
Quantum Computation: Shor’s algorithm

A.J. Cornelissen

July 5, 2016

Bachelor Thesis
Assessment committee: Prof. Dr. J.M.A.M. van Neerven

Dr. M. Blaauboer
Dr. J.L.A. Dubbeldam
Dr. A.F. Otte
Dr. J.A.M. de Groot

Research institute: Delft University of Technology
Faculties: Electrical Engineering, Mathematics and Computer Science

Applied Sciences
Contact: a.j.cornelissen@student.tudelft.nl

Abstract

In recent years, the field of quantum computation has evolved to a promising research area, with the capacity
to become as important as classical programming is today.

This text serves as an introduction into the field of quantum computation. The main results are a proof
that any quantum circuit can be implemented using a finite set of quantum gates, and a description of the
principle and implementation of Shor’s algorithm. Furthermore, Shor’s algorithm is simulated on a classical
computer to check if the procedure yields the results that are expected. This turns out to be the case.

There are some aspects of this research that could be improved. The lower bound on the probability that
Shor’s algorithm succeeds could be improved, and the classical simulation of Shor’s algorithm could be sped
up as well by using a better implementation of the inverse Fourier transform.

i

Contents

Abstract i

1 Introduction 1

2 Postulates of quantum mechanics 2
2.1 Mathematical background . 2

2.1.1 Hilbert spaces . 2
2.1.2 Tensor products . 3

2.2 Postulates . 6

3 Quantum circuits 10
3.1 Qubits . 10

3.1.1 Bits vs. qubits . 10
3.1.2 Multiple qubits . 11

3.2 Quantum gates . 13
3.2.1 Logic gates vs. quantum gates . 13
3.2.2 Single qubit gates . 14
3.2.3 Multiple qubit gates . 14

3.3 Quantum circuits . 16
3.3.1 Swap circuit . 16
3.3.2 Registers . 17

3.4 Example: Deutsch’s algorithm . 17

4 Universality of the Controlled NOT, Hadamard and π/8 gate 20
4.1 Reduction to two-level unitary operators . 20

4.1.1 Two-level unitary matrices and operators . 20
4.1.2 Reduction of a quantum gate to a product of two-level unitary operators 21

4.2 Reduction to (controlled) single qubit gates . 24
4.2.1 Swapping . 24
4.2.2 Implementing conditional operations with multiple control qubits 24

4.3 Approximation of (controlled) single qubit gates by Hadamard and π/8 gates 27
4.3.1 Bloch sphere . 27

4.3.1.1 Representation of the state of a single qubit using the Bloch sphere 27
4.3.1.2 The effect of single qubit operations on the Bloch sphere 28

4.3.2 Implementation of controlled single qubit gates . 36
4.3.3 Distance between unitary matrices . 38
4.3.4 Approximation of single qubit gates by Hadamard and π/8 gates 42

5 Shor’s algorithm 45
5.1 Quantum Fourier transform . 45
5.2 Phase estimation algorithm . 50
5.3 Order-finding algorithm . 58

5.3.1 Principle behind the quantum circuit . 59
5.3.2 Implementation of the quantum circuit . 60
5.3.3 Continued fraction expansion . 64
5.3.4 Finding the order from its divisors . 73

5.4 Shor’s algorithm . 74

6 Conclusion 78

References 79

ii

A Proof that λ defined by the λ-equation is irrational 80
A.1 Required knowledge from abstract algebra . 80

A.1.1 Definitions . 80
A.1.2 Euclidean division . 83
A.1.3 Unique factorization theorem . 85
A.1.4 Gauss’s lemma . 87

A.2 Cyclotomic polynomials . 88
A.2.1 Definition . 88
A.2.2 Integer coefficients . 90
A.2.3 Irreducibility over Q . 90

A.3 The λ-polynomial . 94
A.3.1 e2πiλ is a root . 94
A.3.2 Irreducibility over Q . 95
A.3.3 Completion of the proof . 96

B Simulation of Shor’s algorithm on a classical computer 97

C Experimental realization of Deutsch’s algorithm 106

iii

1 Introduction

In recent decades, the world, as it entered the period collectively referred to as the information age, has
undergone dramatic changes, under the influence of rapid developments of computerized technologies. These
technological developments manifest in a myriad of applications, ranging from the microprocessors that are
at the core of the smartphone one uses on an hourly basis, to the intricate systems that allow for spacecrafts
to connect and dock in the midsts of space. This digital revolution has irrevocably changed the world, and
technology nowadays takes a prominent place in one’s everyday life.

The capacity to fabricate increasingly smaller devices was one of the developments that contributed im-
mensely to the digital revolution. As devices got smaller, they became easier to manage, and they became
suited for a larger variety of applications. This development in particular has gone very rapidly, as can be
seen from the growth of the number of transistors that are present in a processor.

This development, though, is reaching its physical limits. As the size of transistors is approaching the order
of nanometers, unwanted effects like quantum tunneling disrupt the normal operation of these components,
yielding undesirable results. So, to keep up with the demands of society, researchers are faced with the
question of finding other ways to improve technologies.

One of the most radical changes that is being pursued in the last 20 years, is a change in the way that
calculations are implemented physically. Rather than trying to avoid the quantum mechanical effects that
manufacturers of processors are faced with, researchers in the field of quantum computing try to harness
these effects. Computers that are based on these quantum mechanical laws are collectively referred to as
quantum computers, as opposed to classical computers that rely on the classical laws of physics.

There are, roughly speaking, two difficulties that have to be overcome in order to realize a functional quantum
computer. First of all, one needs to be able to construct a physical system that can be manipulated according
to these quantum mechanical laws. Recently, headway has been made in this direction by researchers from
IBM [1], as they have provided the scientific community with a first functional quantum computer. The
experimental realization of the quantum computer, though, will not be the topic of this text.

The other challenge that needs to be overcome, is harnessing the full potential of such a quantum computer,
when it is constructed. To this end, powerful quantum algorithms, that can be used to build programs
that can be run on quantum computers, need to be developed. Researchers that take up the challenge of
devising these quantum algorithms will find that it is eminent to adopt the logic of quantum mechanics as
an alternative form of reasoning, in contrast to the classical one we use on a daily basis.

This text will focus on covering the basis of quantum mechanics, and giving the reader insight in the
alternative form of reasoning described above. These observations will be used to introduce quantum circuits.
To this end, two exemplary results will be covered. The first shows that any quantum algorithm can be
implemented using a finite set of components, which will be the subject of chapter 4. Thereafter, the
exemplary algorithm provided by Shor to factorize integers is covered in chapter 5. This algorithm in
particular will provide a glimpse of the full potential of the quantum computer, and how it can be used to
accomplish tasks more efficiently than a classical computer.

The approach taken in this text will be largely based on the work of Nielsen and Chuang [2], but with more
emphasis on the theoretical mathematical process.

This research was part of the double degree Bachelor program Applied Mathematics and Applied Physics,
provided by the faculties Applied Sciences and Electrical Engineering, Mathematics and Computer Science,
at the Technical University in Delft. It constitutes a Bachelor Thesis of both studies simultaneously.

1

2 Postulates of quantum mechanics

In order to understand how a quantum computer functions, obviously one needs to understand the very
basics of quantum mechanics, and how these can be put to good use. The basics of quantum mechanics are
comprised of four very general propositions, collectively referred to as the postulates of quantum mechanics.
They can be seen as the axioms on which the entire field of quantum mechanics is built.

In the first subsection, 2.1, an overview of some required mathematical background will be given. Thereafter,
in subsection 2.2, the postulates will be covered one by one.

2.1 Mathematical background

In order to fully comprehend the postulates of quantum mechanics, one is required to be familiar with a few
mathematical definitions. These will be summarized below, and are mainly included for convenience. First
of all, we will have a look at Hilbert spaces and some of their properties that are relevant for this text. Next,
we will highlight some of the relevant properties of tensor products.

2.1.1 Hilbert spaces

Hilbert spaces are of profound importance in quantum mechanics, as they completely describe all the states
a system can be in. The reader is assumed to be familiar with vector spaces, inner products, norms, complete
metric spaces and fields. Definitions of these can be found in [3], and a definition of fields is also present in
appendix A.

Definition 2.1: Hilbert space
Let V be a vector space over a field F , on which an inner product 〈·, ·〉 is defined. Then we define a norm
such that for v ∈ V , |v| =

√
〈v, v〉. Then d : V × V → R defined by d(v, w) = |v − w| for v, w ∈ V is a

metric. If (V, d) forms a complete metric space, then V is a Hilbert space over F .

For example, R2 is a vector space over R. If we take the standard inner product, we have for x = (x1, x2), y =
(y1, y2) ∈ R2 that 〈x, y〉 = x1y1 + x2y2. So, we define the norm by |x| =

√
x21 + x22. Hence, the distance

of two vectors in R2 is just the Euclidean distance, and it is well known that R2 with the Euclidean metric
forms a complete metric space. Hence, R2 is a Hilbert space over R.

Definition 2.2: Complex Hilbert space
A Hilbert space over the complex numbers C is called a complex Hilbert space.

For example, one can easily check using the procedure outlined above that Cn is a complex Hilbert space
for any n ∈ N. This is the Hilbert space that will be of most use to us. Intuitively, it suffices during the
remainder of this text to think about Hilbert spaces as if they are identical to Cn, for some n ∈ N. The
following theorem justifies this claim.

Theorem 2.3: Isomorphism between a complex Hilbert space and Cn
Let H be a complex Hilbert space, with dimension n. Then it is isomorphic with the complex Hilbert space
Cn.

Proof: As H has dimension n, we can find a linearly independent set of n vectors in H. Using the Gram-
Schmidt orthogonalization process, we can turn this set into an orthonormal basis {h1, ..., hn} of H. Now,
we can create a linear map ψ : H → Cn, with the property that ψ(hi) = ei, where ei denotes the ith unit
standard basic vector in Cn. As we now map two orthonormal bases bijectively, we have found a bijective

2

map between H and Cn. Additionally, this map is linear, so it is an isomorphism. Hence, H and Cn are
isomorphic. �

2.1.2 Tensor products

Another very useful mathematical concept that one often encounters in quantum mechanics is the tensor
product. Before turning our attention to this concept, we provide some auxiliary definitions.

Definition 2.4: Dual of a vector space
Let V be a vector space over a field F . Then the set of all linear functions from V to F is called the dual
of V , and is denoted by V ∗.

Note that there is a natural way to define addition and scalar multiplication on elements of the dual of a
vector space. Suppose that V is vector space over F , and let ψ,ψ ∈ V ∗, then, for any v ∈ V and f ∈ F ,
define:

(φ+ ψ)(v) = φ(v) + ψ(v) and (fφ)(v) = f · φ(v)

Now, it is easily checked that V ∗ is a vector space over F itself.

Definition 2.5: Bilinear functions of vector spaces
Suppose V and W are vector spaces over some scalar field F . Now suppose that φ is a function that maps
V ×W to F . Then, φ is said to be bilinear if it satisfies the following criteria:

1. For all v1, v2 ∈ V and w ∈W , φ(v1 + v2, w) = φ(v1, w) + φ(v2, w).
2. For all v ∈ V and w1, w2 ∈W , φ(v, w1 + w2) = φ(v, w1) + φ(v, w2).
3. For all v ∈ V , w ∈W and f ∈ F , φ(fv, w) = φ(v, fw) = fφ(v, w).

The set of all such functions is denoted by B(V,W).

It is also easily checked that B(V,W) is a vector space over F , by checking that it is closed under addition
and multiplication by a scalar in F .

Now, we turn our attention to the tensor product of two vector spaces. [4]

Definition 2.6: Tensor product of two vector spaces
Suppose V and W are two vector spaces over a scalar field F . We define the following function, which is
referred to as the tensor product:

· ⊗ · : V ×W → B(V,W)∗

where evaluating this function for any v ∈ V , w ∈W and B ∈ B(V,W) yields:

(v ⊗ w)(B) = B(v, w)

We refer to the tensor product of the vector spaces V and W as the linear subspace of B(V,W)∗ that is
spanned by the tensor product of vectors in V and W , as such:

V ⊗W = Span{v ⊗ w : v ∈ V,w ∈W}

An element of V ⊗W is called a pure tensor if it can be written as v ⊗ w, for some v ∈ V and w ∈W .

As V ⊗W is defined as the linear subspace of B(V,W)∗, we find trivially that V ⊗W is a vector space over
F as well. Do note the tensor product is itself bilinear, as we can check all properties from definition 2.5:

1. Take v1, v2 ∈ V and w ∈W at random. Then, for any B ∈ B(V,W), we have:
((v1 + v2)⊗ w)(B) = B(v1 + v2, w) = B(v1, w) +B(v2, w) = (v1 ⊗ w)(B) + (v2 ⊗ w)(B)

3

2. Take v ∈ V and w1, w2 ∈W at random. Then, for any B ∈ B(V,W), we find:
(v ⊗ (w1 + w2))(B) = B(v, w1 + w2) = B(v, w1) +B(v, w2) = (v ⊗ w1)(B) + (v ⊗ w2)(B)

3. Take v ∈ V , w ∈W and f ∈ F at random. Then, for any B ∈ B(V,W), we have:
((fv)⊗ w)(B) = B(fv, w) = fB(v, w) = f(v ⊗ w)(B) = B(v, fw) = (v ⊗ (fw))(B)

As V ⊗W is a vector space, it makes sense to determine its dimension. This is the subject of the next
theorem:

Theorem 2.7: Dimension of the tensor product of two vector spaces
Suppose V and W are two vector spaces over F , with finite dimensions n and m, respectively. Let
{v1, . . . , vn} and {w1, . . . , wm} be bases of V and W , respectively. Then the dimension of the tensor product
of V and W is given by dim(V ⊗W) = nm and a basis for V ⊗W is given by {vi⊗wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Proof: From the definition of the tensor product of V and W , we find that the set {v ⊗ w : v ∈ V,w ∈W}
is a set that spans V ⊗W . Take a vector v ⊗ w in this set at random. Then we can write v and w as
linear combinations of the bases of V and W that we defined above, so we find that there exist c1, . . . , cn
and d1, . . . , dm in F such that:

v =
n∑
i=1

civi and w =

m∑
i=1

diwi

From the bilinearity of the tensor product, we now find:

v ⊗ w =

n∑
i=1

m∑
j=1

cidj(vi ⊗ wj)

So, if we define the following set:

B = {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Then we find v ⊗ w ∈ Span(B). As we chose v ⊗ w in {v ⊗ w : v ∈ V,w ∈W} at random, we now find:

{v ⊗ w : v ∈ V,w ∈W} ⊆ Span(B)

Hence, as from their definitions it is clear that Span(B) is a subset of V ⊗W , we find: V ⊗W = Span{v⊗w :
v ∈ V,w ∈ W} = Span(B). As B contains nm vectors, we find dim(V ⊗W) ≤ nm. If we now prove that
B is a set of independent vectors, we find that B is a basis for V ⊗W , from which it easily follows that
dim(V ⊗W) = nm.

To this end, suppose we have λi,j ∈ F with 1 ≤ i ≤ n and 1 ≤ j ≤ m and suppose:

n∑
i=1

m∑
j=1

λi,j(vi ⊗ wj) = 0

The 0 on the right hand side is now the additive identity of B(V,W)∗. Hence, for every element A in B(V,W),
we find:

n∑
i=1

m∑
j=1

λi,jA(vi, wj) =

n∑
i=1

m∑
j=1

λi,j(vi ⊗ wj)(A) = 0(A) = 0

Now, the 0 on the right hand side is the additive identity of F . This holds for any choice of A in B(V,W).
So, if we require A to be a function φ · ψ, with φ : V → F and ψ : W → F both linear functions, we find by
plugging in:

0 =

n∑
i=1

m∑
j=1

λi,jφ(vi)ψ(wj) = ψ

 n∑
i=1

m∑
j=1

λi,jφ(vi)wj

4

As this holds for any choice of φ, we find:

0 =

n∑
i=1

m∑
j=1

λi,jφ(vi)wj

As the set {w1, . . . , wm} forms a basis of W , it is an independent set of vectors, so we find, for all 1 ≤ j ≤ m:

0 =

n∑
i=1

λi,jφ(vi) = φ

(
n∑
i=1

λi,jvi

)

Again, as this must hold for any linear function φ, we find for all 1 ≤ j ≤ m:

0 =

n∑
i=1

λi,jvi

But, similar to the argument before, the set {v1, . . . , vn} forms a basis for V , so it is independent, hence we
find for all 1 ≤ i ≤ n and 1 ≤ j ≤ m:

λi,j = 0

So, B is indeed linearly independent, hence it forms a basis for V ⊗W . This in turn implies dim(V ⊗W) = nm,
as required. �

Suppose now that V and W have standard bases, denoted by {v1, . . . , vn} and {w1, . . . , wm}, respectively.
Then, we will define the basis {v1⊗w1, . . . , v1⊗wm, v2⊗w1, . . . vn⊗wm} to be the standard basis of V ⊗W .

Note that a direct consequence of this theorem is that with n,m ∈ N, Cn ⊗ Cm is isomorphic with Cnm. If

we define the standard basis vectors of Ck by e
(k)
1 , . . . , e

(k)
k , with k ∈ N, then we can associate e

(n)
i ⊗ e(m)

j

with e
(nm)
n(i−1)+j . This gives rise to a bijective mapping between the bases of Cn⊗Cm and Cnm, implying that

they are isomorphic.

We will now turn our attention to linear operators on V ⊗W . Suppose V and W are again vector spaces
over some scalar field F , and LV and LW are linear operators on V and W , respectively. Then, these linear
operators combine naturally into a linear operator on V ⊗W , denoted by LV ⊗ LW . It has the following
action on the pure tensor v ⊗ w for any v ∈ V and w ∈W :

(LV ⊗ LW)(v ⊗ w) = LV (v)⊗ LW (w)

Its action on V ⊗W is now uniquely determined by the linearity of LV ⊗ LW .

There are some interesting phenomena that occur when we have a look at the matrix representation of these
operator on tensor products of vector spaces.

Definition 2.8: Kronecker product
Suppose A and B are two square complex matrices with dimensions n×n and m×m. Then the Kronecker
product of these matrices is denoted by A⊗B and defined as the following complex nm× nm matrix:

A⊗B =

A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

An1B An2B · · · AnnB

5

Theorem 2.9: Matrix representation of linear operators on the tensor product of vector spaces
Suppose V and W are vector spaces of dimensions n and m, respectively. Denote the standard bases of V
and W by {v1, . . . , vn} and {w1, . . . , wm}, respectively. Let LV and LW be linear operators that act on V
and W , and have matrix representations A and B with respect to these standard bases, respectively. Then,
the matrix representation of LV ⊗ LW , with respect to the standard basis of V ⊗W , is given by A⊗B.

Proof: Take a vector from the standard basis of V ⊗W at random. Then we note that there exist 1 ≤ i ≤ n
and 1 ≤ j ≤ m such that this basis vector is vi ⊗ wj . We find: (LV ⊗ LW)(vi ⊗ wj) = LV (vi) ⊗ LW (wj).
We can find LV (vi) and LW (wj) from the matrix representations of LV and LW :

LV (vi) =

n∑
k=1

Akivk and LW (wj) =

m∑
l=1

Bljwl

Hence, by the bilinear property of the tensor product, we find:

(LV ⊗ LW)(vi ⊗ wj) = LV (vi)⊗ LW (wj) =

(
n∑
k=1

Akivk

)
⊗

(
m∑
l=1

Bljwl

)
=

n∑
k=1

m∑
l=1

AkiBlj(vk ⊗ wl)

So, in column n(i−1)+ j of the matrix representation of LV ⊗LW , we find that the index at row n(k−1)+ l
is equal to AkiBlj . This is exactly what is prescribed by the theorem. Hence, this completes the proof. �

Finally, we introduce some shorthand notation. Suppose that we have some expression E. Then, with n ∈ N,
E⊗n is a shorthand notation for E ⊗ · · · ⊗ E, where E is repeated n times. Furthermore, suppose n,m ∈ Z
with n > m, and suppose Em, . . . , En are expressions. Then we introduce the following shorthand notations:

n⊗
i=m

Ei = Em ⊗ Em+1 ⊗ · · · ⊗ En and

m⊗
i=n

Ei = En ⊗ En−1 ⊗ · · · ⊗ Em

2.2 Postulates

There are four postulates that are collectively referred to as the postulates of quantum mechanics. These
are covered one by one below, similar to their treatment in [2].

The first postulate of quantum mechanics describes the states an isolated physical system can be in.

Postulate 1: State space
Consider an isolated physical system. Associated with this system is a complex Hilbert space, referred to as
the state space of the system. The state of the system is completely described by a unit vector in this Hilbert
space, referred to as the state vector.

Do note that this postulate does not specify which Hilbert space should be associated with which physical
system. All it does is it provides the framework in which the physical system needs to be described.

Frequently, the state vector is written in the ket-notation: |·〉. The dual vector is written in the bra-notation:
〈·|. By consequence, the inner product of two state vectors |φ〉 and |ψ〉 is notated as 〈φ|ψ〉.

Intuitively, one choice of orthonormal basis vectors of the state space of a physical system can be regarded
as the “normal” states a system can be in. If we consider a couch that can be either red or blue, then we
can intuitively identify the state space of this couch with a two-dimensional Hilbert space, in which the basis
vectors are identified with the “red” and “blue” states, which, for now, we will respectively denote by the
vectors |r〉 and |b〉. If the state vector of the couch is one of these state vectors or a multiple thereof, then we
say that the couch is in a basis state. The postulate above, though, prescribes that the state vector of the
couch can also be of the form α1|r〉+ α2|b〉, where α1, α2 ∈ C and |α1|2 + |α2|2 = 1. So, if we take the state

6

vector of the couch to be 1√
2
|r〉 + 1√

2
|b〉, then we could say that the couch is red and blue simultaneously.

We then say that the couch is in a superposition state. In postulate three, we will see that performing a
measurement of the color of the couch will force the couch to choose between the red and blue color.

Postulate 2: Evolution of the state of an isolated physical system
Consider an isolated physical system with state space H. The time evolution of the state vector of the system
is described by a unitary operator acting on H. So, if we consider the evolution of the system between two
time instances t1 and t2, then there exists a unitary operator U acting that H which solely depends on t1
and t2, such that the state vector at time instant t1, denoted by |ψ1〉, and the state vector at time instant
t2, denoted by |ψ2〉, are related by |ψ2〉 = U |ψ1〉.

Again, note that this postulate does not give us any information about this unitary operator. It therefore
only describes the mathematical framework in which the evolution of a physical system needs to be described,
but it does not specify this evolution itself.

Postulate 3: Measurement of the state of a physical system
Consider an isolated physical system. Associated with a measurement of this system is a set of measurement
outcomes, denoted by O, and a set of corresponding measurement operators, {Mm : m ∈ O}, which are
linear operators that act on the state space of the system, such that they satisfy the completeness relation:∑

m∈O
M∗mMm = I

Let |ψ〉 be the state vector of the physical system. The probability that the measurement yields the outcome
m ∈ O is given by 〈ψ|M∗mMm|ψ〉. If the measurement yielded m ∈ O, the state after the measurement
becomes:

Mm|ψ〉√
〈ψ|M∗mMm|ψ〉

First of all, note that the probabilities of all outcomes sum to one, as a direct result of the completeness
relation: ∑

m∈O
〈ψ|M∗mMm|ψ〉 =

〈
ψ

∣∣∣∣∣∑
m∈O

M∗mMm

∣∣∣∣∣ψ
〉

= 〈ψ|I|ψ〉 = 〈ψ|ψ〉 = 1

Let’s return to the example in which a couch can be described by a state vector |ψ〉 of the form α1|r〉+α2|b〉.
Suppose that we want to measure the color of this couch. There are two possible outcomes, red and blue,
so O = {r, b}. We define the measurement operators Mr and Mb to have the following effect for every
α1, α2 ∈ C:

Mr(α1|r〉+ α2|b〉) = α1|r〉 and Mb(α1|r〉+ α2|b〉) = α2|b〉
Note that these measurement operators satisfy the completeness relation, because for every state vector
|ψ〉 = α1|r〉+ α2|b〉, we have:

(Mr +Mb)|ψ〉 = (Mr +Mb)(α1|r〉+ α2|b〉) = Mr(α1|r〉+ α2|b〉) +Mb(α1|r〉+ α2|b〉) = α1|r〉+ α2|b〉 = |ψ〉

So, as this holds for any state vector |ψ〉, we have Mr +Mb = I. The probability of measuring the color red
or blue is now given by:

P (r) = 〈ψ|M∗rMr|ψ〉 = 〈r|α∗1α1|r〉 = α∗1α1〈r|r〉 = |α1|2

P (b) = 〈ψ|M∗bMb|ψ〉 = 〈b|α∗2α2|b〉 = α∗2α2〈b|b〉 = |α2|2

Hence, if the state vector of the couch is given by 1√
2
|r〉+ 1√

2
|b〉, then the probability of measuring the color

red equals 1
2 , as does the probability of measuring that the color of the couch is blue. Hence, the color of

the couch prior to the measurement is ill-defined, as identical measurements possibly yield different results.

7

According to the postulate, the state after the measurement of the color of the couch depends on the outcome
of the measurement. Suppose that the outcome was red, then the new state is given by:

Mr|ψ〉√
P (r)

=
√

2 · 1√
2
|r〉 = |r〉

Similarly, if the measurement yielded that the couch is blue, then the state of the couch after the measurement
becomes |b〉. Hence, after the measurement, the state of the system becomes a basis state. We say that the
state of the system collapses to a basis state upon performing a measurement.

There is some dispute about the status of this postulate. Arguably, the universe is an isolated physical
system, hence its state vector evolves with a unitary operation, according to the second postulate of quantum
mechanics. But this state vector completely describes the state of the observer and the observed system.
Hence, one should be able to derive what happens to the observed system upon a measurement from postulate
2, but no considerable progress has been made in that direction. For the purpose of this text, however, this
is not at all an issue, since we will always make a clear distinction between the observed system and the
observer, and assume that the results of this postulate hold nevertheless.

Postulate 4: Composite systems
Consider n isolated physical systems, with state spaces V1 through Vn. Then the state space of the composite
system is given by V1 ⊗ V2 ⊗ · · · ⊗ Vn. If the systems individually have state vectors vi ∈ Vi, then the state
vector of the composite system is v1 ⊗ v2 ⊗ · · · ⊗ vn.

Note that if, for example, we have two isolated physical systems with state spaces V and W , and we have
v1, v2 ∈ V and w1, w2 ∈ W pairwise orthogonal state vectors, then we find that 1√

2
(v1 ⊗ w1 + v2 ⊗ w2) is

a state vector of the composite system. But, it cannot be written in the form v ⊗ w for some v ∈ V and
w ∈W . If this is the case, we call the state of the composite system an entangled state. In this case, we can
no longer refer to the state vector of the individual constituents of the composite system.

Suppose now that UV is an operation on the state space V of some isolated physical system, and that it
forms a composite system with another system that has state space W . Then the operation on the first
system naturally leaves the second system unaltered, so the resulting operation on the composite system is
given by UV ⊗ IW , where IW is the identity operation on W .

We can apply this new postulate to the example of the couch given above. Suppose that we have two couches
that can both be red or blue. Then we denote the state space of such a couch by V = {α1|r〉 + α2|b〉 :
α1, α2 ∈ C}. According to postulate 4, the state space of the composite system of both couches is now given
by V ⊗2 = V ⊗ V . Hence, a possible state of the couches is:

|ψ1〉 =
1

2
|r〉 ⊗ |r〉+

1

2
|r〉 ⊗ |b〉+

1

2
|b〉 ⊗ |r〉+

1

2
|b〉 ⊗ |b〉

Do note that this is not an entangled state, as according to the rules supplied in subsection 2.1.2, this state
can be rewritten as:

|ψ1〉 =

(
1√
2
|r〉+

1√
2
|b〉
)
⊗
(

1√
2
|r〉+

1√
2
|b〉
)

On the other hand, the following state is an entangled state:

|ψ2〉 =
1√
3
|r〉 ⊗ |r〉+

1√
3
|r〉 ⊗ |b〉+

1√
3
|b〉 ⊗ |b〉

Recall that if a composite system is in an entangled state, we cannot speak of the state of their individual
constituents. So, if the two-couch system is in the state |ψ2〉, we cannot speak of the state of the first couch,
or the state of the second. We can only denote the state of the composite system.

8

By performing a measurement of the color on the first couch similar to the one we described above, the
measurement operators Mr and Mb now generalize to operators on the state space of the composite system:
Mr ⊗ IV and Mb ⊗ IV . Hence, if the two-couch system is initially in the state |ψ2〉, then we can calculate
the following probability that the first couch is red. Remember that |r〉 ⊗ |b〉 and |r〉 ⊗ |r〉 are orthogonal.

P (red) =

(
1√
3
〈r| ⊗ 〈r|+ 1√

3
〈r| ⊗ 〈b|

)(
1√
3
|r〉 ⊗ |r〉+

1√
3
|r〉 ⊗ |b〉

)
=

1

3
+

1

3
=

2

3

Similarly, we find that the probability of finding that the first couch is blue is equal to 1
3 . The resulting

state of the composite system of couches after a measurement with outcome r can also be determined, in a
similar way as before:

Mr ⊗ IV |ψ2〉√
P (red)

=

√
3

2
·
(

1√
3
|r〉 ⊗ |r〉+

1√
3
|r〉 ⊗ |b〉

)
=

1√
2
|r〉 ⊗ |r〉+

1√
2
|r〉 ⊗ |b〉

= |r〉 ⊗
(

1√
2
|r〉+

1√
2
|b〉
)

Do note that this state is no longer entangled, as the state vector of the first couch has collapsed to a basis
state.

9

3 Quantum circuits

The previous chapter presented a very general introduction into the realm of quantum mechanics. In this
chapter, we will have a more specialized look into how the principles of quantum mechanics can be used to
develop a quantum computer.

In the first section, we will introduce the concept of the qubit, which, like the bit in a classical computer,
forms the basic building block of the quantum computer. Afterwards, we will have a look at how these qubits
can be manipulated, using devices called quantum gates. Next, we will investigate how these quantum gates
can be combined to form quantum circuits, which are comparable to programs on a classical computer.
Finally, we will consider Deutsch’s algorithm, which is an instructive exemplary quantum algorithm.

3.1 Qubits

In this section, we will have a look at the concept of a qubit. We will start with the notion of a classical bit,
and then compare this concept to its quantum mechanical counterpart.

3.1.1 Bits vs. qubits

A classical computer manipulates bits, which is a shorthand for binary digits. As it is a very basic building
block of computers, it makes sense to provide a formal definition.

Definition 3.1: Bit
A bit is a unit of information, that can hold one of two values.

Typically, the value of a bit is represented by the state of a physical system that can be in one of two
distinct states. For example, one could take a door as a physical system. It can be in one of two distinct
states, namely opened and closed. Therefore, a door can be used to represent a bit. Other examples include
a bicycle that can be locked or unlocked, or a lamp that can be either on or off. A computer typically
manipulates a large amount of small physical systems that can be either charged or uncharged.

Typically, the two values that the bit can have are labeled 0 and 1. Each of the states of the physical system
is associated with one of these values. Do note that a binary digit is also either a 0 or a 1, hence the name.

We can now generalize this notion of a bit to the quantum realm. This brings about the following definition
of a quantum bit.

Definition 3.2: Quantum bit
A quantum bit is a unit of information, that can hold a unit vector of a two-dimensional complex Hilbert
space.

As we know from the first postulate of quantum mechanics, every isolated physical system has an associated
Hilbert space, called the state space of the system. All systems that are associated with a two-dimensional
Hilbert space, are capable of representing a quantum bit, or qubit for short.

An example of such a system is a photon, which consists of an oscillating electric and magnetic field. The
polarization of the electric field can be represented by a Jones vector, which is a vector in C2. Hence, the
polarization of a photon is associated with a vector from a two-dimensional Hilbert space, so a photon can
be used to represent a qubit.

Photons might not be the best physical systems suited for developing a quantum computer. This naturally
raises the question which physical systems are. This is a whole different topic — one we are not concerned

10

with in this text. From this point onwards, we will assume that we can always find the physical systems
needed and manipulate these in the way we want.

The two standard basis vectors of the two-dimensional complex Hilbert space are often denoted by |0〉 and
|1〉. This implies that the state of every qubit can be written as α|0〉+β|1〉, with α, β ∈ C and |α|2+ |β|2 = 1.
Moreover, from chapter 2 we know that every two-dimensional complex Hilbert space is isomorphic with C2,
hence we can associate the two basis vectors |0〉 and |1〉 with the two standard basis vectors in C2. We now
find that we can associate every state of a quantum system that represents a qubit with a vector (αβ)T ,
with α, β ∈ C and |α|2 + |β|2 = 1. Both notations will be used interchangeably in this text.

If a measurement is performed on a single qubit, generally the following measurement operators are taken
(where we assume that the states are written as column vectors in this case).

M0 =

[
1 0
0 0

]
and M1 =

[
0 0
0 1

]
These measurement operators obviously satisfy the completeness relation, M0 +M1 = I, and if a system is
in the state ψ = (αβ)T prior to the measurement, the probability that the outcome of the measurement is
m, is given by P (m):

P (0) = ψ∗M∗0M0ψ =
[
α∗ β∗

] [1 0
0 0

] [
1 0
0 0

] [
α
β

]
= α∗α = |α|2

P (1) = ψ∗M∗1M1ψ =
[
α∗ β∗

] [0 0
0 1

] [
0 0
0 1

] [
α
β

]
= β∗β = |β|2

Hence, we find that the probabilities of the outcomes sum to one, meaning that our measurement will return
a value for sure. Moreover, we observe that if we multiply our initial state with a constant of modulus 1,
it does not influence the results of the measurement. Therefore, we say that for example the states |0〉 and
−|0〉 are equal, up to an unimportant constant.

Furthermore, if we look at the resulting state of the qubit after the measurement, then we see that it depends
on the outcome of the measurement. If the measurement yielded a value of 0, then the resulting state vector
becomes:

|ψ0〉 =
M0ψ√

ψ∗M∗0M0ψ
=

M0ψ√
P (0)

=
α

|α|
|0〉

Similarly, if the measurement yielded a value of 1, then the resulting state vector becomes:

|ψ1〉 =
M1ψ√

ψ∗M∗1M1ψ
=

M1ψ√
P (1)

=
β

|β|
|0〉

Hence, if the result of the measurement was m, then the resulting state is equal to |m〉, up to an unimportant
constant. This complies with the collapse of the superposition states to basis states that we found in chapter
2.

3.1.2 Multiple qubits

In a classical computer, scaling up is very straightforward. Scaling up is done by using multiple bits sepa-
rately, hence a 2-bit system is nothing more than two 1-bit systems packed together into one system.

In the quantum realm, there turns out to be a more interesting way of scaling up the amount of qubits. A
2-qubit system is a system that consists of two qubits that can be measured separately, but that can also
hold the information stored in one unit vector in a four -dimensional Hilbert space. Similarly, an n-qubit

11

system is a system that contains the information worth a vector in a 2n-dimensional Hilbert space, but where
each qubit can be measured separately.

