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Abstract
There has been an increasing interest in moving computation closer to storage in recent years due
to significant improvements in memory technology. FPGAs were proven to be an exciting candidate
for accelerating database workloads since they provide an energyefficient, reconfigurable and high
performance computation platform. Therefore, FPGAs are widely used as attached accelerators on
datacentric applications.

Database operations usually run on large volumes of data, which creates an I/O bottleneck when
processing them on CPUs. Therefore, recently, researchers have been investigating query pushdown
techniques during a database load operation. A wellknown columnar storage format, Apache Parquet,
provides an efficient way to store a database. In addition, current big data processing engines provide
functionalities for pushing filter operation down to the parquet reading stage.

This study explores the boundaries of pushing down analytic queries to the parquet reader stage
by using FPGAs. An extended roofline analysis is performed on a proofofconcept hardware design.
The analysis shows that peak performance is achieved via a storageattached accelerator once a high
bandwidth interface is introduced. Furthermore, using multiple FPGAs with flash storage while interfac
ing them with OpenCAPI or PCI switch enables higher performance for aggregation since aggregation
is shown to be I/O bound.

The thesis introduces Apache Spark integration of the proofofconcept query pushdown for parquet
reading operations. Apache Spark implements several layers of parallelism to achieve higher speed
ups. However, the concurrency and parallelism for a single FPGA instance for multithreaded Apache
Spark applications requires synchronization on a constrained resource represented by a single FPGA.
Therefore, this work suggests a way to achieve synchronization with a single FPGA instance.

The present work shows that for a single Spark thread, a maximum endtoend application speed
up of 3.88x and a kernel speedup of 7.24x are achieved. As a result, the throughput of TPCH Query
6 can be increased up to 3.8 GB/s. Furthermore, FPGA can perform better than CPU until Spark is
configured to run on 7 CPU threads. Then, for the scaledup multithreaded Spark application with six
CPU threads, the FPGA can achieve 1.13x endtoend application speedup and a kernel speedup of
13.19x.
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1
Introduction

1.1. Context
The rate of improvement in processor speed has exceeded the rate of improvement of memory tech
nology throughput over the last two decades. This phenomenon is defined as the memory wall [58].
To address this problem, researchers have proposed several ways to overcome this limitation. One of
which is introducing an everincreasing memory hierarchy, in addition to faster, smaller onchip mem
ories, so that the communication speed increases.

While the memory wall has been around for more than two decades, processor architectures have
evolved faster to demonstrate higher performance. Since 2005, system designers have increased the
processor core count on a single chip to exploit Moore’s Law Scaling. Nevertheless, Esmaeilzadeh
et al. [27] have shown that the end of multicorescaling is expected to be reached by a technology
integration of 8nm due to the need to keep more than 50% of chip area unpowered because of heat.
Therefore, there has been an increasing interest in heterogeneous computing platforms for energy and
performance considerations [61], [29].

In the context of big data, bringing data from storage has always been challenging as it was mostly
technology bound, and the volume of big data was more extensive than the volume associated with
other workloads. Previous research has shown that for transaction processing workloads, 65% of the
node idle times are due to storage bottlenecks [43]. Since OLAP workloads require processing in large
amounts, it is no coincidence that it will have ample storage bottlenecks. In order to overcome these
bottlenecks, FPGAbased database systems are designed in several different models depending on
the workload characteristics, as illustrated in Figure 1.1 [29]. FPGA as a bandwidth amplifier, in Figure
1.1a, is desirable once FPGA is used as a decompressor, filter, or doing early aggregations. This
kind of configuration prevents excess copies of data sources while providing a low latency stream
processing solution. FPGA as I/O attached accelerator, as seen in Figure 1.1b, creates an opportunity
to run computationally intensive applications on FPGAs. The drawback of such a configuration is that
the source data should be copied to the device’s memory. Finally, FPGA as a coprocessor, shown
in Figure 1.1c, configures FPGA as a distinct processor mapping the shared memory with the host
CPU. This kind of architecture has the benefit of eliminating data copies. Moreover, newer coherent
interconnect types between the host CPU and FPGA enable high bandwidth communication.

All these chokepoints of big data and memory have paved our way into pushing code into data
storage instead of loading the data from disk. Therefore, current systems employ solutions closer to
storage and use FPGA as an intermediate platform to filter or aggregate data closer to the memory. The
vision of the Accelerated Big Data systems group in TU Delft is to improve the knowledge on possible
ways to accelerate the different types of workloads and their extensibility to the most wellknown big
data frameworks. There exist individual efforts in our group to compile and run single operators such
as parquet file reading [50], filtering [32], [42], aggregations [46], sorting [65], joins, etc, on FPGAs.
Nevertheless, integrating the hardware design of analytic workloads with the hardware design of file
readers has not been treated in much detail. Running aggregations in the earlier stages of the big data
pipeline will decrease data copies and fully utilize the underlying storage bandwidth. Designing FPGA
accelerators, which implement few distinct operators, and integrating them with current wellknown
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Figure 1.1: The placement of FPGA in system architectures [29]

frameworks creates a big challenge. Therefore, there is always a question remaining whether or not
there is a limit on pushing filters or aggregations to deeper levels of the big data pipeline.

There are several attempts to model the performance of a hardware design to find the area and
performanceoptimized solution[22]. Moreover, several studies proposed a conceptual FPGA inten
sive server configuration [29], [30]. These studies investigate the possible FPGA intensive server
architectures based on commercially available products [16], [38]. However, there is still a challenge
in estimating the performance gains of different FPGAs placed in different server configurations. This
study aims to characterize the computational intensity of analytic queries and estimate the performance
achievements on FPGA intensive system architectures. The analysis in this thesis goes beyond the
commercially viable products and discusses the next generation interconnect types.

1.2. Research Questions and Contributions
This thesis will examine how query pushdown is used until the beginning of the query processing
pipeline and the limitations of such pushdown operations in terms of stateoftheart accelerators.
Therefore, the thesis will address the following two research questions.

1. How can query pushdowns be integrated into stateofart parquet decoders in dataflow hardware
designs?

2. How much of a query can we accelerate on FPGAs? What is the bounding factor for query
pushdown?

The contributions of this thesis work can be summarized as follows:

A Case Study on TPC Decision Support Benchmarks
TPC Decision Support Benchmarks are wellknown for profiling database systems. This work
investigates TPC Decision Support Benchmarks in terms of their acceleration opportunities and
implementation complexities. This case study ismainly performed to decide which query to design
as a part of this thesis work.

Apache Spark integration of pushed down query accelerators
Apache Spark distributes the workload to corresponding executors. This thesis profiles the work
load division for the File Scan operator and Filter pushdown File Scan operator and proposes a
software integration for the accelerated query pushdown design, using a single FPGA instance
and lowlevel multithreading APIs.

A proof of concept pushdown accelerator design
Peltenburg et al. proposes an extensible parquet to arrow converter design using FPGAs [50].
This study implements a dataflow hardware design for TPCH Query 6 and integrates both solu
tions to implement an FPGA accelerated query pushdown kernel.

An extended roofline analysis for parquet decoder operations and query pushdown
Da Silva et al. proposes an extended roofline analysis for HLS design tools [22]. In this work,
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a derivate of that implementation is used for estimating peak performance of parquet decoding
and query pushdown operation for different system interconnects with several different FPGA
instances, namely, VU37P, VU19P, KU15P. The analysis is performed on stateofart accelerator
configurations to estimate peak performance achievements of parquet reading and query push
down designs. This study reveals the bottlenecks of storageattached ingestion of Parquet files,
bandwidth amplification, and query pushdown.

1.3. Outline
The thesis is composed of the following chapters:

Background
This section introduces the necessary information about the frameworks and techniques used in
the thesis.

Case Study On TPCH and TPCDS
A quantitative analysis of TPC Decision Support Benchmarks is presented.

Hardware Design
Dataflow Hardware Design of pushdown operation is investigated.

Extending Parquet File Reading Operation on Apache Spark
Apache Spark integration of such accelerator is described.

An Extended Roofline Analysis for Parquet Decoding Operation on FPGAs
The proposed peak performance estimation models are investigated, and a system prototype is
discussed for the current state of art parquet decoding operator.

Profiling Results
Results section summarizes the profiling results of such operation on Power9.

Conclusion and Future Research
This section concludes the thesis and discusses the limitations and future research directions for
query pushdown operation.





2
Background

2.1. Fundamentals of Databases
In simple terms, a database is a collection of information that should provide a proper volume and fast
access to big data. A database management system is a software that enables the manipulation and
storage of the information stored in databases. In 1956, IBM introduced the first computer to use ran
dom access disk drive, which made relational databases possible as it was the pioneer of finding the
data in the storage and manipulating it in the order of seconds [37]. In the 1960s, Charles W. Bacman,
a database software pioneer, had introduced the first generalized database management systems and
relational data structures [10],[11]. Afterward, IBM has introduced the world’s first commercial database
management system, called Information Control System and Data Language/Interface [14]. In 1970,
Edward F. Codd, an IBM fellow, has introduced a relational model for representing data in large shared
banks [17]. The 1970s were innovative in terms of relational databases. In the 1980s, commercial rela
tional database systems started to be seen. The wellknown commercial databases are RIM, RBASE
5000, PARADOX, OS/2 Database Manager, Dbase, and Watcom SQL. In 1986, ANSI standardized
SQL as a standard query language. Moreover, objectoriented databases were introduced in the late
1980s. The 1990s were very influential as the Internet was introduced. This enabled remote access
to servers. The businesses started to employ clientserver models for their databases. XML was in
troduced in 1997. This enabled vendors to integrate XML to their databases [13]. In the 21st century,
the three main companies have dominated the market for databases: Oracle, IBM, Microsoft. The
applications of databases have become prominent and have inclined towards storing large amounts of
structuredunstructured datasets. All of this effort led to a 12 billion dollar industry. In the next sections,
the different types of databases will be investigated.

Database Types
A database can be designed concerning specific characteristics, which can be briefly classified as a
database model, the business objective, stakeholders, and location as illustrated in Figure 2.1.

Relational Databases A relational database stores the data into different tables which can be related
to one another. Different related tables can be merged using their unique ids. The relational databases
can communicate to each other by using Structured Query Language SQL. SQL provides a mathe
matical language that manipulates the relational data structures. This kind of structure creates some
benefits, namely, flexibility, reduced redundancy, and consistency. A perfect example can be given
by a businessrelated database which is visualized in Figure 2.2. A company holds a table of prod
ucts that will be shipped to the customers. There are subsequently 3 columns, product_id, price and
discount. Also, the same company runs a part table which holds the information about the production
cost of each product and has the following columns: product_id, cost. By stating that this product_id
is a unique id, it can be seen that these tables are related. The company may use this information to
calculate revenue by creating another table resulting from the joining of these two tables.

The definition of the relational model is beyond this example. As an example provides a basic view
on relational databases, we can see that relational databases store data in tales. Each Table organizes

5
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Figure 2.1: Database Types

Figure 2.2: Example Business Type Relational Database Schema

data in columns which are produc_id, cost etc.
We will now examine the terminology to understand architectural design decisions employed for

relational databases. Codd defines a relation to be a collection of sets in which ntuples reside [17]. A
domain is, in a way subset of a relation. A domain is considered to be nonredundant if it is simple.

Active Domain is a pool of values represented at some instant is called active domain.

Primary Key is defined as a domain that holds that relation’s unique set of elements (tuples).

Foreign Key is used when we express crossreferences between different or same relations. The
foreign key of one relationship is not the primary key of its relation but the primary key of other
relations.

Nonsimple domains are the type of domains that hold nonatomic values as elements. In other
words, they can hold relations.

Knowing basic terminologies, we can move on with schema models.
Normal Forms of relational databases  3NF Schema

A relation whose domains include nonsimple domains is worth normalizing due to the simplicity of
storing primitive values, simple data structures in memory. We define the degree of normal form once
we normalize the relation. 1NF, first normal form, suggests that every relation has a primary key and
single attribute. 2NF, second normal form, is satisfied when the relation is 1NF and nonkey elements
are fully dependent on the primary key. Finally, a relation is 3NF once it is 2NF and there are no
dependencies between nonkey elements. By transitioning from the first level to the third level of normal
form, the redundancy of a relation gets minimized. This implies that there will be fewer insertion,
deletion, and update anomalies in the database.

Star Schema
Star Schema consists of fact tables and dimension tables. In simpler terms, fact tables are larger and
at the center of schema topology.
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Snowflake Schema
Snowflake schema resembles star schema. The only difference is that dimension tables are normal
ized.

We will revisit these schema models while discussing benchmarks in the following sections.

Nonrelational Databases(NoSQL) NoSQL databases are nonrelational databases that can handle
extensive, unstructured data different than traditional relational tables. The most common database
models are keyvalue, column, document, and graph databases.

Keyvalue store model does not define any query language. Instead, the data manipulation is done
via the store, retrieve and delete commands. As the name suggests, this type of database can be
modeled as a HashMap or associative row, in which key is a string of characters and the value is any
data type, opaque to storage. As one can imagine, the keyvalue is not welldefined by any schema,
making this type of database more flexible.

Documentoriented databases is in a way extended keyvalue store which stores the data in groups
called collections. The database can be stored in JSON, XML, or YAML formats. This type of database
offers flexibility in the same way that keyvalue store offers. Apache CouchDB and Mongo DB can be
provided as an example to this type of database.

Graph database structure big data into graph vertices and nodes. This type of database offers
a better representation of data as it provides a more profound relationship structure than relational
database models.

Column database stores data into columns and rows in a similar way the relational databases.
There exists ”columnfamilies,” which holds logically related columns for each row and a ”key.”

ObjectOriented Databases This type of database resembles the application of objects used in
objectoriented programming languages. The data stored in an objectoriented database is persis
tent. Objectoriented databases do not have tables, rows, or keys as in relational databases. Instead,
the data is stored as objects that can represent complex data structures on a disk. Relational database
model stor.es atomic and primitive types of data structures, such as ”utf8”, ”int.” Therefore, object
oriented databases can have fast queries over more complex data structures. MongoDB Realm is one
of the examples of document databases [44].

Centralized Databases Centralized databases are stored and maintained on a single location, main
frame computer. The other nodes connect to this single location over a network to access the database.

Distributed Databases In this type of database, the data is stored across multiple nodes. These
multiple computers can be

Online Transactional Processing  OLTP Databases An online Transactional database is a type
of database where large numbers of database transactions occur in realtime over the Internet. A
database transaction is defined as any change performed within a database such as insertion, deletion,
or query [26]. Furthermore, the database transactions should be indivisible in such a way that all actions
should be reflected appropriately in the database or nothing happens [33]. Therefore, we define several
characteristics for database transactions:

• Atomicity. The transaction should be deterministic. It either runs all actions successfully or fails.

