche Verhalten mit dem Umgebungsverkehr erzeugt wird, wie in einem
echten Fahrzeug.
the same behavior with the surrounding traffic is induced as in the real vehicle.

A.2.4 Sicherheit des Fahrers (Driver safety)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q16 man sich im Simulator immer sicher fühlt.
one always feels safe in the simulator.

Q17 der Gesundheit des Fahrers nicht geschadet wird.
the health of the participant is not harmed.

A.2.5 Hardware

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q18 während des Versuchs so viel wie möglich Strom gespart wird.
as much electricity as possible is saved during the experiment.

Q19 dem Simulator nicht geschadet wird.
the simulator is not damaged.

Q20 wegen des virtuellen Versuchs Treibstoff gespart wird.
fuel is saved by performing the experiment virtually.

Q21 die Wartung des Simulators minimiert wird.
simulator maintenance is minimized.

Q22 der Simulator während der Fahrt wenig Lärm erzeugt.
the simulator generates little noise while moving.

Q23 der Simulator sich nicht unnötig bewegt.
the simulator does not move unnecessarily.
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A.2.6 Kosten (Costs)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q24 nicht zu viel Aufwand investiert wird, den Versuch vorzubereiten.
not too much effort is invested in preparing the experiment.

Q25 die Kosten für das Unternehmen so gering wie möglich sind.
the costs for the organization are as low as possible.

A.2.7 Parametrierung des MCA (Parametrization of the MCA)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q26 es möglichst wenig Parameter gibt.
there are as few tuneable parameters as possible.

Q27 die Parameter physisch interpretierbar sind.
the tuneable parameters can be interpreted physically.

Q28 der MCA und die dazugehörigen Parameter sich linear verhalten.
the MCA and the accompanying parameters behave linearly.

Q29 es für jede Achse nur einen Parameter gibt.
there is only one parameter for each axis.

Q30 man nicht immer aufsuchen muss, was bestimmte Parameter bedeuten.
one doesn’t constantly have to search for the meaning of certain parameters.

Q31 es in jedem Freiheitsgrad des Simulators so wenig Parameter wie möglich gibt.
there are as few parameters as possible in each DoF of the simulator.

Q32 der Stand eines vorherigen Versuches benutzt wird.
the tuning of a previously performed experiment is used.

Q33 das Tuning ohne Simulator ausgetestet werden kann.
the tuning can be tested without a simulator.

A.2.8 Modelstruktur des MCA (Model structure of the MCA)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q34 der MCA kein Black-Boxsystem ist.
the MCA is not a black-box system.
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Q35 ein MCA benutzt wird, der immer konsistent den gleichen Output zu einem bes-
timmten Input ergibt.
an MCA is used, that consistently gives the same output for a given input.

Q36 man genau sehen kann, was unter der Haube des MCA passiert.
one can clearly see what happens under the hood of the MCA.

Q37 ein MCA benutzt wird, der modular tauschbar ist mit anderen MCAs.
an MCA is used that is modularly interchangeable with other MCAs.

A.2.9 Bedienung des MCA (Operating the MCA)

Bitte bewerten Sie anhand der nachfolgenden Fragen, ob es für Sie wichtig ist, dass:
Using the following questions, please rate whether it is important to you that:

Q38 ein stabiler MCA benutzt wird.
a stable MCA is used.

Q39 der MCA leicht zu bedienen ist.
the MCA is easy to use.

Q40 keine unklaren Fehler in der Simulationsbedienungsoberfläche erzeugt werden.
no unclear errors in the simulation control interface are produced.

Q41 alle Optionen in der Simulationsbedienungsoberfläche selbstverständlich sind.
all options in the simulation control interface are self-explanatory.





B
Briefings

The following briefing (in German) was used for the urban data collection experiment,
as described in Chapter 4. The corresponding translations to English (not visible for the
participants) are indicated in italic. In the other continuous rating experiments, similar
briefings were used, although adapted to represent the respective experiments.

Herzlich willkommen zum Driver-in-Motion-Fahrsimulator in Garching! Heute
gibt es für Sie eine einzigartige Möglichkeit eine virtuelle Umgebung zu erfahren
in einem Bewegungssimulator und damit unsere Forschungsthemen zu unter-
stützen. In ungefähr einer Stunde und 30 Minuten werden Sie erfahren, wie die
Bewegung eines Simulators auf verschiedene Weise gestaltet werden kann. Viel
Spaß!

Welcome to the Driver-in-Motion Driving Simulator in Garching! Today you will

get a unique opportunity to experience a virtual environment in a motion sim-

ulator and support our research and development. In roughly one hour and 45

minutes you will experience how the motion of a simulator can be generated in

various ways. Have fun!
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Beschreibung der Aufgabe / Description of Assignment

In diesem Versuch werden Sie mehrmals kurze Strecken in der Stadt fahren.
Die Systeme für Hochautomatisiertes Fahren sind ständig eingeschaltet. Das
bedeutet, dass Sie nur Passagier sind. Das Fahrzeug wird eine vorbestimmte
Strecke fahren.

