TU Delft

Evaluating Adaptive Activation Functions in Language Models
Does choice of activation function matter in smaller Langaunge Models?

Filip Igniji¢
Supervisor: Aral de Moor, Responsible Professors: Maliheh Izadi, Arie van Deursen

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Filip Igniji¢
Final project course: CSE3000 Research Project
Thesis committee: prof. dr. Thomas Abeel, dr. Maliheh Izadi, prof. dr. Arie van Deursen, Aral de Moor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The rapid expansion of large language models
(LLMs) driven by the transformer architecture has
raised concerns about the lack of high-quality train-
ing data. This study investigates the role of acti-
vation functions in smaller-scale language models,
specifically those with approximately 10M param-
eters, to ensure sustained progress in LLM devel-
opment despite data limitations. Activation func-
tions, crucial for neural network performance, have
evolved significantly, but comprehensive compar-
isons under consistent conditions remain scarce,
especially for smaller parameter count models.
This research systematically evaluates traditional
and novel activation functions, including learnable
variants, and introduces the Kolmogorov-Arnold
Network (KAN) to language modeling. Using
Hugging Face implementations of GPT-Neo and
RoBERTa models, performance impacts were as-
sessed through the BabyLM evaluation pipeline.
The results indicate that activation functions do
not significantly impact the performance of these
models. Additionally, the model with the KAN
network underperformed compared to models with
traditional architectures in the context of this study.
These findings suggest that optimizing activation
functions may not be crucial for smaller language
models, emphasizing the need for further research
to explore other architectural improvements.

1 Introduction

The transformer architecture [21] has revolutionized the Al
landscape and enabled the development of commercial large
language models (LLMs) like ChatGPT. However, as these
models continue to grow in size, current trends forecast run-
ning out of high-quality data required for optimal perfor-
mance [22]. This limitation stimulates the initiative to im-
prove sample efficiency motivated by the observation that
LLMs are exposed to orders of magnitude more information
than a human in their lifetime, yet are certainly not leverag-
ing all this information nearly as efficiently. Therefore, this
research aims to investigate the impact of architectural deci-
sions on smaller models which are often left neglected. By
understanding how to optimize smaller models, we can en-
sure the progress of LLMs even with the projected lack of
high-quality data. Furthermore, smaller models can be de-
ployed on edge devices that can ensure privacy and be used
for spellcheck, predictive typing, conversational assistance,
etc.

The activation function in a neural network determines if
a neuron should be activated or not. The choice of activa-
tion functions has historically played a crucial role in the ad-
vancement of neural networks, such as the shift from Sigmoid
activation functions to RELU (Rectified Linear Unit), which
simplified computation, improved feature learning, and miti-
gated vanishing gradient problem [15]. As the era of LLMs
unfolded, the development of activation functions continued

to evolve, resulting in over 400 documented activation func-
tions [12]. Despite this progress, literature typically compares
new activation functions against their immediate predecessors
and usually uses all the latest state-of-the-art configurations
(bigger and bigger models) leading to a gap in the literature:
there is no comprehensive comparison of multiple activation
functions under consistent model sizes, furthermore, with the
trend of increasing model sizes, the investigation of the im-
pact activation functions have on smaller models is neglected.
This research aims to address the aforementioned gap by ex-
ploring the impact of existing and novel activation functions
on smaller-scale language models with approximately 10 mil-
lion (10M) parameters.

For purposes of the research, we will modify Hugging face
implementations of GPTNEO [7] and ROBERTA [8] with
selected existing activation functions and a novel Learnable
GELU activation function, set the hyperparameters to amount
to a total size of approximately 10M trainable parameters and
evaluate them on the BabyLM evaluation pipeline [25]. More
details on the setup are provided in section 4.

Our contributions are as follows:

* Investigation of the effects of adaptive activation func-
tions on language models (LMs).

¢ Introduction of a novel activation function, Adaptable
GELU, derived through the parametrization of GELU.

* Investigation of the effects of KAN-Networks on LMs

» A replication package' for reproducing our findings, and
our models? published on HuggingFace.

2 Background and related work

Transformers comprise multiple layers, each crucial in pro-
cessing input data and generating meaningful representa-
tions. Among these layers, the Feed-Forward Neural Net-
work (FFN) layer typically consists of two linear transfor-
mations with an activation function in between, effectively
forming a simple Multi-Layer Perceptron (MLP) [9].

Activation functions are used to introduce non-linearity
into neural networks, allowing them to model complex re-
lationships in the data. They are applied to the nodes of the
network and are essential for enabling the network to learn
and perform a wide range of tasks, beyond what linear mod-
els can achieve [4].

The famous paper “Attention is All You Need“ [21] used
the state-of-the-art activation function at the time, Rectified
Linear Unit RELU. Since then, no significant improvements
were made until the introduction of Gaussian Error Linear
Unit GELU, which quickly became the default activation
function in most of the state-of-the-art LLMs. The popular-
ity of GELU stems from its ability to enhance model perfor-
mance without introducing an efficiency overhead by com-
bining the properties of RELU and SIGMOID function. It bal-
ances between linearity and nonlinearity, allowing it to han-
dle both positive and negative inputs gracefully [10]. Despite

"https://github.com/AISE-TUDelft/tiny-transformers
Zhttps://huggingface.co/collections/AISE-TUDelft/brp-tiny-
transformers-666¢352b3b570f44d7d2a519

these advancements, continuous innovation leads to alterna-
tives like Gated GELU GEGLU, noted for its effectiveness
[20], also used in last year’s winner of the BabyLLM challenge
[18].