• Consistency. Once the End of Transaction is reached, the returned result does not affect the
consistency of a database.

• Isolation. Each transaction runs independently from other transactions.

• Durability. Once a transaction commits its result back to the database, the system will keep the
result even a failure occurs.

If a particular system supports a transaction, that transaction is ACIDcompliant for that system.
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Online Analytical Processing  OLAP Databases OLAP is a software performing multidimensional
analysis at high speeds on large volumes of data [25].OLAP server stores the data in the form of front
end packages. This type of database is started from a need of consolidating, viewing, and analyzing
multidimensional data in a way that makes sense for enterprise analysts [18]. OLAP offers a multidi
mensional database named OLAP cube. A single table is represented in multiple layers, while each
layer adds a different concept regarding the stored table in OLAP Cube. The multidimensional, Rela
tional and Hybrid OLAP databases are the branches of OLAP. Relational OLAP offers relational tables
instead of organizing data in OLAP Cube. This type of OLAP gives the ability to perform complex
queries on more significant amounts of data. Hybrid OLAP is the hybrid of these two OLAP types,
as the name suggests. It includes the highperformance feature of Multidimensional OLAP and the
complexity of Relational OLAP in the same database.

Cloud Databases Cloud databases attempt to build, manipulate and deploy the database in a cloud
environment. Amazon Web Services, Oracle, Microsoft Azure, and IBM are few wellknown cloud
database examples. Cloud databases offer a lowcost, flexible, easy to manage service for storing
data.

OnPremises Databases These types of databases are private databases that are maintained within
a particular enterprise. The company sets up a database according to the performance and power us
age of its peak loads. In some cases, this type of database offers less flexibility than the cloud databases
because the company handles the server installation costs. On the other hand, the enterprise can scale
up or down quickly by leaving installation or maintenance cost calculations to the cloud provider.

2.2. Database Storage Models
The layout of data stored in a disk carries enormous importance in terms of the performance of a
query. The traditional database schemes use the Nary Storage Model (slotted pages), which stores
from the beginning of the page and uses an offset table at the end of the page to keep track of the
records [51]. Another type of storage model is DSM which is not common and relatively old. DSM is
a transposed storage model which partitions attributes vertically into relations [19]. However, newer
database storage models make use of PAX layout for the sake of utilizing memory bandwidth. PAX
layout groups the value of each attribute of each page. PAX layout offers decreased memory stall times
of NSM by 75% and executes rangeselection queries 1725% faster [5].

2.3. System Interconnects
The volume of data grows exponentially worldwide. Therefore, how big data can be smartly stored
carries considerable importance. While storage and compute platforms achieve peak speedups, the
interconnect type is essential for creating a low overhead highspeed communication channel. In this
section, the system interconnects types will be investigated. The memory technologies are beyond the
scope of this thesis. Therefore, this work does not engage with several different memory architectures
and their peak performance specifications.

A computing system may have the best possible configuration and technology which provides low
latency and high bandwidth. However, the bounding factor for the performance will be the type of
connection between the memory and compute module. This computer module may be an FPGA or
CPU. The interconnect will mostly be dependent on the limitations of the interface architecture of our
compute module. There are specific requirements one should expect from an interface:

• The memory interconnect should have low latency and low overhead.

• The interface should be able to scale so that it can support communication on multiple channels

• The interface should consume low power.

• The system architecture should be flexible as it should support different platforms and applica
tions.

• The interconnect should have low cost.
Stateoftheart interconnects technologies are summarized in the following paragraphs.
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PCIE Intel introduced the PCI Express bus in 2004. The target was to design an interface that could
transfer graphics data faster than the I/O technologies of that era. It is, in a way, the successor of the
PCI bus, which was introduced by intel back in 1993. PCIe is a serialized pointtopoint interconnect
protocol that also provides a highspeed, scalable data transportation [41]

PCIe doubles its bandwidth every 3 years [64]. PCIe has several different form factors which are
briefly x1, x2, x4, x8, x16. As the form factor increases, the bandwidth also increases by the multiples
of the form factor.

OPENCAPI OpenCAPI is Open Interface Architecture that allows processors to attach to I/O devices,
accelerators, memories. OpenCAPI is a highbandwidth, low latency interface also used in accelerated
Power9 servers. The peak bandwidth of OpenCAPI is 25 Gbyte/s. A POWER9based system can use
OpenCAPI 3.0 to coherently communicate between the CPU and an FPGA (e.g. Xilinx KU60, VU3P,
VU37P). The system uses 8 OpenCAPI channels, which theoretically provide a peak bandwidth of 25
GB/s.

Fang et al. investigates the bandwidth of interconnect trends over time as visualized in Figure 2.3
[29]. The increase in bandwidth of PCIE and DRAM is less than that of storage and network. Fang
et al. explain the reduction of DRAM bandwidth increase by the rise in chip area cost. This graph
has significant implications for Chapter 6 as the scaling trend of storage bandwidth will have a positive
effect on increasing the system performance.

Figure 2.3: System Interconnect Trends

2.4. Projects
In this section, the frameworks and thirdparty projects used in the scope of this thesis are described.

2.4.1. Apache Spark
Apache Spark is the unified engine for distributed big data processing. Apache Spark was initially
developed at UC Berkeley’s AMPLab in 2009, opensourced in 2010 under the BSD license. Until
then, Apache Spark has been used extensively by enterprises across many different industries. The
programming model of Apache Spark is similar to the MapReduce framework but extends it with Re
silient Distributed Databases, ”RDDs.” Apache Spark can process many different workloads and use
the same kind of optimizations for the different workloads with a unified API. This enables users to
develop applications quickly and extend Spark to implement different processing workloads, such as
streaming machine learning.[63]

Execution Model Apache Spark initializes a SparkContext, which runs a set of processes on a clus
ter. The components of Apache Spark are visualized in Figure 2.4. Spark Context can connect to
several cluster managers, namely, MESOS, YARN, standalone. The cluster manager is responsible
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for resource allocation. First, it assigns executor processes on worker nodes to SparkContext, then
SparkContext sends the execution code to the nodes.

Cluster Manager
Driver Program

Worker Node

Worker Node

Spark Context

Executor Cache

Task Task

Executor Cache

Task Task

Figure 2.4: The components of Apache Spark

These are important terminology to remember

Spark Application
Application is an instance of Spark Context.

Job
Spark jobs are create every time a collect() action is called.

Stage
Apache Spark divides jobs into stages, which is a step in the physical plan. There are two types
of stages in Apache Spark, namely the map stage and the result stage. The number of stages is
dependent on the underlying partitions and the necessity to do any shuffles.

Task
Task is a computation on a single data partition in a stage.

DAG
Directed Acyclic Graph is a set of vertices and edges representing the RDD and operation applied
on RDD. A detailed visualization is provided at Figure 2.5.

RDD As explained previously, RDDs are the primary abstraction for the programmingmodel of Apache
Spark. Before RDDs were developed, most of the big data processing frameworks(e.g., MapReduce)
were used to save intermediate results between different computations to an external storage system.
However, this was creating a huge overhead due to serialization, disk I/O, etc. Therefore, Apache
Spark proposed RDDs to persist intermediate results in memory and offer fault tolerance explicitly.

RDD is defined as a readonly, partitioned collection of records [62]. The most important feature
RDD presents is that it stores transformation to create itself from other RDDs or datasets in stable
storage. This is called the lineage of RDD. A lineage graph is directed acyclic graph which is illustrated
in Figure 2.5. This way, the program knows how to recreate RDD in case of failure. RDD can be
partitioned across multiple machines, and the programmers can explicitly declare which RDDs to keep
in memory between different computations.

1 rdd1 = spark.parquet.read(”hdfs://”)
2 rdd2 = rdd1.filter(_.contains(”x”))
3 rdd3 = rdd2.map(_.split(’\t’))

Listing 2.1: An example set of operations
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Figure 2.5: An example lineage graph of the transformation in 2.1

DAGs in apache spark can be divided into multiple stages so that tasks can run the same, either
fine or coarsegrained stages.

Spark SQL and DataFrames Spark SQL is an Apache Spark module built upon Shark and enables
relational processing within Apache Spark API [7]. Spark SQL enables its users tomix relational queries
and procedural algorithms. The DataFrames are the distributed collection of structured records. Spark
SQL proposes the DataFrame API to perform relational operations on both external data sources and
on builtin distributed collections.

Spark SQL designs an extensible query optimizer named Catalyst for supporting a large variety of
analytic workloads. The extensibility of Spark SQL is an important feature that this thesis is built upon.
There are two main parts contributing to Catalyst: trees and rules. A tree consists of node objects
which may or may not have children. Rules are used to manipulate the tree nodes. One can simply
run a transformation on tree branches. In the Chapter 4, we will examine the Spark SQL extensions
for parquet reader operation.

2.4.2. Apache Parquet
Apache Parquet is a columnar storage format available to any project in the Hadoop ecosystem [2].
Apache Parquet provides an efficient storage format for storing both nested or flat schema types. Fur
thermore, the Parquet file can be built by different encodings and compressions depending on the use
case. Apache Parquet stores the in PAX model introduced in Section 2.2. In the following sections, we
will discover the details necessary in this thesis.

Parquet File Organization As seen from Figure 2.6, parquet file is designed hierarchically. Briefly,
there are multiple levels of parallelization. Firstly, parallelization can be achieved via multiple files.
Then, MapReduce and Apache Spark frameworks can parallel multiple row groups in a single file. The
deeper level of parallelization is done by columnar chunks which are residing in each row group. The
final and deepest level of parallelization is at the page level. Each column has at least one page which
holds the data associated with that column. The data residing in pages can have compression or be
encoded by several different options.

Metadata There are three types of metadata: file metadata, column(chunk) metadata, and page
metadata. The metadata is serialized via Thrift Compact Protocol. The metadata holds significant
information regarding the size, file offsets, number of values, encoding type, compression type, column
data type, and column statistics. The column statistics include the maximum and minimum value of the
particular column, null counts, distinct counts. The statistics are held per row group and page. They
are helpful for pushing down predicates.

Encoding The latest Parquet project has ten different encodings: plain, plain dictionary, RLE, bit
packed, delta binary bit packed, delta length byte array, delta byte array, RLE dictionary, and byte
stream split. The scope of this thesis is on plain and delta. Plain encoding, VarInt encoding, is used
for primitive types as well as array types. It is the default encoding type. Moreover, delta encoding is
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Figure 2.6: The layout of a parquet file

particularly helpful in storing the data in a smaller size. In delta encoding, the value is represented in a
way that it is the difference between the current value and the previous value.

Compression Compression is an important technique helping the user to store large amounts of
data. Apache Parquet in Apache Arrow project enables using several different compression schemes:
snappy, brotli, gzip. In this project, the analysis in Chapter 6 uses snappy compression. The compres
sion happens on the page level.

A dataset can be stored in multiple parquet files. The user can partition the dataset into chunks
and store it in different files. The work in this thesis is designed for Parquet files with V1 and metadata
serialized with Thrift V2.

2.4.3. Apache Arrow
Apache Arrow is a multilanguage development platform for inmemory analytics. Apache Arrow lever
ages modern hardware with Arrow columnar format for moving data faster. Apache Arrow libraries
introduce features such as Zerocopy shared memory and RPCbased data movement, reading or
writing file formats as parquet, CSV and inmemory data analytics, and query processing [8]. In addi
tion, the Apache Arrow format enables processing efficiency by leveraging scanning and iterating on
large columnar chunks.

2.4.4. Fletcher
Fletcher is a framework developed by the ABS group in TU Delft and enables integrating FPGA acceler
ators with Apache Arrow backend. Fletcher generates an easytouse hardware interface from Arrow
Schemas. One can connect his/her accelerator kernel to these interfaces without spending too much
time implementing interfaces for different interconnect types. The architectural overview of Fletcher is
depicted in Figure 2.7. Fletcher provides important components such as ArrayWriter, ArrayReader to
read and write to Arrow buffers.

The Fletcher runtime provides an easytouse software interface that is supported on different plat
forms. The user can easily copy Arrow Tables between the host memory or accelerator memory.
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Figure 2.7: The architecture of Fletcher [49]

Moreover, the user can poke or peek MMIO register to control fletcher generated Hardware Acceler
ated Functions. By the time this thesis is written, fletcher has support for the following FPGA platforms:

• Amazon EC2 F1

• Xilinx Alveo

• Intel OPAE

• OpenPOWER SNAP (CAPI 2.0)

• OpenPOWER OCAccel (OpenCAPI 3.0)

2.5. Benchmarks
2.5.1. Transaction Processing Performance Council  TPC
The Transaction Processing Performance Council is a nonprofit corporation that aims to define vendor
neutral transaction processing benchmarks. There are 20 full members and four associate members,
and seven professional affiliates. They are aimed to complement or help fulfill the TPC’s mission.

TPC provides many different active or stale benchmarks for different perspectives of database sys
tems. Figure 2.8 illustrates these benchmarks with their corresponding year. The active TPC bench
marks are denoted by the color green, whereas stale ones are coded as brown. TPC also contains
supporting benchmarks, provided by blue in Figure 2.8.

Figure 2.8: TPC Benchmark Timeline [54]
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In this thesis, we concentrate mainly on decision support benchmarks, more specifically TPCDS
and TPCH. The reason is that the scope of this work is integrated towards accelerator architectures for
running database load and query operations. TPC Decision Support benchmarks consist of TPCDS,
TPCH, and TPCDI. The decision support benchmarks intend to provide a fair comparison between
various vendor implementations by including controlled and repeatable queries evaluating the decision
support systems.

2.5.2. TPCH
TPCH benchmark consists of businessoriented adhoc queries. TPCH benchmark employs following
conditions [21]:

• It gives answers to realworld questions;

• It consists of queries far more complex than OLTP transactions;

• It includes a large variety of operators and selectivity constraints;

• The queries in this benchmark are executed on a database server complying with the specific
population and scaling requirements;

• The queries should generate intense activity on the part of the database.

TPCH benchmark does not concentrate on the creation and retrieval of the data. Rather, this bench
mark focuses on exercising system functionalities of complex business analysis applications. The
business environment of TPCH is illustrated in Figure 2.9

Figure 2.9: TPCH business environment [21]

Database Architecture There exists 8 different tables which is visualized in the Figure 2.10. The
number above each table represents the number of rows of each table. The scale factor (SF) is provided
at the generation of the database. The schema of the TPCH benchmark is modeled as the 3NF
schema. Therefore, as discussed in Section 2.1, one can doubt the reality of the TPCH database due
to not investigating update, insertion, and deletion anomalies.
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Figure 2.10: The TPCH Schema [21]

Queries There are 21 different queries in TPCH. Each query has:

• a business question, which illustrates the concept;

• functional query definition, which is in SQL92;

• substitution parameters, which describes the value generation to complete the query syntax

• query validation, which describes how to confirm the query against qualification database [21].