Während der Fahrt wird der Simulator sich bewegen, um eine realitätsnahe
Bewegung darzustellen. Weil der Bewegungsraum des Simulators kleiner
ist als bei einem echten Fahrzeug, passt die Bewegung des Simulators bei bes-
timmten Manövern nicht genau zu dem, was Sie in der Realität erfahren würden.

Ihre Aufgabe ist es, zu bewerten wie gut diese Bewegung passt zu dem, was
Sie von einem echten Fahrzeug erwarten würden. Da Sie nicht selbst fahren,
können Sie sich völlig auf die Bewegung konzentrieren.

Es geht nur darum wie gut die Bewegung ist, also nicht um die Qualität der
Visualisierung, nicht um die Qualität des hochautomatisierten Fahrens, den
Fahrstil oder etwas anderes!

In this study you will drive multiple short runs through a city. The autonomous

driving systems are continuously running. This means you are a passenger. The

vehicle will drive a pre-programmed route. This route is indicated by arrows.

During the runs the simulator will move around to provide a realistic movement.

As the motion space of the simulator is smaller than that of a real vehicle, the

movement of the simulator might, in some cases, not exactly fit to what you would

experience in a real vehicle.

It is your task to rate how good this movement fits to that what you would expect

from a real vehicle. As you will not be driving yourself, you can fully focus on the

movement.

This task is only about the quality of the movement, so not about the quality of

the visuals, not about the quality of the autonomous driving, the driving style, or

anything else!
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Bewertungsmethodik / Rating method

Während der Fahrt können Sie mit dem iDrive-Controller auf der mittleren Kon-
sole (Figure B.1) kontinuierlich eine Bewertung zu der Qualität der Bewegung
geben. Die Bewertung ist auf einer Skala von 0 bis 10. Eine 0 bedeutet, dass nach
Ihrer Meinung die Bewegung sich in diesem Moment genauso anfühlt wie in
einem echten Fahrzeug. Eine 10 bedeutet eine sehr schlechte oder unrealistische
Bewegung des Simulators.

During the drive you can use the iDrive-Controller on the center console (Fig-

ure B.1) to give a continuous rating of the movement quality. The rating is on a

scale from 0 to 10. A 0 means, that according to you, the movement at this point

exactly feels like what you would feel in a real vehicle. A 10 means an extremely

bad or unrealistic movement of the simulator.

Figure B.1: Der iDrive-Controller / The iDrive-Controller

Als Beispiel: Wenn das Auto sich überhaupt nicht bewegt, und der Simulator
sich auch nicht, ist was Sie im Simulator erfahren genau das, was Sie in einem
echten Auto erleben würden. Damit wird erwartet, dass Sie hier eine Bewertung
von ’0’ angeben.

Beispiele von “schlechter” Simulatorbewegung sind zu starke oder zu schwache
Bewegung, Bewegung in die falsche Richtung oder fehlende Bewegung. Hier
wird eine Bewertung erwartet, die auf jeden Fall nicht ’0’ ist.

Die von Ihnen ausgegebene Bewertung ist auf dem Bildschirm sichtbar und wird
mit einem Balken angezeigt (Figure B.2).
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As an example: When the car is not moving at all, and neither is the simulator,

what you are experiencing in the simulator is the same as what you would

experience in real car. Therefore, it is expected you give a rating of ’0’ here.

Examples of "bad" simulator movement are too strong or weak movement, move-

ment in the wrong direction or missing movement. Here, a rating is expected that

is at least not ’0’.

The rating you are currently giving is visible on the screen and is displayed with a

bar (Figure B.2).

Figure B.2: Der Bewertungsbalken, in diesem Fall mit einer ziemlich schlechten Simulatorbewegung.
/ The rating bar, in this case representing a quite bad simulator movement.

Die Bewertung ist vor allem subjektiv. Das heißt, es gibt kein Richtig oder Falsch.

Nach jeder Fahrt werden Sie nach einem Wert als Gesamtbewertung für die
Fahrt gefragt, auf der gleichen Skala wie bei der kontinuierlichen Bewertung.

The rating is above all subjective. That means, there is no right or wrong.

After each run you will also be asked for a single score representing the movement

quality of the whole run, on the same scale as the continuous rating.

Ihr Wohlbefinden und Bewegungskrankheit / Your well-
being and motion sickness

Für Ihre Sicherheit und Wohlbefinden wird Ihr Zustand immer überwacht und
mit einem Fragebogen (Table B.1) verfolgt. Nach jeder Fahrt wird gefragt wie Sie
sich fühlen und welche Nummer am besten zutrifft.