We now know from the previous chapter that in general, an n-qubit state space contains 2n basis vectors,
given by the tensor product of the basis states of a 1-qubit system: |bn−1〉 ⊗ |bn−2〉 ⊗ · · · ⊗ |b0〉, where b0
through bn−1 take values 0 or 1. There exist various ways to express these basis vectors. Suppose, namely,
that N = (bn−1 . . . b0)2. Then the following notation all refer to the same computational basis state:

|bn−1〉 ⊗ |bn−2〉 ⊗ · · · ⊗ |b0〉 = |bn−1〉|bn−2〉 · · · |b0〉 = |bn−1bn−2 . . . b0〉 = |N〉

So, for example, in a 3-qubit system, the states |1〉 ⊗ |1〉 ⊗ |0〉, |1〉|1〉|0〉, |110〉 and |6〉 all refer to the same
basis vector of the state space of the 3-qubit system. The basis {|0〉, . . . , |2n − 1〉} of the state space of an
n-qubit system is referred to as the computational basis.

As multiple qubit systems have a state space that is a Hilbert space with 2n dimensions, its state space is
isomorphic to C2n . Generally, the computational basis states are associated with the standard basis vectors
of C2n . Hence, in a two-qubit system, a state (0 0 1 0)T is associated with the state |2〉 = |10〉, and the state
vector (1 0 0 1)T /

√
2 is associated with the state (|0〉+ |3〉)/

√
2 = (|00〉+ |11〉)/

√
2.

Do note that the state we just saw, (|00〉+ |11〉)/
√

2, is an entangled state, as it cannot be written as a pure
tensor of state vectors of the individual quantum bits. Hence we can no longer speak of the state vector
of the first qubit, or the state vector of the second qubit. We can only talk about the state vector of the
two-qubit system. This is a very fundamental difference between multiple qubit systems and systems that
are comprised of multiple classical bits, and it is what lies at the heart of the speedup that can be achieved
with quantum computers, if it is used in an ingenious way.

Finally, let’s have a look at what happens when a measurement is performed on a 2-qubit system. Suppose
a system starts out in the state (|00〉 + |01〉 + |11〉)/

√
3 and that the first qubit is measured. The column

vector representation is in this case somewhat easier to work with, so the state of the multiple qubit system
is (1 1 0 1)T /

√
3. The measurement operators corresponding to a measurement of the first qubit are now

augmented with an identity matrix, such that the new measurement operators that act on the state space
of the composite system become (where I is the identity operator that acts on the state space of the second
qubit):

M
(1)
0 = M0 ⊗ I

M
(1)
1 = M1 ⊗ I

Hence, by checking its action on the computational basis states, the matrix representations of these operators
with respect to the computational basis can be determined. (Strictly speaking, it is incorrect to denote the
matrix representation of an operator by the same symbol, as the operator itself, but it is common practice
in this field.)

M
(1)
0 =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

M
(1)
1 =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

Calculating the probabilities now yields P (0) = 2/3 and P (1) = 1/3. The resulting state after a measurement
of 0 is (|00〉+ |01〉)/

√
2, and similarly after a measurement of 1, the system collapses to the state |11〉, which

the reader is encouraged to check for him-/herself.

12

3.2 Quantum gates

In the previous section, we have seen in what states single and multiple qubit systems can be. This section
will be covering how we can manipulate the states of these systems. First of all, we will have a look at how
single qubit states can be manipulated, and afterwards, we will look at how the state of a multiple qubit
system can be altered.

3.2.1 Logic gates vs. quantum gates

Before we investigate the manipulation of single qubit states, let’s first have a look at the operations we can
perform on classical bits. On one classical bit, there is really one operation we can perform, apart from doing
nothing, and that action is flipping the bit, i.e. mapping a 0 to a 1, and a 1 to a 0. This is accomplished by
a NOT operation, which can be viewed as a gate as it requires a bit to pass through, and flips its value in
the process.

Such gates, that require classical input bits and determines the output according to some procedure, are
called logic gates. Other well known-logic gates are the AND, OR and XOR gates. These all require two
input bits and have only one classical bit as output. They can be graphically represented by indicating the
input and output bits as horizontal lines that are attached to the gate on the left and right side, respectively.
A few examples are provided in figure 3.1.

NOTa b AND
a

b
c OR

a

b
c XOR

a

b
c

a b
0 1
1 0

a b c
0 0 0
0 1 0
1 0 0
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 1

a b c
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3.1: Some commonly used logic gates. The horizontal lines denote individual bits. The ones shown
on the left of the gates are input bits, whereas the ones on the right represent the output of the gate. Their
behavior is described by the truth tables supplied below the gates themselves.

Quantum gates are similar, in the sense that they require a number of input qubits and return a number of
output qubits. The second postulate of quantum mechanics now tells us, though, that we can only perform
unitary operations on any physical system. This means that every operation we do must be invertible, hence
the number of qubits entering the quantum gate must equal the number of qubits exiting the quantum gate.
Moreover, the matrix representation of the quantum gate with respect to the computational basis must be
a unitary matrix.

At first sight, this constrains the amount of possible quantum gates significantly. For example, the classical
AND gate, which requires two input bits and only one output bit, cannot be directly simulated using a
quantum gate. From this, we already see that developing quantum algorithms is a totally different business
from finding classical algorithms.

Graphically, quantum gates are depicted in a similar way as logic gates. The matrix representation of the
operator is indicated at the center of the graphical representation. On the left and right hand side, horizontal
lines enter and exit this gate, which represent the input and output qubits.

13

3.2.2 Single qubit gates

Quantum gates that only manipulate the state of one qubit are called single qubit gates. Some important
single qubit gates are listed in table 3.1, where their matrix representation is relative to the computational
basis.

X X =

[
0 1
1 0

]
Y Y =

[
0 −i
i 0

]
Z Z =

[
1 0
0 −1

]
H H = 1√

2

[
1 1
1 −1

]
S S =

[
1 0
0 i

]
T T =

[
1 0
0 ei

π
4

]
Table 3.1: Commonly used single qubit gates. Note that in the graphical representation of the quantum
gate, the letter that denotes the matrix representation with respect to the computational basis is used. The
T gate is also referred to as the π/8 gate, for historical reasons.

All single qubit gates listed in this table have their own special properties. For example, X is somewhat
like the quantum mechanical counterpart of the NOT gate, as it maps the state |0〉 to |1〉 and vice versa.
Moreover, the matrix representations of the X, Y and Z gates are called the Pauli matrices, as we will see
in chapter 4. H, also known as the Hadamard gate, creates superpositions of states from basis states: |0〉 is
mapped to (|0〉 + |1〉)/

√
2 and |1〉 is mapped to (|0〉 − |1〉)/

√
2. As H2 = I, the converse is also true: the

superposition states referred to above are mapped back to the basis states. Finally, the T gate is also called
the π/8 gate, for historical reasons.

3.2.3 Multiple qubit gates

Multiple qubit gates are quantum gates that alter the state of multiple qubit systems. As noted before, a
quantum gate must perform a unitary operation on a set of qubits, and the number of input qubits must
equal the number of output qubits, so in general, every multiple qubit gate can be represented similar to the
ones depicted in figure 3.2.

U

V

W

Figure 3.2: Most general representation of 2- 3- and 4-qubit quantum gates, in this case denoted by U , V
and W respectively. Here, U , V and W generally denote the matrix representation of the operation with
respect to the computational basis.

14

There are a number of multiple qubit gates, though, that are used in such common practice that they deserve
special mention. They have also been given a slightly different graphical representation.

First of all, suppose we have a single qubit gate, with matrix representation U and suppose that we only
want to execute the corresponding operation if the state of another qubit is |1〉. This last qubit is called the
control qubit, and the qubit which U acts on is referred to as the target qubit. This 2-qubit operation is
called a conditional single qubit operation. Its graphical representation can be found in figure 3.3 on the left
hand side. Its counterpart, where the operation U is only performed when the state of the control qubit is
|0〉, is displayed in figure 3.3 on the right.

U U

Figure 3.3: Controlled single qubit operations. The top qubit is referred to as the control qubit, and the
bottom one as the target qubit. In the left figure, the operation U is only executed when the top qubit is in
state |1〉, and the target qubit is left unaltered otherwize. Similarly, in the right quantum gate, the operation
U is only performed when the control qubit is in state |0〉.

This notion of conditional operation can easily be expanded to quantum gates with more control and target
qubits. An example is given in figure 3.4.

U

Figure 3.4: A conditional quantum gate with 3 control qubits and 2 target qubits. The 2-qubit operation U
is only executed when the first three qubits are in state |1〉 ⊗ |0〉 ⊗ |1〉.

But, we have yet to consider the most important conditional operations. One of these is the controlled NOT
operations, or CNOT. It operates on one control qubit and one target qubit, and performs the X operation
on the target qubit if the control qubit is set. Its graphical representation can be found in figure 3.5.

X

=

Figure 3.5: The graphical representation of the CNOT gate. On the right, the special notation is used,
whereas the representation on the left side is completely identical.

Similarly, one can of course apply the X gates on one target qubit using more than one control qubits. Then,
one obtains the Toffoli gate, as shown in figure 3.6.

The importance of the CNOT and Toffoli gates is its use in the implementation of conditional executions,
just like an if statement in an average classical programming language. The target qubit is only flipped if

15

X

=

Figure 3.6: The graphical representation of the Toffoli gate. On the right, the special notation is shown,
which is identical to the more standard notation on the left hand side.

the control qubits are in state |1〉. We will see a number of applications in the next chapter, as well as in
chapter 5.

As a final remark, we have a look at the matrix representation of the CNOT gate. We observe that the
states |00〉 and |01〉 are left unaltered, as the control qubit is in state |0〉 in that case. The other two basis
states, |10〉 and |11〉 are swapped by the CNOT gate. Hence, we obtain the following matrix representation.
Recall that this matrix representation is relative to the computational basis, which in a 2-qubit system is
equal to {|00〉, |01〉, |10〉, |11〉}.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Obtaining the matrix representation of the other multiple qubit gates is done in a similar way. The matrix
representation of the CNOT gate in particular will become very important in chapter 4.

3.3 Quantum circuits

In general, a quantum circuit is nothing more than a collection of quantum gates, executed in a prescribed
order. A program is nothing more than a sequence of instructions that the classical computer needs to
execute, so a quantum circuit is in some respects comparable to a program on a classical computer.

The graphical representation of a quantum circuit shows all qubits that are affected as horizontal lines, and
the quantum gates are placed on these lines, not entirely unlike musical notes on a stave. The order in
which the quantum gates are executed is from left to right. Optionally, the state of the qubits before the
quantum circuit is executed is shown on the left side of the horizontal lines, and the state the qubits are in
after execution is shown on the right side.

3.3.1 Swap circuit

As an example, we consider the swap circuit. Suppose we have a 2-qubit system, and we want to swap the
state of the first qubit with the state of the second qubit. Then we want to have a unitary operation that
takes the basis state |01〉 to |10〉 and |10〉 to |01〉, and leaves |00〉 and |11〉 unaltered. The corresponding
matrix representation is given below on the left hand side:

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

On the right hand side, we see that we can obtain the matrix representation needed to swap the state of two
qubits by multiplying the matrix representation of three CNOT gates, where the first and the last take the

16

second qubit as the target qubit, and the second CNOT gate takes the first qubit as the target qubit. The
resulting circuit is shown in figure 3.7.

|x〉

|y〉

|y〉

|x〉
=

|x〉

|y〉

|y〉

|x〉

Figure 3.7: The swap circuit. The state of the first and second qubit are swapped by applying three CNOT
gates, as shown in the right figure. In the left figure, the shorthand notation of swapping is shown.

3.3.2 Registers

In a classical computer, generally bits are grouped to form bytes, which consist of 8 bits. These bytes are
then grouped again to form up to 64-bit systems, in order to improve the capacity to store large integers.
Such a collection of bits is called a register.

In quantum computing, qubits can be grouped in a similar way as well. For example, n qubits can be
grouped to form a register. In the graphical representation, this is denoted by an oblique line intersecting
the horizontal lines that denote the qubits. The number of qubits that make up the register is placed above
this oblique line. Sometimes it is necessary to refer to the individual qubits of the register, then the horizontal
line that denotes the register splits into its constituent qubits.

The circuit that swaps the contents of two equally sized registers of n qubits is shown in figure 3.8. This
circuit will be useful in chapter 5.

n

n
|x〉

|y〉

|y〉

|x〉
=

n

n
|x〉

|y〉

|y〉

|x〉

Figure 3.8: Implementation of the swap operation of two n-qubit registers. The swap operation that swaps
the state of two qubits is applied n times.

3.4 Example: Deutsch’s algorithm

As a final remark to quantum circuits, we consider an instructive example, known as Deutsch’s algorithm.
It is particularly interesting because it is currently experimentally feasible to actually execute this algorithm
on a real quantum computer. The details of this experiment can be found in appendix C.

Suppose that one has a function f : {0, 1} → {0, 1}. There are four such possible functions, two of which
are constant (i.e. f(0) = f(1)), and two of which are not constant. Suppose now that one would like to
determine whether f is constant. On a classical computer, one would first calculate f(0) and f(1), and then
compare the results using an XOR gate. Thus, the classical algorithm might be graphically represented like
in figure 3.9. This implementation requires two evaluations of the function f .

We will now try to find a quantum circuit that accomplishes the same task as the classical program. For
this, we first of all specify the way f is evaluated. Note that as we do not in advance know the specific
properties of f , we cannot ensure that its operation is reversible. So, we cannot implement f using a single

17

f

f

XOR

1

0 {
0, f(0) = f(1)
1, f(0) 6= f(1)

Figure 3.9: Classical implementation of a program to determine whether the function f is constant. This
program requires two evaluations of f .

qubit gate, hence we have to resort to a 2-qubit gate Uf at the very least. The gate Uf is shown in figure
3.10.

Uf

|y〉

|x〉

|y + f(x)〉

|x〉

Figure 3.10: Implementation of the evaluation of f . We see that if y is 0, then the second qubit will hold
the value of f(x) after execution of this gate. Otherwize, it will hold the inverse of f(x), as the addition is
done mudulo 2. This is to ensure that the gate is unitary for all functions f .

Now, we implement this gate Uf into the quantum circuit shown in figure 3.11.

H

H

Uf

H

|1〉

|0〉
{
|0〉, f(0) = f(1)
|1〉, f(0) 6= f(1)

Figure 3.11: Implementation of the Deutsch algorithm. Note that measuring the first qubit at the conclusion
of the execution of the algorithm will reveal if f is constant. Also note that only one execution of Uf is
needed.

If we trace the steps of the algorithm, we observe that the qubits start out in the state |0〉 ⊗ |1〉. Applying
the Hadamard gates yields the following state (recall that |a〉 ⊗ |b〉 is denoted by |ab〉, with a, b ∈ {0, 1}):

1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉) =

1

2
|00〉 − 1

2
|01〉+

1

2
|10〉 − 1

2
|11〉

Applying the Uf gate yields:

1

2
|0 f(0)〉 − 1

2
|0 1+f(0)〉+

1

2
|1 f(1)〉 − 1

2
|1 1+f(1)〉

Now, suppose that f is constant. Then we can write this state as:

1

2
(|0〉+ |1〉)⊗ (|f(0)〉 − |1+f(0)〉)

So, applying the Hadamard gate on the first qubit now yields |0〉. On the other hand, if the f is not constant,
we find that the state after Uf can be rewritten as:

1

2
(|0〉 − |1〉)⊗ (|f(0)〉 − |f(1)〉)

Hence, applying the Hadamard gate on the first qubit yields a state |1〉. So, we find that indeed, the circuit
behaves as expected.

18

Interestingly, the gate Uf was only executed once in the execution of Deutsch’s algorithm. So, if the evaluation
of f turns out to be a very computationally heavy procedure, then Deutsch’s algorithm will provide a way
to determine if f is constant that is approximately twice as fast.

To summarize, the idea of this algorithm is to first load the system in a superposition state, and then to
apply the Uf gate to calculate both f(0) and f(1) at the same time. Then, using some clever techniques,
one hopes to be able to retrieve some of the global properties of the output of f . This technique is called
quantum parallellism. It is also used in Shor’s algorithm, which is covered in chapter 5. The experimental
realization of this quantum circuit is covered in appendix C.

19

4 Universality of the Controlled NOT, Hadamard and π/8 gate

In the previous chapter, we have seen that every unitary matrix acting on a Hilbert space with 2n dimensions,
for some n ∈ N, is associated with a unique quantum gate acting on the state space of n qubits with respect
to the computational basis. Thus, there are an infinite number of gates that could be used to create quantum
circuits with. This, though, is not experimentally realizable. It would be much more convenient to have a
discrete set of quantum gates that, successively, can approximate any quantum circuit to within arbitrary
accuracy. A set of quantum gates with that property is called a universal set. An example of such a set
consists of the Controlled NOT, the Hadamard and the π/8 gate, and the universal property of this set is
proven in this chapter.

In order to construct this proof, the problem is first of all reduced to showing that the Hadamard and π/8
gates are universal for single qubit gates. This is done in two steps, in section 4.1 and 4.2, respectively. The
last step is proven using the Bloch sphere and its properties, in section 4.3.

4.1 Reduction to two-level unitary operators

In this section, we will prove that every unitary operator can be written as the product of two-level unitary
operators. First of all, the definition of this two-level unitary operator will be given (4.1.1), after which the
actual proof will be delivered (4.1.2).

4.1.1 Two-level unitary matrices and operators

Central to the first part of the proof is the concept of two-level unitary matrices and two-level unitary
operators. Therefore, we first provide their definitions.

Definition 4.1: Two-level unitary matrix
A two-level unitary matrix is a unitary matrix that is identical to the identity matrix, up to at most a 2× 2
submatrix.

For example, the following matrix is unitary. Moreover, it is identical to the identity matrix, except for the
2 × 2 submatrix formed by taking the 2nd and 4th rows and 2nd and 4th columns. Hence, this matrix is
two-level unitary.

1 0 0 0
0 1√

2
0 − 1√

2

0 0 1 0
0 1√

2
0 1√

2

Note that every 2× 2 unitary matrix is trivially two-level unitary.

Definition 4.2: Two-level operator with respect to the computational basis
A two-level unitary operator with respect to the computational basis is an operator whose matrix represen-
tation with respect to the computational basis is given by a two-level unitary matrix.

Do note that the matrix representation of the CNOT gate with respect to the computational basis is two-level
unitary, so the CNOT gate is a two-level unitary operator. From now on, all matrices are understood to be
with respect to the computational basis, and this will not be explicitly noted on every occasion.

The following lemma will prove to be very useful shortly.

Lemma 4.3: Inverse of two-level unitary matrices
Suppose U is a two-level unitary matrix. Then its inverse is two-level unitary as well.

20

Proof: Let U be an arbitrary two-level unitary matrix with dimensions n × n. First of all, note that
as U is unitary, U−1 = U∗, so its inverse is unitary as well. Moreover, if U differs from the identity matrix
by only a 2× 2 submatrix, then so does U∗ = U−1, hence we find that U−1 is a two-level unitary matrix as
well. �

This lemma implies trivially that the inverse of every two-level unitary operator is a two-level unitary operator
as well.

4.1.2 Reduction of a quantum gate to a product of two-level unitary operators

In this subsection, we will prove that every quantum gate can be written as a product of two-level unitary
operators. First of all, it will be proven that one can zero out the first column of the matrix representation,
up to one entry using two-level unitary matrices. Next, it will be proven that this enables us to apply
induction to the size of the matrix representation of the quantum gate.

Lemma 4.4:
Suppose U is a unitary matrix with dimensions n × n. Then one can find two-level unitary matrices
U1, . . . , Um such that (

∏m
i=1 Ui)U has only one non-zero entry in the first column.

Proof: Suppose all entries in the first column of U are zero. Then det(U) = 0, hence U is a not a
unitary matrix, so we reach a contradiction right away. Thus, we can safely assume that U has at least one
non-zero entry in the first column.

Suppose now that U has precisely one non-zero entry in the first column. Then there is nothing to prove,
hence this provides the basis for mathematical induction.

Now suppose that for a unitary matrix U with k non-zero entries in the first column, we can find two-level
unitary matrices U1 through Um such that U1U2 · · ·UmU has only one non-zero entry in the first column.
This is our induction hypothesis. If we then have a unitary matrix V with k+ 1 non-zero entries in the first
column, we can find two indices i and j, such that i 6= j and Vi1, Vj1 6= 0. Now, define the following n × n
matrix W , which is equal to the identity matrix, except for the following entries:

Wii =
Vi1√

|Vi1|2 + |Vj1|2
Wij =

Vj1√
|Vi1|2 + |Vj1|2

Wji =
−Vj1√

|Vi1|2 + |Vj1|2
Wjj =

Vi1√
|Vi1|2 + |Vj1|2

Note that W is a two-level unitary matrix. Also note that if we look at WV , we zero out one entry in the
first column:

(WV)j1 = WjiVi1 +WjjVj1 =
−Vj1Vi1 + Vi1Vj1√
|Vi1|2 + |Vj1|2

= 0

So, now we are left with a matrix, WV , that has k non-zero elements in the first column. But then, by our
induction hypothesis, we can find matrices U1 through Um such that: U1U2 · · ·UmWV has only 1 non-zero
entry in the first column. Hence, by induction to the number of non-zero elements in the first column of the
matrix U , we find that for any n× n matrix U , we can find two-level unitary matrices U1 through Um such
that (

∏m
i=1 Ui)U has only one non-zero element in the first column. �

21

Lemma 4.5:
Suppose U is a unitary matrix with dimensions n × n, where n ≥ 2. Then we can find two-level unitary
matrices U1 through Um such that:

(
m∏
i=1

Ui

)
U =

1 0 · · · 0
0
... W
0

where W is a unitary matrix with dimensions (n− 1)× (n− 1).

Proof: Let U be an arbitrary unitary matrix with dimensions n × n, where n ≥ 2. Then, by the pre-

vious lemma, we can find matrices V1 through Vl such that V =
(∏l

i=1 Vi

)
U has only one non-zero entry

in the first column. If this non-zero entry is in the first row, then we define m = l and Ui = Vi, for all i.

If the non-zero element, though, is in the jth row of V , where j 6= 1, then we define the following n × n
matrix, A, that is identical to the identity matrix up to the following elements:

A11 = 0 A1j = 1

Aj1 = 1 Ajj = 0

Now, A is two-level unitary and one observes:

(AV)11 = A11V11 +A1jVj1 = Vj1 6= 0

(AV)j1 = Aj1V11 +AjjVj1 = V11 = 0

The 1st and jth rows are swapped, hence AV has a non-zero matrix element in the top left corner. Now,

we find that A
(∏l

i=1 Vi

)
U has one non-zero element in the first column, and it is in the first row as well.

So, we define m = l+ 1, Ui+1 = Vi and U1 = A. So, in general, we have now found matrices U1 through Um
such that (

∏m
i=1 Ui)U has a non-zero element in the top left corner, and zeros in the rest of the first column.

Let’s define T = (
∏m
i=1 Ui)U . Then T is a product of unitary matrices, hence T itself is unitary. Therefore,

all columns of T are unit vectors. As all matrix elements of the first column of T are 0, except for the first
entry, we find |T11|2 = 1. But as T is unitary, also all row vectors are unit vectors, hence

∑n
i=1 |T1i|2 = 1.

Applying |T11|2 = 1, we obtain:

n∑
i=2

|T1i|2 = 0⇒ ∀2 ≤ i ≤ n, T1i = 0

Hence, the only non-zero element of T in the first row is located in the top left corner as well.

Now, let’s define X as the identity matrix, except for the top-left matrix element: X11 = T−111 . Then as
|T−111 | = |T11|−1 = 1−1 = 1, we find that X is a two-level unitary matrix. So now, we can find a unitary
(n− 1)× (n− 1) matrix W such that:

X

(
m∏
i=1

Ui

)
U =

1 0 · · · 0
0
... W
0

By noting that X can easily be appended to the list of two-level unitary matrices U1 through Um that are
denoted inside the parentheses, we find that we have proven this lemma. �

22

Theorem 4.6: Decomposition of unitary matrices into two-level unitary matrices
Every unitary matrix U can be written as a product of two-level unitary matrices.

Proof: Let U be an arbitrary unitary matrix with dimensions n × n. If n = 1 or n = 2, then U is
itself two-level unitary, so there is nothing to prove. This provides the basis of induction.

Now suppose that every unitary matrix of dimension k × k can be written as a product of two-level unitary
matrices U1 through Um with dimensions k × k. This is our induction hypothesis. Now suppose that U
has dimensions (k + 1)× (k + 1). Then by the preceding lemma, we can find two-level unitary operators V1
through Vl such that: (

l∏
i=1

Vi

)
U =

1 0 · · · 0
0
... W
0

where W is a unitary k × k matrix. Hence, by the induction hypothesis, we can now find k × k unitary
matrices U1 through Um such that:

W =

m∏
i=1

Ui

Now, we define the following notation. For every unitary matrix A, we define:

A† =

1 0 · · · 0
0
... A
0

Note that A† is again unitary. We find: (

l∏
i=1

Vi

)
U = W † =

m∏
i=1

U†i

So, moving all Vi’s to the other side, we obtain:

U = V −1l V −1l−1 · · ·V
−1
2 V −11

m∏
i=1

U†i

As all Vi’s and U†i ’s are two-level unitary operators and inverses of two-level unitary matrices are again
two-level unitary matrices, we have written U as a product of two-level unitary matrices. Hence, we have
proven the theorem. �

We are now finally able to prove what is the goal of this section:

Theorem 4.7: Decomposition of quantum gates into two-level unitary operators
Every quantum gate can be written as a product of two-level unitary operators.

Proof: Take an arbitrary quantum gate, and let U be its matrix representation with respect to the compu-
tational basis. Then we can find two-level unitary matrices U1 through Um such that

U =

m∏
i=1

Ui

Associated to every two-level unitary matrix Ui is a two-level unitary operator, hence we have found a way
to write every quantum gate as the product of two-level unitary operators. �

23

So, in this section, we have proven that we can write any quantum gate as a product of two-level unitary
operators. Hence, it is sufficient to find a way to implement two-level unitary operators using the CNOT,
Hadamard and π/8 gates, in order to approximate any quantum circuit.

4.2 Reduction to (controlled) single qubit gates

In the previous section, we have seen that we can write every quantum gate as a product of two-level unitary
operators. In this section, we will exploit this result to show that we can write every quantum gate as a
product of single qubit gates and controlled single qubit gates. To this end, we will systematically substitute
complicated quantum gates by circuits that consist of less intricate quantum gates.

4.2.1 Swapping

First of all, we will have a better look at what happens when a two-level unitary operator is used. As the
matrix representation with respect to the computational basis is equal to the identity matrix, except for a
2× 2 submatrix, we find that only two computational basis states are affected by the operator.

Suppose that these basis states are |001〉 and |011〉. Then one can apply the single qubit operator U given
by the 2× 2 submatrix to the second qubit, conditional on the first qubit being 0 and the third qubit being
1, as shown in figure 4.1.

U

Figure 4.1: This operation only affects the basis states |001〉 and |011〉.

Let’s now consider a more complicated example, where the basis states |000〉 and |011〉 are affected. The
idea is to first swap |000〉 with |001〉, such that we obtain the same problem as in the previous paragraph,
and then undo the swapping. This in indicated in figure 4.2.

U

Figure 4.2: This sequence of operations only affects the basis states |000〉 and |011〉.

In general, the idea is to first use successive swapping of basis states so that the two basis states that
are affected only differ by 1 bit. Then, the 2 × 2 submatrix can be executed by a single qubit operation,
conditional on the value of all other qubits. After that, the swapping is undone.

4.2.2 Implementing conditional operations with multiple control qubits

According to the previous arguments, all that is left to do is find a way to implement single qubit operations
that are controlled by an arbitrary number of qubits, using the CNOT, Hadamard and π/8 gate. In this
subsection, this problem will be reduced even further.

24

First of all, we note that we can restrict ourselves to quantum gates that check if all control qubits are set,
as the ones that check for a cleared control qubit can be converted to these by adding two X-gates, as is
shown in figure 4.3.

U

=

X

U

X

Figure 4.3: All controlled gates that check for a cleared qubit can be replaced by ones that check for set
qubits, with the addition of two X single qubit gates.

So, all that is left to do is finding a way to implement quantum gates like the one shown in figure 4.4, where
the number of control qubits is arbitrary. In order to do so, we will need to use the spectral decomposition
of a unitary matrix. For completeness, the statement of the theorem is provided below.

U

Figure 4.4: A single qubit gate with a number of control qubits.

Theorem 4.8: Spectral decomposition of unitary matrices
Suppose U is a unitary matrix with eigenvalues λ1 through λn, and projλ1

through projλn are the projection
matrices on the eigenspaces associated with these eigenvalues. Then, U can be written as:

U =

n∑
i=1

λiprojλi

This allows us to define the square root of a unitary matrix:

Definition 4.9: Square root of a unitary matrix
Let U be a unitary matrix, with the following spectral decomposition:

U =

n∑
i=1

λiprojλi

Then the square root of U is defined by:

√
U =

n∑
i=1

√
λiprojλi

Here the branch cut used to calculate the square root of the complex λi is the negative real axis in the complex
plane, such that the resulting value is the principle square root.

25

Note that as the eigenspaces of different eigenvalues of U are orthogonal, we find that (
√
U)2 = U , as we

would expect. Furthermore, as |
√
λi| = 1 for all λi, we find (

√
λi)
∗ = 1√

λi
. We use that a projection matrix

is Hermitian, the eigenspaces of different eigenvalues are orthogonal and the square of projection matrices
yield the original projection matrix, to find:

√
U
√
U
∗

=

(
n∑
i=1

λiprojλi

)(
n∑
i=1

λiprojλi

)∗
=

n∑
i=1

n∑
j=1

√
λi
√
λj
∗
projλiproj∗λj

=

n∑
i=1

√
λi
λi

proj2λi =

n∑
i=1

projλi = I

√
U
∗√
U =

(
n∑
i=1

λiprojλi

)∗(n∑
i=1

λiprojλi

)
=

n∑
i=1

n∑
j=1

√
λi
∗√

λjproj∗λiprojλj

=

n∑
i=1

√
λi
λi

proj2λi =

n∑
i=1

projλi = I

So, we find that
√
U is again a unitary matrix, for any unitary matrix U .

Now, suppose we would like to implement a single qubit operation with matrix representation U , controlled
by two control qubits, like the one shown on the left hand side in figure 4.5. Then, we define V =

√
U , and

implement it with the circuit shown on the right in figure 4.5.

U

=

V V ∗ V

Figure 4.5: A single qubit gate with two control qubits is shown on the left, and an implementation using
only single qubit gates with one control qubit is shown on the right. Here, V =

√
U .

By checking all four basis states of the control qubits, one can easily verify that this implementation executes
an operation V 2 on the target qubit, only if both control qubits are set to 1. Otherwize, the target qubit is
left unaltered.

This approach can be scaled up easily. Consider, for example, the quantum gate shown on the left side in
figure 4.6. This gate can be implemented using the an analogous circuit used in figure 4.5, as can be seen
on the right hand side of figure 4.6, where V is again defined as

√
U .

U

=

V V ∗ V

Figure 4.6: A single qubit gate with three control qubits is shown on the left, and an implementation using
qubit gates with at most 2 control qubits is shown on the right. Here, V =

√
U .

We see now that the single qubit operation that is conditional under 3 control qubits, can be implemented
using 3 single qubit quantum operations that have 2 control qubits. Inductively, one can now implement

26

any single qubit operation that is conditional under an arbitrary number of control qubits, using only single
qubit operations that are conditional under 1 qubit, which we refer to as controlled single qubit gates.

So, the problem of showing that the CNOT, Hadamard and π/8 gates are universal, has been reduced to
showing that they can be used to implement single qubit gates and controlled single qubit gates.

4.3 Approximation of (controlled) single qubit gates by Hadamard and π/8
gates

In the previous sections, we have seen that we can implement any arbitrary quantum gate, using only gates
of the form shown in figure 4.7.

U

U

Figure 4.7: A single qubit gate and a controlled single qubit gate, with one control qubit.

This section will be devoted to showing that these quantum gates can be implemented to arbitrary accuracy,
using only the CNOT, Hadamard and π/8 gates.

In order to achieve this, we will first need to introduce a very important concept to help us visualize what
is happening when a single qubit operation is applied to one qubit. This concept is called the Bloch sphere,
and is the main subject of subsection 4.3.1. After that, we will show in section 4.3.2 that any controlled
single qubit gate can be implemented using the CNOT gate and other single qubit gates. Next, in section
4.3.3, we will introduce the concept of approximating a quantum gate, which we will use in section 4.3.4 to
prove that the Hadamard and π/8 gates can be used to approximate any arbitrary single qubit gate.

4.3.1 Bloch sphere

4.3.1.1 Representation of the state of a single qubit using the Bloch sphere

Suppose |ψ〉 is the state of a single qubit. Then, we have seen in chapter 3 that we can write |ψ〉 as a|0〉+b|1〉,
where |a|2 + |b|2 = 1 and a, b ∈ C. Using the polar notation of complex numbers, this can be rewritten as:

|ψ〉 = eiαra|0〉+ eiβrb|1〉

where ra, rb ≥ 0 and α, β ∈ [0, 2π). The condition |a|2 + |b|2 = 1 now reduces to r2a + r2b = 1, hence the point
(ra, rb) lies on the unit circle in the first quadrant, as shown in figure 4.8.

ra

rb

1

1

Figure 4.8: The possible values of ra and rb are shown. They form a quarter of the unit circle.

27

Thus, we can find a θ′ ∈ [0, π/2] such that ra = cos θ′ and rb = sin θ′. For later convenience, though, we will
use θ = 2θ′, so that ra = cos θ2 and rb = sin θ

2 , and θ ∈ [0, π]. By defining φ = β − α + 2kπ, where k ∈ Z is
chosen such that φ ∈ [0, 2π), we now obtain:

|ψ〉 = eiα
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)

From chapter 3, we know that this phase factor, eiα, is not of importance when doing measurements. This
factor will be referred to as an “unimportant factor”. Hence, the state is completely determined by the
values of θ and φ, where θ ∈ [0, π] and φ ∈ [0, 2π). Thus, any state vector of a single qubit can be visualized
as a point on a unit sphere in 3-dimensions, where spherical coordinates are used:

x = sin θ cosφ

y = sin θ sinφ

z = cos θ

This unit sphere is called the Bloch sphere, and will prove to be a very helpful tool in visualizing the effect
of single qubit operations, as we will show soon.

For example, for the state |0〉, we find θ = 0, hence it is located on the north pole of the Bloch sphere, in
(0, 0, 1). For |1〉, on the other hand, we find θ = π, hence it is located on the south pole of the Bloch sphere,
in (0, 0,−1). Superposition states are located somewhere in between, for example, for 1√

2
(|0〉+ |1〉), we find

θ = π/2 and φ = 0, hence it is located on the equator, in (1, 0, 0). See also figure 4.9.

x y

z

|0〉

|1〉

|+〉

Figure 4.9: The Bloch sphere, with the position of three states indicated: the two basis states, |0〉 and |1〉,
and the superposition state |+〉 = 1√

2
(|0〉+ |1〉).

4.3.1.2 The effect of single qubit operations on the Bloch sphere

One could ask oneself how the single qubit operations affect the representation of the states on the Bloch
sphere. It turns out that every single qubit operation is associated with a rotation of the Bloch sphere, which
is what we will prove now.