However, a recently published paper suggests a return to
ReLU [14], further confusing the search for the optimal acti-
vation function. Fortunately, it also provides some clues that
guide further exploration and motivate this research. The pa-
per suggests that the impact of activation functions dimin-
ishes as the model size increases, evident in models with over
a billion parameters [14]. This also explains the initial move
away from RELU, since the research on activation alterna-
tives was done on models with the sizes of 100+ million pa-
rameters [20] [10]. Highlighting this finding further moti-
vates the need to investigate activation functions in smaller
models. The impact of activation functions is expected to be
more significant in smaller models, and until now, decisions
have been made with the trend of increasing model size in
mind.

Furthermore, another gap appears in the research on acti-
vation functions with trainable parameters (adaptable activa-
tion functions). The possible explanation for this could be the
trade-off between additional trainable parameters and perfor-
mance. However, this was primarily studied in larger mod-
els. To our knowledge the only paper on adaptive activation
functions in LLMs is by Rajanand et al. [16], which found
that adaptive activation functions outperform static ones in
text-to-text machine translation, a task also performed by lan-
guage models. This suggests that adaptive activation func-
tions could be beneficial for smaller models, but further re-
search is needed to confirm this hypothesis. Given these in-
sights, this research will explore the impact of various activa-
tion functions on smaller-scale language models with around
10 million parameters. Hypothesizing that at smaller scales,
the choice of activation function is crucial, having learnable
parameters could be beneficial, while the added parameters
from the function’s parametrization remain relatively mini-
mal compared to the total model size.

Kolmogorov-Arnold Networks (KAN) represent a recent
development in neural network architecture, where activation
functions are applied on edges instead of nodes [13]. This
approach has been shown to outperform traditional neural
networks in some tasks, particularly in scientific applications
such as solving partial differential equations. However, at the
time of this study, it has yet to be tested on language models.
The primary benefit of KAN is the optimization of activation
on each edge using splines. A spline is a piece-wise-defined
polynomial function used in interpolation and approximation
to create smooth curves through a set of points [1]. With a
spline on each edge (see figure 1), each edge can have its own
custom activation function, trained separately and uniquely
shaped. In contrast, adaptive activation functions have the
same shape but different gradients. However, this comes with
the drawback of an increased number of trainable parame-
ters. This research will experiment with applying KAN to
language modeling to assess its efficacy at smaller scales and
in different domains, addressing the gap in the current litera-
ture.

3 Approach

The transformer structure (as introduced in section 2) allows
the default activation functions to be switched out with differ-
ent activation functions for testing, enabling a direct compar-
ison of their performance while keeping the rest of the archi-
tecture the same. To explore the effectiveness of various ac-
tivation functions, we will modify the existing Hugging face
implementations of GPTNEO [7] and ROBERTA [8].

3.1 Choosing activation functions

The activation functions evaluated were Rectified Linear Unit
(RELU)?, Sigmoid Linear Unit (SILU) [10], Gated SiLU
with learnable parameters (SWISH) [5], Parametric ReLU
(PRELU)*, Gaussian Error Linear Unit (GELU) (base-
line models), ADAPTABLE GELU. Additionally, the Kol-
mogorov—Arnold Networks KAN NETWORK [13] will be
compared against all of these options.

GELU

Currently, the most popular activation function in LLMs is
also used as the default activation function in the baseline
models GPT-NEO and ROBERTA. It is a smooth approxi-
mation of RELU, originally defined as GELU(z) = = - ®(x),
where ®(z) is the Cumulative Distribution Function for the
Gaussian Distribution. For optimization purposes, since cal-
culating ®(z) is computationally expensive, it is instead cal-
culated with the TANH approximation as:

GELU(z) = 0.5z (1 + tanh (\/2 (z+ 0.044715x3)))

[10].

This function will serve as the baseline for comparing all
other activation functions, with a particular focus on evaluat-
ing it against the novel Learnable GELU.

ReLU and PReLU

RELU was considered state-of-the-art at the time of the orig-
inal transformer paper [21], but has since been surpassed by
other activation functions.

ReLU(z) = max(0, x)

RELU will be used for comparison with PRELU and
GELU. The comparison with GELU is motivated by the
findings of I. Mirzadeh et al. [14], which suggests that the
use of ReL.U is acceptable as the impact of activation func-
tions diminishes with increasing model size. The objective is
to assess the extent to which RELU underperforms compared
to GELU when applied to smaller models.

PRELU is a variant of RELU that incorporates learn-
able parameters, allowing the activation function to adaptably
learn the optimal slope for negative values.

PReLU(z) = max(0,z) + a min(0, x)

where a is a learnable parameter. This introduces x learn-
able parameters where x is the FFNs’ intermediate size in the

3PyTorch Library, torch.nn.ReLU,” PyTorch Documentation,
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html

“PyTorch Library, forch.nn.ReLU, PyTorch Documentation,
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html.

https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html

on nodes

Model
(Shallow)

ZZZ/

learnable weights
on edges

(a) fixed activation functions

(b) /T\ learnable activation functions
_/

/AN /A VA RVA on edges

S~ sum operation on nodes
ML N A M L

Figure 1: KAN vs MLP [13]

transformer. The objective is to evaluate whether adding a
learnable parameter to RELU can enhance performance or
increase the training time.