For these types of needs, the TPCH standard provides a query generation program to create the
queries.

2.5.3. TPCDS
TPCDS benchmark is the successor of TPCH and TPCR benchmarks. The main focus areas of
TPCDS are:

• multiple snowflake schemas with shared dimensions to reveal the indexing techniques and query
query optimizers of modern DSS system;

• ETLlike data maintenance;

• Sublinear scaling of nonfact tables;

• Adhoc, iterative and extraction queries;

• More representative skewed database content [45].

In Figure 2.11, the components of TPCDS benchmarks are illustrated. ETL operation is injected be
tween the DSS database and files storing the dataset. In TPCH benchmark, discussed in previous
section, this type of operation is only visible in several queries and usually assumed that the data is
clean [45].
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Figure 2.11: TPCDS Components [20]

Database Architecture TPCDS database includes seven fact tables that model the sales and sales
return process for an organization that employs three primary sales channels. The database is de
signed as a hybrid of star schema and 3rd Norm Factor schema.

Queries TPCDS queries contain two essential components, namely, user queries and data mainte
nance queries, as illustrated in Figure 2.11. TPCDS offers 99 distinct SQL user queries with OLAP
extensions. There are four different categories: reporting, adhoc, Iterative OLAP, and ETL. The result
type and quantity are known for reporting queries, enabling data placement methods to optimize query
execution. However, adhoc queries disable these optimizations. The ”data placement optimizations”
were the chokepoint of the TPCH benchmark, which enabled the users to optimize the execution in
advance. That is why the TPCDS benchmark offers a more realistic comparison.

2.6. Related Work
Accelerating big data analytics workloads over FPGAs has been seen over the literature for foreseeable
reasons, such as achieving hardware parallelism, dynamic reconfigurability, and low power consump
tion [29]. Moreover, there are commercially available hardware acceleration engines such as IBM
Netezza[35], AWSFGPA [6], Azure FPGA [9], Intel Open FPGA Stack [38]. There are many aca
demic efforts in terms of hardware acceleration of database operations as they prove to achieve higher
throughput and better energy efficiency [34], [29], [52] [40]. The performance improvements of FPGA
accelerators can be classified in terms of the type of the operator used for the kernel, what type of
accelerator is used for design, Power9 system or AWSFPGA and what kind of database is used to
integrate the design: Postgresql, Apache Spark, MySQL.

Since Apache Spark provides an extensible architecture and optimized execution model which can
parallelize workloads in Spark RDDs, there have been several studies investigating acceleration oppor
tunities of Spark SQL workloads on FPGAs. Wasai Technology has proven that TPCDS query 55 can
be accelerated up to 50x for dataset size of 300 GB with Arrowbased accelerator design [15]. Nonnen
macher was able to accelerate Spark SQL workload, which consists of regular expression matching
filter and aggregation, on FPGAs by achieving 13x speedup. Hoozemans et al. investigate the FPGA
acceleration of big data analytics and surveys the programming practices[34]. Ziener et al. investi
gate FPGAbased dynamically reconfigurable SQL processing and reports performance estimations
for individual operators [66].

PostgreSQL has existed for almost 30 years. There are many database solutions already integrated
with PostgreSQL. Swarm64 offers a database accelerator engine that extends PostgreSQL. They have
reported that on 1TB of the dataset, TPCH benchmarks can be accelerated by more than 7x to 60x
[1]. Becher et al. proposes ReProvide as an FPGA+CPU acceleration framework and achieves up to
40% reduction in execution time [12]. ReProvide is integrated with PostgreSQL.

Sidler et al. present a hardwareaccelerated database with CPU+FPGA platform with shared mem
ory by extending MonetDB[52]. Woods et al. demonstrated a storage engine, IBEX, pushing down
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complex query operators to storage [57]. IBEX uses a host system with MySQL and accelerates TPC
H query 13 by 11x, query 5 by 2.5x. The IBEX storage engine connects FPGA to SSD by SATA and
the host CPU. Sun et al. introduces a rowbased storage engine implemented on AWS F1 instances
and shows 2.8x computation speedup for TPCH Query 6 [53]. The integration is done on MySQL.

In terms of moving FPGAs to the storage and making use of Smart SSDs, Do et al. proposes a
query pushdown with Smart SSDs using CPU and achieve 1.7x speedup for TPCH Query 6 over
traditional SSDs[24].

This thesis also investigates the scheduling of FPGA resources in a multithreaded environment.
This effort is relatively more straightforward than exposing processing units on FPGA as CPU threads,
but it is necessary to review stateofart solutions. Kara et al. propose PipeArch that can run threads
on FPGA resources and enables contextswitching [39]. Centaur provides a framework to run FPGA
operators independently and concurrently [48].





3
Case Study On TPCH and TPCDS

3.1. Motivation
Hardware Design for FPGAs introduces a challenging environment due to the complexity of the design
process. Therefore, it is crucial to analyze the queries one desires to accelerate before jumping into
the design process. As addressed in Section 2.6, there are numerous efforts in accelerating different
queries from wellknown benchmarks. The scope of this thesis is to demonstrate the possible reallife
performance once FPGAs execute a full query (as opposed to accelerating a query by offloading a
part of it to FPGA). Therefore, in the following sections, we will employ a case study of some of the
bestknown benchmarks to evaluate their ability for acceleration.

Finally, the integration of such an operation with Apache Spark will be discussed.
To analyze a query in terms of its complexity and the required effort to implement it on custom

hardware, we should define a metric independent of the implementation of the accelerator and defines
operators as a blackbox entity. Moreover, this metric we use should be independent of the language
we are using. The main reason for such independence is that we are operating on heterogeneous
computing platforms, which may require multiple different languages. Software architects measure
the programming complexity of the software by using several different tools. One of them is Halstead
Measurements, which Maurice Halstead introduced in 1977.

3.2. A Brief Complexity Analysis
Straightforwardly, software consists of operators and operands. To estimate the complexity of such a
program, we should analyze not the part of the program but the overall source code. Therefore, this
analysis provides a static way of defining the vocabulary, testing time, programming effort, etc. The
operators and operands in a SQL program can be visualized in the following Listing 3.1.

1 select
2 sum (l_extendedprice * l_discount)
3 from
4 parquet. l_plain.prq
5 where
6 l_shipdate >= date ’19940101’

Listing 3.1: An example SQL code visualizes operators(red) and operands(black)

The main components of Halstead measures are the following:

𝑛1 Number of unique operators

𝑛2 Number of unique operands

𝑁1 Number of total occurance of operators

𝑁2 Number of total occurance of operands

19
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Halstead measures define the metrics based on these components. A related metrics to our use case
can be summarizes as follows:

Difficulty(D)
The difficulty level of the program.

𝐷 = 𝑛1
2 × 𝑁2𝑛2 (3.1)

Volume(V)
The memory space used by the program.

𝑉 = (𝑁1 + 𝑁2) × log (𝑛1 + 𝑛2) (3.2)

Estimated Program length (L)
This metric is defined as the total weighted summation of the operands and operators.

𝐿 = 𝑛1 log𝑛1 + 𝑛2 log𝑛2 (3.3)

Programming Effort (PrE)
The difficulty level is proportional to the number of unique operators.

𝑃𝑟𝐸 = 𝐷 ∗ 𝑉 (3.4)

Once we think about dataflow design architectures, we can represent each operator by a block and
create a dataflow graph to represent the design. Then, this would make easier to understand the critical
path of our design. Yet, this is hard when we try to choose from 120 different queries (99 TPCDS + 22
TPCH). Therefore, the software designers also make use of a complexity measure called Cyclomatic
complexity, which is defined by the Equation 3.5. In queries we desire to accelerate, there is only one
query and accelerated kernel. Hence, we can take it as one and equation becomes as Equation 3.6.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐸𝑑𝑔𝑒𝑠) − (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠) + 2(𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑡𝑠) (3.5)

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐸𝑑𝑔𝑒𝑠) − (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑁𝑜𝑑𝑒𝑠) + 2 (3.6)

There are two assumptions we make. First, there is no parallelism, and analysis is done before the
SQL optimizer.

This kind of effort is essential to estimate a total query acceleration development effort for decision
support benchmarks. Moreover, it provides a solid understanding of the operator densities of each
query in TPC decision support benchmarks. Usually, we understand the performance of our hardware
design once we have the synthesis and simulation results. We can obtain the critical path delay and
area from synthesis results. However, this is very hard in scaling for 120 different queries as it in
volves designing possibly 120 different accelerators. We can use the metrics explained above to get
an estimation of their performance.

This study combines the metrics explained above and creates a metric to measure both compu
tational complexity and complexity of the control flow, Cyclomatic Complexity. We will define compu
tational complexity in a way Halstead defines programming effort. The only difference is that the sort
and join operations will be explicitly logged as their complexity is dependent on the problem size. The
complexity of joins is calculated by taking the complexity of a HashJoin operator, which is 𝑂(𝑛). For the
complexity of sorts, we will use a merge sorter [65], which has the complexity of 𝑂(𝑛 log𝑛). Therefore,
the discussion will be made according to both dependences. The formula is given by Equation 3.8.

(3.7)

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑛12 × 𝑁2𝑛2 ) × (𝑁1 + 𝑁2) × log (𝑛1 + 𝑛2) (3.8)

𝐶𝑦𝑐𝑙𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑤𝑖𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑊𝐻𝐸𝑅𝐸) + 1 (3.9)
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(b) Cyclomatic Complexity of TPCH Queries

Figure 3.1: Complexity Analysis on TPCH Queries
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(b) Cyclomatic Complexity of TPCDS Queries

Figure 3.2: Complexity Analysis on TPCDS Queries

The complexity analysis depicted in Figure 3.1 and 3.2 are normalized by a joint function. This
implies that the complexity values of each dataset are normalized under the same maximum and min
imum. The following equation is applied for normalization.

𝑛𝑜𝑟𝑚ℎ =min(𝑇𝑃𝐶 − 𝐻(𝑛)) (3.10)
𝑛𝑜𝑟𝑚𝑑 =min(𝑇𝑃𝐶 − 𝐷𝑆(𝑛)) (3.11)

𝑛𝑜𝑟𝑚 = 𝑥 −min(𝑛𝑜𝑟𝑚ℎ , 𝑛𝑜𝑟𝑚𝑑)
max(𝑛𝑜𝑟𝑚ℎ , 𝑛𝑜𝑟𝑚𝑑) −min(𝑛𝑜𝑟𝑚ℎ , 𝑛𝑜𝑟𝑚𝑑)

(3.12)

As visible in Figure 3.1a, query 16 and 6 gives the least possible computational complexity, whereas
query 18 has the highest computational complexity. The cyclomatic complexity of query 18 is the
highest amongst TPCH queries as visible in Figure 3.1b. On the contrary, TPCH query 1, 15 offers
the least cyclomatic complexities. In terms of TPCDS queries, one thing to remember is that they have
much higher complexities than TPCH queries. What can be seen in Figure 3.2a is that TPCDS query
54 has the least computational complexity, whereas query 65 is the highest amongst both benchmarks.
The peak cyclomatic complexity occurs in query 87, whereas the minimum is query 1, as depicted in
Figure 3.2b.
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3.3. Discussion
Our initial objective was to find the query with the most straightforward implementation and the best
acceleration capability. This implies that the chosen query should have the least computational and
cyclomatic complexity. Also, this query should no have any join or sort operations for the sake of the
design time of such dataflow hardware. That is why TPCH Query 6 is chosen. TPCH Query 6 is a
nojoin query with single aggregation. The query is more I/O intensive than the others as it does not
have any group by or order by operators. Restating the objective of this thesis, we are investigating the
capabilities of FPGAs with pushing down aggregation to file reading operation. Therefore, I/O intensive
queries should provide us with a better acceleration as the file copies will take a significant portion of
the execution time.



4
Extending Parquet File Reading

Operation on Apache Spark
Apache Spark can process several different types of big data formats. However, the focus of this thesis
is the parquet file format. Therefore, in this section, we will investigate the parquet reading operation
of Apache Spark. As explained in section 2.4.2, the parquet file has a hierarchical logical design that
enables several different levels of parallelism. Therefore, the amount of parallelism depends on the
type and size of the parquet file being read. Moreover, cluster configuration also affects the reader
performance as expected.

In the following sections, firstly, the operations of Apache Spark API will be explained for parquet
file reading operation. Then, we will discuss how possible extensions to the parquet file reader API
can be done. In the second section, the proposed architecture will be revealed. Finally, we will discuss
how to make use of the available parallelism.

4.1. Apache Spark Parquet Scan Operation
Apache Spark can read or write parquet files. Due to the focus of this thesis, the parquet reading
operation will be under examination. The Listing 4.1 shows a simple parquet file reading example with
Apache Spark API. First, lineitem_schema represents the schema of the parquet file we are reading.
Then, in the next Spark. Read call, and we read the parquet file in the DataFrame. As explained in
section 2.4.1, DataFrame API distributed a collection of rows with the same schema.

1 val lineitem_schema = StructType(Seq(
2 StructField(”l_orderkey”,IntegerType,false),
3 StructField(”l_partkey”,IntegerType,false),
4 StructField(”l_suppkey”,IntegerType,false),
5 StructField(”l_linenumber”,IntegerType,false),
6 StructField(”l_quantity”,DoubleType,false),
7 StructField(”l_extendedprice”,DoubleType,false),
8 StructField(”l_discount”,DoubleType,false),
9 StructField(”l_tax”,DoubleType,false),
10 StructField(”l_returnflag”,StringType,false),
11 StructField(”l_linestatus”,StringType,false),
12 StructField(”l_shipdate”,DateType,false),
13 StructField(”l_commitdate”,DateType,false),
14 StructField(”l_receiptdate”,DateType,false),
15 StructField(”l_shipinstruct”,StringType,false),
16 StructField(”l_shipmode”,StringType,false),
17 StructField(”l_comment”,StringType,false)
18 ))
19 val lineitemdf = spark.read.schema(lineitem_schema).parquet(config.file_path).

createOrReplaceTempView(”lineitem”)

Listing 4.1: An example API calls for parquet file reading of TPCH lineitem Table

23
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Apache Spark enables reading multiple files in case the user provides a directory path. Therefore,
the same kind of operations as listed in Listing 4.1 will automatically extract partitioning information
from paths. Apache Spark API provides the following properties for parquet files:

Predicate Pushdown Once the user enables this optimization, the Spark API pushes a filter into the
parquet reader.

Snappy compression Spark API can operate on compressed or decompressed parquet files.

Merging schema Once multiple files are being read. Spark can merge schemas of these files.