Wenn es dazu kommt, dass Sie sich während einer Fahrt unwohl oder übel
fühlen, informieren Sie bitte sofort den Versuchsleiter. Ihr Wohlbefinden hat
immer die höchste Priorität. Der Versuch kann jederzeit gestoppt werden.
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For your safety and well-being, your condition is monitored using a questionnaire

(Tab. B.1). After each run you will be asked how you are feeling and which value

best represents your current condition.

If you are feeling uncomfortable or nauseous, please inform the experiment leader

immediately. Your well-being always has the highest priority. The experiment can

be stopped at all times.

Table B.1: Die Skala für Ihr Wohlbefinden. The rating for your well-being.

Symptom / Symptom Wert / Score

Keine Probleme / No problems 0
Etwas unwohl (keine eindeutigen Symptome) / 1
Slight discomfort but no specific symptoms

Unwohlsein aber keine Übelkeit: sehr gering / vague 2
(z.B. Gähnen, Müdigkeit, kalt/heiß, schwitzen, gering / some 3
verschwommene Sicht, Kopfschmerzen, mittel / medium 4
Speichelfluss, Reizung im Magen/Hals, aufstoßen) / stark / severe 5
Dizziness, warm, headache,

stomach awareness, sweating, etc.

Übelkeit / gering / some 6
Nausea mittel / medium 7

stark / severe 8
würgen / retching 9

Maßnahmen bezüglich der COVID-19-Pandemie / Mea-
sures due to the COVID-19 pandemic

Um Ihre Gesundheit gegen COVID-19 zu schützen, gibt es zusätzliche
Vorschriften während des Versuchs. Sie sind verpflichtet eine Maske zu tra-
gen. Im Simulator dürfen Sie die Maske runterschieben, aber nehmen Sie bitte
die Maske nicht ab! Die Simulatorkabine wird immer vor und nach dem Versuch
desinfiziert.

To protect your health against COVID-19, there are additional measures during

the experiment. It is mandatory to wear a face mask. Inside the simulator you

can move your mask down, but please do not take it off completely! The simulator

cabin is disinfected before and after the experiment.

Probefahrt / Test run

Bevor mit dem tatsächlichen Versuch angefangen wird, gibt es die Möglichkeit
eine Probefahrt zu machen, um sich an den Simulator, die Umgebung und die
Aufgabe zu gewöhnen.

Before the actual experiment starts, you will be given the opportunity to do a

practice run to get acquainted to the simulator, the environment and the task.
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Zeitplanung / Planning

Der komplette Versuch dauert ungefähr eine Stunde und 30 Minuten. Insgesamt
gibt es neun Fahrten. Nach jeder Fahrt geben Sie Ihre Werte für den allgemeinen
Eindruck und für Ihr Wohlbefinden. Nach drei Fahrten gibt es eine Pause.

The whole experiment lasts roughly one hour and 45 minutes. In total there will

be six/nine runs. After each run you give your value for the overall impression and

a value for your well-being. After each set of three runs there will be a short break.

Datensicherheit und Ihre Rechte / Data security and your
rights

Rechte und Vorschriften bezüglich Datensicherheit sind beschrieben in der
„Informierte Datenschutzrechtliche Einwilligungserklärung“.

Ihre Teilnahme ist freiwillig. Sie dürfen jederzeit die Studie verlassen, auch ohne
Angabe von Gründen.

Rights and regulations regarding data security are described in the "Declaration

of Informed Consent".

Your participation is voluntary. You can leave the experiment at any time, also

without specifying a reason.

Fragebogen zu Ihnen als Fahrer / Questionnaire regarding
you as a driver

Was ist Ihr Alter?
Was ist Ihr Geschlecht?
Seit wann besitzen Sie Ihren Fuhrerschein? [Jahr]
Wie häufig fahren Sie mit dem Auto? [km pro Jahr]
Hatten Sie schon mal Erfahrung mit Fahrsimulation? [J/N]

What is your age?

What is your gender?

Since when do you possess your driver’s license? [Year]

How often do you drive a car? [km per year]

Do you have experience with driving simulation? [Y/N]
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Abstract

This appendix describes a continuous rating experiment performed to investigate highly

dynamic driving on a race track scenario. Nine expert drivers were subjected to two open-

loop conditions (i.e., they were being driven), comparing a classical washout algorithm

and an optimization-based algorithm with full knowledge of the future states. Partici-

pants rated the motion in these conditions continuously and using an overall rating. In a

third condition, using only the classical washout algorithm, they drove themselves (closed-

loop), in which a novel maneuver-based rating method was employed. Whereas all three

ratings methods provided reliable results, the maneuver-based rating method is not use-

ful for high-performance driving due to the high induced workload. Generally, the results

show a successful application of both a high-performance simulator and motion cueing

for highly dynamic driving, as well as their validation through novel rating methods.
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C.1 Introduction

HIGHLY dynamic driving forms an important part of BMW’s driving simulation use-
cases. In real-life, this testing is performed on dedicated test tracks, which allow for near-
limit testing of the vehicle. Such testing is only performed by experienced and specially
trained drivers who can operate the vehicle at its limit. So far, the chapters in this disser-
tation focused on the motion cueing for “customer studies”. This refers to studies with
everyday drivers in mind, such as to evaluate a novel navigation system.