Central to this proof will be the so-called Pauli matrices. In fact, they are the matrix representations of
some single qubit operations we have already seen in chapter 3:

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

28

Note that all Pauli matrices are Hermitian. Some relationships between these Pauli matrices turn out to be
particularly useful.

X2 = I XY = iZ XZ = −iY
Y X = −iZ Y 2 = I Y Z = iX
ZX = iY ZY = −iX Z2 = I

The following theorem shows a first application of Pauli matrices.

Theorem 4.10: Decomposition of matrix representation of single qubit gate into Pauli matrices
Take an arbitrary single qubit gate, with corresponding matrix representation U . Then we can rewrite U in
the following form:

U = eiα
(

cos
χ

2
I − i sin

χ

2
(sin θ cosφX + sin θ sinφY + cos θZ)

)
where α ∈ [0, 2π), χ ∈ [0, 2π], θ ∈ [0, π] and φ ∈ [0, 2π). Conversely, for any choice of α, χ, θ and φ, this
matrix U is unitary.

Proof: Suppose that we have an arbitrary single qubit gate, with matrix representation U . Then this
matrix U can be written as:

U =

[
a b
c d

]
where a, b, c, d ∈ C. An arbitrary number x ∈ C can be written in polar form: x = rxe

iφx . Now, as all rows
and columns of U should be of unit length, we obtain:

|a|2 + |b|2 = 1⇒ r2a + r2b = 1

|c|2 + |d|2 = 1⇒ r2c + r2d = 1

|a|2 + |c|2 = 1⇒ r2a + r2c = 1

|b|2 + |d|2 = 1⇒ r2b + r2d = 1

Hence, we obtain: rb = rc and ra = rd. Furthermore, the two column vectors should be orthogonal:

rarbe
−iφa+iφb + rcrde

−iφc+iφd = 0

Using ra = rd and rb = rc, we obtain:

ei(φb−φa−φd+φc+π) = 0⇒ φb − φa − φd + φc + π ≡ 0 mod 2π

Now define α = (φa + φd)/2. Then, we can write U as:

U = eiα
[
a′ b′

c′ d′

]
where a′ = e−iαa, and similarly for the other matrix elements. As we are multiplying by a number that has
a modulus of 1, the radii are left unaltered, hence for example ra′ = ra. The arguments, however, are not.
Particularly:

φa′ = φa − α = φa −
φa + φd

2
=
φa − φd

2

φd′ = φd − α = φd −
φa + φd

2
=
φd − φa

2

Hence, we find φa′ = −φd′ . Substitution in the equation of arguments derived above, we obtain:

φb′ + α− φa′ − α− φd′ − α+ φc + α+ π ≡ 0 mod 2π

29

All α’s cancel, and using φa′ = −φd′ , we obtain:

φb′ + φc′ + π ≡ 0 mod 2π

Hence: φc′ ≡ −φb′ + π mod 2π. So, we find an interesting set of relations:

(a′)∗ = (rae
iφa′)∗ = rae

−iφa′ = rde
iφd′ = d′

(c′)∗ = (rce
iφc′)∗ = rce

−iφc′ = rbe
i(φb′−π) = −rbeiφb′ = −b′

Hence, we can find k, l,m, n ∈ R such that:

U = eiα
[

k + li −m+ ni
m+ ni k − li

]
This can be rewritten using the Pauli matrices, as follows:

U = eiα (kI + liZ +miY + niX)

As U is unitary, we know UU∗ = I. Using that the Pauli matrices are Hermitian and all relations of Pauli
matrices listed above, this yields:

UU∗ = eiα(kI + liZ +miY + niX) · e−iα(kI − liZ −miY − niX)

= k2I2 − kliIZ − kmiIY − kniIX + kliZI + l2Z2 + lmZY + lnZX

+kmiY I + lmY Z +m2Y 2 +mnYX + kniXI + lnXZ +mnXY + n2X2

= k2I − kliZ − kmiY − kniX + kliZ + l2I − lmiX + lniY

+kmiY + lmiX +m2I −mniZ + kniX − lniY +mniZ + n2I

= (k2 + l2 +m2 + n2)I

Hence, we find k2 + l2 + m2 + n2 = 1. So, the vector (k, l,m, n) lies on the four dimensional unit sphere,
hence we can write it in four dimensional spherical coordinates, where χ′ ∈ [0, π], θ ∈ [0, π], and φ ∈ [0, 2π):

k = cosχ′

l = sinχ′ cos θ

m = sinχ′ sin θ sinφ

n = sinχ′ sin θ cosφ

As before, we define χ = 2χ′ for future convenience, so we find χ ∈ [0, 2π]. Thus, we obtain the following
expression for U :

U = eiα
(

cos
χ

2
I − i sin

χ

2
(sin θ cosφX + sin θ sinφY + cos θZ)

)
Finally, we see that any choice of χ, θ and φ yields k2 + l2 +m2 + n2 = 1 and so UU∗ = I for any choice of
α, χ, θ and φ. Hence U is unitary for any choice of α, χ, θ and φ. So, we have proven what we set out to
prove. �

The use of this theorem is not directly obvious at this stage. The following definition and theorem, though,
will change this.

Definition 4.11: Rotation matrices
Let n̂ be a unit vector in three dimensions. It is written in spherical coordinates as n̂ =
(sin θ cosφ, sin θ sinφ, cos θ). Then the rotation matrix Rn̂(χ), with χ ∈ R, is defined by:

Rn̂(χ) = cos
χ

2
I − i sin

χ

2
(sin θ cosφX + sin θ sinφY + cos θZ)

30

We will first have a closer look at Rẑ(χ) and Rŷ(χ).

Lemma 4.12: Rotation about the z-axis
Suppose χ ∈ R. In the Bloch sphere, Rẑ(χ) can be visualized as a rotation about the z-axis, over an angle
of χ.

Proof: Suppose we have a qubit in the state associated with the Bloch vector represented in polar coordi-
nates by (rx, ry, rz) = (sin θ cosφ, sin θ sinφ, cos θ). Then its state vector with respect to the computational
basis is, up to an unimportant constant with modulus 1:

ψ =

[
cos θ2

eiφ sin θ
2

]
To reduce the complexity of the calculations, we introduce the so-called density operator of this state:

ρ = ψψ∗ =

[
cos θ2

eiφ sin θ
2

] [
cos θ2 e−iφ sin θ

2

]
Rewriting this expression yields:

ρ =

[
cos2 θ2 e−iφ cos θ2 sin θ

2

eiφ cos θ2 sin θ
2 sin2 θ

2

]
Applying double angle formulas cos2 α = 1

2 + 1
2 cos(2α), sin2 α = 1

2 −
1
2 cos(2α) and cosα sinα = 1

2 sin(2α)
leads to:

ρ =
1

2

[
1 + cos θ e−iφ sin θ
eiφ sin θ 1− cos θ

]
Expanding the exponentials yields:

ρ =
1

2

[
1 + cos θ sin θ cosφ− i sin θ sinφ

sin θ cosφ+ i sin θ sinφ 1− cos θ

]
So, rewriting this in the form of Pauli matrices, we obtain:

ρ =
1

2
(I + sin θ cosφX + sin θ sinφY + cos θZ) =

1

2
(I + rxX + ryY + rzZ)

Applying the operation Rẑ(χ) yields the new vector ψ′:

ψ′ = Rẑ(χ)ψ

So, the new density operator is given by:

ρ′ = Rẑ(χ)ψ(Rẑ(χ)ψ)∗ = Rẑ(χ)ρRẑ(χ)∗

Substituting for ρ, we obtain:

ρ′ =
1

2
Rẑ(χ)(I + rxX + ryY + rzZ)Rẑ(χ)∗

=
1

2
Rẑ(χ)IRẑ(χ)∗ +

1

2
rxRẑ(χ)XRẑ(χ)∗ +

1

2
ryRẑ(χ)Y Rẑ(χ)∗ +

1

2
rzRẑ(χ)ZRẑ(χ)∗

We now evaluate every term individually, where we use the abbreviations cχ = cos χ2 and sχ = sin χ
2 :

Rẑ(χ)IRẑ(χ)∗ = (cχI − isχZ) I (cχI + isχZ) =
(
c2χI − icχsχZ + icχsχZ + s2χZ

2
)

= I

Rẑ(χ)XRẑ(χ)∗ = (cχI − isχZ)X (cχI + isχZ) =
(
c2χX + cχsχY + cχsχY − s2χX

)
= (c2χ − s2χ)X + 2cχsχY = cosχX + sinχY

Rẑ(χ)Y Rẑ(χ)∗ = (cχI − isχZ)Y (cχI + isχZ) =
(
c2χY − cχsχX − cχsχX − s2χY

)
= (c2χ − s2χ)Y − 2cχsχX = − sinχX + cosχY

Rẑ(χ)ZRẑ(χ)∗ = (cχI − isχZ)Z (cχI + isχZ) =
(
c2χZ − icχsχI + icχsχI + s2χZ

)
= Z

31

Hence, we find:

ρ′ =
1

2
I +

1

2
rx(cosχX + sinχY) +

1

2
ry(− sinχX + cosχY) +

1

2
rzZ

=
1

2
(I + (rx cosχ− ry sinχ)X + (rx sinχ+ ry cosχ)Y + rzZ)

So, we find the following new coordinates in the Bloch sphere: r′x
r′y
r′z

 =

 cosχ − sinχ 0
sinχ cosχ 0

0 0 1

 rx
ry
rz

Hence, the coordinates of the vector in the Bloch sphere are rotated about the z-axis by an angle of χ. This
completes the proof. �

Lemma 4.13: Rotation about the y-axis
Let χ ∈ R. In the Bloch sphere, Rŷ(χ) can be visualized as a rotation about the y-axis, over an angle χ.

Proof: This proof is very similar to the previous proof, so we will skip right ahead to the new density
operator. All steps before this are identical to the previous proof.

ρ′ = Rŷ(χ)ρRŷ(χ)∗ =
1

2
Rŷ(χ)(I + rxX + ryY + rzZ)Rŷ(χ)∗

=
1

2
Rŷ(χ)IRŷ(χ)∗ +

1

2
rxRŷ(χ)XRŷ(χ)∗ +

1

2
ryRŷ(χ)Y Rŷ(χ)∗ +

1

2
rzRŷ(χ)ZRŷ(χ)∗

Again, evaluating this expression term by term and using cχ = cos χ2 and sχ = sin χ
2 :

Rŷ(χ)IRŷ(χ)∗ = (cχI − isχY)I(cχI + isχY) = (c2χI − icχsχY + icχsχY + s2χI) = I

Rŷ(χ)XRŷ(χ)∗ = (cχI − isχY)X(cχI + isχY) = (c2χX − cχsχZ − cχsχZ − s2χX)

= (c2χ − s2χ)X − 2cχsχZ = cosχX − sinχZ

Rŷ(χ)Y Rŷ(χ)∗ = (cχI − isχY)Y (cχI + isχY) = (c2χY − icχsχI + icχsχI + s2χY) = Y

Rŷ(χ)ZRŷ(χ)∗ = (cχI − isχY)Z(cχI + isχY) = (c2χZ + cχsχX + cχsχX − s2χZ)

= (c2χ − s2χ)Z + 2cχsχX = sinχX + cosχZ

Hence, substituting these results back, we find:

ρ′ =
1

2
I +

1

2
rx(cosχX − sinχZ) +

1

2
Y ry +

1

2
rz(sinχX + cosχZ)

=
1

2
(I + (rx cosχ+ rz sinχ)X + ryY + (−rx sinχ+ rz cosχ)Z)

So, we find for the new coordinates in the Bloch sphere: r′x
r′y
r′z

 =

 cosχ 0 sinχ
0 1 0

− sinχ 0 cosχ

 rx
ry
rz

Hence, the effect of Rŷ(χ) is indeed a rotation about the y-axis over an angle of χ in the Bloch sphere. So,
that completes the proof. �

Theorem 4.14: Rotation about an arbitrary axis
Let n̂ be an arbitrary three-dimensional unit vector. In the Bloch sphere, Rn̂(χ) can be visualized as a
rotation about n̂ over an angle χ, where χ ∈ R.

32

Proof: As n̂ is a unit vector, we can write it in spherical coordinates in the following way: (nx, ny, nz) =
(sin θ cosφ, sin θ sinφ, cos θ). Note that a rotation about the n̂ axis over an angle χ can be achieved by
executing the following rotations consecutively, as is also shown in figure 4.10.

1. Rotate about the z-axis by −φ.

2. Rotate about the y-axis by −θ.

3. Rotate about the z-axis by χ.

4. Rotate about the y-axis by θ.

5. Rotate about the z-axis by φ.

x y

z

n̂

θ

φ

Figure 4.10: A rotation about the axis n̂ can be composed of rotations about the ẑ and ŷ axes. One first
rotates n̂ towards the xz-plane, after which n̂ is rotated up towards the north pole. Then the actual rotation
around n̂ is performed, after which the preliminary steps are undone.

So, we calculate the operation that results when these operations are performed consecutively. Note therefore
that Rŷ(θ)∗ is Rŷ(−θ), as we are just turning the Bloch sphere in the other direction. The same holds for
rotations about the z-axis. We obtain, using the relations derived in the previous proofs:

Rẑ(φ)Rŷ(θ)Rẑ(χ)Rŷ(−θ)Rẑ(−φ)

= Rẑ(φ)Rŷ(θ)
(

cos
χ

2
I − i sin

χ

2
Z
)

(χ)Rŷ(−θ)Rẑ(−φ)

= cos
χ

2
Rẑ(φ)Rŷ(θ)IRŷ(−θ)Rẑ(−φ)− i sin

χ

2
Rẑ(φ)Rŷ(θ)ZRŷ(−θ)Rẑ(−φ)

= cos
χ

2
Rẑ(φ)IRẑ(−φ)− i sin

χ

2
Rẑ(φ)(sin θX + cos θZ)Rẑ(−φ)

= cos
χ

2
I − i sin

χ

2
(sin θRẑ(φ)XRẑ(−φ) + cos θRẑ(φ)ZRẑ(−φ))

= cos
χ

2
I − i sin

χ

2
(sin θ(cosφX + sinφY) + cos θZ)

= cos
χ

2
I − i sin

χ

2
(sin θ cosφX + sin θ sinφY + cos θZ)

= cos
χ

2
I − i sin

χ

2
(nxX + nyY + nzZ)

= Rn̂(χ)

Hence, we find that Rn̂(χ) is indeed a rotation about the axis n̂ by an angle of χ, as required. �

This brings us to the most important result of the Bloch sphere:

33

Corollary 4.15: Single qubit gates and rotations in the Bloch sphere
Every single qubit gate is associated with a single rotation in the Bloch sphere, up to an unimportant
constant. On the other hand, every rotation in the Bloch sphere resembles a single qubit gate.

Proof: Let’s first take an arbitrary single qubit gate. Then we have seen that it can be decomposed
into a sum of Pauli matrices. This decomposition yields that it is equal up to an unimportant constant to
Rn̂(χ), where n̂ is a unit vector in 3D, and χ ∈ R. The last theorem now yields that this is a rotation in the
Bloch sphere about the axis defined by n̂ over an angle χ.

On the other hand, if we take a random rotation in the Bloch sphere, then there is a unit vector on
its axis, which we call n̂. Then this rotation can be expressed as the operation Rn̂(χ), according to the
preceding theorem. But this rotation is equal to a single qubit gate, where the unimportant constant in the
decomposition can be randomly chosen. �

We have now developed an intuitive way of thinking about single qubit gates. This turns out to be of
great value when coming up with proofs for theorems that concern these gates. An excellent example is the
following theorem, that we will need later on in our proof of the universality of the CNOT, Hadamard and
π/8 gate.

Theorem 4.16: Consecutive rotations around two fixed axes
Suppose n̂ and m̂ are unit vectors on two fixed axes in the Bloch sphere. Let θ be the angle between these axes.
If θ 6= 0 and θ 6= π, that is, the axes are non-parallel, then any single qubit gate with matrix representation
U can be performed by a sequence of consecutive rotations about n̂ and m̂ of the following form:

U = eiαRn̂(αm+1)

(
m∏
i=1

Rm̂(βi)Rn̂(αi)

)

where α, α1, . . . , αm+1, β1, . . . , βm ∈ [0, 2π), and:

m =

{ ⌈
π
2θ

⌉
, 0 < θ ≤ π

2⌈
π

2(π−θ)

⌉
, π

2 ≤ θ < π

Proof: Take an arbitrary single qubit gate, with matrix representation U . Then we have already seen
that we write it like eiαRŝ(χ), with α ∈ [0, 2π), ŝ some 3D unit vector, and χ some angle. Hence, the
problem reduces to showing that the rotation Rŝ(χ) of the Bloch sphere can be achieved by the sequence of
rotations given in matrix representation by:

Rŝ(χ) = Rn̂(αm+1)

(
m∏
i=1

Rm̂(βi)Rn̂(αi)

)

for any axis ŝ and angle χ.

To prove this, we first have a closer look at what happens when we perform a rotation in 3D space. Suppose
one has an orthonormal basis, and wonders what happens to that basis upon rotation. Then this basis
remains orthonormal, and its orientation is preserved as well. Hence, if one finds out what happens to two
vectors of this orthonormal basis upon rotation, then one can deduce what happens to the third one. So,
it is sufficient to take an orthonormal basis of the three-dimensional space, and check whether two of its
vectors are mapped to their desired location, to conclude that the desired rotation is achieved.

We are going to use this in the following way. As the rotation Rŝ(χ) is invertible, we can easily find the
vector v̂ that is mapped to n̂. Take ŵ another unit vector at random, that is orthogonal to v̂.

Now picture the sphere with n̂ pointing up, and define spherical coordinates accordingly. Define the azimuthal
angle, φ, in such a way that the azimuthal angle of m̂ is 0. We will first assume that θ ≤ π/2. See also figure

34

4.11.

n̂

m̂θ

Figure 4.11: Bloch sphere with the axes n̂ and m̂, and their angle θ indicated.

Now, the vector v̂ has polar angle θv and azimuthal angle φv. Depending on the value of θv, we decide what
to do next.

If θv ≤ 2θ (where θ denotes the angle between n̂ and m̂), then we can first rotate the Bloch sphere about n̂
and then about m̂, such that v̂ is mapped to the north pole. This is because the path of the north pole upon
rotation around m̂ forms a circle that covers all polar angles between 0 and 2θ, as is shown in figure 4.12.
The first rotation about n̂ serves to rotate v̂ onto this circle, and the rotation about m̂ afterwards completes
the mapping to the north pole.

n̂

m̂

θ

θ

n̂
m̂

θ

θ

Figure 4.12: Figure illustrating the last step of moving the vector v̂ towards the north pole. One can move
the vector v̂ into the north pole from the circle around m̂ indicated as the dotted line in the left picture. If
θv ≤ 2θ, then v̂ is located somewhere in the gray area in the right figure, from where it is possible to rotate
the vector onto the circle by a rotation about n̂.

If, on the other hand, θv > 2θ, then we must first bring v̂ up in the sphere, such that it has a polar angle
smaller than or equal to 2θ, after which we can apply the above technique. This is done in the following
way. First rotate the sphere about the n̂ axis, such that the vector v̂ is mapped to a position directly below
m̂. Then rotate about m̂ over an angle of π. This brings the vector v̂ up by a polar angle of 2θ, as can be
seen in figure 4.13.

This process can be repeated until the polar coordinate reduces to a value smaller than or equal to 2θ. As θv
starts out at a value below π, this process must be repeated a maximum number of

⌈
π
2θ

⌉
− 1 times. Hence,

with the finalizing step of putting v̂ on the north pole, after the following 2m rotations the vector v̂ is located
on the north pole.

m∏
i=1

Rm̂(βi)Rn̂(αi)

35

n̂
m̂

v̂

v̂′

θv

θθ′v

Figure 4.13: The vector v̂ can be brought up by a rotation about m̂. The vector v̂ must first be placed
directly below m̂. Then, rotating about m̂ over an angle π yields: θ′v + θ = θv − θ, hence θ′v = θv − 2θ.

Now, the vector ŵ must be put in place. As it was orthogonal to v̂ in the beginning and we have only done
rotations since, it must still be orthogonal to v̂. Hence it is located somewhere on the equator of the sphere,
and so it can be put into place by a single rotation about n̂. With two orthogonal vectors in place, we can
now conclude that we have successfully executed the desired rotation, and that we can write the matrix
representation of every single qubit gate in the following manner:

U = eiαRn̂(αm+1)

(
m∏
i=1

Rm̂(βi)Rn̂(αi)

)

Finally, suppose that θ > π/2. Then one can take the axis −m̂, and perform all rotations referred to above
with negative angle. The angle between n̂ and −m̂ is π − θ, hence the difference in the formulae for m. �

The above theorem is very general. A more specific corollary is given below:

Corollary 4.17: Consecutive rotations about z and y axes
Take an arbitrary single qubit gate with matrix representation U . Then it can be written as:

U = eiαRẑ(β)Rŷ(γ)Rẑ(δ)

where α, β, γ, δ ∈ [0, 2π).

Proof: The angle between ẑ and ŷ is π
2 , so when we apply the above theorem, we obtain m = 1. Hence, the

result follows directly by substituting m = 1 in the expression for U . �

We now have all the information we need about the Bloch sphere, in order to continue our proof that CNOT,
Hadamard and π/8 gates are universal.

4.3.2 Implementation of controlled single qubit gates

So far, we have seen that we can implement any quantum circuit by using single qubit gates, and controlled
single qubit gates with one control qubit. First of all, we focus on the controlled single qubit gate. To that
end, we need the following lemma:

36

Lemma 4.18: ABC-decomposition of single qubit gates
Take an arbitrary single qubit gate, and denote its matrix representation by U . Then we can find unitary
matrices A, B and C, and α ∈ [0, 2π), such that:

U = eiαAXBXC and ABC = I

Proof: From the previous section, we have found that we can write U in the following form.

U = eiαRẑ(β)Rŷ(γ)Rẑ(δ)

Now define the following matrices:

A = Rẑ(β)Rŷ(γ/2)

B = Rŷ(−γ/2)Rẑ(−(δ + β)/2)

C = Rẑ((δ − β)/2)

Then we find:

ABC = Rẑ(β)Rŷ

(γ
2

)
·Rŷ

(
−γ

2

)
Rẑ

(
−δ + β

2

)
·Rẑ

(
δ − β

2

)
= Rẑ(β)Rẑ(−β) = I

Furthermore, we have XYX = iZX = i2Y = −Y and X2 = I, hence:

XRŷ(χ)X = X
(

cos
χ

2
I − i sin

χ

2
Y
)
X = cos

χ

2
I + i sin

χ

2
Y = Rŷ(−χ)

Similarly, with XZX = iXY = i2Z = −Z, and X2 = I, we find:

XRẑ(χ)X = X
(

cos
χ

2
I − i sin

χ

2
Z
)
X = cos

χ

2
I + i sin

χ

2
Z = Rẑ(−χ)

Hence:

XBX = XRŷ

(
−γ

2

)
Rẑ

(
−δ + β

2

)
X = XRŷ

(
−γ

2

)
XXRẑ

(
−δ + β

2

)
X

= Rŷ

(γ
2

)
Rẑ

(
δ + β

2

)
So, substitution yields:

eiαAXBXC = eiαRẑ(β)Rŷ

(γ
2

)
Rŷ

(γ
2

)
Rẑ

(
δ + β

2

)
Rẑ

(
δ − β

2

)
= eiαRẑ(β)Rŷ(γ)Rẑ(δ) = U

So indeed, we found matrices A, B and C such that eiαAXBXC = U and ABC = I. �

The usefulness of this lemma becomes apparent if we look at the following implementation of a controlled
single qubit gate. Suppose we have a controlled single qubit gate, with matrix representation U and matrices
A, B and C as in the lemma above. Then we can implement the controlled single qubit gate as shown in
figure 4.14.

Note that this last controlled qubit gate can be implemented by the gate shown in figure 4.15.

So, we have now found that we can implement any quantum circuit by making use of the CNOT and single
qubit gates.

37

U

=

C B A

[
eiα 0
0 eiα

]
Figure 4.14: Implementation of the single qubit gate controlled by one control qubit.

[
eiα 0
0 eiα

] =

[
1 0
0 eiα

]

Figure 4.15: Implementation of the controlled multiplication of a phase factor.

4.3.3 Distance between unitary matrices

Now all that is left to do is showing that any single qubit gate can be approximated up to arbitrary accuracy
by using the Hadamard and π/8 gates. To do so, though, we must first develop an idea when an approxi-
mation of a quantum gate is close. To quantify this, we introduce the following metric on the space of 2× 2
unitary matrices.

Definition 4.19: Distance in the space of 2× 2 unitary matrices
Let Q be the collection of all unitary 2 × 2 matrices. Then we define a function E : Q×Q → R. For any
two 2× 2 unitary matrices U and V :

E(U, V) = max
v
||(U − V)v||

where v can be any unit vector in C2.

Theorem 4.20: Metric on the space of 2× 2 unitary matrices
The function E defined above is a metric on Q.

Proof: Suppose U and V are two unitary matrices with dimensions 2 × 2. We check all properties of
metrics systematically below.

Obviously E(U, V) ≥ 0. Moreover, if E(U, V) = 0, we have that for any vector v, (U − V)v = 0, hence
Uv = V v. But then if we fill in the standard basic vectors for v, we obtain U = V . Similarly, if U = V , we
find (U − V)v = 0 for all v, hence E(U, V) = 0. So, E(U, V) = 0⇔ U = V .

Trivially, E(U, V) = E(V,U) also holds, because ||(U − V)v|| = || − (V − U)v|| = ||(V − U)v||, for all v.

Now, suppose W is also a 2× 2 unitary matrix. Then:

E(U, V) + E(V,W) = max
v
||(U − V)v||+ max

v
||(V −W)v||

≥ max
v
||(U − V)v + (V −W)v||

= max
v
||(U −W)v|| = E(U,W)

So, the triangle inequality is satisfied as well, hence (Q,E) is a metric space. �

Now, we have a way to talk about the distance between two matrices. The following theorem justifies this
notion of distance.

38

Theorem 4.21: Effect of the distance on measurements
Suppose a single qubit system starts out in the state with corresponding vector v. Then one of two quantum
operations is performed, with matrix representation U and V . Then, the qubit is measured, with correspond-
ing measurement matrices {Mm}. The difference in probability that the measurement yields outcome m is
bounded by the distance of U and V in the following way:

|PU (m)− PV (m)| ≤ 2E(U, V)

where PU (m) and PV (m) denote the probability that the measurement outcome is m, after the application
of U or V respectively.

Proof: The probabilities are given by the measurement postulate of quantum mechanics, as we have seen
in chapter 2. Their matrix form yields:

PU (m) = v∗U∗M∗mMmUv

PV (m) = v∗V ∗M∗mMmV v

Defining d = (U − V)v, we obtain:

|PU (m)− PV (m)| = |v∗U∗M∗mMmUv − v∗V ∗M∗mMmV v|
= |v∗U∗M∗mMm(d + V v)− v∗V ∗M∗mMmV v|
= |v∗U∗M∗mMmd + v∗U∗M∗mMmV v − v∗V ∗M∗mMmV v|
= |v∗U∗M∗mMmd + (v∗U∗ − v∗V ∗)M∗mMmV v|
= |v∗U∗M∗mMmd + d∗M∗mMmV v|
≤ |v∗U∗M∗mMmd|+ |d∗M∗mMmV v|

Now, we invoke the Cauchy-Schwarz inequality, which states that for any v and w, the inequality |v∗w| ≤
||v|| · ||w|| holds. Hence:

|PU (m)− PV (m)| ≤ |v∗U∗M∗mMmd|+ |d∗M∗mMmV v|
≤ ||M∗mMmUv|| · ||d||+ ||d|| · ||M∗mMmUv||

Now, we will want to find an upper bound for ||M∗mMmUv||. Recall from chapter 2 that the measurement
operators satisfy the completeness relation:

∑
iM
∗
iMi = I. As M∗iMi is a Hermitian matrix, we find that

its eigenvalues are real. Moreover, M∗iMi is a positive semidefinite matrix, as for any vector w ∈ C2, we
have w∗M∗iMiw = (Miw)∗Miw = ||Miw||2 ≥ 0. Hence, the eigenvalues of M∗iMi are all non-negative.

Suppose now that w is an eigenvector of M∗mMm, with corresponding eigenvalue λ. Then, we find:

w∗w = w∗Iw = w∗
∑
i

M∗iMiw = w∗M∗mMmw +
∑
i 6=m

w∗M∗iMiw

Working out the first term using M∗mMmw = λw yields:

w∗M∗mMmw = w∗λw = λw∗w

The other terms can be lower bounded by 0, as every term is greater than or equal to 0. Hence:

w∗w ≥ λw∗w⇒ λ ≤ 1

We already know that λ is non-negative, so we find 0 ≤ λ ≤ 1.

Now, as M∗mMm is a Hermitian matrix, its eigenvectors span C2, so w ∈ C2 can be written as a linear
combination of eigenvectors of M∗mMm of unit length: w = α1v1 + α2v2. Moreover, these eigenvectors are
orthogonal, so:

||w||2 = w∗w = (α∗1v
∗
1 + α∗2v

∗
2)(α1v1 + α2v2) = |α1|2 + |α2|2

39

Plugging this in yields:

||M∗mMmw||2 = ||α1M
∗
mMmv1 + α2M

∗
mMmv2||2 = ||α1λ1v1 + α2λ2v2||2

≤ |α1|2|λ1|2||v1||2 + |α2|2|λ2|2||v2||2 ≤ |α1|2 + |α2|2 = ||w||2

Using this in our upper bound for |PU (m)− PV (m)|, we find:

|PU (m)− PV (m)| ≤ ||M∗mMmUv|| · ||d||+ ||d|| · ||M∗mMmUv||
≤ ||Uv|| · ||d||+ ||d|| · ||Uv||
= ||v|| · ||d||+ ||d|| · ||v||
= ||d||+ ||d|| = 2||d||
= 2||(U − V)v||
≤ 2E(U, V)

Hence, indeed, we found what needed to be proven. �

Intuitively, this last theorem makes sense. If the distance between two matrices is very small, the probability
that the outcome of the measurement is affected should be very slim. So, we can now safely conclude that
if we want V to approximate U , it is sufficient to require that E(U, V) is small.

The following theorem is very useful when dealing with compositions of rotations.

Theorem 4.22: Distance of the product of matrices
Suppose we have four 2 × 2 unitary matrices, denoted by U , V , W and X. Then the following relation
holds:

E(UV,WX) ≤ E(U,W) + E(V,X)

Proof: The proof makes use of the triangle inequality:

E(UV,WX) = max
v
||(UV −WX)v||

= max
v
||(UV − UX + UX −WX)v||

≤ max
v
||(UV − UX)v||+ max

v
||(UX −WX)v||

= max
v
||U(V −X)v||+ max

v
||(U −W)Xv||

= max
v
||(V −X)v||+ max

v
||(U −W)v||

= E(V,X) + E(U,W)

as required. �

Finally, the following theorem is important to approximate rotations around a fixed axis.

Theorem 4.23: Approximation of rotations around a fixed axis
Suppose n̂ is a unit vector, and α, β ∈ [0, 2π). Then:

E(Rn̂(α), Rn̂(β)) ≤ |β − α|
2

Proof: As before, we can rewrite n̂ in its spherical coordinates: n̂ = (sin θ cosφ, sin θ sinφ, cos θ). Then
we note that the following relation holds for any χ ∈ [0, 2π):

Rn̂(χ) = Rẑ(φ)Rŷ(θ)Rẑ(χ)Rŷ(−θ)Rẑ(−φ)

40

Combining this with the previous theorem, we obtain:

E(Rn̂(α), Rn̂(β)) = E(Rẑ(φ)Rŷ(θ)Rẑ(α)Rŷ(−θ)Rẑ(−φ), Rẑ(φ)Rŷ(θ)Rẑ(β)Rŷ(−θ)Rẑ(−φ))

≤ E(Rẑ(φ), Rẑ(φ)) + E(Rŷ(θ), Rŷ(θ)) + E(Rẑ(α), Rẑ(β))

+E(Rŷ(−θ), Rŷ(−θ)) + E(Rẑ(−φ), Rẑ(−φ))

= E(Rẑ(α), Rẑ(β))

= E(Rẑ(α), Rẑ(α)Rẑ(β − α))

≤ E(Rẑ(α), Rẑ(α)) + E(I,Rẑ(β − α))

= E(I,Rẑ(β − α))

Now, take a unit vector v ∈ C2 at random. It can be written as:

v = eiγ
[

cos θ2
eiφ sin θ

2

]
Recall that the rotation about the z-axis can be written as:

Rẑ(χ) = cos
(χ

2

)
I − i sin

(χ
2

)
Z =

[
e−i

χ
2 0

0 ei
χ
2

]
Applying the rotation about the z-axis to the vector v yields:

Rẑ(β − α)v = eiγ

[
e−i

β−α
2 0

0 ei
β−α

2

] [
cos θ2

eiφ sin θ
2

]
= eiγ

[
e−i

β−α
2 cos θ2

ei(φ+
β−α

2) sin θ
2

]
So, the error in the vector v, induced by the rotation, is given by:

v −Rẑ(β − α)v = eiγ

([
cos θ2

eiφ sin θ
2

]
−

[
e−i

β−α
2 cos θ2

ei(φ+
β−α

2) sin θ
2

])

= eiγ

 cos θ2

(
1− e−i

β−α
2

)
sin θ

2e
iφ
(

1− ei
β−α

2

)
The length of this vector is given by:

||v −Rẑ(β − α)v||2 =

∣∣∣∣cos
θ

2

(
1− e−i

β−α
2

)∣∣∣∣2 +

∣∣∣∣sin θ2eiφ (1− ei
β−α

2

)∣∣∣∣2
= cos2

θ

2

∣∣∣1− e−i β−α2 ∣∣∣2 + sin2 θ

2

∣∣∣1− ei β−α2 ∣∣∣2
=

∣∣∣1− ei β−α2 ∣∣∣2 =

∣∣∣∣1− cos
β − α

2
− i sin

β − α
2

∣∣∣∣2
=

(
1− cos

β − α
2

)2

+ sin2 β − α
2

= 1− 2 cos
β − α

2
+ cos2

β − α
2

+ sin2 β − α
2

= 2− 2 cos
β − α

2
= 4 sin2 β − α

4

So, we find that the error is given by:

E(Rn̂(α), Rn̂(β)) = 2

∣∣∣∣sin β − α4

∣∣∣∣
41

Using the approximation | sin(x)| ≤ |x|, we obtain:

E(Rn̂(α), Rn̂(β)) ≤ 2

∣∣∣∣β − α4

∣∣∣∣ =
|β − α|

2

Hence, we have proven the theorem. �

4.3.4 Approximation of single qubit gates by Hadamard and π/8 gates

Now we have collected all ingredients to show that any single qubit gate can be approximated by Hadamard
and π/8 gates up to arbitrary accuracy. Recall that the matrix representation of the π/8 gate is denoted by
T . We note:

H =
1√
2

[
1 1
1 −1

]
=

1√
2

(X + Z)

T =

[
1 0
0 ei

π
4

]
= ei

π
8

[
e−i

π
8 0

0 ei
π
8

]
= ei

π
8

(
cos
(π

8

)
I − i sin

(π
8

)
Z
)

We can now use the relations of Pauli matrices, XY = iZ, Y Z = iX, ZX = iY , Y X = −iZ, ZY = −iX
and XZ = −iY to rewrite HTH:

HTH = ei
π
8 · 1

2
(X + Z)

(
cos
(π

8

)
I − i sin

(π
8

)
Z
)

(X + Z)

= ei
π
8 · 1

2

(
cos
(π

8

)
X − sin

(π
8

)
Y + cos

(π
8

)
Z − i sin

(π
8

)
I
)

(X + Z)

= ei
π
8 · 1

2

(
cos
(π

8

)
I + i sin

(π
8

)
Z + i cos

(π
8

)
Y − i sin

(π
8

)
X

−i cos
(π

8

)
Y − i sin

(π
8

)
X + cos

(π
8

)
I − i sin

(π
8

)
Z
)

= ei
π
8

(
cos
(π

8

)
I − i sin

(π
8

)
X
)

We can use this result to rewrite HTHT and THTH.