Being backward compatible Spark can handle older parquet files.

Lowlevel Overview
In order to analyze the possibility of extensions to Spark API, we should further examine how Spark
handles parquet files and distributes the workload. As explained in Section 2.4.1, Spark SQL generates
the code after a number of optimizations. Before generating the code, Spark SQL translates the query
into a physical plan. The physical plan of Parquet reading operation is provided in Listing 4.2.

1 + FileScan parquet [l_quantity#4,l_extendedprice#5,l_discount#6,l_shipdate#10] Batched: true
, DataFilters: [isnotnull(l_quantity#4), isnotnull(l_shipdate#10), isnotnull(l_discount
#6), (l_shipdate#10 >= 87..., Format: Parquet, Location: InMemoryFileIndex[file:/dev/shm
/20sf/l_plain.prq], PartitionFilters: [], PushedFilters: [IsNotNull(l_quantity),
IsNotNull(l_shipdate), IsNotNull(l_discount), GreaterThanOrEqual(l_shipda..., ReadSchema:
struct<l_quantity:double,l_extendedprice:double,l_discount:double,l_shipdate:date>

Listing 4.2: Physical Plan generated by Spark API

Apache Spark generates a FileScan operator to read parquet files as seen in Listing 4.2. File
SourceScanExec node scans the node from HadoopFsRelations. The scan node supports reading in
both ColumnarBatch and InternalRow formats. As seen in Figure 4.1, once the scan operator starts,
the doExecute() call is performed and Spark performs reading and mapping the scan results in parti
tions. In order to read the metadata values, which hold important information about the parquet file,
Apache Spark uses Hadoop internals. After reading metadata, Apache Spark gets the number of row
groups and parquet files to parallelize tasks.

Spark executes doExecute() to map InternalRows into RDDs. The doExecute() call returns a FileS
canRDD object which creates a wrapper for Reader. Reader is created by the buildReaderWithParti
tionValues() call. buildReaderWithPartitionValues() extends to an iterator for RDD[InternalRow]. Spark

(a) FileScan node details regarding to File Type, size and quantity

(b) FileScan Operator internal structure being run by tasks

Figure 4.1: Apache Spark FileScan Operator Details
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History server shows the parquet scan operators file statistics as provided in Figure 4.1a. Individual
parquet scan stage, shown as Stage 0 in Figure 4.1b, will be replaced by fletcher scan stage for accel
erated workers.

4.2. Injecting custom Parquet File Reader
Nonnenmacher 2020 [46] proposes a solution for injecting accelerated file reading, filter, and aggrega
tion operations as Apache Spark Rule. Since we are trying to emulate this behavior only on a single
accelerated node with file reading and query execution, it is possible to use his work as a baseline to in
ject one single node that runs an FPGA instance. The higherlevel overview of the injected custom node
is presented in Figure 4.2. The way we inject the file reader is that we build FletcherParquetReaderIter
ator, which interfaces to Iterator<InternalRow>, by overriding the call buildReaderWithPartitionValues()
as depicted in Figure 4.3.

FileSourceScan

ColumnarToRow

Filter

Project

HashAggregate

HashAggregate

FletcherParquetSourceScan

HashAggregate

    SELECT
      sum(l_extendedprice)
 
    FROM
     parquet.'lineitem'
 
    WHERE
      l_quantity < 24;

Physical Plan Extended Physical Plan

Figure 4.2: Extending the physical plan of Apache Spark

4.3. Concurrency and Parallelism
To scale the application up, one should discuss the opportunities to increase the system’s parallelism
and concurrency. Before moving on with the architectural mechanisms to achieve such systems, we
should define concurrency and parallelism. parallelism is defined as at least two threads executing
simultaneously. Concurrency is a more generalized form of parallelism which can include timeslicing
[47].

Every higherlevel framework integrates solutions of its own to achieve concurrency and parallelism.
Luppes 2021 [42] studied acceleration for DASK distributed workers and argued that single node setups
are more preferred as they have higher community exposure. In other words, community prefers to
use single worker setups.

The focus of this thesis is on Apache Spark. For this reason, the concurrency and parallelism
of Apache Spark with accelerated workers will be discussed. Apache Spark achieves optimizing dis
tributed applications on constrained resources very well. However, the concurrency creates complexity
to software design all by itself. Nevertheless, Apache Spark can handle concurrency for multiple work
ers successfully while abstracting user from underlying complexity.

Parallelism in Apache Spark
The parallelism in Spark can be achieved via several different levels. The user can achieve
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parallelization by using Apache Spark API and Scala Concurrency API. As described in Section
2.4.1, Apache Spark distributes the RDDs in the cluster. One level of parallelism is achieved
by parallelizing partitions. The user can assign multiple executors to each partition and achieve
higher throughput for their application.

Concurrency in Apache Spark
There are two different levels of execution to consider once we examine the concurrency in
Apache Spark.
Firstly, Apache Spark can schedule resources between different Spark applications. As described
in Section 2.4.1, each Spark application having their own context and independent set of execu
tors. The cluster manager can statically or dynamically allocate resources to applications. In
static resource allocation, each application holds the data distributed by a fixed amount during
their runtime. In dynamic resource allocation, the resources are distributed as if they were in static
allocation, but they can be shared across other applications if there is no application running on
them.
Secondly, the concurrency can be achieved within an application. This is achieved by scheduling
multiple parallel jobs on a single spark context. The user can define spark.scheduler.pool per
context and fairly submit jobs in these pools.

In our context, we are trying to achieve heterogeneous resource scheduling within Apache Spark’s
File Reading operation. The underlying resource is FPGA. In order to optimize parallelized accelerated
workers(FPGA), the kernel design should achieve computations with high throughputs. FPGA design
should be highly optimized and used without any overhead. We will address the dataflow hardware
design of this operation in the later chapters. However, software integration is the topic of this chapter.
The designer should be fully aware of the software calls without blocking operations, introducing too
much overhead. Copying the data between CPUs and FPGAs is one of these operations with too much
overhead. One way to overcome this is by overlapping FPGA computation with data transfers between
CPU and FPGA.

Moreover, the designer can configure the cluster to schedule FPGA resources for Spark applications
(each running Spark Context). More specifically, the cluster setup should have one or more FPGAs
and multiple Spark applications dynamically or statically allocate them. In the case of users configuring
these multiple applications to run on multiple FPGAs so that each application has one FPGA and CPU,
the control is easy to achieve. Whereas, if the cluster has only one FPGA and multiple Spark Contexts,
the concurrency is very hard to achieve. The reason is the following. FPGAs use system interconnects
such as OPENCAPI, DMA, and MMIO for communicating with CPUs. Therefore, multiple processes
writing or reading the control registers on FPGA require keeping track of these resources by the cluster
manager. One can argue that it should be plausible to run in localcluster mode, which means running
multiple worker nodes on a single machine. The older versions of Apache Spark enables creating
multiple worker instances on a single machine. However, it is deprecated in newer versions of Spark
on a single machine based on the discussion of no use case exists. Therefore, it is desirable to run
workers on all resources in a clustermode setup and divide those resources on multiple executors. In
order to prove this reasoning, an example application is provided in Appendix A.

The scope of this thesis is to achieve concurrency on local worker threads on a single Spark Con
text and propose a proofofconcept solution for extending this design for cluster setups with multiple
accelerators. In the next section, the concurrent software architecture with single FPGA multiple Spark
threads will be investigated.

Concurrency and Parallelism FPGAs
The concurrency of the FPGA concerns the control of the FPGA and memory. As explained in Section
2.4.4, fletcher provides an abstraction for controlling registers and memory actions. In order to achieve
concurrency, an extensible native wrapper for fletcher runtime is proposed in this section. In order to
implement the desired functionalities, features of the C++ language are used. The functionalities can
be summarized as such:

• The wrapper should provide the abstraction and interfaces to be usable with fletcher runtime.

• To achieve the high throughput that system interconnect offers, the wrapper should use more
CPU resources and parallelism.
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• The design should have properties to schedule multiple tasks once the resources are a constraint.

• The threads launched at the beginning of the application should not stay idle or idle for a minimal
amount of time.

• Preemption is not a requirement. In simple terms, kernel wait times are relatively small(less than
1000ms). Therefore, there is no need to introduce any other overheads from context switches.

<<Interface>> 
:FletcherParquetReaderIterator:FletcherParquetSourceScanExec :PlatfromWrapper :ColumnSchedulerSparkPlan

doExecute()

RDD[InternalRow]

new(platformId,Array[ColumnarChunks],,schema)

initPlatform

PlatformId

:PlatformWrapper :FletcherParquetReader

initPlatform

PlatformWrapper

new (fletcher::Platform)

ColumnScheduler

initFletcherParquetReaderIterator(platformId,Array[ColumnarChunks],schema)

FletcherParquetReaderId

platformId->Submit(Array[ColumnarChunk])

return Status::OK()

Next() Next(PlatformId)
PlatformId->Next()

Result<Type>

Next()

Result<Type>

Result<Type>

GenericInternalRow(Result<Type>)

InternalRow<Type>

root native_root

Figure 4.3: Complete Software Design

There are 3 main components of Native Software API which are visualized in Figure 4.3. These com
ponents are FletcherParquetReaderIterator, PlatformWrapper, ColumnScheduler.

ColumnScheduler The main objective of this class is to provide the concurrency features addressed
earlier. Several different components help to manage this multithreaded environment.The overall soft
ware architecture for ColumnScheduler is provided in Figure 4.4.

Before moving forward, we should remember the terminology this section makes use of. In this
section, once we define threads, it is meant the systemlevel threads. Tasks are the minor component
of execution that threads run and have a promise of a future. A simple task for FPGA runtime is provided
in Listing 4.3.

1 double Task(Platform platform)
2 {
3 Reset(platform);
4 setFPGARegisters(platform, regs);
5 Start(platform);
6 WaitForFinish(platform);
7 return ReadResult(platform);
8 }

Listing 4.3: An example task for FPGA execution

ColumnScheduler instance implements three different design decisions: Spinlocks, Thread Safe Fletcher
Platform, Thread Safe Task Queue and Thread Pool.

Spinlock
When multiple threads call platformWriteMMIO() API Call to manipulate action registers, they
cannot do it at the same time for the sake of eliminating race conditions. Therefore, the idea is
to use synchronization between multiple tasks. There are several ways to achieve synchronized
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access, such as mutexes and semaphores. We should explicitly address that we do not seek
preemption, as stated earlier. Moreover, since mutexes usually yield the thread and wait for
preemption from other threads, using mutexes would introduce more overhead. Therefore, we
only need a spinning lock, waiting for another thread to release the lock. This is achieved via
boost spinlock implementation.

Thread Safe Fletcher Platform
It is important to ensure that the spinlocks are carefully injected into the fletcher platform. In
terms of this effort, the spinlock is locked only before accessing MMIO registers and unlocked
after access to MMIO registers is completed.

Thread Safe Task Queue
The architecture of this mechanism is visualized in Figure 4.5. There are two different implemen
tations of Thread Safe queues for threadlocal queueing and global queueing. The implementa
tions are very similar to the ones introduced in the literature [56].

Task Queue
Task Queue is a global queue that holds the idle tasks to be executed in the future.

Work Stealing Task Queue
One of the requirements of this implementation was to keep FPGA always busy. If a thread
finishes with the execution of the task assigned, it pops the next task that is waiting to be
administered. For this kind of mechanism, this thesis introduces a workstealing task queue
using C++/JNI constructs. This queue implementation is threadlocal.

Thread Pool
Thread Pool is the main wrapper that handles this queuing logic. By ThreadPool class, Column
Scheduler can Submit tasks without handling any logic. There are few important class functions
to keep in mind. Firstly, Submit(&Task) submits the task to threadlocal queues if they exist. If
those queues do not exist, it submits the task to the global queue. Submit(&Task) returns future
of the task back to ColumnScheduler. Secondly, run pending task handles the task assigned to
the threads. The hierarchy of assigning tasks is as follows:

1. Use thread local queue
2. Use global queue
3. Steal from other threads local queue

PlatformWrapper A single FPGA instance should initialize a single platform. Platform construct in
both Fletcher and here is defined as a medium to attach to the FPGA card through lowlevel software
API. For instance, in ocaccel, Power9, reading snap card information via multiple snap_card_ioctl
calls and attaching action by snap_attach_action call, should only be done once in a single application
run. This class implementation, as visualized in Figure 4.3, is responsible for initializing only a single
platform throughout the runtime of an application. It is imperative to suppress the copy operation of
Platform wrapper instances. In case of any copy of PlatformWrapper instance, higherlevel software
APIs will act as it has attached to multiple FPGAs.

As seen in Figure 4.3, PlatformWrapper has a Scala wrapper to call it when necessary. The Scala
wrapper is designed as a companion object so as to emulate PlatformWrapper static. Apache Spark
API calls for the read operation attaches to the Scala companion object of single PlatformWrapper and
submits the task to the same ColumnScheduler. In this way, we achieve to parallelize files that hold
different partitions in Spark Context.

4.4. Preliminary Conclusion
In this section, the software design of query pushdown for parquet reading operation is identified. In
summary, this chapter describes two main design challenges. Firstly, o accelerated node should be
injected instead of the Apache Spark parquet scan operator while keeping the functionalities that the
Apache Spark parquet scan operator offers. These functionalities are summarized as follows:
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loop

:ColumnScheduler

Submit(Array[ColumnarChunk])

Status::OK()

:PlatformWrapper

new ColumnScheduler(Platform)

column_scheduler

:ThreadPool

Submit(&Task)

std::future<Type>

TaskResults.push(std::future<Type>::get())loop

Next()

Result<Type>

TaskResults.pop() if TaskResults.size() > 0

Loop until all tasks
return results

Pop until no longer
values lefthasNext()

return TaskResults.size() > 0

Loop through the Tasks
with different

ColumnarChunks

Figure 4.4: Software Architecture of ColumnScheduler

• Parsing metadata of parquet file using Hadoop internals

• Parallelizing the parquet scan workload with respect to row groups and file quantity

• Preserving the partitioning logic of Apache Spark parquet source scan operator

We were able to accomplish to propose a design, preserving these functionalities. The only differ
ence of the proposed implementation from Spark’s parquet scan operator’s implementation is that the
parallelization of workload is achieved via the number of files on Apache Spark Plan. Nevertheless,
parallelization of row groups is transitioned to one level deeper to fletcher processor native program as
depicted by ColumnScheduler class in Figure 4.3.

The second challenge was to create an FPGA wrapper that can schedule Spark tasks to FPGA.
For this purpose, a concurrent and parallel platform wrapper,PlatformWrapper and ColumnScheduler,
has been proposed. This module helps design to achieve higher throughput by using multithreading on
FPGA runtime. Using multithreaded native runtime software, Apache Spark was able to submit tasks
to the native thread pool.