For highly dynamic driving, the focus is often more on the handling characteristics of
vehicles [Salisbury and Limebeer, 2017]. In terms of the motion cueing, the stronger dy-
namics induce larger accelerations [Salisbury and Limebeer, 2014] compared to regular
driving, which are more difficult to reproduce by the simulator. A lack of accurate motion
cueing can negatively affect driving performance [Schwarzhuber et al., 2020]. Therefore,
specifically designed cueing strategies exist [Salisbury and Limebeer, 2014; Salisbury and
Limebeer, 2017; Schwarzhuber et al., 2021] that differ from strategies used in motion cue-
ing for customer studies. This is done by leveraging the known geometry of the test track,
or by implementations of side slip reproduction [Bruschetta et al., 2018b].

Similar as for motion cueing for customer studies (e.g., Chapter 4), accurate eval-
uation tools of motion cueing for highly dynamic driving would be beneficial. These
would reduce the required on-site testing, saving time and money. Motion cueing for
highly dynamic driving, however, which requires high platform accelerations and large
workspaces, has not yet been tested on BMW’s motion systems. It is furthermore cur-
rently unknown whether the continuous rating method introduced in Cleij et al. [2018]
and Chapter 4 can be used in highly dynamic driving simulations. For example, the in-
tensity of the motion in such simulations might be too demanding to also, at the same
time, evaluate the motion and perform a rating task, even in open-loop driving.

This appendix describes a highly dynamic driving study on a race track in which ex-
pert drivers evaluated the motion in three conditions: open-loop “Oracle” motion cueing
[Ellensohn et al., 2019c], open-loop CWA, and closed-loop CWA. The goal of the exper-
iment was to assess the viability of using open-loop driving and the continuous rating
method for highly dynamic use-cases. In the open-loop conditions, participants were
driven around using a pre-recorded drive on the circuit. In these conditions, the contin-
uous rating method using a rating knob was employed [Cleij et al., 2018]. Furthermore,
the viability of a maneuver-based rating method was investigated in the closed-loop con-
dition, in which participants could drive themselves. Finally, the highly demanding use-
case induced strong platform motion and was therefore used as a validation in terms of
the motion reproduction capabilities of BMW’s largest driving simulator.

This appendix is structured as follows. The applied methods are discussed in Sec-
tion C.2. The experiment set-up is discussed Section C.3, followed by the results in Sec-
tion C.4 and the discussion in Section C.5. The appendix is concluded in Section C.6.

C.2 Methods

In the experiment, the participants’ task was to rate the physical motion of the simula-
tion by evaluating the Perceived Motion Incongruence (PMI). The PMI, however, is not
measurable, as it is internal to the human operator. Therefore, a Motion Incongruence
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Rating (MIR) was asked from the drivers, ranging from values of 0 (congruent motion) to
10 (highly incongruent motion), with steps of 1, as proposed in Cleij et al. [2018]. Three
types of rating methods were applied, similar as in Chapter 7.

C.2.1 Overall Post-Hoc Ratings

Overall ratings were extracted at the end of the drive (post-hoc) and aim to represent
the overall impression of the whole drive. These ratings are straightforward in their use
and their recordings ORP H provide a direct answer as to which of various motion cueing
conditions is preferred, as only a single value is obtained per drive. However, they do
not provide information on where in the scenario the incongruences occurred. Overall
ratings were recorded in both the open- and closed-loop drives.

C.2.2 Maneuver-Based Ratings

Ratings were also obtained for distinct maneuvers [Ellensohn et al., 2020]. These were
directly asked after each maneuver, i.e., Section-Wise Post-Hoc (SPH) (see Chapter 2).
Maneuver-based ratings can be acquired either by verbal communication between the
participant and the experiment leader or through a rating interface. However, due to the
demanding requirements of operating the vehicle at high speed around the race track,
operating a rating interface as a secondary task might jeopardize safety, as it requires
temporary steering with only one hand. For this experiment, it was therefore chosen
to obtain the maneuver-based ratings verbally. These ratings were only collected in the
closed-loop driving condition.