HTHT = ei
π
4

(
cos
(π

8

)
I − i sin

(π
8

)
X
)(

cos
(π

8

)
I − i sin

(π
8

)
Z
)

= ei
π
4

(
cos2

(π
8

)
I − i sin

(π
8

)
cos
(π

8

)
X − i sin

(π
8

)
cos
(π

8

)
Z + i sin2

(π
8

)
Y
)

= ei
π
4

(
cos2

(π
8

)
I − i sin

(π
8

) [
cos
(π

8

)
X − sin

(π
8

)
Y + cos

(π
8

)
Z
])

THTH = ei
π
4

(
cos
(π

8

)
I − i sin

(π
8

)
Z
)(

cos
(π

8

)
I − i sin

(π
8

)
X
)

= ei
π
4

(
cos2

(π
8

)
I − i sin

(π
8

)
cos
(π

8

)
Z − i sin

(π
8

)
cos
(π

8

)
X − i sin2

(π
8

)
Y
)

= ei
π
4

(
cos2

(π
8

)
I − i sin

(π
8

) [
cos
(π

8

)
X + sin

(π
8

)
Y + cos

(π
8

)
Z
])

We define the vectors n = (cos(π/8),− sin(π/8), cos(π/8)) and m = (cos(π/8), sin(π/8), cos(π/8)). The
corresponding unit vectors are denoted by n̂ and m̂. We define χ by the following equation:

cos
(χ

2

)
= cos2

(π
8

)
Note that χ

2π is an irrational number. This is proven in appendix A. Now, we find the following relations:

HTHT = ei
π
4Rn̂(χ) and THTH = ei

π
4Rm̂(χ)

42

The angle between n̂ and m̂ is equal to the angle between n and m. If we denote this angle by θ, we find:

θ = acos

(
n ·m

||n|| · ||m||

)
≈ 32.6◦

As θ < π
2 , we find when we apply the decomposition theorem of rotations about arbitrary axes:

m =
⌈ π

2θ

⌉
= 3

Hence, for any single qubit gate, we can write its matrix representation U in the following form:

U = eiαRn̂(α4)Rm̂(β3)Rn̂(α3)Rm̂(β2)Rn̂(α2)Rm̂(β1)Rn̂(α1)

Take ε > 0. Then if we can approximate Rn̂(α) and Rm̂(β) for arbitrary α and β up to a distance of ε/7,
we find, if we denote the approximation with an overline:

E

(
Rn̂(α4) ·

3∏
i=1

Rm̂(βi) ·Rn̂(αi), Rn̂(α4)

3∏
i=1

Rm̂(βi)Rn̂(αi)

)

= E(Rn̂(α4), Rn̂(α4)) +

3∑
i=1

(
E(Rm̂(βi), Rm̂(βi)) + E(Rn̂(αi), Rn̂(αi))

)
<

ε

7
+ 3 ·

(ε
7

+
ε

7

)
= ε

Hence, if we are able to find approximations for Rn̂(α) and Rm̂(β), with arbitrary accuracy, then we can
approximate U with arbitrary accuracy as well, up to an unimportant constant. The following lemma covers
just that.

Lemma 4.24: Density of multiples of χ in [0, 2π)
We consider χ defined by the equation

cos
(χ

2

)
= cos2

(π
8

)
Then we define Q the set of all positive multiples of χ modulo 2π. Hence:

Q = {kχ mod 2π : k ∈ N0}

Then Q is dense in [0, 2π).

Proof: First of all, note that χ
2π 6∈ Q. This is proven in appendix A. This implies that a function given by

k 7→ kχ mod 2π is injective. Suppose, namely, that it is not. Then there would exist a q ∈ Q such that
kχ ≡ lχ mod 2π, for k, l ∈ N0 and k 6= l. Hence, (k− l)χ ≡ 0 mod 2π, which implies that (k− l)χ = 2mπ,
with m ∈ Z. But then χ

2π = m
k−l , which would imply that χ

2π ∈ Q. This is a contradiction.

Now, take m ∈ N at random. We divide [0, 2π) into m intervals: [0, 2πm), [2πm ,
4π
m), etc. Now consider the

set Qm = {kχ mod 2π : 0 ≤ k ≤ m, k ∈ N0}. Then Qm ⊆ Q and the number of elements in Qm is m + 1.
Hence, there is at least one interval that at least contains two elements of Qm (this is called the pigeonhole

principle). So, there exists a 0 ≤ k ≤ m− 1, and distinct i, j ∈ {0, . . . ,m} such that 2kπ
m ≤ iχ, jχ < 2(k+1)π

m
mod 2π. Hence, we find |iχ− jχ| < 2π

m mod 2π.

Now we consider two cases. Suppose that iχ > jχ mod 2π and i > j. Then (i − j)χ mod 2π ∈ Q and
hence {k(i− j)χ mod 2π : k ∈ N0} ⊆ Q. Hence, a random point a ∈ [0, 2π) is never further than 2π

m away
from a point in Q.

Now suppose iχ > jχ mod 2π and i < j. Then − 2π
m < (j − i)χ < 0 mod 2π. Furthermore, {k(j − i)χ

mod 2π : k ∈ N0} ⊆ Q. Hence, again, a random point a ∈ [0, 2π) is never further than 2π
m away from a point

in Q.

43

So, in both cases, we find that we can approximate a ∈ [0, 2π) at a distance no larger than 2π
m . As we chose

m at random, we now find that we can approximate a arbitrarily close. So Q is dense in [0, 2π). �

This theorem tells us that for any α ∈ [0, 2π) and ε > 0, we can find a N ∈ N0 such that |α − (Nχ
mod 2π)| < 2ε. Hence:

E
(
Rn̂(α), (HTHT)N

)
= E(Rn̂(α), Rn̂(Nχ mod 2π)) ≤ |α− (Nχ mod 2π)|

2
< ε

Similarly, for any β ∈ [0, 2π), we can find a N ∈ N0 such that |β − (Nχ mod 2π)| < 2ε. This yields:

E
(
Rm̂(β), (THTH)N

)
= E(Rm̂(β), Rm̂(Nχ mod 2π)) ≤ |β − (Nχ mod 2π)|

2
< ε

Hence, we can approximate Rn̂(α) and Rm̂(β) arbitrarily close. This completes the proof that the CNOT,
Hadamard and π/8 gates are universal.

In this chapter, we have proven that we can in principle implement any quantum circuit using only a finite
set of quantum gates. It must be mentioned, though, that it is hard to predict how many times the quantum
gates of this finite set need to be used. It turns out that this is not a very efficient way of implementing
arbitrary quantum gates, so if one wants to invent an efficient algorithm for a quantum computer, then this
person should look for other solutions to implement the circuit.

44

5 Shor’s algorithm

In chapters 2 and 3, we have had a brief introduction into the realm of quantum computing. In chapter 4,
we used this to prove the universality of a discrete set of quantum gates. We saw that a construction using
this set of gates does not necessarily yield an efficient implementation.

In this chapter, we will look at the factorization problem, and particularly at how Shor’s algorithm can
be used to tackle this problem. Moreover, we will prove that with a quantum computer, Shor’s algorithm
provides an efficient way of factoring integers, which is believed to be impossible on a classical computer.

In order to understand how Shor’s algorithm works, we must first elaborate on the techniques that are used
in this algorithm. These will be covered one by one in the following sections. The first section will cover
the quantum Fourier transform (5.1), which is followed by the phase estimation algorithm (5.2). Then we
will continue with the order finding algorithm (5.3), which will finally be implemented in the factorization
algorithm (5.4), invented by Shor.

5.1 Quantum Fourier transform

In physics, the discrete Fourier transform is one of the most frequently used tools to analyze data. Suppose
that this data is given by N complex numbers, denoted by x0, . . . , xN−1 ∈ C. The discrete Fourier transform
maps these numbers to N different complex numbers y0, . . . , yN−1 ∈ C, by the following formula:

yj =
1√
N

N−1∑
k=0

xke
2πijk
N

In quantum computation, this transformation can be used in the following way. Suppose we have an n-qubit
system. Then the state vector of this system can be written as a superposition of the computational basis
states |0〉 through |2n− 1〉. Now interpret all the coefficients of these computational basis states as the data,
and apply the Fourier transform to these coefficients. This operation is referred to as the quantum Fourier
transform. Hence, the quantum Fourier transform has the following effect on an arbitrary state vector, where
yk is defined as before, with N = 2n.

2n−1∑
j=0

xj |j〉 7→
2n−1∑
k=0

yk|k〉

This operation is only allowed if it is unitary, which is proven in the lemma and theorem below.

Lemma 5.1: Sum of the roots of unity
Suppose N ∈ N and ζk = e

2πik
N , with 0 ≤ k ≤ N − 1. Then all ζk’s are referred to as the N th roots of unity,

and they sum to 0:
N−1∑
k=0

e
2πik
N = 0

Proof: Consider the polynomial xN − 1. The roots of this polynomial are precisely the Nth roots of
unity. Hence, according to the fundamental theorem of algebra, one can rewrite xN −1 in the following way:

xN − 1 =

N−1∏
k=0

(
x− e 2πik

N

)
Expanding the brackets on the right side of the equation yields a polynomial of degree N . The linear

45

coefficient of this polynomial equals to the following:

−
N−1∑
k=0

e
2πik
N

But the polynomial on the left and right hand side of the equation are equal, hence their coefficients are
equal as well. So, we find that:

N−1∑
k=0

e
2πik
N = 0

as required. �

Theorem 5.2: Unitarity of the quantum Fourier transform
The quantum Fourier transform, applied to n ∈ N qubits, is a unitary operation.

Proof: Define ω = e
2πi
2n . Then the quantum Fourier transform has the following effect on an arbitrary

quantum state:
2n−1∑
j=0

xj |j〉 7→
2n−1∑
k=0

yk|k〉 =
1√
2n

2n−1∑
k=0

2n−1∑
j=0

xjω
jk

 |k〉
Hence, if we denote the matrix representation of the quantum Fourier transform by U , then U is a 2n × 2n

matrix, with the following entries. (For convenience, we let the indices of the entries run from 0 to 2n − 1.)

Ukj =
1√
2n

ωjk (0 ≤ j, k ≤ 2n − 1)

In order to prove that the quantum Fourier transform is a unitary operation, we must prove that U is a
unitary matrix. In other words, we must prove that UU∗ = U∗U = I. Let’s first consider the entries of U∗.
We will use the following relation: ω∗ = (e

2πi
2n)∗ = e−

2πi
2n = ω−1. We find:

(U∗)jk = U∗kj =
1√
2n

(ω∗)jk =
1√
2n

ω−jk (0 ≤ j, k ≤ 2n − 1)

Hence, we find the following formula for the entries of UU∗:

(UU∗)jk =

2n−1∑
l=0

Ujl(U
∗)lk =

1

2n

2n−1∑
l=0

ωjlω−kl =
1

2n

2n−1∑
l=0

(
ωj−k

)l
(0 ≤ j, k ≤ 2n − 1)

So, if j = k, we find:

(UU∗)jk =
1

2n

2n−1∑
l=0

1l =
1

2n
· 2n = 1

If, on the other hand, j 6= k, we define 1 ≤ m ≤ 2n − 1 such that j − k ≡ m mod 2n. Then we have:

(UU∗)jk =
1

2n

2n−1∑
l=0

(ωm)
l

Note that the additive group generated by m modulo 2n has a least non-zero element, which is the greatest
common divisor of m and 2n. The order of this group is denoted by O:

O =
2n

gcd(2n,m)

46

Hence, we find:

(UU∗)kl =
1

2n
· gcd(2n,m)

O−1∑
l=0

ωgcd(2n,m)l =
1

O

O−1∑
l=0

e
2πil
O = 0

This last summation equals 0 according to the previous lemma. Hence we find that all the elements on the
diagonal of UU∗ are 1 and all the others equal 0. So UU∗ = I. An identical argument shows that U∗U = I
as well. So, U is indeed unitary. �

It is now interesting to see how a computational basis state is affected by the quantum Fourier transform.
For this, we introduce the following notation. For m,n ∈ N0 and j−m, . . . , jn ∈ {0, 1} we define:

(jn . . . j1j0.j−1j−2 . . . j−m)2 =

n∑
k=−m

jk2k

The left hand side is called the binary representation of j ∈ R if the sum on the right hand side equals j.
If we use this notation to express the computational basis states, we observe that for example the following
holds, as we would expect:

|101〉 = |5〉 = |(101)2〉

The result of the quantum Fourier transform, when it is applied to a computational basis state, is investigated
in the following theorem.

Theorem 5.3: Qauntum Fourier transform applied to computational basis states
Suppose we have an n-qubit system. Let j be a random integer between 0 and 2n − 1, and let jn−1 . . . j0 be
its binary representation. When the quantum Fourier transform is applied to |j〉, the result is given by:(

|0〉+ e2πi(0.j0)2 |1〉
)
⊗
(
|0〉+ e2πi(0.j1j0)2 |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi(0.jn−1...j1j0)2 |1〉

)
√

2n

Before giving the actual proof, let’s consider an example. Specifically, let’s have a look at what happens to
|2〉 = |10〉 in a 2-qubit system when the quantum Fourier transform is applied.

We denote the initial state of the system by
∑3
j=0 xj |j〉 and the final state by

∑3
k=0 yk|k〉. We find that

xj = 1 if j = 2 and xj = 0 otherwise. This yields the following values for yk:

yk =

3∑
l=0

xle
2πikl

4 = e
2πi·2·k

4

Hence, the new state |ψ〉 is given by the following expression, where k1k0 denotes the binary representation
of k:

|ψ〉 =

3∑
k=0

yk|k〉 =
1

2

3∑
k=0

e
2πi·2·k

4 |k1k0〉

Expanding the summation now yields:

|ψ〉 =
1

2

(
|00〉+ e

2πi·2·1
4 |01〉+ e

2πi·2·2
4 |10〉+ e

2πi·2·3
4 |11〉

)
The key idea is to split the computational basis states into their single qubit tensor products, and associate
the sign factors with the individual qubit states that have value |1〉, as follows:

|ψ〉 =
1

2

[
|0〉 ⊗ |0〉+ |0〉 ⊗

(
e

2πi·2·1
4 |1〉

)
+
(
e

2πi·2·2
4 |1〉

)
⊗ |0〉+

(
e

2πi·2·2
4 |1〉

)
⊗
(
e

2πi·2·1
4 |1〉

)]

47

Now, notice that this can be written in product form, as follows:

|ψ〉 =
1

2

(
|0〉+ e

2πi·2·2
4 |1〉

)
⊗
(
|0〉+ e

2πi·2·1
4 |1〉

)
Writing 2

4 in binary notation in the exponent yields (0.10)2. Recall that this 10 comes from the original state
to which we are applying the quantum Fourier transform.

|ψ〉 =
1

2

(
|0〉+ e2πi·(0.10)2·2|1〉

)
⊗
(
|0〉+ e2πi·(0.10)2·1|1〉

)
Now in the first factor, the exponent is multiplied by 2, hence the binary representation is shifted to the left
by one digit. Only the fractional part remains, as e2πi equals 1 and vanishes accordingly. Thus:

|ψ〉 =
1

2

(
|0〉+ e2πi·(0.0)2 |1〉

)
⊗
(
|0〉+ e2πi·(0.10)2 |1〉

)
This is exactly the form as predicted by the theorem. The proof below uses the exact same steps, but the
notation is somewhat cumbersome.

Proof: The result follows directly from the definition of the quantum Fourier transform. We denote the

initial state of the system by
∑2n−1
k=0 xk|k〉 and the final state by

∑2n−1
k=0 yk|k〉. If the initial state is |j〉, then

xk equals 1 if k = j and 0 otherwise. Hence, the resulting coefficients yk are:

yk =

2n−1∑
l=0

xle
2πikl
2n = e

2πijk
2n

Hence, the resulting state can be written as follows. In the repeated tensor product, l runs from n− 1 to 0,
with steps of −1.

2n−1∑
k=0

yk|k〉 =
1√
2n

2n−1∑
k=0

e
2πijk
2n |k〉

=
1√
2n

1∑
kn−1=0

· · ·
1∑

k0=0

e
2πij(kn−1...k0)2

2n |kn−1 . . . k0〉

=
1√
2n

1∑
kn−1=0

1∑
k0=0

0⊗
l=n−1

e2πijkl·2
l−n
|kl〉

=
1√
2n

0⊗
l=n−1

[
1∑

kl=0

e2πijkl·2
l−n
|kl〉

]

=
1√
2n

0⊗
l=n−1

[
|0〉+ e2πij·2

l−n
|kl〉
]

=
1√
2n

0⊗
l=n−1

[
|0〉+ e2πi(0.jn−1...j1j0)2·2l |kl〉

]
=

(
|0〉+ e2πi(0.j0)2 |1〉

)
⊗
(
|0〉+ e2πi(0.j1j0)2 |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi(0.jn−1...j1j0)2 |1〉

)
√

2n

as required. �

The above representation of the quantum Fourier transform of a computational basis state is referred to as
the product form. As we can see, taking the Fourier transform of a computational basis state does not yield
an entangled state, but it does leave all qubits in superposition.

48

Using the previous theorem, we can now come up with an efficient implementation of the quantum Fourier
transform performed on n qubits. The idea will be to manipulate the qubits one by one to construct the
product form in steps. The final state of the last qubit, though, will be prepared in the first qubit. Similarly,
the final state of the second to last qubit will be constructed in the second qubit. As a last step, the states
of all qubits are swapped (except perhaps for the middle one if the number of qubits is odd).

We will need the Hadamard gate, and the following set of n gates, with matrix notations denoted by
R1, . . . , Rn:

Rk =

[
1 0

0 e
2πi

2k

]
(1 ≤ k ≤ n)

Note that R1 = Z, and R2 = S and R3 = T .

The construction of the quantum Fourier transform, then, is done as follows. We suppose that the system
of n qubits is initially in one of the compuational basis states, represented by |j〉 = |jn−1 . . . j1j0〉. As the
operation is linear and the computational basis states span the state space, checking the validity of the
operation on the computational basis vectors is sufficient for checking the validity of the operation.

First of all, we apply a Hadamard gate on the first qubit. This yields the following state:(
|0〉+ e2πi(0.jn−1)2 |1〉

)
⊗ |jn−2 . . . j1j0〉

Applying the R2 gate on the first qubit, conditional on the second qubit, yields the following state:(
|0〉+ e2πi(0.jn−1jn−2)2 |1〉

)
⊗ |jn−2 . . . j1j0〉

Repeating this process by applying R3 to the first qubit, conditional on the third qubit, will add another
2πi(0.00jn−3) to the exponent of the |1〉-state of the first qubit. In a similar manner, the state can be
brought into the following form:(

|0〉+ e2πi(0.jn−1...j1j0)2 |1〉
)
⊗ |jn−2 . . . j1j0〉

Note that from the product form, we see that the state of the first qubit is now equal to the state the last
qubit will have to be in at the end of the quantum Fourier transform. We will leave the first qubit like this
until the very end, when we will swap the first and last qubits.

Continuing in a similar manner for the second qubit, we can bring the state to the following form:(
|0〉+ e2πi(0.jn−1...j1j0)2 |1〉

)
⊗
(
|0〉+ e2πi(0.jn−2...j1j0)2 |1〉

)
⊗ |jn−3 . . . j1j0〉

This process can be repeated on all qubits, leaving us with the following state:(
|0〉+ e2πi(0.jn−1...j1j0)2 |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi(0.j1j0)2 |1〉

)
⊗
(
|0〉+ e2πi(0.j0)2 |1〉

)
All that is left to do is swapping the first, second, third, etc. qubits with the last, second to last, third to
last, etc. qubits, respectively. We have already seen a way to implement this at the end of chapter 3, using
three CNOT gates. Hence, we have found a way to implement the quantum Fourier transform. A quantum
circuit showing the process described above is included in figure 5.1.

As we would like to implement this circuit efficiently, it makes sense to have a look at the complexity of this
algorithm. Specifically, if every quantum gate is an operation that takes a certain amount of time, money,
ingenuity, or resource in general, then it makes sense to find the number of gates as a function of the number
of qubits that need to be transformed.

For this implementation of the quantum Fourier transform, we need n gates to prepare the state of the
first qubit. Then we need n − 1 more gates to manipulate the state of the second qubit. In total we need

49

H R2 R3 Rn−1 Rn

H R2 Rn−1

H R2

H|j0〉
|j1〉

...

|jn−3〉
|jn−2〉
|jn−1〉 |0〉+ e2πi(0.j0)2 |1〉

|0〉+ e2πi(0.j1j0)2 |1〉
|0〉+ e2πi(0.j2j1j0)2 |1〉
...

|0〉+ e2πi(0.jn−2...j1j0)2 |1〉
|0〉+ e2πi(0.jn−1...j1j0)2 |1〉

Figure 5.1: Implementation of the quantum Fourier transform, performed on n qubits. The time complexity
of this implementation is O(n2).

n+(n−1)+ · · ·+1 = n(n+1)/2 gates for the first part. Next, we need to perform at most n/2 swaps, each of
which costs 3 CNOT gates. Hence, the complexity of this implementation of the quantum Fourier transform
is given by O(n2). So, it is an efficient algorithm, as it scales polynomially with the number of qubits. If we
take into account that there are N = 2n data points that are transformed, then we see that the complexity
is O(log2(N)). The problem, though, is that the output of the quantum Fourier transform is not readily
accessible. It is “hidden” as the coefficients of the computational basis states, and so the full potential of
the quantum Fourier transform can only be harnessed if that data is used in a smart way afterwards.

As a final remark, note that we can use this result to find an equally efficient algorithm to implement
the inverse quantum Fourier transform. After all, all quantum gates are unitary, and can therefore easily
be reversed. Hence, applying the inverse of all quantum gates above in opposite order yields an efficient
implementation of the inverse quantum Fourier transform.

5.2 Phase estimation algorithm

In this section, we will find the first application of the quantum Fourier transform. In fact, it will be the
most important application for our purposes. The quantum Fourier transform, namely, is used in the phase
estimation algorithm, as is explained in this section.

Suppose we have a system with n+ t qubits. We refer to the first t qubits as the first register, and to the last
n qubits as the second register. There is also an operation with matrix representation U available that acts
on the second register. The precise implementation of this operation is unknown, but we do know that the
vector representation of the state |u〉, which is a state of n qubits, is an eigenvector of U . As U is unitary,
we know that the eigenvalue associated with |u〉 can be written as e2πiφ with 0 ≤ φ < 1. The goal of the
phase estimation algorithm is to find the value of φ. See also figure 5.2.

U

n
|u〉 e2πiφ|u〉

Figure 5.2: If an eigenstate of U , |u〉, is manipulated by the operation U itself, then the resulting state will
only differ by a phase constant, written as e2πiφ. The goal of the phase estimation algorithm is to determine
φ.

The idea is to approximate the value of 2tφ in the t qubits of the first register. First of all, these first t
qubits are put in the computational basis state |0〉, and the second register is prepared in the state |u〉. Then
the first register is put into superposition, using Hadamard gates. Afterwards, the operation with matrix
representation U is performed 2j times, conditional on the (t − j)th qubit. Afterwards, the inverse Fourier
transform is applied to the first register. Measuring the first register now yields an approximation of 2tφ.
See also figure 5.3.

50

H

H

...

H

H

n

U20 U21 U2t−2

U2t−1

FT ∗

|u〉

|0〉
|0〉

...

|0〉
|0〉

|u〉

First register
t qubits

{
Second register

n qubits

Figure 5.3: Implementation of the phase estimation algorithm. The output of the first register is too
complicated to be shown in this figure, but according to theorem 5.5, a measurement in the computational
basis will yield an accurate estimate of 2tφ with high probability.

The initial state of the system is: |0〉⊗t ⊗ |u〉. After performing the Hadamard gates, all qubits of the first
register are in superposition states:(

|0〉+ |1〉√
2

)⊗t
⊗ |u〉 =

1√
2t

(|0〉+ |1〉)⊗t ⊗ |u〉

Now, applying the first conditional operation yields the following state:

1√
2t

(|0〉+ |1〉)⊗(t−1) ⊗ (|0〉+ e2πiφ|1〉)⊗ |u〉

Combining this with all the other conditional operations yields the following state:

1√
2t

(|0〉+ e2πiφ·2
t−1

|1〉)⊗ (|0〉+ e2πiφ·2
t−2

|1〉)⊗ · · · ⊗ (|0〉+ e2πiφ|1〉)⊗ |u〉

Now suppose that φ can be written exactly as (0.φt−1φt−2 . . . φ1φ0)2. Then the state before the inverse
Fourier transform can be written as:

1√
2t

(|0〉+ e2πi(0.φ0)2 |1〉)⊗ (|0〉+ e2πi(0.φ1φ0)2 |1〉)⊗ · · · ⊗ (|0〉+ e2πi(0.φt−1...φ1φ0)2 |1〉)⊗ |u〉

The state of the first register is exactly the product form of theorem 3, hence applying the inverse Fourier
transform yields a computational basis state for the first register. So, the final state becomes:

|φt−1φt−2 . . . φ1φ0〉 ⊗ |u〉

Hence, measuring the first register and dividing the resulting value by 2t yields the exact value of φ with
probability 1. So, if φ can be written exactly as (0.φt−1φt−2 . . . φ1φ0)2, then the phase estimation algorithm
behaves as expected.

The interesting thing is what happens when the binary form of φ does not terminate after t digits. Then
one would hope that measuring the first register would yield some approximating value of 2tφ, just like in
the exact case. An example is given in figure 5.4, where φ = 0.33 is approximated with t = 4 qubits.

The argument can be made rigurous by bounding the total probability of the tails of the probability distribu-
tion. This is done in the following theorem. First of all, though, we must determine when an approximating
value is close. This is done according to the following definition.

51

Figure 5.4: Histogram of the approximation of φ after completion of the phase estimation algorithm. There
is a high probability that the approximation of φ will be close to its original value of φ = 0.33. The peak is
located at 0.3125.

Definition 5.4: Modulus modulo N
Suppose N ∈ N. Then for any integer n ∈ Z, we define its modulus modulo N as follows:

||n||N = min
m∈Z
{|m| : n ≡ m mod N}

Furthermore, if we have two integers n1, n2 ∈ Z, then the distance between n1 and n2 modulo N is defined
by ||n1 − n2||N .

For example, we find that ||7− 1||8 = 2. This can be visualized by drawing 1 and 7 on a cyclic number line
that runs from 0 to 7 periodically. The smallest distance between 1 and 7 is then equal to 2, as predicted
by the expression ||7− 1||8 = 2.

It follows trivially that for any N ∈ N and n ∈ Z, we have ||n||N ≤ |n|. Note also that the triangle inequality
holds for this notion of a distance. Namely, suppose that we have N ∈ N and n1, n2, n3 ∈ Z. Then:

||n1 − n3||N = min
m1∈Z

{|m1| : n1 − n3 ≡ m1 mod N}

= min
m1∈Z

{|m1| : n1 − n2 + n2 − n3 ≡ m1 mod N}

= min
m2,m3∈Z

{|m2 +m3| : n1 − n2 ≡ m2 mod N ∧ n2 − n3 ≡ m3 mod N}

≤ min
m2∈Z

{|m2| : n1 − n2 ≡ m2 mod N}+ min
m3∈Z

{|m3| : n2 − n3 ≡ m3 mod N}

= ||n1 − n2||N + ||n2 − n3||N

The following theorem, now, uses this distance to characterize the proximity of the approximation of φ to
the real value of φ.

52

Theorem 5.5: Executing the phase estimation algorithm with a fixed accuracy
Let 0 ≤ φ < 1, m,n ∈ N and 0 < ε < 1. Suppose one has an n-qubit quantum gate U , with eigenvalue
e2πiφ. To approximate φ to within a range of 2−m modulo 1 with a probability of at least 1 − ε, it suffices
to execute the phase estimation algorithm with at least

t = m+

⌈
log2

(
2 +

1

2ε

)⌉
qubits in the first register.

Proof: The case where φ can be exactly written as (0.φt−1 . . . φ1φ0)2 has already been dealt with above.
Therefore, we will focus on the case where the binary representation of φ does not terminate after t digits.

We start with the last exact result that we obtained above, which is the state before the inverse Fourier
transform:

1√
2t

(|0〉+ e2πiφ·2
t−1

|1〉)⊗ (|0〉+ e2πiφ·2
t−2

|1〉)⊗ · · · ⊗ (|0〉+ e2πiφ|1〉)⊗ |u〉

Expanding the parentheses yields:

1√
2t

2t−1∑
k=0

e2πiφk|k〉

⊗ |u〉
Note that the inverse Fourier transform of a computational basis state is given by a formula similar to the
ones derived in the previous section. It can be derived easily by looking at the matrix elements of U∗ in the
proof of theorem 5.2.

|k〉 7→ 1√
2t

2t−1∑
l=0

e−
2πikl
2t |l〉

Substituting this yields the following final state of the system:

1

2t

2t−1∑
k=0

e2πiφk
2t−1∑
l=0

e−
2πikl
2t |l〉

⊗ |u〉
As both sums are finite, they can be interchanged, yielding the following representation of the final state of
the system:

1

2t

2t−1∑
l=0

2t−1∑
k=0

e2πiφke−
2πikl
2t |l〉

⊗ |u〉
Let (0.φt−1 . . . φ1φ0φ−1 . . .)2 be the binary representation of φ. Then define b = (φt−1 . . . φ1φ0)2. Hence, b
is the largest integer below 2tφ. So, 0 ≤ 2tφ− b < 1, which implies 0 ≤ φ− 2−tb < 2−t.

We expect that the state |b〉 has the largest coefficient in the summation above, as b is a good approximation
of 2tφ. Let’s define the coefficients of the computational basis states in the final state of the system relative
to b, so we define αl as the coefficient of |m〉 with b + l ≡ m mod 2t. Hence, the final state of the system
can be written as:

1

2t

2t−1∑
l=0

2t−1∑
k=0

e2πiφke−
2πik(b+l)

2t |(b+ l) mod 2t〉

⊗ |u〉 =

2t−1∑
l=0

αl|(b+ l) mod 2t〉 ⊗ |u〉

where αl can be rewritten using the formula
∑m
n=0 r

n = 1−rm+1

1−r for r 6= 1. Note that this criterion is met

because 2tφ 6= b, as we are only investigating the case where φ does not have an exact binary representation

53

in t digits.

αl =
1

2t

2t−1∑
k=0

e2πiφke−
2πik(b+l)

2t =
1

2t

2t−1∑
k=0

(
e

2πi(2tφ−(b+l))

2t

)k
=

1− e2πi(2tφ−(b+l))

2t
(

1− e
2πi(2tφ−(b+l))

2t

)
Note that we can bound the modulus of the numerator of αl quite easily using the triangle inequality:

|1− e2πi(2
tφ−(b+l))| ≤ 1 + |e2πi(2

tφ−(b+l))| = 1 + 1 = 2

Hence, we obtain:

|αl| ≤
2

2t
∣∣∣1− e 2πi(2tφ−(b+l))

2t

∣∣∣
For θ ∈ [−π, π], we find:

|1− eiθ|2 = (1− cos θ)2 + sin2 θ = 2− 2 cos θ = sin2 θ

2

Taking the square root on both sides:

|1− eiθ| =
∣∣∣∣sin θ2

∣∣∣∣ ≥ 2|θ|
π

As we have 0 ≤ 2tφ− b < 1, we find that for −2t−1 + 1 ≤ l ≤ 2t−1, the following holds:

−π =
2π · (0− 2t−1)

2t
≤ 2π((2tφ− b)− l)

2t
≤ 2π(1− (−2t−1 + 1))

2t
= π

So, for −2t−1 + 1 ≤ l ≤ 2t−1, we find:

|αl| ≤
2

2t ·
2
∣∣∣ 2π((2tφ−b)−l)

2t

∣∣∣
π

=
2π

2 · 2π|(2tφ− b)− l|
=

1

2|(2tφ− b)− l|

Now, we can find a bound on the probability that a measurement of the first register yields a value M , such
that ||M − b||2t > e, where e > 1. This is done by considering both tails of the distribution separately.

P (||M − b||2t > e) =

−(e+1)∑
l=−2t−1+1

|αl|2 +

2t−1∑
l=e+1

|αl|2

≤ 1

4

 −(e+1)∑
l=−2t−1+1

1

((2tφ− b)− l)2
+

2t−1∑
l=e+1

1

((2tφ− b)− l)2

54

Using 0 ≤ 2tφ− b < 1, we find that:

P (||M − b||2t > e) ≤ 1

4

 −(e+1)∑
l=−2t−1+1

1

(0− l)2
+

2t−1∑
l=e+1

1

(1− l)2

≤ 1

4

 −(e+1)∑
l=−2t−1+1

1

l2
+

2t−1∑
l=e+1

1

(l − 1)2

≤ 1

4

2t−1−2∑
l=e

1

l2
+

2t−1−1∑
l=e

1

l2

 ≤ 1

2

2t−1−1∑
l=e

1

l2

≤ 1

2

∫ 2t−1−1

e−1

1

l2
dl ≤ 1

2

∫ ∞
e−1

1

l2
dl =

1

2

[
−1

l

]∞
e−1

=
1

2
·
[
0 +

1

e− 1

]
=

1

2(e− 1)

Hence, if we calculate φ = 2−tM , then φ is an approximation of φ, such that with a probability of at least
1− 1

2(e−1) :

||φ− φ||1 = 2−t||2tφ− 2tφ||2t ≤ 2−t(||M − b||2t + ||b− 2tφ||2t) < 2−t(e+ 1)

Suppose now that we want to approximate φ up to an accuracy of 2−m modulo 1, with a probability of
success of at least 1− ε. Then the probability of failure must not exceed ε, hence ε ≥ 1

2(e−1) , or rewriting:

e ≥ 1 +
1

2ε

On the other hand, the approximation must be good enough, which can only be ensured if 2−t(e+1) ≤ 2−m,
or:

e ≤ 2t−m − 1

Hence, it is only possible to find a suitable value for e if:

1 +
1

2ε
≤ 2t−m − 1

Namely, if this relation holds, then the left hand side is greater than 1, and thus the value of the right hand
side exceeds 1 as well. Hence, t > m, so the right hand side is an integer. So, if the above inequality holds,
e = 2t−m − 1 is a suitable choice.