In the chapter that follows, the hardware design of such pushdown implementation will be dis
cussed.
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Figure 4.5: Software Architecture of Thread Safe Thread Pool
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Hardware Design

This chapter investigates the hardware design in two different sections. Firstly, we will investigate the
extensions to the stateofart parquet reader. Then, we will design TPCH Query 6 on hardware.

5.1. Parquet Reading on FPGA
Peltenburg et al. and Van Leeuwen 2018 propose a high throughput parquet to arrow converter on
FPGAs [50], [55]. This design is particularly important as it provides an implementation to overcome
parquet reading bottlenecks while injecting FPGA in between the host CPU and storage as depicted
in Figure 5.1. The overall architecture is visible in Figure 5.2. The design achieves 12 GB/s endto
end throughput by utilizing less than 5% of the resources at FPGA. Briefly, there exist eight different
components in the architecture.

Ingester: This module is responsible for loading pages from memory with large bursts.

Aligner: The Aligner includes a pipelined barrel shifter and history buffer. The aim is to preserve the
alignment of the data stream.

Metadata Interpreter Metadata Interpreter parses themetadata which Apache Thrift Serialization Pro
tocol generates. The implementation offers interpretation for versions 1 and 2. The page meta
data parsed in this module includes valuable information such as uncompressed size, com
pressed size, number of values.

Values Decoder: The values decoder decodes the data of the column. There exist two crucial compo
nents, namely Decompressor and decoder. Decompressor is a snappy decompressor wrapper
that decompresses the compressed files. Decodermodule decodes the column data in case any
kind of encoding feature is present in the parquet file. Different kinds of encoding schemes are
presented in Section 2.4.2. The supported types are PLAIN, BIT_PACKED DELTA and MIXED.

Fletcher Array Writer: This module is part of the fletcher framework [49], acting as a DMA engine to
write hardware streams to inmemory arrays in Arrow format.

Parquet Reader
InstanceStorage Memory

Figure 5.1: Higher Level design proposed by Van Leeuwen 2019 [55]

The architecture can decode parquet files with the configurations explained above. This architecture
allows Parquet to Arrow conversion of only one column. This research investigates capabilities of this
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Figure 5.2: Architectural overview of Parquet to Arrow Converter Accelerator [50] [55]

hardware implementation to extend it for multiple columnar readers. Moreover, a query pushdown
integration is proposed. The parquet column reader hardware implementation only uses 5% of the
FPGA resources which means one can simply add more of these columnar readers in order to extend
the architecture.

5.1.1. Reading Multiple Columns
The Accelerated Big Data Systems group, in collaboration with Teratide, has been working on the
scalability of the architecture in Figure 5.2 so that the overall parquet reading operation utilizes hardware
parallelism by operating on multiple columns. There are two ways to extend the current implementation
to run multiple columns, namely sequential or parallel.

First, as explained in Section 2.4.2, there are columnar chunks in each row group. The software
can sequentially call the FPGA instances to decode these columnar chunks back to back. The Arrow
API offers an abstraction for reading the file offsets and sizes of each columnar chunk. An example
code is provided in Listing 5.1. In line 1, we open the parquet file via ParquetFileReader::OpenFile()
API call without creating any scan operators. Each row group can be accessed with the RowGroup()
API call. We can read the metadata of each columnar chunk in this way.

1 auto pqFileReader = parquet::ParquetFileReader::OpenFile(input_path, true);
2 for (int i = 0; i < num_row_groups; ++i) //num_row_groups is obtained from parsed metadata
3 {
4 rowGroupMetadata.push_back(pqFileMetadata>RowGroup(i)); //pqFileMetadata is the pointer

to file metadata
5 }
6 for (auto &r : rowGroupMetadata)
7 {
8 for (int i = 0; i < num_columns; ++i)
9 {
10 int64_t fpo = r>ColumnChunk(i)>file_offset();
11 size_t buffer_size = r>ColumnChunk(i)>total_uncompressed_size();
12 int num_val = r>ColumnChunk(i)>num_values();
13 auto device_addr = read_file(fpo, r>ColumnChunk(i)>total_uncompressed_size(),

buffer_size);
14 }
15 }

Listing 5.1: An example code to obtain Columnar Chunks

Second, one can implement multiple converters on FPGA and send these chunks to decode in
parallel. This implementation offers higher utilization of FPGA resources. Moreover, add one more
level of parallelism, a multithreaded data communication between FPGA and CPU can be proposed.
In this way, the program also utilizes more CPU sources and decreases idle times. Van Leeuwen
2019 [55] proposes an architecture for multiple parquet readers sharing the same Fletcher generated
UserCoreController. Nevertheless, for higher reconfigurability, multiple core controllers can also be
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integrated into the design. There has been progressing in our group in terms of multiple parquet readers
with their controllers. The following Figure 5.3 illustrates the higherlevel design of such efforts.

FPGA

Parquet Reader

Parquet Reader

Parquet Reader

Parquet Reader

Data flow Control flow

Query

Memory/Storage

Figure 5.3: Example computation pushed down parquet reader with multiple parquet reader instances

5.1.2. Integrating computation in the Architecture
Inherently, the design streams are decoded and decompressed data right after the Values decoder.
Therefore, one can add a compute kernel in between the values decoder and array writers. Since
Parquet Reader Instance is interfaced to memory by Fletcher Array Writer, we should take out the
Fletcher Array Writer and output the data, command, and unlock streams of the column read by the
corresponding Parquet Reader Instance, as seen in Figure 5.4. Fletcher already provides an interface
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Parquet Column Reader Instance

Figure 5.4: Proposed changes on Parquet Reader interface  Taking ArrayWriter out of datapath

and kernel wrappers named AxiTop, Mantle, Nucleus (top level to bottom level). Normally, AxiTop in
terfaces to an AXI interface. However, for the input stream, we do not need such an interface. We
will connect the data stream output of the parquet reader to our Compute Kernel directly without im
plementing any Fletcher Array Reader. The hierarchical changes are visualized in Figure 5.5. The
color yellow indicates the added wrapper for interfacing the data stream of Parquet Reader Instance to
Compute Kernel.

5.2. Hardware Implementation of TPCH Query 6
In this thesis, TPCH query 6 is aimed to be benchmarked and implemented on FPGA for the reasons
explained in Section 3. The overall hardware architecture of Query 6 is provided in Figure 5.6. Several
necessary modules are contributing to the acceleration of analytic queries. These components are also
helpful in other kinds of analytic queries.

Figure 5.6 provides a higher level architecture of query listed in Listing 5.2.
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Figure 5.6: Query 6 accelerator Architecture

1 select
2 sum(l_extendedprice * l_discount) as revenue
3 from
4 parquet.‘lineitem.parquet‘
5 where
6 l_shipdate >= 8900
7 and l_shipdate < 9500
8 and l_discount between .06  0.01 and .06 + 0.01
9 and l_quantity < 24;
10

Listing 5.2: TPCH Query 6

The following sections will lay out a more detailed explanation of the components.

5.2.1. TypeConverter
The analytic queries mostly rely on floatingpoint arithmetic to calculate the average, sum, or multipli
cation on different dataset columns. Floatingpoint operations are expensive in FPGA. Consequently,
it is more efficient to use a circuit employing fixedpoint arithmetic. To be able to use fixedpoint arith
metic, there should be a TypeConverter before computation modules to convert the data from floating
point to fixed point representation. In this thesis, the Xilinx[60] or FloPoCo[23] floating to fixed point
converters can be used in TypeConverter module. These projects are chosen as they offer highly con
figurable, pipelined datapath for floatingpoint arithmetic and type conversions.The results in Chapter
7 are obtained by using Xilinx Converter.
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5.2.2. FilterStream
One of the main components of SQL queries is WHERE statement which adopts a set of filters on a
database such as regular expression, arithmetic expressions on primitive types. This module aims to
provide a wrapper that can hold the filters and customize filters either in runtime or synthesis.

5.2.3. MergeOp
Analytic projections require merging different columns in some cases depicted in Equation 5.1. In
dataflow design architectures, the operations can be performed on each stream separately easily with
FilterStream operator. Yet, when we do operations that require merging we have to synchronize the
streams.

(𝑎 + 𝑏) 𝑎𝑠 𝑥 (5.1)
𝑎𝑣𝑔(𝑎 ∗ (𝑏 + 𝑐)) 𝑎𝑠 𝑦 (5.2)

5.2.4. Aggregation
So far, we have seen the ways to apply expression matching operations, arithmetic operations. The
final module we will visit is the ReduceStage module, which is responsible for aggregating the streams
either generated by MergeOp module or streamed by the input. An extensible baseline reduction
module is designed by Hadnagy 2020[32], as visualized in Figure 5.7 and 5.8. There are several
extensions applied to this module to support multiple aggregation operators. This study extends that
module to support multicolumn aggregations combined by GROUP BY statement by using a Hash
Table implementation.

ReduceStage

D_IN AGG_OUT
StreamSync SumOp

ReduceStream
StreamSliceArray

StreamBuffer

Figure 5.7: ReduceStage module [32]

The extensions done on the ReduceStage module are presented by yellow blocks in Figure 5.7.
SumOp module runs a fixed point summation as the datapath is in fixed point. The main changes in
ReduceStage package are under ReduceStream package.

ReduceStream

ACC_IN

HASH_OUT

StreamSync

StreamElementCounter
D_IN

Stream Accumulator

SequenceStream

MUX
ACC_OUT

Figure 5.8: ReduceStream module [32]
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The ReduceStream package, as visualized in Figure 5.8, uses a single accumulator register to
hold the accumulated, aggregated value. However, to do this with multicolumn grouped aggregations,
one should add more registers or a table. Various studies have implemented a hash table and content
addressablememory on intermediary storage (BRAMs) to surround a logic that undertakes the grouping
operation [66], [4].

Introducing Hash Table for multiple groupings This thesis proposes a hash table implementation
for a multicolumn textitGroupBy operation. The architecture is provided in Figure 5.10. There are two
states of aggregation operation, namely, build and probe. In the build state, the aggregates and keys
are streamed to the HashTable. In HashTable, the keys are stored in bit_table and data is stored in
hash_table. The idea behind two different tables is that if one desires to implement sort on keys, the
sort operation can be performed on the elements of bit_table. The keys, provided by the StreamAccu
mulator, are hashed by a hash function which can be modulo32, modulo128. Controller handles the
logic to update the hash_table. If a new key is introduced to the HashTable, the key is appended to
the bit_table, hash_pointer is incremented. Then, the values are written to the hash_table, which is
indexed by a hashed key. The keys can be separate columns in the dataset.

StreamAccumulator

HashTable

StreamBufferHASH_IN

Concat

Controller
ACC_IN

count

HASH_OUT

ACC_OUT

DATA Path State information +  
Key Stream

Figure 5.9: Accumulator logic with Hash Table implementation

5.3. Discussion
This chapter presents the integration efforts of query computation with parquet reading on FPGA. The
baseline parquet reading design was proposed by Van Leeuwen 2019 [55]. We have seen that the
integration is feasible and further extensible. In Chapter 4, we have explained that we can parallelize
row groups by using concurrent, multithreaded Thread Pools on native software. These parallelization
efforts were the seed of increasing the interconnect bandwidth utiilization that this project runs on. The
proposed design in Figure 5.3 uses around 10 % of the FPGA fabric as depicted in Chapter 6. In
other words, one can add more of these resources and obtain a higher level of parallelism. Keeping in
mind that these columnar readers and Compute Kernels implement their AxiMMIO module and User
CoreController. More specifically, they can be controlled separately by the Software API designed in
Chapter 4. Figure 5.12 proposes an architecture to use more FPGA resources by attaching multiple
allquery pushdown parquet readers. The query pushdown parquet reader design, as illustrated in Fig
ure 5.11, bundles four parquet column readers and a single query. Software APIs can connect these
allquery pushdown parquet readers and run them in parallel.

The underlying setup is FPGA as a coprocessor in Figure 5.12. Nonetheless, one can extend this
to run in FPGA as an amplifier setup. In this case, each parquet reader instance should decode the file
metadata and get columnar chunks on their own. We will investigate such setup in Section 6.
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Figure 5.12: Architecture with multiple query pushdown reader instances which can parallelize upto 3 Row Groups



6
An Extended Roofline Analysis for

Parquet Decoding Operation on FPGAs
In this chapter, we will examine the extended roofline model for parquet reading operation on FPGAs.
The aim is to explore the boundaries of FPGA implementation of parquet reading operation and query
pushdown. The roofline model consists of several essential components, such as the computational
intensity of the kernel, bandwidth of the technology, clock frequency. An example roofline model is
provided in Figure 6.1. Blue lines are the I/O throughput of the system, and red lines are the computation
throughput. Dotted lines show the ceiling, whereas thick lines present the roof. We examine byte
operations for the design for two different applications. The first application is I/Obound, and the
second application is computebound.
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Figure 6.1: Basis of the Roofline Model for different applications [22]

There are multiple ways of formulating a roofline model for hardware design. Da Silva et al. pro
poses a formulation of constructing a roofline for HLS designs and integrate that solution for Xilinx ISE
14.4[22]. In this thesis, we extend this work for VHDL design. In order to construct the roofs we utilize
the area utilization on FPGA fabric and available bandwidth of the technology used as the bounding
factor.

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ⌊ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝐷𝑒𝑠𝑖𝑔𝑛⌋ (6.1)

𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑃𝐺𝐴 = 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝐷𝑒𝑠𝑖𝑔𝑛 (6.2)
𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =min{(𝐶𝐼 × 𝐵𝑊), (𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐹𝑃𝐺𝐴)} (6.3)
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As seen from the Equation 6.3, we define several different independent variables for Roofline model.
Computational intensity, I/O bandwidth are two independent variables. Resource Consumption de
pends indirectly on the computational intensity and is calculated using synthesis results. There are five
main designs analyzed in this chapter:

• Parquet reader for uncompressed files

• Parquet reader for compressed files

• TPCH Query 6 hardware design

• Query Pushdown Parquet reader for uncompressed parquet files(Hybrid Uncompressed)

• Query Pushdown Parquet reader for compressed parquet files(Hybrid Compressed)

In the next sections, we will investigate the ways to obtain these variables.

6.1. Parameters of Roofline Analysis
This study extends Roofline model, proposed by Da Silva et al. [22], for HDL language as the design,
explained in section 5, is implemented in VHDL. This means that byte operations and the inputoutput
size of each architectural component should be calculated without the help of any tool.