SiLU and Swish

SILU was evaluated on LLMs in the original GELU paper
[10] but was found to perform worse than the GELU activa-
tion function. It is defined as

SiLu(z) = x - o(x), where o(x) is the logistic sigmoid.

It will be used only as a baseline comparison for the Swish
activation function, which is its adaptable counterpart with
learnable parameters, aiding the objective of exploring the
impact of adding learnable parameters to activation functions.

Swish is a self-gated activation function that was proposed
by Ramachandran et al. [17]. Tt was implemented as pro-
posed in a paper

swish(z) = z - silu(a - x)

where « is a learnable parameter. The objective is to evaluate
whether the SWISH activation function outperforms the non-
adaptable STLU to evaluate the impact of adding learnable
parameters to activation functions.

Adaptable GELU

The GELU activation function will be parameterized with
learnable parameters. The implementation will be based on
the PyTorch GELU implementation[cite] with TANH approx-
imation, which, out of the box, does not support learnable
parameters. This approach appears to be novel, as no prior
research has been found that explores the impact of adding
learnable parameters to the GELU activation function. The
new GELU activation function adds a learnable parameter as
a scaling factor and is defined as follows:

/2.0
0.5-a-x- (1.0 + tanh (= (x4 0.044715 - x3)>>
™

where « is a learnable parameter.

This activation function adds a total of 2048 learnable pa-
rameters. The objective is to evaluate whether the ADAPT-
ABLE GELU activation function outperforms the standard
GELU activation function to evaluate the impact of adding
learnable parameters to activation functions.

KAN-Network

The KAN NETWORK is a novel activation function that has
shown promising results in the literature. The implementa-
tion of the KAN NETWORK is available by the original au-
thors but has shown to be problematic and slow during our

research. Those issues were addressed in efficient-KAN? im-
plementation, which was the most popular optimization on
GitHub of the original KAN paper at the time of this study.
This approach requires careful selection of certain param-
eters, specifically the number of grid intervals and the or-
der of piece-wise polynomials. Based on recommendations
from the paper, we will set these parameters to 3 and 5, re-
spectively. The configuration aims to balance performance
and computational efficiency, ensuring that the KAN imple-
mentation is both effective and practical for the experiments.
FFN layers from GPT-NEO and roBERTa both use MLPs in
their implementation, which can be directly replaced with
efficient-KAN implementation. As the KAN network in-
creases the number of trainable parameters in the FFNs from
2 million to just over 8 million, the intermediate size for mod-
els with the KAN network was reduced to 256 to maintain ap-
proximately 2 million parameters in the FENs. Although this
reduction in intermediate size limits the expressiveness of the
FFNss, the splines in the KAN network might compensate for
this bottleneck. The objective is to evaluate the performance
of the KAN network compared to the other activation func-
tions and to determine whether it is a viable alternative for
MLPs in LLMs. Additionally, the KAN NETWORK offers
the unique capability to extract symbolic representations of
the learned activation functions from splines. It also provides
the ability to retrain or further train specific network parts if
necessary. Unfortunately, this aspect will not be explored in
this study due to time constraints and the current implemen-
tation. For further discussion, see Section 6.

4 Experimental setup

4.1 Research questions

Through the experiment, we aimed to answer the following
research questions:

e Is the choice of activation function relevant to the per-
formance of smaller models with 10M parameters? We
compared the baseline models (with GELU activation)
and models with ReLU activation function, which is
GELUs predacessor.

* How does the addition of learnable parameters to the
activation function improve the performance of the
model? We modified static activation functions GELU,
SILU and RELU to include learnable parameters and

SBlealtan, Efficient-KAN, GitHub Repository, 2024. Available
at: https://github.com/Blealtan/efficient-kan (Accessed: 2024-06-
03).

https://github.com/Blealtan/efficient-kan

which gave us ADAPTIVE GELU, SWISH and PRELU
respectively.

* Do FFNs using KAN-networks outperform FFNs using
MLP networks? We used efficient-kan implementation’
of KAN-networks.

All of the setups above were evaluated on the BabyLM eval-
uation pipeline [25].

4.2 Models

We used Hugging face implementations of GPTNEO [7] and
ROBERTA [8] models. GPT NEO is a decoder model,
while ROBERTA is encoder based model. We chose these
models as they are well-established without and without the
newer optimizations found in more recent other architectures,
providing simplicity that is more suitable the scope of this
project. Additionally, testing on encoder and decoder archi-
tectures increases the generalizability the research. GPT-Neo
and Roberta also come in pre-trained form, however as we do
not have the resources to train them to that extent, we pre-
train on our own, smaller dataset so we have a baseline to
compare to. The hyperparameters used for the models can be
seen in table 1. The change in intermediate size for KAN-
MLP implementation was made due to the increased number
of learnable parameters in the activation function and the need
to keep the total number of parameters in the model approxi-
mately constant. The final parameter count for models using
KAN was 11 million, whereas the parameter count for the
other models was 9 million®.

4.3 Activation functions

RELU and SILU are provided by used hugging face imple-
mentations and can be set via a configuration file. The rest
of the activation functions were implemented as described in
Section 3 and are available in the replication package’.

4.4 Dataset

We used the TinyStories [6] dataset for pre-training. It is a
dataset of short stories, with a total of 2.1 million samples
with an average of 175.4 words per story, containing words
that a typical 4-year-old would likely understand, generated
by GPT-3.5 and GPT-4. We used them as it has been shown
that training on reduced dataset complexity exhibits better
natural language understanding than GPT-2 (125M) at a frac-
tion of the training cost’.