Rewriting the inequality yields:

2t−m ≥ 2 +
1

2ε
⇔ t ≥ m+ log2

(
2 +

1

2ε

)
Hence, it is sufficient to choose t according to the following formula:

t = m+

⌈
log2

(
2 +

1

2ε

)⌉
This completes the proof. �

We have now found a way to approximate φ with arbitrary accuracy and arbitrary small probability of failure.
This does require, though, that we are able to prepare the eigenstate |u〉 of the operation denoted with matrix
representation U . In practice, however, we are generally not able to construct such an eigenstate easily, so

55

it is a good idea to have a look at what happens when we apply the phase estimation to a superposition of
eigenstates of U . This is done in the following theorem.

Theorem 5.6: Applying the phase estimation algorithm to a superposition of eigenstates
Let m,n ∈ N and 0 < ε < 1. Suppose one has an n-qubit operator U , with at least k eigenstates |u1〉 through
|uk〉 and corresponding eigenvalues e2πiφ1 through e2πiφk with φ1, . . . , φk ∈ [0, 1). Define p as the smallest
distance between φ1 and φj when calculating modulo 1, so:

p = min
2≤j≤k

||φ1 − φj ||1

Also, suppose p ≥ 2−m+1. Furthermore, suppose that the phase estimation algorithm is applied with the
number of qubits in the first register defined as follows:

t = m+

⌈
log2

(
2 +

1

2ε

)⌉
Suppose also that the system starts out in the following state:

|0〉 ⊗ (c1|u1〉+ · · ·+ ck|uk〉)

Then the probability of finding an approximation of φ1, denoted by φ1 within a proximity of 2−m modulo 1
is lower bounded by the following formula:

P (||φ1 − φ1||1 ≤ 2−m) ≥ |c1|2(1− ε)− (4 + ln(2t−m − 2))(|c2|+ · · ·+ |ck|) · |c1|
2t(p− 2−m)− 1

Proof: For every integer j between 1 and n, we define bj as the largest integer below 2tφj , as before.

Furthermore, for all integers j and l between 1 and n and 0 and 2t − 1, respectively, we define α
(j)
l as the

coefficient of the basis state |bj + l mod 2t〉, had |uj〉 been the original state of the system. Hence, we find
that the final state of the first register before measurement is given by:

c1

(
α
(1)
−b1 |0〉+ · · ·+ α

(1)
2t−1−b1 |2

t − 1〉
)

+ · · ·+ ck

(
α
(k)
−bk |0〉+ · · ·+ α

(k)
2t−1−bk |2

t − 1〉
)

Recall that for any −2t−1 + 1 ≤ l ≤ 2t−1 and j, α
(j)
l can be bounded in the following way, as long as we

require |l| > 1: ∣∣∣α(j)
l

∣∣∣ ≤ 1

2|2tφ− bj − l|
≤ 1

2(|l| − |2tφ− bj |)
≤ 1

2(|l| − 1)

We also borrow the choice of e from the previous theorem: e = 2t−m−1. Now, define the following constant:

µ = min
2≤j≤k

||b1 − bj ||2t − e

Do note that the value of bi is related to the one of φi by 0 ≤ 2tφi − bi < 1. A similar relation for bj and φj
holds. So, we find:

2t||φi − φj ||1 = ||2tφi − 2tφj ||2t

≤
∣∣∣∣∣∣∣∣2tφi − (bi +

1

2

)∣∣∣∣∣∣∣∣
2t

+

∣∣∣∣∣∣∣∣(bi +
1

2

)
−
(
bj +

1

2

)∣∣∣∣∣∣∣∣
2t

+

∣∣∣∣∣∣∣∣2tφj − (bj +
1

2

)∣∣∣∣∣∣∣∣
2t

≤
∣∣∣∣2tφi − (bi +

1

2

)∣∣∣∣+ ||bi − bj ||2t +

∣∣∣∣2tφj − (bj +
1

2

)∣∣∣∣
≤ 1

2
+ ||bi − bj ||2t +

1

2
= ||bi − bj ||2t + 1

56

Rewriting this, we obtain ||bi − bj ||2t ≥ 2t||φi − φj ||1 − 1. This yields:

µ ≥ 2t min
2≤j≤k

||φ1 − φj ||1 − 1− e = 2tp− 1− 2t−m + 1 = 2t(p− 2−m)

By now applying p ≥ 2−m+1, we can make rigorous that µ > 1, which we will need later on. We use that
our choice of t yields t > m.

µ ≥ 2t(p− 2−m) ≥ 2t(2−m+1 − 2−m) = 2t−m > 1

We now derive a lower bound for the probability of finding φ1 within a proximity of 2−m modulo 1. Again
we define M to be the result of the measurement of the first register. The inequality (a− b)2 ≥ a2 − 2ab for
a, b > 0 is used, among some results from the previous theorem.

P (||b1 −M ||2t ≤ e) =
∑

l∈{l:||b1−l||2t≤e}

∣∣∣c1α(1)
l−b1 + · · ·+ ckα

(k)
l−bk

∣∣∣2
≥

∑
l∈{l:||b1−l||2t≤e}

(∣∣∣c1α(1)
l−b1

∣∣∣− (∣∣∣c2α(2)
l−b2

∣∣∣+ · · ·+
∣∣∣ckα(k)

l−bk

∣∣∣))2
≥

∑
l∈{l:||b1−l||2t≤e}

(∣∣∣c1α(1)
l−b1

∣∣∣2 − 2
∣∣∣c1α(1)

l−b1

∣∣∣ (∣∣∣c2α(2)
l−b2

∣∣∣+ · · ·+
∣∣∣ckα(k)

l−bk

∣∣∣))

≥
∑

l∈{l:||b1−l||2t≤e}

(∣∣∣c1α(1)
l−b1

∣∣∣2 − 2
∣∣∣c1α(1)

l−b1

∣∣∣ (|c2|
2(||l − b2||2t − 1)

+ · · ·+ |ck|
2(||l − bk||2t − 1)

))

≥
∑

l∈{l:||b1−l||2t≤e}

(∣∣∣c1α(1)
l−b1

∣∣∣2 − 2
∣∣∣c1α(1)

l−b1

∣∣∣ · |c2|+ · · ·+ |ck|
2(µ− 1)

)

≥
∑

l∈{l:||b1−l||2t≤e}

(
|c1|2

∣∣∣α(1)
l−b1

∣∣∣2 − |c2|+ · · ·+ |ck|
µ− 1

· |c1| ·
∣∣∣α(1)
l−b1

∣∣∣)

≥ |c1|2(1− ε)− (|c2|+ · · ·+ |ck|) · |c1|
µ− 1

·
∑

l∈{l:||b1−l||2t≤e}

∣∣∣α(1)
l−b1

∣∣∣
≥ |c1|2(1− ε)− (|c2|+ · · ·+ |ck|) · |c1|

2t(p− 2−m)− 1
·

∑
l∈{l:||b1−l||2t≤e}

∣∣∣α(1)
l−b1

∣∣∣
We can now bound the sum that remains in the following way. We use that |αl(1)| ≤ 1, as α

(1)
l would be a

coefficient of the final state of the system, if |u1〉 were the input of the algorithm.

∑
l∈{l:||b1−l||2t≤e}

∣∣∣α(1)
l−b1

∣∣∣ =

e∑
l=−e

∣∣∣α(1)
l

∣∣∣ ≤ 3 +

−2∑
l=−e

∣∣∣α(1)
l

∣∣∣+

e∑
l=2

∣∣∣α(1)
l

∣∣∣
≤ 3 + 2

e∑
l=2

1

2(|l| − 1)
= 3 +

e∑
l=2

1

l − 1

= 3 +

e−1∑
l=1

1

l
≤ 3 + 1 +

∫ e−1

1

1

l
dl = 4 + [ln(l)]

e−1
1

= 4 + ln(e− 1) = 4 + ln
(
2t−m − 2

)
So, we can now complete our lower bound:

P (||b1 −M ||2t ≤ e) ≥ |c1|2(1− ε)− (4 + ln(2t−m − 2))(|c2|+ · · ·+ |ck|) · |c1|
2t(p− 2−m)− 1

57

Now define our approximation φ1 by M divided by 2t. If we now find ||b1 −M ||2t ≤ e, we have:

||φ1 − φ1||1 = 2−t||2tφ− 2tφ||2t = 2−t||M − 2tφ||2t ≤ 2−t(||M − b1||2t + ||b1 − 2tφ||2t)
≤ 2−t(||M − b1||2t + |b1 − 2tφ|) < 2−t(e+ 1) = 2−t · 2t−m = 2−m

So, we find:

P (||φ1 − φ1||1 ≤ 2−m) ≥ |c1|2(1− ε)− (4 + ln(2t−m − 2))(|c2|+ · · ·+ |ck|) · |c1|
2t(p− 2−m)− 1

Hence, we have proven the theorem. �

The bound given in the previous theorem need not be very strict. Frequently, one will find that a few qubits
less than the proposed amount will still yield a probability of success in the vicinity of |c1|2(1− ε).

5.3 Order-finding algorithm

Suppose that we have two coprime positive integers, x,N ∈ N, with x < N . Then gcd(x,N) = 1. The order
of x modulo N is defined by the smallest positive integer r such that xr ≡ 1 mod N . For example, the
order of 5 modulo 7 is equal to 6, as 56 = 15625 ≡ 1 mod 7 and 5n 6≡ 1 mod 7 for n = 1, . . . , 5.

First of all, we determine that such an r always exists as long as gcd(x,N) = 1. Therefore, we consider the
group of numbers coprime to N .

Theorem 5.7: Group structure of coprime numbers
Take N ∈ N, and define the set CN as the set of numbers strictly smaller than N that are coprime to N :

CN = {n ∈ N : n < N ∧ gcd(n,N) = 1}

Then CN is a group under multiplication modulo N .

Proof: The identity element of CN is 1, and modular multiplication is also trivially associative. Sup-
pose that a, b ∈ CN . Then gcd(a,N) = gcd(b,N) = 1, hence gcd(ab,N) = 1. So, by Bézout’s identity, we
find that there exist u, v ∈ Z, such that abu + vN = 1. Hence, abu ≡ 1 mod N . Suppose now ab 6∈ CN .
Then ab and N have a common divisor, hence abu also has a common divisor with N . But then abu 6≡ 1
mod N , hence we find a contradiction. So ab ∈ CN . Thus, CN is closed under multiplication modulo N .

Now, it suffices to show that every element n ∈ CN has a multiplicative inverse. By Bézout’s identity, we
know that gcd(n,N) = 1 implies that ∃u, v ∈ Z such that un + vN = 1. Hence, un ≡ 1 mod N . But
then u mod N is a multiplicative inverse of n modulo N . If u were not coprime to N , then we would have
gcd(u,N) = p > 1, hence gcd(un,N) ≥ p. But then un 6≡ 1 mod N , hence u must be coprime to N . So
u ∈ CN . This completes the proof. �

It now follows directly that as CN is finite, its subgroup generated by x is also finite. Hence, the order of this
subgroup, denoted by r, is finite, yielding xr ≡ 1 mod N . Do also note that there exists a multiplicative
inverse of x modulo N , conveniently denoted by xr−1 mod N .

For future notational purposes, the number of bits needed to represent N is defined by L: L = blog2(N)c+1.

Finding the order of a number is not a very straightforward task. Rather, it is believed to be a hard problem
on classical computers, as an algorithm polynomial in L has not been discovered. However, a quantum circuit
performing this task in polynomial time has been found, which seems to indicate that quantum computers are
conceptually more powerful than classical computers. The order-finding algorithm for quantum computers
is the subject of this section.

First of all, we will give an overview of how the phase estimation algorithm, covered in the previous section,
can be used to find orders and we will also consider the probability that the algorithm succeeds. Next, we

58

will have a closer look at the precise implementation of the algorithm as a quantum circuit. Then, we will
elaborate on the mathematical process of finalizing the result.

5.3.1 Principle behind the quantum circuit

To find the order of x modulo N , we define the operator U that acts on L qubits. For any state |j〉 with
0 ≤ j ≤ N − 1, we want the operation to have the following effect:

U |j〉 = |xj mod N〉 (0 ≤ j ≤ N − 1)

Note that the effect of U on the basis states |j〉 where N ≤ j ≤ 2L − 1 is not specified. Hence it does not
matter where these states are being mapped to by U , as long as U is a unitary operation. One could choose
to map these states to themselves, so U |j〉 = |j〉 for N ≤ j ≤ 2L − 1, but for our purposes, it suffices to
assume that the mapping is unitary.

The operation U is invertible, as we have seen in theorem 7 that x has a multiplicative inverse modulo N ,
namely xr−1 mod N . Hence, applying the operation |j〉 7→ |xr−1j mod N〉 for any 0 ≤ j ≤ N − 1 would
lead to an inverse operation of U . As U only cycles computational basis states, the length of any state vector
remains unaltered, hence the operation is indeed unitary, so it can be implemented in a quantum circuit.

Even though we are trying to find the order r of x modulo N , we know that it exists and that its value is
smaller than or equal to N . Now we define the states |u0〉, . . . , |ur−1〉:

|us〉 =
1√
r

r−1∑
k=0

e−
2πiks
r |xk mod N〉 (s = 0, . . . , r − 1)

These r states are all eigenstates of U , because for any integer s that obeys 0 ≤ s ≤ r − 1, we find:

U |us〉 =
1√
r

r−1∑
k=0

e−
2πiks
r |xk+1 mod N〉 =

1√
r

r−1∑
k=0

e−
2πi(k−1)s

r |xk mod N〉

= e
2πis
r · 1√

r

r−1∑
k=0

e−
2πiks
r |xk mod N〉 = e

2πis
r |us〉

The real use of these states follows from the following relation. In its derivation, lemma 5.1 is used.

1√
r

r−1∑
s=0

|us〉 =
1

r

r−1∑
s=0

r−1∑
k=0

e−
2πiks
r |xk mod N〉

=
1

r

r−1∑
k=0

(
r−1∑
s=0

e−
2πiks
r

)
|xk mod N〉

=
1

r
· r|x0 mod N〉 = |1〉

So, the state |1〉 is a superposition of r eigenstates of U :

|1〉 =
1√
r

(|u0〉+ · · ·+ |ur−1〉)

Hence, we can now apply the phase estimation algorithm on |1〉. We expect to obtain a value close to s
r for

some integer s between 0 and r − 1. Using the results from the previous section, we can find a lower bound
on the probability that we find such a value within a given proximity. Suppose we use t qubits in the first

59

register, where t is given by the following formula and 0 < ε < 1 can be chosen in order to obtain the desired
accuracy.

t = 2L+ 1 +

⌈
log2

(
2 +

1

2ε

)⌉
We know that all the values of φ are evenly spaced, so when we apply theorem 6, we find p = 1

r . This yields

an approximation φ close to 0
r with at least the following probability. Here, the inequality r ≤ N ≤ 2L is

used.

P
(
||φ− 0||1 ≤ 2−2L−1

)
≥ 1

r
(1− ε)−

(4 + ln(2t−2L−1 − 2)) · r−1√
r
· 1√

r

2t(1
r − 2−2L−1)− 1

≥ 1

r
(1− ε)−

(4 + ln(2t−2L−1)) · r−1r
2t(2−L − 2−2L−1)− 1

≥ 1

r
(1− ε)− 4 + (t− 2L− 1) ln(2)

2t−L − 2t−2L−1 − 1

≥ 1

r
(1− ε)− 4 + (t− 2L− 1) ln(2)

2t−L−1

≥ 1

r
(1− ε)−

4 +
⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2L · 2dlog2(2+ 1
2ε)e

≥ 1

r

(
1− ε−

4 +
⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2dlog2(2+ 1
2ε)e

)

The probability that the approximation is equally close to one of the other values s
r , with s integer, is

identical. So, we find that the probability that the phase estimation algorithm successfully returns an
approximation of s

r within a range of 2−2L−1 is lower bounded by:

P (success) ≥ 1− ε−
4 +

⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2dlog2(2+ 1
2ε)e

Numerical analysis of this bound yields that it is positive for ε < 0.24. For values of ε larger than this, the
probability of success is probably still quite large, but the bounds applied above are not strict enough for us
to be able to say anything about this probability.

Notice in addition that this bound can be chosen arbitrary close to 1, for ε sufficiently small. Hence, the
more qubits are used in the first register, the greater the probability of successfully finding an approximation
φ that approximates a value of s

r for some integer s between 0 and r − 1, within the vicinity of 2−2L−1.

From the approximation of s
r with 0 ≤ s ≤ r − 1, we can try to determine the value of r. This can be

accomplished using the continued fraction expansion, and will be covered in section 5.3.3.

5.3.2 Implementation of the quantum circuit

In the previous subsection, we used the phase estimation algorithm to find approximations of the eigenvalues
of the operator U . To implement this phase estimation algorithm, though, recall from figure 5.3 that we
need to implement controlled U2j quantum gates, where 0 ≤ j ≤ t − 1. The efficiency of the order finding
algorithm will eventually hinge partially on an efficient implementation of these quantum gates, which we
set out to find in this section. The approach is largely based on [5].

We will first consider addition with quantum gates. Next, we will investigate modulo addition and multipli-
cation. Finally, we will derive an implementation for the exponentiation that is needed.

60

First of all, let’s have a look at what happens when we add two binary numbers. Suppose we have two
n-bit integers a and b, with binary representation (an−1 . . . a0)2 and (bn−1 . . . b0)2. Suppose their sum is the
integer d. Then d is at most n+ 1 bits in length, so it has binary representation (dn . . . d0)2. In calculating
d, we typically start with its last digit. It is given by: d0 = a0 + b0 mod 2. Next, we determine whether an
overflow occurred, hence we define a carry bit, c1, as follows:

c1 =

{
0, a0 + b0 < 2
1, a0 + b0 ≥ 2

Then, we calculate the following digit: d1 = a1 + b1 + c1 mod 2. Next, we calculate the following carry bit,
c2, by checking if a1 + b1 + c1 equaled or exceeded 2. Continuing in this manner, we calculate all results,
until we find that dn+1 = cn+1. An example of this algorithm is shown in figure 5.5.

Bit 5 4 3 2 1 0
c 1 1 1 0 0 0
a 1 0 1 1 0
b 0 1 1 0 1 +
d 1 0 0 0 1 1

Figure 5.5: Example of the addition algorithm. The 5-bit numbers a and b are added and their result is
denoted by the 6-bit number d. In the row denoted by c, the carry bits are shown.

Implementing a quantum circuit to perform the addition of two n-bit numbers a and b is done in a similar
way. We first introduce the carry and sum gates depicted in figure 5.6. Note that the matrix representations
of these gates are Hermitian, hence the inverse equals the operation itself.

C = S =

Figure 5.6: This figure shows the implementation of the carry and sum gates. The carry gate takes the top
three qubits and checks if two or more are 1. If so, then the bottom one is flipped. The sum gate sums the
top two qubits, and checks if the result is 1 mod 2. If so, then the bottom qubit is flipped.

The addition algorithm is now implemented using these gates, as shown in figure 5.7. Three registers are
used, with n, n + 1 and n qubits respectively. The first and second registers contain the values of a and b,
respectively. The third register is set to all zeros. Then, first of all, all carry bits are calculated and stored
in the third register. Then, the actual summation is performed, and simultaneously, all carry bits are reset
to 0. In summary, the addition algorithm maps the state |a〉 ⊗ |b〉 ⊗ |0〉 to the state |a〉 ⊗ |a+ b〉 ⊗ |0〉.

The addition algorithm takes 2n− 1 C-gates, and n S-gates. As the carry and sum gates only take a finite
number of gates to implement, we find that the total time complexity of the addition algorithm is O(n).

Finally, note that the reverse of this algorithm provides an implementation for substraction, so rather than
+∗, we will denote the inverse of this sequence of quantum gates by −. Hence, the substraction operation
will map the state |a〉 ⊗ |b〉 ⊗ |0〉 to |a〉 ⊗ |a − b mod 2n+1〉 ⊗ |0〉, as long as a and b are n-bit numbers.
If b > a, then we find −2n < a − b < 0, so the most significant qubit of the second register will be set
upon completion of the algorithm. If we now use this qubit as a control qubit for other operations, we can
implement operations conditional on b > a, which will prove to be useful in the algorithms to come.

Now suppose we want to perform addition modulo N of two numbers a and b, which are both smaller than
N . Recall that N has L bits, so a and b are also two L-bit numbers. If N is a power of 2, then we can simply
discard the most significant bit. If not, then we will need a more ingenious solution, which is presented in

61

|a〉

|b〉

|a〉

|a+ b〉

n

n+ 1 + =

c0 = 0
a0
b0
c1 = 0
a1
b1
c2 = 0
...

cn−2 = 0
an−2
bn−2
cn−1 = 0
an−1
bn−1
bn = 0

C

C

C S

C S

C S

C S

Figure 5.7: Implementation of the quantum circuit that performs addition. The qubits that comprise
the three registers are shown in alternating order in the right figure. The circuit takes |a〉 ⊗ |b〉 ⊗ |0〉 to
|a〉 ⊗ |a+ b〉 ⊗ |0〉, where a and b are two n-bit numbers.

figure 5.8. We use a gate N , which maps the state |0〉 to |N〉 and vice versa. It can be constructed using
CNOT gates only. In this way, we see that N is hardcoded in our quantum algorithm.

n

n

+
(N)

|a〉

|b〉

|a〉

|a+ b mod N〉
=

|0〉

|0〉

|b〉

|a〉

|0〉

|0〉

|a+ b mod N〉

|a〉

L

L+ 1

L

+

N

−
N

+

N

− +

N

Figure 5.8: The implementation of modular addition. The n-bit integers a and b are added modulo N ,
and the result is stored in the second register. Note that the actual algorithm appends a qubit to the
second register, but as both the input and the output can be represented by n bits, it is not shown in the
abbreviated form. The N gate maps the state |0〉 to |N〉 and back. The CNOT gates are controlled using
the most significant qubit of the second register.

The basic idea of the algorithm is the following. Suppose we have two n-bit numbers, a and b. We first add
both numbers using the quantum addition circuit. Then we substract N , and check if the result a+ b−N
is greater than or equal to 0. If this is not the case, we set an external qubit indicating that an overflow
occurred. Only if this external qubit is set, we add N back again. Finally, we reset the external qubit so
that we can use it again in future steps. In summary, the algorithm maps the state |a〉 ⊗ |b〉 to the state
|a〉 ⊗ |a+ b mod N〉, as long as a and b are smaller than N themselves.

The algorithm uses 6 additions, four N -operations, and a constant amount of other operations. Like the
addition algorithm, the N -gate also has time complexity O(L), so we find that the total time complexity of
the modulo addition algorithm is O(L).

This quantum circuit obviously also has a reverse implementation, which maps the state |a〉⊗|b〉 to the state
|a〉 ⊗ |a− b mod N〉. This algorithm will conveniently be referred to as substraction modulo N , and the +
sign will be changed to − accordingly.

We now turn our attention to controlled multiplying modulo N by a fixed constant, a. More precisely, we
are looking for a function that, if the control qubit is set, takes the state |k〉 ⊗ |0〉 to the state |k〉 ⊗ |ak
mod N〉, where 0 ≤ k ≤ N − 1. If, on the other hand, the control qubit is cleared, then the state |k〉 ⊗ |0〉
should be mapped to |k〉 ⊗ |k〉 for 0 ≤ k ≤ N − 1.

62

We first define the copy operator, as shown in figure 5.9, as we will need it later on in the algorithm.

|c〉

|x〉

|0〉

|c〉

|x〉

|y〉
n

n

↓
=

0
0

0
0

x0
x1

xn−2
xn−1

c

y0
y1

yn−2
yn−1

x0
x1

xn−2
xn−1

c

Figure 5.9: Implementation of the copy operation. If the control bit is cleared, then the contents of the
second register are copied to the third register. Otherwise, the third register is left at |0〉. So, if c is set,
y = 0, and if c is cleared, y = x.

Next, all values 2ja mod N are calculated for 0 ≤ j ≤ L − 1. This can be done efficiently on a classical
computer, using the method of modular multiplication.

Now, we can give an implementation of the controlled multiplication modulo N circuit, as shown in figure
5.10. The idea is to calculate ak using repetitive addition, as in this formula:

ak mod N = (kL−1 . . . k0)2a mod N = k0a+ k1 · 2a+ · · ·+ kL−12L−1a mod N

Note that the values of 2ja mod N we just calculated, are hardcoded into the program. The algorithm
performs L modular additions, and 2L hardcoded gates, so the time complexity is given by O(L2).

L

L

· a
(N)

|c〉

|k〉

|0〉

|c〉

|k〉

|y〉

=

|c〉

|k〉

|0〉

|0〉

|c〉

|k〉

|y〉

|0〉
L

L

L

a

+
(N)

a 2L−1a mod N

+
(N)

2L−1a mod N

↓

Figure 5.10: Implementation of modular multiplication by a fixed constant a modulo N . The quantum
circuit takes the state |1〉 ⊗ |k〉 ⊗ |0〉 to the state |1〉 ⊗ |k〉 ⊗ |ak mod N〉, and the state |0〉 ⊗ |k〉 ⊗ |0〉 is
mapped to |0〉 ⊗ |k〉 ⊗ |k〉. Hence, y is equal to ak mod N if c is set, and equal to k if c is cleared.

This operation also has an inverse, which will be denoted by division modulo N . All multiplication symbols,
·, will be replaced by division symbols, /, if the reversed implementation is referred to. Do note, though,
that the operation itself does not exactly resemble division of the numerical values of the registers. Rather,
if a state |k〉 ⊗ |ak mod N〉 is divided by a modulo N , then we obtain |k〉 ⊗ |0〉.

We now arrive at the point that we can give an implementation of the controlled U2j operation. First of all,
we determine the value of x2

j

mod N . This can again be done in an efficient way using a classical computer,
with the method of modular exponentiation. Moreover, we are going to need the inverse, denoted by x−2

j

mod N . This be efficiently found using the extended Euclid’s method.

An implementation of the controlled U2j gate is given in figure 5.11. The idea is that first the state
|1〉⊗|k〉⊗|0〉 is mapped to |1〉⊗|k〉⊗|x2jk mod N〉. Then, the second and third registers are swapped, yielding

63

the state |1〉 ⊗ |x2jk mod N〉 ⊗ |k〉. Note that this can also be written as |1〉 ⊗ |x2jk mod N〉 ⊗ |x−2jx2jk
mod N〉. Applying division by x−2

j

modulo N now yields the state |1〉 ⊗ |x2jk mod N〉 ⊗ |0〉.

On the other hand, if the control qubit is cleared, then the state |0〉 ⊗ |k〉 ⊗ |0〉 is mapped to |0〉 ⊗ |k〉 ⊗ |k〉.
The swap operation then has no effect, whereupon the division by x−2

j

mod N maps the state back to
|0〉 ⊗ |k〉 ⊗ |0〉.

n

n

U2j

|c〉

|k〉

|c〉

|y〉
=

|0〉

|k〉

|c〉

|0〉

|y〉

|c〉

L

L

·x2j mod N
(N)

/x−2
j

mod N
(N)

Figure 5.11: Implementation of the controlled U2j gate, with 0 ≤ j ≤ L− 1. The state |0〉 ⊗ |k〉 is mapped

to |0〉 ⊗ |k〉, whereas the state |1〉 ⊗ |k〉 is mapped to the state |1〉 ⊗ |x2jk〉. Hence, if c is set, then y equals

x2
j

k. Otherwise, y equals k.

Note that the time complexity of the controlled U2j gate is equal to the complexity of the controlled modular
multiplication gate. Hence, the complexity is equal to O(L2). Note that t of these gates are needed in figure
5.3. Also, t ≡ O(L) according to our choice of the number of qubits in the first register. Furthermore,
the quantum Fourier transform has time complexity O(L2) as well, so we find that the phase estimation
algorithm has a time complexity of O(L3). Hence, this is polynomial in the number of bits needed to
represent N , so this algorithm is efficient.

5.3.3 Continued fraction expansion

We have now found an efficient way to approximate a value of s
r , where s is random between 0 and r − 1,

within a proximity of 2−2L−1. The question, now, is how to determine r from this approximation. This is
done using the continued fraction expansion, which will be the subject of this subsection.

First of all, we define the notion of a continued fraction.

Definition 5.8: Continued fraction
Let N ∈ N and {a1, . . . , aN} ⊆ R>0 a set of positive real numbers. Then we define the following shorthand
notation for what is referred to as a continued fraction:

[a1, a2, . . . , aN] =
1

a1 + 1
a2+

1

... + 1
aN

So, for example, the number [1, 2, 2, 3] can be calculated easily:

1

1 + 1
2+ 1

2+ 1
3

=
1

1 + 1
2+ 3

7

=
1

1 + 7
17

=
17

24

We would like to be able to invert the process displayed above. That is, we would like to have an algorithm
that enables us to construct a continued fraction composed of natural numbers, such that it equals an
arbitrarily chosen number. Such a constructed continued fraction of a number q is referred to as the continued

64

fraction expansion of q. To develop a method to construct these continued fraction expansions, we prove a
lemma and theorem below.

Lemma 5.9: Bound on the continued fraction of natural numbers
Suppose that N ∈ N and {a1, . . . , aN} ∈ N. Then 0 < [a1, a2, . . . , aN] ≤ 1.

Proof: We prove this with induction to the length of the continued fraction. The case N = 1 is easily
checked. In that case, we have a1 ≥ 1, so 0 < 1

a1
≤ 1. Hence 0 < [a1] ≤ 1.

Now suppose that for some N ∈ N, we have that for all sets {a1, . . . , aN} ⊆ N, 0 < [a1, . . . , aN] ≤ 1. This is
our induction hypothesis. Now for any set {a1, . . . , aN+1} ⊆ N, we find:

[a1, . . . , aN+1] =
1

a1 + [a2, . . . , aN+1]

This last expression can now be bounded easily using the induction hypothesis:

0 <
1

a1 + [a2, . . . , aN+1]
<

1

a1
≤ 1

Hence, by substituting back, we find that the induction hypothesis also holds for N + 1:

0 < [a1, . . . , aN+1] ≤ 1

Hence, by the principle of mathematical induction, we have proven what we set out to prove. �

Theorem 5.10: Continued fraction expansion
Suppose q ∈ Q and 0 < q < 1. Then there exists exactly 1 finite continued fraction with natural numbers
that equals q and does not have a 1 as final number.

Proof: As q is a positive rational number, we can write it as a fraction of two natural numbers: q = p0
q0

,
where p0 and q0 are coprime. Moreover, as q < 1, we have p0 < q0. We set out to find some N ∈ N and
{a1, . . . , aN} ⊆ N such that [a1, . . . , aN] = q.

As a first step, we can rewrite q into the following form:

q =
1
q0
p0

We know that q0
p0
> 1. There are now two cases that we need to consider.

First of all, suppose p0 = 1. Then q0
p0

= q0 ∈ N. Now suppose that we choose N 6= 1. Then our choice of N

and {a1, . . . , aN} has to obey:
q0
p0

= a1 + [a2, . . . , aN]

But from the preceding lemma, we found that 0 < [a2, . . . , aN] ≤ 1. As q0
p0

and a1 are both natural

numbers, so must be [a2, . . . , aN], hence we must have [a2, . . . , aN] = 1. But then if N > 2, we have
a2 + [a3, . . . , aN] = 1, which yields [a3, . . . , aN] ≤ 0, which is a contradiction with the previous lemma.
Choosing N = 2, on the other hand, yields a2 = 1, from which we see that the last number of the continued
fraction expansion is 1. This was not allowed according to the statement of the theorem. So, we must choose
N = 1, which implies that we must choose a1 such that [a1] = 1

a1
= q = p0

q0
. As p0 = 1, we must choose

a1 = q0. As q0 > p0 = 1, we have a1 > 1, so a1 is a valid final number in the continued fraction.

On the other hand, suppose p0 > 1. Then as q0 and p0 are coprime, we find that q0
p0
6∈ N. So, we cannot

write the reciprocal of q as a natural number, so N must be chosen greater than 1. Hence, our choice of N
and {a1, . . . , aN} must satisfy the following relation.

q0
p0

= a1 + [a2, . . . , aN]

65

From the previous lemma, we know that 0 < [a2, . . . , aN] ≤ 1, regardless of our choice of N and {a2, . . . , aN}.
This yields that we must choose a1 in the following interval:

q0
p0
− 1 ≤ a1 <

q0
p0

As a1 has to be a natural number, there is exactly one choice for a1 satisfying these criteria:

a1 =

⌈
q0
p0
− 1

⌉
We now define p1 = q0 − a1p0 and q1 = p0. Then we find:

[a2, . . . , aN] =
q0
p0
− a1 =

q0 − a1p0
p0

=
p1
q1

Also, we have that gcd(p0, q0) = 1, so by Bézout’s identity, we find that there exist u, v ∈ Z such that
up0 + vq0 = 1. Rewriting this using the way we defined p1 and q1 yields:

1 = up0 + vq0 = up0 + v(p1 + a1p0) = uq1 + vp1 + va1q1 = (u+ va1)q1 + vp1

Hence, also gcd(p1, q1) = 1. Furthermore, we have a1 <
q0
p0

, so p0a1 < q0 and hence p1 = q0 − a1p0 > 0.

Finally, we also have a1 ≥ q0
p0
− 1. Moreover, a1 ∈ N and q0

p0
6∈ N, hence a1 >

q0
p0
− 1. This leads to:

p1 = q0 − a1p0 < q0 −
(
q0
p0
− 1

)
p0 = q0 − q0 + p0 = p0

So, we have now transformed the problem to finding a continued fraction [a2, . . . , aN] which equals p1
q1

, where

gcd(p1, q1) = 1. Moreover, we find that p1 < p0. We can now apply the same procedure as before again,
by taking N = 2 if p1 = 1, and defining p2 and q2 otherwise. We again note that p2 < p1. In this way, we
obtain a sequence pk that is strictly decreasing, hence there exists an n ∈ N such that pn = 1. Hence, we
choose N = n+ 1 and find that [a1, . . . , aN], chosen via the process outlined above, equals q. Moreover, all
choices have above been shown to be the only possibilities, so we can conclude that there exists exactly one
continued fraction that satisfies the criteria posed in the statement of the theorem. Hence, we have proven
the theorem. �

We can now apply the calculation given before in reversed order to find the continued fraction expansion of
17
24 :

17

24
=

1
24
17

=
1

1 + 7
17

=
1

1 + 1
17
7

=
1

1 + 1
2+ 3

7

=
1

1 + 1
2+ 1

7
3

=
1

1 + 1
2+ 1

2+ 1
3

= [1, 2, 2, 3]

The theorem above now tells us that this is the only finite continued fraction that equals 17
24 and does not

have a final number of 1.

At this point, the idea behind the requirement that the last number of the continued fraction may not equal
1, is not at all clear. As a first result concerning this requirement, we note that every rational number can
also be written as a continued fraction that does end in a 1.

Theorem 5.11: Continued fraction expansion ending in a 1
Suppose that q ∈ Q is a rational number within the range 0 < q < 1. Let N ∈ N and {a1, . . . , aN} ⊆ N
such that [a1, . . . , aN] = q and aN 6= 1. Then there exists another continued fraction that equals q, ending
in a 1 and given by:

[a1, . . . , aN − 1, 1] = q

66

Proof: We prove that [a1, . . . , aN] = [a1, . . . , aN − 1, 1]. It suffices to show that [aN] = [aN − 1, 1], as
the rest of the fractional expressions are identical. Indeed, we find:

[aN − 1, 1] =
1

aN − 1 + 1
1

=
1

aN
= [aN]

Hence, we have proven the theorem. �

We also introduce the definition of convergents, which we will need shortly.