C.2.3 Continuous Ratings

In the continuous rating task, drivers continuously rated the quality of the motion using
a rating interface [Cleij et al., 2018], reflecting their current PMI at each point in time.
The resulting rating signals are of high temporal resolution, which is especially benefi-
cial for modeling approaches [Cleij et al., 2018; Ellensohn et al., 2019c; Kolff et al., 2022;
Kolff et al., 2024b]. As explained in Chapter 4, the high workload while performing this
task does not allow for simultaneously driving the vehicle. Therefore, this rating method
can only be employed while “driving” open-loop, i.e., using a playback. The continuous
rating task has been established in customer studies (Part II), but has never been tested
in a highly dynamic simulation. Especially the requirement on open-loop driving might
be problematic, as it takes away the expectation of motion based on the drivers’ con-
trol actions (See Chapter 7), an aspect that many expert drivers use in the evaluation of
motion in highly dynamic and near-limit driving.

C.3 Experiment Set-up

C.3.1 Scenario

The scenario considered in the experiment was the virtual equivalent of Circuit de Mira-
mas. It consists of a single lap of 3.3 km. The simulated version (Figure C.1) is of equal di-
mensions. Each simulation consisted of the full first lap and the beginning of the second
lap. For the maneuver-based rating, the track was divided into twelve maneuvers, shown
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to the participants by green patches on the road surface. The maneuvers are shown in
Table C.1, including the most dominant motion channels. These are also shown in Fig-
ure C.1. As the beginning of the first lap was repeated, maneuvers M11 and M12 (in lap
2) corresponded to the maneuvers M1 and M2 (in lap 1), respectively. The total length of
the drive was 3.9 km.

Table C.1: Overview of the maneuvers to be rated using the maneuver-based rating method.

Maneuver Description Dominant channel

M1 Initial acceleration Longitudinal
M2 Slalom Lateral & Yaw
M3 Corner right Lateral & Yaw
M4 Corner right Lateral & Yaw
M5 Acceleration Longitudinal
M6 Braking Longitudinal
M7 Corner left Lateral & Yaw
M8 Straight None
M9 Corner right Lateral & Yaw
M10 Straight None
M11 Bump Vertical
M12 Braking Longitudinal

C.3.2 Apparatus

The experiment was performed on BMW’s Sapphire Space simulator (Figure C.2a). The
motion system has nine DoFs, consisting of three subsystems: a 19.14 m×15.70 m xy-
drive, a 1.15 m stroke hexapod, and a 360◦ yaw-drive. The simulator is fully enclosed by
a dome, in which a BMW 5 series (G30) vehicle mockup was placed. The steering wheel
rotated corresponding to the simulated drive.

The iDrive navigation knob on the center console (Figure C.2b) was used as the rating
interface by the drivers to provide the continuous rating R(t). Inside the dome, visuals
were rendered using Unreal Engine (visible in Figure C.2b) and displayed using 12 Norxe
P1 projectors, resulting in a highly realistic full 360◦ projection in the dome. The current
rating value in the form of a “rating bar” was visible in the central field of view in a type
of head-up display. The size and color of this rating bar changed from rating 0 (short,
white) to rating 10 (long, red). The complete rating method was thus the same as the ex-
periments described in Part II of this dissertation. The velocity of the vehicle was shown
on the tachometer on the dashboard and in a head-up display alike screen projection.

C.3.3 Independent Variables

The experiment had two independent variables: the driving method (levels: open-loop
and closed-loop) and the MCA (levels: Oracle and CWA). The tuning parameters of the
CWA in the closed- and open-loop conditions were the same. The Oracle motion cueing
used an optimization-based scheme using perfect prediction capabilities (only possible
in open-loop driving) [Ellensohn et al., 2019c]. Both the implementations of the Oracle
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Figure C.1: Overview of the track (grey) and the maneuvers to be rated in the CWA-CL condition (green overlay).

Table C.2: Experimental conditions with the two independent variables (motion cueing and driving method),
including the rating methods used in each condition.

Condition ORC CWA-OL CWA-CL

Motion cueing Oracle CWA CWA
Driving method open-loop open-loop closed-loop
Rating method R(t), ORP H R(t), ORP H MBSP H , ORP H

and CWA were similar to those tested in Chapter 4. As Oracle motion cueing is only
possible in open-loop simulations, three experiment conditions were tested. These are
shown in Table C.2. The maneuvers to be rated in the closed-loop CWA condition were
chosen as the maneuvers of the drive where either much longitudinal or lateral motion
occurs. For M8 and M10 the opposite was true, as in these maneuvers little motion was
present. These should thus be rated with low ratings (i.e., congruent motion), as the
mismatches in these maneuvers are small, see Figure C.3. These maneuvers thus serve as
a check for the responsiveness of the participants and the validity of the rating method.

Similarly, for the closed-loop drives, the mismatches are shown in Figure C.4. Be-
cause the closed-loop drives are inherently different due to differences in velocity, the
covered distance is a better measure to compare the motion between the drives. There-
fore, the along-track distance to a point n is calculated [Kolff et al., 2019] as:

an =

n∑

i=1

√
∆x2

i
+∆y2

i
, (C.1)

where i represents the elements up until the point n. ∆xi and ∆yi , respectively, rep-
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(a) The Sapphire Space. (b) A participant using the rating knob.