4.5 Evaluation Setting and Metrics

Evaluation pipeline

We used the BabyLLM evaluation pipeline [25] to evaluate the
models. The pipeline consists of three components: BLiMP,
GLUE, and SuperGLUE. BLiMP is a benchmark used to
evaluate the linguistic capabilities of language models. It
consists of pairs of minimally different sentences, with one

® These sections were written based on the guidelines provided
by the research group supervisor and discussions with the other
group members.

"Replication package: https://github.com/AISE-TUDelft/
tiny-transformers/tree/main/code/filip

sentence in the pair containing a grammatical error. Perfor-
mance is measured by the model’s ability to correctly assign a
higher likelihood to the grammatically correct sentence. [26]
[27]. GLUE and SuperGLUE are benchmarks that assess the
performance of language models across a range of tasks fo-
cused on text understanding and reasoning. The BabyLM
pipeline integrates select tasks from both GLUE and Super-
GLUE? [24] [23].

Statistical significance testing

To ensure the results are statistically significant, we trained
each model 6 times with different seeds. The following sec-
tion justifies the choices made for the statistical significance
testing, based on and summarised from The Hitchhiker’s
Guide to Testing Statistical Significance in Natural Language
Processing [3].

Since the distribution of the test statistic is not known, we
had to choose approaches from a nonparametric family of ap-
proaches, which is split into two categories. Sampling-based
tests and sampling-free tests. Sampling-free tests hold less
statistical power, therefore we decided to use sampling-based
tests.

Sampling-based tests compensate for the lack of distri-
bution information with resampling, which makes them
computationally more expensive. We used bootstrapping as a
sampling-based test. It is a resampling method that involves
drawing samples with replacements from the original results.
These samples are used to approximate the distribution of
the statistics. We use that to calculate the means and 95%
confidence interval of BLIMP and GLUE scores for each of
the models. We used 10 000 samples for bootstrapping in our
experiments. The exact implementation used, is available in
the replication package®.

4.6 Hardware

All the models were trained and evaluated on a single
NVIDIA A100 or NVIDIA V100 GPU® with 4 CPUs and
24GB of memory on DelftBlue cluster [2].

Parameter GPT Neo RoBERTa
Embedding Parameters

Vocab Size 10,000 10,000
Hidden Size 512 512
Max Pos. Embeddings 512 512
Blocks (Attn & FFN)

Num. of Layers 2 2
Attn Types global, local global
Num. of Attn Heads 4 4
Window Size 256 N/A

Intermed. Size 1024 (256 for KAN-MLP) 1024 (256 for KAN-MLP)

Table 1: Parameters for GPT Neo and RoBERTa

8For details, see Table 4.

https://github.com/AISE-TUDelft/tiny-transformers/tree/main/code/filip
https://github.com/AISE-TUDelft/tiny-transformers/tree/main/code/filip

GLUE Scores for GPT-NEO Models

60 4

59%0 59%”
sal0s
59 | 58[95 salas
ss%s
58 -

57

BLIMP Scores for GPT-NEO Models

757182
57160
57124 57125
5691
55164
55138
T T T T
S > & & N & &
& € <€ =) =)
& 2 & <% §& <2 £
\‘\m) & OQ [€) OQ <)
& ,Zp‘o
& N
£
L
©

Figure 2: GLUE and BLiMP scores for GPT NEO models with 95% confidence intervals

g
$ 56 1
55115
55 4 .1
54 4
53 1
O \zo Q«Q‘ «qu & '\C’ Q«
\\t\z (\'$° 1) (52 © (,;2 €
Q"-,?’ \gp‘
£ &
& &
S Results

The evaluation results for the BLIMP and GLUE datasets are
displayed in Figures 2 and 3. We calculated the mean scores
and 95% confidence intervals for BLIMP and GLUE after
performing bootstrap resampling for 10,000 samples.

For the first research question, which compares the base-
line GELU activation function with its predecessor RELU,
the results are inconclusive. The differences in scores be-
tween the two activation functions are statistically insignif-
icant. With the GLUE means even being higher for both
roBERTa and NEO models are marginally higher with the
RELU activation function, the confidence intervals overlap,
indicating no significant difference.

Regarding the second research question, which compares
static activation functions with their adaptive counterparts,
the findings are similarly inconclusive. The differences be-
tween static and adaptive activation functions are minor, and
the overlapping confidence intervals suggest no statistical sig-
nificance.

For the third research question, which was only evaluated
on the GPT-NEO model due to time constraints, the results
show a statistically significant difference. The KAN model
performed worse than all other models on GLUE and worse
than most models on BLiMP.

Training times across all models were consistent when us-
ing the same GPU. On the A100 GPU, training times were ap-
proximately 1 hour and 40 minutes, while on the V100 GPU,
training times were around 2 hours and 20 minutes. Not all
experiments were conducted on the A100 GPU due to time
constraints and DelftBue [2] availability. The KAN network
models were outliers, with training times averaging around 3
hours and 30 minutes on the A100 GPU and 4 hours and 50
minutes on the V100 GPU, which was expected. More details

on the training times can be found in Table 3 and Table 4.