Definition 5.12: Convergents
Let N ∈ N and [a1, . . . , aN] be a continued fraction with a1, . . . , aN ∈ N. Then for all n ∈ N such that
n ≤ N , we define the nth convergent of this continued fraction by [a1, . . . , an].

Intuitively, the nth convergent of the continued fraction expansion of a number q provides an estimate of q,
the sequence of which converges to q when n grows larger. For example, the convergents of 17

24 are given in
table 5.1, and plotted in figure 5.12. Particularly, notice the oscillatory behavior of the convergents.

n nth convergent Approximate value
1 1 1
2 2

3 0.6667
3 5

7 0.7143
4 17

24 0.7083

Table 5.1: A list of the convergents of 17
24 . Even in this small example, one can see that the nth convergent

provides a better approximation when n grows larger.

Figure 5.12: A plot of the convergents of 17
24 . Note the oscillatory behavior of the approximations to the

exact value.

We will now develop a bound on the speed of the convergence, using the following theorems.

67

Theorem 5.13: Recursive formula for convergents
Let N ∈ N and [a1, . . . , aN] be a continued fraction. Define b1 = 1, c1 = a1, b2 = a2 and c2 = 1 + a1a2.
Define the next values of (bn)Nn=1 and (cn)Nn=1 in N by the following recursion formulas:

bn = anbn−1 + bn−2 (3 ≤ n ≤ N)

cn = ancn−1 + cn−2 (3 ≤ n ≤ N)

Then for all natural n that satisfy n ≤ N , the nth convergent can be expressed by:

[a1, . . . , an] =
bn
cn

Furthermore, if in addition {a1, . . . , aN} ∈ N, then for all 2 ≤ n ≤ N , we have the following relation:

cnbn−1 − bncn−1 = (−1)n

Moreover, for all 1 ≤ n ≤ N , bn and cn are coprime. Finally, the difference between two successive
convergents decreases.

Proof: We prove this theorem by induction to n. The cases for n = 1, n = 2 and n = 3 are easily
checked, as is done below:

[a1] =
1

a1
=
b1
c1

[a1, a2] =
1

a1 + 1
a2

=
a2

a1a2 + 1
=
b2
c2

[a1, a2, a3] =
1

a1 + 1
a2+

1
a3

=
1

a1 + a3
a2a3+1

=
a2a3 + 1

a1a2a3 + a1 + a3
=
a3b2 + b1
a3c2 + c1

=
b3
c3

From the above relations, it is obvious that the recursion relations successfully provide us with the numerator
and denominator of the 3rd convergent.

Now, suppose that up to some natural n that satisfies 3 ≤ n ≤ N−1, the recursion relations from the question
hold. This we refer to as the induction hypothesis. We introduce the continued fraction [a1, . . . , an + 1

an+1
].

Then, from the induction hypothesis, we know that there are rational numbers b1, . . . , bn and c1, . . . , cn such
that the following relations hold:

[a1, . . . , am] = bm
cm

(1 ≤ m ≤ n− 1)

[a1, . . . , an + 1
an

] = bn
cn

bm = ambm−1 + bm−2 (3 ≤ m ≤ n− 1)

cm = amcm−1 + cm−2 (3 ≤ m ≤ n− 1)

bn =
(
an + 1

an+1

)
bn−1 + bn−2

cn =
(
an + 1

an+1

)
cn−1 + cn−2

As the sequences b and c are defined by the exact same recursive formula as the one in the theorem, up to
n−1, we find that for any 1 ≤ m ≤ n−1, bm = bm and cm = cm. We can now calculate the next convergent,

68

[a1, . . . , an+1], as follows:

[a1, . . . , an+1] =

[
a1, . . . , an +

1

an+1

]
=
bn
cn

=

(
an + 1

an+1

)
bn−1 + bn−2(

an + 1
an+1

)
cn−1 + cn−2

=

(
an + 1

an+1

)
bn−1 + bn−2(

an + 1
an+1

)
cn−1 + cn−2

=
anbn−1 + bn−2 + bn−1

an+1

ancn−1 + cn−2 + cn−1

an+1

=
bn + bn−1

an+1

cn + cn−1

an+1

=
an+1bn + bn−1
an+1cn + cn−1

=
bn+1

cn+1

Hence, we find by induction to n that the formulas from the question are recursive formulas with which the
numerator and denominator of the nth convergents can be determined.

From this point onwards, we assume that {a1, . . . , aN} ⊆ N. Now, for the next claim, we need to prove that
for any 2 ≤ n ≤ N , the following relation holds:

cnbn−1 − bncn−1 = (−1)n

Again, we use induction to n. The case where n = 2 is easily checked:

c2b1 − b2c1 = (1 + a1a2) · 1− a2a1 = 1 = (−1)2

Now suppose that it holds for some natural n ∈ N that satisfies 2 ≤ n ≤ N − 1. Then:

cn+1bn − bn+1cn = (an+1cn + cn−1)bn − (an+1bn + bn−1)cn

= an+1cnbn + bncn−1 − an+1bncn − bn−1cn
= bncn−1 − bn−1cn = −(−1)n = (−1)n+1

So, by the principle of mathematical induction, we now find that for any 2 ≤ n ≤ N , we have cnbn−1 −
bncn−1 = (−1)n.

As for the next claim, we need to prove that for all 1 ≤ n ≤ N , bn and cn are coprime. Suppose n is even.
Then: cnbn−1 − bncn−1 = 1, so by Bézout’s identity, we find that gcd(bn, cn) = 1.

Now suppose n is odd and n 6= 1. Then we have −cnbn−1+bncn−1 = 1, which also yields that gcd(bn, cn) = 1.
In addition, if n = 1, we find: gcd(b1, c1) = gcd(1, a1) = 1.

Finally, we can now prove that the sequence of differences between two successive converges decreases. We
rewrite the equation cnbn−1 − bncn−1 = (−1)n in the following manner:

bn−1
cn−1

− bn
cn

=
(−1)n

cn−1cn

As the sequence (cn) is strictly increasing, we find that the difference between two successive convergents is
decreasing: ∣∣∣∣bncn − bn−1

cn−1

∣∣∣∣ =
1

cn−1cn

Hence, this completes the proof. �

The above theorem has a few interesting implications. For example, for even n, we find that qnpn−1 −
pnqn−1 = 1 > 0, hence:

[a1, . . . , an] =
qn
pn

>
pn−1
qn−1

= [a1, . . . , an−1]

69

For odd n that are not equal to 1, though, we find: qnpn−1 − pnqn−1 = −1 < 0 and so:

[a1, . . . , an] =
qn
pn

<
pn−1
qn−1

= [a1, . . . , an−1]

Hence, the oscillatory behavior is reflected by these results. Moreover, we can now find an intuitive expla-
nation for the apparent ambiguity in the choice of the final number of the continued fraction. Apparently,
we can choose between estimating the exact number from above or below in the final step.

Finally, now, we obtain the theorem that the application in the order finding routine hinges on.

Theorem 5.14: Bounds on convergents
Let q ∈ Q with 0 < q < 1. Suppose b, c ∈ N such that b and c are coprime, 0 < b

c < 1 and
∣∣ b
c − q

∣∣ ≤ 1
2c2 .

Then b
c is a convergent of q.

Proof: First of all, we note that according to theorem 5.10, b
c is equal to a continued fraction [a1, . . . , aN],

where N ∈ N, a1, . . . , aN ∈ N and aN 6= 1. Note also that according to theorem 5.11, if we define M = N+1,
α1 = an for every 1 ≤ n ≤ N − 1, αM−1 = aN − 1 and αM = 1, we find:

b

c
= [α1, . . . , αM]

Note that we have that either N is odd and M is even, or vice versa. We will use this later on. For
the continued fraction [a1, . . . , aN], we define the sequences (bn)Nn=1 and (cn)Nn=1 according to theorem 13.
Similarly, we define (βn)Nn=1 and (γn)Nn=1 for the continued fraction [α1, . . . , αM]. Note that b

c = bN
cN

= βM
γM

.

Now, we define δ = 2c2
(
q − b

c

)
. From the statement of the theorem, we now deduce that |δ| < 1. Moreover,

we can solve for q:

q =
b

c
+

δ

2c2

Note that if δ = 0, there is nothing to prove, because then we have b
c = q, and as q is rational, it is always

the final convergent of itself.

We now make a distinction between two cases. First of all, suppose N is even and δ > 0, or N is odd and
δ < 0. We are going to append some numbers to the continued fraction [a1, . . . , aN]. More precisely, we want
to find the continued fraction expansion of λ that satisfies [a1, . . . , aN + λ] = q. Note that we can rewrite
this as [a1, . . . , aN ,

1
λ] = q. Hence, invoking the recursive formulas from theorem 5.13:

q =
1
λbN + bN−1
1
λcN + cN−1

Isolating 1
λ yields:

1

λ
cNq + cN−1q =

1

λ
bN + bN−1 ⇔

1

λ
=
bN−1 − cN−1q
cNq − bN

Expanding the fraction yields:

1

λ
=

bN−1 − cN−1

cN
(cNq − bN)− cN−1

cN
bN

cNq − bN
=
bN−1 − cN−1

cN
bN

cNq − bN
− cN−1

cN

=
cNbN−1 − cN−1bN

c2Nq − cNbN
− cN−1

cN

Using the relation for q derived above, we find c2Nq − cNbN = δ
2 . Hence, we find:

1

λ
= 2

(
cNbN−1 − cN−1bN

δ

)
− cN−1

cN

70

From the previous theorem, we can rewrite the fraction with the relation cNbN−1−cN−1bN = (−1)N . Hence,
we obtain:

1

λ
=

2(−1)N

δ
− cN−1

cN

We assumed that either N is even and δ > 0, so in that case δ = |δ| = (−1)N |δ|, or N is odd and δ < 0, in
which case also δ = −|δ| = (−1)N |δ|. Thus, we find:

1

λ
=

2

|δ|
− cN−1

cN

By the recursive formulas for cN in theorem 5.13, we find that cn is a strictly increasing sequence. Combining
this with |δ| < 1, we obtain:

1

λ
>

2

1
− 1 = 1

So 0 < λ < 1, hence by theorem 5.10 there exists a finite continued fraction that equals λ with natural
numbers, such that the last number does not equal 1. Hence, we find λ = [z1, . . . , zP], where z1, . . . , zP ∈ N
and zP 6= 1. So, q can be written as:

q = [a1, . . . , aN , z1, . . . , zP]

But now, according to theorem 5.10, this is the only such continued fraction that equals q. Hence, [a1, . . . , aN] =
b
c is a convergent of q.

The other case is fairly similar. We assume either N is even and δ < 0 or N is odd and δ > 0. Note that
we then find that M is even and δ > 0 or M is odd and δ < 0. We now look for λ defined by the following
equation:

q = [α1, . . . , αM + λ]

Using the exact same method as above, we find:

1

λ
=

2

|δ|
− γM−1

γM
> 2− 1 = 1

Hence, 0 < λ < 1, which again implies in the exact same way that b
c is a convergent of q. �

Now, we apply the newly developed techniques to the problem of finding the order of x modulo N .

Corollary 5.15:
Let 0 < φ < 1 be a rational number. Let L, s, r ∈ N be such that 1 ≤ s ≤ r − 1 < r ≤ N ≤ 2L.
Suppose | sr − φ| ≤ 2−2L−1. Let bn and cn be the sequences denoting the numerators and denominators of

the convergents of φ as in theorem 12. Then there exists an M ∈ N such that s
r = bM

cM
and cM+1 ≥ 2L.

Proof: First of all, we write s
r as a fraction where the numerator and denominator do not have a com-

mon factor: s′

r′ . So, s
r = s′

r′ and gcd(s′, r′) = 1. Hence, we find:∣∣∣∣s′r′ − φ
∣∣∣∣ =

∣∣∣s
r
− φ

∣∣∣ ≤ 2−2L−1 ≤ 1

2r2
≤ 1

2(r′)2

So, according to the previous theorem, s′

r′ is a convergent of φ, hence there exists an M ∈ N such that:

s

r
=
s′

r′
=
bM
cM

71

Also, we define δ = 2(r′)2
(
s′

r′ − φ
)

, in accordance with the previous theorem. In addition, we define

ε = 22L+1
(
s
r − φ

)
. We find:

φ =
s′

r′
+

δ

2(r′)2

φ =
s′

r′
+

ε

22L+1

According to the statement of the theorem, we have |ε| ≤ 1. Equating both equations yields:

δ

2(r′)2
=

ε

22L+1
⇔ δ =

(r′)2ε

22L

We can choose the continued fraction such that M is odd and δ < 0, or M is even and δ > 0. This can be
done by leaving out or appending the final 1. Hence, as we saw in the previous lemma, if we define λ by the
following equation:

φ = [c1, . . . , cM + λ]

Then we find the following expression for λ:

1

λ
=

2

|δ|
− cM−1

cM
=

22L+1

(r′)2|ε|
− cM−1

cM

Using |ε| ≤ 1, and cM = r′:
1

λ
≥ 22L+1

(r′)2
− cM−1

r′

Hence, the value aM+1 in the continuous fraction expansion of φ is lower bounded by:

aM+1 ≥
⌊

22L+1

(r′)2
− cM−1

r′

⌋
>

22L+1

(r′)2
− cM−1

r′
− 1

So, we find, using the recursive formula for the denominators of the approximations:

cM+1 = aM+1cM + cM−1 >

(
22L+1

(r′)2
− cM−1

r′
− 1

)
· r′ + cM−1

=
22L+1

r′
− r′ =

22L

r′
+

22L

r′
− r′ ≥ 2L · r′

r′
+

(r′)2

r′
− r′ = 2L

Hence, we have proven the theorem. �

Recall that the order finding algorithm returned a rational number φ, such that 0 ≤ φ < 1 and there exists
a natural 0 ≤ s ≤ r − 1 such that ||φ − s

r ||1 ≤ 2−2L−1. If we now require s to be unequal to 0, we find

| sr − φ| ≤ 2−2L−1, so we can apply the above theorem. As this corresponds to just one eigenvalue of the
operator U that is invalid, this adds a factor r−1

r to the total success probability, where we note that r−1
r ≥

1
2

for r ≥ 2.

So, in summary, if our order r is greater than 1, we can apply the order finding algorithm to find a rational
estimation φ of some s

r , where s is between 1 and r−1, with at least a fixed probability. Then, we apply the
continued fraction expansion and select the last convergent that has a denominator smaller than 2L. This
convergent then equals s

r . Then, the denominator of the resulting expression, r′, divides r. The following
section will handle the finalizing step of finding r from r′.

Finally, let’s have a look at the time complexity of the continued fraction expansion. To do this, we consider
the denominators of the convergents, cn, as defined in theorem 12. We find the following inequality for all
n ≥ 3, using the recursive relation defined in theorem 12 and the increasing property of cn:

cn = a1cn−1 + cn−2 ≥ cn−1 + cn−2 ≥ 2cn−2

72

As c1, c2 ≥ 1, we find by induction:

cn ≥ 2b
n
2 c

We also know that the denominator of φ is smaller than 2L. So, an upper bound for the number of convergents
N of φ is given by:

2L ≥ cN ≥ 2b
N
2 c ≥ 2

N
2 −1

Hence:

L ≥ N

2
− 1⇔ N ≤ 2L+ 2 = O(L)

The other operations that are involved in finding the continued fractions and calculating the convergents
are simple calculations with a maximum of L-bit numbers, hence the time complexity of these operations is
O(L2) [6]. So, the total time complexity is given by O(L3).

5.3.4 Finding the order from its divisors

We have now found a way of efficiently producing numbers that divide the order r of x modulo N . We now
want to use these divisors of r to find the value of r itself.

The idea is to execute the process outlined above twice, in order to obtain two values r′1 and r′2, that both
divide r. Our hope is now that we can find r by investigating the lowest common multiple of these two
numbers. In this section, we will derive the probability that this yields the correct value of r.

Executing the order finding algorithm can be modeled as taking a natural number s uniformly in the interval
[1, r− 1], and calculating r′ = r/ gcd(s, r) accordingly. So, if we perform the algorithm twice, we obtain two
values for s and r′, which we denote by s1 and s2 and r′1 and r′2, respectively. Our guess for r is now given
by r, defined as:

r = lcm(r′1, r
′
2) = lcm(r/ gcd(s1, r), r/ gcd(s2, r))

Now, we denote the prime factorization of r by pα1
1 · · · pαnn . We find that r does not equal r is equivalent to

saying that there exists a prime factor of r that divides both s1 and s2. The probability of a prime factor of
r, say pi, dividing s1 is given by the number of possible choices of s1 that are divisible by pi, divided by the
number of total possible choices of s1, r − 1. Hence, we find:

P (pi|s1) =

⌊
r − 1

pi

⌋
· 1

r − 1
≤ r − 1

pi(r − 1)
=

1

pi

Similarly, we find P (pi|s2) ≤ 1
pi

. We only obtain the true value of r if there does not exist a prime factor of
r that divides both s1 and s2, hence the following formula:

P (r = r) = 1−
n∑
i=1

P (pi|s1) · P (pi|s2)

Applying the bounds we found on P (pi|s1) and P (pi|s2), we obtain:

P (r = r) ≥ 1−
n∑
i=1

1

pi
· 1

pi
= 1−

n∑
i=1

1

p2i

A priori, though, we do not know which prime factors r has. We know, though, that pi can only be 2 or an
odd number greater than or equal to 3. Hence, we can lower bound the probability that r equals r in the
following way:

P (r = r) ≥ 1− 1

4
−
∞∑
n=1

1

(2n+ 1)2
= 2− 1

4
−
∞∑
n=0

1

(2n+ 1)2
=

7

4
− π2

8
>

1

2

73

Here, the following relation was used, which can be proven using methods that find their origin in complex
analysis.

∞∑
n=0

1

(2n+ 1)2
=
π2

8

Hence, we find the correct value of r with a probability of at least 1
2 . Combining this with the bound we

found earlier, and the factor (1
2)2 from the requirement that both s1 and s2 cannot equal 0, we find that as

long as r ≥ 2 and 0 < ε < 0.24, the algorithm succeeds with a probability of at least:

P (success) ≥ 1

8

(
1− ε−

4 +
⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2dlog2(2+ 1
2ε)e

)2

The greatest common divisor and lowest common multiples can be obtained using Euclid’s algorithm, which
has time complexity O(L3) [6]. As the previous steps also had time complexity O(L3), we find that the time
complexity of the order finding algorithm is O(L3).

5.4 Shor’s algorithm

Suppose N > 1 is a natural number. We would like to find a non-trivial divisor of N , i.e. a divisor of N
that is not equal to 1 or N . On classical computers, this turns out to be a hard problem, in the sense that
no efficient algorithm has been found that accomplishes this task. Shor’s algorithm, though, does provide
an efficient method of finding these divisors, using a quantum computer. This section will cover how the
order finding algorithm, as outlined above, can be used to find a divisor of N . For notational convenience,
we define L as the number of bits that are needed to represent N : L = blog2(N)c+ 1.

The idea is to find a number x ∈ N such that x2 ≡ 1 mod N , where x 6≡ 1 mod N and x 6≡ −1 mod N . If
we find such an x, we observe that there exists a k ∈ N such that:

(x+ 1)(x− 1) = x2 − 1 = kN

Moreover, x+ 1 and x− 1 are not divisors of N . Furthermore, x+ 1 and x− 1 cannot both be coprime with
N , because if this were the case, we would have gcd((x + 1)(x − 1), N) = 1, which is a contradiction with
gcd((x + 1)(x − 1), N) = N . Hence, we find that either 1 < gcd(x + 1, N) < N or 1 < gcd(x − 1, N) < N .
So, either gcd(x+ 1, N) or gcd(x− 1, N) is a non-trivial divisor of N , which is what we set out to do. Note
that using Euclid’s algorithm, these greatest common divisors can be calculated with O(L3) operations.

So, the problem of finding a non-trivial divisor of N reduces to finding an x ∈ N such that x2 ≡ 1 mod N ,
x 6≡ 1 mod N and x 6≡ −1 mod N . It turns out that it is not always possible to find x satisfying these
criteria. Suppose, namely, that N is odd and that it can be written as a power of a prime, so that N = pa

where p is a prime number and a ∈ N. Suppose also that we find an x ∈ N satisfying the criteria stated
above. As we can write (x+ 1)− (x− 1) = 2, we find that gcd(x+ 1, x− 1) ≤ 2. As N is odd, we find p > 2,
hence p cannot divide both x+ 1 and x− 1. So N must divide either x+ 1 or x− 1, yielding x ≡ 1 mod N
or x ≡ −1 mod N . Thus, there is not a suitable choice for x.

Luckily, though, there is an efficient classical method of determining whether N can be written as ab, with
a, b ∈ N. Suppose N can be written as such. Then, we first of all calculate α = log2(N), which takes O(L2)
operations [6]. Note that we now have α = b log2(a). Next, we guess c = 2 and calculate β = α/c. If c now
equals b, then 2β = 2log2(a) = a, which is a natural number. Similarly, we guess c = 3, 4, If we choose
c > α, though, we have β = α/c < 1, which yields 1 < 2β < 2, so we will not find a natural number. So, we
only have to guess at most α values of c, meaning that we have to do O(L) guesses in total. The complexity
of the division operation is O(L2), and finding the nearest integer of 2β also takes O(L2) operations. Hence,
we can check if N can be written as a power in O(L3) operations.

74

Furthermore, we will see shortly that there will also be a problem when finding a suitable choice for x when
N is even. Checking beforehand when N is even is easy, though, and 2 is a straightforward non-trivial
divisor.

So, if N is odd and it cannot be written as a power, then we might hope that the method outlined above
works. We will now turn our attention to finding a suitable choice for x.

The idea is to choose an integer y in the interval 2 ≤ y ≤ N − 2 uniformly, and determine its order r modulo
N using the order finding algorithm. If we now find that r is even, we can choose x = y

r
2 . We then find

x2 = yr ≡ 1 mod N , as required. If in addition, it turns out that x 6≡ −1 mod N , we have found a suitable
choice for x, and thus can find a non-trivial divisor of N with the steps outlined above.

In the following theorems, we will show that the probability of finding an r that is even such that yr/2 6≡ −1
mod N can be lower bounded for odd N . Therefore, we can find a lower bound for the probability of the
algorithm to work. This requires some algebraic number theoretical background to be readable, which can
be found in [7].

Lemma 5.16:
Let p be an odd prime, α be a positive integer, and d be the largest positive integer such that 2d is a divisor
of φ(pα), where φ is the Euler-φ function. Choose x ∈ (Z/pαZ)∗ uniformly at random. Then the probability
of 2d dividing the order of x is exactly 1

2 .

Proof: We use that the group (Z/pαZ)∗ is cyclic, as is proven in [7]. In addition, we use φ(pα) = pα−1(p−1).
We immediately find that as p is odd, φ(pα) is even, so d ≥ 1.

As the group (Z/pαZ)∗ is cyclic, there exists a generating element, which we will denote by ξ. Hence, we
can now write x = ξk, where 1 ≤ k ≤ φ(pα). As φ(pα) is even, we find that k is odd with probability 1

2 and
k is even with probability 1

2 .

First of all, Suppose that k is odd. We denote the order of x by r. By Euler’s theorem, we obtain:

ξφ(p
α) ≡ 1 ≡ xr = ξkr mod pα

Hence, as ξ is a generating element and the order of (Z/pαZ)∗ is equal to φ(pα), we find that φ(pα) divides
kr. As k is odd, 2d must divide r, hence with probability of at least 1

2 , 2d divides the order of x.

On the other hand, suppose k is even. Then:

xr ≡ 1 = 1
k
2 ≡

(
ξφ(p

α)
) k

2

= ξ
kφ(pα)

2 = x
φ(pα)

2 mod pα

So, r must divide φ(pα)
2 , from which it follows that 2d cannot divide r. Hence, by a probability of 1

2 , 2d

divides the order of x. �

Theorem 5.17:
Suppose N has the following prime decomposition:

N = pα1
1 . . . pαmm

We choose an integer x uniformly in (Z/NZ)∗ and denote its order by r. Then:

P (r is even ∧ x r2 6≡ −1 mod N) ≥ 1− 1

2m−1

Proof: We prove the inverse, namely:

P (r is odd ∨ x r2 ≡ 1 mod N) ≤ 1

2m−1

75

According to the Chinese remainder theorem, choosing an x uniformly in (Z/NZ)∗ is identical to choosing
integers xj uniformly in (Z/pαjj Z)∗, for j = 1, . . . ,m. Now, for every such j, define rj as the order of xj
modulo p

αj
j . We find that r is equal to the lowest common multiple of r1, . . . , rm.

Define d to be the largest integer such that 2d is a divisor of r. Similarly, define dj to be the largest integer
such that 2dj divides rj . We first of all prove that all values d1 through dn are equal if r is odd, or x

r
2 ≡ −1

mod N .

Suppose r is odd. Then as all rj ’s are divisors of r, all rj ’s must be odd as well. Hence, for all j, we find
dj = 0.

On the other hand, suppose that x
r
2 ≡ −1 mod N . Then, according to the Chinese remainder theorem, for

all j, we find x
r
2 ≡ −1 mod p

αj
j . Hence, rj cannot be a divisor of r

2 , which is equivalent to saying that 2rj
cannot divide r. As rj is a divisor of r, we find that 2dj does divide r, and 2dj+1 does not, so dj equals d,
for all j.

So, if r is odd or x
r
2 ≡ −1 mod N , then all dj ’s are equal. Take d1 to be fixed. Now we know that there

exists a maximum natural number D2 such that 2D2 divides φ(pα2
2). According to the previous lemma, we

know that the probability that d2 equals D2, is equal to 1
2 . Hence, the probability that d2 does not equal

D2, is equal to 1
2 as well. As d1 either equals D2 or not, we conclude that the probability of d2 equaling d1

is at most 1
2 .

Identical arguments show that the probability of dj equaling d1 are upper bounded by 1
2 . So, we find that the

probability that x
r
2 ≡ −1 mod N or r is odd, is upper bounded by 1

2m−1 . Hence, this proves the theorem.
�

Note, that if N has two distinct prime factors, we find m ≥ 2, hence 1
2m−1 ≤ 1

2 .

We can now summarize all results for Shor’s algorithm in the box shown on the next page.

76

Algorithm: Shor’s algorithm
Input: A natural number N > 1 that is not prime. Let L be the number of bits needed to represent N .
Parameters: 0 < ε < 0.24.
Output: A non-trivial divisor of N .
Time complexity: O(L3).
Probability of success: Lower bounded by:

1

16

(
1− ε−

4 +
⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2dlog2(2+ 1
2ε)e

)2

Procedure:
1. Check if N is even. If yes, return 2.

Time complexity: O(1).
Probability of success: 1.

2. Check if N can be written as a power of two natural numbers. That is, check if there exist a, b ∈ N
such that ab = N and b ≥ 2. If yes, return a.
Time complexity: O(L3).
Probability of success: 1.

3. Choose an integer y uniformly in the interval [2, N − 2]. If gcd(y,N) > 1, return gcd(y,N).
Time complexity: O(L3).
Probability of success: 1.

4. Apply the order finding algorithm to find the order r of y modulo N . Use 2L + 1 +
⌈
log2

(
2 + 1

2ε

)⌉
qubits in the first register and L qubits in the second register. Check afterwards if the correct value
for r was found. If not, fail.
Time complexity: O(L3).
Probability of success: Lower bounded by:

1

8

(
1− ε−

4 +
⌈
log2

(
2 + 1

2ε

)⌉
ln(2)

2dlog2(2+ 1
2ε)e

)2

5. Check if r is even and y
r
2 6≡ −1 mod N . If not, fail.

Time complexity: O(L3).
Probability of success: Lower bounded by 1

2 .
6. Return max

(
gcd

(
y
r
2 − 1 mod N,N

)
, gcd

(
y
r
2 + 1 mod N,N

))
.

Time complexity: O(L3).
Probability of success: 1.

The algorithm, as outlined above, can be simulated on a classical computer. It goes without saying that
step 4 will no longer have a time complexity of O(L3) in the simulation process. The implementation of this
simulation can be found in appendix B.

77

6 Conclusion

This text has reached two main results. First of all, it was shown that any quantum circuit can be imple-
mented using a finite set of components, up to arbitrary accuracy. Secondly, it was shown that the algorithm
of Shor provides an efficient way of factorizing integers using a quantum computer. Together, they provide
an introduction into the realm of quantum computing.

If one were to do a follow-up study, then it would be interesting to investigate the lower bound on the
probability that Shor’s algorithm succesfully factorizes the number given. This lower bound can probably
be improved by investigating which step introduces the most inaccuracy into the bound.

Furthermore, the classical simulation of Shor’s algorithm could be improved significantly by having a look
at the implementation of the inverse Fourier transformation. Simple measurements reveal that over 80% of
the runtime of the code is spent calculating the inverse Fourier transform, which could be significantly sped
up by implementing other algorithms to perform this operation.

Ultimately, though, the field of quantum computing will only become a very exciting field of study when
the quantum computer is at one’s disposal. Until this is experimentally feasible, devising other quantum
algorithms that definitively beat the implementations on classical computers is one of the most important
tasks for researchers. More generally, investigating the full potential of the concept of the quantum computer
is of vital importance to the field as a whole.

78

References

[1] IBM. The IBM Quantum Experience. <http://www.research.ibm.com/quantum/>, 2016.

[2] Nielsen, M.A. and Chuang, I.L., 2000. Quantum Computation and Quantum Information. Cambridge:
Cambridge University Press.

[3] Aliprantis, C.D. and Burkinshaw, O., 1990. Principles of real analysis, 3rd edition. San Diego: Acadamic
Press.

[4] Ryan, A.R., 2002. Introduction to tensor products of Banach spaces. London: Springer.

[5] Vedral, V., Barenco, A. and Ekert, A., 1995. Quantum networks for Elementary Arithmic Operations.
arXiv:quant-ph/9511018.

[6] Knuth, D.E., 1981. The Art of Computer Programming. Second edition. Boston: Addison-Wesley.

[7] Stevenhagen, P., 2016. Algebra I. Leiden: Universiteit Leiden.

79

A Proof that λ defined by the λ-equation is irrational

In this section, we wish to prove that λ is irrational if λ is a real number that satisfies the following equation,
referred to as the λ-equation:

cos(λπ) = cos2
(π

8

)
The proof of this statement involves a considerable amount of abstract algebra. However, the reader is only
required to be familiar with those contents of algebra that are taught in a mathematics Bachelor. Thus, all
non-trivial results from algebra are proven below, with the exception of the following theorems [7].

Theorem A.1: Little theorem of Fermat
Let p be a prime number. Then for any integer a satisfying 0 ≤ a ≤ p− 1, the following relation holds:

ap ≡ a mod p

Theorem A.2: Fundamental theorem of algebra
Let p be a non-constant polynomial with complex coefficients. Then it has at least one complex root.

Theorem A.3: Finite fields
Let p be a prime number. Then the set Fp = {0, 1, . . . , p − 1} is a field under addition and multiplication
modulo p.

This appendix will be structured as follows. Section A.1 will introduce some of the definitions frequently
used in the field of algebra, and additionally proofs of some very fundamental theorems of algebra will be
provided. In section A.2, the focus will be on cyclotomic polynomials and how their properties follow from
the theorems in section A.1. Finally, section A.3 will be devoted to showing how the properties of cyclotomic
polynomials eventually lead to the statement that λ is irrational.

For additional clarity, figure A.1 contains a graphical overview of the steps that together form the proof that
λ is an irrational number.

A.1 Required knowledge from abstract algebra

This section will introduce the concepts from abstract algebra that are needed in the proof that λ is irrational.
First of all, the required definitions will be given, and subsequently some important theorems will be proven.

A.1.1 Definitions

The definitions covered below are mainly included for extra clarification and completeness.

80

λ 6∈ Q

x4 + x3 + 1
4x

2 + x+ 1
is monic over Q

Monic minimal
polynomials are unique

For α ∈ Q, the minimal monic
polynomial of e2πiα over Q is cyclotomic

x4 + x3 + 1
4x

2 + x+ 1
is minimal for e2πiλ over Q

x4 + x3 + 1
4x

2 + x+ 1
is not cyclotomic

For p, q ∈ Z with gcd(p, q) = 1, Φq is

the minimal polynomial of e
2πip
q over Q

A polynomial is minimal ⇔
a polynomial is irreducible

e2πiλ is a root of
x4 + x3 + 1

4x
2 + x+ 1

λ-equation

x4 + x3 + 1
4x

2 + x+ 1
is irreducible over Q

x4 + x3 + x2 + x+ 1
is irreducible over F3

All cyclotomic polynomials
have integer coefficients

For p, q ∈ Z with gcd(p, q) = 1,

e
2πip
q is a root of Φq

∀n ∈ N, Φn is irreducible over Q

Induction
∀n ∈ N, xn − 1 =

∏
d|n

Φd(x)

n ∈ N, p is prime and p6 |n. f is an irreducible
factor of Φn. ζ ∈ C is a root of f . Then f(ζp) = 0.

Euclidean division
algorithm

Unique factorization
property

Uniqueness

Existence

Well-ordening
axiom

Euclid’s lemma

Bézout’s identity

f ∈ Z[x], g, h ∈ Q[x], f = gh and f, g
monic. Then g, h ∈ Z[x] and h is monic.

p is prime, g ∈ Fp[x], x ∈ Z.
Then {g(x)}p ≡ g(xp) mod p.

Gauss’s lemma

Little theorem of Fermat

p prime, k ∈ Z,
1 ≤ k < p.

Then p

∣∣∣∣(nk
)

.

All binomial coefficients are integers

∀n, k ∈ Z,
(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

Figure A.1: Flowchart indicating the steps taken in order to prove the irrationality of λ. The gray cells are
the steps taken in section A.1. The hatched ones are considered in section A.2. Lastly, the white ones are
covered in section A.3.

81

Definition A.4: Rings
Let A be a set on which an addition and a multiplication operation are defined. Then A is said to be a ring
if it satisfies the following ring-axioms:

1. A is closed under addition and multiplication. So, for every a, b ∈ A, a+ b ∈ A and ab ∈ A.
2. The addition and multiplication operations are associative. So, for every a, b, c ∈ A, (a + b) + c =

a+ (b+ c) and (ab)c = a(bc).
3. The addition and multiplication operations are commutative. So, for every a, b ∈ A, a+ b = b+a and

ab = ba.
4. There exist additive and multiplicative identity elements in A. So, there exist 0A, 1A ∈ A such that

for every a ∈ A, a+ 0A = a and a1A = a.
5. There exist additive inverses. So, for any a ∈ A, there exists a (−a) ∈ A such that a+ (−a) = 0A.
6. The multiplication is distributive over addition. So, for any a, b, c ∈ A, a(b+ c) = ab+ ac.

Definition A.5: Fields
Let A be a ring. Then A is said to be a field if it, in addition, satisfies the following field-axiom:

7. There exist multiplicative inverses. So, for any a ∈ A \ {0A}, there exists an a−1 ∈ A such that
aa−1 = 1A.

Note that every field is automatically a ring. One can easily verify that C, R and Q are indeed fields. The
additive identity is 0 and the multiplicative identity is 1 in all these fields. On the other hand, Z is merely
a ring as for example 2 ∈ Z does not have a multiplicative inverse in Z. The additive and multiplicative
identities of Z are 0 and 1 as well, respectively.