Figure C.2: The experiment set-up.

resent the increase in x- and y-position at point i with respect to the previous point.
Figures C.4c and C.4f clearly show the deterministic nature of the fy and ωz channels,
respectively, as drivers have to follow the geometry of the track. In contrast, the longitu-
dinal specific force channel fx is less deterministic (and hence more spread-out), as the
acceleration and deceleration points can be chosen more freely by the drivers.

C.3.4 Participants and Procedures

Nine participants took part in the experiment. All of them were in the possession of a
European car driver’s license B for at least five years (M = 20.6 yrs, SD = 9.1 yrs). All of
them were expert drivers with extensive experience in vehicle testing and had BMW driv-
ing academy training on advanced vehicle handling and prototype driving. The average
yearly driven distance for the participants was M = 27,100 km (SD = 14,410 km). The av-
erage age was M = 37.7 yrs (SD = 9.2 yrs). All of them had previous experience in driving
simulators. Five participants had driving experience on the real-life Circuit de Miramas
track. All participants provided informed consent and the experiment was approved fol-
lowing BMW’s internal ethics review procedures.

The experiment consisted of ten drives, which were grouped into three blocks. In
the first block, three open-loop drives were driven, being either ORC-CWA-ORC or CWA-
ORC-CWA, depending on the participant. In the second block, the four closed-loop
drives were performed. In the third block, the opposite of the first block was performed
(CWA-ORC-CWA or ORC-CWA-ORC). After each block a five minute break was taken.

A training phase was conducted before the actual experiment phase. Here, partic-
ipants were driven one lap of the open-loop CWA condition to get acquainted to the
rating set-up. Furthermore, at least two closed-loop laps were driven to get accustomed
to the track and the maneuver-based rating method. This phase was extended if partici-
pants required more training to stay on the track or to understand the rating task. After
this, the measurement phase started.

For the closed-loop drives, drivers were instructed to drive dynamically, but not on
the absolute limits of the vehicle, to ensure they stayed on the track. For the maneuver-
based ratings (closed-loop condition only), drivers were asked to give their rating of each
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Figure C.3: Mismatches of the open-loop conditions. Green areas are the maneuvers; dashed lines in C.3b and
C.3d are the perceptual thresholds (±3 deg/s [Reymond and Kemeny, 2000]).

maneuver verbally. The selected maneuvers were spaced such to give drivers enough
time to give their rating while still being able to focus on the driving task.

C.4 Results

The experiment had, with ten participants, a relatively small sample size. Due to tech-
nical issues caused by the novelty of the system, two participants could not finish the
experiment. Furthermore, four participants suffered from simulator sickness that oc-
curred during the experiment. This leaves only four complete data sets for analysis that
are considered as subjects. For this reason, the differences between the conditions are
only analyzed descriptively and are not subjected to any significance analyses.

C.4.1 Continuous Ratings

The obtained continuous rating signals obtained in the open-loop driving conditions
(ORC and CWA-OL) are shown in Figure C.5 (left). The continuous lines represent the
mean over all subjects and repetitions, with the standard deviation shown as a shaded
area. Note that there are two indications that subjects are able to rate the motion in
this dynamic simulation. First, the ratings increase (hence, the motion was evaluated to
get worse) at the points where the mismatches occur (i.e., the maneuvers). Second, in
those maneuvers (mostly M8 and M10) in which there was little motion (and therefore no
mismatches), subjects indeed decrease the rating (most notably at M10). This indicates
the responsiveness of the subjects to the mismatches. The individual rating data are
included in Appendix D.5.



C.4 Results

C

233

an , m
0 500 1000 1500 2000 2500 3000 3500

-10

-5

0

5

10
M

1
M

2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

∆
S̃

f x
,m

/s
2

(a) Mismatch in fx .

an , m
0 500 1000 1500 2000 2500 3000 3500

-0.4

-0.2

0

0.2

0.4 Subj. 1 Subj. 2 Subj. 3 Subj. 4

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

∆
S̃
ω

x
,r

ad
/s

(b) Mismatch in ωx .

an , m
0 500 1000 1500 2000 2500 3000 3500

-10

-5

0

5

10

∆
S̃

f y
,m

/s
2

(c) Mismatch in fy .

an , m
0 500 1000 1500 2000 2500 3000 3500

-0.4

-0.2

0

0.2

0.4

∆
S̃
ω

y
,r

ad
/s

(d) Mismatch in ωy .

an , m
0 500 1000 1500 2000 2500 3000 3500

-5

-2.5

0

2.5

5

∆
S̃

f z
,m

/s
2

(e) Mismatch in fz .

an , m
0 500 1000 1500 2000 2500 3000 3500

-0.5

-0.25

0

0.25

0.5

∆
S̃
ω

z
,r

ad
/s

(f) Mismatch in ωz .