6 Discussion

6.1 Implications

Our results indicate that the choice of activation functions re-
mains irrelevant even at smaller scales. All comparisons in
section 5 show statistically insignificant differences, with a
few exceptions unrelated to the research questions. This sug-
gests that the activation function choice does not significantly
impact the performance of language models with 10 million
parameters. These findings add to the findings of Mirzadeh et
al. [14], which suggested the impact of activation functions
diminishes as the model size increases. Our results imply that
this impact is negligible even at smaller scales, given our ex-
perimental setup and hyperparameters.

Regarding the second research question, the results show
that parameterizing activation functions does not affect per-
formance, explaining the lack of literature on adaptable ac-
tivation functions in LMs. More interestingly, our results of
comparison between ReLU and GELU challenge the conclu-
sions of Hendrycks et al. [10], who claimed GELU’s superi-
ority over ReLU. Our results align with Mirzadeh et al. [14],
who advocate for ReLU’s return. While our research does not
necessitate a return to ReLU, it also does not provide strong
arguments for preferring GELU over ReLU or PReLU.

A likely reason for this outcome is that the models were
trained for only one epoch, preventing them from converg-
ing, and making the results rather inconclusive. See further
discussion in Section 6.2 and Section 6.2.

Furthermore, the training durations of models using var-
ious activation functions showed minimal differences, indi-
cating that the choice of activation function does not signifi-
cantly impact training efficiency.

GLUE Scores for roBERTa Models

59.5
59.0 A
58, ?S
58.5 -
w
g
3 58.0 A s71 s7lag
57 PS
57554
57.5 57 .44
57.0 4 €1
56.54
T T T T T T
D 3
& & ¢ 25 <Z o
A & A] £
e N & & Q;"% &
é\i\ 6{:) &5 Q;{’ &
d &
2 N
& &L
s &

BLIMP Scores for roBERTa Models

]58l48

58126

Figure 3: GLUE and BLiMP scores for roBERTa models with 95% confidence intervals

The comparison of results further supports the findings of
Dror et al. [3], which emphasize the importance of statisti-
cal significance analysis in evaluating architectural decisions
in language models. Some of our findings indicated better
performance with certain activations, but subsequent analysis
revealed these improvements to be statistically insignificant.

GPT models with KAN networks perform worse than those
with traditional MLPs, as indicated by their lowest mean
scores on GLUE and most BLiMP benchmarks. While this
does not necessarily imply that KAN networks should be
avoided, it suggests that the setup used in this research does
not lead to improvement. Further research is needed to ex-
plore the potential of KAN networks in language models. See
Section 6.3

6.2 Threats to validity

Internal validity examines the certainty that the observed re-
sults are due to independent variables and not other factors.
External validity concerns the extent to which the findings
of the study can be generalized to contexts outside the study.
Construct validity refers to the extent to which the measure-
ment tools are appropriate for the study.

Internal validity

To ensure that our results were not due to chance, we trained
models using six different random seeds. While this sam-
ple size is relatively small, it was a necessary compromise
given our resource constraints. To address this limitation,
we employed bootstrapping with 10,000 samples to calcu-
late confidence intervals and mean differences between mod-
els. Additionally, to verify that our findings were not model-
specific, we utilized two distinct types of models: an encoder
(roBERTa) and a decoder (GPT-Neo).

Nevertheless, it is important to note that all models were
trained on the same dataset, which may have introduced
some bias. The training times could have been affected by
busy Delft Blue nodes, but across models trained on multi-
ple seeds, the training times were relatively consistent, with
a standard deviation of only 9 minutes and 52 seconds across
all models, including those with KAN-Networks.

Another potential threat to validity is that the implementa-
tion of adaptable activation functions added 2,048 learnable
parameters to each model, which could have influenced the
results. However, given that 2,048 parameters constitute a rel-
atively small proportion in models with 9 million parameters,
and the results were not statistically significant, this impact is
likely minimal.

External validity

All the models were trained for only one epoch due to com-
putational constraints, resulting in none of the models fully
converging. This may have impacted the performance of
the models and the significance of the results, as differences
might be more pronounced or minimized with additional
epochs. In a real-world scenario, models would typically be
trained for more epochs. Additionally, the models utilized in
this study are not the latest state-of-the-art, which may affect
the generalizability of the results. Furthermore, the TinySto-
ries dataset used for pre-training, which comprises only short
fictional stories, may not be representative of the datasets typ-
ically used for production-level language models.

The implementation of the KAN-Network® used in this
study makes certain assumptions to optimize the originally
proposed KAN implementation. One key change is the re-
moval of the learnable scale from each activation function
to improve efficiency. Additionally, the interpretability of
KANS, a notable feature in the original design, is compro-

mised in this implementation. This is because the critical L1
regularization, which was originally applied to input samples,
has been moved to the weights. While this adjustment aligns
better with common neural network practices and is compati-
ble with the rest of the transformer architecture, it reduces the
interpretability highlighted in the original paper and may also
affect performance.

Construct validity

The evaluation pipeline used in this study, BabyLM, primar-
ily focuses on grammatical tasks, which may not fully capture
the comprehensive capabilities of language models. How-
ever, considering the scope of this research, the tasks eval-
uated by the BabyLLM evaluation pipeline are suitable. Since
BabyLM is specifically designed for the evaluation of smaller
language models, it aligns well with our study’s focus. Thus,
it is an appropriate tool for assessing the impact of activation
functions on these models.