Definition A.6: Polynomials
Let A be a ring. Let p(x) be an expression of the following form:

p(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n

with coefficients p0, p1, . . . , pn in A. Then p is called a polynomial in x over A. The collection of all such
polynomials is denoted by A[x].

Note that polynomials are not functions, they are merely the expressions themselves. Consequently, polyno-
mials are generally not bound to a certain domain. Furthermore, we say that two polynomials are equal if
and only if all their coefficients are equal. Adding and multiplying polynomials will be done in the standard
way of expanding the parentheses. Without further notice, it will be assumed that the coefficients of a
polynomial p over A are denoted by the elements p0, p1, . . . , pn of A.

Corollary A.7: Polynomial rings
Let A be a ring and A[x] be the collection of all polynomials in x with coefficients in A. Then A[x] is a
ring.

The validity of this statement can easily be checked by checking that A[x] satisfies all ring axioms. The
additive identity of A[x] is the polynomial of which all coefficients are 0A. The multiplicative identity is the
polynomial for which only the first coefficient is 1A, and the others are 0A.

Definition A.8: Degree of polynomials
Let A a be ring, and p be a polynomial over A. Then the maximal index of the non-zero coefficients of p is
called the degree of the polynomial p. If all coefficients are zero, then the degree is −1. The degree of p is
denoted by deg(p) ∈ N ∪ {0,−1}. A polynomial is said to be constant if its degree is 0 or −1.

For example, the degree of x2−1 is 2, and the degree of 2 is 0 hence it is constant. Furthermore, deg(0) = −1
and so 0 is a constant polynomial as well.

82

Theorem A.9: Degree of the product of polynomials
Let A be a field and p, q ∈ A[x] be non-zero polynomials. Then deg(pq) = deg(p) + deg(q).

Proof: By expanding the parentheses, one finds easily that the leading coefficient term of pq is pdeg(p)qdeg(q)x
deg(p)+deg(q).

Following from the definition of the degree of a polynomial, pdeg(p) and qdeg(q) are both non-zero, hence their
product is non-zero as well. So, deg(pq) = deg(p) + deg(q). �

For example, we have 2 = deg(x2 − 1) = deg((x− 1)(x+ 1)) = deg(x− 1) + deg(x+ 1) = 1 + 1.

Definition A.10: Monic polynomials
Let A be a ring. Then p ∈ A[x] is said to be monic over A if its leading coefficient (that is, pdeg(p)) is 1A.

For example, x3 − 4x2 + 3 is monic over Q.

Definition A.11: Irreducible polynomials
Let A be a ring and p ∈ A[x] be a non-constant polynomial. Then p is said to be irreducible over A if there
do not exist non-constant polynomials q, r ∈ A[x] such that p = qr. Otherwise, p is said to be reducible over
A.

For example, x2 − 1 is reducible over R, as it can be written as (x− 1)(x+ 1). The same goes for x2 − 2, as
it can be written as (x−

√
2)(x+

√
2). However, x2 − 2 is irreducible over Q.

Definition A.12: Roots
Let A be a ring. Let α ∈ A be a constant. Let B ⊆ A be a ring such that 0A = 0B and 1A = 1B. Let
p ∈ B[x] be a polynomial. Then α is said to be a root of p if p(α) = 0A.

For example,
√

2 ∈ R is a root of x4 − 4 ∈ Q[x].

Definition A.13: Minimal polynomials
Let A be a ring and α ∈ A a constant. Let B ⊆ A be a ring such that 0A = 0B and 1A = 1B. Then a
non-zero polynomial in B[x] of least degree that has α as a root is said to be a minimal polynomial of α
over B.

For example, x2 − 2 is a minimal polynomial of
√

2 over Q.

Theorem A.14: Uniqueness of monic minimal polynomials
Let A be a ring and α ∈ A be a constant. Let B ⊆ A be a ring such that 0A = 0B and 1A = 1B. Then if
there exists a monic minimal polynomial of α over B, then this monic minimal polynomial is unique.

Proof: Suppose we have two monic minimal polynomials, p, q ∈ B[x] such that p(α) = q(α) = 0. Then they
must have equal degree, as otherwise one of them would not be minimal. But then (p−q)(α) = p(α)−q(α) =
0 − 0 = 0, so α is also a root of p − q. But the leading terms of p and q are equal, so they cancel in p − q,
hence deg(p− q) < deg(p) = deg(q). So, we have that p and q cannot be minimal polynomials, which yields
a contradiction, unless p− q = 0. But then p = q. �

A.1.2 Euclidean division

In most standard calculus courses, students are taught the method of partial fraction expansion. This
technique is especially useful for integrating rational functions. An example is supplied below.

Suppose one wants to evaluate the following integral:∫ 2

1

2x4 − x3 + 4x2 − 3x+ 8

x+ 3
dx

83

Then, using the method of partial fraction expansion, one splits the fraction in the integrand such that the
degree of the polynomial in the numerator is less than the degree in the denominator. The integrand is
consequently rewritten as follows:

2x4 − x3 + 4x2 − 3x+ 8

x+ 3
= 2x3 +

−7x3 + 4x2 − 3x+ 8

x+ 3

= 2x3 − 7x2 +
25x2 − 3x+ 8

x+ 3

= 2x3 − 7x2 + 25x+
−78x+ 8

x+ 3

= 2x3 − 7x2 + 25x− 78 +
242

x+ 3

So, one ends up with four easily integrable terms, and one rational term that has a polynomial of lesser
degree in the numerator compared to the degree of the one in the denominator.

The freshman student who did this integration probably wasn’t aware that he or she just applied the
Euclidean division algorithm. The corresponding theorem states that this method always works and the
resulting terms and rational are unique.

Theorem A.15: Euclidean division
Let A be a field and p, q ∈ A[x] with q non-zero. Then there exist two unique polynomials r, s ∈ A[x] such
that p = qr + s and deg(s) < deg(q).

Proof: First we prove the existence of such a r, s ∈ A[x]. Subsequently, we prove the uniqueness of
such a choice of r and s.

Suppose deg(p) < deg(q). Then take r = 0 and s = p. We have p = q0+s = p and deg(s) = deg(p) < deg(q).

Conversely, suppose deg(p) ≥ deg(q). We define n = deg(p) and m = deg(q). Then we define rn−m = pn
qm

.

Next, we define p′n−1 = pn−1−qm−1rn−m, p′n−2 = pn−2−qm−2rn−m, etc. until we reach q0. Then, we define

rn−m−1 =
p′n−1

qm
. We again define new coefficients: p′′n−2 = p′n−2 − qm−1rn−m−1, etc. We continue in this

fashion until we have defined all coefficients of r, including r0. The resulting coefficients p
(m−1)
m−1 , . . . , p

(m−1)
0

form the coefficients of s. Then we have p = qr+ s and deg(s) ≤ m− 1 < m = deg(q). Thus we have proven
the existence.

Suppose that there are two choices for r and s. So we have r1, r2, s1, s2 ∈ A[x] such that p = qr1+s1 = qr2+s2,
deg(s1) < deg(q) and deg(s2) < deg(q). Then q(r1− r2) + (s1− s2) = p− p = 0. So q(r1− r2) = (s2− s1). If
r1 and r2, and s1 and s2 are mutually different, their differences are non-zero polynomials of lesser or equal
degree. So:

deg(q) + deg(r1 − r2) = deg(q(r1 − r2)) = deg(s2 − s1) ≤ deg(s1) < deg(q)

But we know that deg(r1 − r2) ≥ 0, so we have reached a contradiction. Hence, s1 = s2 or r1 = r2, either of
which trivially yields the other. So, we have also proven uniqueness. �

The preceding theorem is arguably one of the most important in algebra, as many theorems are based on
this observation. This is for example the case for the following theorem, which is needed later in this text.

Theorem A.16: Equivalence of minimal and irreducible polynomials
Let A and B ⊆ A be fields such that 0A = 0B and 1A = 1B. Let α ∈ A be a constant. Let p ∈ B[x] be a
polynomial such that p(α) = 0. Then p is irreducible over B if and only if p is a minimal polynomial of α
over B.

Proof: Suppose that p is irreducible and that it is not a minimal polynomial of α. Then there is a minimal
polynomial of α, q ∈ B[x], such that q(α) = 0 and deg(q) < deg(p). As q is minimal, it is non-zero, so ac-
cording to the Euclidean division algorithm, there exist r, s ∈ B[x] such that p = qr+s and deg(s) < deg(q).

84

But then 0 = p(α) = q(α)r(α) + s(α) = 0r(α) + s(α) = s(α). So we find s(α) = 0 and deg(s) < deg(q).
But then we have s is a minimal polynomial of α instead of q, yielding a contradiction, unless s = 0. But
then we have p = qr, hence p is reducible, which is also a contradiction. So, if p is irreducible over B, it is a
minimal polynomial of α over B.

Suppose that p is a minimal polynomial of α over B and that it is reducible. Then there exist non-constant
q, r ∈ B[x] such that p = qr. This implies deg(p) = deg(q) + deg(r), and as q and r are non-constant, we
have deg(q) < deg(p) and deg(r) < deg(p). Yet we also have p(α) = 0 and thus either q(α) = 0 or r(α) = 0.
Hence we have found a polynomial of lesser degree than p which α is a root of, so we find that p is not a
minimal polynomial of α. This is a contradiction, so we find that if p is a minimal polynomial of α over B,
then it is irreducible over B. �

A.1.3 Unique factorization theorem

In a standard algebra course, one learns the unique factorization theorem for integers. This theorem states
that every positive integer can be uniquely written as a finite product of prime factors. The resulting product
is called the prime factorization of this number. A similar statement exists for polynomials. The goal of this
section is to formulate and prove this theorem. The general idea of this proof is similar to the one in the
unique factorization theorem for integers.

First, the notion of divisors and greatest common divisors is generalized to polynomials.

Definition A.17: Divisor
Let A be a ring and f, g ∈ A[x] be polynomials over A. Then g is said to be a divisor of f over A if there
exists a h ∈ A[x] such that f = gh. We denote this by g|f .

For example, x+ 1 is a divisor of x2 − 1 over Z, because x2 − 1 = (x+ 1)(x− 1).

Definition A.18: Greatest common divisor
Let A be a field and f, g ∈ A[x] be non-zero polynomials over A. Then let h ∈ A[x] be a monic polynomial
of highest degree such that h|f and h|g. Then h is said to be a greatest common divisor of f and g. This
is denoted by h = gcd(f, g).

Corollary A.19: Greatest common divisor of irreducible polynomials
Let A be a field and f, g ∈ A[x] be non-zero irreducible polynomials over A that differ by more than just a
constant factor. Then their greatest common divisor is 1A.

Proof: Suppose c is a greatest common divisor of f and g with deg(c) ≥ 1. Then c|f and c|g, hence
there exist m,n ∈ A[x] such that f = mc and g = nc. But f is irreducible and c is non-constant, hence m
must be constant. A similar argument shows that n must be costant. But then f = m

c g, hence f and g differ
no more than just a constant factor. So, we find a contradiction, and thus the greatest common divisor is
a polynomial of degree at most 0. In addition, this polynomial must be monic, hence we are left with the
trivial divisor of f and g, 1A. �

Lemma A.20: Bézout’s identity
Let A be a field and f, g ∈ A[x] be non-zero polynomials over A. Let h be a greatest common divisor of f
and g. Then h is uniquely determined, and there exist p, q ∈ A[x] such that h = fp+ gq.

Proof: Define S as the set of polynomials given by fr + gs for some r, s ∈ A[x]. Then define R =
{deg(s) : 0A 6= s ∈ S}. This set R has a minimal element, k. Take p′, q′ ∈ A[x] such that deg(fp′+ gq′) = k.
Then define d by scaling p′ to p and q′ to q such that d = fp+ gq becomes monic.

According to the Euclidean division algorithm, we can find polynomials u, v ∈ A[x] such that f = du + v

85

and deg(v) < deg(d). We can isolate v and substitute d, as follows:

v = f − du = f − (fp+ gq)u = f(1− pu)− gqu

Hence we find v is also a linear combination of f and g, so unless v = 0A, v ∈ S. But deg(v) < deg(d), so
then k ≤ deg(v) < deg(d) = k. Hence, we reached a contradiction, and so we must have v = 0A. Thus,
f = du, hence d is a divisor of f . Completely analogously, one can prove that d is a divisor of g.

Suppose c ∈ A[x] is also a divisor of f and g. Then we have f = mc and g = nc for some m,n ∈ A[x]. Then,
we find:

d = fp+ gq = mcp+ ncq = c(mp+ nq)

We know d 6= 0A, so mp+ nq 6= 0A and c 6= 0A. Hence:

deg(d) = deg(c) + deg(mp+ nq) ≥ deg(c)

So, d is indeed a greatest common divisor of f and g. As we previously found that d = fp + gq, we have
now proven the latter part of the theorem.

Now suppose that C is also a greatest common divisor of f and g. Then, as before, we have f = MC and
g = NC for some M,N ∈ A[x]. Again:

d = fp+ gq = MCp+NCq = C(Mp+Nq)

As D and c are both greatest common divisors of f and g, they have equal degree. As we also have d 6= 0A,
C 6= 0A and Mp + Nq 6= 0A, we must have that deg(Mp + Nq) = 0 and so Mp + Nq is constant. But C
and d are both monic, so this constant must be 1A. Hence, d = C1A = C. So, the greatest common divisor
of f and q is unique. �

Note that as it is now clear that the greatest common divisor of two polynomials is unique, the notation
gcd(·, ·) makes sense.

Lemma A.21: Euclid’s lemma
Let A be a field and p, q ∈ A[x] be two irreducible polynomials over A. If for r ∈ A[x], r|pq, then r|p or r|q.

Proof: Suppose that r|pq and r is not a divisor of p. We know that there exists a n ∈ A[x] such that
rn = pq. The only divisors of p are 1A and p, and as r is not a divisor of p, we find that gcd(r, p) = 1A.
Bézout’s identity now yields that there exist a, b ∈ A[x] such that ra + pb = 1A. Multiplying by q yields
q = raq+pbq = raq+ brn = r(aq+ bn). Hence r|q. With an identical argument, one can show that r divides
p whenever it does not divide q. �

Note that from the above lemma, it is clear that the irreducible polynomials have the same role in polynomial
factorization as the prime numbers have in integer factorization.

Now, all groundwork has been laid to provide a proof for the following important theorem, which is the
polynomial analogue of the prime factorization.

Theorem A.22: Unique factorization property
Let A be a field and p ∈ A[x] be a non-constant polynomial. Then p is a product of a finite set of irreducible
polynomials over A. Moreover, these polynomials are unique up to a global constant and their overall order.

Proof: First of all, we prove that every polynomial can be written as the product of irreducible poly-
nomials. To this end, suppose that S constitutes the set of all non-constant polynomials that cannot be
written as the product of irreducible polynomials. Then take R the set of the degrees of all such polynomials.
Then R ⊆ N, hence R has a minimal element k. Denote s ∈ S a polynomial that cannot be written as a
product of irreducible polynomials with deg(s) = k. Then s cannot be irreducible itself, so it has to be
reducible. Hence there exist non-constant q, r ∈ A[x] such that s = qr. But then deg(q) < deg(s) and
deg(r) < deg(s), so q and r are not elements of S. Hence they can be written as the product of irreducible

86

polynomials. But then s can be written as the compound product of these irreducible polynomials. Hence
we have reached a contradiction.

Now suppose that p can be written as the product of two sets of irreducible polynomials. So, suppose that
p1, . . . , pn, q1, . . . , qm are irreducible polynomials such that:

p =

n∏
i=1

pi =

m∏
i=1

qi

We can write p1 . . . pn = q1 . . . qm. So we observe p1|q1 . . . qm. Applying Euclid’s lemma repeatedly yields
that there exists an i1 such that p1|qi1 . As both are irreducible, we have that they are equal up to a constant,
so c1p1 = qi1 . We now find that p2 . . . pn = c−11 q1 . . . qi1−1qi1+1 . . . qm. Again, we can now find a i2 such that
c2p2 = qi2 . We can continue in this manner until one runs out of factors on one side of the equation.

Suppose n > m. Then one ends up with pn−m+1 . . . pn = c−11 . . . c−1m . But then the degree on the right side
of the equality is 0, and on the left side strictly larger than 0. So, n cannot be strictly greater than m.

Suppose on the other hand n < m. Then one ends up with c1 . . . cn on the left side of the equation and a
product of m − n irreducible polynomials on the right hand side. Again, the degree of the part on the left
side of the equality is 0, whereas the degree of the expression on the right side is strictly greater than 0. So,
we find n = m.

So, we have found that the number of irreducible polynomials making up the product is fixed, and that
the irreducible polynomials themselves have a counterpart which they only differ by a factor with. This
completes the proof. �

For example, x4−1 = (x2 +1)(x2−1) = (x2 +1)(x+1)(x−1). The last three factors are all irreducible over
R. The unique factorization property of R[x] now tells us that other products of irreducible polynomials
that together form x4 − 1 have the same structure, only a different order and may differ by constants. For
example: x4 − 1 = (2x− 2)(2x+ 2)(1

4x
2 + 1

4).

A.1.4 Gauss’s lemma

The next important result that is needed in the proof that λ is an irrational number is Gauss’s lemma. After
the next definition, the lemma is stated and proven. More general versions of the following definitions and
lemmas exist, but they are slightly more complicated and less intuitive. These ones turn out to be sufficiently
general for the purpose of this text.

Definition A.23: Primitive polynomials over Z
Let p ∈ Z[x]. Then p is said to be a primitive polynomial over Z if the greatest common divisor of all pairs
of its coefficients is 1.

For example, 3x2 − 2 is a primitive polynomial over Z, as gcd(3,−2) = 1.

Lemma A.24: Gauss’s lemma
If p, q ∈ Z[x] are primitive polynomials, pq is also a primitive polynomial over Z. Furthermore, if p ∈ Z[x]
is primitive over Z, then it is irreducible over Z if and only if it is irreducible over Q.

Proof: Because Z[x] is a ring of polynomials, pq ∈ Z[x]. We now prove that pq is primitive. Suppose
it is not. Then there exists a prime element a ∈ Z such that all coefficients of pq are divisible by a. Now the
coefficients of p and q are not all divisible by a, so there exist coefficients pk and ql with maximal indeces k
and l such that pk and ql are not divisible by a. But now (pq)k+l is a sum of terms that are all divisible by
a, except for pkql. Hence (pq)k+l is not divisible by a, which is a contradiction. Hence, we find that pq is a
primitive polynomial over A.

87

Now, suppose that p is primitive over Z. If p is irreducible over Q, it is clear that it is irreducible over Z as
well, as Z ⊆ Q. On the other hand, suppose that p is irreducible over Z, but not irreducible over Q. Then
there exist a q, r ∈ Q[x] such that p = qr. All coefficients of q and r can be written as fractions of integers.
We now define cq ∈ Z as the lowest common multiple of all denominators of the coefficients of q, and we
define cr ∈ Z in a similar manner. We now define q′ = cqq and r′ = crr, such that p = (cqcr)

−1q′r′. Now q′

and r′ are primitive polynomials over Z, hence q′r′ is a primitive polynomial over Z as well. But then for p
to be a primitive polynomial in Z[x], we must have that (cqcr)

−1 = 1. Hence p = q′r′, which contradicts the
irreducibility of p. Hence p is also irreducible over Q. �

An important corollary is given by the following lemma:

Corollary A.25: Factorization of monic polynomials over Z
Let f ∈ Z[x] be a monic polynomial. Suppose furthermore that g, h ∈ Q[x] and f = gh. If either g or h is
monic, then g, h ∈ Z[x] and both g and h are monic.

Proof: The coefficient of the leading term of the polynomial gh is given by the product of the coeffi-
cients of the leading terms of the individual polynomials. Hence, if f and g are monic, so must be h, and if
f and h are monic, g must be monic as well.

We know that g, h ∈ Q[x]. Suppose one of them is not a member of Z[x]. Without loss of generality, we
can assume that this is g, so g 6∈ Z[x]. That means that the coefficients of g are all fractions of integers.
Hence, there exists a lowest common multiple of the denominators of these fractions, cg ∈ Z with cg ≥ 2. If
h 6∈ Z[x], then there also exists a ch ∈ Z defined in a similar manner. If, instead, h ∈ Z[x], then at least h is
monic, so h must be primitive. In that case we define ch = 1 ∈ Z.

Now, we define g′ = cgg and h′ = chh. Then g′ and h′ are primitive polynomials over A, according to Gauss’s
lemma. Furthermore, f = gh = (cgch)−1g′h′. Again, we observe that f is primitive, hence (cgch)−1 = 1.
But then cgch = 1, hence we find cg = ch = 1 or cg = ch = −1. Both contradict cg ≥ 2. Therefore, both g
and h must be members of Z[x]. �

For example, we know that x+1 is a divisor of x2−1. Note that both are monic and have integer coefficients.
The preceding lemma now predicts that the polynomial that is obtained by dividing x2− 1 by x+ 1 is again

monic and has integer coefficients. Indeed, x2−1
x+1 = x− 1, so this prediction is correct.

A.2 Cyclotomic polynomials

In this section, the focus will shift from general results from algebra towards the somewhat more specific
subject of cyclotomic polynomials. Their definition will be included first, after which some properties will
be proven.

A.2.1 Definition

The following definition forms the core of this section.

88

Definition A.26: Cyclotomic polynomials
Let n ∈ N. Then define the set of all numbers coprime to n as follows:

Cn = {k ∈ N : k ≤ n, gcd(k, n) = 1}

The nth cyclotomic polynomial is the polynomial denoted by Φn and defined by:

Φn(x) =
∏
k∈Cn

(
x− e 2πik

n

)

It is instructive to see some examples of cyclotomic polynomials before continuing.
n = 1 yields C1 = {1}, hence Φ1(x) = x− 1.
n = 2 yields C2 = {1}, hence Φ2(x) = x+ 1.
n = 3 yields C3 = {1, 2}, hence:

Φ3(x) =
(
x− e 2πi

3

)(
x− e 4πi

3

)
= x2 −

(
e

2πi
3 + e−

2πi
3

)
x+ 1 = x2 + x+ 1

n = 4 yields C4 = {1, 3}, hence:

Φ4(x) =
(
x− eπi2

)(
x− e 3πi

2

)
= (x− i)(x+ i) = x2 + 1

n = 6 yields C6 = {1, 5}, hence:

Φ6(x) =
(
x− eπi3

)(
x− e 5πi

3

)
= x2 −

(
e
πi
3 + e

5πi
3

)
+ 1 = x2 − x+ 1

Next, a very helpful identity is proven:

Lemma A.27: Product formula for cyclotomic polynomials
Let n ∈ N. Then define the set of all divisors of n as follows:

Dn = {k ∈ N : k|n}

Then, the following relation holds:

xn − 1 =
∏
d∈Dn

Φd(x)

Proof: Let’s take n ∈ N at random. Note that xn−1 has exactly n roots, the complex numbers e
2πik
n , where

k runs from 1 to n. These are called the nth roots of unity. From the fundamental theorem of algebra, it is
easily observed that:

xn − 1 =

n∏
k=1

(
x− e 2πik

n

)
For every k in the above sum, we can write the fraction k/n uniquely in a reduced form k′/n′, with
gcd(k′, n′) = 1. For k = n, it is clear that k′ = n′ = 1, so this yields a factor x− e2πi = x− 1 = Φ1(x).

Let’s now take such an n′ at random. Then all fractions k′/n′ that can be obtained are the ones in which k′

is coprime to n′. On the other hand, suppose k′ is coprime to n′ and 1 ≤ k′ ≤ n′. As n′ is a divisor of n, we
have that k = k′n/n′ is an integer. Furthermore, we have k ≥ n/n′ ≥ 1 and k ≤ n′n/n′ = n. Hence, we can
get the fraction k′/n′ by the process prescribed above, by taking k = k′n/n′.

Now, all n′’s that can be obtained are the divisors of n. Furthermore, for every n′ that we can get, all
numbers coprime to n′ in the interval 1 to n′ are available in the numerator. So, we find that the product on

89

the right hand side of the equation above is equal to the product of all n′th cyclotomic polynomials. Hence
we have proven the relation. �

For example, the polynomial x6 − 1 can be rewritten in the following way:

x6 − 1 =
(
x− e 2πi

6

)(
x− e 4πi

6

)(
x− e 6πi

6

)(
x− e 8πi

6

)(
x− e 10πi

6

)(
x− e 12πi

6

)
=

(
x− e2πi 16

)(
x− e2πi 13

)(
x− e2πi 12

)(
x− e2πi 23

)(
x− e2πi 56

)
(x− 1)

= (x− 1) ·
(
x− e2πi 12

)
·
(
x− e2πi 13

)(
x− e2πi 23

)
·
(
x− e2πi 16

)(
x− e2πi 56

)
= Φ1(x) · Φ2(x) · Φ3(x) · Φ6(x)

So, once one writes xn − 1 in product form, all that’s left to do is change the order of the factors, to obtain
the product of cyclotomic polynomials.

A.2.2 Integer coefficients

The product formula of cyclotomic polynomials has some surprising consequences. One of those is that all
cyclotomic polynomials have integer coefficients.

Theorem A.28: Cyclotomic polynomials have integer coefficients and are monic
Let n ∈ N. Then Φn is a monic element of Z[x]

Proof: We give a proof by induction. It is easily seen that Φ1(x) = x − 1 ∈ Z[x] and this polynomial
is monic. This provides the basis for induction.

Now take n ∈ N at random, and suppose that all cyclotomic polynomials Φ1(x), . . . ,Φn−1(x) are monic
elements of Z[x]. Then we know from the previous lemma:

xn − 1 =
∏
d∈Dn

Φd(x) =
∏

d∈Dn\{n}

Φd(x) · Φn(x)

Let’s define f(x) =
∏
d∈Dn\{n} Φd(x). As Z[x] is a ring, we have f ∈ Z[x]. Moreover, f is a product of monic

polynomials, so f is monic too. Also, xn − 1 = f(x) · Φn(x).

Now, we know from the very definition of Φn(x) that it is an element of C[x]. f(x) and xn − 1 are also
elements of C[x]. Moreover, C is a field, so when we apply Euclidean division, we find that if g, h ∈ C[x] and
xn − 1 = f(x)g(x) + h(x), then g(x) = Φn(x) and h(x) = 0.

We also know that xn − 1 and f(x) are both members of Q[x]. As Q is a field as well, we can again apply
the Euclidean division algorithm to obtain a unique g, h ∈ Q[x] such that xn − 1 = f(x)g(x) + h(x). But
then also g, h ∈ C[x], so g(x) = Φn(x). Hence, Φn ∈ Q[x].

So, now we have xn − 1 = f(x)Φn(x) with f,Φn ∈ Q[x] monic polynomials. Furthermore xn − 1 ∈ Z[x] is
monic as well. According to the factorization of monic polynomials over Z lemma, we now have Φn ∈ Z[x]
and Φn is monic. Therefore, by induction, we have proven that for every n ∈ N, Φn is a monic element of
Z[x]. �

A.2.3 Irreducibility over Q

The goal of this subsection is to prove that all cyclotomic polynomials are irreducible over Q. The proof
is quite complicated and requires some knowledge from introductory algebra courses. In addition, some
properties of binomial coefficients are required. Therefore, the definition of these coefficients is given first.

90

Definition A.29: Binomial coefficients
For n, k ∈ N0 with k ≤ n, the binomial coefficient n choose k is given by the following equation:(

n

k

)
=

n!

k!(n− k)!

For any values of n ∈ N0 and k ∈ Z that do not meet these requirements, the convention that
(
n
k

)
= 0 is

used.

For example, the binomial coefficient 6 choose 4 is calculated by
(
6
4

)
= 6!

4!2! = 720
24·2 = 15.

In order to prove some properties of binomial coefficients, the following recursion formula for binomial
coefficients is frequently used.

Lemma A.30: Recursion formula for binomial coefficients
Let n ∈ N0 and k ∈ Z. Then the following recursion relation holds:(

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

Proof: Take n ∈ N0 and k ∈ Z random. Then we differentiate between four cases.

First of all, suppose k < −1 or k > n. Then
(
n
k

)
= 0,

(
n
k+1

)
= 0 and

(
n+1
k+1

)
= 0, so the relation holds trivially.

Secondly, suppose k = −1. Then we have
(
n
k

)
= 0, so we need to prove that

(
n+1
0

)
=
(
n
0

)
holds. Rewriting

this in factorials and using 0! = 1, we must prove (n+1)!
(n+1)! = n!

n! . This is equivalent to saying 1 = 1. Hence the

relation holds.

Thirdly, if we have k = n, we prove the validity of the relation in a similar manner. We have
(
n
k+1

)
= 0, so

we must prove
(
n+1
n+1

)
=
(
n
n

)
. Again rewriting in factorials yields that proving (n+1)!

(n+1)! = n!
n! is sufficient. But

this yields the trivial equality 1 = 1, hence the relation also holds in this case.

So, we are left with the case in which 0 ≤ k < n. We can now rewrite the right hand side into the left hand
side, as follows:(

n

k

)
+

(
n

k + 1

)
=

n!

k!(n− k)!
+

n!

(k + 1)!(n− k − 1)!

=
n!(k + 1)

(k + 1)!(n− k)!
+

n!(n− k)

(k + 1)!(n− k)!
=

n!(n+ 1)

(k + 1)!(n− k)!

=
(n+ 1)!

(k + 1)!(n− k)!
=

(
n+ 1

k + 1

)
Hence in all four cases, the relation holds. �

This recursion relation is what lies at the basis of Pascal’s triangle, where the sum of two adjacent tiles
determines the value of the tile directly below them. Furthermore, this recursion relation can be used to
prove a well-known very fundamental fact about binomial coefficients.

Corollary A.31: Binomial coefficients are integers
All binomial coefficients are members of Z.

Proof: A proof is given by induction. We find that
(
0
0

)
= 0!

0!·0! = 1 ∈ Z. Furthermore,
(
0
k

)
with k 6= 0

is 0 ∈ Z by definition. This provides the basis for induction.

Now suppose all binomial coefficients with upper number strictly smaller than n ∈ N are elements of Z.
Then we can take k ∈ Z at random and apply the recursion relation from the previous lemma. We know

91

that
(
n−1
k−1
)

and
(
n−1
k

)
are members of Z, hence so is their sum,

(
n
k

)
. Hence we have proven that all binomial

coefficients are integer by induction. �

Next, a rather more specific property of binomial coefficients is provided.

Theorem A.32: Divisibility of binomial coefficients by prime factors
Suppose p is a prime number and 1 ≤ k ≤ p− 1. Then p is a divisor of

(
p
k

)
.

Proof: We can rewrite
(
p
k

)
in the following way:(

p

k

)
=

p!

k!(p− k)!
= p · (p− 1)!

k!(p− k)!

Now this last fraction can be written as a fraction n
d with n, d ∈ Z such that gcd(n, d) = 1. Then, d is

a divisor of k!(p − k)!. If we look at the prime factorization of k!(p − k)!, though, we do not have p as a
factor, because all numbers that are being multiplied are smaller than p. The prime factorization of d is
equal to the one of k!(p − k)! with fewer factors, so p is also not a factor in the prime factorization of d.
Hence, gcd(p, d) = 1. Combining with gcd(n, d) = 1 and using Euclid’s lemma for integers, we find that
gcd(pn, d) = 1. But we know from the previous corollary that pn

d =
(
p
k

)
∈ Z. So, we find that d = 1. Hence(

p
k

)
= pn, so

(
p
k

)
is divisible by p. �

For example, 5 is prime,
(
5
2

)
= 5!

2!3! = 120
2·6 = 10 and 10 is indeed divisible by 5.

Now, this insight into the binomial coefficients is used in the following theorem.

Theorem A.33: Power of polynomials over finite fields
Suppose p is a prime number and f ∈ Fp[x]. Then f(x)p ≡ f(xp) mod p.

Proof: This theorem is proven using mathematical induction to the degree of f . Suppose that f is constant.
Then f(x) = a ∈ {0, 1, . . . , p− 1}. According to Fermat’s little theorem, we have:

f(x)p = ap ≡ a = f(xp) mod p

So, for deg(f) ∈ {0,−1}, the assertion holds.

Now suppose that the assertion holds for all polynomials up to degree n − 1. A polynomial f ∈ Fp[x] with
degree n can be written as f(x) = axn + g(x), with g ∈ Fp[x] and g(x)p ≡ g(xp) mod p. Raising f to the
power of p yields a sum with binomial coefficients, according to the binomium of Newton. Of this sum, only
two terms remain, as the others vanish because the binomial coefficients are divisible by p, according to the
previous theorem. Thus:

f(x)p = (axn + g(x))p =

p∑
k=0

(
p

k

)
akxkg(x)p−k ≡ apxp + g(x)p

≡ axp + g(xp) = f(xp) mod p

Thus, by mathematical induction, we have proven that for all functions f ∈ Fp[x], the relation f(x)p ≡ f(xp)
mod p holds. �

For example, 3 is prime and (x+ 1)3 = x3 + 3x2 + 3x+ 1 ≡ x3 + 1 mod 3.

As a final ingredient for proving that all cyclotomic polynomials are irreducible over Q, we prove the following
lemma.

Lemma A.34:
Let n ∈ N and let ζ ∈ C be one of the roots of the nth cyclotomic polynomial. Let f ∈ Q[x] be the monic
minimal polynomial of ζ over Q. Let p be a prime that does not divide n. Then ζp is a root of f .

92

Proof: Note that there is only one function that is a monic minimal polynomial of ζ, by consequence
of theorem A.14.

First of all, notice that ζ is a root of Φn. This polynomial is a monic element of Q[x] and Q is a field, so
by the unique factorization theorem, there exists a unique set of monic irreducible polynomials over Q that
when multiplied yield Φn. At least one of these polynomials, say q ∈ Q[x] has ζ as a root. As irreducibility
and minimality are equivalent, we see that q must be a minimal polynomial of ζ over Q. But q is also
monic. As monic minimal polynomials are unique, we have f = q. Hence we find that f is one of the monic
irreducible polynomials of the unique factorization of Φn. Hence, f is a divisor of Φn.

So, we have found that there exists a g ∈ Q[x] such that Φn = fg. But we know that Φn ∈ Z[x] and f is
monic, so g ∈ Z[x] and g is monic as well.

Recall that p is a prime number. Since ζ is a root of Φn, we can write ζ = e
2πik
n with gcd(k, n) = 1. As p is

prime and does not divide n, we also have gcd(p, n) = 1. According to Euclid’s lemma for integers, we now
find that gcd(pk, n) = 1. So, for any l ∈ Z, we have gcd(pk + ln, n) = 1. Now, we have for any l ∈ Z:

e
2πi(pk+ln)

n = e
2πipk
n +2πil = e

2πipk
n

(
e2πi

)l
=
(
e

2πik
n

)p
· 1l = ζp

Now, according to the Euclidean division algorithm for integers, we can choose l such that 0 < pk+ ln ≤ n.
Then we find that ζp is also a root of Φn.

Suppose that ζp is not a root of f . We are aiming to find a contradiction. As Φn = fg, it must be a root of
g. So, we find that ζp is a root of g. Hence, ζ is a root of G(x) = g(xp). In a similar manner as above, we
now find that f is a divisor of G. Hence, there exists an h ∈ Q[x] such that g(xp) = f(x)h(x). As f, g ∈ Z[x]
are monic, we find that h ∈ Z[x] is monic too (Gauss’s lemma’s corollary).