6.1.1. Byte Operations
An example block design is provided in Figure 6.2. D_IN represents the input data stream. Regardless
of the protocol it uses, the important factor for analysis is the byte operations on the data stream. If
we demonstrate it with the example in Figure 6.2, which illustrates the aligning of an elementary data
stream. It includes one buffer. We may define that if the downstream is not blocked, there will be a
continuous flow of data. The buffer may hold unprocessed data, which adds a delay. In this example,
data width of d_in and d_out is 2 bytes. The design exchanges one block per data per cycle. In total,
the byte operations per cycle are 2 ∗ (𝑘 + 1) as one cycle per exchange and k cycles per delay in
the buffer. In Figure 6.2, the buffer has 2 data, so that means k will be 2. In this case, this module
processes 6𝑏𝑦𝑡𝑒𝑠𝑐𝑦𝑐𝑙𝑒

Figure 6.2: Simple block design for realigning of 2 bytes input data stream

The design includes multiple buffers constructing from BRAMs. Estimating the runtime behavior
of each buffer is out of the scope of this thesis. Therefore, we will assume that at time t, the number
of bytes processed in the buffer equals the number of bytes on the data bus. Table 6.1 shows the
byte operations per module. These are obtained by the same analysis described earlier and simulation
results.

Component Number of byte operations per cycle (N):
Interpreter 30
Decoder 6N
Ingester 2N
Aligner 4N

Decompressor(Snappy) 311[28]

Table 6.1: Byte operations per cycle for each component to be used for CI(Data bus length in bytes=N)
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Predicate(Query) design implements 3 Floatingpoint to Fixedpoint converters, one multiplication,
three filterings, and one aggregation. Each multiplier processes one 64bit wide element per 8 cycles
that makes N bytes per cycle for input with the width of N bytes. Converters take nine cycles for 64bit
inputs, hence makes 0.88N per byte operations per cycle. Each filter processes a single element per
cycle, which corresponds to N bytes per cycle. Aggregation is tricky, as it includes a stream accumula
tor(either in the form of a table or register) with sequential logic, updating one element per cycle. Also,
there is a parallel fixedpoint summation in the aggregator. However, for the sake of easiness, we can
take it as N bytes per cycle. In summary, the byte operations per cycle are 2.88N bytes per cycle for
TPCH Query 6.

In case we want to analyze byte operations for filtering, we can simply say that it is N bytes per
cycle. The reason is that it uses the same filter operation as TPCH Query 6, except that it also has
two different stream synchronizers.

6.1.2. Input/Output
Another significant part of the computational intensity is the number of inputs, outputs, and memory
accesses. For the sake of the easiness of the analysis, AXI Width is the chosen parameter. In the
scope of the proposed design in this thesis, the width of the AXI bus used is 1024 bits.

The memory accesses for our design:

• For parquet reading operation, the input and output have a width of 128 bytes.

• Query operation will have four elements(3 floats and one date32) streamed into it. The design
will have 128 bytes input and 8 bytes output (aggregation result). It writes the output to the
corresponding MMIO register

• Query pushdown parquet reading operation will have 128 bytes input and no output.

6.1.3. Area
As denoted in Equation 6.2, scale argument expects the utilization information of the kernel. In the
scope of this thesis, there are five different types of algorithms, namely compressed baseline FPGA
parquet reader, uncompressed baseline FPGA parquet reader, compressed query pushdown FPGA
parquet reader, uncompressed query pushdown FPGA parquet reader, and TPCH Query 6. We will
investigate the FPGA utilization of these designs. The scale will be calculated as denoted in Equation
6.4. module property is defined as the component under analysis. A simple example for module can
be the 64bit column reader.

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠
(module 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) (6.4)

What can be clearly seen in Table 6.2 is that the parquet reader for a single column (either 64 bits or
32 bits) occupies only 0.78% of the FPGA fabric. We will use this as a baseline once we extend the
estimations for multiple columnar readers. Moreover, it should be noted that the synthesized kernel
consists of 12 singlecolumn parquet readers and three predicates (query) instances. Therefore, the
utilization is fletcher_axi_top is 24.58%.

The design is synthesized for the platform with ocaccel and OpenCAPI Snap. Therefore, the frame
work occupies some area to implement the board support package that it provides and the interface
for CAPI, memorymapped registers. The total area it occupies is that 5.87% as given in Table 6.2. In
order to calculate the scaling of each component, we will use the formula in Equation 6.4 and put uti
lization overheads as 0.0587. The resulting Table 6.3 presents the results for several different designs
in the scope of this thesis. One important reminder is that the numbers are the ceiling of the fractions.

Single column parquet reader  Compressed and Uncompressed
Single 64 bit column reader utilizes around 2.16% of the FPGA fabric. Whereas 32bit columnar
readers use 1.46% of the available BRAMs. For the sake of convenience and extensibility of our
analysis, we will take the utilization of 64bit columns. Since the design has a lot of buffers, it
makes sense to use BRAMs for the scalability analysis.

1The current wrapper only supports 64 bit datapath
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Module CLB LUTs(Used) BRAM Tiles(Used)
bsp 2.65%(34569) 0.84%(17)
cfg 0.10%(1263) 0%
oc_func 27.69%(361001) 35.42%(714)
cfg 0.03%(433) 0%
fw_afu 27.66%(360570) 35.42%(714)
desc <0.01%(31) 0%
snap_core 3.08%(40099) 1.79%(36)
fletcher_axi_top 24.58%(320497) 33.63%(678)
extended_col(64 bit) 0.78%(10161) 2.16%(43.5)
shipdate_col(32 bit) 0.72%(9449) 1.46%(29.5)
predicate_instance 4.43%(57703) 3.27%(66)

Table 6.2: Utilization Report of query pushdown parquet reader implementation

Module Scalability

Parquet Reader Single Column(Uncompressed) (1−0.0587)
0.0216 ≅ 43

Parquet Reader Single Column(Compressed) (1−0.0587)
(0.142+0.0216) ≅ 5

Predicate(Query 6) Design (1−0.0587)
0.0443 ≅ 21

Predicate(Query 6) pushdown Parquet Reader Design(Uncompressed) (1−0.0587)
(4∗0.0216+0.0443) ≅ 6

Predicate(Query 6) pushdown Parquet Reader Design(Compressed) (1−0.0587)
(4∗(0.0216+0.142)+0.0443) ≅ 1

Table 6.3: Scalability of the important components

Predicate(Query) Design
Predicate kernel implements either query or filters pushdown. As expected, pushing down queries
will use more FPGA resources. Therefore, we will use the utilization of query pushdown (TPCH
Query6) for scalability analysis.

Predicate(Query) pushdown Design  Compressed and Uncompressed
We are aiming to extend this analysis for query pushdown parquet reading operations. The im
plemented SQL query has four columnar readers and one predicate(query) design. The hybrid
implementation in Table 6.3 shows the scalability of such query.

6.1.4. Attainable Computational Performance per FPGA
Attainable performance per FPGA is related to the number of byte operations per second constrained
by the scalability of the design. Figure 6.3 shows the attainable performance for a single FPGA and
five different designs, which are used in this thesis. Firstly, for the baseline column reader for parquet
files, the attainable performance is higher, as shown in Figure 6.3.

6.1.5. CI  Computational Intensity
CI variable shows the complexity of an algorithm. It is easier to construct this variable in higherlevel
languages by investigating loop bodies before the software compiles. Da Silva et al. [22] proposes the
following equality 6.5 for HLS designs to calculate CI.

The computational intensity of a model shows the byte operation of a model per byte accessed.
Therefore, the modifications on a program by increasing the data locality can increase the computa
tional intensity as it can process more elements per iteration. In this study, the researcher examines
the increase of data locality by changing the synthesized design. The change is to make the design
sustain more elements per cycle. In this way, keeping the inputoutput width the same, one can change
elements processed per iteration (cycle).

𝐶𝐼 = #𝐵𝑦𝑡𝑒 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
#𝐼𝑛𝑝𝑢𝑡𝑠(𝐵𝑦𝑡𝑒𝑠) + #𝑂𝑢𝑡𝑝𝑢𝑡𝑠(𝐵𝑦𝑡𝑒𝑠) (6.5)
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Figure 6.3: Computational Intensity of seperate implementations with datapath of 64 bits 200 MHz design

6.2. Roofline
6.2.1. Constructing Computational Roof
In order to construct the computational roof, we will iterate on different designs. Normally, roofline anal
ysis on software is carried out on the operations of the loop body. As the number of parallel columnar
readers increases, the number of bytes processed per cycle stays the same. Therefore, it makes sense
to calculate the computational intensity of different hardware designs. Before calculating CI, we should
calculate the attainable performance per FPGA, which also puts scalability in the equation. Figure
6.4 illustrates computational roof estimation. One important observation is that uncompressed parquet
readers have the highest attainable performance and scales better. The reason is that the utilization
of uncompressed parquet files is less than 3%. Therefore, scalability becomes the bounding factor for
designs having high computational intensity. One should interpret the effect of scalability relation in the
following way. Scalability is a measure that multiplies the roof for estimating attainable computational
performance. A statement about scalability can be made as follows: ”The application can attain more
computational performance if scalability gets higher while keeping CI the same.”.

In this thesis, the attainable peak performance per FPGA is dependent on computational intensity.
Figure 6.4 shows the results of computational intensity per parallel modules
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Figure 6.4: Attainable Performance (per FPGA) of seperate implementations with datapath of 64 bits 200 MHz design

6.2.2. Constructing I/O Roof
So far, we have constructed to compute roof for our model, which is independent of the system design.
Now, we will examine the effect of interconnect on the Roofline and construct the I/O roof of the Roofline.
We take unidirectional bandwidth as analytics query processing happens in one direction. We will
investigate several different interconnect types:

• x16 PCIE Gen. 3 with 32 GB/s peak bandwidth.

• x8 PCIE Gen. 3 with 16 GB/s peak bandwidth.

• x16 PCIE Gen. 4 with 64 GB/s peak bandwidth.

• x8 PCIE Gen. 4 with 32 GB/s peak bandwidth.

• x16 PCIE Gen. 5 with 128 GB/s peak bandwidth.

• x8 PCIE Gen. 5 with 64 GB/s peak bandwidth.

• FPGA pointtopoint 100 GB/s peak bandwidth.[16]

• OpenCAPI with 50 GB/s peak bandwidth. (Ocaccel)

• DDR4 per DIMM with 50 GB/s peak bandwidth.

• DDR5 per DIMM with 101 GB/s peak bandwidth.

Inherently, this analysis constructs a baseline for system architecture. Therefore, it is beyond the scope
of this thesis to discuss whether or not the interconnect IP is available for the chosen FPGA platform.
Equation 6.6 shows the bandwidth calculation for our design.

𝐼𝑂_𝑅𝑂𝑂𝐹 = 𝐶𝐼 × 𝐼𝑂 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (6.6)

Figure 6.5 depicts the technology dependent portion of our roofline model. It can be seen from the
figure that we obtain highest speed with the onchip memory attached configuration. Then, the best
possible performance comes from the CPU+FPGA shared memory configuration.

6.2.3. Roofline Model
Putting it all together, we obtain the following model in Figure 6.6. Figure 6.6 illustrates the roofline
model of three different FPGAmodels. The idea of sweeping through different FPGAs is to estimate the
performance concerning the scaling of hardware designs. Moreover, the results will give an idea about
the performance improvements of different architectures. Table 6.4 lists the analyzed FPGA families.
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Multiplicative factor denotes the constant for multiplying the scalability of a design. The reason is that
FPGAs do not have the same programmable logic size, which affects the scalabality of our design.
In return, this effect will be seen on peak performance. One important aspect to mention is that the
analysis assumes that the only limitation comes from BRAM Tiles for parquet readers and CLB LUTs
for TPCH Query 6.

The compute roof is way higher and is capable of reaching almost 1000 GB/s. Therefore, the
compute roofs are clipped in Figure 6.6. In this analysis, we are interested in the intersections of the
I/O roof and compute roof. Moreover, it is significant to show whether the design is computebound or
I/O bound.

Firstly, the analysis in Figure 6.6a shows the peak performance estimations on VU37P FPGAs. The
peak performance observed is for computational intensity slightly larger than 1.3 with PCIE Gen. 5.

Then, Figure 6.6b depicts the performance for KU15P, which has the smallest chip area amongst
all. One should expect that the peak performance should decrease as scalability decreases. As seen
from Figure 6.6b, the peak performance achieved is at most.

Finally, 6.6c shows the performance characteristics for VU19P FPGA. Scalability increases the
compute roof, which will result in all of the designs being I/O bound. This result is different once the
interface type is PCIE Gen. 5 or FPGA to FPGA connection.

TPCH Query 6 has computational intensity of 0.69, which is the lowest compared to the others.
The analysis in Figure 6.6 shows that query itself is always I/O bound. Moreover, Uncompressed
parquet reading operation has computational intensity of 0.98 and also always I/O bound for tested
configurations.
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(b) Attainable performance characteristics of Compute and I/O roofs for KU15P
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Figure 6.6: Roofline Analysis
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FPGA Available LUTs Multiplicative factor
KU15P 523000 2.49
VU19P 4086000 0.319
VU37P 1303680 1

Table 6.4: Available LUTs for different FPGA families

6.3. System Design
Understanding the capabilities of the underlying hardware design, we can now propose a system design
for query pushdown operation. The lifetime of an analytic query starts from the file, which is stored on a
disk. One of the purposes of this thesis is to understand the limitations of pushing down an endtoend
analytic query to parquet reading operation.

The purpose is to read aggregations once the parquet file is read. Therefore, FPGA should be on
the datapath between CPU and memory. Fang et. al. presented 3 different architectures as depicted in
Figure 1.1. The best possible configuration is FPGA as a bandwidth amplifier. Inherently, we do want to
hold large datasets ( 1TB). Hence, a nonvolatile memory connected by a multichannel PCIE bus can
be one type of configuration. Then, FPGA can be attached to the CPU by multichannel OpenCAPI.
There are commercial examples of such systems [35], [16], [36].

CPUStorage
FPGA

On-chip Memory

Fletcher

Figure 6.7: Application Runtime Path

Early filtering and aggregation of datasets prevent extra loads or copies of data. Integrating this
concept with FPGAs, we achieve high throughput, low power analytic server. The work in ABS is
concentrated on communicating in Arrow format to accelerate workloads. Arrow format, as described
in Section 2.4.3, avoids serialization overheads. Hence, communicating by Arrow tables creates much
room for improvement in terms of system design. Fletcher also provides necessary wrappers (reading,
writing) for such tables. Inherently, we want to achieve the programming model visualized in Figure
6.7. The red dotted line represents the runtime architecture in this thesis.

In the following sections, we will investigate the performance of several system designs.