6.3 Future work

This study should be replicated over additional epochs to ver-
ify the findings. The observation that ReL.U is not outper-
formed by GELU is particularly noteworthy and warrants fur-
ther investigation. It is hoped that this research will inspire
more comprehensive studies to critically evaluate the atten-
tion given to activation functions. Before introducing new ac-
tivation functions, researchers should perform multiple runs
and conduct statistical significance tests to ensure the robust-
ness and reliability of their results. The KAN architecture is
a relatively new concept, and the implementation used in this
study may not have been optimal. Although we utilized more
efficient and optimized implementation as suggested by the
original paper [13], the training process was less stable com-
pared to baseline models (see Figure 4), and the models did
not converge as expected. This instability may have impacted
the performance of the KAN MODELS, suggesting that future
research should investigate this issue further. Despite its po-
tential, this promising direction concerning activation func-
tions and its interpretability benefits were not fully explored
in this study due to time constraints.

train/grad_norm
= KAN2-GPT-11.0M-2L-4H-512C-256!
= GPT-seed4-9.0M-2L-4H-512C-1024] = BERT-kan2-11.0M-2L-4H-512C-384| h4

0 20 40 60 80

Figure 4: Gradient normalization during training of KAN models.
The KAN models show higher variance in gradient norms compared
to the baseline models.

7 Conclusions

This study aimed to investigate the relevance of activation
functions in smaller-scale language models with approxi-
mately 10M parameters, addressing three key research ques-
tions. The first question explored whether the choice of ac-
tivation function impacts the performance of these smaller
models. The results indicate that the choice of activation
function, including GELU and its predecessors, does not sig-
nificantly affect performance in the context of our experiment
setup. The second research question examined the benefits
of adding learnable parameters to activation functions. Our
findings show that parameterizing activation functions, such
as with novel adaptive GELU, Swish, and PReL.U do not pro-
vide a significant performance improvement over their static
counterparts. However, due to computational constraints, the
results are inconclusive and further research is needed to ex-
plore and solidify the results as some of the results contradict
well-established papers.

The third question assessed whether FFNs using
Kolmogorov-Arnold Networks (KAN) outperform tra-
ditional MLP networks in smaller models. The KAN
models consistently underperformed compared to traditional
architectures, suggesting that KAN networks may not be a
viable alternative for language modeling at this scale or that
the implementation used in this study was not optimal.

In summary, while the choice and complexity of activa-
tion functions appear to be less critical for smaller language
models, it is premature to conclude their irrelevance. Further
research is needed to confirm these results and explore other
architectural improvements.

8 Reponsible research

To prevent test set contamination, we pre-trained our mod-
els on datasets that were separate from those used for eval-
uation. This addresses an issue highlighted in recent works,
where pre-training on test sets can artificially inflate perfor-
mance metrics and call into question the validity of the re-
sults [19]. Ensuring distinct separation between training and
evaluation datasets maintains the integrity of our findings and
contributes to the reliability of our research.

In conducting this research, we ensured transparency and re-
producibility by sharing the experimental setup under section
4. The datasets and models used are publicly available and
can be found in the references. Furthermore, all the imple-
mented code is available on GitHub? We adhered to scientific
integrity by fabrication, and plagiarism, ensuring that every-
thing was reported accurately with proper citations.

Guided by the Netherlands Code of Conduct for Research In-
tegrity, we incorporated principles of honesty, transparency,
and responsibility, ensuring our research practices align with
the highest standards. We followed the educational and nor-
mative framework from chapters 2 and 3 of the Code, em-
phasizing good research practices that promote a responsible
research environment [11].

9 Acknowledgements

The research was conducted at TU Delft as the final thesis
of the Bachelor of Computer Science and Engineering. We

would like to thank you for the support of the project super-
visor, supervising professors, and the entire research project
group. Additionally, we thank the DHPC [2] for providing
the necessary computational resources for the project.

References
[1] Arindam Chaudhuri. B-splines. arXiv:2108.06617,
2021.

[2] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 2). https://www.
tudelft.nl/dhpc/ark:/44463/DelftBluePhase2, 2024.

[3] Rotem Dror, Gil Baumer, Segev Shlomov, and Roi
Reichart. The hitchhiker’s guide to testing statistical
significance in natural language processing. In Iryna
Gurevych and Yusuke Miyao, editors, Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1383-1392, Melbourne, Australia, Jul 2018. Associ-
ation for Computational Linguistics, Association for
Computational Linguistics.

[4] Shiv Ram Dubey, Satish Kumar Singh, and B. B.
Chaudhuri. Activation functions in deep learning: A
comprehensive survey and benchmark. arXiv preprint
arXiv:2109.14545, Jun 2022.

[5] Steffen Eger, Paul Youssef, and Iryna Gurevych. Is it
time to swish? comparing deep learning activation func-
tions across NLP tasks. arXiv:1901.02671, 2019.

[6] R. Eldan and Y. Li. Tinystories: How small can lan-
guage models be and still speak coherent english? arXiv
2305.07759, May 2023. Accessed: Nov. 01, 2023.

[7] Hugging Face. Gpt neo, 2024. Accessed: Jun.
03, 2024 https://huggingface.co/docs/transformers/en/
model_doc/gpt_neo.

[8] Hugging Face. Roberta, 2024. Accessed: Jun.
03, 2024 https://huggingface.co/docs/transformers/en/
model_doc/roberta.

[9] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. Transformer feed-forward layers build pre-
dictions by promoting concepts in the vocabulary space.
arXiv:2203.14680, 2022.

[10] D. Hendrycks and K. Gimpel. Gaussian error linear
units (gelus). arXiv, arXiv:1606.08415, Jun. 2023.

[11] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit, 2018.