Furthermore, from the product formula for cyclotomic polynomials, we observe that Φn(x) is a divisor of
xn− 1. Hence, there exists a polynomial d ∈ Q[x] such that xn− 1 = Φn(x)d(x). As xn− 1 and Φn are both
monic members of Z[x], we find that d is a monic member of Z[x] as well.

So far, thus, we have the following equations with all functions monic polynomials over Z:

xn − 1 = Φn(x)d(x) = f(x)g(x)d(x) and g(xp) = f(x)h(x)

Now, we apply the modulo p operation on both equations. The resulting functions over Fp[x] are denoted
by the same letters. According to the previous lemma, we now find g(x)p ≡ g(xp) = f(x)h(x) mod p.

As Fp is a field and g is monic, g has a unique factorization of monic irreducible polynomials over Fp[x].
Suppose that these monic irreducible polynomials are k1, k2, . . . , km ∈ Fp[x]. Then g =

∏m
i=1 ki, so gp =∏m

i=1 k
p
i . But gp is also a polynomial in Fp[x], hence it also has a unique factorization of monic irreducible

polynomials. We observe that this factorization is given by the same irreducible factors k1, . . . , km, but with
higher multiplicity.

f is irreducible over Q, but it is not necessarily irreducible over Fp. But as Fp is a field, f has a unique
factorization. Let k ∈ Fp[x] be a monic irreducible factor of f . Then k is also a monic irreducible factor of
gp. Hence by the previous paragraph, it must also be an irreducible factor of g.

Recall that we have xn − 1 = f(x)g(x)d(x). As k is an irreducible factor of f and g, we have that k is
an irreducible factor of xn − 1 with multiplicity of at least 2. But k is non-constant, so, according to the
fundamental theorem of algebra, it has at least one root, α ∈ C. So, this is also a root of xn − 1. As the
multiplicity is greater than 1, the derivative of xn − 1 will have this root as well. But the derivative is
nxn−1 which has only the trivial root x = 0, which is clearly not a root of xn − 1. Hence, we have found a
contradiction. So, ζp is a root of f . �

This lemma enables us to reach the main goal of this subsection.

93

Theorem A.35: Irreducibility of cyclotomic polynomials over Q
Let n ∈ N. Then Φn is irreducible over Q.

Proof: Define ζ = e
2πi
n . Then ζ is a root of Φn. We define f as the monic minimal polynomial of ζ

over Q. Now take η another root of Φn. Then we can write η = e
2πik
n with 1 ≤ k ≤ n and gcd(k, n) = 1.

Thus we have the following relation:

η =
(
e

2πi
n

)k
= ζk

Now consider the prime factors of k: p1, . . . , pm prime numbers such that k =
∏m
i=1 pi. Then we can write:

η = ζk = ζ
∏m
i=1 pi = (((ζp1)p2)...)pm

As gcd(k, n) = 1, we have gcd (
∏m
i=1 pi, n) = 1. Applying Euclid’s lemma for integers now yields that all for

all i, gcd(pi, n) = 1. Hence, we can apply the previous lemma repeatedly, to obtain that η is also a root of
f .

So, now we have found that every root of Φn is also a root of f . As Φn does not contain any roots of
multiplicity greater than 1, we see that the factorization of Φn into irreducible polynomials over Q can only
have one factor: f . As both are monic, we now find that Φn = f . So, Φn is irreducible over Q. �

Finally, the following corollary will prove helpful in proving that λ is irrational.

Corollary A.36:
Let q ∈ Q. Then the monic minimal polynomial of α = e2πiq over Q is cyclotomic.

Proof: Take q ∈ Q random. Then we write q = m
n with gcd(m,n) = 1. Substitution in α yields α = e

2πim
n .

Now α is a root of Φn. Furthermore, Φn is irreducible over Q. This implies that Φn is a minimal polynomial
of α. As Φn is monic and monic minimal polynomials are unique, we have that the monic minimal polynomial
of α is Φn. Hence it is cyclotomic. �

A.3 The λ-polynomial

In this subsection, finally, it will be proven that λ defined by the λ-equation is irrational. To do so, the
results from the previous sections will be used. This section will be less abstract than the previous two, as
the focus will be on one specific polynomial, instead of a general collection of polynomials obeying certain
characteristics.

The polynomial that will be considered in this section is referred to as the λ-polynomial, and is defined as
follows:

p(x) = x4 + x3 +
1

4
x2 + x+ 1

First of all, it will be shown that one of the roots of this equation is in fact e2πiλ. Then it will be shown
that this polynomial is irreducible. From this, it will eventually follow that λ 6∈ Q.

A.3.1 e2πiλ is a root

In this subsection, it will be proven that α = e2πiλ is a root of the λ-polynomial.

First of all, an expression for cos2
(
π
8

)
is found. To do so, a double-angle formula is used: cos(2x) =

2 cos2(x)− 1. Rewriting and substituting π
8 for x yields:

cos2
(π

8

)
=

1

2

(
1 + cos

(π
4

))
=

1

2

(
1 +

1√
2

)

94

Evaluating p at x = α yields:

p(α) =
α2

4

(
4α2 + 4α+ 1 + 4α−1 + 4α−2

)
It is sufficient to show that the expression in the parentheses is 0, hence it is sufficient to show that 4p(α)/α2 =
0. Plugging in α = e2πiλ in the expression in the parentheses, and using the definitions of the cosine and
sine, the following equation is obtained:

4p(α)

α2
= 4α2 + 4α+ 1 + 4α−1 + 4α−2 = 4e4πiλ + 4e2πiλ + 1 + 4e−2πiλ + 4e−4πiλ

= 8 cos(4πλ) + 8 cos(2πλ) + 1

This can be further rewritten using the same double angle formula again: cos(2x) = 2 cos2(x) − 1. This
yields:

4p(α)

α2
= 8(2 cos2(2πλ)− 1) + 8(2 cos2(πλ)− 1) + 1

= 16 cos2(2πλ) + 16 cos2(πλ)− 15

= 16(2 cos2(πλ)− 1)2 + 16 cos2(πλ)− 15

= 16(4 cos4(πλ)− 4 cos2(πλ) + 1) + 16 cos2(πλ)− 15

= 64 cos4(πλ)− 48 cos2(πλ) + 1

= 64
(

cos2
(π

8

))4
− 48

(
cos2

(π
8

))2
+ 1

This last step was obtained by invoking the λ-equation. Using the expression found for cos2(π/8) that was
found before, the right hand side of the equation above can be further rewritten. Substituting cos2(π/8) for
1
2 (1 + 2−

1
2) in the expression above leads to:

4p(α)

α2
= 64

(
1

2

(
1 +

1√
2

))4

− 48

(
1

2

(
1 +

1√
2

))2

+ 1

= 4

(
1 +

1√
2

)4

− 12

(
1 +

1√
2

)2

+ 1

= 4

(
3

2
+
√

2

)2

− 12

(
3

2
+
√

2

)
+ 1

= 4

(
17

4
+ 3
√

2

)
− 12

(
3

2
+
√

2

)
+ 1

= 17 + 12
√

2− 18− 12
√

2 + 1 = 0

Hence, indeed 4p(α)/α2 = 0, so p(α) = 0. So, it was shown that e2πiλ is indeed a root of x4+x3+ 1
4x

2+x+1.

A.3.2 Irreducibility over Q

This section will be devoted to proving that the λ-polynomial is irreducbile over Q. The proof will use some
results from earlier sections.

Assume that the λ-polynomial is reducible over Q. We are going to find a contradiction. So, x4 + x3 +
1
4x

2 +x+ 1 is reducible over Q, hence so is 4x4 + 4x3 +x2 + 4x+ 4. This polynomial is primitive, and hence
this polynomial is also reducible over Z (Gauss’s lemma). So, there exist non-constant f, g ∈ Z[x] such that
f(x)g(x) = 4x4 + 4x3 + x2 + 4x+ 4.

95

If we now apply a modulo 3 operation on both sides, and denote the resulting functions on the left hand side
with the same letters, f and g, we obtain:

f(x)g(x) ≡ x4 + x3 + x2 + x+ 1 mod 3

We are now going to show that such a choice for non-constant f, g ∈ F3[x] does not exist. As F3 is a field,
all non-zero elements from F3 have a multiplicative inverse, so we only have to look for monic divisors of
x4 + x3 + x2 + x+ 1. We notice that at least one of the factors must have degree 1 or 2. Now, the following
expressions all equal x4 + x3 + x2 + x+ 1 modulo 3:

x(x3 + x2 + x+ 1) + 1 x2(x2 + x+ 1) + x+ 1
(x+ 1)(x3 + x) + 1 (x2 + 1)(x2 + x) + 1

(x+ 2)(x3 + 2x2 + 1) + 2 (x2 + 2)(x2 + x+ 2) + 2x
(x2 + 2x)(x2 + 2x) + x+ 1

(x2 + 2x+ 1)(x2 + 2x+ 2) + x+ 2

In the left column, we see that division by a polynomial of first degree always yields a non-zero remainder.
In the right column, a similar observation regarding polynomials of 2nd degree can be made. According to
Euler’s division algorithm, these remainders are unique, hence there are no polynomials f, g ∈ F3[x] such that
f(x)g(x) ≡ x4 + x3 + x2 + x+ 1 mod 3. So, we have found a contradiction, and therefore the λ-polynomial
must be irreducible over Q.

A.3.3 Completion of the proof

At this point, all ingredients for the proof of λ 6∈ Q are available. This last section will cover collecting all
the pieces that are needed, and finally proving the statement this appendix is all about.

The λ-polynomial is an irreducible polynomial over Q. Also, α = e2πiλ is a root of the λ-polynomial. So,
the λ-polynomial is a minimal polynomial of α over Q. Moreover, the λ-polynomial is monic, hence it is the
monic minimal polynomial of α over Q. Furthermore, the λ-polynomial is not cyclotomic, as not all of its
coefficients are elements from Z.

Suppose now that λ ∈ Q. Then according to the last theorem of section A.2, the monic minimal polynomial
of e2πiλ over Q is cyclotomic. But the monic minimal polynomial of e2πiλ is the λ-polynomial, as was shown
in this section, and this polynomial is not cyclotomic. Hence, there is a contradiction, so λ 6∈ Q.

96

B Simulation of Shor’s algorithm on a classical computer

Even though Shor’s algorithm is an algorithm that is supposed to be run on a quantum computer, it can be
simulated on a classical computer. The source code below does exactly that. On linux based systems, it is
run by the following command:

./Shor <Number to factor> <Accuracy parameter>

In the summary of Shor’s algorithm at the end of chapter 5, the number to factor refers to N , and the
accuracy parameter refers to ε.

The code can also be found on GitHub, via the following link:

https://github.com/arriopolis/Shor.git

The code is compiled using a command line instruction similar to:

gcc -o Shor Shor.c -lm

If the compilation process fails, or runtime errors occur, then one can always contact me for more information.

1 // Standard i n c l u d e s
2 #inc lude ” s t d i o . h”
3 #inc lude ” s t d l i b . h”
4 #inc lude ”math . h”
5 #inc lude ” sys / time . h”
6
7 // Enable the use o f boo leans
8 #d e f i n e t rue 1
9 #d e f i n e f a l s e 0

10 typede f char bool ;
11
12 /∗ Greatest Common Div i so r ∗/
13 unsigned i n t gcd (unsigned i n t a , unsigned i n t b)
14 {
15 // Eucl idean algor i thm
16 unsigned i n t c ;
17 whi l e (a != 0)
18 {
19 c = a ;
20 a = b%a ;
21 b = c ;
22 }
23 return b ;
24 }
25
26 /∗ Calcu l ca t e the remainder o f a power with p o s i t i v e o f f s e t ∗/
27 unsigned i n t remmod(unsigned i n t base , unsigned i n t exp , unsigned i n t o f f s e t ,

unsigned i n t mod)
28 {
29 //Modular exponent io t i on
30 unsigned i n t r e s u l t = 1 ;
31 base %= mod ;
32 whi l e (exp != 0)
33 {

97

34 i f (exp & 1)
35 {
36 r e s u l t = (r e s u l t ∗ base) % mod ;
37 }
38 exp >>= 1 ;
39 base = (base ∗ base) % mod ;
40 }
41 r e s u l t = (r e s u l t + o f f s e t) % mod ;
42 re turn r e s u l t ;
43 }
44
45 /∗ Complex v a r i a b l e s ∗/
46 typede f s t r u c t complex {
47 double Re ;
48 double Im ;
49 } COMPLEX;
50
51 /∗ Inve r s e Fast Four i e r Transform ∗/
52 void i f f t s t e p (COMPLEX ∗ v , unsigned i n t N, unsigned i n t i , COMPLEX ∗ tmp ,

COMPLEX ∗ r o o t s o f u n i t y)
53 {
54 COMPLEX ∗ ve , ∗ vo ;
55 COMPLEX z ,w;
56 i f (N > 1)
57 {
58 ve = tmp ;
59 vo = &tmp [N/ 2] ;
60 f o r (unsigned i n t k = 0 ; k < N/2 ; k++)
61 {
62 ve [k] = v [2∗ k] ;
63 vo [k] = v [2∗ k +1] ;
64 }
65 i f f t s t e p (ve ,N/2 , i<<1,v , r o o t s o f u n i t y) ;
66 i f f t s t e p (vo ,N/2 , i<<1,v , r o o t s o f u n i t y) ;
67 f o r (unsigned i n t k = 0 ; k < N/2 ; k++)
68 {
69 w. Re = r o o t s o f u n i t y [k∗ i] . Re ;
70 w. Im = r o o t s o f u n i t y [k∗ i] . Im ;
71 z . Re = w. Re ∗ vo [k] . Re − w. Im ∗ vo [k] . Im ;
72 z . Im = w. Re ∗ vo [k] . Im + w. Im ∗ vo [k] . Re ;
73 v [k] . Re = ve [k] . Re + z . Re ;
74 v [k] . Im = ve [k] . Im + z . Im ;
75 v [k+N/ 2] . Re = ve [k] . Re − z . Re ;
76 v [k+N/ 2] . Im = ve [k] . Im − z . Im ;
77 }
78 }
79 return ;
80 }
81
82 void i f f t (COMPLEX ∗ v , unsigned i n t n)
83 {

98

84 unsigned i n t N = (1 << n) ;
85
86 // Set up a LUT f o r the c o s i n e s and s i n e s
87 COMPLEX ∗ r o o t s o f u n i t y = mal loc (N ∗ s i z e o f (COMPLEX)) ;
88 f o r (unsigned i n t i = 0 ; i < N; i++)
89 {
90 r o o t s o f u n i t y [i] . Re = cos (2 . 0∗M PI∗ i /(double)N) ;
91 r o o t s o f u n i t y [i] . Im = s i n (2 . 0∗M PI∗ i /(double)N) ;
92 }
93
94 COMPLEX ∗ tmp = malloc (N ∗ s i z e o f (COMPLEX)) ;
95 i f f t s t e p (v , N, 1 , tmp , r o o t s o f u n i t y) ;
96
97 f r e e (r o o t s o f u n i t y) ;
98 f r e e (tmp) ;
99 re turn ;

100 }
101
102 /∗ The order f i n d i n g subrout ine ∗/
103 unsigned i n t f i n d o r d e r (unsigned i n t N, double eps i l on , unsigned i n t x)
104 {
105 s t r u c t t imeva l time ;
106 gett imeofday(&time , NULL) ;
107 srand ((unsigned) time . tv u s e c ∗ x) ;
108
109 // Ca lcu la te the number o f qub i t s needed
110 unsigned i n t L = c e i l (l og2 (N)−1e−8) ;
111 unsigned i n t t = 2∗L + 1 + c e i l (l og2 (2 . 0+1 .0/ (2 . 0∗ e p s i l o n))−1e−8) ;
112
113 // Al l o ca t e space f o r the c a l c u l a t i o n and f i l l with ones
114 unsigned i n t ∗ p s i = mal loc ((1 << t) ∗ s i z e o f (unsigned i n t)) ;
115 f o r (unsigned i n t i = 0 ; i < (1 << t) ; i++)
116 {
117 p s i [i] = 1 ;
118 }
119
120 // Al l o ca t e space f o r the m u l t i p l i c a t i o n matrix and f i l l i t
121 unsigned i n t ∗ multorder = mal loc ((1 << L) ∗ t ∗ s i z e o f (unsigned i n t)) ;
122 f o r (unsigned i n t i = 0 ; i < (1 << L) ; i++)
123 {
124 i f (i >= N) {multorder [i] = i ;}
125 e l s e {multorder [i] = (i ∗ x) % N;}
126 }
127
128 f o r (unsigned i n t i = 1 ; i < t ; i++)
129 {
130 f o r (unsigned i n t j = 0 ; j < (1<<L) ; j++)
131 {
132 multorder [i ∗(1<<L)+j] =

multorder [(i −1)∗(1<<L)+multorder [(i −1)∗(1<<L)+j]] ;
133 }

99

134 }
135
136 //Apply the m u l t i p l i c a t i o n s
137 unsigned i n t exp , c t r ;
138 f o r (unsigned i n t i = 0 ; i < (1 << t) ; i++)
139 {
140 exp = i ;
141 c t r = 0 ;
142 whi l e (exp)
143 {
144 i f (exp & 1)
145 {
146 p s i [i] = multorder [c t r ∗(1<<L)+p s i [i]] ;
147 }
148 exp >>= 1 ;
149 c t r++;
150 }
151 }
152
153 //Measure the second r e g i s t e r and s t o r e the r e s u l t i n g f i r s t r e g i s t e r in a

complex vec to r
154 unsigned i n t b = p s i [rand () % (1 << t)] ;
155
156 unsigned i n t sum = 0 ;
157 f o r (unsigned i n t i = 0 ; i < (1 << t) ; i++) { i f (p s i [i] == b) {sum++;}}
158 double norma l i za t i on = 1.0/ s q r t (sum) / s q r t ((double) (1 << t)) ;
159
160 COMPLEX ∗ phi = mal loc ((1 << t) ∗ s i z e o f (COMPLEX)) ;
161 f o r (unsigned i n t i = 0 ; i < (1 << t) ; i++)
162 {
163 i f (p s i [i] == b) {phi [i] . Re = norma l i za t i on ;}
164 e l s e {phi [i] . Re = 0 ;}
165 phi [i] . Im = 0 . 0 ;
166 }
167
168 //Apply the i n v e r s e Four i e r trans form
169 i f f t (phi , t) ;
170
171 //Get the p r o b a b i l i t i e s f o r measurement
172 double p = (double) rand () / (double)RAND MAX;
173 p ∗= p ;
174 double cumsum = 0 ;
175 unsigned i n t k ;
176 f o r (k = 0 ; k < (1 << t) ; k++)
177 {
178 cumsum += phi [k] . Re ∗ phi [k] . Re + phi [k] . Im ∗ phi [k] . Im ;
179 i f (cumsum >= p) {break ;}
180 }
181
182 //Apply the cont inuous f r a c t i o n a lgor i thm
183 unsigned i n t r = 0 ;

100

184 i f (k != 0)
185 {
186 unsigned i n t n , d , napprox , dapprox , tmp , c t r ;
187 i n t i ;
188 unsigned i n t ∗ c o n t f r a c s = mal loc (t ∗ s i z e o f (unsigned i n t)) ;
189 n = k ;
190 d = (1 << t) ;
191 c t r = 0 ;
192 whi l e (n != 0)
193 {
194 c o n t f r a c s [c t r++] = d/n ;
195 tmp = n ;
196 n = d%tmp ;
197 d = tmp ;
198
199 napprox = 0 ;
200 dapprox = 1 ;
201 f o r (i = c t r − 1 ; i >= 0 ; i−−)
202 {
203 tmp = c o n t f r a c s [i] ∗ dapprox + napprox ;
204 napprox = dapprox ;
205 dapprox = tmp ;
206 }
207 i f (dapprox >= N) {break ;}
208 r = dapprox ;
209 }
210
211 f r e e (c o n t f r a c s) ;
212 }
213
214 // Dea l l o ca t e a l l the memory that was used
215 f r e e (p s i) ;
216 f r e e (multorder) ;
217 f r e e (phi) ;
218
219 return r ;
220 }
221
222 /∗ Shor ’ s a lgor i thm ∗/
223 // This s t r u c t u r e conta in s the r e s u l t s o f Shor ’ s a lgor i thm
224 typede f s t r u c t Shor s ta t s
225 {
226 unsigned i n t f a c t o r ;
227 unsigned i n t x ;
228 unsigned i n t r ;
229 unsigned i n t e r ro r code ;
230 bool quantum ;
231 } SHORSTATS;
232
233 void Shor (SHORSTATS ∗ r e s u l t s , unsigned i n t N, double eps i l on , bool msg)
234 {

101

235 // Set up the random number generator seed
236 s t r u c t t imeva l t ;
237 gett imeofday(&t , NULL) ;
238 srand ((unsigned) t . t v u s e c) ;
239
240 // Set up the d e f a u l t re turn va lue s
241 r e s u l t s−>f a c t o r = 0 ;
242 r e s u l t s−>x = 0 ;
243 r e s u l t s−>r = 0 ;
244 r e s u l t s−>e r ro r code = 0 ;
245 r e s u l t s−>quantum = f a l s e ;
246
247 //Check i f the number to be f a c t o r e d and e p s i l o n are in the proper range
248 i f (N <= 2) { r e s u l t s−>e r ro r code = 1 ; i f (msg) { p r i n t f (”The number i s too

smal l to be f a c t o r e d .\n”) ;} re turn ;}
249 i f (e p s i l o n <= 0 | | e p s i l o n >= 1) { r e s u l t s−>e r ro r code = 1 ; i f (msg)

{ p r i n t f (”The f a u l t t o l e r a n c e i s i n v a l i d .\n”) ;} re turn ;}
250
251 // Ca lcu la te the e f f e c t i v e f a u l t−t o l e r a n c e
252 double f a u l t t o l e r a n c e = 1 . 0 / (2 . 0 ∗ (pow (2 . 0 , c e i l (l og2 (2 . 0 +

1 . 0 / (2 . 0∗ e p s i l o n)) − 1e−8)) − 2 . 0)) ;
253
254 // Display the welcome message
255 i f (msg)
256 {
257 p r i n t f (”Shor ’ s a lgor i thm i n i t i a t e d . . . \ n”) ;
258 p r i n t f (” − The number to be f a c t o r e d i s %d .\n” , N) ;
259 p r i n t f (” − The f a u l t−t o l e r a n c e towards the order f i n d i n g subrout ine

i s %f .\n” , f a u l t t o l e r a n c e) ;
260 }
261
262 //Check i f the number to be f a c t o r e d i s even
263 i f (N % 2 == 0) { r e s u l t s−>f a c t o r = 2 ; i f (msg) { p r i n t f (”The number i s

even , so t h i s case i s t r i v i a l .\nA d i v i d i n g f a c t o r o f %d i s 2 .\n” ,
N) ;} re turn ;}

264
265 //Check i f N can be wr i t t en as aˆb with a >= 1 and b >= 2
266 double log2N = log2 (N) ;
267 f o r (unsigned i n t b = 2 ; b <= log2N ; b++)
268 {
269 double a = pow(2 , log2N/b) ;
270 i f ((0 . 5 − f abs (a − f l o o r (a + 1e−8) − 0 . 5)) <= 1e−8)
271 {
272 r e s u l t s−>f a c t o r = f l o o r (a + 1e−8) ;
273 i f (msg) { p r i n t f (”The number can be wr i t t en as a power .\nA

d i v i d i n g f a c t o r o f %d i s %d .\n” , N, r e s u l t s−>f a c t o r) ;}
274 return ;
275 }
276 }
277
278 //Randomly choose an x in the range between 2 and N−2.

102

279 r e s u l t s−>x = rand () % (N − 3) + 2 ;
280 i f (msg) { p r i n t f (”The program gues s e s a number to f i n d the order o f . This

number i s %d .\n” , r e s u l t s−>x) ;}
281
282 // Return gcd (x ,N) i f i t i s a non−t r i v i a l d i v i s o r o f N
283 unsigned i n t temp = gcd (N, r e s u l t s−>x) ;
284 i f (temp > 1)
285 {
286 r e s u l t s−>f a c t o r = temp ;
287 i f (msg) { p r i n t f (”The program got lucky and guessed a number that i s

not coprime to N.\nA d i v i d i n g f a c t o r o f %d i s %d .\n” , N,
r e s u l t s−>f a c t o r) ;}

288 return ;
289 }
290
291 // Ca lcu la te the order o f x modulo N
292 r e s u l t s−>quantum = true ;
293
294 unsigned i n t r1 = f i n d o r d e r (N, eps i l on , r e s u l t s−>x) ;
295 unsigned i n t r2 = f i n d o r d e r (N, eps i l on , r e s u l t s−>x) ;
296 i f (r1 == 0 && r2 == 0)
297 {
298 r e s u l t s−>e r ro r code = 2 ;
299 i f (msg) { p r i n t f (”The order f i n d i n g subrout ine f a i l e d .\n”) ;}
300 return ;
301 }
302
303 i f (r1 == 0) { r e s u l t s−>r = r2 ;}
304 e l s e i f (r2 == 0) { r e s u l t s−>r = r1 ;}
305 e l s e { r e s u l t s−>r = r1 ∗ r2 /gcd (r1 , r2) ;}
306
307 //Check i f the order i s c o r r e c t
308 unsigned i n t y = 1 ;
309 f o r (unsigned i n t a = 0 ; a < r e s u l t s−>r ; a++)
310 {
311 y = (y ∗ r e s u l t s−>x) % N;
312 }
313 i f (y != 1) { r e s u l t s−>e r ro r code = 3 ; i f (msg) { p r i n t f (”The order f i n d i n g

subrout ine f a i l e d .\n”) ;} re turn ;}
314
315 i f (msg) { p r i n t f (”The order i s found to be %d .\n” , r e s u l t s−>r) ;}
316
317 //Check i f the order i s even
318 i f (r e s u l t s−>r % 2 != 0) { r e s u l t s−>e r ro r code = 4 ; i f (msg) { p r i n t f (”The

order i s odd , so the a lgor i thm f a i l s .\n”) ;} re turn ;}
319
320 //Check i f the re i s any hope in f i n d i n g a d i v i s o r
321 i f (remmod(r e s u l t s−>x , r e s u l t s−>r /2 ,0 ,N) == N − 1) { r e s u l t s−>e r ro r code =

5 ; i f (msg) { p r i n t f (”x ˆ(r /2) = −1 mod N, so the a lgor i thm
f a i l s .\n”) ;} re turn ;}

322

103

323 // Return one o f the f a c t o r s
324 unsigned i n t candidate = gcd (remmod(r e s u l t s−>x , r e s u l t s−>r /2 ,N−1,N) ,N) ;
325 i f (candidate != 1) { r e s u l t s−>f a c t o r = candidate ; i f (msg) { p r i n t f (”A

d i v i d i n g f a c t o r o f %d i s %d .\n” , N, r e s u l t s−>f a c t o r) ;} re turn ;}
326 candidate = gcd (remmod(r e s u l t s−>x , r e s u l t s−>r /2 ,1 ,N) ,N) ;
327 i f (candidate != 1) { r e s u l t s−>f a c t o r = candidate ; i f (msg) { p r i n t f (”A

d i v i d i n g f a c t o r o f %d i s %d .\n” , N, r e s u l t s−>f a c t o r) ;} re turn ;}
328
329 r e s u l t s−>e r ro r code = 6 ;
330 i f (msg) { p r i n t f (”An unexpected e r r o r occured . Ex i t ing .\n”) ;}
331 return ;
332 }
333
334 /∗ Main program s t a r t s here ∗/
335 i n t main (i n t argc , char ∗ argv [])
336 {
337 //Check the input parameters
338 unsigned i n t N;
339 double e p s i l o n ;
340 i f (argc == 1)
341 {
342 N = 15 ; p r i n t f (”No number to f a c t o r i s suppl i ed , so the d e f a u l t va lue

o f 15 i s used .\n”) ;
343 e p s i l o n = 0 . 2 ; p r i n t f (”No accuracy parameter i s suppl i ed , so the

d e f a u l t va lue o f 0 . 2 i s used .\n”) ;
344 }
345 e l s e i f (argc == 2) {N = a t o i (argv [1]) ; e p s i l o n = 0 . 2 ; p r i n t f (”No

accuracy parameter i s suppl i ed , so the d e f a u l t va lue o f 0 . 2 i s
used .\n”) ;}

346 e l s e i f (argc == 3) {N = a t o i (argv [1]) ; e p s i l o n = a t o f (argv [2]) ;}
347 e l s e { p r i n t f (”Too many arguments supp l i ed . Expected : . / Shor [<Number to

f ac to r >] [<Accuracy parameter >] .\n”) ; r e turn 0 ;}
348
349 // Set up the s t a t i s t i c s
350 s t r u c t t imeva l s t a r t , stop , s t a r t t r y , s topt ry ;
351 gett imeofday(& sta r t ,NULL) ;
352 SHORSTATS ∗ r e s u l t s = mal loc (s i z e o f (SHORSTATS)) ;
353 unsigned i n t numtries = 0 ;
354 unsigned i n t numquantumtries = 0 ;
355 unsigned i n t p r e l i m i n a r y r e s u l t = 0 ;
356
357 //Run the a lgor i thm a maximum of 100 t imes
358 f o r (unsigned i n t i = 0 ; i < 100 ; i++)
359 {
360 numtries++;
361 gett imeofday(& s t a r t t r y ,NULL) ;
362 Shor (r e s u l t s ,N, ep s i l on , f a l s e) ;
363 gett imeofday(&stoptry ,NULL) ;
364 i f (r e s u l t s−>e r ro r code == 0) { p r e l i m i n a r y r e s u l t = r e s u l t s−>f a c t o r ;}
365 i f (r e s u l t s−>quantum) {numquantumtries++;}
366 i f (r e s u l t s−>quantum && r e s u l t s−>e r ro r code == 0) {break ;}

104

367 }
368 gett imeofday(&stop ,NULL) ;
369
370 // Display the r e s u l t s
371 i f (r e s u l t s−>quantum && r e s u l t s−>e r ro r code == 0)
372 {
373 //The program succeeded
374 p r i n t f (”The a lgor i thm s u c c e s f u l l y found a f a c t o r o f %d us ing the

order f i n d i n g subrout ine .\n” ,N) ;
375 p r i n t f (”The f a c t o r that was found was %d .\n” , r e s u l t s−>f a c t o r) ;
376 p r i n t f (”The number that was guessed was %d .\n” , r e s u l t s−>x) ;
377 p r i n t f (”The order found by the quantum rout ine was %d .\n” , r e s u l t s−>r) ;
378 p r i n t f (”The number o f t r i e s was %d .\n” , numtries) ;
379 p r i n t f (”The number o f t imes the order f i n d i n g rout in e f a i l e d was

%d .\n” , numquantumtries−1) ;
380 p r i n t f (”The time e lapsed during the s u c c e s f u l t ry was %f

seconds .\n” , (s topt ry . t v s e c − s t a r t t r y . t v s e c) +
(double) (s topt ry . tv u s e c − s t a r t t r y . tv u s e c) / 1e6) ;

381 p r i n t f (”The t o t a l e l apsed time was %f seconds .\n” , (stop . t v s e c −
s t a r t . t v s e c) + (double) (stop . tv u s e c − s t a r t . t v u s e c) / 1e6) ;

382 }
383 e l s e
384 {
385 //The program f a i l e d
386 p r i n t f (”The program did not f i n d a d i v i d i n g f a c t o r o f %d us ing the

order f i n d i n g subrout ine a f t e r 100 t r i e s .\n” ,N) ;
387 i f (p r e l i m i n a r y r e s u l t == 0)
388 {
389 p r i n t f (” Nei ther did i t f i n d a d i v i d i n g f a c t o r us ing c l a s s i c a l

methods . Perhaps the number i s prime .\n”) ;
390 }
391 e l s e
392 {
393 p r i n t f (”However , i t did f i n d a d i v i d i n g f a c t o r us ing c l a s s i c a l

methods .\n”) ;
394 p r i n t f (”The f a c t o r that was found was %d .\n” , p r e l i m i n a r y r e s u l t) ;
395 }
396 }
397
398 f r e e (r e s u l t s) ;
399 re turn 0 ;
400 }

105

C Experimental realization of Deutsch’s algorithm

In section 3.4, we have seen an instructive example quantum circuit, known as Deutsch’s algorithm. The
idea was to find if a given function f : {0, 1} → {0, 1} is constant.

Suppose we take f(x) = 1 − x. Then we find f(0) = 1 and f(1) = 0, hence f is not constant. Moreover,
we find that the effect of the Uf gate, as shown in figure 3.10, is now equal to the effect of the CNOT gate.
Hence, the implementation of the quantum circuit that executes Deutsch’s algorithm, as shown in figure
3.11, reduces to the circuit shown in figure C.1.

H

H H

|1〉

|0〉 |1〉

Figure C.1: The implementation of Deutsch’s algorithm when we take f(x) = 1− x.

This circuit, shown in figure C.1 was actually executed on the quantum computer built by IBM in New York
[1]. In total, the algorithm was run 1024 times, and the results are shown in table C.1.

Outcome Frequency
0 62
1 962

Table C.1: Results of the experimental realization of Deutsch’s algorithm. In the left column, the outcome
of the measurement of the first qubit is shown, and in the right column, the frequency of these measurements
is displayed.

So, we observe qualitatively that the algorithm works. In 94% of the cases, the outcome was as expected.
As it is very hard to keep qubits stable at this point, it seems likely that the 6% of faulty experiments can
be attributed to the instability of the process.

106

	Abstract
	Introduction
	Postulates of quantum mechanics
	Mathematical background
	Hilbert spaces
	Tensor products

	Postulates

	Quantum circuits
	Qubits
	Bits vs. qubits
	Multiple qubits

	Quantum gates
	Logic gates vs. quantum gates
	Single qubit gates
	Multiple qubit gates

	Quantum circuits
	Swap circuit
	Registers

	Example: Deutsch's algorithm

	Universality of the Controlled NOT, Hadamard and /8 gate
	Reduction to two-level unitary operators
	Two-level unitary matrices and operators
	Reduction of a quantum gate to a product of two-level unitary operators

	Reduction to (controlled) single qubit gates
	Swapping
	Implementing conditional operations with multiple control qubits

	Approximation of (controlled) single qubit gates by Hadamard and /8 gates
	Bloch sphere
	Representation of the state of a single qubit using the Bloch sphere
	The effect of single qubit operations on the Bloch sphere

	Implementation of controlled single qubit gates
	Distance between unitary matrices
	Approximation of single qubit gates by Hadamard and /8 gates

	Shor's algorithm
	Quantum Fourier transform
	Phase estimation algorithm
	Order-finding algorithm
	Principle behind the quantum circuit
	Implementation of the quantum circuit
	Continued fraction expansion
	Finding the order from its divisors

	Shor's algorithm

	Conclusion
	References
	Proof that defined by the -equation is irrational
	Required knowledge from abstract algebra
	Definitions
	Euclidean division
	Unique factorization theorem
	Gauss's lemma

	Cyclotomic polynomials
	Definition
	Integer coefficients
	Irreducibility over Q

	The -polynomial
	e2i is a root
	Irreducibility over Q
	Completion of the proof

	Simulation of Shor's algorithm on a classical computer
	Experimental realization of Deutsch's algorithm