Figure C.4: Mismatches in the CWA-CL condition as function of the along-track distance. Each colored line
represents a single drive. Green areas are the maneuvers; dashed lines in C.4b and C.4d are the perceptual
thresholds (±3 deg/s [Reymond and Kemeny, 2000]).

Generally, the Oracle motion cueing (ORC) was rated better (i.e., lower ratings) than
CWA-OL. An exception is just before maneuver M8. Participants’ comments revealed
that some here perceived an unexpected drift (i.e., erroneous yaw motion). This could
be due to too aggressive pre-positioning, required to allow for sufficient workspace in
the yaw direction for maneuver M9 soon after the 180◦ turn between M7 and M8.

Figure C.6 shows the reliabilities of the continuous rating data acquired per sub-
ject. The reliability is estimated using Cronbach’s Alpha and McDonald’s Omega, as in
Chapter 4. The value R̄p represents the average continuous rating per participant. The
figures also contain the regression fit of α (grey lines) and Ω (black lines) of the form
r = a−1/(bR̄p +c) acquired on the urban rating data of Chapter 4. For CWA-OL, with the
exception of Subject 1 (Ω= 0.40), the reliabilities are high (Subject 2: Ω= 0.76, Subject 3:
Ω= 0.92, and Subject 4: Ω= 0.95). For Subjects 1 and 2, in the ORC condition, (Ω= 0.45
and Ω= 0.52, respectively) the reliabilities are lower than Subjects 3 and 4 (Ω= 0.85 and
Ω = 0.92, respectively). Subjects 1 and 2 are below the predicted reliabilities using the
fit from Chapter 4. A key finding of Chapter 4 was that the reliability decreases for lower
ratings (i.e., for a more positive subjective rating of the motion). Although this finding
is reproduced here, the reliabilities of Subject 2 and especially Subject 1 are thus lower
than predicted, indicating a lower task understanding. As discussed in Chapter 4, and re-
produced here, McDonald’s Omega also provides a benefit mainly for subjects for whom
Cronbach’s Alpha is low. Although only a limited number of subjects is available in the
present study, these findings thus generally confirm those of Chapter 4.
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Figure C.5: Left: The averaged MIRs per MCA with the standard deviation displayed as shaded areas. Right:
Box plots of the overall ratings; their means are indicated by horizontal lines.
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Figure C.6: Reliability for the two experiment conditions of the four subjects.

C.4.2 Overall Ratings

The right side of Figure C.5 shows the overall ratings of the ORC and CWA-OL conditions.
The box plots indicate the spread over the recordings. The horizontal bars indicate the
means (for ORC: 4.5, for CWA-OL: 5.1), such that ORC is again rated better than CWA-
OL. One outlier in the ORC condition (visible in Figure C.5) lies at a rating of 9, which
has, considering the limited number of subjects, a strong effect on the distribution of
the overall rating. As discussed in Chapter 4, reliability of the overall ratings can only be
calculated for the whole group: for ORC: Ω= 0.92 and for CWA-OL: Ω= 0.99.

C.4.3 Maneuver-based Ratings

The maneuver-based ratings of the closed-loop condition CWA-CL are shown in the left
part of Figure C.7 (left) and displayed as box plots. Similar to what was seen in the con-
tinuous ratings, maneuvers M8 and M10 (which did not contain a high degree of motion,
and therefore also little mismatches) were indeed also given low ratings. This indicates
the subjects’ understanding of and responsiveness to the mismatch rating task.

The right part in Figure C.7 displays the overall ratings in the CWA-CL condition, av-
eraged for each participant. Note that the distribution of these ratings is similar to the
distribution of the open-loop CWA condition shown in Figure C.5. This indicates that the
open-loop and closed-loop were rated similarly. Reliability cannot be calculated here,
because all closed-loop runs are inherently different.
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Figure C.7: The maneuver-based (left) and overall (right) ratings given by the subjects in the CWA-CL condition,
averaged over the four repetitions.

C.5 Discussion

C.5.1 Motion System Validation

Part of the motivation for the experiment was to serve as a pilot study to test both the
motion cueing, as well as the capabilities of the simulator’s motion system, under highly
dynamic conditions. Although the high degree of motion induced some technical diffi-
culties that caused two drop-outs, generally, the motion system showed to be well capa-
ble of reproducing the commanded motion by reaching the required very high accelera-
tions up to 1 g. Furthermore, both MCAs, primarily designed for use in customer studies,
generated outputs that were rated as realistic using the presented rating methods.

C.5.2 Rating Measurements

A second consideration was whether the rating methods used for customer studies
(Part II) are feasible for highly dynamic studies with expert drivers. The reliability
estimates for both the continuous and overall ratings showed this indeed to be the
case. Significance analyses were not performed due to the small group of expert drivers
available, in combination with technical issues and drop-outs due to simulator sickness.