6.3.1. Analysis on stateofart system architectures
So far, the broader roofline analysis and its components have been introduced. This thesis concentrates
on a design which has 2 components, namely parquet column reader and query. As a query module,
TPCH Query 6 is the focus of this thesis. TPCH 6 reads the lineitem table in TPCH benchmarks.
lineitem table is the largest table in the benchmark with 16 columns, constructed by 3NF Schema. It
has been stated before that the objective is to decode multicolumn parquet files in Arrow Tables and
hold them in onchip memory. It is desired to use HBM, which provides up to 470GB/s bandwidth to
hold Arrow Tables. Therefore, selective access and partial decompression, if the file is compressed,
are needed to decode only the columns filtered by the query. This thesis proposes a software solution
for selective access and partial decompression in Chapter 4. Nonetheless, it is no harm to assume that
once FPGA decodes the parquet file, it has the offsets and sizes of each column required for selective
access.
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FPGA as Bandwidth Amplifier: SmartSSD Computational Storage Drive Xilinx powers the com
putational storage drives, SmartSSDs, which consists of flash memory, and Xilinx Kintex Ultrascale+
KU15P FPGAs [59]. The interconnect to the host interface is Single Port PCIe Gen 3.0 x4. Smart SSDs
have NAND flash memory capable of reading 800000 transfers per second, with a peak bandwidth of
6.4 GB/s. As SmartSSDs use different kinds of FPGA than the design proposed in the thesis, the
scalability will be changed regarding Kintex KU3P, which has approximately 300K available LUTs for
acceleration [59]. It should be noted that Xilinx XCVU37P has 1303680 available LUTs. Therefore, the
scalability will have multiplicative factor of 1303680300000 = 4.34. More specifically, if the design has utilization
of 1 before, it will have 4.34 in Kintex KU15P. The storage capacity is a maximum of 3.84 TB.
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Figure 6.8: Roofline model for SmartSSD

The roofline model for SmartSSD is depicted in Figure 6.8. One important result to address is that
the peak performance is lower than the other interconnect types. This implies that peak performance is
bounded by PCI Gen 3 x4 bandwidth for SmartSSDs. One other thing to mention is that the scalability
factor for Kintex KU15P is lower than other FPGAs. One can propose to use SmartSSDs to read the
parquet files and use another FPGA instance (coupled by either onchip memory or more channels of
PCIE) to run queries.

FPGA as Coprocessor: OpenCAPI There are memory types sharing the memory between the
host CPU and FPGA. One example is OpenCAPI. The brief roofline analysis on different interconnects,
includingOpenCAPI, is provided in Figure 6.6. OpenCAPI provides a coherent interface to attach FPGA
as a coprocessor. It can provide 25 Gbit/s per channel. This section analyzes the roofline model for
Power9, which provides 25 GB/s (8 channels) OpenCAPI interconnect.

Figure 6.9 depicts the roofline analysis on Power9. 2 FPGAs dualchannel OpenCAPI achieves the
highest peak performance.

FPGA as Coprocessor: Intel QPI Intel offers Xeon and FPGA Accelerator Platform for handling
data center workloads [31]. The architecture consists of QPI, which enables up to 25.6 GB/s intercon
nect bandwidth. At this instant, one can state that it is not ideal for analyzing such a platform as the
FPGA vendor changes and the software used for hardware design. However, since the interconnect
bandwidth is roughly the same as OpenCAPI, we can reach the same conclusions for this interface.

FPGAs as CoProcessor: PCIE Switch So far, we have investigated several different interconnect
types and their roofline analysis with query pushdown and parquet reading operation. Some servers
utilize FPGA to FPGA communication by PCIE Gen 3. x16 switch, which can provide up to 100 GB/s
communication [16]. The roofline analysis in Figure 6.6 shows 100GB/s FPGA Connection. It is visible
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Figure 6.9: Roofline model for Power9

in Figure 6.6a that only hybrid, compressed design is computebound. Whereas Figure 6.6b depicts
that the design for parquet reading with compressed files offers the highest possible performance gain.

6.3.2. Preliminary Conclusions
In summary, the wellknown interconnect technologies are investigated for parquet reading operation
and an example adhoc query(TPCH Query 6). We have seen that pushing code down to parquet
reading has better performance with high throughput interconnect types. The reason is that the hard
ware design is I/O bound in almost all cases except FPGA to FPGA communication cases. In the
SmartSSD case, the FPGA does not have enough area to fit many analytic queries and parquet read
ers. Moreover, SmartSSD has the interconnect type as the bounding factor. 100GB/s FPGA to FPGA
connection is the only interconnect type that is closer to make uncompressed hybrid design (CI equals
1.16) I/O bound as seen in Figure 6.6b. On the other hand, we have seen that decompressor has lower
scalability, resulting in a lower attainable performance for compressed hybrid design.

Using former analysis, we project the throughput numbers for different technologies. Figure 6.10
represents the projected throughput numbers for each technology, while computational intensity is
swept from 1 to 1.4. The vertical lines show the technology bounds as interpreted from Roofline analy
sis in Figure 6.6. More specifically, once the computational intensity exceeds those vertical thresholds,
the design is computebound for the technology specified by the vertical bound. For instance, we
can observe the behavior of the system with 1 VU19P FPGA, 100GB/s link. The applications with CI
less than 1.9 are I/O bound for this system. Therefore maximum theoretical attainable throughput is
100 GB/s if the application runs perfectly and saturate the interconnect bandwidth. Whereas appli
cations with CI higher than 1.9 are computebound. This will result in bandwidth decrease until the
throughput specified by the following formula 𝑅𝑜𝑜𝑓𝑙𝑖𝑛𝑒

𝐶𝐼 . The analysis in this chapter also includes the
nextgeneration interfaces such as PCIE Gen. 5. Nevertheless, many FPGA links still use PCIE Gen.
3 communication, which is also analyzed in this chapter. It has been shown that the hardware designs
interfaced to host CPU or other FPGA by PCIE Gen. 3 are I/O bound. The adhoc query analyzed in
this thesis, TPCH Query 6, is not computationally intensive for any known interconnect to be compute
bound. That is why computational intensity, which is smaller than 1, is not included in Figure 6.10. The
proposed 100 GB/s link increases the performance for I/O bound applications for simple aggregations.

In summary, this chapter analyzes the characteristics of five different hardware designs, namely,
parquet reader for compressed parquet files, parquet reader for uncompressed parquet files, TPCH
Query 6, query pushdown parquet reader for compressed parquet files, and query pushdown parquet
reader for uncompressed parquet files. The analysis revealed that the adhoc queries with basic ag
gregation operations and filters are I/O bound. Using 100 GB/s FPGA to FPGA communication link
can reveal highperformance gains in case the aggregation. There are commercial database servers
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available for such communication [16]. The performance of parquet reader design is heavily dependent
on the type of parquet file being read. SmartSSDs are I/O bound for any design. The best possible per
formance for parquet readers is achieved using 2 VU19P FPGAs with a dualchannel OpenCAPI link.
This analysis reveals that the performance gains become significant once the computation platform is
linked via a high bandwidth nextgeneration channel to the storage. That is why FPGA as coprocessor
architecture enables better performance achievements and is used for profiling query pushdown op
eration in Chapter 7. We observe that the most significant limitation with current accelerators is the
interconnect bandwidth. Moreover, the scalability decreases once the design complexity increases.
This will result in lower attainable computational peak performance. Therefore, another limitation of
query pushdown is scalability.
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7
Profiling Results

7.1. Experiment Setup
In this experiment, Q&CE power9 server is used [3]. Power9 system with two CPUs and 128GB DDR4
memory. The FPGA accelerator card ADMPCI9H7 is used and interface with OPENCAPI. There are
44 total cores and 176 threads in the system. Benchmarks are done on the TPCH lineitem table. The
database generator of TPC benchmarks generates the table. TPC benchmark database generator
creates a .tbl file. Afterward, by using Apache Arrow C++ API, a parquet file is generated. Then,
to make this parquet file compatible with FPGA implementation, the parquetmr package with Java
API is used to create Parquet files with version 1. The parquet files have PLAIN encoding and are
decompressed. The experiment is done on the following configurations:

• Single parquet file with the scale factor of 1.

• Single parquet file with the scale factor of 2.

• Directory with ten different parquet files, each having a scale factor of 1.

• Directory with ten different parquet files, each having a scale factor of 2.

• Directory with 20 different parquet files with half of them being scale factor of 1 and another half
2.

The application is run on the single worker setup with multiple cores. The core size is swept from 1
to 10. It is hard to estimate the execution times of applications with multiple cores. We will investigate
them by calculating the average runtime per task. We will also calculate throughput numbers with
average runtime per task. The experiments are conducted 11 times successively. The first run of each
experiment is not counted since it includes task deserialization times that should not reflect the overall
performance. The runtimes are the average of 10 runs.

The results will be plotted regarding several different execution times, namely, FPGA, Accelerated
Spark(FPGA), Vanilla Spark. FPGA shows the total FPGA execution time for that query. Accelerated
Spark(FPGA) is the total Spark runtime, including aggregating the partitions for Query 6, parsing meta
data of the parquet files, and path of the files. Vanilla Spark is the Spark execution time without any
acceleration.

As a reference for following experiments, it should be noted that Spark core means CPU Threads
dispatched by Apache Spark. In the next sections, each configuration will be tested and discussed.

7.2. Architecture A
The first architecture, which was benchmarked, is with 3 query pushdown parquet readers, as depicted
in Figure 5.12. Each module can stream a single element per cycle.

53
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7.2.1. Throughput Analysis
As discussed earlier in Section 4, scheduling on constrained resources, which is in our case FPGA, is
complex. Moreover, each thread reading and writing MMIO registers require a locking mechanism to
ensure the registers are being set correctly. In this section, we will investigate the effect of the increase
in thread count in Native ColumnScheduler native object on FPGA runtime throughput. Figure 7.1
visualizes the change in the throughput as number of native threads (Figure 7.1a) and Spark threads
(Figure 7.1b) change. We observe that highest achieved throughput is slightly less than 3 GB/s for
software architecture with 3 native threads and 2 Spark Cores.
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Figure 7.1: Throughput calculation for different native thread counts

7.2.2. Single Parquet File
The experiments are conducted on single parquet files with 703MB(scale factor of 1) and 1.4 GB (scale
factor of 2). The parallelization of the File Reading operation is heavily dependent on the parquet file.
As explained in Section 2.4.2, the row groups are created on the creation of the parquet file. Figure
7.2 illustrates the single parquet file that has 0.686 GB size, reading with aggregation. 0.686 GB
has a single row group. As seen in Figure 7.2a, for a single row group, both vanilla and accelerated
Spark cannot parallelize the parquet file reading and aggregation operations. Figure 7.2b depicts the
throughput of almost 3.5 GB/s for each accelerated task. On the other hand, the other parquet file with
the size of 1.4 GB is visualized in Figure 7.3. Parquet file with 1.4 GB of size has two row groups.
Therefore, the reader should expect execution time gets lower as the core size increases up to 2
cores. As the proposed design in this thesis parallelizes row groups byNativeScheduler, the researcher
observes no change in execution time for accelerated Spark in Figure 7.3a. Nevertheless, it should
be noted that the throughput for each accelerated task, depicted in Figure 7.3b, decreases by almost
20%. The reason is that each Spark core pushes its task to Native TaskPool. This creates a scheduler
overhead. Therefore, the throughput decreases.

7.2.3. Multiple Parquet Files
It is also desirable performancewise to load dataset from multiple parquet files. In this section, we will
use the configurations explained in the setup. The first experiment is performed on a directory with
10 different parquet files each having 0.686 GB of data as Figure 7.4 illustrates the results. Figure
7.4a plots the execution times of a directory with 6.9 GB. Each Spark task pushes jobs to the Na
tive ColumnScheduler in the form of single parquet files. By the core count increases, the execution
time decreases. One of the most important observations that can be interpretted from Figure 7.4b,
the throughput decreases after Spark core count reaches to three. The reason is that Native Column
Scheduler implements three native threads. By the core count reaches three, the FPGA is busy with
execution so the tasks coming from Spark are pushed in global queue. Hence, it creates a scheduler
overhead.
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Figure 7.2: Total Size of 0.686 GB
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Figure 7.3: Total Size of 1.4 GB

Figure 7.5 shows the benchmark results for a directory with ten different parquet files, each having
1.4 GB of size and two row groups. The execution times decrease by half once the core count increases
to two, as shown in Figure 7.5a. Two components are contributing to the execution time of accelerated
workers. The first one contributes to the Spark computations such as aggregating partitions and reading
metadata, file path. Secondly, FPGA execution contributes to the total runtime. We observe that FPGA
execution slows down significantly after a single core. Since each parquet file has two row groups, after
core size equals 1, the queue size becomes larger than 3. In this case, the scheduler overheads start
to contribute to FPGA execution time. Figure 7.5b depicts the decrease in throughput due to scheduler
overheads.

The final data source that we ran our experiments on was a directory of size 21 GB that includes ten
files of size 0.686 GB and 1.4 GB, as shown in Figure 7.6. Figure 7.6a plots that the Spark runtimes
increase in case of the number of tasks increases. In this case, the application creates 20 tasks for
each file. As a result, the FPGA throughput can reach slightly over 6 GB/s as seen in Figure 7.6b.

7.3. Architecture B
The second architecture which was is benchmarked is with 3 query pushdown parquet reader, each
module processing 4 elements per cycle. The formulation behind this setup is to increase the through
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Figure 7.4: Total Size of 6.9 GB

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Number of Cores

Ex
ec
ut
io
n
Ti
m
e(
s)

Accelerated Spark(FPGA)

FPGA

Vanilla Spark

(a) Runtimes

1 3 5 7 9
0

2

4

6

8

10

Number of Cores

Th
ro
ug
hp
ut
(G
B/
s)

(b) Throughput per accelerated task

Figure 7.5: Total Size of 14 GB

put while fitting in FPGA. The overall architecture is provided in Figure 7.7. The synthesis report for
single elements per cycle was provided in Chapter 6. Table 7.1 shows the utilization report for design
that can process 4 elements per cycle. Since board support package and configuration packages of
OCACCEL are the same, we do not report them again.

The same set of experiments are conducted in this section. This experiment shows the increase in
throughput by increasing the parallelism in the hardware.

7.3.1. Throughput Analysis
The setup in Architecture in Section 7.2 achieves the maximum throughput of 2.1 GB/s. The Architec
ture 7.3 achieves 3 GB/s as illustrated in Figure 7.8a. The throughput of FPGA decreases as the Spark
core count increases as depicted in Figure 7.8b.