[12] V. Kunc and J. Kléma. Three decades of activations:
A comprehensive survey of 400 activation functions for
neural networks. arXiv, arXiv:2402.09092, 2024.

[13] Z. Liu and Others. Kan: Kolmogorov-arnold networks.
arXiv, arXiv:2404.19756, May 2024.

[14] I. Mirzadeh and Others. Relu strikes back: Exploit-
ing activation sparsity in large language models. arXiv,
arXiv:2310.04564, Oct 2023.

[15] Vinod Nair and Geoffrey Hinton. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learn-

ing (ICML), volume 27, page 814, 2010.

[16] A.Rajanand and P. Singh. Erfrelu: Adaptive activation
function for deep neural network. arXiv 2306.01822,
Jun 2023.

[17] P. Ramachandran, B. Zoph, and Q. V. Le. Searching
for activation functions. arXiv, arXiv:1710.05941, Oct.
2017.

[18] D. Samuel, A. Kutuzov, L. @vrelid, and E. Velldal.
Trained on 100 million words and still in shape: Bert
meets british national corpus. arXiv, arXiv:2303.09859,
May 2023.

[19] Rylan Schaeffer. Pretraining on the test set is
all you need. arXiv, September 2023. doi:
10.48550/arXiv.2309.08632.

[20] N. Shazeer. Glu variants improve transformer. arXiv,
arXiv:2002.05202, Feb 2020.

[21] A. Vaswani and Others. Attention is all you need. arXiv,
arXiv:1706.03762v5, Dec 2017.

[22] P. Villalobos, J. Sevilla, L. Heim, T. Besiroglu,
M. Hobbhahn, and A. Ho. Will we run out of data?
an analysis of the limits of scaling datasets in machine
learning. arXiv, arXiv:2211.04325, Oct 2022.

[23] A. Wang et al. Superglue: A stickier benchmark
for general-purpose language understanding systems.
arXiv, February 2020.

[24] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S.R. Bowman. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv,
February 2019. Accessed: Jan. 25, 2024.

[25] A. Warstadt, L. Choshen, A. Mueller, A. Williams,
E. Wilcox, and C. Zhuang. Call for papers — the babylm
challenge: Sample-efficient pretraining on a develop-
mentally plausible corpus. arXiv 2301.11796, January
2023. Accessed: Apr. 15, 2024.

[26] A. Warstadt et al. Blimp: The benchmark of linguistic
minimal pairs for english. arXiv, February 2023. Ac-
cessed: Jan. 22, 2024.

[27] Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera,
Bhargavi Paranjabe, Adina Williams, Tal Linzen, and
Ryan Cotterell. Findings of the BabyLM challenge:
Sample-efficient pretraining on developmentally plausi-
ble corpora. In Alex Warstadt, Aaron Mueller, Leshem
Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Bhargavi Paranjabe, Adina Williams,
Tal Linzen, and Ryan Cotterell, editors, Proceedings
of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages 1—
34, Singapore, December 2023. Association for Com-
putational Linguistics.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://huggingface.co/docs/transformers/en/model_doc/gpt_neo
https://huggingface.co/docs/transformers/en/model_doc/gpt_neo
https://huggingface.co/docs/transformers/en/model_doc/roberta
https://huggingface.co/docs/transformers/en/model_doc/roberta

Table 4: Pre-Train times, BLiMP and GLUE scores for all the
modes. Note: * indicates models that were trained on V100s instead
of A100s due to time constraints and DelftBlue cluster availability.

10 Appendix

Table 2: Bootstraped means of GLUE and BLiMP with 95% confi-

dence intervals

Model Seed Blimp Glue Time

- - BERT Baseline (GELU) 42 5494 4922 lh4lm 16s

Model Glue Mean 95% CI Glue map Mean 95% C1 map BERT Baseline (GELU) 2 59.5 59.9 1h 41m 32s
BERT Baseline (GELU) 5744 [56.52, 58.73] 58.48 [56.68,59.5] BERT Baseline (GELU) 3 596 566 1h4lmds
BERT Learnable GELU 57.69 [56.75, 58.73] 5925 [58.78,59.65] BERT Baseline (GELU) 4 59.3 57 1h4lmS5s
GPT Baseline (GELU) 5895 [58.27,59.7] 5782 [56.97,58.68] BERT Baseline (GELU) 5 59.1 575 1h42m2ls
GPT Learnable GELU 59.30 [58.92,59.73] 5724 [56.47,58.03] GPT Baseline (GELU) 425905 5822 1h42m 44s
BERT ReLU 5791 [56.98, 58.87] 5840 [57.37,59.23] GPT Baseline (GELU) 1 58 585 1h43m35s
BERT PReLU 58.58 [57.67,59.28] 5837 [57.70,59.05] ~ GPT Baseline (GELU) 2 56.6 578 1h45m 19
GPT ReLU 59.41 [59.0, 59.82] 56.91 [55.93, 57.8] GPT Baselme (GELU) 3 56.6 59.1 1h 41m 44s
GPT PReLU 58.83 [57.6,59.82] 5760 [56.34,58.83] GPT Baseline (GELU) 4 592 605 1h40m 125
BERT SiLU 5754 [57.15,58.1] 59.16 [58.75,59.53] GPT Baseline (GELU) 5 574 596 1h42m32s
BERT Swish 57.89 [57.28,58.48] 5826 [57.71,58.75] ~ BERT Learnable GELU 42 594 57.1 1h58m 39
GPT SiLU 59.05 [58.4,59.63] 5725 [56.43,582] BERT Learnable GELU 1 598 562 1h45m56s
GPT Swish 5836 [57.95, 58.78] 55.64 [54.68.5664] BERT Learnable GELU 2 593 597 1h45m55s
GPT KAN 5515 [52.54,56.73] 5538 [53.68,56.47] ~ BERT Learnable GELU 3 59 57 1h45m 35s
BERT Learnable GELU 4 58.2 57 1h45m 56s