Considering the measurements of the continuous ratings, the Oracle condition was
preferred over the CWA. This is supported by the overall post-hoc ratings. However, the
difference between the ratings (both continuous and overall) is smaller than might be
expected, considering the large mismatches in the CWA condition (See Figure C.3). One
explanation for this is that the Oracle revealed some (inaccurate) aspects in the motion
cueing that were not present in the CWA condition. Such inaccuracies could for example
come from the vehicle model. For the CWA condition such aspects might not be noticed
(due to the filtering), and are therefore also not rated. Another explanation, strengthened
by participants’ comments, is that the Oracle condition was sometimes perceived as “too
strong”, confirming findings of Berthoz et al. [2013]. This might especially be an issue for
open-loop driving, in which the participants cannot actively control the motion through
the vehicle control, given the intensity of the motion.

C.5.3 Lessons for Chapter 7

C.5.3.1 Comparison of Closed-Loop Drives

Allowing participants to drive themselves inherently results in different road positions
and velocities, such that recorded signals cannot be compared in the time domain. Sec-
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tion C.3.3 proposed to use the along-track distance of the vehicle instead, making signal
comparison between the drives possible. This, however, only corrects for differences in
velocity, and not in differences in road position. Each lap of the circuit will have slightly
different along-track distances. For a less deterministic driving scenario, such as urban
driving (where drivers for example have more freedom in the lane they choose to drive
on), a different method must be applied. In Chapter 7 it was therefore decided to apply a
“nearest-neighbor” approach, which is a more precise, but also more complex approach.

C.5.3.2 Comparison Between Closed- and Open-loop Drives

From the experiment, the explicit research question whether open- and closed-loop driv-
ing are rated equivalently has arisen. This comparison cannot be made based on the
present experiment, as the rating methods used in the open- and closed-loop condi-
tions were different. The only rating method with overlap was the overall rating method.
These ratings were indeed similar (between the open- and closed-loop CWA condition),
but form a too limited perspective on equivalence of the rating task and can, again, not
be analyzed for significant equivalence. Furthermore, in the present study, there were
differences in the drives: in the closed-loop condition participants evaluated their own
drives, whereas in the open-loop condition they evaluated a pre-recorded drive. The rat-
ings of these conditions cannot be compared without the bias of varying motions experi-
enced between the drives. This formed a prime motivation of letting drivers experience
their own drives both closed- and open-loop in the experiment of Chapter 7.

C.5.3.3 Maneuver-based Rating Extraction

The acquisition of maneuver-based ratings showed several challenges. Maneuvers need
to be separated enough from each other to allow the participant to rate without any
added workload, and to not let impressions on the maneuvers overlap. Through feed-
back from the participants, it was also noted that they found the verbal extraction of the
maneuver-based ratings confusing. The interactions that followed after each maneuver-
based rating were too long and sometimes came close to the next maneuver to be rated.

Using a rating knob (as in Chapter 4) for the maneuver-based ratings would require
briefly taking one hand of the steering wheel for each maneuver. In highly dynamic
driving, this jeopardizes safety as both hands are necessary to steer the vehicle. The
maneuver-based rating method is thus generally not suitable for highly dynamic simula-
tions. For customer studies, recording maneuver-based ratings using a rating knob was
shown to be of high value in Chapter 7. By automatically logging the values through a
knob, the risk of the experiment leader writing down the wrong value is also reduced.
Interactions about the ratings between the participant and the experiment leader, such
as clarifications on the rating and rating scale, can still be performed after each drive.

C.6 Conclusion

This appendix described a driving simulator experiment, in which expert drivers evalu-
ated the motion of highly dynamic driving on a race track simulation. In the experiment,
the drivers experienced both an optimization-based Oracle (open-loop) and a CWA MCA
(both closed- and open-loop). The combination of the large, nine-DoF Sapphire Space
simulator in combination with the two MCAs successfully provided a highly dynamic
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motion cueing experience. Both the continuous and overall rating methods provided re-
liable results. While maneuver-based ratings provide additional and seemingly reliable
insights in the motion cueing of closed-loop driving, using a rating interface is recom-
mended for future experiments. For highly dynamic simulations, the maneuver-based
rating method is likely less suitable due to constraints in the workload of drivers. Further-
more, explicit studies investigating the equivalence of closed- and open-loop driving are
necessary as conclusions based on the present experiment could not be made. The find-
ings show the validity of the rating methods in highly dynamic driving and provide the
basis for a further understanding of ratings for future closed-loop driving simulations.





D
Overview of Individual Ratings

This Appendix contains the individual ratings signals as recorded in the new experiments
described in this dissertation. As in the chapters of Part II, the left side of each figure
shows the continuous rating signals, whereas the right side shows the overall MIR and
MISC ratings. Varying shades of a single color (corresponding to a condition) represent
multiple repetitions of that condition.
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D.1 Chapter 4 - Incongruences in Urban Simulations
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