7.3.2. Single Parquet File
The discussions done in the Section 7.2.2 can also be drawn in this section. Figure 7.9a shows that the
kernel speedup is 3.96x while application speedup is 1.55x. The throughput is roughly 2.02 GB/s for
each case, as seen in Figure 7.9b. Moreover, for larger parquet file seen in Figure 7.10a, can reach up
to 2x kernel speedup whereas 1x application speedup (no speedup). The corresponding throughput
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Figure 7.6: Total Size of 21 GB

Module CLB LUTs(Used) BRAM Tiles(Used)
oc_func 37.22%(485243) 81.70%(1647)
fw_afu 37.19%(484812) 81.70%(1647)
fletcher_axi_top 34.11%(444714) 79.91%(1611)
extended_col(64 bit) 1.10%(14282) 6.60%(133)
shipdate_col(32 bit) 0.89%(11583) 3.57%(72)
predicate_instance 6.49%(84607) 3.27%(66)

Table 7.1: Utilization Report of query pushdown parquet reader implementation with epc=4

is in average 2.82 GB/s as shown in Figure 7.10b.

7.3.3. Multiple Parquet Files
Figure 7.11a shows the execution times of accelerated workers for a directory with 6.9 GB of size. The
peak FPGA throughput of roughly 3.8 GB/s is observed in this experiment as visualized in Figure 7.11b.
It appears that the throughput does not change much in this setup. The previous experiments reported
that the throughput decreases once the Spark core count increases.

Once the directory size increases, the execution times get larger for Vanilla Spark. As represented
in Figure 7.12a, the application speedup we achieve the most is 1.357x for TPCH Query 6, while
kernel speedup is roughly 30.8x. The maximum throughput is less than 3 GB/s as seen in Figure
7.12b.

The largest directory size of 21 GB is benchmarked with the current design. Figure 7.13a illus
trates that the endtoend speedup of 2.5x is the highest achieved speedup. The kernel speedup
of such design achieves 13.18x. The highest speedup occurs on singlecore. Moreover, as the file
size increases, FPGA starts to perform better than the multithreaded Spark application. The overall
execution of accelerated worker is faster than of the vanilla spark until core size equals seven. With six
CPU threads, the FPGA can achieve 1.13x endtoend application speedup and a kernel speedup of
13.19x.

The total FPGA execution time(red) is always smaller than vanilla spark runtime. In terms of through
put, Figure 7.13b draws the average throughput numbers, which has a peak of 2.3 GB/s.

7.4. Large Tables
In this section, parquet files with approximately 720, 540, and 360 million rows are tested on a single
core, while parquet files reside in the disk. This experiment aims to see the individual parts of the
runtime contributing to the FPGA execution and parquet reading, etc. Figure 7.14 plots the runtimes
for each row count on single core. The highest achieved endtoend speedup is 3.88x. At the same



58 7. Profiling Results

FPGA

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Control
Path

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Parquet Column Reader

Query 6
Query 6
Query 6
Query 6

Query 6
Query 6
Query 6
Query 6

Query 6
Query 6
Query 6
Query 6
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time, the kernel speedup is 7.24x.

7.5. Discussions
There are several conclusions of this part worth mentioning. Firstly, we have observed that once the
number of cores increases, throughput for the FPGA calculation decreases. This can be explained
in several ways. One way is regarding the synchronization of a scheduling operation. Scheduling as
described in Section 4 is resourceconstrained scheduling with only a single FPGA instance. Once
every thread tries to write to the same register, there will be spinlock and, they will wait for resources
to be available. Moreover, for parquet files with a smaller number of row groups, increasing the core
count will result in much higher wait times. The reason is that we parallelize the row groups with Native
ColumnScheduler and files with SparkContext. If we initiate 3 threads in Native ColumnScheduler but
have 1 row group, the other 2 threads will be idle and waiting for SparkContext to push new files to the
Native ThreadPool.

As seen from the profiling results, pushing projection to reading operation will result in up to 7.3x
speedup (kernel). However, the utilization of such kernel is roughly 37% as depicted in Table 6.2.
Therefore, one can add more query pushdown parquet readers or increase the processed elements
per cycle to utilize more bandwidth. This thesis proves that adding more parallel query processing
modules increases the throughput. As a result, experiment Setup A has the maximum throughput of 3
GB/s. At the same time, Experiment Setup B has 3.8 GB/s.

Another conclusion derived from these results is the scaling of FPGA resources compared to the
CPU. More specifically, how well the FPGA tasks(accelerated worker) perform once the parallelism
level increases. The reader can observe that the performance of each implementation increases as
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Figure 7.8: Throughput calculation for different native thread counts
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Figure 7.9: Total Size of 0.686 GB

the number of Spark cores increases until some point. CPU performs better than FPGA for large core
counts. The reason for this result is explained at the beginning. The performance of CPU overtakes of
FPGA for smaller parquet files. For instance, for smaller parquet files, we observe that the CPU can
perform better than FPGA once the core count reaches two. Nevertheless, for the total size of 21 GB,
seven parallel cores are needed for the CPU to perform better. The FPGA runtimes(red) are smaller
than vanilla Spark runtimes for all core counts in both designs. Once the overheads are resolved,
multithreaded FPGA applications can achieve high speedups. The highest speedup observed in
experiments occurs in Figure 7.13a.

One other purpose of this thesis was to examine the boundaries of FPGA utilization. We observed
that the throughput numbers reach 3.8GB/s, the highest. This is far below the practical boundaries
of the platform used in this experiment. The experiment is run on OpenCAPI interconnect with up to
21GB/s practical bandwidth. As stated in the experiment setup, the throughput numbers are calculated
on average per task. This means that each Spark task’s utilization of the FPGA resources is not ideal.
One can overcome this problem by parallelizing row groups on the Spark API calls. In this way, Spark
can launch more parallelizable tasks that will keep the FPGA as busy as possible.
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Figure 7.11: Total Size of 6.9 GB
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Figure 7.13: Total Size of 21 GB
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8
Conclusion and Future Research

8.1. Conclusion
This thesis aimed to investigate the limitations of query pushdown and propose a hardware and soft
ware design to enable this from endtoend applications. An extended roofline model for analyzing
single hardware parquet to arrow conversion operators and TPCH Query 6 design is used to discover
the limitations of current designs for different interconnect technologies. We propose extensions to ex
isting parquet reading hardware designs to enable query pushdown operations on hardware. Apache
Spark integration of hardware query pushdown parquet reading operator is shown. Possible different
accelerated cluster configurations and limitations of such configurations were evaluated. This thesis
enhances our understanding of the integration of FPGAs in the context of parallelized big data frame
works.

The acceleration of Spark SQL workloads on FPGAs creates a significant challenge in terms of
cluster configurations. The challenge arises from whether the acceleration is performed on a single
FPGA setup or with multiple FPGAs. This thesis investigated the acceleration opportunities and bot
tlenecks for a single FPGA setup in a multithreaded environment. This thesis introduces an Apache
Spark integration by using the basic building blocks of the Apache Spark File Scan operator. To con
currently access a single FPGA instance with multiple threads, a concurrent native task scheduler is
implemented.

One remaining challenge is that a single FPGA instance creates bottlenecks in terms of synchro
nization. Multiple Spark jobs, accessing a single FPGA, require multilevel task management. The
findings in this thesis suggest that such synchronization can create an extra overhead due to the pro
posed synchronization method. This is because multiple tasks busywait on each other to release the
FPGA control and status registers. Moreover, this busywait results in an increase in CPU load, and
thus the power usage also increases. These kinds of limitations create a challenge for future research
directions. These overheads resulted in decreasing application throughput. However, TPCH Query
6 performs better than CPU with a single CPU thread by achieving a 3.88x application speedup on
single core setup for parquet file containing 720 million rows. Moreover, a multithreaded FPGA im
plementation can perform better than a CPU, while the number of parallel threads is less than seven.
This implies that if the synchronization bottlenecks are resolved and investigated further, FPGA can
overtake CPU for even more parallel threads.

The roofline analysis has significant implications for understanding the bottlenecks of query push
down operations. It has been explored that these operations are always I/Obound for TPCH Query
6, a simple adhoc query with a single aggregation. Once the hardware design gets more complex
than the single aggregation, the application becomes computebound for high bandwidth interconnects
by including decompressors. The current system designs implement PCIE Gen. 3 as their intercon
nect type. The roofline model shows that both the parquet reader and the query pushdown parquet
reader hardware designs are I/O bound. Nevertheless, interconnect types such as OpenCAPI can yield
highperformance gains for more complex designs while achieving high scalability.

The thesis answered the research questions set out in the introduction of the thesis as follows.
How can query pushdowns be integrated into the stateofart parquet decoder in dataflow
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hardware designs? Chapter 5 proposes an integration solution to push TPCH Query 6 down parquet
reading stage. The architecture investigated in this thesis is bundling parquet column readers, and
query to stream read rows into query. Moreover, one can simply extend the query as a separate entity
with its controller to have the flexibility of setting the control registers.

How much of a query can we accelerate on FPGA? What is the bounding factor for query
pushdown? For simple queries with low computational intensity, the acceleration of a complete query
design makes more sense as it results in the highest reduction in memory access. Using the system
proposed in Chapter 6, one can decode parquet files in Arrow Columnar formats which are held in
onchip memory on FPGA and then run individual complex operators. There is no direct answer for
partial acceleration as the performance will depend heavily on the type of operator being accelerated.
However, one can map the computational intensity of the accelerated part in the Roofline Model in
Chapter 6 and obtain an attainable performance estimation for the accelerated part.

Concerning the bounding factor for query pushdown, the attainable performance of parquet de
coding operations is bound by the I/O for parquet files with fewer columns. Therefore, using an inter
connect capable of having a large bandwidth will increase the attainable performance. Unfortunately,
many storageattached accelerators utilize PCIE gen. 3, which has lower bandwidth compared to other
nextgeneration interfaces. Thus, the first bounding factor is interconnect bandwidth. Secondly, attain
able peak performance decreases when the number of instances that can fit on the FPGA decreases
(scalability), as described in Chapter 6. Therefore, scalability can be defined as the second limitation
for query pushdown.

8.2. Future Research
This study has shown that the computation can be seamlessly pushed down to a parquet reader on a
(possibly storageattached) FPGA without introducing extra host memory accesses. Throughout the
thesis, we have discussed several different limitations which curb the performance of our designs. The
future research opportunities can be summarized as follows.

• Many adhoc queries create good acceleration opportunities. This thesis investigates the TPCH
Query 6. In addition, we implemented and did initial measurements on a TPCH Query 1 design
with a higher compute roof. As roofline analysis shows, there are opportunities to challenge the
compute roof with newer queries and make the design I/O bound for larger datasets.

• This thesis proposed a system design in Chapter 6. The profiling results in Chapter 7 are obtained
on the Power9 server. In the future, a system that puts the FPGAs in the datapath between
storage and host memory (storageattached) can be helpful to investigate and prove the claims
in this thesis.

• Roofline Analysis is conducted only on FPGAs. It would reveal more information if CPU through
puts are also included. However, this is not trivial as the CI of hardware design is constructed by
byte operations. Whereas, CI of CPU is calculated by floatingpoint operations.

• The proposed designs in this thesis do not use additional FPGA memory resources such as
DRAM and HBM. This makes the designs very suitable for SmartSSDs (that may use relatively
small FPGAs compared to datacenter accelerator cards) but limits the achievable acceleration
for full queries that include complex operations such as Join and GroupBy.

• Full query designs on hardware are usually desired once the query is as simple as TPCH Query
6. Nevertheless, the compute roof for filter designs is simple and easily parallelizable. Therefore,
one can integrate a single filter design in the modules proposed in Figure 5.4.

• The proposed concurrent thread scheduler has limitations due to the synchronization of a single
FPGA instance. Other types of synchronization primitives such as semaphores or critical sections
can be implemented to schedule FPGA tasks. However, parallelizing workloads on a single FPGA
is only the ”tip of the iceberg.” This thesis successfully achieves to discovers a design that can
parallelize tasks for a single FPGA (single worker, multiple threads). This can be extended for
multiple FPGAs in single Spark Context. Moreover, one can also implement an architecture such
that each Spark Context accesses its FPGA instance, and the cluster manager distributes each
FPGA to each context (multiple workers, multiple threads).
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A
Summary Metrics for Different Cluster

Setups
In order to prove launching multiple workers should not be in the future plans of Apache Spark, the
experiment on two different local cluster modes has been employed. The input is a directory with 10
different files each having 1.6 GB size. The metrics show the summary of first stage with file reading
operation. We can clearly see that garbage collection (GC) time and task deserialization time in Figure
A.1 is far less than in multiple worker setup in Figure A.2.

Metric Min 25th percentile Median 75th percentile Max
Duration 11.0 ms 15.0 ms 19.0 ms 77.0 ms 3 s
GC Time 0.0 ms 0.0 ms 0.0 ms 9.0 ms 0.5 s
Input Size / Records 4.6 KiB / 0 4.6 KiB / 0 4.6 KiB / 0 4.6 KiB / 0 160.3 MiB / 6001215
Shuffle Write Size / Records 57 B / 1 57 B / 1 57 B / 1 57 B / 1 59 B / 1
Task Deserialization Time 3.0 ms 4.0 ms 7.0 ms 10.0 ms 2 s
Scheduler Delay 7.0 ms 10.0 ms 13.0 ms 17.0 ms 86.0 ms

Table A.1: Summary Metrics for local cluster setup which has 1 worker node with 12 cores

Metric Min 25th percentile Median 75th percentile Max
Duration 18.0 ms 27.0 ms 51.0 ms 2 s 4 s
GC Time 0.0 ms 0.0 ms 3.0 ms 94.0 ms 0.7 s
Input Size / Records 4.6 KiB / 0 4.6 KiB / 0 4.6 KiB / 0 4.6 KiB / 0 160.3 MiB / 6001215
Shuffle Write Size / Records 57 B / 1 57 B / 1 57 B / 1 57 B / 1 59 B / 1
Task Deserialization Time 5.0 ms 11.0 ms 18.0 ms 27.0 ms 6 s
Scheduler Delay 11.0 ms 16.0 ms 19.0 ms 23.0 ms 91.0 ms

Table A.2: Summary Metrics for local cluster setup which has 3 worker node with 4 executors
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B
TPCH/DS Analysis Results

The analysis in Figure B.1, Figure B.3 shows the existance of order by operations on TPCH and
TPCDS benchmarks respectively. TPCH Query 6,14,17,19 do not implement order by operation. In
addition, TPCDS Query 9,28,32,38,48 do not have any order by operations The analysis in Figure B.2,
Figure B.4 shows the existance of order by operations on TPCH and TPCDS benchmarks respectively.
TPCH Query 1,6 have no join operators. TPCDS Query 18 and 41 implements no join operation.
These results are important in a sense that the queries with no sorting or join operators will reveal
easiest design effort.
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Figure B.1: TPCH Queries with ORDER BY Operation
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Figure B.2: TPCH Queries with JOIN operation
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Figure B.3: TPCDS Queries with ORDER BY Operation
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Figure B.4: TPCDS Queries with JOIN operation
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