BERT Learnable GELU 5 59.8 592 1h45m39s

GPT Learnable GELU 42 56.8 60.2 1h 43m 41s

L. L. GPT Learnable GELU 1 56.3 58.8 1h 41m 26s

Table 3: Average pre-train times and standard devitations for all the GPT Learnable GELU > 574 587 1h42m53s
models. Note: * indicates models that were trained on V100s in- GPT Learnable GELU 3 58.7 59.6 1h4lm11s
stead of A100s due to time constraints and DelftBlue cluster avail- GPT Leamable GELU 4 56 592 1h4lm327s
abilily GPT Learnable GELU 5 58.3 59.3 1h 41m 19s
- *BERT ReLU 4 585 572 2h24m46s
*BERT ReLU 1 58 587 2h22m40s

Model Avg. Train, Time *BERT ReLU 2 561 59.6 2h25m13s

*BERT ReLU 3 592 563 2h25mS5ls

BERT Baseline (GELU) 1h41m 27s + 32s *BERT ReLU 4 587 588 2h29m52s

BERT Learnable GELU ~ 1h 47m 56s + 313s *BERT ReLU 5 599 568 2h23m 59

GPT Baseline (GELU) 1h42m 41s + 103s *GPT ReLU 42 56.6 59.9 2h 17m 4s

GPT Learnable GELU 1h41m 59s + 102s #*GPT ReLU 1 58.5 58.7 2h 16m 42s

*BERT ReLU 2h 25m 23s + 1475 *GPT ReLU 2 561 59.6 2h2lm3ds

BERT PReLU 1h 46m 11s + 46s *GPT ReLU 3 574 593 2h20m47s

*GPT ReLU 2h 20m 27s + 203s *GPT ReLU 4 55 589 2h25m58s

GPT PReLU 1h 41m 23s + 40s *GPT ReLU 5 579 60.1 2h20m39s

BERT SiLU 1h 43m 50s + 268s BERT SiLU 4 583 575 1h45mds

*BERT Swish 2h 20m 4s + 10863 BERT SiLU 1 589 589 lh4lm4ls

GPT SiLU 1h 39m 7s % 270s BERT SiLU 2 598 574 1h52m26s

*GPT Swish 2h 31m 4s £ 1032s BERT SiLU 3 596 57.1 1h4lm40s

*GPT KAN 3h 58m 11s + 2663s BERT SiLU 4 59 573 1h40m43s

BERT SiLU 5 59.4 57 1h41m26s

GPT SiLU 4 563 599 1h39m35s

GPT SiLU 1 593 577 1h37m5s

GPT SiLU 2 559 585 1h 48m

GPT SiLU 3 579 597 1h36m55s

GPT SiLU 4 572 589 1h 37m

GPT SiLU 5 569 596 1h36m7s

BERT Swish 4 58 578 1h43mS8s

*BERT Swish 1 577 573 2h26m13s

*BERT Swish 2 572 589 2h27m10s

*BERT Swish 3 589 568 2h27m4Ss

*BERT Swish 4 59 588 2h28m27s

*BERT Swish 5 588 57.7 2h27m39s

GPT Swish 42 537 576 1h39m22s

*GPT Swish 1 55 586 2h19m34s

*GPT Swish 2 56 592 2h20m>5ls

*GPT Swish 3 564 579 2h2Im43s

*GPT Swish 4 572 578 2h21m30s

*GPT Swish 5 55.6 59 2h23m24s

BERT PReLU 4 57 576 1h47m?27s

BERT PReLU 1 598 59.6 1h45m25s

BERT PReLU 2 582 581 1h45m30s

BERT PReLU 3 587 569 1h46m37s

BERT PReLU 4 58 595 1h45m54s

BERT PReLU 5 585 59.8 1h46m l4s

GPT PReLU 42 592 561 1h42m28s

GPT PReLU 1 562 59.1 1h4lm7s

GPT PReLU 2 555 605 1h40m40s

GPT PReLU 3 566 595 1h41m50s

GPT PReLU 4 596 582 1h40m48s

GPT PReLU 5 585 59.6 1h4lm24s

GPT KAN 42 6343 488 3h23m3Ss

*GPT KAN 1 527 565 3h22m36s

*GPT KAN 2 538 566 4h54m37s

GPT KAN 3 54.9 57 4h52m29s

GPT KAN 4 542 554 3h23m10s

GPT KAN 5 532 567 3h52m4ls

	Introduction
	Background and related work
	Approach
	Choosing activation functions
	GELU
	ReLU and PReLU
	SiLU and Swish
	Adaptable GELU
	KAN-Network

	Experimental setup
	Research questions
	Models
	Activation functions
	Dataset
	Evaluation Setting and Metrics
	Evaluation pipeline
	Statistical significance testing

	Hardware

	Results
	Discussion
	Implications
	Threats to validity
	Internal validity
	External validity
	Construct validity

	Future work

	Conclusions
	Reponsible research
	Acknowledgements
	Appendix

